1
|
Hoseinzadeh A, Esmaeili SA, Sahebi R, Melak AM, Mahmoudi M, Hasannia M, Baharlou R. Fate and long-lasting therapeutic effects of mesenchymal stromal/stem-like cells: mechanistic insights. Stem Cell Res Ther 2025; 16:33. [PMID: 39901306 PMCID: PMC11792531 DOI: 10.1186/s13287-025-04158-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 01/21/2025] [Indexed: 02/05/2025] Open
Abstract
A large body of evidence suggests that mesenchymal stromal cells (MSCs) are able to respond rapidly to the cytokine milieu following systemic infusion. This encounter has the potential to dictate their therapeutic efficacy (also referred to as licensing). MSCs are able to rapidly react to cellular damage by migrating to the inflamed tissue and ultimately modifying the inflammatory microenvironment. However, the limited use of MSCs in clinical practice can be attributed to a lack of understanding of the fate of MSCs in patients after administration and long term MSC-derived therapeutic activity. While the known physiological effectors of viable MSCs make a relative contribution, an innate property of MSCs as a therapeutic agent is their caspase-dependent cell death. These mechanisms may be involving the functional reprogramming of myeloid phagocytes via efferocytosis, the process by which apoptotic bodies (ABs) are identified for engulfment by both specialized and non-specialized phagocytic cells. Recent studies have provided evidence that the uptake of ABs with a distinct genetic component can induce changes in gene expression through the process of epigenetic remodeling. This phenomenon, known as 'trained immunity', has a significant impact on immunometabolism processes. It is hypothesized that the diversity of recipient cells within the inflammatory stroma adjacent to MSCs may potentially serve as a biomarker for predicting the clinical outcome of MSC treatment, while also contributing to the variable outcomes observed with MSC-based therapies. Therefore, the long-term reconstructive process of MSCs may potentially be mediated by MSC apoptosis and subsequent phagocyte-mediated efferocytosis.
Collapse
Affiliation(s)
- Akram Hoseinzadeh
- Department of Immunology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Seyed-Alireza Esmaeili
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Sahebi
- Department of Modern Sciences and Technologies, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mahmoud Mahmoudi
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maliheh Hasannia
- Cancer Research Center, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Rasoul Baharlou
- Department of Immunology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
2
|
Li Y, Quan X, Hu J, Han Y, Chen J, Zhou M, Zhang F, Yang Y, Liao M, Wang B, Zhao Y. BMSCs-derived small extracellular vesicles antagonize cerebral endothelial Caveolin-1 driven autophagic degradation of tight-junction proteins to protect blood-brain barrier post-stroke. Int J Biol Sci 2025; 21:842-859. [PMID: 39781452 PMCID: PMC11705626 DOI: 10.7150/ijbs.101937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/22/2024] [Indexed: 01/12/2025] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) -derived extracellular vesicles (EVs), especially small EVs (sEVs), were vastly reported to enable multiple restorative effects on ischemic stroke, yet the protective mechanism of blood-brain barrier (BBB) has not been fully illustrated. In the present study, we investigated the therapeutic effects and mechanism of BMSCs-derived sEVs on BBB injury after ischemic stroke. In-vivo, administering sEVs to transient middle cerebral artery occlusion (tMCAo) mice mitigated the brain infarct volume, BBB permeability and neural apoptosis, and improved the cerebral blood flow perfusion and neurological function. Simultaneously, cerebral vascular endothelial overexpressed Caveolin-1 (Cav-1) together with its strong co-localization with autophagosome protein LC3B were suppressed, and ZO-1 and Occludin expressions were enhanced, whose results were consistent with those of oxygen-glucose-deprivation/reperfusion (OGD/R)-insulted brain endothelial cells (BECs) in vitro. Furthermore, by employing Cav-1 siRNA and pcDNA3.1 transfection, Co-immunoprecipitation, cycloheximide assay, and molecular docking, it proved that brain endothelial Cav-1 was an essential upstream of autophagy activation, contributing to tight-junction proteins delegation via the autophagy-lysosomal pathway. Altogether, our study demonstrates the novel mechanism of Cav-1-dependent tight-junction proteins autophagic disruption on BBB integrity after ischemic stroke, and BMSC-sEVs treatment can reverse such hazard cascades.
Collapse
Affiliation(s)
- Yiyang Li
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, China
| | - Xingping Quan
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, China
| | - Jiacheng Hu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, China
| | - Yan Han
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, China
| | - Jinfen Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, China
| | - Manfei Zhou
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, China
| | - Fan Zhang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, China
| | - Yayue Yang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, China
- Guangdong Institute of Intelligence Science and Technology, Zhuhai, Guangdong, China
| | - Mingchun Liao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, China
- Guangdong Institute of Intelligence Science and Technology, Zhuhai, Guangdong, China
| | - Bin Wang
- Guangdong Institute of Intelligence Science and Technology, Zhuhai, Guangdong, China
| | - Yonghua Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| |
Collapse
|
3
|
Zhang J, Shi M, Wang J, Li F, Du C, Su G, Xie X, Li S. Novel Strategies for Angiogenesis in Tissue Injury: Therapeutic Effects of iPSCs-Derived Exosomes. Angiology 2025; 76:5-16. [PMID: 37933764 DOI: 10.1177/00033197231213192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Regeneration after tissue injury is a dynamic and complex process, and angiogenesis is necessary for normal physiological activities and tissue repair. Induced pluripotent stem cells are a new approach in regenerative medicine, which provides good model for the study of difficult-to-obtain human tissues, patient-specific therapy, and tissue repair. As an innovative cell-free therapeutic strategy, the main advantages of the treatment of induced pluripotent stem cells (iPSCs)-derived exosomes are low in tumorigenicity and immunogenicity, which become an important pathway for tissue injury. This review focuses on the mechanism of the angiogenic effect of iPSCs-derived exosomes on wound repair in tissue injury and their potential therapeutic targets, with a view to providing a theoretical basis for the use of iPSCs-derived exosomes in clinical therapy.
Collapse
Affiliation(s)
- Jiaxin Zhang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Maoning Shi
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jing Wang
- Gansu Province Medical Genetics Center, Gansu Provincial Clinical Research Center for Birth Defects and Rare Diseases, Gansu Provincial Maternity and Child Care Hospital, Lanzhou, China
| | - Fei Li
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Chenxu Du
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Gang Su
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiaodong Xie
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Shiweng Li
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| |
Collapse
|
4
|
Peng X, Li F, Xia L, Lu M. Macrophage heterogeneity regulation by small extracellular vesicles from adipose-derived stem cells: A promising approach for treating chronic prostatitis/pelvic pain syndrome. BIOMATERIALS ADVANCES 2025; 166:214066. [PMID: 39413706 DOI: 10.1016/j.bioadv.2024.214066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is an intractable aseptic disease. Modulating the transition of macrophages from the proinflammatory M1 phenotype to the anti-inflammatory M2 phenotype offers an attractive therapeutic approach. Recently, small extracellular vesicles (sEVs) derived from mesenchymal stem cells (MSCs) reportedly have potent modulatory abilities, however, their applications are limited by suboptimal targeting. Our group hypothesized that surface modification of sEVs derived from ADSCs are useful for the management of CP/CPPS by promoting M1/M2 macrophage phenotypic transformation. In this study, a novel nanomaterial (CD86-sEVs) is designed for CP/CPPS treatment using click chemistry, a bioconjugation technique enabling robust covalent linkages. The results of immunofluorescence staining, western blot and ELISA confirmed that azide-modified CD86 antibody was successfully conjugated onto the sEVs surface. In vitro, CD86-sEVs significantly accelerated M1 macrophage polarization to M2 and upregulated anti-inflammatory factors. In vivo, CD86-sEVs targeted the prostatic lesion region, alleviated chronic pelvic pain, and inhibited inflammation by promoting M1/M2 phenotype shift. Furthermore, miRNA array analysis identified specific miRNAs (miR-26a, miR-147, miR-17, miR-21, miR-182, miR-451a) within CD86-sEVs that likely contributed to these observed effects. In sum, this study presents a novel paradigm for the treatment of CP/CPPS.
Collapse
Affiliation(s)
- Xufeng Peng
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Fangzhou Li
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Lei Xia
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China.
| | - Mujun Lu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China.
| |
Collapse
|
5
|
Wang Y, Yuan T, Lyu T, Zhang L, Wang M, He Z, Wang Y, Li Z. Mechanism of inflammatory response and therapeutic effects of stem cells in ischemic stroke: current evidence and future perspectives. Neural Regen Res 2025; 20:67-81. [PMID: 38767477 PMCID: PMC11246135 DOI: 10.4103/1673-5374.393104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/13/2023] [Accepted: 11/21/2023] [Indexed: 05/22/2024] Open
Abstract
Ischemic stroke is a leading cause of death and disability worldwide, with an increasing trend and tendency for onset at a younger age. China, in particular, bears a high burden of stroke cases. In recent years, the inflammatory response after stroke has become a research hotspot: understanding the role of inflammatory response in tissue damage and repair following ischemic stroke is an important direction for its treatment. This review summarizes several major cells involved in the inflammatory response following ischemic stroke, including microglia, neutrophils, monocytes, lymphocytes, and astrocytes. Additionally, we have also highlighted the recent progress in various treatments for ischemic stroke, particularly in the field of stem cell therapy. Overall, understanding the complex interactions between inflammation and ischemic stroke can provide valuable insights for developing treatment strategies and improving patient outcomes. Stem cell therapy may potentially become an important component of ischemic stroke treatment.
Collapse
Affiliation(s)
- Yubo Wang
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tingli Yuan
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
| | - Tianjie Lyu
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ling Zhang
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Meng Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhiying He
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yongjun Wang
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Engineering Research Center of Digital Healthcare for Neurological Diseases, Beijing, China
| | - Zixiao Li
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Engineering Research Center of Digital Healthcare for Neurological Diseases, Beijing, China
| |
Collapse
|
6
|
Xu Q, Gu L, Li Z, Gao L, Wei L, Shafiq Z, Chen S, Cai Q. Current Status of Research on Nanomaterials Combined with Mesenchymal Stem Cells for the Treatment of Ischemic Stroke. Neuromolecular Med 2024; 26:51. [PMID: 39644405 DOI: 10.1007/s12017-024-08819-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/13/2024] [Indexed: 12/09/2024]
Abstract
Ischemic stroke (IS) is a disease with high mortality and disability rates worldwide and is a serious threat to patient health. Owing to the narrow therapeutic window, effective treatments during the recovery period are limited. However, in recent years, mesenchymal stem cells (MSCs) have attracted attention and have shown therapeutic potential in IS treatment because of their abilities to home and secrete multiple bioactive substances and potential for differentiation and substitution. The therapeutic mechanisms of MSCs in IS include the regulatory effects of MSCs on microglia, the dual role of MSCs in astrocytes, how MSCs connect innate and adaptive immunity, the secretion of cytokines by MSCs to counteract apoptosis and MSC apoptosis, the promotion of angiogenesis by MSCs to favor the restoration of the blood‒brain barrier (BBB), and the potential function of local neural replacement by MSCs. However, the low graft survival rate, insufficient homing, poor targeting, and inability to achieve directional differentiation of MSCs limit their wide application. As an approach to compensate for the shortcomings of MSCs, scientists have used nanomaterials to assist MSCs in homing, survival and proliferation. In addition, the unique material of nanomaterials adds tracking, imaging and real-time monitoring to stroke treatment. The identification of effective treatments for stroke is urgently needed; thus, an understanding of how MSCs treat stroke and further improvements in the use of nanomaterials are necessary.
Collapse
Affiliation(s)
- Qingxue Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhiyang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lun Gao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lu Wei
- Department of Anesthesiology, Eastern Campus, Renmin Hospital of Wuhan University, Wuhan, 430200, China
| | - Zohaib Shafiq
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Shigui Chen
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, 430072, Hubei, China.
| | - Qiang Cai
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
7
|
Yang J, Tan A, Li T, Chen H. Irisin alleviates the pyroptosis of β cells in T2DM by inhibiting NLRP3 inflammasome through regulating miR-19b-3p/SOCS3/STAT3 axis mediated autophagy. IUBMB Life 2024; 76:1264-1278. [PMID: 39143849 DOI: 10.1002/iub.2907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/25/2024] [Indexed: 08/16/2024]
Abstract
The purpose of this study was to analyze the mechanism by which irisin affects β-cell pyroptosis in type 2 diabetes mellitus (T2DM). The in vivo T2DM model was established by raised with high-fat diet and intraperitoneally injection of streptozocin. Min6 cells were divided into four groups: negative control (NC), high glucose (HG), HG + irisin, and HG + irisin+3-MA. The cell viability was determined by CCK-8 assay. Dual-luciferase gene reporter assay was conducted to confirm the binding between miR-19b-3p and SOCS3. The expression level of FNDC5 and GSDMD was visualized using the immunofluorescence assay. The protein level of FNDC5, Beclin1, LC3II/I, NLRP3, cleaved-caspase-1, GSDMD-N, STAT3, p-STAT3, and SOCS3 was determined by Western blotting. The secretion of irisin, lactate dehydrogenase (LDH), and insulin was checked by ELISA. In vivo results showed that pathological changes in islet tissues with declined number of β cells, elevated FBG value, decreased FIN and HOMA-β value, elevated autophagy-associated proteins expressions, and activated NLRP3 signaling in T2DM mice, which were dramatically reversed by FNDC5 overexpression. Furthermore, the declined level of miR-19b-3p and p-STAT3, as well as the upregulation of SOCS3, was greatly rescued by FNDC5 overexpression. The in vitro data confirmed the binding site between SOCS3 and miR-19b-3p. SOCS3 was downregulated and p-STAT3 was upregulated in miR-19b-3p mimic-treated Min6 cells. In HG-stimulated Min6 cells, the elevated cell viability, increased production of insulin, decreased release of LDH, and inactivated NLRP3 signaling induced by irisin were abolished by miR-19b-3p inhibitor and STAT3 inhibitor. The increased level of autophagy-related proteins and activated SOCS3/STAT3 axis induced by irisin in HG-stimulated Min6 cells were abolished by miR-19b-3p inhibitor. The inhibitory effect of irisin against NLRP3 signaling in HG-stimulated Min6 cells was abrogated by 3-MA. In conclusion, irisin alleviated the pyroptosis of β cells in T2DM by inhibiting NLRP3 signaling through miR-19b-3p/SOCS3/STAT3 axis mediated autophagy.
Collapse
Affiliation(s)
- Jingjing Yang
- Department of Geriatric Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Anjun Tan
- Department of Geriatric Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Tianrong Li
- Department of Geriatric Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Hewen Chen
- Department of Geriatric Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
8
|
Lee J, Geum D, Park DH, Kim JH. Molecular Targeting of Ischemic Stroke: The Promise of Naïve and Engineered Extracellular Vesicles. Pharmaceutics 2024; 16:1492. [PMID: 39771472 PMCID: PMC11678501 DOI: 10.3390/pharmaceutics16121492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 01/04/2025] Open
Abstract
Ischemic stroke (IS) remains a leading cause of mortality and long-term disability worldwide, with limited therapeutic options available. Despite the success of early interventions, such as tissue-type plasminogen activator administration and mechanical thrombectomy, many patients continue to experience persistent neurological deficits. The pathophysiology of IS is multifaceted, encompassing excitotoxicity, oxidative and nitrosative stress, inflammation, and blood-brain barrier disruption, all of which contribute to neural cell death, further complicating the treatment of IS. Recently, extracellular vesicles (EVs) secreted naturally by various cell types have emerged as promising therapeutic agents because of their ability to facilitate selective cell-to-cell communication, neuroprotection, and tissue regeneration. Furthermore, engineered EVs, designed to enhance targeted delivery and therapeutic cargo, hold the potential to improve their therapeutic benefits by mitigating neuronal damage and promoting neurogenesis and angiogenesis. This review summarizes the characteristics of EVs, the molecular mechanisms underlying IS pathophysiology, and the emerging role of EVs in IS treatment at the molecular level. This review also explores the recent advancements in EV engineering, including the incorporation of specific proteins, RNAs, or pharmacological agents into EVs to enhance their therapeutic efficacy.
Collapse
Affiliation(s)
- Jihun Lee
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea;
| | - Dongho Geum
- Department of Medical Science, College of Medicine, Korea University, Seoul 02841, Republic of Korea;
| | - Dong-Hyuk Park
- Department of Neurosurgery, Anam Hospital, College of Medicine, Korea University, Seoul 02841, Republic of Korea;
| | - Jong-Hoon Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea;
| |
Collapse
|
9
|
Belousova E, Salikhova D, Maksimov Y, Nebogatikov V, Sudina A, Goldshtein D, Ustyugov A. Proposed Mechanisms of Cell Therapy for Alzheimer's Disease. Int J Mol Sci 2024; 25:12378. [PMID: 39596443 PMCID: PMC11595163 DOI: 10.3390/ijms252212378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder characterized by mitochondria dysfunction, accumulation of beta-amyloid plaques, and hyperphosphorylated tau tangles in the brain leading to memory loss and cognitive deficits. There is currently no cure for this condition, but the potential of stem cells for the therapy of neurodegenerative pathologies is actively being researched. This review discusses preclinical and clinical studies that have used mouse models and human patients to investigate the use of novel types of stem cell treatment approaches. The findings provide valuable insights into the applications of stem cell-based therapies and include the use of neural, glial, mesenchymal, embryonic, and induced pluripotent stem cells. We cover current studies on stem cell replacement therapy where cells can functionally integrate into neural networks, replace damaged neurons, and strengthen impaired synaptic circuits in the brain. We address the paracrine action of stem cells acting via secreted factors to induce neuroregeneration and modify inflammatory responses. We focus on the neuroprotective functions of exosomes as well as their neurogenic and synaptogenic effects. We look into the shuttling of mitochondria through tunneling nanotubes that enables the transfer of healthy mitochondria by restoring the normal functioning of damaged cells, improving their metabolism, and reducing the level of apoptosis.
Collapse
Affiliation(s)
- Ekaterina Belousova
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
| | - Diana Salikhova
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
- Research Institute of Molecular and Cellular Medicine of the Medical Institute Peoples’ Friendship, University of Russia, Moscow 117198, Russia
| | - Yaroslav Maksimov
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
- Research Institute of Molecular and Cellular Medicine of the Medical Institute Peoples’ Friendship, University of Russia, Moscow 117198, Russia
| | - Vladimir Nebogatikov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences, Chernogolovka 142432, Russia;
| | - Anastasiya Sudina
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
- Research Institute of Molecular and Cellular Medicine of the Medical Institute Peoples’ Friendship, University of Russia, Moscow 117198, Russia
| | - Dmitry Goldshtein
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
| | - Aleksey Ustyugov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences, Chernogolovka 142432, Russia;
| |
Collapse
|
10
|
Xu K, Zhao X, He Y, Guo H, Zhang Y. Stem cell-derived exosomes for ischemic stroke: a conventional and network meta-analysis based on animal models. Front Pharmacol 2024; 15:1481617. [PMID: 39508049 PMCID: PMC11537945 DOI: 10.3389/fphar.2024.1481617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
Objective We aimed to evaluate the efficacy of stem cell-derived exosomes for treating ischemic stroke and to screen for the optimal administration strategy. Methods We searched PubMed, Web of Science, Embase, Cochrane Library, and Scopus databases for relevant studies published from their inception to 31 December 2023. Conventional and network meta-analyses of the routes of administration, types, and immune compatibility of stem cell-derived exosomes were performed using the cerebral infarct volume (%) and modified neurological severity score (mNSS) as outcome indicators. Results A total of 38 randomized controlled animal experiments were included. Conventional meta-analysis showed that compared with the negative control group: intravenous administration significantly reduced the cerebral infarct volume (%) and mNSS; intranasal administration significantly reduced the cerebral infarct volume (%); and intracerebral administration significantly reduced the mNSS. Adipose-derived mesenchymal stem cell-derived exosomes (ADSC-Exos), bone marrow mesenchymal stem cell-derived exosomes (BMSC-Exos), dental pulp stem cell-derived exosomes (DPSC-Exos) and neural stem cell-derived exosomes (NSC-Exos) significantly reduced the cerebral infarct volume (%) and mNSS; Endothelial progenitor cell-derived exosomes (EPC-Exos), embryonic stem cell-derived exosomes (ESC-Exos), induced pluripotent stem cell-derived exosomes (iPSC-Exos) and neural progenitor cell-derived exosomes (NPC-Exos) significantly reduced the cerebral infarct volume (%); Umbilical cord mesenchymal stem cell-derived exosomes (UCMSC-Exos) significantly reduced the mNSS; and there was no significant difference between urogenital stem cell-derived exosomes (USC-Exos) and negative controls. Engineered modified exosomes had better efficacy than unmodified exosomes. Both allogeneic and xenogeneic stem cell-derived exosomes significantly reduced the cerebral infarct volume (%) and the mNSS. The network meta-analysis showed that intravenous administration was the best route of administration for reducing the cerebral infarct volume (%) and mNSS. Among the 10 types of stem cell-derived exosomes that were administered intravenously, BMSC-Exos were the best type for reducing the cerebral infarct volume (%) and the mNSS. Allogeneic exosomes had the best efficacy in reducing the cerebral infarct volume (%), whereas xenogeneic stem cell-derived exosomes had the best efficacy in reducing the mNSS. Conclusion This meta-analysis, by integrating the available evidence, revealed that intravenous administration is the best route of administration, that BMSC-Exos are the best exosome type, that allogeneic exosomes have the best efficacy in reducing the cerebral infarct volume (%), and that xenogeneic exosomes have the best efficacy in reducing mNSS, which can provide options for preclinical studies. In the future, more high-quality randomized controlled animal experiments, especially direct comparative evidence, are needed to determine the optimal administration strategy for stem cell-derived exosomes for ischemic stroke. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?ID=CRD42024497333, PROSPERO, CRD42024497333.
Collapse
Affiliation(s)
- Kangli Xu
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaohui Zhao
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yuxuan He
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Hongxin Guo
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yunke Zhang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
11
|
Wu Z, Su Y, Li J, Liu X, Liu Y, Zhao L, Li L, Zhang L. Induced pluripotent stem cell-derived mesenchymal stem cells: whether they can become new stars of cell therapy. Stem Cell Res Ther 2024; 15:367. [PMID: 39415276 PMCID: PMC11484330 DOI: 10.1186/s13287-024-03968-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/29/2024] [Indexed: 10/18/2024] Open
Abstract
Stem cell therapy constitutes a pivotal subject in contemporary discourse, with donor stem cells having been employed in research and clinical treatments for several decades. Primary cell transplantation encompasses diverse stem cell types, including ectomesenchymal stem cells, hematopoietic stem cells, and various stem cell derivatives such as vesicles and extracellular vesicles. Nevertheless, the emergence of cell engineering techniques has heralded a new epoch in stem cell therapy, markedly broadening their therapeutic potential. Induced pluripotent stem cells (iPSCs) epitomize a significant milestone in modern medical biology. This groundbreaking discovery offers significant potential in disciplines such as biology, pathophysiology, and cellular regenerative medicine. As a result, iPSCs derived differentiated cells have become a pioneering avenue for cell therapy research. Induced mesenchymal stem cells (iMSCs), derived from iPSCs, represent a novel frontier in MSCs related research. Empirical evidence suggests that iMSCs demonstrate enhanced proliferative capacities compared to natural MSCs, with diminished age-related variability and heterogeneity. Numerous clinical trials have highlighted the prospective superiority of iMSCs. This article synthesizes current basic research and clinical trials pertaining to iMSCs, aiming to provide a reference point for future research endeavors.
Collapse
Affiliation(s)
- Zewen Wu
- Shanxi Bethune Hospital, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Taiyuan, 030032, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, 030032, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Taiyuan, 030032, China
| | - Yazhen Su
- Shanxi Bethune Hospital, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Taiyuan, 030032, China
| | - Jingxuan Li
- Shanxi Bethune Hospital, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Taiyuan, 030032, China
| | - Xinling Liu
- Shanxi Bethune Hospital, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Taiyuan, 030032, China
| | - Yang Liu
- Shanxi Bethune Hospital, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Taiyuan, 030032, China
| | - Li Zhao
- Shanxi Medical University, Taiyuan, 030000, China
| | - Linxin Li
- Shanxi Bethune Hospital, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Taiyuan, 030032, China
| | - Liyun Zhang
- Shanxi Bethune Hospital, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Taiyuan, 030032, China.
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, 030032, China.
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Taiyuan, 030032, China.
| |
Collapse
|
12
|
Rust R, Nih LR, Liberale L, Yin H, El Amki M, Ong LK, Zlokovic BV. Brain repair mechanisms after cell therapy for stroke. Brain 2024; 147:3286-3305. [PMID: 38916992 PMCID: PMC11449145 DOI: 10.1093/brain/awae204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 06/27/2024] Open
Abstract
Cell-based therapies hold great promise for brain repair after stroke. While accumulating evidence confirms the preclinical and clinical benefits of cell therapies, the underlying mechanisms by which they promote brain repair remain unclear. Here, we briefly review endogenous mechanisms of brain repair after ischaemic stroke and then focus on how different stem and progenitor cell sources can promote brain repair. Specifically, we examine how transplanted cell grafts contribute to improved functional recovery either through direct cell replacement or by stimulating endogenous repair pathways. Additionally, we discuss recently implemented preclinical refinement methods, such as preconditioning, microcarriers, genetic safety switches and universal (immune evasive) cell transplants, as well as the therapeutic potential of these pharmacologic and genetic manipulations to further enhance the efficacy and safety of cell therapies. By gaining a deeper understanding of post-ischaemic repair mechanisms, prospective clinical trials may be further refined to advance post-stroke cell therapy to the clinic.
Collapse
Affiliation(s)
- Ruslan Rust
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA 90033, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren, Switzerland
| | - Lina R Nih
- Department of Brain Health, University of Nevada, Las Vegas, NV 89154, USA
| | - Luca Liberale
- Department of Internal Medicine, University of Genoa, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Hao Yin
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Mohamad El Amki
- Department of Neurology, University Hospital and University of Zurich, 8091 Zurich, Switzerland
| | - Lin Kooi Ong
- School of Health and Medical Sciences & Centre for Health Research, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA 90033, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
13
|
Wang Y, Chang C, Wang R, Li X, Bao X. The advantages of multi-level omics research on stem cell-based therapies for ischemic stroke. Neural Regen Res 2024; 19:1998-2003. [PMID: 38227528 DOI: 10.4103/1673-5374.390959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/11/2023] [Indexed: 01/17/2024] Open
Abstract
Stem cell transplantation is a potential therapeutic strategy for ischemic stroke. However, despite many years of preclinical research, the application of stem cells is still limited to the clinical trial stage. Although stem cell therapy can be highly beneficial in promoting functional recovery, the precise mechanisms of action that are responsible for this effect have yet to be fully elucidated. Omics analysis provides us with a new perspective to investigate the physiological mechanisms and multiple functions of stem cells in ischemic stroke. Transcriptomic, proteomic, and metabolomic analyses have become important tools for discovering biomarkers and analyzing molecular changes under pathological conditions. Omics analysis could help us to identify new pathways mediated by stem cells for the treatment of ischemic stroke via stem cell therapy, thereby facilitating the translation of stem cell therapies into clinical use. In this review, we summarize the pathophysiology of ischemic stroke and discuss recent progress in the development of stem cell therapies for the treatment of ischemic stroke by applying multi-level omics. We also discuss changes in RNAs, proteins, and metabolites in the cerebral tissues and body fluids under stroke conditions and following stem cell treatment, and summarize the regulatory factors that play a key role in stem cell therapy. The exploration of stem cell therapy at the molecular level will facilitate the clinical application of stem cells and provide new treatment possibilities for the complete recovery of neurological function in patients with ischemic stroke.
Collapse
Affiliation(s)
- Yiqing Wang
- 4+4 Doctor Medical Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Chuheng Chang
- 4+4 Doctor Medical Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoguang Li
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xinjie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Park SM, Oh YH, Lim GH, Yun GH, Kim KB, An JH, Seo KW, Youn HY. Deferoxamine preconditioning of canine stem cell derived extracellular vesicles alleviates inflammation in an EAE mouse model through STAT3 regulation. Sci Rep 2024; 14:19273. [PMID: 39164295 PMCID: PMC11335858 DOI: 10.1038/s41598-024-68853-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/29/2024] [Indexed: 08/22/2024] Open
Abstract
Extracellular vesicles (EVs) from mesenchymal stem cells (MSCs), specifically those preconditioned with deferoxamine (DFO) in canine adipose tissue-derived MSCs (cAT-MSCs), were explored for treating autoimmune diseases. This study assessed the effects of DFO-preconditioned EVs (EVDFO) in an experimental autoimmune encephalomyelitis (EAE) mouse model. cAT-MSCs were treated with DFO for 48 h, after which EVs were isolated. EAE mice received intranasal EV or EVDFO treatments and were euthanized following histopathologic analysis; RNA and protein expression levels were measured. Histologically, EV and EVDFO groups showed a significant reduction in inflammatory cell infiltration and demyelination. Immunofluorescence revealed increased CD206 and Foxp3 expression, indicating elevated M2 macrophages and regulatory T (Treg) cells, particularly in the EVDFO group. Treg cells also notably increased in the spleen of EVDFO -treated mice. STAT3 and pSTAT3 proteins were upregulated in the EAE groups compared to the naïve group. However, following EV treatment, STAT3 expression decreased compared to the EAE group, whereas pSTAT3 expression was similar in both the EV and EAE groups. In conclusion, EVDFO treatment resulted in reduced STAT3 expression, suggesting its role in T cell regulation and the potential of EVDFO in modulating the STAT3 pathway for reducing inflammation more effectively than non-preconditioned EVs.
Collapse
MESH Headings
- Animals
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Extracellular Vesicles/metabolism
- Extracellular Vesicles/transplantation
- STAT3 Transcription Factor/metabolism
- Mice
- Dogs
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/metabolism
- Deferoxamine/pharmacology
- Deferoxamine/therapeutic use
- Mesenchymal Stem Cells/metabolism
- Inflammation/pathology
- Female
- Disease Models, Animal
Collapse
Affiliation(s)
- Su-Min Park
- Laboratory of Veterinary Internal Medicine and Research Institute for Veterinary Science, Department of Clinical Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yong-Hun Oh
- Laboratory of Veterinary Internal Medicine and Research Institute for Veterinary Science, Department of Clinical Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ga-Hyun Lim
- Laboratory of Veterinary Internal Medicine and Research Institute for Veterinary Science, Department of Clinical Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ga-Hee Yun
- Laboratory of Veterinary Internal Medicine and Research Institute for Veterinary Science, Department of Clinical Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyung-Bo Kim
- Laboratory of Veterinary Internal Medicine and Research Institute for Veterinary Science, Department of Clinical Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ju-Hyun An
- Department of Veterinary Emergency and Critical Care Medicine and Institute of Veterinary Science, College of Veterinary Medicine, Kangwon National University, Chuncheon-si, Republic of Korea
| | - Kyung-Won Seo
- Laboratory of Veterinary Internal Medicine and Research Institute for Veterinary Science, Department of Clinical Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hwa-Young Youn
- Laboratory of Veterinary Internal Medicine and Research Institute for Veterinary Science, Department of Clinical Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
15
|
Wang J, Zhang M, Wang H. Emerging Landscape of Mesenchymal Stem Cell Senescence Mechanisms and Implications on Therapeutic Strategies. ACS Pharmacol Transl Sci 2024; 7:2306-2325. [PMID: 39144566 PMCID: PMC11320744 DOI: 10.1021/acsptsci.4c00284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024]
Abstract
Mesenchymal stem cells (MSCs) hold significant promise for regenerative medicine and tissue engineering due to their unique multipotent differentiation ability and immunomodulatory properties. MSC therapy is widely discussed and utilized in clinical treatment. However, during both in vitro expansion and in vivo transplantation, MSCs are prone to senescence, an irreversible growth arrest characterized by morphological, gene expression, and functional changes in genomic regulation. The microenvironment surrounding MSCs plays a crucial role in modulating their senescence phenotype, influenced by factors such as hypoxia, inflammation, and aging status. Numerous strategies targeting MSC senescence have been developed, including senolytics and senomorphic agents, antioxidant and exosome therapies, mitochondrial transfer, and niche modulation. Novel approaches addressing replicative senescence have also emerged. This paper comprehensively reviews the current molecular manifestations of MSC senescence, addresses the environmental impact on senescence, and highlights potential therapeutic strategies to mitigate senescence in MSC-based therapies. These insights aim to enhance the efficacy and understanding of MSC therapies.
Collapse
Affiliation(s)
- Jing Wang
- Department
of Cellular and Molecular Medicine, University
of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Muqing Zhang
- Institute
of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21215, United States
| | - Hu Wang
- Institute
of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21215, United States
| |
Collapse
|
16
|
Kumari S, Dhapola R, Sharma P, Nagar P, Medhi B, HariKrishnaReddy D. The impact of cytokines in neuroinflammation-mediated stroke. Cytokine Growth Factor Rev 2024; 78:105-119. [PMID: 39004599 DOI: 10.1016/j.cytogfr.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
Cerebral stroke is ranked as the third most common contributor to global mortality and disability. The involvement of inflammatory mechanisms, both peripherally and within the CNS, holds significance in the pathophysiological cascades following the initiation of stroke. After the onset of acute stroke, predominantly ischemic, a subsequent phase of neuroinflammation ensues. It is a dual-effect process that not only exacerbates injury, leading to cell death, but paradoxically, it also serves a shielding role in facilitating recovery. Cytokines serve as pivotal mediators within the inflammatory cascade, actively contributing to the progression of ischemic damage. Stroke is followed by increased expression of pro-inflammatory cytokines including TNF-α, IL-1β, IL-6, etc. leading to the recruitment and stimulation of glial cells and peripheral leukocytes at the site of injury, promoting neuroinflammation. Cytokines can directly induce neuronal injury and death through various mechanisms, including excitotoxicity, oxidative stress, HPA-axis activation, secretion of matrix metalloproteinase and apoptosis. They can also amplify the inflammatory response, leading to further neuronal damage. Therapeutic strategies aimed at modulating cytokine release, immune response and cytokine signalling or activity are being explored as potential interventions to mitigate neuroinflammation and its detrimental effects in stroke. In this review, we have given a concise summary of our current knowledge of the function of various cytokines, brain inflammation and various signalling and molecular pathways including JAK/STAT3, TGF-β/Smad, MAPK, HMGB1/TLR and NF-κB modulated cytokines regulation in stroke. Therapeutic agents such as MCC950, genistein, edaravone, minocycline, etc. targeting various cytokines-associated signalling pathways have shown efficacy in preclinical and clinical trials reducing the pathophysiology of the illness were also addressed in this study.
Collapse
Affiliation(s)
- Sneha Kumari
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Rishika Dhapola
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Prajjwal Sharma
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Pushank Nagar
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Dibbanti HariKrishnaReddy
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India.
| |
Collapse
|
17
|
Romenskaja D, Jonavičė U, Pivoriūnas A. Extracellular vesicles promote autophagy in human microglia through lipid raft-dependent mechanisms. FEBS J 2024; 291:3706-3722. [PMID: 38840471 DOI: 10.1111/febs.17192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/05/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
Autophagy dysfunction has been closely related with pathogenesis of many neurodegenerative diseases and therefore represents a potential therapeutic target. Extracellular vesicles (EVs) may act as potent anti-inflammatory agents and also modulators of autophagy in target cells. However, the molecular mechanisms by which EVs modulate autophagy flux in human microglia remain largely unexplored. In the present study, we investigated the effects of EVs derived from human oral mucosa stem cells on the autophagy in human microglia. We demonstrate that EVs promoted autophagy and autophagic flux in human microglia and that this process was dependent on the integrity of lipid rafts. Lipopolysaccharide (LPS) also activated autophagy, but combined treatment with EVs and LPS suppressed autophagy response, indicating interference between these signaling pathways. Blockage of Toll-like receptor 4 (TLR4) with anti-TLR4 antibody suppressed EV-induced autophagy. Furthermore, inhibition of the EV-associated heat shock protein (HSP70) chaperone which is one of the endogenous ligands of the TLR4 also suppressed EV-induced lipid raft formation and autophagy. Pre-treatment of microglia with a selective inhibitor of αvβ3/αvβ5 integrins cilengitide inhibited EV-induced autophagy. Finally, blockage of purinergic P2X4 receptor (P2X4R) with selective inhibitor 5-BDBD also suppressed EV-induced autophagy. In conclusion, we demonstrate that EVs activate autophagy in human microglia through interaction with HSP70/TLR4, αVβ3/αVβ5, and P2X4R signaling pathways and that these effects depend on the integrity of lipid rafts. Our findings could be used to develop new therapeutic strategies targeting disease-associated microglia.
Collapse
Affiliation(s)
- Diana Romenskaja
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Ugnė Jonavičė
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Augustas Pivoriūnas
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| |
Collapse
|
18
|
Zhou X, Liu J, Wu F, Mao J, Wang Y, Zhu J, Hong K, Xie H, Li B, Qiu X, Xiao X, Wen C. The application potential of iMSCs and iMSC-EVs in diseases. Front Bioeng Biotechnol 2024; 12:1434465. [PMID: 39135947 PMCID: PMC11317264 DOI: 10.3389/fbioe.2024.1434465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
The immune system, functioning as the body's "defense army", plays a role in surveillance, defense. Any disruptions in immune system can lead to the development of immune-related diseases. Extensive researches have demonstrated the crucial immunoregulatory role of mesenchymal stem cells (MSCs) in these diseases. Of particular interest is the ability to induce somatic cells under specific conditions, generating a new cell type with stem cell characteristics known as induced pluripotent stem cell (iPSC). The differentiation of iPSCs into MSCs, specifically induced pluripotent stem cell-derived mesenchymal stem cells (iMSCs), hold promise as a potential solution to the challenges of MSCs, potentially serving as an alternative to traditional drug therapies. Moreover, the products of iMSCs, termed induced pluripotent stem cell-derived mesenchymal stem cell-derived extracellular vesicles (iMSC-EVs), may exhibit functions similar to iMSCs. With the biological advantages of EVs, they have become the focus of "cell-free therapy". Here, we provided a comprehensive summary of the biological impact of iMSCs on immune cells, explored the applications of iMSCs and iMSC-EVs in diseases, and briefly discussed the fundamental characteristics of EVs. Finally, we overviewed the current advantages and challenges associated with iMSCs and iMSC-EVs. It is our hope that this review related to iMSCs and iMSC-EVs will contribute to the development of new approaches for the treatment of diseases.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jinyu Liu
- Department of Obstetrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feifeng Wu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jueyi Mao
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yang Wang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Junquan Zhu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Kimsor Hong
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haotian Xie
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Binbin Li
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xinying Qiu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiangbin Xiao
- Department of Cardiovascular, People’s Hospital of Jianyang, Jianyang, China
| | - Chuan Wen
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
19
|
Hu B, Pei J, Wan C, Liu S, Xu Z, Zou Y, Li Z, Tang Z. Mechanisms of Postischemic Stroke Angiogenesis: A Multifaceted Approach. J Inflamm Res 2024; 17:4625-4646. [PMID: 39045531 PMCID: PMC11264385 DOI: 10.2147/jir.s461427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024] Open
Abstract
Ischemic stroke constitutes a significant global health care challenge, and a comprehensive understanding of its recovery mechanisms is imperative for the development of innovative therapeutic strategies. Angiogenesis, a pivotal element of ischemic tissue repair, facilitates the restoration of blood flow to damaged regions, thereby promoting neuronal regeneration and functional recovery. Nevertheless, the mechanisms underlying postischemic stroke angiogenesis remain incompletely elucidated. This review meticulously examines the constituents of the neurovascular unit, ion channels, molecular mediators, and signaling pathways implicated in angiogenesis following stroke. Furthermore, it delves into prospective therapeutic strategies informed by these factors. Our objective is to provide detailed and exhaustive information on the intricate mechanisms governing postischemic stroke angiogenesis, thus providing a robust scientific foundation for the advancement of novel neurorepair therapies.
Collapse
Affiliation(s)
- Bin Hu
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Jingchun Pei
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Cheng Wan
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
- Department of Medical Imaging, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Shuangshuang Liu
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Zhe Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, People’s Republic of China
- School of Basic Medical Sciences, Qujing Medical College, Qujing, People’s Republic of China
| | - Yongwei Zou
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Zhigao Li
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Zhiwei Tang
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| |
Collapse
|
20
|
Winston T, Song Y, Shi H, Yang J, Alsudais M, Kontaridis MI, Wu Y, Gaborski TR, Meng Q, Cooney RN, Ma Z. Lineage-Specific Mesenchymal Stromal Cells Derived from Human iPSCs Showed Distinct Patterns in Transcriptomic Profile and Extracellular Vesicle Production. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308975. [PMID: 38757640 PMCID: PMC11267277 DOI: 10.1002/advs.202308975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/16/2024] [Indexed: 05/18/2024]
Abstract
Over the past decades, mesenchymal stromal cells (MSCs) have been extensively investigated as a potential therapeutic cell source for the treatment of various disorders. Differentiation of MSCs from human induced pluripotent stem cells (iMSCs) has provided a scalable approach for the biomanufacturing of MSCs and related biological products. Although iMSCs shared typical MSC markers and functions as primary MSCs (pMSCs), there is a lack of lineage specificity in many iMSC differentiation protocols. Here, a stepwise hiPSC-to-iMSC differentiation method is employed via intermediate cell stages of neural crest and cytotrophoblast to generate lineage-specific MSCs with varying differentiation efficiencies and gene expression. Through a comprehensive comparison between early developmental cell types (hiPSCs, neural crest, and cytotrophoblast), two lineage-specific iMSCs, and six source-specific pMSCs, are able to not only distinguish the transcriptomic differences between MSCs and early developmental cells, but also determine the transcriptomic similarities of iMSC subtypes to postnatal or perinatal pMSCs. Additionally, it is demonstrated that different iMSC subtypes and priming conditions affected EV production, exosomal protein expression, and cytokine cargo.
Collapse
Affiliation(s)
- Tackla Winston
- Department of Biomedical & Chemical EngineeringSyracuse University329 Link HallSyracuseNY13244USA
- BioInspired Institute for Materials and Living SystemsSyracuse University318 Bowne HallSyracuseNY13244USA
| | - Yuanhui Song
- Department of Biomedical & Chemical EngineeringSyracuse University329 Link HallSyracuseNY13244USA
- BioInspired Institute for Materials and Living SystemsSyracuse University318 Bowne HallSyracuseNY13244USA
| | - Huaiyu Shi
- Department of Biomedical & Chemical EngineeringSyracuse University329 Link HallSyracuseNY13244USA
- BioInspired Institute for Materials and Living SystemsSyracuse University318 Bowne HallSyracuseNY13244USA
| | - Junhui Yang
- Department of Biomedical & Chemical EngineeringSyracuse University329 Link HallSyracuseNY13244USA
- BioInspired Institute for Materials and Living SystemsSyracuse University318 Bowne HallSyracuseNY13244USA
| | - Munther Alsudais
- Departments of Biomedical and Chemical EngineeringRochester Institute of TechnologyOne Lomb Memorial DriveRochesterNY14623USA
| | - Maria I. Kontaridis
- Department of Biomedical Research and Translational MedicineMasonic Medical Research Institute2150 Bleecker StreetUticaNY13501USA
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical CenterHarvard Medical School330 Brookline AveBostonMA02215USA
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBuilding C, 240 Longwood AveBostonMA02115USA
| | - Yaoying Wu
- Department of Biomedical & Chemical EngineeringSyracuse University329 Link HallSyracuseNY13244USA
- BioInspired Institute for Materials and Living SystemsSyracuse University318 Bowne HallSyracuseNY13244USA
- Department of Microbiology & ImmunologySUNY Upstate Medical University766 Irving AvenueSyracuseNY13210USA
| | - Thomas R. Gaborski
- Departments of Biomedical and Chemical EngineeringRochester Institute of TechnologyOne Lomb Memorial DriveRochesterNY14623USA
| | - Qinghe Meng
- Department of SurgeryState University of New York Upstate Medical University750 East Adams StreetSyracuseNY13210USA
- Sepsis Interdisciplinary Research CenterState University of New York Upstate Medical University766 Irving AvenueSyracuseNY13210USA
| | - Robert N. Cooney
- Department of SurgeryState University of New York Upstate Medical University750 East Adams StreetSyracuseNY13210USA
- Sepsis Interdisciplinary Research CenterState University of New York Upstate Medical University766 Irving AvenueSyracuseNY13210USA
| | - Zhen Ma
- Department of Biomedical & Chemical EngineeringSyracuse University329 Link HallSyracuseNY13244USA
- BioInspired Institute for Materials and Living SystemsSyracuse University318 Bowne HallSyracuseNY13244USA
- Department of BiologySyracuse University107 College PlSyracuseNY13210USA
| |
Collapse
|
21
|
Bao L, Liu Y, Jia Q, Chu S, Jiang H, He S. Argon neuroprotection in ischemic stroke and its underlying mechanism. Brain Res Bull 2024; 212:110964. [PMID: 38670471 DOI: 10.1016/j.brainresbull.2024.110964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/04/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Ischemic stroke (IS), primarily caused by cerebrovascular obstruction, results in severe neurological deficits and has emerged as a leading cause of death and disability worldwide. Recently, there has been increasing exploration of the neuroprotective properties of the inert gas argon. Argon has exhibited impressive neuroprotection in many in vivo and ex vivo experiments without signs of adverse effects, coupled with the advantages of being inexpensive and easily available. However, the efficient administration strategy and underlying mechanisms of neuroprotection by argon in IS are still unclear. This review summarizes current research on the neuroprotective effects of argon in IS with the goal to provide effective guidance for argon application and to elucidate the potential mechanisms of argon neuroprotection. Early and appropriate argon administration at as high a concentration as possible offers favorable neuroprotection in IS. Argon inhalation has been shown to provide some long-term protection benefits. Argon provides the anti-oxidative stress, anti-inflammatory and anti-apoptotic cytoprotective effects mainly around Toll-like receptor 2/4 (TLR2/4), mediated by extracellular signal-regulated kinase 1/2 (ERK1/2), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), nuclear factor kappa-B (NF-ĸB) and B-cell leukemia/lymphoma 2 (Bcl-2). Therefore, argon holds significant promise as a novel clinical neuroprotective gas agent for ischemic stroke after further researches to identify the optimal application strategy and elucidate the underlying mechanism.
Collapse
Affiliation(s)
- Li Bao
- Department of Stroke Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China; Medical College of Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| | - Yongxin Liu
- Medical College of Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| | - Qi Jia
- Department of Stroke Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China; Medical College of Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| | - Sihao Chu
- Department of Stroke Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China; Medical College of Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| | - Han Jiang
- Department of Stroke Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China; Medical College of Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| | - Shuang He
- Department of Stroke Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China.
| |
Collapse
|
22
|
Ruscu M, Glavan D, Surugiu R, Doeppner TR, Hermann DM, Gresita A, Capitanescu B, Popa-Wagner A. Pharmacological and stem cell therapy of stroke in animal models: Do they accurately reflect the response of humans? Exp Neurol 2024; 376:114753. [PMID: 38490317 DOI: 10.1016/j.expneurol.2024.114753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/22/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
Cerebrovascular diseases are the second leading cause of death worldwide. Despite significant research investment, the only available therapeutic options are mechanical thrombectomy and tissue plasminogen activator thrombolysis. None of the more than a thousand drugs tested on animal models have proven successful in human clinical trials. Several factors contribute to this poor translation of data from stroke-related animal models to human stroke patients. Firstly, our understanding of the molecular and cellular processes involved in recovering from an ischemic stroke is severely limited. Secondly, although the risk of stroke is particularly high among older patients with comorbidities, most drugs are tested on young, healthy animals in controlled laboratory conditions. Furthermore, in animal models, the tracking of post-stroke recovery typically spans only 3 to 28 days, with occasional extensions to 60 days, whereas human stroke recovery is a more extended and complex process. Thirdly, young animal models often exhibit a considerably higher rate of spontaneous recovery compared to humans following a stroke. Fourth, only a very limited number of animals are utilized for each condition, including control groups. Another contributing factor to the much smaller beneficial effects in humans is that positive outcomes from numerous animal studies are more readily accepted than results reported in human trials that do not show a clear benefit to the patient. Useful recommendations for conducting experiments in animal models, with increased chances of translatability to humans, have been issued by both the STEPS investigative team and the STAIR committee. However, largely, due to economic factors, these recommendations are largely ignored. Furthermore, one might attribute the overall failures in predicting and subsequently developing effective acute stroke therapies beyond thrombolysis to potential design deficiencies in clinical trials.
Collapse
Affiliation(s)
- Mihai Ruscu
- Department of Neurology, University Hospital Essen, Essen 45147, Germany; Department of Psychiatry, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; Department of Neurology, University of Giessen Medical School, 35392 Giessen, Germany
| | - Daniela Glavan
- Department of Psychiatry, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania
| | - Roxana Surugiu
- Department of Psychiatry, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Thorsten R Doeppner
- Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany; Department of Neurology, University of Giessen Medical School, 35392 Giessen, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, Essen 45147, Germany
| | - Andrei Gresita
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 115680-8000, USA
| | - Bogdan Capitanescu
- Department of Psychiatry, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 115680-8000, USA.
| | - Aurel Popa-Wagner
- Department of Psychiatry, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 115680-8000, USA.
| |
Collapse
|
23
|
Liu H, Li C, Zhang X, Chen H, Zhang Q, Zeng Y, Zheng S, Zou J, Zhao Y, Zheng X, Huang G, Zeng Q. BMSC-Exosomes attenuate ALP dysfunction by restoring lysosomal function via the mTOR/TFEB Axis to reduce cerebral ischemia-reperfusion injury. Exp Neurol 2024; 376:114726. [PMID: 38403042 DOI: 10.1016/j.expneurol.2024.114726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 01/02/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND The complex pathophysiological changes following cerebral ischemia-reperfusion injury (CIRI) include the accumulation of defective proteins and damaged organelles, which cause massive neuron demise. To preserve cellular homeostasis, the autophagy-lysosomal pathway (ALP) is crucial for neurons to dispose of these substances. Many studies have shown that bone mesenchymal stem cell exosomes (BMSC-Exos) can reduce CIRI. However, the specific mechanisms have not been well elucidated, a fact that limits its widespread clinical use. This study aimed to clarify whether BMSC-Exos could attenuate ALP dysfunction by restoring lysosomal function after CIRI via inhibiting mTOR and then activating TFEB nucleus translocation. METHODS In this study, Flow cytometry, Nanoparticle tracking analysis (NTA), Transmission electron microscope (TEM), and Western blot were used to identify the BMSCs and BMSC-Exos used in this experiment as conforming to the requirements. In vivo experiments, SD rats were modeled with temporary middle cerebral artery occlusion (tMCAO), and BMSC-Exos was injected into the tail vein 2 h after modeling. Triphenyl tetrazolium chloride (TTC) staining, modified neurological severity scores (mNSS), corner turn test, and rotating rod test were used to detect neurological deficits in rats after BMSC-Exos intervention. Western blot and Immunofluorescence were used to detect ALP, transcription factor EB(TFEB) nucleus translocation, and mammalian target of rapamycin (mTOR) change at different time points after modeling and after BMSC-Exos intervention. In vitro experiments, pheochromocytoma cells (PC12) cells were subjected to oxygen-glucose deprivation and reperfusion (OGD/R) modeling to mimic CIRI, and were respectively intervened with BMSC-Exos, BMSC-Exos + MHY 1485 (the mTOR agonist), Rapamycin (the mTOR inhibitor). CCK8, Western blot, and Immunofluorescence were used to detect PC12 cell survival, TFEB nucleus translocation, and cathepsin B(CTSB) Immunofluorescence intensity. RESULTS We found that ALP dysfunction occurred 72 h after tMCAO, and BMSC-Exos can attenuate ALP dysfunction by restoring lysosomal function. Next, we examined TFEB nucleus translocation and the expression of mTOR, a key regulator of translocation. We found that BMSC-Exos could inhibit mTOR and activate TFEB nucleus translocation. Additional in vitro tests revealed that BMSC-Exos could increase PC12 cell survival after OGD/R, activating TFEB nucleus translocation and enhancing the fluorescence intensity of CTSB, which in turn could be reversed by the mTOR agonist, MHY1485. This effect was similar to another mTOR inhibitor, Rapamycin. CONCLUSION BMSC-Exos could attenuate ALP dysfunction by restoring lysosomal function after CIRI by inhibiting mTOR and then promoting TFEB nucleus translocation.
Collapse
Affiliation(s)
- Haining Liu
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China; School of Rehabilitation Sciences, Southern Medical University, Guangdong 510515, China
| | - Chen Li
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China; School of Rehabilitation Sciences, Southern Medical University, Guangdong 510515, China; Department of Rehabilitation Medicine, Hunan Provincial People's Hospital, Hunan Normal University, Changsha 410016, China
| | - Xiaofeng Zhang
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China; School of Rehabilitation Sciences, Southern Medical University, Guangdong 510515, China
| | - Hui Chen
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China; School of Rehabilitation Sciences, Southern Medical University, Guangdong 510515, China
| | - Qi Zhang
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China; School of Rehabilitation Sciences, Southern Medical University, Guangdong 510515, China
| | - Yuting Zeng
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China; School of Rehabilitation Sciences, Southern Medical University, Guangdong 510515, China
| | - Shuqi Zheng
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China; School of Rehabilitation Sciences, Southern Medical University, Guangdong 510515, China
| | - Jihua Zou
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China; School of Rehabilitation Sciences, Southern Medical University, Guangdong 510515, China; The Hong Kong Polytechnic University, Faculty of Health and Social Sciences, Hong Kong
| | - Yijin Zhao
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China; School of Rehabilitation Sciences, Southern Medical University, Guangdong 510515, China
| | - Xiaoyan Zheng
- School of Rehabilitation Sciences, Southern Medical University, Guangdong 510515, China.
| | - Guozhi Huang
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China; School of Rehabilitation Sciences, Southern Medical University, Guangdong 510515, China.
| | - Qing Zeng
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China; School of Rehabilitation Sciences, Southern Medical University, Guangdong 510515, China.
| |
Collapse
|
24
|
Wang G, Li Z, Wang G, Sun Q, Lin P, Wang Q, Zhang H, Wang Y, Zhang T, Cui F, Zhong Z. Advances in Engineered Nanoparticles for the Treatment of Ischemic Stroke by Enhancing Angiogenesis. Int J Nanomedicine 2024; 19:4377-4409. [PMID: 38774029 PMCID: PMC11108071 DOI: 10.2147/ijn.s463333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/02/2024] [Indexed: 05/24/2024] Open
Abstract
Angiogenesis, or the formation of new blood vessels, is a natural defensive mechanism that aids in the restoration of oxygen and nutrition delivery to injured brain tissue after an ischemic stroke. Angiogenesis, by increasing vessel development, may maintain brain perfusion, enabling neuronal survival, brain plasticity, and neurologic recovery. Induction of angiogenesis and the formation of new vessels aid in neurorepair processes such as neurogenesis and synaptogenesis. Advanced nano drug delivery systems hold promise for treatment stroke by facilitating efficient transportation across the the blood-brain barrier and maintaining optimal drug concentrations. Nanoparticle has recently been shown to greatly boost angiogenesis and decrease vascular permeability, as well as improve neuroplasticity and neurological recovery after ischemic stroke. We describe current breakthroughs in the development of nanoparticle-based treatments for better angiogenesis therapy for ischemic stroke employing polymeric nanoparticles, liposomes, inorganic nanoparticles, and biomimetic nanoparticles in this study. We outline new nanoparticles in detail, review the hurdles and strategies for conveying nanoparticle to lesions, and demonstrate the most recent advances in nanoparticle in angiogenesis for stroke treatment.
Collapse
Affiliation(s)
- Guangtian Wang
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
- Department of Microbiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Zhihui Li
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150086, People’s Republic of China
| | - Gongchen Wang
- Department of Vascular Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150086, People’s Republic of China
| | - Qixu Sun
- Department of Gastroenterology, Penglai People’s Hospital, Yantai, Shandong, 265600, People’s Republic of China
| | - Peng Lin
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Qian Wang
- Department of Microbiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Huishu Zhang
- Teaching Center of Biotechnology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Yanyan Wang
- Teaching Center of Morphology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Tongshuai Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Feiyun Cui
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Zhaohua Zhong
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
- Department of Microbiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| |
Collapse
|
25
|
Choi HK, Chen M, Goldston LL, Lee KB. Extracellular vesicles as nanotheranostic platforms for targeted neurological disorder interventions. NANO CONVERGENCE 2024; 11:19. [PMID: 38739358 PMCID: PMC11091041 DOI: 10.1186/s40580-024-00426-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/24/2024] [Indexed: 05/14/2024]
Abstract
Central Nervous System (CNS) disorders represent a profound public health challenge that affects millions of people around the world. Diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and traumatic brain injury (TBI) exemplify the complexities and diversities that complicate their early detection and the development of effective treatments. Amid these challenges, the emergence of nanotechnology and extracellular vesicles (EVs) signals a new dawn for treating and diagnosing CNS ailments. EVs are cellularly derived lipid bilayer nanosized particles that are pivotal in intercellular communication within the CNS and have the potential to revolutionize targeted therapeutic delivery and the identification of novel biomarkers. Integrating EVs with nanotechnology amplifies their diagnostic and therapeutic capabilities, opening new avenues for managing CNS diseases. This review focuses on examining the fascinating interplay between EVs and nanotechnology in CNS theranostics. Through highlighting the remarkable advancements and unique methodologies, we aim to offer valuable perspectives on how these approaches can bring about a revolutionary change in disease management. The objective is to harness the distinctive attributes of EVs and nanotechnology to forge personalized, efficient interventions for CNS disorders, thereby providing a beacon of hope for affected individuals. In short, the confluence of EVs and nanotechnology heralds a promising frontier for targeted and impactful treatments against CNS diseases, which continue to pose significant public health challenges. By focusing on personalized and powerful diagnostic and therapeutic methods, we might improve the quality of patients.
Collapse
Affiliation(s)
- Hye Kyu Choi
- Department of Chemistry and Chemical Biology, The State University of New Jersey, 123 Bevier Road, Rutgers, Piscataway, NJ, 08854, USA
| | - Meizi Chen
- Department of Chemistry and Chemical Biology, The State University of New Jersey, 123 Bevier Road, Rutgers, Piscataway, NJ, 08854, USA
| | - Li Ling Goldston
- Department of Chemistry and Chemical Biology, The State University of New Jersey, 123 Bevier Road, Rutgers, Piscataway, NJ, 08854, USA
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, The State University of New Jersey, 123 Bevier Road, Rutgers, Piscataway, NJ, 08854, USA.
| |
Collapse
|
26
|
Xu K, Wang M, Wang H, Zhao S, Tu D, Gong X, Li W, Liu X, Zhong L, Chen J, Xie P. HMGB1/STAT3/p65 axis drives microglial activation and autophagy exert a crucial role in chronic Stress-Induced major depressive disorder. J Adv Res 2024; 59:79-96. [PMID: 37321346 PMCID: PMC11081938 DOI: 10.1016/j.jare.2023.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 05/04/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023] Open
Abstract
INTRODUCTION Neuroinflammation and autophagy are implicated in stress-related major depressive disorder (MDD), but the underlying molecular mechanisms remain largely unknown. OBJECTIVES Here, we identified that MDD regulated by HMGB1/STAT3/p65 axis mediated microglial activation and autophagy for the first time. Further investigations were performed to uncover the effects of this axis on MDD in vivo and in vitro. METHODS Bioinformatics analyses were used to re-analysis the transcriptome data from the dorsolateral prefrontal cortex (dlPFC) of post-mortem male MDD patients. The expression level of HMGB1 and its correlation with depression symptoms were explored in MDD clinical patients and chronic social defeat stress (CSDS)-induced depression model mice. Specific adeno-associated virus and recombinant (r)HMGB1 injection into the medial PFC (mPFC) of mice, and pharmacological inhibitors with rHMGB1 in two microglial cell lines exposed to lipopolysaccharide were used to analyze the effects of HMGB1/STAT3/p65 axis on MDD. RESULTS The differential expression of genes from MDD patients implicated in microglial activation and autophagy regulated by HMGB1/STAT3/p65 axis. Serum HMGB1 level was elevated in MDD patients and positively correlated with symptom severity. CSDS not only induced depression-like states in mice, but also enhanced microglial reactivity, autophagy as well as activation of the HMGB1/STAT3/p65 axis in mPFC. The expression level of HMGB1 was mainly increased in the microglial cells of CSDS-susceptible mice, which also correlated with depressive-like behaviors. Specific HMGB1 knockdown produced a depression-resilient phenotype and suppressed the associated microglial activation and autophagy effects of CSDS-induced. The effects induced by CSDS were mimicked by exogenous administration of rHMGB1 or specific overexpression of HMGB1, while blocked by STAT3 inhibitor or p65 knockdown. In vitro, inhibition of HMGB1/STAT3/p65 axis prevented lipopolysaccharide-induced microglial activation and autophagy, while rHMGB1 reversed these changes. CONCLUSION Our study established the role of microglial HMGB1/STAT3/p65 axis in mPFC in mediating microglial activation and autophagy in MDD.
Collapse
Affiliation(s)
- Ke Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Mingyang Wang
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Haiyang Wang
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Shuang Zhao
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400016, China
| | - Dianji Tu
- Department of Clinical Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Xue Gong
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wenxia Li
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaolei Liu
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Lianmei Zhong
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China.
| | - Jianjun Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
27
|
Zhang S, Li J, Li C, Xie X, He J, Ling F, Li B, Wu H, Li Z, Zhen J, Liu G. CD73-positive pediatric urethral mesenchymal stem-like cell-derived small extracellular vesicles stimulate angiogenesis. Regen Ther 2024; 25:77-84. [PMID: 38111468 PMCID: PMC10727923 DOI: 10.1016/j.reth.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 11/24/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023] Open
Abstract
Introduction Angiogenesis plays an important role in the repair of urethral injury, and stem cells and their secretomes can promote angiogenesis. We obtained pediatric urethral mesenchymal stem-like cells (PU-MSLCs) in an earlier study. This project studied the pro-angiogenic effect of PU-MSLC-derived small extracellular vesicles (PUMSLC-sEVs) and the underlying mechanisms. Materials and methods PUMSLCs and PUMSLC-sEVs were cultivated and identified. Then, biological methods such as the ethynyl deoxyuridine (EdU) incorporation assay, Cell Counting Kit-8 (CCK-8) assay, scratch wound assay, Transwell assay, and tube formation assay were used to study the effect of PUMSLC-sEVs on the proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs). We explored whether the proangiogenic effect of PUMSLC-sEVs is related to CD73 and whether adenosine (ADO, a CD73 metabolite) promoted angiogenesis. GraphPad Prism 8 software was used for data analysis. Results We observed that PUMSLC-sEVs significantly promoted the proliferation, migration, and tube-forming abilities of HUVECs. PUMSLC-sEVs delivered CD73 molecules to HUVECs to promote angiogenesis. The angiogenic ability of HUVECs was enhanced after treatment with extracellular ADO produced by CD73, and PUMSLC-sEVs further promoted angiogenesis by activating Adenosine Receptor A2A (A2AR). Conclusions These observations suggest that PUMSLC-sEVs promote angiogenesis, possibly through activation of the CD73/ADO/A2AR signaling axis.
Collapse
Affiliation(s)
- Shilin Zhang
- Department of Urology, Foshan Maternity & Child Healthcare Hospital, Foshan 528000, China
| | - Jierong Li
- Department of Urology, Foshan Maternity & Child Healthcare Hospital, Foshan 528000, China
| | - Chunjing Li
- Department of Urology, Foshan Maternity & Child Healthcare Hospital, Foshan 528000, China
| | - Xumin Xie
- Department of Urology, Foshan Maternity & Child Healthcare Hospital, Foshan 528000, China
| | - Jun He
- Department of Urology, Foshan Maternity & Child Healthcare Hospital, Foshan 528000, China
| | - Fengsheng Ling
- Department of Urology, Foshan Maternity & Child Healthcare Hospital, Foshan 528000, China
| | - Bowei Li
- Department of Urology, Foshan Maternity & Child Healthcare Hospital, Foshan 528000, China
| | - Huayan Wu
- Department of Urology, Foshan Maternity & Child Healthcare Hospital, Foshan 528000, China
| | - Zhilin Li
- Department of Urology, Foshan Maternity & Child Healthcare Hospital, Foshan 528000, China
| | - Jianwei Zhen
- Department of Urology, Foshan Maternity & Child Healthcare Hospital, Foshan 528000, China
| | - Guoqing Liu
- Department of Urology, Foshan Maternity & Child Healthcare Hospital, Foshan 528000, China
| |
Collapse
|
28
|
Chen DH, Huang JR, Su SL, Chen Q, Wu BY. Therapeutic potential of mesenchymal stem cells for cerebral small vessel disease. Regen Ther 2024; 25:377-386. [PMID: 38414558 PMCID: PMC10899004 DOI: 10.1016/j.reth.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/12/2023] [Accepted: 11/05/2023] [Indexed: 02/29/2024] Open
Abstract
Cerebral small vessel disease (CSVD), as the most common, chronic and progressive vascular disease on the brain, is a serious neurological disease, whose pathogenesis remains unclear. The disease is a leading cause of stroke and vascular cognitive impairment and dementia, and contributes to about 20% of strokes, including 25% of ischemic strokes and 45% of dementias. Undoubtedly, the high incidence and poor prognosis of CSVD have brought a heavy economic and medical burden to society. The present treatment of CSVD focuses on the management of vascular risk factors. Although vascular risk factors may be important causes or accelerators of CSVD and should always be treated in accordance with best clinical practice, controlling risk factors alone could not curb the progression of CSVD brain injury. Therefore, developing safer and more effective treatment strategies for CSVD is urgently needed. Recently, mesenchymal stem cells (MSCs) therapy has become an emerging therapeutic modality for the treatment of central nervous system disease, given their paracrine properties and immunoregulatory. Herein, we discussed the therapeutic potential of MSCs for CSVD, aiming to enable clinicians and researchers to understand of recent progress and future directions in the field.
Collapse
Affiliation(s)
- Dong-Hua Chen
- Neurology Department, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Baiyun District, Guangzhou, 510515, China
| | - Jia-Rong Huang
- Neurology Department, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Baiyun District, Guangzhou, 510515, China
| | - Shuo-Lei Su
- Shaoguan University, No.288 University Road, Xinshaozhen Zhenjiang District, Shaoguan, 512005, China
| | - Qiong Chen
- Medical Research center of Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Baiyun District, Guangzhou, 510515, China
- Precision Medicine Center of Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Baiyun District, Guangzhou, 510515, China
| | - Bing-Yi Wu
- Medical Research center of Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Baiyun District, Guangzhou, 510515, China
- Precision Medicine Center of Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Baiyun District, Guangzhou, 510515, China
| |
Collapse
|
29
|
Li Y, Chen J, Quan X, Chen Y, Han Y, Chen J, Yang L, Xu Y, Shen X, Wang R, Zhao Y. Extracellular Vesicles Maintain Blood-Brain Barrier Integrity by the Suppression of Caveolin-1/CD147/VEGFR2/MMP Pathway After Ischemic Stroke. Int J Nanomedicine 2024; 19:1451-1467. [PMID: 38371456 PMCID: PMC10874237 DOI: 10.2147/ijn.s444009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/08/2024] [Indexed: 02/20/2024] Open
Abstract
Background Ischemic stroke (IS) causes tragic death and disability worldwide. However, effective therapeutic interventions are finite. After IS, blood-brain barrier (BBB) integrity is disrupted, resulting in deteriorating neurological function. As a novel therapeutic, extracellular vesicles (EVs) have shown ideal restorative effects on BBB integrity post-stroke; however, the definite mechanisms remain ambiguous. In the present study, we investigated the curative effects and the mechanisms of EVs derived from bone marrow mesenchymal stem cells and brain endothelial cells (BMSC-EVs and BEC-EVs) on BBB integrity after acute IS. Methods EVs were isolated from BMSCs and BECs, and we investigated the therapeutic effect in vitro oxygen-glucose deprivation (OGD) insulted BECs model and in vivo rat middle cerebral artery occlusion (MCAo) model. The cell monolayer leakage, tight junction expression, and metalloproteinase (MMP) activity were evaluated, and rat brain infarct volume and neurological function were also analyzed. Results The administration of two kinds of EVs not only enhanced ZO-1 and Occludin expressions but also reduced the permeability and the activity of MMP-2/9 in OGD-insulted BECs. The amelioration of the cerebral infarction, BBB leakage, neurological function deficits, and the increasing ZO-1 and Occludin levels, as well as MMP activity inhibition was observed in MCAo rats. Additionally, the increased levels of Caveolin-1, CD147, vascular endothelial growth factor receptor 2 (VEGFR2), and vascular endothelial growth factor A (VEGFA) in isolated brain microvessels were downregulated after EVs treatment. In vitro, the employment of Caveolin-1 and CD147 siRNA partly suppressed the expressions of VEGFR2, VEGFA and MMP-2/9 activity and reduced the leakage of OGD insulted BECs and enhanced ZO-1 and Occludin expressions. Conclusion Our study firstly demonstrates that BEC and BMSC-EVs administrations maintain BBB integrity via the suppression of Caveolin-1/CD147/VEGFR2/MMP pathway after IS, and the efficacy of BMSC-EVs is superior to that of BEC-EVs.
Collapse
Affiliation(s)
- Yiyang Li
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, People’s Republic of China
| | - Jiali Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, People’s Republic of China
| | - Xingping Quan
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, People’s Republic of China
| | - Ying Chen
- School of Health Economics and Management, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Yan Han
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, People’s Republic of China
| | - Jinfen Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, People’s Republic of China
| | - Li Yang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, People’s Republic of China
| | - Youhua Xu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, People’s Republic of China
| | - Xu Shen
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Ruibing Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, People’s Republic of China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, People’s Republic of China
| | - Yonghua Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, People’s Republic of China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, People’s Republic of China
| |
Collapse
|
30
|
Zhao F, Fan Z, Jia R, Liu Q, Wang M, Sui J, Liu H. Mesenchymal Stem Cells Accelerate Recovery of Acetic Acid-Induced Chronic Gastric Ulcer by Regulating Ekt/Akt/TRIM29 Axis. Stem Cells Int 2024; 2024:6202123. [PMID: 38213743 PMCID: PMC10781525 DOI: 10.1155/2024/6202123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/08/2023] [Accepted: 12/07/2023] [Indexed: 01/13/2024] Open
Abstract
Chronic gastric ulcer (CGU), a prevalent digestive disease, has a high incidence and is seriously harmful to human health. Mesenchymal stem cells (MSCs) have been proven to have beneficial therapeutic effects in many human diseases. Here, a CGU model induced by acetic acid in mice was used to evaluate the repair effects and potential mechanism of human umbilical cord-derived MSCs (hUC-MSCs) and hUC-MSCs derived conditioned medium (hUC-MSC-CM). We found that hUC-MSCs and hUC-MSC-CM treatment significantly repaired morphological characteristics of CGU, improved proliferation and decreased apoptosis of gastric cells, and promoted the generation of new blood vessels in granulation tissues. In addition, we could detect the homing of MSCs in gastric tissue, and MSCs may differentiate into Lgr5-positive cells. As well as this, in vitro experiments showed that hUC-MSC-CM could promote cell proliferation, stimulate cell cycle progression, and reduce the incidence of apoptosis. The transcriptome of cells and the iTRAQ proteome of gastric tissues suggest that MSCs may play a therapeutic role by increasing the expression of TRIM29. Additionally, it was found that knocking down TRIM29 significantly decreased the ameliorative effects of hUC-MSC-CM on cell apoptosis. As a result of further molecular experiments, it was found that TRIM29 is capable of phosphorylating Erk/Akt in specific cell type. As a whole, it appears that hUC-MSCs can be an effective therapeutic approach for promoting gastric ulcer healing and may exert therapeutic effects in the form of paracrine and differentiation into gastric cells.
Collapse
Affiliation(s)
- Feiyue Zhao
- Handan Pharmaceutical Co. Ltd., Handan, Hebei Province, China
- Key Laboratory of Chinese Medicine for Gastric Medicine, Handan, Hebei Province, China
| | - Zhibin Fan
- Handan Pharmaceutical Co. Ltd., Handan, Hebei Province, China
| | - Ruikang Jia
- Handan Pharmaceutical Co. Ltd., Handan, Hebei Province, China
| | - Qichao Liu
- Handan Pharmaceutical Co. Ltd., Handan, Hebei Province, China
| | - Menglei Wang
- Key Laboratory of Chinese Medicine for Gastric Medicine, Handan, Hebei Province, China
| | - Jianliang Sui
- School of Life Science and Food Engineering, Hebei University of Engineering, Handan, Hebei Province, China
| | - Huiyun Liu
- Handan Pharmaceutical Co. Ltd., Handan, Hebei Province, China
- Key Laboratory of Chinese Medicine for Gastric Medicine, Handan, Hebei Province, China
| |
Collapse
|
31
|
Muok L, Sun L, Esmonde C, Worden H, Vied C, Duke L, Ma S, Zeng O, Driscoll T, Jung S, Li Y. Extracellular vesicle biogenesis of three-dimensional human pluripotent stem cells in a novel Vertical-Wheel bioreactor. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e133. [PMID: 38938678 PMCID: PMC11080838 DOI: 10.1002/jex2.133] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/01/2023] [Accepted: 12/18/2023] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) secreted by human-induced pluripotent stem cells (hiPSCs) have great potential as cell-free therapies in various diseases, including prevention of blood-brain barrier senescence and stroke. However, there are still challenges in pre-clinical and clinical use of hiPSC-EVs due to the need for large-scale production of a large quantity. Vertical-Wheel bioreactors (VWBRs) have design features that allow the biomanufacturing of hiPSC-EVs using a scalable aggregate or microcarrier-based culture system under low shear stress. EV secretion by undifferentiated hiPSCs expanded as 3-D aggregates and on Synthemax II microcarriers in VWBRs were investigated. Additionally, two types of EV collection media, mTeSR and HBM, were compared. The hiPSCs were characterized by metabolite and transcriptome analysis as well as EV biogenesis markers. Protein and microRNA cargo were analysed by proteomics and microRNA-seq, respectively. The in vitro functional assays of microglia stimulation and proliferation were conducted. HiPSCs expanded as 3-D aggregates and on microcarriers had comparable cell number, while microcarrier culture had higher glucose consumption, higher glycolysis and lower autophagy gene expression based on mRNA-seq. The microcarrier cultures had at least 17-23 fold higher EV secretion, and EV collection in mTeSR had 2.7-3.7 fold higher yield than HBM medium. Microcarrier culture with mTeSR EV collection had a smaller EV size than other groups, and the cargo was enriched with proteins (proteomics) and miRNAs (microRNA-seq) reducing apoptosis and promoting cell proliferation (e.g. Wnt-related pathways). hiPSC-EVs demonstrated the ability of stimulating proliferation and M2 polarization of microglia in vitro. HiPSC expansion on microcarriers produces much higher yields of EVs than hiPSC aggregates in VWBRs. EV collection in mTeSR increases yield compared to HBM. The biomanufactured EVs from microcarrier culture in mTeSR have exosomal characteristics and are functional in microglia stimulation, which paves the ways for future in vivo anti-aging study.
Collapse
Affiliation(s)
- Laureana Muok
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| | - Li Sun
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
- Department of Biomedical Sciences, College of MedicineFlorida State UniversityTallahasseeFloridaUSA
| | - Colin Esmonde
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| | | | - Cynthia Vied
- Department of Biomedical Sciences, College of MedicineFlorida State UniversityTallahasseeFloridaUSA
| | - Leanne Duke
- Department of Biomedical Sciences, College of MedicineFlorida State UniversityTallahasseeFloridaUSA
| | - Shaoyang Ma
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| | - Olivia Zeng
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| | - Tristan Driscoll
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| | | | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| |
Collapse
|
32
|
Darban YM, Askari H, Ghasemi-Kasman M, Yavarpour-Bali H, Dehpanah A, Gholizade P, Nosratiyan N. The Role of Induced Pluripotent Stem Cells in the Treatment of Stroke. Curr Neuropharmacol 2024; 22:2368-2383. [PMID: 39403058 PMCID: PMC11451314 DOI: 10.2174/1570159x22666240603084558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 10/19/2024] Open
Abstract
Stroke is a neurological disorder with high disability and mortality rates. Almost 80% of stroke cases are ischemic stroke, and the remaining are hemorrhagic stroke. The only approved treatment for ischemic stroke is thrombolysis and/or thrombectomy. However, these treatments cannot sufficiently relieve the disease outcome, and many patients remain disabled even after effective thrombolysis. Therefore, rehabilitative therapies are necessary to induce remodeling in the brain. Currently, stem cell transplantation, especially via the use of induced pluripotent stem cells (iPSCs), is considered a promising alternative therapy for stimulating neurogenesis and brain remodeling. iPSCs are generated from somatic cells by specific transcription factors. The biological functions of iPSCs are similar to those of embryonic stem cells (ESCs), including immunomodulation, reduced cerebral blood flow, cerebral edema, and autophagy. Although iPSC therapy plays a promising role in both hemorrhagic and ischemic stroke, its application is associated with certain limitations. Tumor formation, immune rejection, stem cell survival, and migration are some concerns associated with stem cell therapy. Therefore, cell-free therapy as an alternative method can overcome these limitations. This study reviews the therapeutic application of iPSCs in stroke models and the underlying mechanisms and constraints of these cells. Moreover, cell-free therapy using exosomes, apoptotic bodies, and microvesicles as alternative treatments is discussed.
Collapse
Affiliation(s)
| | - Hamid Askari
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Physiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | | | - Amirabbas Dehpanah
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Parnia Gholizade
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Nasrin Nosratiyan
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
33
|
Hong S, Kim H, Kim J, Kim S, Park TS, Kim TM. Extracellular vesicles from induced pluripotent stem cell-derived mesenchymal stem cells enhance the recovery of acute kidney injury. Cytotherapy 2024; 26:51-62. [PMID: 37843481 DOI: 10.1016/j.jcyt.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/08/2023] [Accepted: 09/16/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND AIMS To investigate whether the extracellular vesicles (EVs) from mesenchymal stem cell-like cells derived from induced pluripotent stem cells (iMSC-EVs) can inhibit the progression of acute kidney injury (AKI). METHODS The characteristics of iMSC-EVs were confirmed by immunoblotting, cryo-transmission electron microscopy, nanoparticle tracking analysis, and their localization in kidneys. Using human renal epithelial cells, the potential of iMSC-EVs to stimulate the growth and survival of HK-2 cells undergoing cisplatin-induced cell death was investigated. The anti-inflammatory effects of iMSC-EVs was examined in M1-polarized THP-1 macrophages. Subsequently, the therapeutic potential of iMSC-EVs was assessed in cisplatin-induced acute kidney injury in BALB/c mice. The anti-apoptotic and anti-inflammatory effect of iMSC-EVs was evaluated using serum biochemistry, histology, immunohistochemistry, and gene expression analysis. RESULTS iMSC-EVs promoted the growth of renal epithelial cell (HK-2) and enhanced the survival of HK-2 undergoing cisplatin-induced cell death. In cisplatin-induced mice with AKI, iMSC-EVs alleviated AKI, as shown by reduced blood nitrogen urea/creatinine and increased body weight. Also, iMSC-EVs enhanced renal tissue integrity and the number of proliferating cell nuclear antigen-positive tubules. iMSC-EVs decreased the infiltration of immune cells, reduced the expression of inflammatory genes in M1-induced THP-1 cells and enhanced capillary density in the kidney of AKI mice. Real-time quantitative polymerase chain reaction analysis showed that the expression of inflammatory genes in the kidney of AKI mice was reduced compared with that received vehicle. Immunoblotting revealed that iMSC-EVs led to a decreased protein expression of key inflammatory genes. Also, iMSC-EVs reversed the activation of ERK1/2 signaling induced by AKI. Finally, iMSC-EVs inhibited the apoptosis of HK-2 cells induced by cisplatin as well as that of renal tissue of AKI mice. CONCLUSIONS Our data suggest that iMSC-EVs have potential to become a novel, cell-free therapeutic for cisplatin-induced AKI.
Collapse
Affiliation(s)
- Sungok Hong
- Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang, Gangwon-do, South Korea
| | - Hongduk Kim
- Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang, Gangwon-do, South Korea
| | - Jimin Kim
- Brexogen Research Center, Brexogen Inc., Songpa-gu, Seoul, South Korea
| | - Soo Kim
- Brexogen Research Center, Brexogen Inc., Songpa-gu, Seoul, South Korea
| | - Tae Sub Park
- Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang, Gangwon-do, South Korea; Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, Gangwon-do, South Korea
| | - Tae Min Kim
- Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang, Gangwon-do, South Korea; Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, Gangwon-do, South Korea.
| |
Collapse
|
34
|
Lotfimehr H, Mardi N, Narimani S, Nasrabadi HT, Karimipour M, Sokullu E, Rahbarghazi R. mTOR signalling pathway in stem cell bioactivities and angiogenesis potential. Cell Prolif 2023; 56:e13499. [PMID: 37156724 PMCID: PMC10693190 DOI: 10.1111/cpr.13499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/14/2023] [Accepted: 04/26/2023] [Indexed: 05/10/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) is a protein kinase that responds to different stimuli such as stresses, starvation and hypoxic conditions. The modulation of this effector can lead to the alteration of cell dynamic growth, proliferation, basal metabolism and other bioactivities. Considering this fact, the mTOR pathway is believed to regulate the diverse functions in several cell lineages. Due to the pleiotropic effects of the mTOR, we here, hypothesize that this effector can also regulate the bioactivity of stem cells in response to external stimuli pathways under physiological and pathological conditions. As a correlation, we aimed to highlight the close relationship between the mTOR signalling axis and the regenerative potential of stem cells in a different milieu. The relevant publications were included in this study using electronic searches of the PubMed database from inception to February 2023. We noted that the mTOR signalling cascade can affect different stem cell bioactivities, especially angiogenesis under physiological and pathological conditions. Modulation of mTOR signalling pathways is thought of as an effective strategy to modulate the angiogenic properties of stem cells.
Collapse
Affiliation(s)
- Hamid Lotfimehr
- Stem Cell Research CenterTabriz University of Medical SciencesTabrizIran
- Department of Applied Cell Sciences, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| | - Narges Mardi
- Student Research CommitteeTabriz University of Medical SciencesTabrizIran
| | - Samaneh Narimani
- Department of Applied Cell Sciences, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| | - Hamid Tayefi Nasrabadi
- Stem Cell Research CenterTabriz University of Medical SciencesTabrizIran
- Department of Applied Cell Sciences, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| | - Mohammad Karimipour
- Department of Applied Cell Sciences, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| | - Emel Sokullu
- Koç University Research Center for Translational Medicine (KUTTAM)IstanbulTurkey
| | - Reza Rahbarghazi
- Stem Cell Research CenterTabriz University of Medical SciencesTabrizIran
- Department of Applied Cell Sciences, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
35
|
Bruschettini M, Badura A, Romantsik O. Stem cell-based interventions for the treatment of stroke in newborn infants. Cochrane Database Syst Rev 2023; 11:CD015582. [PMID: 37994736 PMCID: PMC10666199 DOI: 10.1002/14651858.cd015582.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
BACKGROUND Perinatal stroke refers to a diverse but specific group of cerebrovascular diseases that occur between 20 weeks of fetal life and 28 days of postnatal life. Acute treatment options for perinatal stroke are limited supportive care, such as controlling hypoglycemia and seizures. Stem cell-based therapies offer a potential therapeutic approach to repair, restore, or regenerate injured brain tissue. Preclinical findings have culminated in ongoing human neonatal studies. OBJECTIVES To evaluate the benefits and harms of stem cell-based interventions for the treatment of stroke in newborn infants compared to control (placebo or no treatment) or stem-cell based interventions of a different type or source. SEARCH METHODS We searched CENTRAL, PubMed, Embase, and three trials registries in February 2023. We planned to search the reference lists of included studies and relevant systematic reviews for studies not identified by the database searches. SELECTION CRITERIA We attempted to include randomized controlled trials, quasi-randomized controlled trials, and cluster trials that evaluated any of the following comparisons. • Stem cell-based interventions (any type) versus control (placebo or no treatment) • Mesenchymal stem/stromal cells (MSCs) of a specifictype (e.g. number of doses or passages) or source (e.g. autologous/allogeneic or bone marrow/cord) versus MSCs of another type or source • Stem cell-based interventions (other than MSCs) of a specific type (e.g. mononuclear cells, oligodendrocyte progenitor cells, neural stem cells, hematopoietic stem cells, or induced pluripotent stem cell-derived cells) or source (e.g. autologous/allogeneic or bone marrow/cord) versus stem cell-based interventions (other than MSCs) of another type or source • MSCs versus stem cell-based interventions other than MSCs We planned to include all types of transplantation regardless of cell source (bone marrow, cord blood, Wharton's jelly, placenta, adipose tissue, peripheral blood), type of graft (autologous or allogeneic), and dose. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods. Our primary outcomes were all-cause neonatal mortality, major neurodevelopmental disability, and immune rejection or any serious adverse event. Our secondary outcomes included all-cause mortality prior to first hospital discharge, seizures, adverse effects, and death or major neurodevelopmental disability at 18 to 24 months of age. We planned to use GRADE to assess the certainty of evidence for each outcome. MAIN RESULTS We identified no completed or ongoing randomized trials that met our inclusion criteria. We excluded three studies: two were phase 1 trials, and one included newborn infants with conditions other than stroke (i.e. cerebral ischemia and anemia). Among the three excluded studies, we identified the first phase 1 trial on the use of stem cells for neonatal stroke. It reported that a single intranasal application of bone marrow-derived MSCs in term neonates with a diagnosis of perinatal arterial ischemic stroke (PAIS) was feasible and apparently not associated with severe adverse events. However, the trial included only 10 infants, and follow-up was limited to three months. AUTHORS' CONCLUSIONS No evidence is currently available to evaluate the benefits and harms of stem cell-based interventions for treatment of stroke in newborn infants. We identified no ongoing studies. Future clinical trials should focus on standardizing the timing and method of cell delivery and cell processing to optimize the therapeutic potential of stem cell-based interventions and safety profiles. Phase 1 and large animal studies might provide the groundwork for future randomized trials. Outcome measures should include all-cause mortality, major neurodevelopmental disability and immune rejection, and any other serious adverse events.
Collapse
Affiliation(s)
- Matteo Bruschettini
- Paediatrics, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
- Cochrane Sweden, Department of Research and Education, Lund University, Skåne University Hospital, Lund, Sweden
| | - Anna Badura
- Department of Neonatology, University Children's Hospital Regensburg, Hospital St Hedwig of the Order of St John, University of Regensburg, Regensburg, Germany
| | - Olga Romantsik
- Paediatrics, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
36
|
Haupt M, Gerner ST, Huttner HB, Doeppner TR. Preconditioning Concepts for the Therapeutic Use of Extracellular Vesicles Against Stroke. Stem Cells Transl Med 2023; 12:707-713. [PMID: 37696005 PMCID: PMC10630075 DOI: 10.1093/stcltm/szad055] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/02/2023] [Indexed: 09/13/2023] Open
Abstract
Various preclinical stroke models have demonstrated the neuroprotective effects of extracellular vesicles (EVs) obtained from several types of cells, including neurons, astrocytes, microglia, neuronal progenitor cells, bone marrow stem cells, and mesenchymal stem cells. EVs interfere with key mechanisms in stroke pathophysiology such as cell death, neuroinflammation, autophagy, and angiogenesis. The mode of action and efficacy depend on the specific EV content, including miRNAs, proteins, and lipids, which can be modified through (I) bioengineering methods, (II) choice of source cells, and (III) modification of the source cell environment. Indeed, modifying the environment by preconditioning the EV-secreting cells with oxygen-glucose deprivation or medium modification revealed superior neuroprotective effects in stroke models. Although the concept of preconditioned EVs is relatively novel, it holds promise for the future treatment of ischemic stroke. Here, we give a brief overview about the main mechanisms of EV-induced neuroprotection and discuss the current status of preconditioning concepts for EV-treatment of ischemic stroke.
Collapse
Affiliation(s)
- Matteo Haupt
- Deparment of Neurology, University of Göttingen Medical School, Göttingen, Lower Saxony, Germany
| | - Stefan T Gerner
- Deparment of Neurology, University Hospital Giessen, Giessen, Hesse, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Hesse, Germany
| | - Hagen B Huttner
- Deparment of Neurology, University Hospital Giessen, Giessen, Hesse, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Hesse, Germany
| | - Thorsten R Doeppner
- Deparment of Neurology, University of Göttingen Medical School, Göttingen, Lower Saxony, Germany
- Deparment of Neurology, University Hospital Giessen, Giessen, Hesse, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Hesse, Germany
- Department of Anatomy and Cell Biology, Medical University of Varna, Varna, Bulgaria
- Medipol University Istanbul, Research Institute for Health Sciences and Technologies (SABITA), Istanbul, Turkey
| |
Collapse
|
37
|
Lin W, Zhao XY, Cheng JW, Li LT, Jiang Q, Zhang YX, Han F. Signaling pathways in brain ischemia: Mechanisms and therapeutic implications. Pharmacol Ther 2023; 251:108541. [PMID: 37783348 DOI: 10.1016/j.pharmthera.2023.108541] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
Ischemic stroke occurs when the arteries supplying blood to the brain are narrowed or blocked, inducing damage to brain tissue due to a lack of blood supply. One effective way to reduce brain damage and alleviate symptoms is to reopen blocked blood vessels in a timely manner and reduce neuronal damage. To achieve this, researchers have focused on identifying key cellular signaling pathways that can be targeted with drugs. These pathways include oxidative/nitrosative stress, excitatory amino acids and their receptors, inflammatory signaling molecules, metabolic pathways, ion channels, and other molecular events involved in stroke pathology. However, evidence suggests that solely focusing on protecting neurons may not yield satisfactory clinical results. Instead, researchers should consider the multifactorial and complex mechanisms underlying stroke pathology, including the interactions between different components of the neurovascular unit. Such an approach is more representative of the actual pathological process observed in clinical settings. This review summarizes recent research on the multiple molecular mechanisms and drug targets in ischemic stroke, as well as recent advances in novel therapeutic strategies. Finally, we discuss the challenges and future prospects of new strategies based on the biological characteristics of stroke.
Collapse
Affiliation(s)
- Wen Lin
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiang-Yu Zhao
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jia-Wen Cheng
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Li-Tao Li
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, Hebei, China
| | - Quan Jiang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Yi-Xuan Zhang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China.
| | - Feng Han
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China; Institute of Brain Science, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
38
|
Lu G, Su X, Wang L, Leung CK, Zhou J, Xiong Z, Wang W, Liu H, Chan WY. Neuroprotective Effects of Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cell Extracellular Vesicles in Ischemic Stroke Models. Biomedicines 2023; 11:2550. [PMID: 37760991 PMCID: PMC10525838 DOI: 10.3390/biomedicines11092550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Stroke represents the second leading cause of death and the primary cause of long-term disability in humans. The transplantation of mesenchymal stem cells (MSC) reportedly improves functional outcomes in animal models of cerebral ischemia. Here, we evaluate the neuroprotective potential of extracellular vesicles secreted from human-induced pluripotent stem cell-derived mesenchymal stem cells (hiPS-MSC-EV) using preclinical cell-based and animal-based models of ischemic strokes. METHODS hiPS-MSC-EV were isolated using an ultrafiltration method. HT22 cells were subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) injury for 2 h, followed by treatment with hiPS-MSC-EV (100 μg/mL). Male C57BL/6 mice were subjected to middle cerebral artery occlusion (MCAO) followed by an intravenous injection of hiPS-MSC-EV (100 μg) at three distinct time points. RESULTS Our experimental approach revealed hiPS-MSC-EV promoted HT22 cell proliferation, reduced apoptosis, and altered cellular morphology following OGD/R. In addition, hiPS-MSC-EV reduced the volume of infarcts, improved spontaneous movement abilities, and enhanced angiogenesis by expressing the VEGF and CXCR4 proteins in the infarcted hemisphere of the MCAO-treated mouse model. CONCLUSION Our findings provide evidence of the potential neuroprotective effects of hiPS-MSC-derived extracellular vesicles (hiPS-MSC-EVs) in both in vitro and in vivo mouse models of ischemic stroke. These results suggest that hiPS-MSC-EVs may play a role in neurorestoration and offer insights into potential cell-free strategies for addressing cerebral ischemia.
Collapse
Affiliation(s)
- Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; (G.L.); (X.S.); (L.W.); (J.Z.); (W.W.)
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xianwei Su
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; (G.L.); (X.S.); (L.W.); (J.Z.); (W.W.)
| | - Lihong Wang
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; (G.L.); (X.S.); (L.W.); (J.Z.); (W.W.)
| | - Chi-Kwan Leung
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; (G.L.); (X.S.); (L.W.); (J.Z.); (W.W.)
| | - Jingye Zhou
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; (G.L.); (X.S.); (L.W.); (J.Z.); (W.W.)
| | - Zhiqiang Xiong
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Z.X.); (H.L.)
| | - Wuming Wang
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; (G.L.); (X.S.); (L.W.); (J.Z.); (W.W.)
| | - Hongbin Liu
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Z.X.); (H.L.)
| | - Wai-Yee Chan
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; (G.L.); (X.S.); (L.W.); (J.Z.); (W.W.)
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
39
|
Arakawa M, Sakamoto Y, Miyagawa Y, Nito C, Takahashi S, Nitahara-Kasahara Y, Suda S, Yamazaki Y, Sakai M, Kimura K, Okada T. iPSC-derived mesenchymal stem cells attenuate cerebral ischemia-reperfusion injury by inhibiting inflammatory signaling and oxidative stress. Mol Ther Methods Clin Dev 2023; 30:333-349. [PMID: 37637385 PMCID: PMC10448333 DOI: 10.1016/j.omtm.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 07/11/2023] [Indexed: 08/29/2023]
Abstract
Induced pluripotent stem cell-derived mesenchymal stem cells (iMSCs) hold great promise as a cell source for transplantation into injured tissues to alleviate inflammation. However, the therapeutic efficacy of iMSC transplantation for ischemic stroke remains unknown. In this study, we evaluated the therapeutic effects of iMSC transplantation on brain injury after ischemia-reperfusion using a rat transient middle cerebral artery occlusion model and compared its therapeutic efficacy with that of bone marrow mesenchymal stem cells (BMMSCs). We showed that iMSCs and BMMSCs reduced infarct volumes after reperfusion and significantly improved motor function on days 3, 7, 14, 28, and 56 and cognitive function on days 28 and 56 after reperfusion compared with the vehicle group. Furthermore, immunological analyses revealed that transplantation of iMSCs and BMMSCs inhibited microglial activation and expression of proinflammatory cytokines and suppressed oxidative stress and neuronal cell death in the cerebral cortex at the ischemic border zone. No difference in therapeutic effect was observed between the iMSC and BMMSC groups. Taken together, our results demonstrate that iMSC therapy can be a practical alternative as a cell source for attenuation of brain injury and improvement of neurological function because of the unlimited supply of uniform therapeutic cells.
Collapse
Affiliation(s)
- Masafumi Arakawa
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yuki Sakamoto
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yoshitaka Miyagawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Chikako Nito
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
- Laboratory for Clinical Research, Collaborative Research Center, Nippon Medical School, Tokyo, Japan
| | - Shiro Takahashi
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yuko Nitahara-Kasahara
- Division of Molecular and Medical Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Satoshi Suda
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yoshiyuki Yamazaki
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Mashito Sakai
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Kazumi Kimura
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Takashi Okada
- Division of Molecular and Medical Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
40
|
Vargas-Rodríguez P, Cuenca-Martagón A, Castillo-González J, Serrano-Martínez I, Luque RM, Delgado M, González-Rey E. Novel Therapeutic Opportunities for Neurodegenerative Diseases with Mesenchymal Stem Cells: The Focus on Modulating the Blood-Brain Barrier. Int J Mol Sci 2023; 24:14117. [PMID: 37762420 PMCID: PMC10531435 DOI: 10.3390/ijms241814117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Neurodegenerative disorders encompass a broad spectrum of profoundly disabling situations that impact millions of individuals globally. While their underlying causes and pathophysiology display considerable diversity and remain incompletely understood, a mounting body of evidence indicates that the disruption of blood-brain barrier (BBB) permeability, resulting in brain damage and neuroinflammation, is a common feature among them. Consequently, targeting the BBB has emerged as an innovative therapeutic strategy for addressing neurological disorders. Within this review, we not only explore the neuroprotective, neurotrophic, and immunomodulatory benefits of mesenchymal stem cells (MSCs) in combating neurodegeneration but also delve into their recent role in modulating the BBB. We will investigate the cellular and molecular mechanisms through which MSC treatment impacts primary age-related neurological conditions like Alzheimer's disease, Parkinson's disease, and stroke, as well as immune-mediated diseases such as multiple sclerosis. Our focus will center on how MSCs participate in the modulation of cell transporters, matrix remodeling, stabilization of cell-junction components, and restoration of BBB network integrity in these pathological contexts.
Collapse
Affiliation(s)
- Pablo Vargas-Rodríguez
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.V.-R.); (J.C.-G.); (I.S.-M.); (M.D.)
| | - Alejandro Cuenca-Martagón
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain; (A.C.-M.); (R.M.L.)
| | - Julia Castillo-González
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.V.-R.); (J.C.-G.); (I.S.-M.); (M.D.)
| | - Ignacio Serrano-Martínez
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.V.-R.); (J.C.-G.); (I.S.-M.); (M.D.)
| | - Raúl M. Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain; (A.C.-M.); (R.M.L.)
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Mario Delgado
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.V.-R.); (J.C.-G.); (I.S.-M.); (M.D.)
| | - Elena González-Rey
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.V.-R.); (J.C.-G.); (I.S.-M.); (M.D.)
| |
Collapse
|
41
|
Chiou SH, Ong HKA, Chou SJ, Aldoghachi AF, Loh JK, Verusingam ND, Yang YP, Chien Y. Current trends and promising clinical utility of IPSC-derived MSC (iMSC). PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 199:131-154. [PMID: 37678969 DOI: 10.1016/bs.pmbts.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Mesenchymal stem cells (MSCs) differentiated from human induced pluripotent stem cells (iPSC) or induced MSC (iMSCs) are expected to address issues of scalability and safety as well as the difficulty in producing homogenous clinical grade MSCs as demonstrated by the promising outcomes from preclinical and clinical trials, currently ongoing. The assessment of iMSCs based in vitro and in vivo studies have thus far showed more superior performance as compared to that of the primary or native human MSCs, in terms of cell proliferation, expansion capacity, immunomodulation properties as well as the influence of paracrine signaling and exosomal influence in cell-cell interaction. In this chapter, an overview of current well-established methods in generating a sustainable source of iMSCs involving well defined culture media is discussed followed by the properties of iMSC as compared to that of MSC and its promising prospects for continuous development into potential clinical grade applications.
Collapse
Affiliation(s)
- Shih-Hwa Chiou
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medical Research, Taipei Veteran General Hospital, Taipei, Taiwan
| | - Han Kiat Alan Ong
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Cheras, Malaysia
| | - Shih-Jie Chou
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medical Research, Taipei Veteran General Hospital, Taipei, Taiwan
| | - A F Aldoghachi
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Cheras, Malaysia
| | - Jit Kai Loh
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Cheras, Malaysia
| | - Nalini Devi Verusingam
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Cheras, Malaysia
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veteran General Hospital, Taipei, Taiwan.
| | - Yueh Chien
- Department of Medical Research, Taipei Veteran General Hospital, Taipei, Taiwan
| |
Collapse
|
42
|
Park S, Gwon Y, Khan SA, Jang KJ, Kim J. Engineering considerations of iPSC-based personalized medicine. Biomater Res 2023; 27:67. [PMID: 37420273 DOI: 10.1186/s40824-023-00382-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/19/2023] [Indexed: 07/09/2023] Open
Abstract
Personalized medicine aims to provide tailored medical treatment that considers the clinical, genetic, and environmental characteristics of patients. iPSCs have attracted considerable attention in the field of personalized medicine; however, the inherent limitations of iPSCs prevent their widespread use in clinical applications. That is, it would be important to develop notable engineering strategies to overcome the current limitations of iPSCs. Such engineering approaches could lead to significant advances in iPSC-based personalized therapy by offering innovative solutions to existing challenges, from iPSC preparation to clinical applications. In this review, we summarize how engineering strategies have been used to advance iPSC-based personalized medicine by categorizing the development process into three distinctive steps: 1) the production of therapeutic iPSCs; 2) engineering of therapeutic iPSCs; and 3) clinical applications of engineered iPSCs. Specifically, we focus on engineering strategies and their implications for each step in the development of iPSC-based personalized medicine.
Collapse
Affiliation(s)
- Sangbae Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
- Institute of Nano-Stem Cells Therapeutics, NANOBIOSYSTEM Co, Ltd, Gwangju, 61011, Republic of Korea
| | - Yonghyun Gwon
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Shahidul Ahmed Khan
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Kyoung-Je Jang
- Department of Bio-Systems Engineering, Institute of Smart Farm, Gyeongsang National University, Jinju, 52828, Republic of Korea.
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea.
- Institute of Nano-Stem Cells Therapeutics, NANOBIOSYSTEM Co, Ltd, Gwangju, 61011, Republic of Korea.
| |
Collapse
|
43
|
Shu F, Lu J, Zhang W, Huang H, Lin J, Jiang L, Liu W, Liu T, Xiao S, Zheng Y, Xia Z. JAM-A Overexpression in Human Umbilical Cord-Derived Mesenchymal Stem Cells Accelerated the Angiogenesis of Diabetic Wound By Enhancing Both Paracrine Function and Survival of Mesenchymal Stem Cells. Stem Cell Rev Rep 2023; 19:1554-1575. [PMID: 37060532 DOI: 10.1007/s12015-023-10518-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2023] [Indexed: 04/16/2023]
Abstract
Mesenchymal stem cells (MSCs) is promising in promoting wound healing mainly due to their paracrine function. Nonetheless, the transplanted MSCs presented poor survival with cell dysfunction and paracrine problem in diabetic environment, thus limiting their therapeutic efficacy and clinical application. JAM-A, an adhesion molecule, has been reported to play multi-functional roles in diverse cells. We therefore investigated the potential effect of JAM-A on MSCs under diabetic environment and explored the underlying mechanism. Indeed, high-glucose condition inhibited MSCs viability and JAM-A expression. However, JAM-A abnormality was rescued by lentivirus transfection and JAM-A overexpression promoted MSCs proliferation, migration and adhesion under hyperglycemia. Moreover, JAM-A overexpression attenuated high-glucose-induced ROS production and MSCs apoptosis. The bio-effects of JAM-A on MSCs under hyperglycemia were confirmed by RNA-seq with enrichment analyses. Moreover, Luminex chip results showed JAM-A overexpression dramatically upregulated PDGF-BB and VEGF in the supernatant of MSCs, which was verified by RT-qPCR and western blotting. The supernatant was further found to facilitate HUVECs proliferation, migration and angiogenesis under hyperglycemia. In vivo experiments revealed JAM-A overexpression significantly enhanced MSCs survival, promoted wound angiogenesis, and thus accelerated diabetic wound closure, partially by enhancing PDGF-BB and VEGF expression. This study firstly demonstrated that JAM-A expression of MSCs was inhibited upon high-glucose stimulation. JAM-A overexpression alleviated high-glucose-induced MSCs dysfunction, enhanced their anti-oxidative capability, protected MSCs from hyperglycemia-induced apoptosis and improved their survival, thus strengthening MSCs paracrine function to promote angiogenesis and significantly accelerating diabetic wound healing, which offers a promising strategy to maximize MSCs-based therapy in diabetic wound.
Collapse
Affiliation(s)
- Futing Shu
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Jianyu Lu
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Wei Zhang
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Hongchao Huang
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Jiezhi Lin
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Luofeng Jiang
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Wenzhang Liu
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Tianyi Liu
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Shichu Xiao
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China.
| | - Yongjun Zheng
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China.
| | - Zhaofan Xia
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China.
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
44
|
Fang J, Wang Z, Miao CY. Angiogenesis after ischemic stroke. Acta Pharmacol Sin 2023; 44:1305-1321. [PMID: 36829053 PMCID: PMC10310733 DOI: 10.1038/s41401-023-01061-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/01/2023] [Indexed: 02/26/2023] Open
Abstract
Owing to its high disability and mortality rates, stroke has been the second leading cause of death worldwide. Since the pathological mechanisms of stroke are not fully understood, there are few clinical treatment strategies available with an exception of tissue plasminogen activator (tPA), the only FDA-approved drug for the treatment of ischemic stroke. Angiogenesis is an important protective mechanism that promotes neural regeneration and functional recovery during the pathophysiological process of stroke. Thus, inducing angiogenesis in the peri-infarct area could effectively improve hemodynamics, and promote vascular remodeling and recovery of neurovascular function after ischemic stroke. In this review, we summarize the cellular and molecular mechanisms affecting angiogenesis after cerebral ischemia registered in PubMed, and provide pro-angiogenic strategies for exploring the treatment of ischemic stroke, including endothelial progenitor cells, mesenchymal stem cells, growth factors, cytokines, non-coding RNAs, etc.
Collapse
Affiliation(s)
- Jie Fang
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, 200433, China
| | - Zhi Wang
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, 200433, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
45
|
Zhao J, Deng H, Xun C, Chen C, Hu Z, Ge L, Jiang Z. Therapeutic potential of stem cell extracellular vesicles for ischemic stroke in preclinical rodent models: a meta-analysis. Stem Cell Res Ther 2023; 14:62. [PMID: 37013588 PMCID: PMC10071642 DOI: 10.1186/s13287-023-03270-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 03/08/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Extracellular vesicles derived from stem cells (SC-EVs) have been proposed as a novel therapy for ischemic stroke. However, their effects remain incompletely understood. Therefore, we conducted this meta-analysis to systematically review the efficacy of SC-EVs on ischemic stroke in preclinical rodent models. METHODS Using PubMed, EMBASE, and the Web of Science, we searched through studies published up to August 2021 that investigated the treatment effects of SC-EVs in a rodent ischemic stroke model. Infarct volume was the primary outcome. Neurological severity scores (mNSS) were the secondary outcome. The standard mean difference (SMD) and the confidence interval (CI) were calculated using a random-effects model. R and Stata 15.1 were used to conduct the meta-analysis. RESULTS Twenty-one studies published from 2015 to 2021 met the inclusion criteria. We also found that SCs-EVs reduced infarct volume by an SMD of - 2.05 (95% CI - 2.70, - 1.40; P < 0.001). Meanwhile, our results revealed an overall positive effect of SCs-derived EVs on the mNSS with an SMD of - 1.42 (95% CI - 1.75, - 1.08; P < 0.001). Significant heterogeneity among studies was observed. Further stratified and sensitivity analyses did not identify the source of heterogeneity. CONCLUSION The present meta-analysis confirmed that SC-EV therapy could improve neuron function and reduce infarct volume in a preclinical rodent ischemic stroke model, providing helpful clues for human clinical trials on SC-EVs.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Huiyin Deng
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, People's Republic of China
| | - Chengfeng Xun
- Hunan Provincial Key Laboratory of Neurorestoratology, The Second Affiliated Hospital, Hunan Normal University, Changsha, 410003, People's Republic of China
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410006, People's Republic of China
| | - Chunli Chen
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Zhiping Hu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Lite Ge
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.
- Hunan Provincial Key Laboratory of Neurorestoratology, The Second Affiliated Hospital, Hunan Normal University, Changsha, 410003, People's Republic of China.
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410006, People's Republic of China.
| | - Zheng Jiang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.
| |
Collapse
|
46
|
Aldoghachi AF, Loh JK, Wang ML, Yang YP, Chien CS, Teh HX, Omar AH, Cheong SK, Yeap SK, Ho WY, Ong AHK. Current developments and therapeutic potentials of exosomes from induced pluripotent stem cells-derived mesenchymal stem cells. J Chin Med Assoc 2023; 86:356-365. [PMID: 36762931 DOI: 10.1097/jcma.0000000000000899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells derived from adult human tissues that have the ability to proliferate in vitro and maintain their multipotency, making them attractive cell sources for regenerative medicine. However, MSCs reportedly show limited proliferative capacity with inconsistent therapeutic outcomes due to their heterogeneous nature. On the other hand, induced pluripotent stem cells (iPSC) have emerged as an alternative source for the production of various specialized cell types via their ability to differentiate from all three primary germ layers, leading to applications in regenerative medicine, disease modeling, and drug therapy. Notably, iPSCs can differentiate into MSCs in monolayer, commonly referred to as induced mesenchymal stem cells (iMSCs). These cells show superior therapeutic qualities compared with adult MSCs as the applications of the latter are restricted by passage number and autoimmune rejection when applied in tissue regeneration trials. Furthermore, increasing evidence shows that the therapeutic properties of stem cells are a consequence of the paracrine effects mediated by their secretome such as from exosomes, a type of extracellular vesicle secreted by most cell types. Several studies that investigated the potential of exosomes in regenerative medicine and therapy have revealed promising results. Therefore, this review focuses on the recent findings of exosomes secreted from iMSCs as a potential noncell-based therapy.
Collapse
Affiliation(s)
- Ahmed Faris Aldoghachi
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Cheras, Malaysia
| | - Jit-Kai Loh
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Cheras, Malaysia
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Mong-Lien Wang
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Ping Yang
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Chian-Shiu Chien
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Hui Xin Teh
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Cheras, Malaysia
| | - Alfaqih Hussain Omar
- Biomedicine Programme, School of Health Sciences, Universiti Sains Malaysia, Malaysia
| | - Soon-Keng Cheong
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Cheras, Malaysia
- National Cancer Council (MAKNA), Kuala Lumpur, Malaysia
| | - Swee Keong Yeap
- Marine Biotechnology, China-ASEAN College of Marine Sciences, Xiamen University Malaysia Campus, Jalan Sunsuria, Bandar Sunsuria, Sepang, Selangor, Malaysia
| | - Wan Yong Ho
- Faculty of Sciences and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Alan Han-Kiat Ong
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Cheras, Malaysia
| |
Collapse
|
47
|
Niu X, Xia Y, Luo L, Chen Y, Yuan J, Zhang J, Zheng X, Li Q, Deng Z, Wang Y. iPSC-sEVs alleviate microglia senescence to protect against ischemic stroke in aged mice. Mater Today Bio 2023; 19:100600. [PMID: 36936398 PMCID: PMC10020681 DOI: 10.1016/j.mtbio.2023.100600] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023] Open
Abstract
The polarization of microglia plays an important role in the outcome of ischemic stroke (IS). In the aged population, senescent microglia show a predominant pro-inflammatory phenotype, which leads to worse outcomes in aged ischemic stroke compared to young ischemic stroke. Recent research demonstrated that inducible pluripotent stem cell-derived small extracellular vesicles (iPSC-sEVs) possess the significant anti-ageing ability. We hypothesized that iPSC-sEVs could alleviate microglia senescence to regulate microglia polarization in aged ischemic stroke. In this study, we showed that treatment with iPSC-sEVs significantly alleviated microglia senescence as indicated by the decreased senescence-associated proteins including P16, P21, P53, and γ-H2AX as well as the activity of SA-β-gal, and inhibited pro-inflammatory activation of microglia both in vivo and in vitro. Furthermore, iPSC-sEVs shifted microglia from pro-inflammatory phenotype to anti-inflammatory phenotype, which reduced the apoptosis of neurons, and improved the outcome of aged stroke mice. Mechanism studies showed that iPSC-sEVs reversed the loss of Rictor and downstream p-AKT (s473) in senescent microglia, which was involved in the senescence and pro-inflammatory phenotype regulation of microglia. Inhibition of Rictor abolished the iPSC-sEVs-afforded phosphorylation of AKT and alleviation of inflammation of senescent microglia. Proteomics results indicated that iPSC-sEVs carried transforming growth factor-β1 (TGF-β1) to upregulate Rictor and p-AKT in senescent microglia, which could be hindered by blocking TGF-β1. Taken together, our work demonstrates iPSC-sEVs reverse the senescent characteristic of microglia in aged brains and therefore improve the outcome after stroke, at least, via delivering TGF-β1 to upregulate Rictor and p-AKT. Our data suggest that iPSC-sEVs might be a novelty therapeutic method for aged ischemic stroke and other diseases involving senescent microglia.
Collapse
Affiliation(s)
- Xinyu Niu
- Department of Neurosurgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yuguo Xia
- Department of Neurosurgery; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Lei Luo
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954, Huashan Road, Shanghai 200030, China
| | - Yu Chen
- The Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Ji Yuan
- The Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Juntao Zhang
- The Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Xianyou Zheng
- The Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Corresponding author. Institute of Microsurgery on Extremities, Department of Orthopedic Surgery Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine 600 Yishan Road, Shanghai 200233, China
| | - Qing Li
- The Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Corresponding author. Institute of Microsurgery on Extremities, Department of Orthopedic Surgery Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine 600 Yishan Road, Shanghai 200233, China
| | - Zhifeng Deng
- Department of Neurosurgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Corresponding author. Department of Neurosurgery Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine 600 Yishan Road, Shanghai 200233, China
| | - Yang Wang
- The Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| |
Collapse
|
48
|
Huang X, Wang H, Wang C, Cao Z. The Applications and Potentials of Extracellular Vesicles from Different Cell Sources in Periodontal Regeneration. Int J Mol Sci 2023; 24:ijms24065790. [PMID: 36982864 PMCID: PMC10058679 DOI: 10.3390/ijms24065790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Periodontitis is a chronic infectious disease worldwide that can cause damage to periodontal supporting tissues including gingiva, bone, cementum and periodontal ligament (PDL). The principle for the treatment of periodontitis is to control the inflammatory process. Achieving structural and functional regeneration of periodontal tissues is also essential and remains a major challenge. Though many technologies, products, and ingredients were applied in periodontal regeneration, most of the strategies have limited outcomes. Extracellular vesicles (EVs) are membranous particles with a lipid structure secreted by cells, containing a large number of biomolecules for the communication between cells. Numerous studies have demonstrated the beneficial effects of stem cell-derived EVs (SCEVs) and immune cell-derived EVs (ICEVs) on periodontal regeneration, which may be an alternative strategy for cell-based periodontal regeneration. The production of EVs is highly conserved among humans, bacteria and plants. In addition to eukaryocyte-derived EVs (CEVs), a growing body of literature suggests that bacterial/plant-derived EVs (BEVs/PEVs) also play an important role in periodontal homeostasis and regeneration. The purpose of this review is to introduce and summarize the potential therapeutic values of BEVs, CEVs and PEVs in periodontal regeneration, and discuss the current challenges and prospects for EV-based periodontal regeneration.
Collapse
Affiliation(s)
- Xin Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Huiyi Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Chuan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zhengguo Cao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
49
|
Ye T, Chen Z, Zhang J, Luo L, Gao R, Gong L, Du Y, Xie Z, Zhao B, Li Q, Wang Y. Large extracellular vesicles secreted by human iPSC-derived MSCs ameliorate tendinopathy via regulating macrophage heterogeneity. Bioact Mater 2023; 21:194-208. [PMID: 36101856 PMCID: PMC9440485 DOI: 10.1016/j.bioactmat.2022.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/19/2022] [Accepted: 08/08/2022] [Indexed: 11/05/2022] Open
Abstract
Tendinopathy is a common musculoskeletal disorder which results in chronic pain and reduced performance. The therapeutic effect of stem cell derived-small extracellular vesicles (sEVs) for tendinopathy has been validated in recent years. However, whether large extracellular vesicles (lEVs), another subset of extracellular vesicles, possesses the ability for the improvement of tendinopathy remains unknown. Here, we showed that lEVs secreted from iPSC-derived MSCs (iMSC-lEVs) significantly mitigated pain derived from tendinopathy in rats. Immunohistochemical analysis showed that iMSC-lEVs regulated the heterogeneity of infiltrated macrophages and several inflammatory cytokines in rat tendon tissue. Meanwhile, in vitro experiments revealed that the M1 pro-inflammatory macrophages were repolarized towards M2 anti-inflammatory macrophages by iMSC-lEVs, and this effect was mediated by regulating p38 MAPK pathway. Moreover, liquid chromatography-tandem mass spectrometry analysis identified 2208 proteins encapsulated in iMSC-lEVs, including 134 new-found proteins beyond current Vesiclepedia database. By bioinformatics and Western blot analyses, we showed that DUSP2 and DUSP3, the negative regulator of p38 phosphorylation, were enriched in iMSC-lEVs and could be transported to macrophages. Further, the immunomodulatory effect of iMSC-lEVs on macrophages was validated in explant tendon tissue from tendinopathy patients. Taken together, our results demonstrate that iMSC-lEVs could reduce inflammation in tendinopathy by regulating macrophage heterogeneity, which is mediated via the p38 MAPK pathway by delivery of DUSP2 and DUSP3, and might be a promising candidate for tendinopathy therapy. iMSC-lEVs significantly ameliorate tendinopathy both in a rat model and explant tendon tissue from human patient. iMSC-lEVs modulate macrophages polarization via p38 MAPK signaling pathway. Proteomics analysis of iMSC-lEVs discovers a new set of 134 proteins beyond current Vesiclepedia Database. The p38 MAPK signaling pathway-mediated macrophage repolarization was partly regulated by the delivery of DUSP2 and DUSP3. The immunoregulatory function of iMSC-lEVs are similar with iMSC-sEVs.
Collapse
|
50
|
Neuroprotective Strategies for Ischemic Stroke-Future Perspectives. Int J Mol Sci 2023; 24:ijms24054334. [PMID: 36901765 PMCID: PMC10002358 DOI: 10.3390/ijms24054334] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Ischemic stroke is the main cause of death and the most common cause of acquired physical disability worldwide. Recent demographic changes increase the relevance of stroke and its sequelae. The acute treatment for stroke is restricted to causative recanalization and restoration of cerebral blood flow, including both intravenous thrombolysis and mechanical thrombectomy. Still, only a limited number of patients are eligible for these time-sensitive treatments. Hence, new neuroprotective approaches are urgently needed. Neuroprotection is thus defined as an intervention resulting in the preservation, recovery, and/or regeneration of the nervous system by interfering with the ischemic-triggered stroke cascade. Despite numerous preclinical studies generating promising data for several neuroprotective agents, successful bench-to-bedside translations are still lacking. The present study provides an overview of current approaches in the research field of neuroprotective stroke treatment. Aside from "traditional" neuroprotective drugs focusing on inflammation, cell death, and excitotoxicity, stem-cell-based treatment methods are also considered. Furthermore, an overview of a prospective neuroprotective method using extracellular vesicles that are secreted from various stem cell sources, including neural stem cells and bone marrow stem cells, is also given. The review concludes with a short discussion on the microbiota-gut-brain axis that may serve as a potential target for future neuroprotective therapies.
Collapse
|