1
|
Abdulhakeem Mansour Alhasbary A, Hashimah Ahamed Hassain Malim N, Zuraidah Mohamad Zobir S. Exploring natural products potential: A similarity-based target prediction tool for natural products. Comput Biol Med 2025; 184:109351. [PMID: 39536385 DOI: 10.1016/j.compbiomed.2024.109351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Natural products are invaluable resources in drug discovery due to their substantial structural diversity. However, predicting their interactions with druggable protein targets remains a challenge, primarily due to the limited availability of bioactivity data. This study introduces CTAPred (Compound-Target Activity Prediction), an open-source command-line tool designed to predict potential protein targets for natural products. CTAPred employs a two-stage approach, combining fingerprinting and similarity-based search techniques to identify likely drug targets for these bioactive compounds. Despite its simplicity, the tool's performance is comparable to that of more complex methods, demonstrating proficiency in target retrieval for natural product compounds. Furthermore, this study explores the optimal number of reference compounds most similar to the query compound, aiming to refine target prediction accuracy. The findings demonstrated the superior performance of considering only the most similar reference compounds for target prediction. CTAPred is freely available at https://github.com/Alhasbary/CTAPred, offering a valuable resource for deciphering natural product-target associations and advancing drug discovery.
Collapse
Affiliation(s)
| | | | - Siti Zuraidah Mohamad Zobir
- Malaysian Institute of Pharmaceuticals and Nutraceuticals (IPharm), National Institutes of Biotechnology Malaysia (NIBM), Halaman Bukit Gambir, 11700, Gelugor, Pulau Pinang, Malaysia.
| |
Collapse
|
2
|
Bharate SB, Lindsley CW. Natural Products Driven Medicinal Chemistry. J Med Chem 2024; 67:20723-20730. [PMID: 39629819 DOI: 10.1021/acs.jmedchem.4c02736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Affiliation(s)
- Sandip B Bharate
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad-500007, India
| | - Craig W Lindsley
- Vanderbilt Institute of Chemical Biology Program in Drug Discovery, Department of Pharmacology, Vanderbilt Medical Center, Nashville, Tennessee 37240, United States
| |
Collapse
|
3
|
Zeng T, Li J, Wu R. Natural product databases for drug discovery: Features and applications. PHARMACEUTICAL SCIENCE ADVANCES 2024; 2:100050. [DOI: 10.1016/j.pscia.2024.100050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Sayaf AM, Kousar K, Suleman M, Albekairi NA, Alshammari A, Mohammad A, Khan A, Agouni A, Yeoh KK. Molecular exploration of natural and synthetic compounds databases for promising hypoxia inducible factor (HIF) Prolyl-4- hydroxylase domain (PHD) inhibitors using molecular simulation and free energy calculations. BMC Chem 2024; 18:236. [PMID: 39593151 PMCID: PMC11590322 DOI: 10.1186/s13065-024-01347-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Hypoxia-inducible factors (HIFs) are transcription factors that regulate erythropoietin (EPO) synthesis and red blood cell (RBC) production. Prolyl-4-hydroxylase domain (PHD) enzymes are key regulators of HIF's stability and activity. Inhibiting PHD enzymes can enhance HIF-mediated responses and have therapeutic potential for diseases such as anemia, cancer, stroke, ischemia, neurodegeneration, and inflammation. In this study, we searched for novel PHD inhibitors from four databases of natural products and synthetic compounds: AfroDb Natural Products, AnalytiCon Discovery Natural Product (NP), HIM-Herbal Ingredients In-Vivo Metabolism, and Herbal Ingredients' Targets, with a total number of 13,597 compounds. We screened the candidate compounds by molecular docking and validated them by molecular dynamics simulations and free energy calculations. We identified four target hits (ZINC36378940, ZINC2005305, ZINC31164438, and ZINC67910437) that showed stronger binding affinity to PHD2 compared to the positive control, Vadadustat (AKB-6548), with docking scores of - 13.34 kcal/mol, - 12.76 kcal/mol, - 11.96 kcal/mol, - 11.41 kcal/mol, and - 9.04 kcal/mol, respectively. The target ligands chelated the active site iron and interacted with key residues (Arg 383, Tyr329, Tyr303) of PHD2, in a similar manner as Vadadustat. Moreover, the dynamic stability-based assessment revealed that they also exhibited stable dynamics and compact trajectories. Then the total binding free energy was calculated for each complex which revealed that the control has a TBE of - 31.26 ± 0.30 kcal/mol, ZINC36378940 reported a TBE of - 38.65 ± 0.51 kcal/mol, for the ZINC31164438 the TBE was - 26.16 ± 0.30 kcal/mol while the ZINC2005305 complex reported electrostatic energy of - 32.75 ± 0.58 kcal/mol. This shows that ZINC36378940 is the best hit than the other and therefore further investigation should be performed for the clinical usage. Our results suggest that these target hits are promising candidates that reserve further in vitro and in vivo validations as potential PHD inhibitors for the treatment of renal anemia, cancer, stroke, ischemia, neurodegeneration, and inflammation.
Collapse
Affiliation(s)
| | - Kafila Kousar
- Department of Healthcare Biotechnology, Atta Ur Rahman School of Applied Biosciences, National University of Science and Technology Islamabad, Islamabad, Pakistan
| | - Muhammad Suleman
- Centre for Biotechnology and Microbiology, University of Swat, Swat, KPK, Pakistan
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, 11451, Riyadh, Saudi Arabia
| | | | - Anwar Mohammad
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Abbas Khan
- Department of Pharmacology, College of Pharmacy, Qatar University, Doha, Qatar.
- Department of Biological Sciences, School of Medical and Life Sciences (SMLS), Sunway University, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Abdelali Agouni
- Department of Pharmacology, College of Pharmacy, Qatar University, Doha, Qatar.
| | - Kar Kheng Yeoh
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|
5
|
Chandrasekhar V, Rajan K, Kanakam SRS, Sharma N, Weißenborn V, Schaub J, Steinbeck C. COCONUT 2.0: a comprehensive overhaul and curation of the collection of open natural products database. Nucleic Acids Res 2024:gkae1063. [PMID: 39588778 DOI: 10.1093/nar/gkae1063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/10/2024] [Accepted: 10/22/2024] [Indexed: 11/27/2024] Open
Abstract
The COCONUT (COlleCtion of Open Natural prodUcTs) database was launched in 2021 as an aggregation of openly available natural product datasets and has been one of the biggest open natural product databases since. Apart from the chemical structures of natural products, COCONUT contains information about names and synonyms, species and organism parts in which the natural product has been found, geographic information about where the respective sample has been collected and literature references, where available. COCONUT is openly accessible at https://coconut.naturalproducts.net. Users can search textual information and perform structure, substructure, and similarity searches. The data in COCONUT are available for bulk download as SDF, CSV and a database dump. The web application for accessing the data is open-source. Here, we describe COCONUT 2.0, for which the web application has been completely rewritten, and the data have been newly assembled and extensively curated. New features include data submissions by users and community curation facilitated in various ways.
Collapse
Affiliation(s)
- Venkata Chandrasekhar
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstr 8, 07743, Jena, Germany
| | - Kohulan Rajan
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstr 8, 07743, Jena, Germany
| | - Sri Ram Sagar Kanakam
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstr 8, 07743, Jena, Germany
| | - Nisha Sharma
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstr 8, 07743, Jena, Germany
| | - Viktor Weißenborn
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstr 8, 07743, Jena, Germany
| | - Jonas Schaub
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstr 8, 07743, Jena, Germany
| | - Christoph Steinbeck
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstr 8, 07743, Jena, Germany
| |
Collapse
|
6
|
Pires JM, Negri G, Duarte-Almeida JM, Carlini EA, Mendes FR. Phytochemical analysis and investigation of analgesic, anti-inflammatory, and antispasmodic activities of hydroethanolic extracts of Alternanthera dentata, Ocimum carnosum, and Plectranthus barbatus, three species with vernacular names derived from analgesic drugs. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118508. [PMID: 38950795 DOI: 10.1016/j.jep.2024.118508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plant vernacular names can provide clues about the popular use of a species in different regions and are valuable sources of information about the culture or vocabulary of a population. Several medicinal plants in Brazil have received names of medicines and brand-name products. AIM OF THE STUDY The present work aimed to evaluate the chemical composition and pharmacological activity in the central nervous system of three species known popularly by brand names of analgesic, anti-inflammatory, antispasmodic, and digestive drugs. MATERIALS AND METHODS Hydroethanolic extracts of Alternanthera dentata (AD), Ocimum carnosum (OC), and Plectranthus barbatus (PB) aerial parts were submitted to phytochemical analysis by HPLC-PAD-ESI-MS/MS and evaluated in animal models at doses of 500 and 1000 mg/kg. Mice were tested on hot plate, acetic acid-induced writing, formalin-induced licking, and intestinal transit tests. Aspirin and morphine were employed as standard drugs. RESULTS The three extracts did not change the mice's response on the hot plate. Hydroethanolic extracts of AD and PB reduced the number of writhes and licking time, while OC was only effective on the licking test at dose of 1000 mg/kg. In addition, AD and OC reduced intestinal transit, while PB increased gut motility. CONCLUSIONS Pharmacological tests supported some popular uses, suggesting peripheral antinociceptive and anti-inflammatory effects, while the phytochemical analysis showed the presence of several flavonoids in the three hydroethanolic extracts and steroids in PB, with some barbatusterol derivatives described for the first time in the species.
Collapse
Affiliation(s)
- Júlia Movilla Pires
- Department of Psychobiology. Universidade Federal de São Paulo, Rua Botucatu, 862, São Paulo, 04023-062, SP, Brazil.
| | - Giuseppina Negri
- Department of Psychobiology. Universidade Federal de São Paulo, Rua Botucatu, 862, São Paulo, 04023-062, SP, Brazil.
| | - Joaquim Mauricio Duarte-Almeida
- Centro Oeste Dona Lindu Campus / Universidade Federal de São João del Rei, Av. Sebastião Gonçalves Coelho, 400, Divinópolis, 35501-296, MG, Brazil.
| | - Elisaldo Araújo Carlini
- Department of Psychobiology. Universidade Federal de São Paulo, Rua Botucatu, 862, São Paulo, 04023-062, SP, Brazil.
| | - Fúlvio Rieli Mendes
- Center for Natural and Human Sciences, Universidade Federal do ABC, Alameda da Universidade, SN, São Bernardo do Campo, 09606-045, SP, Brazil.
| |
Collapse
|
7
|
Meunier M, Schinkovitz A, Derbré S. Current and emerging tools and strategies for the identification of bioactive natural products in complex mixtures. Nat Prod Rep 2024; 41:1766-1786. [PMID: 39291767 DOI: 10.1039/d4np00006d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Covering: up to 2024The prompt identification of (bio)active natural products (NPs) from complex mixtures poses a significant challenge due to the presence of numerous compounds with diverse structures and (bio)activities. Thus, this review provides an overview of current and emerging tools and strategies for the identification of (bio)active NPs in complex mixtures. Traditional approaches of bioassay-guided fractionation (BGF), followed by nuclear magnetic resonance (NMR) and mass spectrometry (MS) analysis for compound structure elucidation, continue to play an important role in the identification of active NPs. However, recent advances (2018-2024) have led to the development of novel techniques such as (bio)chemometric analysis, dereplication and combined approaches, which allow efficient prioritization for the elucidation of (bio)active compounds. For researchers involved in the search for bioactive NPs and who want to speed up their discoveries while maintaining accurate identifications, this review highlights the strengths and limitations of each technique and provides up-to-date insights into their combined use to achieve the highest level of confidence in the identification of (bio)active natural products from complex matrices.
Collapse
Affiliation(s)
- Manon Meunier
- Univ. Angers, SONAS, SFR QUASAV, F-49000 Angers, France.
| | | | | |
Collapse
|
8
|
Dagci I, Acar M, Turhan F, Mavi A, Unver Y. Extracellular production of azurin by reusable magnetic Fe 3O 4 nanoparticle-immobilized Pseudomonas aeruginosa. J Biotechnol 2024; 394:48-56. [PMID: 39159754 DOI: 10.1016/j.jbiotec.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/01/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024]
Abstract
Azurin, found in the periplasm of Pseudomonas aeruginosa, has garnered significant attention as a potential anticancer agent in recent years. High-level secretion of proteins into the culture medium, offers a significant advantage over periplasmic or cytoplasmic expression. In this study, for the first time, P. aeruginosa cells were immobilized with magnetic nanoparticles (MNPs) to ensure effective, simple and quick separation of the cells and secretion of periplasmic azurin protein to the culture medium. For this purpose, polyethyleneimine-coated iron oxide (Fe3O4@PEI) MNPs were synthesized and MNPs containing Fe up to 600 ppm were found to be non-toxic to the bacteria. The highest extracellular azurin level was observed in LB medium compared to peptone water. The cells immobilized with 400 ppm Fe-containing MNPs secreted the highest protein. Lastly, the immobilized cells were found suitable for azurin secretion until the sixth use. Thus, the magnetic nanoparticle immobilization method facilitated the release of azurin as well as the simple and rapid separation of cells. This approach, by facilitating protein purification and enabling the reuse of immobilized cells, offers a cost-effective means of protein production, reducing waste cell formation, and thus presents an advantageous method.
Collapse
Affiliation(s)
- Ibrahim Dagci
- Department of Molecular Biology and Genetics, Graduate School of Natural and Applied Sciences, Atatürk University, Erzurum, Turkey
| | - Melek Acar
- Department of Molecular Biology and Genetics, Graduate School of Natural and Applied Sciences, Atatürk University, Erzurum, Turkey
| | - Fatma Turhan
- Department of Nanoscience and Nanoengineering, Graduate School of Natural and Applied Sciences, Atatürk University, Erzurum, Turkey
| | - Ahmet Mavi
- Department of Nanoscience and Nanoengineering, Graduate School of Natural and Applied Sciences, Atatürk University, Erzurum, Turkey; Department of Chemistry Education, Kazım Karabekir Faculty of Education, Atatürk University, Erzurum, Turkey
| | - Yagmur Unver
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Turkey.
| |
Collapse
|
9
|
Kumari S, Prathyusha B, Chatterjee E, Tripathi N, Chakrabarty S, Bhardwaj N, Guru SK, Agastinose Ronickom JF, Jain SK. Prioritization of the Secondary Metabolites for the Rapid Annotation Based on Liquid Chromatography-High Resolution Mass Spectrometry Assessment: Varanasine and Schroffanone from Murraya paniculata and Cytotoxic Evaluation. J Proteome Res 2024; 23:4940-4950. [PMID: 39344647 DOI: 10.1021/acs.jproteome.4c00356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The liquid chromatography-high resolution mass spectrometry (LC-HRMS) technique enables the detection of phytochemicals present in the extracts. LC-HRMS-generated mass list showed abundant compounds of interest, artifacts, and primary metabolites. The identification of a secondary metabolite of interest within the extract is very challenging. We hypothesized that identifying the "new metabolite" in the whole metabolome is more challenging than identifying it within the class of metabolites. The proposed prioritization strategy focused on the elimination of unknown and prioritizing the known class of secondary metabolites to identify new metabolites. The prioritization strategy demonstrated on Murraya paniculata for the identification of new metabolites. LC-HRMS-generated information is used as a filter to target the secondary metabolite and the new metabolites. This strategy successfully annotated the new coumarin and coumarin alkaloids from the mass list of 1448 metabolites. Varanasine (3), schroffanone (4), schroffanene (5), and O-methylmurraol (9) are new compounds, and coumarin (1, 2, and 6-8) are known. Varanasine (3) is the first naturally occurring 7-aminocoumarin with additional N-formyl functionality. The isolates were screened for cytotoxicity against the panel of cancer cell lines. Varanasine (3) and minumicrollin (6) showed significant cytotoxicity and apoptosis-inducing potential. The immunoblot analysis confirmed inhibition of apoptotic protein PARP-1 and caspase-3 expression by 3 and 6.
Collapse
Affiliation(s)
- Sanju Kumari
- School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 Uttar Pradesh, India
| | - Bhavana Prathyusha
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad 500037 Telangana, India
| | - Essha Chatterjee
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad 500037 Telangana, India
| | - Nancy Tripathi
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 Uttar Pradesh, India
| | - Sanheeta Chakrabarty
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 Uttar Pradesh, India
| | - Nivedita Bhardwaj
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 Uttar Pradesh, India
| | - Santosh Kumar Guru
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad 500037 Telangana, India
| | - Jac Fredo Agastinose Ronickom
- School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 Uttar Pradesh, India
| | - Shreyans K Jain
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 Uttar Pradesh, India
| |
Collapse
|
10
|
Queiroz LP, Nogueira IBR, Ribeiro AM. Flavor Engineering: A comprehensive review of biological foundations, AI integration, industrial development, and socio-cultural dynamics. Food Res Int 2024; 196:115100. [PMID: 39614513 DOI: 10.1016/j.foodres.2024.115100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 12/01/2024]
Abstract
This state-of-the-art review comprehensively explores flavor development, spanning biological foundations, analytical methodologies, and the socio-cultural impact. It incorporates an industrial perspective and examines the role of artificial intelligence (AI) in flavor science. Initiating with the biological intricacies of flavor, the review delves into the interplay of taste, aroma, and texture rooted in sensory experiences. Advances in mathematical modeling and analytical techniques open avenues for interdisciplinary collaboration and technological innovation, addressing variations in flavor perception. The impact of flavor extends beyond gustatory experiences, influencing economics, society, nutrition, health, and technological innovation. This collective understanding deepens insight into the dynamic interplay between olfactory and flavor elements within cultural landscapes, emphasizing how sensory experiences are woven into human culture and heritage. The evolution of food flavor analysis, encompassing sensory analysis, instrumental analysis, a combination of both, and the integration of artificial intelligence techniques, signifies dynamic progression and, promising advancements in precision, efficiency, and innovation within the flavor industry. This comprehensive review involved analyzing key aspects within flavor engineering and related sectors. Articles and book chapters on these topics were collected using metadata analysis. The data for this analysis was extracted from major online databases, including Scopus, Web of Science, and ScienceDirect.
Collapse
Affiliation(s)
- L P Queiroz
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal.
| | - I B R Nogueira
- Chemical Engineering Department, Norwegian University of Science and Technology, Sem Sælandsvei 4, Kjemiblokk 5, Trondheim 793101, Norway
| | - A M Ribeiro
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal
| |
Collapse
|
11
|
Li J, Gu A, Li MY. Heteroaryl Group Containing Trisubstituted Alkenes: Synthesis and Anti-Tumor Activity. Chem Biodivers 2024; 21:e202401469. [PMID: 39145746 DOI: 10.1002/cbdv.202401469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/16/2024]
Abstract
Pancreatobililary cancers are fatal solid tumors that pose a significant threat to human life. It is imperative to investigate novel small molecule active compounds for controlling these cancers. Heterocyclic compounds (e. g. gemcitabine) and multi-substituted alkenes (e. g. resveratrol) are commonly applied in tumor treatment. Researchers have proposed that the synthesis of new trisubstituted alkenes containing heteroaromatic rings by combining these two scaffolds may be a fresh strategy to develop new active molecules. In this study, we utilized alkenyl bromide and heteroaryl boronic acid as substrates, employing Suzuki coupling to generate a series of triarylethylenes featuring nitrogen, oxygen, and sulfur atoms. Through in vitro experiments, the results indicated that some compounds exhibited remarkable anti-tumor efficacy (e. g. IC50[3be, GBC-SD]=0.13 μM and IC50[3be, PANC-1]=0.27 μM). The results further demonstrated that the antitumor efficacy of these compounds was dependent on the heteroatom, π-system, skeleton-bonding site, and substituent type.
Collapse
Affiliation(s)
- Jiatong Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 200032, Shanghai, China
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 200127, Shanghai, China
| | - Ao Gu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 200032, Shanghai, China
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 200127, Shanghai, China
| | - Meng-Yao Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 200032, Shanghai, China
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 200127, Shanghai, China
| |
Collapse
|
12
|
Martínez-Urrutia F, Medina-Franco JL. BIOMX-DB: A web application for the BIOFACQUIM natural product database. Mol Inform 2024; 43:e202400060. [PMID: 38837557 DOI: 10.1002/minf.202400060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/23/2024] [Accepted: 03/30/2024] [Indexed: 06/07/2024]
Abstract
Natural product databases are an integral part of chemoinformatics and computer-aided drug design. Despite their pivotal role, a distinct scarcity of projects in Latin America, particularly in Mexico, provides accessible tools of this nature. Herein, we introduce BIOMX-DB, an open and freely accessible web-based database designed to address this gap. BIOMX-DB enhances the features of the existing Mexican natural product database, BIOFACQUIM, by incorporating advanced search, filtering, and download capabilities. The user-friendly interface of BIOMX-DB aims to provide an intuitive experience for researchers. For seamless access, BIOMX-DB is freely available at www.biomx-db.com.
Collapse
Affiliation(s)
- Fernando Martínez-Urrutia
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José L Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
13
|
Ancajas CMF, Oyedele AS, Butt CM, Walker AS. Advances, opportunities, and challenges in methods for interrogating the structure activity relationships of natural products. Nat Prod Rep 2024; 41:1543-1578. [PMID: 38912779 PMCID: PMC11484176 DOI: 10.1039/d4np00009a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Indexed: 06/25/2024]
Abstract
Time span in literature: 1985-early 2024Natural products play a key role in drug discovery, both as a direct source of drugs and as a starting point for the development of synthetic compounds. Most natural products are not suitable to be used as drugs without further modification due to insufficient activity or poor pharmacokinetic properties. Choosing what modifications to make requires an understanding of the compound's structure-activity relationships. Use of structure-activity relationships is commonplace and essential in medicinal chemistry campaigns applied to human-designed synthetic compounds. Structure-activity relationships have also been used to improve the properties of natural products, but several challenges still limit these efforts. Here, we review methods for studying the structure-activity relationships of natural products and their limitations. Specifically, we will discuss how synthesis, including total synthesis, late-stage derivatization, chemoenzymatic synthetic pathways, and engineering and genome mining of biosynthetic pathways can be used to produce natural product analogs and discuss the challenges of each of these approaches. Finally, we will discuss computational methods including machine learning methods for analyzing the relationship between biosynthetic genes and product activity, computer aided drug design techniques, and interpretable artificial intelligence approaches towards elucidating structure-activity relationships from models trained to predict bioactivity from chemical structure. Our focus will be on these latter topics as their applications for natural products have not been extensively reviewed. We suggest that these methods are all complementary to each other, and that only collaborative efforts using a combination of these techniques will result in a full understanding of the structure-activity relationships of natural products.
Collapse
Affiliation(s)
| | | | - Caitlin M Butt
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA.
| | - Allison S Walker
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA.
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
14
|
Avellaneda-Tamayo JF, Agudo-Muñoz NA, Sánchez-Galán JE, López-Pérez JL, Medina-Franco JL. Chemoinformatic Characterization of NAPROC-13: A Database for Natural Product 13C NMR Dereplication. JOURNAL OF NATURAL PRODUCTS 2024; 87:2216-2229. [PMID: 39269718 PMCID: PMC11443490 DOI: 10.1021/acs.jnatprod.4c00530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Natural products (NPs) are secondary metabolites of natural origin with broad applications across various human activities, particularly the discovery of bioactive compounds. Structural elucidation of new NPs entails significant cost and effort. On the other hand, the dereplication of known compounds is crucial for the early exclusion of irrelevant compounds in contemporary pharmaceutical research. NAPROC-13 stands out as a publicly accessible database, providing structural and 13C NMR spectroscopic information for over 25 000 compounds, rendering it a pivotal resource in natural product (NP) research, favoring open science. This study seeks to quantitatively analyze the chemical content, structural diversity, and chemical space coverage of NPs within NAPROC-13, compared to FDA-approved drugs and a very diverse subset of NPs, UNPD-A. Findings indicated that NPs in NAPROC-13 exhibit properties comparable to those in UNPD-A, albeit showcasing a notably diverse array of structural content, scaffolds, ring systems of pharmaceutical interest, and molecular fragments. NAPROC-13 covers a specific region of the chemical multiverse (a generalization of the chemical space from different chemical representations) regarding physicochemical properties and a region as broad as UNPD-A in terms of the structural features represented by fingerprints.
Collapse
Affiliation(s)
- Juan F. Avellaneda-Tamayo
- DIFACQUIM
Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico
| | - Naicolette A. Agudo-Muñoz
- Science
and Technology Faculty, Universidad Tecnológica de Panamá,
Campus Metropolitano Víctor Levi Sasso, Avenida Universidad Tecnológica, Vía Puente Centenario, Panama City 0819-07289, Panama
- Grupo
de Investigación en Biotecnología, Bioinformática
y Biología de Sistemas (GIBBS), Universidad Tecnológica
de Panama, Panama City, Panama
| | - Javier E. Sánchez-Galán
- Facultad
de Ingeniería de Sistemas Computacionales, Universidad Tecnológica
de Panamá, Campus Metropolitano Víctor Levi Sasso, Avenida Universidad Tecnológica, Vía
Puente Centenario, Panama City 0819-07289, Panama
- Grupo
de Investigación en Biotecnología, Bioinformática
y Biología de Sistemas (GIBBS), Universidad Tecnológica
de Panama, Panama City, Panama
| | - José L. López-Pérez
- Departamento
de Ciencias Farmacéuticas, Área de Química Farmacéutica,
Facultad de Farmacia, CIETUS, IBSAL, Campus Miguel de Unamuno, University of Salamanca, 37007, Salamanca, Spain
- Departamento
de Farmacología, Facultad de Medicina, CIPFAR, Universidad de Panamá, Panama City, Panama
| | - José L. Medina-Franco
- DIFACQUIM
Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico
| |
Collapse
|
15
|
Foldi J, Connolly JA, Takano E, Breitling R. Synthetic Biology of Natural Products Engineering: Recent Advances Across the Discover-Design-Build-Test-Learn Cycle. ACS Synth Biol 2024; 13:2684-2692. [PMID: 39163395 PMCID: PMC11421215 DOI: 10.1021/acssynbio.4c00391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Advances in genome engineering and associated technologies have reinvigorated natural products research. Here we highlight the latest developments in the field across the discover-design-build-test-learn cycle of bioengineering, from recent progress in computational tools for AI-supported genome mining, enzyme and pathway engineering, and compound identification to novel host systems and new techniques for improving production levels, and place these trends in the context of responsible research and innovation, emphasizing the importance of anticipatory analysis at the early stages of process development.
Collapse
Affiliation(s)
- Jonathan Foldi
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Jack A Connolly
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Eriko Takano
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Rainer Breitling
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, University of Manchester, Manchester M1 7DN, United Kingdom
| |
Collapse
|
16
|
Kumari S, Chakrabarty S, Kumar S, Kumar S, Agastinose Ronickom JF, Jain SK. Prioritization before dereplication, an effective strategy to target new metabolites in whole extracts: ghosalin from Murraya paniculata root. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6156-6163. [PMID: 39189121 DOI: 10.1039/d4ay01359j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Re-discovery of known metabolites is a common challenge in natural product-based drug discovery, and to avoid re-discovery, dereplication has been proposed for identifying known metabolites at the early stage of isolation. A majority of methods use LCMS to profile the extract and ignore the known mass. LC-HRMS profiling may generate a long mass list of metabolites. The identification of a new metabolite is difficult within the mass list. To overcome this, it was hypothesized that identifying a 'new metabolite' in the whole metabolome is more difficult than identifying it within the class of metabolites. A prioritization strategy was proposed to focus on the elimination of unknown and uncommon metabolites first using the designed bias filters and to prioritize the known secondary metabolites. The study employed Murraya paniculata root for the identification of new metabolites. The LC-HRMS-generated mass list of 509 metabolites was subjected to various filters, which resulted in 93 metabolites. Subsequently, it was subjected to regular dereplication, resulting in 10 coumarins, among which 3 were identified as new. Further, chromatographic efforts led to the isolation of a new coumarin, named ghosalin (1). The structure of the new compound was established through 2D NMR and X-ray crystallography. Cytotoxicity studies revealed that ghosalin has significant cytotoxicity against cancer cell lines. The proposed prioritization strategy demonstrates an alternative way for the rapid annotation of a particular set of metabolites to isolate a new metabolite from the whole metabolome of a plant extract.
Collapse
Affiliation(s)
- Sanju Kumari
- School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| | - Sanheeta Chakrabarty
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India.
| | - Sanjay Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India.
| | - Sanjeev Kumar
- Department of Dravyaguna, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Jac Fredo Agastinose Ronickom
- School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| | - Shreyans K Jain
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
17
|
Ouchene R, Zaatout N, Suzuki MT. An Overview on Nocardiopsis Species Originating From North African Biotopes as a Promising Source of Bioactive Compounds and In Silico Genome Mining Analysis of Three Sequenced Genomes. J Basic Microbiol 2024; 64:e2400046. [PMID: 38934516 DOI: 10.1002/jobm.202400046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/21/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024]
Abstract
Actinobacteria are renowned for their prolific production of diverse bioactive secondary metabolites. In recent years, there has been an increasing focus on exploring "rare" genera within this phylum for biodiscovery purposes, notably the Nocardiopsis genus, which will be the subject of the present study. Recognizing the absence of articles describing the research process of finding bioactive molecules from the genus Nocardiopsis in North African environments. We, therefore, present a historical overview of the discoveries of bioactive molecules of the genus Nocardiopsis originating from the region, highlighting their biological activities and associated reported molecules, providing a snapshot of the current state of the field, and offering insights into future opportunities and challenges for drug discovery. Additionally, we present a genome mining analysis of three genomes deposited in public databases that have been reported to be bioactive. A total of 36 biosynthetic gene clusters (BGCs) were identified, including those known to encode bioactive molecules. Notably, a substantial portion of the BGCs showed little to no similarity to those previously described, suggesting the possibility that the analyzed strains could be potential producers of new compounds. Further research on these genomes is essential to fully uncovering their biotechnological potential. Moving forward, we discuss the experimental designs adopted in the reported studies, as well as new avenues to guide the exploration of the Nocardiopsis genus in North Africa.
Collapse
Affiliation(s)
- Rima Ouchene
- Laboratoire de Microbiologie Appliquée (LMA), Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
- CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, Sorbonne Université, Paris, France
| | - Nawel Zaatout
- Faculty of Natural and Life Sciences, University of Batna, Batna, Algeria
| | - Marcelino T Suzuki
- CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, Sorbonne Université, Paris, France
| |
Collapse
|
18
|
Han X, Li S, Sun X, Zhang J, Zhang X, Bi X. Preparation of imidazolium ionic liquid functionalized paper membrane for selective extraction of caffeic acid and its structural and functional analogues from Taraxaci Herba. Biomed Chromatogr 2024; 38:e5953. [PMID: 38965739 DOI: 10.1002/bmc.5953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/22/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
In the search for pharmaceutically active compounds from natural products, it is crucial and challenging to develop separation or purification methods that target not only structurally similar compounds but also those with specific pharmaceutical functions. The adsorption-based method is widely employed in this field and holds potential for this application, given the diverse range of functional monomers that can be chosen based on structural or functional selectivity. In this work, an imidazolium ionic liquid (IL) modified paper membrane was synthesized via microwave reaction. Caffeic acid (CA), with potential interactions with imidazolium IL and a representative component of phenolic acids in Taraxaci Herba, was chosen as a target compound. After optimization of synthesis and extraction parameters, the resulting extraction membrane could be used to quantitatively analyze CA at ng/ml level, and to extract CA's analogues from the sample matrix. Cheminformatics confirmed the presence of structural and functional similarity among these extracted compounds. This study offers a novel approach to preparing a readily synthesized extraction membrane capable of isolating compounds with structural and functional analogies, as well as developing a membrane solid-phase extraction-based analytical method for natural products.
Collapse
Affiliation(s)
- Xiaohui Han
- School of Pharmaceutical Sciences and Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shumin Li
- School of Pharmaceutical Sciences and Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaoxue Sun
- School of Pharmaceutical Sciences and Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jingyu Zhang
- School of Pharmaceutical Sciences and Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xuerui Zhang
- School of Pharmaceutical Sciences and Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaodong Bi
- School of Pharmaceutical Sciences and Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Jinan, Shandong, China
| |
Collapse
|
19
|
Guo X, Luo W, Wu L, Zhang L, Chen Y, Li T, Li H, Zhang W, Liu Y, Zheng J, Wang Y. Natural Products from Herbal Medicine Self-Assemble into Advanced Bioactive Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403388. [PMID: 39033533 PMCID: PMC11425287 DOI: 10.1002/advs.202403388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/09/2024] [Indexed: 07/23/2024]
Abstract
Novel biomaterials are becoming more crucial in treating human diseases. However, many materials require complex artificial modifications and synthesis, leading to potential difficulties in preparation, side effects, and clinical translation. Recently, significant progress has been achieved in terms of direct self-assembly of natural products from herbal medicine (NPHM), an important source for novel medications, resulting in a wide range of bioactive supramolecular materials including gels, and nanoparticles. The NPHM-based supramolecular bioactive materials are produced from renewable resources, are simple to prepare, and have demonstrated multi-functionality including slow-release, smart-responsive release, and especially possess powerful biological effects to treat various diseases. In this review, NPHM-based supramolecular bioactive materials have been revealed as an emerging, revolutionary, and promising strategy. The development, advantages, and limitations of NPHM, as well as the advantageous position of NPHM-based materials, are first reviewed. Subsequently, a systematic and comprehensive analysis of the self-assembly strategies specific to seven major classes of NPHM is highlighted. Insights into the influence of NPHM structural features on the formation of supramolecular materials are also provided. Finally, the drivers and preparations are summarized, emphasizing the biomedical applications, future scientific challenges, and opportunities, with the hope of igniting inspiration for future research and applications.
Collapse
Affiliation(s)
- Xiaohang Guo
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Weikang Luo
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Lingyu Wu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Lianglin Zhang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yuxuan Chen
- Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, 519087, China
| | - Teng Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Haigang Li
- Hunan key laboratory of the research and development of novel pharmaceutical preparations, Changsha Medical University, Changsha, 410219, China
| | - Wei Zhang
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yawei Liu
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jun Zheng
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| |
Collapse
|
20
|
Molina Inzunza DO, Martín González JE, Segura Navarro MJ, Barrero AF, Quílez del Moral JF. Natural Occurring Terpene Cyclic Anhydrides: Biosynthetic Origin and Biological Activities. Biomolecules 2024; 14:955. [PMID: 39199343 PMCID: PMC11352521 DOI: 10.3390/biom14080955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
Cyclic acid anhydride is a not very widespread structure in nature, but with a determining role in natural products possessing this functionality in their skeleton. To the best of our knowledge, no revision of terpenes containing cyclic anhydrides has been previously reported. The result was that more than 100 terpenic cyclic anhydrides and related compounds were found to be in need of being reported. This review has been systematically organized by terpene skeletons, from the smallest to largest, describing their sources and bioactivities. In addition, different biosynthetic pathways for their final oxidations, namely, routes A, B and C, leading to the formation of these heterocyclic natural products, have been proposed. We have also included the most plausible precursors of these natural products, which mostly happened to be present in the same natural source. Some molecules derived from terpene cyclic anhydrides, such as their natural imide derivatives, have also been described due to their significant biological activity. In this sense, special attention has been paid to cantharidin because of its historical relevance and its broad bioactivity. A plausible biosynthesis of cantharidin has been proposed for the first time. Finally, cyclic anhydride structures that were firstly assigned as anhydrides and later corrected have been also described.
Collapse
Affiliation(s)
| | | | | | - Alejandro F. Barrero
- Department of Organic Chemistry, Institute of Biotechnology, University of Granada, 18071 Granada, Spain; (D.O.M.I.); (J.E.M.G.); (M.J.S.N.)
| | - José F. Quílez del Moral
- Department of Organic Chemistry, Institute of Biotechnology, University of Granada, 18071 Granada, Spain; (D.O.M.I.); (J.E.M.G.); (M.J.S.N.)
| |
Collapse
|
21
|
Li XL, Zhang JQ, Shen XJ, Zhang Y, Guo DA. Overview and limitations of database in global traditional medicines: A narrative review. Acta Pharmacol Sin 2024:10.1038/s41401-024-01353-1. [PMID: 39095509 DOI: 10.1038/s41401-024-01353-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
The study of traditional medicine has garnered significant interest, resulting in various research areas including chemical composition analysis, pharmacological research, clinical application, and quality control. The abundance of available data has made databases increasingly essential for researchers to manage the vast amount of information and explore new drugs. In this article we provide a comprehensive overview and summary of 182 databases that are relevant to traditional medicine research, including 73 databases for chemical component analysis, 70 for pharmacology research, and 39 for clinical application and quality control from published literature (2000-2023). The review categorizes the databases by functionality, offering detailed information on websites and capacities to facilitate easier access. Moreover, this article outlines the primary function of each database, supplemented by case studies to aid in database selection. A practical test was conducted on 68 frequently used databases using keywords and functionalities, resulting in the identification of highlighted databases. This review serves as a reference for traditional medicine researchers to choose appropriate databases and also provides insights and considerations for the function and content design of future databases.
Collapse
Affiliation(s)
- Xiao-Lan Li
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Qing Zhang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xuan-Jing Shen
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Zhang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - De-An Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
22
|
Azmy L, Ibraheem IBM, Alsalamah SA, Alghonaim MI, Zayed A, Abd El-Aleam RH, Mohamad SA, Abdelmohsen UR, Elsayed KNM. Evaluation of Cytotoxicity and Metabolic Profiling of Synechocystis sp. Extract Encapsulated in Nano-Liposomes and Nano-Niosomes Using LC-MS, Complemented by Molecular Docking Studies. BIOLOGY 2024; 13:581. [PMID: 39194519 DOI: 10.3390/biology13080581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024]
Abstract
Liposomes and niosomes can be considered excellent drug delivery systems due to their ability to load all compounds, whether hydrophobic or hydrophilic. In addition, they can reduce the toxicity of the loaded drug without reducing its effectiveness. Synechocystis sp. is a unicellular, freshwater cyanobacteria strain that contains many bioactive compounds that qualify its use in industrial, pharmaceutical, and many other fields. This study investigated the potential of nano-liposomes (L) and nano-niosomes (N) for delivering Synechocystis sp. extract against cancer cell lines. Four different types of nanoparticles were prepared using a dry powder formulation and ethanol extract of Synechocystis sp. in both nanovesicles (N1 and N2, respectively) and liposomes (L1 and L2, respectively). Analysis of the formed vesicles using zeta analysis, SEM morphological analysis, and visual examination confirmed their stability and efficiency. L1 and L2 in this investigation had effective diameters of 419 and 847 nm, respectively, with PDI values of 0.24 and 0.27. Furthermore, the zeta potentials were found to range from -31.6 mV to -43.7 mV. Regarding N1 and N2, their effective diameters were 541 nm and 1051 nm, respectively, with PDI values of 0.31 and 0.35, and zeta potentials reported from -31.6 mV to -22.2 mV, respectively. Metabolic profiling tentatively identified 22 metabolites (1-22) from the ethanolic extract. Its effect against representative human cancers was studied in vitro, specifically against colon (Caco2), ovarian (OVCAR4), and breast (MCF7) cancer cell lines. The results showed the potential activities of the prepared N1, N2, L1, and L2 against the three cell lines, where L1 had cytotoxicity IC50 values of 19.56, 33.52, and 9.24 µg/mL compared to 26.27, 56.23, and 19.61 µg/mL for L2 against Caco2, OVCAR4, and MCF7, respectively. On the other hand, N1 exhibited IC50 values of 9.09, 11.42, and 2.38 µg/mL, while N2 showed values of 15.57, 18.17, and 35.31 µg/mL against Caco2, OVCAR4, and MCF7, respectively. Meanwhile, the formulations showed little effect on normal cell lines (FHC, OCE1, and MCF10a). All of the compounds were evaluated in silico against the epidermal growth factor receptor tyrosine kinase (EGFR). The molecular docking results showed that compound 21 (1-hexadecanoyl-2-(9Z-hexadecenoyl)-3-(6'-sulfo-alpha-D-quinovosyl)-sn-glycerol), followed by compounds 6 (Sulfoquinovosyl monoacylgycerol), 7 (3-Hydroxymyristic acid), 8 (Glycolipid PF2), 12 (Palmitoleic acid), and 19 (Glyceryl monostearate), showed the highest binding affinities. These compounds formed good hydrogen bond interactions with the key amino acid Lys721 as the co-crystallized ligand. These results suggest that nano-liposomes and nano-niosomes loaded with Synechocystis sp. extract hold promise for future cancer treatment development. Further research should focus on clinical trials, stability assessments, and pharmacological profiles to translate this approach into effective anticancer drugs.
Collapse
Affiliation(s)
- Lamya Azmy
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Ibraheem B M Ibraheem
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Sulaiman A Alsalamah
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Mohammed Ibrahim Alghonaim
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Ahmed Zayed
- Pharmacognosy Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Rehab H Abd El-Aleam
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information MTI, Cairo 11571, Egypt
| | - Soad A Mohamad
- Clinical Pharmacy Department, Faculty of Pharmacy, Deraya University, New Minia 61111, Egypt
| | - Usama Ramadan Abdelmohsen
- Deraya Center for Scientific Research, Deraya University, New Minia 61111, Egypt
- Pharmacognosy Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Khaled N M Elsayed
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
23
|
Li J, Lardon R, Mangelinckx S, Geelen D. A practical guide to the discovery of biomolecules with biostimulant activity. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3797-3817. [PMID: 38630561 DOI: 10.1093/jxb/erae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/16/2024] [Indexed: 04/19/2024]
Abstract
The growing demand for sustainable solutions in agriculture, which are critical for crop productivity and food quality in the face of climate change and the need to reduce agrochemical usage, has brought biostimulants into the spotlight as valuable tools for regenerative agriculture. With their diverse biological activities, biostimulants can contribute to crop growth, nutrient use efficiency, and abiotic stress resilience, as well as to the restoration of soil health. Biomolecules include humic substances, protein lysates, phenolics, and carbohydrates have undergone thorough investigation because of their demonstrated biostimulant activities. Here, we review the process of the discovery and development of extract-based biostimulants, and propose a practical step-by-step pipeline that starts with initial identification of biomolecules, followed by extraction and isolation, determination of bioactivity, identification of active compound(s), elucidation of mechanisms, formulation, and assessment of effectiveness. The different steps generate a roadmap that aims to expedite the transfer of interdisciplinary knowledge from laboratory-scale studies to pilot-scale production in practical scenarios that are aligned with the prevailing regulatory frameworks.
Collapse
Affiliation(s)
- Jing Li
- HortiCell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Robin Lardon
- HortiCell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Sven Mangelinckx
- SynBioC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Danny Geelen
- HortiCell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
24
|
Suleman M, Sayaf AM, Khan A, Khan SA, Albekairi NA, Alshammari A, Agouni A, Yassine HM, Crovella S. Molecular screening of phytocompounds targeting the interface between influenza A NS1 and TRIM25 to enhance host immune responses. J Infect Public Health 2024; 17:102448. [PMID: 38815532 DOI: 10.1016/j.jiph.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Influenza A virus causes severe respiratory illnesses, especially in developing nations where most child deaths under 5 occur due to lower respiratory tract infections. The RIG-I protein acts as a sensor for viral dsRNA, triggering interferon production through K63-linked poly-ubiquitin chains synthesized by TRIM25. However, the influenza A virus's NS1 protein hinders this process by binding to TRIM25, disrupting its association with RIG-I and preventing downstream interferon signalling, contributing to the virus's evasion of the immune response. METHODS In our study we used structural-based drug designing, molecular simulation, and binding free energy approaches to identify the potent phytocompounds from various natural product databases (>100,000 compounds) able to inhibit the binding of NS1 with the TRIM25. RESULTS The molecular screening identified EA-8411902 and EA-19951545 from East African Natural Products Database, NA-390261 and NA-71 from North African Natural Products Database, SA-65230 and SA- 4477104 from South African Natural Compounds Database, NEA- 361 and NEA- 4524784 from North-East African Natural Products Database, TCM-4444713 and TCM-6056 from Traditional Chinese Medicines Database as top hits. The molecular docking and binding free energies results revealed that these compounds have high affinity with the specific active site residues (Leu95, Ser99, and Tyr89) involved in the interaction with TRIM25. Additionally, analysis of structural dynamics, binding free energy, and dissociation constants demonstrates a notably stronger binding affinity of these compounds with the NS1 protein. Moreover, all selected compounds exhibit exceptional ADMET properties, including high water solubility, gastrointestinal absorption, and an absence of hepatotoxicity, while adhering to Lipinski's rule. CONCLUSION Our molecular simulation findings highlight that the identified compounds demonstrate high affinity for specific active site residues involved in the NS1-TRIM25 interaction, exhibit exceptional ADMET properties, and adhere to drug-likeness criteria, thus presenting promising candidates for further development as antiviral agents against influenza A virus infections.
Collapse
Affiliation(s)
- Muhammad Suleman
- Laboratory of Animal Research Center (LARC), Qatar University, Doha, Qatar; Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan.
| | - Abrar Mohammad Sayaf
- School of Chemical Sciences, Universiti Sains Malaysia, Gelugor, Penang, Malaysia.
| | - Abbas Khan
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Salman Ali Khan
- Tunneling Group, Biotechnology Centre, Doctoral School, Silesian University of Technology, Akademicka 2, 44-100 Gliwice, Poland.
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia.
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia.
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Hadi M Yassine
- Biomedical Research Center, Qatar University, 2713 Doha, Qatar; College of Health Sciences-QU Health, Qatar University, 2713 Doha, Qatar.
| | - Sergio Crovella
- Laboratory of Animal Research Center (LARC), Qatar University, Doha, Qatar.
| |
Collapse
|
25
|
Holland DC, Hayton JB, Kiefel MJ, Carroll AR. Synthesis and Cheminformatics-Directed Antibacterial Evaluation of Echinosulfonic Acid-Inspired Bis-Indole Alkaloids. Molecules 2024; 29:2806. [PMID: 38930871 PMCID: PMC11206493 DOI: 10.3390/molecules29122806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/16/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Synthetic efforts toward complex natural product (NP) scaffolds are useful ones, particularly those aimed at expanding their bioactive chemical space. Here, we utilised an orthogonal cheminformatics-based approach to predict the potential biological activities for a series of synthetic bis-indole alkaloids inspired by elusive sponge-derived NPs, echinosulfone A (1) and echinosulfonic acids A-D (2-5). Our work includes the first synthesis of desulfato-echinosulfonic acid C, an α-hydroxy bis(3'-indolyl) alkaloid (17), and its full NMR characterisation. This synthesis provides corroborating evidence for the structure revision of echinosulfonic acids A-C. Additionally, we demonstrate a robust synthetic strategy toward a diverse range of α-methine bis(3'-indolyl) acids and acetates (11-16) without the need for silica-based purification in either one or two steps. By integrating our synthetic library of bis-indoles with bioactivity data for 2048 marine indole alkaloids (reported up to the end of 2021), we analyzed their overlap with marine natural product chemical diversity. Notably, the C-6 dibrominated α-hydroxy bis(3'-indolyl) and α-methine bis(3'-indolyl) analogues (11, 14, and 17) were found to contain significant overlap with antibacterial C-6 dibrominated marine bis-indoles, guiding our biological evaluation. Validating the results of our cheminformatics analyses, the dibrominated α-methine bis(3'-indolyl) alkaloids (11, 12, 14, and 15) were found to exhibit antibacterial activities against methicillin-sensitive and -resistant Staphylococcus aureus. Further, while investigating other synthetic approaches toward bis-indole alkaloids, 16 incorrectly assigned synthetic α-hydroxy bis(3'-indolyl) alkaloids were identified. After careful analysis of their reported NMR data, and comparison with those obtained for the synthetic bis-indoles reported herein, all of the structures have been revised to α-methine bis(3'-indolyl) alkaloids.
Collapse
Affiliation(s)
- Darren C. Holland
- School of Environment and Science, Griffith University, Southport, QLD 4222, Australia; (J.B.H.); (M.J.K.)
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - Joshua B. Hayton
- School of Environment and Science, Griffith University, Southport, QLD 4222, Australia; (J.B.H.); (M.J.K.)
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - Milton J. Kiefel
- School of Environment and Science, Griffith University, Southport, QLD 4222, Australia; (J.B.H.); (M.J.K.)
- Institute for Glycomics, Griffith University, Southport, QLD 4221, Australia
| | - Anthony R. Carroll
- School of Environment and Science, Griffith University, Southport, QLD 4222, Australia; (J.B.H.); (M.J.K.)
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| |
Collapse
|
26
|
Younes AH, Mustafa YF. Plant-Derived Coumarins: A Narrative Review of Their Structural and Biomedical Diversity. Chem Biodivers 2024; 21:e202400344. [PMID: 38587035 DOI: 10.1002/cbdv.202400344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/09/2024]
Abstract
Plant-derived coumarin (PDC) is a naturally occurring heterocyclic backbone that belongs to the benzopyrone family. PDC and its based products are characterized by low toxicity and high distribution in a variety of herbal treatments that have numerous therapeutic potentials. These include anticoagulants, antibacterials, anti-inflammatory agents, anticancer agents, antioxidants, and others. So, it may be appropriate to investigate the qualities and potential bioactivities of PDCs. This article provides an overview of the biomedical potentials, availability, and clinical use possibilities of PDCs, with a focus on their important modes of action, using information on various pharmacological qualities discovered. The data used in this study came from published research between 2015 and 2023. We reviewed a selection of databases, including PubMed, Scopus, Web of Science, and Google Scholar, during that period. In conclusion, because of their abundance in medicinal plants, the clinical biochemistry attributes of PDCs are currently of interest. In a variety of medical specialties, PDCs serve a useful role as therapeutic agents.
Collapse
Affiliation(s)
- Areej Hazem Younes
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
27
|
de Azevedo DQ, Campioni BM, Pedroz Lima FA, Medina-Franco JL, Castilho RO, Maltarollo VG. A critical assessment of bioactive compounds databases. Future Med Chem 2024; 16:1029-1051. [PMID: 38910575 PMCID: PMC11221550 DOI: 10.1080/17568919.2024.2342203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 04/03/2024] [Indexed: 06/25/2024] Open
Abstract
Compound databases (DBs) are essential tools for drug discovery. The number of DBs in public domain is increasing, so it is important to analyze these DBs. In this article, the main characteristics of 64 DBs will be presented. The methodological strategy used was a literature search. To analyze the characteristics obtained in the review, the DBs were categorized into two subsections: Open Access and Commercial DBs. Open access includes generalist DBs (containing compounds of diverse origins), DBs with specific applicability, DBs exclusive to natural products and those containing compounds with specific pharmacological action. The literature review showed that there are challenges to making these repositories available, such as standardizing information curation practices and funding to maintain and sustain them.
Collapse
Affiliation(s)
- Daniela Quadros de Azevedo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, Minas Gerais, 31270-900, Brazil
| | - Beatriz Mattos Campioni
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, Minas Gerais, 31270-900, Brazil
| | - Felipe Augusto Pedroz Lima
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, Minas Gerais, 31270-900, Brazil
| | - José L Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, Mexico City, 04510, Mexico
| | - Rachel Oliveira Castilho
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, Minas Gerais, 31270-900, Brazil
| | - Vinícius Gonçalves Maltarollo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, Minas Gerais, 31270-900, Brazil
| |
Collapse
|
28
|
Gomes PWP, Mannochio-Russo H, Schmid R, Zuffa S, Damiani T, Quiros-Guerrero LM, Caraballo-Rodríguez AM, Zhao HN, Yang H, Xing S, Charron-Lamoureux V, Chigumba DN, Sedio BE, Myers JA, Allard PM, Harwood TV, Tamayo-Castillo G, Kang KB, Defossez E, Koolen HHF, da Silva MN, E Silva CYY, Rasmann S, Walker TWN, Glauser G, Chaves-Fallas JM, David B, Kim H, Lee KH, Kim MJ, Choi WJ, Keum YS, de Lima EJSP, de Medeiros LS, Bataglion GA, Costa EV, da Silva FMA, Carvalho ARV, Reis JDE, Pamplona S, Jeong E, Lee K, Kim GJ, Kil YS, Nam JW, Choi H, Han YK, Park SY, Lee KY, Hu C, Dong Y, Sang S, Morrison CR, Borges RM, Teixeira AM, Lee SY, Lee BS, Jeong SY, Kim KH, Rutz A, Gaudry A, Bruelhart E, Kappers IF, Karlova R, Meisenburg M, Berdaguer R, Tello JS, Henderson D, Cayola L, Wright SJ, Allen DN, Anderson-Teixeira KJ, Baltzer JL, Lutz JA, McMahon SM, Parker GG, Parker JD, Northen TR, Bowen BP, Pluskal T, van der Hooft JJJ, Carver JJ, Bandeira N, Pullman BS, Wolfender JL, Kersten RD, Wang M, Dorrestein PC. plantMASST - Community-driven chemotaxonomic digitization of plants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593988. [PMID: 38798440 PMCID: PMC11118438 DOI: 10.1101/2024.05.13.593988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Understanding the distribution of hundreds of thousands of plant metabolites across the plant kingdom presents a challenge. To address this, we curated publicly available LC-MS/MS data from 19,075 plant extracts and developed the plantMASST reference database encompassing 246 botanical families, 1,469 genera, and 2,793 species. This taxonomically focused database facilitates the exploration of plant-derived molecules using tandem mass spectrometry (MS/MS) spectra. This tool will aid in drug discovery, biosynthesis, (chemo)taxonomy, and the evolutionary ecology of herbivore interactions.
Collapse
Affiliation(s)
- Paulo Wender P Gomes
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Helena Mannochio-Russo
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Robin Schmid
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Simone Zuffa
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Tito Damiani
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Luis-Manuel Quiros-Guerrero
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, 1211 Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, CMU, 1211 Geneva, Switzerland
| | - Andrés Mauricio Caraballo-Rodríguez
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Haoqi Nina Zhao
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Heejung Yang
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| | - Shipei Xing
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Vincent Charron-Lamoureux
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Desnor N Chigumba
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| | - Brian E Sedio
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
- Smithsonian Tropical Research Institute, Republic of Panama
| | - Jonathan A Myers
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Thomas V Harwood
- The DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA, 94720, United States
| | - Giselle Tamayo-Castillo
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San José 11501-2060, Costa Rica
- Escuela de Química, Universidad de Costa Rica, 2061 San José, Costa Rica
| | - Kyo Bin Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Emmanuel Defossez
- Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
- Botanical garden of Neuchâtel
| | | | - Milton Nascimento da Silva
- Laboratory of Liquid Chromatography, Federal University of Pará, Belém 66075-110, Brazil
- Institute of Exact and Natural Sciences, Federal University of Pará, Belém 66075-110, Brazil
| | - Consuelo Yumiko Yoshioka E Silva
- Laboratory of Liquid Chromatography, Federal University of Pará, Belém 66075-110, Brazil
- Institute of Health Sciences, Faculty of Pharmacy, Federal University of Pará, Belém 66075-110, Brazil
| | - Sergio Rasmann
- Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Tom W N Walker
- Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Gaëtan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - José Miguel Chaves-Fallas
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San José 11501-2060, Costa Rica
- Department of Biology and Whitney R. Harris World Ecology Center, University of Missouri-St. Louis, St. Louis, MO 63121, USA
| | - Bruno David
- Green Mission Pierre Fabre, Institut de Recherche Pierre Fabre, 3 Avenue Hubert Curien, BP 13562, 31562 Toulouse, France
| | - Hyunwoo Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University, 32, Dongguk-ro, Goyang, Gyeonggi-do 10326, Korea
| | - Kyu Hyeong Lee
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University, 32, Dongguk-ro, Goyang, Gyeonggi-do 10326, Korea
| | - Myeong Ji Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University, 32, Dongguk-ro, Goyang, Gyeonggi-do 10326, Korea
| | - Won Jun Choi
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University, 32, Dongguk-ro, Goyang, Gyeonggi-do 10326, Korea
| | - Young-Sam Keum
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University, 32, Dongguk-ro, Goyang, Gyeonggi-do 10326, Korea
| | | | - Lívia Soman de Medeiros
- Federal University of São Paulo, Diadema, Brazil
- Department of Chemistry, Federal University of São Paulo, Diadema, SP, 09972-270, Brazil
| | | | | | | | - Alice Rhelly V Carvalho
- Laboratory of Liquid Chromatography, Federal University of Pará, Belém 66075-110, Brazil
- Institute of Health Sciences, Faculty of Pharmacy, Federal University of Pará, Belém 66075-110, Brazil
| | - José Diogo E Reis
- Laboratory of Liquid Chromatography, Federal University of Pará, Belém 66075-110, Brazil
- Institute of Exact and Natural Sciences, Federal University of Pará, Belém 66075-110, Brazil
| | - Sônia Pamplona
- Laboratory of Liquid Chromatography, Federal University of Pará, Belém 66075-110, Brazil
- Institute of Exact and Natural Sciences, Federal University of Pará, Belém 66075-110, Brazil
| | - Eunah Jeong
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Kyungha Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Geum Jin Kim
- Department of Pharmacology, College of Medicine, Dongguk University, Gyeongju, Gyeongsangbuk-do, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea
| | - Yun-Seo Kil
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Gyeongnam 50834, Republic of Korea
| | - Joo-Won Nam
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
- Core Research Support Center for Natural Products and Medical Materials, Yeungnam University, Gyeongsan, Republic of Korea
| | - Hyukjae Choi
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea
- Core Research Support Center for Natural Products and Medical Materials, Yeungnam University, Gyeongsan, Republic of Korea
| | - Yoo Kyong Han
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Si Young Park
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Ki Yong Lee
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Changling Hu
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Yilun Dong
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Colin R Morrison
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
- Brackenridge Field Laboratory, University of Texas at Austin, Austin, TX, USA
| | - Ricardo Moreira Borges
- Walter Mors Institute of Research on Natural Products, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andrew Magno Teixeira
- Walter Mors Institute of Research on Natural Products, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Seo Yoon Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Bum Soo Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Se Yun Jeong
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Adriano Rutz
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, 1211 Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, CMU, 1211 Geneva, Switzerland
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Arnaud Gaudry
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, 1211 Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, CMU, 1211 Geneva, Switzerland
| | - Edouard Bruelhart
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Iris F Kappers
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University, Wageningen, The Netherlands
| | - Rumyana Karlova
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University, Wageningen, The Netherlands
| | - Mara Meisenburg
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University, Wageningen, The Netherlands
| | - Roland Berdaguer
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University, Wageningen, The Netherlands
| | - J Sebastián Tello
- Latin America Department, Missouri Botanical Garden, St. Louis, MO, USA
| | - David Henderson
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
- Missouri Botanical Garden, St. Louis, MO, USA
| | - Leslie Cayola
- Herbario Nacional de Bolivia, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - S Joseph Wright
- Smithsonian Tropical Research Institute, Balboa, Republic of Panama
| | - David N Allen
- Department of Biology, Middlebury College, Middlebury, VT, USA
| | | | | | - James A Lutz
- Department of Wildland Resources, Utah State University, Logan, UT, USA
| | - Sean M McMahon
- Smithsonian Environmental Research Center, Edgewater, MD, USA
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Panama City, Panama
| | - Geoffrey G Parker
- Forest Ecology Group, Smithsonian Environmental Research Center, Edgewater, MD, USA
| | - John D Parker
- Forest Ecology Group, Smithsonian Environmental Research Center, Edgewater, MD, USA
| | - Trent R Northen
- Environmental Genomics and Systems Biology Division and the DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, United States
| | - Benjamin P Bowen
- Environmental Genomics and Systems Biology Division and the DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, United States
| | - Tomáš Pluskal
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Justin J J van der Hooft
- Bioinformatics Group, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
- Department of Biochemistry, University of Johannesburg, Johannesburg 2006, South Africa
| | - Jeremy J Carver
- Center for Computational Mass Spectrometry, Department of Computer Science and Engineering, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego 92093-0404, United States
| | - Nuno Bandeira
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Benjamin S Pullman
- Center for Computational Mass Spectrometry, Department of Computer Science and Engineering, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego 92093-0404, United States
| | - Jean-Luc Wolfender
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, 1211 Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, CMU, 1211 Geneva, Switzerland
| | - Roland D Kersten
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Mingxun Wang
- Department of Computer Science, University of California Riverside, Riverside, CA, 92521, United States
| | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
29
|
Anacleto-Santos J, Vega-Ávila E, Pacheco L, Lacueva-Arnedo M, Gómez-Barrio A, Ibáñez-Escribano A, López-Pérez TDJ, Casarrubias-Tabarez B, Calzada F, López-Camacho PY, Rivera-Fernández N. Antibacterial, Trichomonacidal, and Cytotoxic Activities of Pleopeltis crassinervata Extracts. Pharmaceutics 2024; 16:624. [PMID: 38794287 PMCID: PMC11124882 DOI: 10.3390/pharmaceutics16050624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/27/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Pleopeltis crassinervata is a fern documented in ethnobotanical records for its use in Mexican traditional medicine to treat gastric disorders and mouth ulcers. Consequently, conducting biological and pharmacological assays is crucial to validate the therapeutic efficacy of this plant within the context of traditional medicine. In the present study, we investigated the biological activity of extracts and fractions obtained from P. crassinervata organs against bacteria (Salmonella typhimurium, Salmonella typhi, Staphylococcus aureus, Proteus mirabilis, Shigella flexneri, Bacillus subtilis, Escherichia coli) and Trichomonas vaginalis using in vitro models. The precipitate fraction obtained from the frond methanolic extract showed significant antibacterial activity (minimal inhibitory concentration [MIC] 120 µg/mL) against the Staphylococcus aureus strain and was effective against both Gram-positive and Gram-negative bacteria. The hexane fraction also obtained from frond methanolic extract, showed a trichomonacidal effect with an IC50 of 82.8 μg/mL and a low cytotoxic effect. Hsf6 exhibited the highest activity against T. vaginalis, and the GC-MS analysis revealed that the predominant compound was 16-pregnenolone. The remaining identified compounds were primarily terpene-type compounds.
Collapse
Affiliation(s)
- Jhony Anacleto-Santos
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico;
| | - Elisa Vega-Ávila
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa, Mexico City 09340, Mexico;
| | - Leticia Pacheco
- Departamento de Biología, Universidad Autónoma Metropolitana Iztapalapa, Mexico City 09340, Mexico;
| | - Manuel Lacueva-Arnedo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.L.-A.); (A.G.-B.); (A.I.-E.)
| | - Alicia Gómez-Barrio
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.L.-A.); (A.G.-B.); (A.I.-E.)
| | - Alexandra Ibáñez-Escribano
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.L.-A.); (A.G.-B.); (A.I.-E.)
| | - Teresa de Jesús López-Pérez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico;
| | - Brenda Casarrubias-Tabarez
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico;
| | - Fernando Calzada
- Unidad de Investigación Médica en Farmacología, Unidad Médica de Alta Especialidad, Hospital de Especialidades Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Col. Doctores, Cuauhtémoc, Mexico City 06725, Mexico;
| | - Perla Yolanda López-Camacho
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana Cuajimalpa, Mexico City 05370, Mexico;
| | - Norma Rivera-Fernández
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico;
| |
Collapse
|
30
|
Kibet S, Kimani NM, Mwanza SS, Mudalungu CM, Santos CBR, Tanga CM. Unveiling the Potential of Ent-Kaurane Diterpenoids: Multifaceted Natural Products for Drug Discovery. Pharmaceuticals (Basel) 2024; 17:510. [PMID: 38675469 PMCID: PMC11054903 DOI: 10.3390/ph17040510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Natural products hold immense potential for drug discovery, yet many remain unexplored in vast libraries and databases. In an attempt to fill this gap and meet the growing demand for effective drugs, this study delves into the promising world of ent-kaurane diterpenoids, a class of natural products with huge therapeutic potential. With a dataset of 570 ent-kaurane diterpenoids obtained from the literature, we conducted an in silico analysis, evaluating their physicochemical, pharmacokinetic, and toxicological properties with a focus on their therapeutic implications. Notably, these natural compounds exhibit drug-like properties, aligning closely with those of FDA-approved drugs, indicating a high potential for drug development. The ranges of the physicochemical parameters were as follows: molecular weights-288.47 to 626.82 g/mol; number of heavy atoms-21 to 44; the number of hydrogen bond donors and acceptors-0 to 8 and 1 to 11, respectively; the number of rotatable bonds-0 to 11; fraction Csp3-0.65 to 1; and TPSA-20.23 to 189.53 Ų. Additionally, the majority of these molecules display favorable safety profiles, with only 0.70%, 1.40%, 0.70%, and 46.49% exhibiting mutagenic, tumorigenic, reproduction-enhancing, and irritant properties, respectively. Importantly, ent-kaurane diterpenoids exhibit promising biopharmaceutical properties. Their average lipophilicity is optimal for drug absorption, while over 99% are water-soluble, facilitating delivery. Further, 96.5% and 28.20% of these molecules exhibited intestinal and brain bioavailability, expanding their therapeutic reach. The predicted pharmacological activities of these compounds encompass a diverse range, including anticancer, immunosuppressant, chemoprotective, anti-hepatic, hepatoprotectant, anti-inflammation, antihyperthyroidism, and anti-hepatitis activities. This multi-targeted profile highlights ent-kaurane diterpenoids as highly promising candidates for further drug discovery endeavors.
Collapse
Affiliation(s)
- Shadrack Kibet
- Department of Physical Sciences, University of Embu, Embu P.O. Box 6-60100, Kenya; (S.K.); (S.S.M.)
- International Centre of Insects Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya;
| | - Njogu M. Kimani
- Department of Physical Sciences, University of Embu, Embu P.O. Box 6-60100, Kenya; (S.K.); (S.S.M.)
- Natural Product Chemistry and Computational Drug Discovery Laboratory, Embu P.O. Box 6-60100, Kenya
| | - Syombua S. Mwanza
- Department of Physical Sciences, University of Embu, Embu P.O. Box 6-60100, Kenya; (S.K.); (S.S.M.)
- International Centre of Insects Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya;
| | - Cynthia M. Mudalungu
- International Centre of Insects Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya;
- School of Chemistry and Material Science, The Technical University of Kenya, Nairobi P.O. Box 52428-00200, Kenya
| | - Cleydson B. R. Santos
- Graduate Program in Medicinal Chemistry and Molecular Modelling, Health Science Institute, Federal University of Pará, Belém 66075-110, Brazil;
- Laboratory of Modelling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, Brazil
| | - Chrysantus M. Tanga
- International Centre of Insects Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya;
| |
Collapse
|
31
|
Çiçek SS, Mangoni A, Hanschen FS, Agerbirk N, Zidorn C. Essentials in the acquisition, interpretation, and reporting of plant metabolite profiles. PHYTOCHEMISTRY 2024; 220:114004. [PMID: 38331135 DOI: 10.1016/j.phytochem.2024.114004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
Plant metabolite profiling reveals the diversity of secondary or specialized metabolites in the plant kingdom with its hundreds of thousands of species. Specialized plant metabolites constitute a vast class of chemicals posing significant challenges in analytical chemistry. In order to be of maximum scientific relevance, reports dealing with these compounds and their source species must be transparent, make use of standards and reference materials, and be based on correctly and traceably identified plant material. Essential aspects in qualitative plant metabolite profiling include: (i) critical review of previous literature and a reasoned sampling strategy; (ii) transparent plant sampling with wild material documented by vouchers in public herbaria and, optimally, seed banks; (iii) if possible, inclusion of generally available reference plant material; (iv) transparent, documented state-of-the art chemical analysis, ideally including chemical reference standards; (v) testing for artefacts during preparative extraction and isolation, using gentle analytical methods; (vi) careful chemical data interpretation, avoiding over- and misinterpretation and taking into account phytochemical complexity when assigning identification confidence levels, and (vii) taking all previous scientific knowledge into account in reporting the scientific data. From the current stage of the phytochemical literature, selected comments and suggestions are given. In the past, proposed revisions of botanical taxonomy were sometimes based on metabolite profiles, but this approach ("chemosystematics" or "chemotaxonomy") is outdated due to the advent of DNA sequence-based phylogenies. In contrast, systematic comparisons of plant metabolite profiles in a known phylogenetic framework remain relevant. This approach, known as chemophenetics, allows characterizing species and clades based on their array of specialized metabolites, aids in deducing the evolution of biosynthetic pathways and coevolution, and can serve in identifying new sources of rare and economically interesting natural products.
Collapse
Affiliation(s)
- Serhat S Çiçek
- Department of Biotechnology, Hamburg University of Applied Sciences, Ulmenliet 20, 21033, Hamburg, Germany
| | - Alfonso Mangoni
- Dipartimento di Farmacia, Università di Napoli Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy
| | - Franziska S Hanschen
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ) e. V., Theodor-Echtermeyer-Weg 1, 14979, Grossbeeren, Germany
| | - Niels Agerbirk
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Christian Zidorn
- Pharmazeutisches Institut, Abteilung Pharmazeutische Biologie, Christian-Albrechts- Universität zu Kiel, Gutenbergstraße 76, 24118, Kiel, Germany.
| |
Collapse
|
32
|
Shtaiwi A, Khan SU, Khedraoui M, Alaraj M, Samadi A, Chtita S. A comprehensive computational study to explore promising natural bioactive compounds targeting glycosyltransferase MurG in Escherichia coli for potential drug development. Sci Rep 2024; 14:7098. [PMID: 38532068 DOI: 10.1038/s41598-024-57702-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/21/2024] [Indexed: 03/28/2024] Open
Abstract
Peptidoglycan is a carbohydrate with a cross-linked structure that protects the cytoplasmic membrane of bacterial cells from damage. The mechanism of peptidoglycan biosynthesis involves the main synthesizing enzyme glycosyltransferase MurG, which is known as a potential target for antibiotic therapy. Many MurG inhibitors have been recognized as MurG targets, but high toxicity and drug-resistant Escherichia coli strains remain the most important problems for further development. In addition, the discovery of selective MurG inhibitors has been limited to the synthesis of peptidoglycan-mimicking compounds. The present study employed drug discovery, such as virtual screening using molecular docking, drug likeness ADMET proprieties predictions, and molecular dynamics (MD) simulation, to identify potential natural products (NPs) for Escherichia coli. We conducted a screening of 30,926 NPs from the NPASS database. Subsequently, 20 of these compounds successfully passed the potency, pharmacokinetic, ADMET screening assays, and their validation was further confirmed through molecular docking. The best three hits and the standard were chosen for further MD simulations up to 400 ns and energy calculations to investigate the stability of the NPs-MurG complexes. The analyses of MD simulations and total binding energies suggested the higher stability of NPC272174. The potential compounds can be further explored in vivo and in vitro for promising novel antibacterial drug discovery.
Collapse
Affiliation(s)
- Amneh Shtaiwi
- Faculty of Pharmacy, Middle East University, Queen Alia Airport Street, Amman, P.O. Box No. 11610, Jordan.
| | - Shafi Ullah Khan
- Interdisciplinary Research Unit for Cancer Prevention and Treatment, Baclesse Cancer Centre, Université de Caen Normandie Inserm Anticipe UMR 1086, Normandie Univ, Research Building, F‑14000 François 3 Avenue Général Harris, BP 45026, 14076, Cedex 05 Caen, France
- Centre François Baclesse, Avenue Général Harris, 14076, Caen Cedex, France
| | - Meriem Khedraoui
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, B. P 7955, Casablanca, Morocco
| | - Mohd Alaraj
- Faculty of Pharmacy, University of Jerash, Jerash, Jordan
| | - Abdelouahid Samadi
- Department of Chemistry, College of Science, UAEU, P.O. Box No. 15551, Al Ain, UAE.
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, B. P 7955, Casablanca, Morocco
| |
Collapse
|
33
|
Boldini D, Ballabio D, Consonni V, Todeschini R, Grisoni F, Sieber SA. Effectiveness of molecular fingerprints for exploring the chemical space of natural products. J Cheminform 2024; 16:35. [PMID: 38528548 DOI: 10.1186/s13321-024-00830-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/17/2024] [Indexed: 03/27/2024] Open
Abstract
Natural products are a diverse class of compounds with promising biological properties, such as high potency and excellent selectivity. However, they have different structural motifs than typical drug-like compounds, e.g., a wider range of molecular weight, multiple stereocenters and higher fraction of sp3-hybridized carbons. This makes the encoding of natural products via molecular fingerprints difficult, thus restricting their use in cheminformatics studies. To tackle this issue, we explored over 30 years of research to systematically evaluate which molecular fingerprint provides the best performance on the natural product chemical space. We considered 20 molecular fingerprints from four different sources, which we then benchmarked on over 100,000 unique natural products from the COCONUT (COlleCtion of Open Natural prodUcTs) and CMNPD (Comprehensive Marine Natural Products Database) databases. Our analysis focused on the correlation between different fingerprints and their classification performance on 12 bioactivity prediction datasets. Our results show that different encodings can provide fundamentally different views of the natural product chemical space, leading to substantial differences in pairwise similarity and performance. While Extended Connectivity Fingerprints are the de-facto option to encoding drug-like compounds, other fingerprints resulted to match or outperform them for bioactivity prediction of natural products. These results highlight the need to evaluate multiple fingerprinting algorithms for optimal performance and suggest new areas of research. Finally, we provide an open-source Python package for computing all molecular fingerprints considered in the study, as well as data and scripts necessary to reproduce the results, at https://github.com/dahvida/NP_Fingerprints .
Collapse
Affiliation(s)
- Davide Boldini
- TUM School of Natural Sciences, Department of Bioscience, Technical University of Munich, Center for Functional Protein Assemblies (CPA), 85748, Garching bei München, Germany.
| | - Davide Ballabio
- Milano Chemometrics and QSAR Research Group, Department of Earth and Environmental Sciences, University of Milano-Bicocca, P.zza Della Scienza, 1, 20126, Milan, Italy
| | - Viviana Consonni
- Milano Chemometrics and QSAR Research Group, Department of Earth and Environmental Sciences, University of Milano-Bicocca, P.zza Della Scienza, 1, 20126, Milan, Italy
| | - Roberto Todeschini
- Milano Chemometrics and QSAR Research Group, Department of Earth and Environmental Sciences, University of Milano-Bicocca, P.zza Della Scienza, 1, 20126, Milan, Italy
| | - Francesca Grisoni
- Institute for Complex Molecular Systems and Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, Utrecht, Netherlands
| | - Stephan A Sieber
- TUM School of Natural Sciences, Department of Bioscience, Technical University of Munich, Center for Functional Protein Assemblies (CPA), 85748, Garching bei München, Germany
| |
Collapse
|
34
|
Ma M, Zhang X, Zhou L, Han Z, Shi Y, Li J, Wu L, Xu Z, Zhu W. D3Rings: A Fast and Accurate Method for Ring System Identification and Deep Generation of Drug-Like Cyclic Compounds. J Chem Inf Model 2024; 64:724-736. [PMID: 38206320 DOI: 10.1021/acs.jcim.3c01657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Continuous exploration of the chemical space of molecules to find ligands with high affinity and specificity for specific targets is an important topic in drug discovery. A focus on cyclic compounds, particularly natural compounds with diverse scaffolds, provides important insights into novel molecular structures for drug design. However, the complexity of their ring structures has hindered the applicability of widely accepted methods and software for the systematic identification and classification of cyclic compounds. Herein, we successfully developed a new method, D3Rings, to identify acyclic, monocyclic, spiro ring, fused and bridged ring, and cage ring compounds, as well as macrocyclic compounds. By using D3Rings, we completed the statistics of cyclic compounds in three different databases, e.g., ChEMBL, DrugBank, and COCONUT. The results demonstrated the richness of ring structures in natural products, especially spiro, macrocycles, and fused and bridged rings. Based on this, three deep generative models, namely, VAE, AAE, and CharRNN, were trained and used to construct two data sets similar to DrugBank and COCONUT but 10 times larger than them. The enlarged data sets were then used to explore the molecular chemical space, focusing on complex ring structures, for novel drug discovery and development. Docking experiments with the newly generated COCONUT-like data set against three SARS-CoV-2 target proteins revealed that an expanded compound database improves molecular docking results. Cyclic structures exhibited the best docking scores among the top-ranked docking molecules. These results suggest the importance of exploring the chemical space of structurally novel cyclic compounds and continuous expansion of the library of drug-like compounds to facilitate the discovery of potent ligands with high binding affinity to specific targets. D3Rings is now freely available at http://www.d3pharma.com/D3Rings/.
Collapse
Affiliation(s)
- Minfei Ma
- Stake Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinben Zhang
- Stake Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Liping Zhou
- Stake Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zijian Han
- Stake Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulong Shi
- Stake Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jintian Li
- Stake Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leyun Wu
- Stake Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhijian Xu
- Stake Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiliang Zhu
- Stake Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
35
|
Gallo A, Penna YM, Russo M, Rosapane M, Tosti E, Russo GL. An organic extract from ascidian Ciona robusta induces cytotoxic autophagy in human malignant cell lines. Front Chem 2024; 12:1322558. [PMID: 38389727 PMCID: PMC10881676 DOI: 10.3389/fchem.2024.1322558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/18/2024] [Indexed: 02/24/2024] Open
Abstract
The last decades have seen an increase in the isolation and characterization of anticancer compounds derived from marine organisms, especially invertebrates, and their use in clinical trials. In this regard, ascidians, which are included in the subphylum Tunicata, represent successful examples with two drugs, Aplidine© and Yondelis© that reached the market as orphan drugs against several malignancies. Here, we report that an organic extract prepared from homogenized tissues of the Mediterranean ascidian Ciona robusta inhibited cell proliferation in HT-29, HepG2, and U2OS human cells with the former being the most sensitive to the extract (EC50 = 250 μg/mL). We demonstrated that the ascidian organic extract was not cytotoxic on HT-29 cells that were induced to differentiate with sodium butyrate, suggesting a preference for the mixture for the malignant phenotype. Finally, we report that cell death induced by the organic extract was mediated by the activation of a process of cytotoxic autophagy as a result of the increased expression of the LC3-II marker and number of autophagic vacuoles, which almost doubled in the treated HT-29 cells. In summary, although the detailed chemical composition of the Ciona robusta extract is still undetermined, our data suggest the presence of bioactive compounds possessing anticancer activity.
Collapse
Affiliation(s)
- Alessandra Gallo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | | | - Maria Russo
- National Research Council, Institute of Food Sciences, Avellino, Italy
| | - Marco Rosapane
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
- National Research Council, Institute of Food Sciences, Avellino, Italy
| | - Elisabetta Tosti
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Gian Luigi Russo
- National Research Council, Institute of Food Sciences, Avellino, Italy
| |
Collapse
|
36
|
Saini A, Kumar A, Jangid K, Kumar V, Jaitak V. Identification of terpenoids as dihydropteroate synthase and dihydrofolate reductase inhibitors through structure-based virtual screening and molecular dynamic simulations. J Biomol Struct Dyn 2024; 42:1966-1984. [PMID: 37173829 DOI: 10.1080/07391102.2023.2203249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/09/2023] [Indexed: 05/15/2023]
Abstract
Bacterial infections are rising, and antimicrobial resistance (AMR) in bacteria has worsened the scenario, requiring extensive research to find alternative therapeutic agents. Terpenoids play an essential role in protecting plants from herbivores and pathogens. The present study was designed to focus on in silico evaluation of terpenoids for their affinity towards two necessary enzymes, i.e. DHFR and DHPS, which are involved in forming 5, 6, 7, 8-tetrahydrofolate, a key component in bacterial DNA synthesis proteins. Additionally, to account for activity against resistant bacteria, their affinity towards the L28R mutant of DHFR was also assessed in the study. The structure-based drug design approach was used to screen the compound library of terpenes for their interaction with active sites of DHFR and DHPS. Further, compounds were screened based on their dock score, pharmacokinetic properties, and binding affinities. A total of five compounds for each target protein were screened, having dock scores better than their respective standard drug molecules. CNP0169378 (-8.4 kcal/mol) and CNP0309455 (-6.5 kcal/mol) have been identified as molecules with a higher affinity toward the targets of DHFR and DHPS, respectively. At the same time, one molecule CNP0298407 (-5.8 kcal/mol for DHPS, -7.6 kcal/mol for DHFR, -6.1 kcal/mol for the L28R variant), has affinity for both proteins (6XG5 and 6XG4). All the molecules have good pharmacokinetic properties. We further validated the docking study by binding free energy calculations using the MM/GBSA approach and molecular dynamics simulations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abhishek Saini
- Laboratory of Natural Product Chemistry, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India
| | - Amit Kumar
- Laboratory of Natural Product Chemistry, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India
| | - Kailash Jangid
- Department of Chemistry, Central University of Punjab, Bathinda, Punjab, India
| | - Vinod Kumar
- Department of Chemistry, Central University of Punjab, Bathinda, Punjab, India
| | - Vikas Jaitak
- Laboratory of Natural Product Chemistry, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
37
|
Powers-James C, Morse M, Narayanan S, Ramondetta L, Lopez G, Wagner R, Cohen L. Integrative Oncology Approaches to Reduce Recurrence of Disease and Improve Survival. Curr Oncol Rep 2024; 26:147-163. [PMID: 38180690 DOI: 10.1007/s11912-023-01467-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 01/06/2024]
Abstract
PURPOSE OF REVIEW After a cancer diagnosis, patients ask what they can do in addition to the recommended treatments to increase their survival. Many turn to integrative medicine modalities and lifestyle changes to improve their chances of survival. Numerous studies have demonstrated that lifestyle changes can significantly improve survival rates for cancer patients. Less support exists for the use of natural products or supplements to improve cancer survival. In this manuscript, we review key findings and evidence in the areas of healthy eating habits, physical activity, stress management and social support, and sleep quality, as well as natural products and supplements as they relate to the cancer recurrence and survival. RECENT FINDINGS While more research is needed to fully understand the mechanisms underlying the associations between lifestyle changes and cancer survival, findings suggest that lifestyle modifications in the areas of diet, physical activity, stress management and social support, and sleep quality improve clinical cancer outcomes. This is especially true for programs that modify more than one lifestyle habit. To date, outside of supplementing with vitamin D to maintain adequate levels, conflicting conclusion within the research remain regarding the efficacy of using natural products or supplement to improve cancer recurrence of disease or cancer survival. A call for further research is warranted. Lifestyle screening and counseling should be incorporated into cancer treatment plans to help improve patient outcomes. While the scientific community strives for the pursuit of high-quality research on natural products to enhance cancer survival, transparency, dialogue, and psychological safety between patients and clinicians must continue to be emphasized. Proactive inquiry by clinicians regarding patients' supplement use will allow for an informed discussion of the benefits and risks of natural products and supplements, as well as a re-emphasis of the evidence supporting diet and other lifestyle habits to increase survival.
Collapse
Affiliation(s)
- Catherine Powers-James
- Department of Palliative, Rehabilitation, and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Unit 1414, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| | - Meroë Morse
- Department of Palliative, Rehabilitation, and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Unit 1414, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Santhosshi Narayanan
- Department of Palliative, Rehabilitation, and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Unit 1414, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Lois Ramondetta
- Department of Palliative, Rehabilitation, and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Unit 1414, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Gabriel Lopez
- Department of Palliative, Rehabilitation, and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Unit 1414, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Richard Wagner
- Department of Palliative, Rehabilitation, and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Unit 1414, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Lorenzo Cohen
- Department of Palliative, Rehabilitation, and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Unit 1414, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| |
Collapse
|
38
|
Rabee AE, Mohamed M Ghandour M, Sallam A, Elwakeel EA, Mohammed RS, Sabra EA, Abdel-Wahed AM, Mourad DM, Hamed AA, Hafez OR. Rumen fermentation and microbiota in Shami goats fed on condensed tannins or herbal mixture. BMC Vet Res 2024; 20:35. [PMID: 38297287 PMCID: PMC10829277 DOI: 10.1186/s12917-024-03887-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/17/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Phytochemical compounds can modify the rumen microbiome and improve rumen fermentation. This study evaluated the impact of supplementation with tannin and an herbal mixture containing ginger (Zingiber officinale), garlic (Allium sativum), Artemisia (Artemisia vulgaris), and turmeric (Curcuma longa) on the rumen fermentation and microbiota, and histology of rumen tissue of goats. Eighteen Shami male goats were divided into three groups (n = 6): non-supplemented animals fed the basal diet (C, control); animals fed basal diet and supplemented with condensed tannin (T); and animals fed basal diet and supplemented with herbal mixture (HM). Each animal received a basal diet composed of Alfalfa hay and a concentrate feed mixture. RESULTS Group HM revealed higher (P < 0.05) rumen pH, total volatile fatty acids (VFA), acetic, propionic, isobutyric, butyric, isovaleric, and valeric. Principal Co-ordinate analysis (PCoA) showed that rumen microbial communities in the control group and supplemented groups were distinct. The supplementation increased (P < 0.05) the relative abundances of phylum Bacteroidota and Proteobacteria and declined (P < 0.05) Firmicutes and Fibrobacterota. Additionally, the dominant genus Prevotella and Rikenellaceae RC9 gut group were increased (P < 0.05) and the family Ruminococcaceae was declined (P < 0.05) due to the supplementation. The supplementation decreased (P < 0.05) the archaeal genus Methanobrevibacter and increased (P < 0.05) Candidatus Methanomethylophilus. Tannin supplementation in T group shortened the rumen papillae. CONCLUSIONS The results revealed that the herbal mixture might be used to alter the rumen microbiota to improve rumen fermentation.
Collapse
Affiliation(s)
- Alaa Emara Rabee
- Animal and Poultry Nutrition Department, Desert Research Center, Ministry of Agriculture and Land Reclamation, Cairo, Egypt.
| | - Moustafa Mohamed M Ghandour
- Animal and Poultry Nutrition Department, Desert Research Center, Ministry of Agriculture and Land Reclamation, Cairo, Egypt
| | - Ahmed Sallam
- Animal and Poultry Breeding Department, Desert Research Center, Cairo, Egypt
| | - Eman A Elwakeel
- Department of Animal and Fish production, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Rasha S Mohammed
- Animal and Poultry Health Department, Desert Research Center, Ministry of Agriculture and Land Reclamation, Cairo, Egypt
| | - Ebrahim A Sabra
- Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Adel M Abdel-Wahed
- Animal and Poultry Nutrition Department, Desert Research Center, Ministry of Agriculture and Land Reclamation, Cairo, Egypt
| | - Disouky Mohamed Mourad
- Animal and Poultry Health Department, Desert Research Center, Ministry of Agriculture and Land Reclamation, Cairo, Egypt
| | - Amal Amin Hamed
- Botany and Microbiology Department, Faculty of science, Cairo University, Cairo, Egypt
| | - Osama Raef Hafez
- Animal and Poultry Nutrition Department, Desert Research Center, Ministry of Agriculture and Land Reclamation, Cairo, Egypt
| |
Collapse
|
39
|
Alwali AY, Santos D, Aguilar C, Birch A, Rodriguez-Orduña L, Roberts CB, Modi R, Licona-Cassani C, Parkinson EI. Discovery of Streptomyces species CS-62, a novel producer of the Acinetobacter baumannii selective antibiotic factumycin. J Ind Microbiol Biotechnol 2024; 51:kuae014. [PMID: 38632045 PMCID: PMC11066910 DOI: 10.1093/jimb/kuae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/16/2024] [Indexed: 04/19/2024]
Abstract
Narrow-spectrum antibiotics are of great interest given their ability to spare the microbiome and decrease widespread antibiotic resistance compared to broad-spectrum antibiotics. Herein, we screened an in-house library of Actinobacteria strains for selective activity against Acinetobacter baumannii and successfully identified Streptomyces sp. CS-62 as a producer of a natural product with this valuable activity. Analysis of the cultures via high-resolution mass spectrometry and tandem mass spectrometry, followed by comparison with molecules in the Natural Product Atlas and the Global Natural Products Social Molecular Networking platform, suggested a novel natural product. Genome mining analysis initially supported the production of a novel kirromycin derivative. Isolation and structure elucidation via mass spectrometry and Nuclear Magnetic Resonance (NMR) analyses revealed that the active natural product was the known natural product factumycin, exposing omissions and errors in the consulted databases. While public databases are generally very useful for avoiding rediscovery of known molecules, rediscovery remains a problem due to public databases either being incomplete or having errors that result in failed dereplication. Overall, the work describes the ongoing problem of dereplication and the continued need for public database curation.
Collapse
Affiliation(s)
- Amir Y Alwali
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Diane Santos
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - César Aguilar
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Audrey Birch
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Lorena Rodriguez-Orduña
- Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, 64849 Monterrey, México
| | - Carson B Roberts
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Ramya Modi
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Cuauhtemoc Licona-Cassani
- Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, 64849 Monterrey, México
| | - Elizabeth I Parkinson
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
40
|
Pérez-Victoria I. Natural Products Dereplication: Databases and Analytical Methods. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 124:1-56. [PMID: 39101983 DOI: 10.1007/978-3-031-59567-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
The development of efficient methods for dereplication has been critical in the re-emergence of the research in natural products as a source of drug leads. Current dereplication workflows rapidly identify already known bioactive secondary metabolites in the early stages of any drug discovery screening campaign based on natural extracts or enriched fractions. Two main factors have driven the evolution of natural products dereplication over the last decades. First, the availability of both commercial and public large databases of natural products containing the key annotations against which the biological and chemical data derived from the studied sample are searched for. Second, the considerable improvement achieved in analytical technologies (including instrumentation and software tools) employed to obtain robust and precise chemical information (particularly spectroscopic signatures) on the compounds present in the bioactive natural product samples. This chapter describes the main methods of dereplication, which rely on the combined use of large natural product databases and spectral libraries, alongside the information obtained from chromatographic, UV-Vis, MS, and NMR spectroscopic analyses of the samples of interest.
Collapse
Affiliation(s)
- Ignacio Pérez-Victoria
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de La Salud, Avda. del Conocimiento 34, 18016, Armilla, Granada, Spain.
| |
Collapse
|
41
|
Mauti GO. Extracts of Jamun seeds inhibited the growth of human (Hep-2) cancer cells. J Cancer Res Ther 2024; 20:189-192. [PMID: 38554319 DOI: 10.4103/jcrt.jcrt_638_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/13/2022] [Indexed: 04/01/2024]
Abstract
INTRODUCTION In the last century, the human laryngeal epithelioma has become a life-threatening disease leading to a high rate of mortality worldwide. The current investigation is focusing on the antiproliferative effect of Eugenia jambolana seed extracts against Hep-2 cancer cells. METHODS The active compounds from the seeds of E. jambolana were extracted by the decoction extraction method using acetone, ethanol, and methanol. The filtrates from the different solvents were subjected to liquid-liquid separation before drying by a rotary evaporator. In various doses, the crude extracts and carcinoma were subjected to a methylthiazolyl diphenyl tetrazolium bromide assay. Cell viability was determined under ultraviolet visualization at an absorbance of 540 nm. The data of the viable cells were subjected to analysis of variance at P ≤ .01. RESULTS Crude compounds of E. jambolana seeds extracted by acetone, methanol, and methanol extract had an anticarcinoma effect. Among the extracts, methanol extract possessed a recommendable anti-carcinoma effect compared to acetone and ethanol crude extracts. At a concentration of 125 µg/mL, the crude extracts of methanol, acetone, and ethanol destroyed 49.57, 35.01, and 27.67 carcinomas, respectively. The concentration of 31.25 µg/mL of acetone extract and 125 µg/mL of ethanolic extract affected 28.11 and 27.67 carcinomas, respectively. CONCLUSIONS E.jambolana seeds possess anticarcinoma potency and thus can be administered in the reduction of proliferative carcinoma. The study recommended further studies which will involve the elution of pure compounds from the methanol extract of E. jambolana that possess antitumour and antiproliferative activity against Hep-2 cell lines.
Collapse
Affiliation(s)
- Godfrey O Mauti
- Department of Physical and Biological Science, School of Pure and Applied Sciences, Bomet University College, Bomet, Kenya
| |
Collapse
|
42
|
Ayipo YO, Ahmad I, Chong CF, Zainurin NA, Najib SY, Patel H, Mordi MN. Carbazole derivatives as promising competitive and allosteric inhibitors of human serotonin transporter: computational pharmacology. J Biomol Struct Dyn 2024; 42:993-1014. [PMID: 37021485 DOI: 10.1080/07391102.2023.2198016] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/25/2023] [Indexed: 04/07/2023]
Abstract
The human serotonin transporters (hSERTs) are neurotransmitter sodium symporters of the aminergic G protein-coupled receptors, regulating the synaptic serotonin and neuropharmacological processes related to neuropsychiatric disorders, notably, depression. Selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine and (S)-citalopram are competitive inhibitors of hSERTs and are commonly the first-line medications for major depressive disorder (MDD). However, treatment-resistance and unpleasant aftereffects constitute their clinical drawbacks. Interestingly, vilazodone emerged with polypharmacological (competitive and allosteric) inhibitions on hSERTs, amenable to improved efficacy. However, its application usually warrants adjuvant/combination therapy, another subject of critical adverse events. Thus, the discovery of alternatives with polypharmacological potentials (one-drug-multiple-target) and improved safety remains essential. In this study, carbazole analogues from chemical libraries were explored using docking and molecular dynamics (MD) simulation. Selectively, two IBScreen ligands, STOCK3S-30866 and STOCK1N-37454 predictively bound to the active pockets and expanded boundaries (extracellular vestibules) of the hSERTs more potently than vilazodone and (S)-citalopram. For instance, the two ligands showed docking scores of -9.52 and -9.59 kcal/mol and MM-GBSA scores of -92.96 and -65.66 kcal/mol respectively compared to vilazodone's respective scores of -7.828 and -59.27 against the central active site of the hSERT (PDB 7LWD). Similarly, the two ligands also docked to the allosteric pocket (PDB 5I73) with scores of -8.15 and -8.40 kcal/mol and MM-GBSA of -96.14 and -68.46 kcal/mol whereas (S)-citalopram has -6.90 and -69.39 kcal/mol respectively. The ligands also conferred conformational stability on the receptors during 100 ns MD simulations and displayed interesting ADMET profiles, representing promising hSERT modulators for MDD upon experimental validation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yusuf Oloruntoyin Ayipo
- Centre for Drug Research, Universiti Sains Malaysia, USM, Pulau Pinang, Malaysia
- Department of Chemistry and Industrial Chemistry, Kwara State University, Ilorin, Nigeria
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof Ravindra Nikam College of Pharmacy, Dhule, Maharashtra, India
- Department of Pharmaceutical Chemistry, R C Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Chien Fung Chong
- Centre for Drug Research, Universiti Sains Malaysia, USM, Pulau Pinang, Malaysia
- Department of Allied Health Sciences, Universiti Tunku Abdul Rahman, Kampar, Perak, Malaysia
| | - Nurul Amira Zainurin
- Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
| | - Sani Yahaya Najib
- Centre for Drug Research, Universiti Sains Malaysia, USM, Pulau Pinang, Malaysia
- Department of Pharmaceutical and Medicinal Chemistry, Bayero University, Kano, Nigeria
| | - Harun Patel
- Department of Pharmaceutical Chemistry, R C Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Mohd Nizam Mordi
- Centre for Drug Research, Universiti Sains Malaysia, USM, Pulau Pinang, Malaysia
| |
Collapse
|
43
|
Cho MH, Cho KH, No KT. PhyloSophos: a high-throughput scientific name mapping algorithm augmented with explicit consideration of taxonomic science, and its application on natural product (NP) occurrence database processing. BMC Bioinformatics 2023; 24:475. [PMID: 38097955 PMCID: PMC10722791 DOI: 10.1186/s12859-023-05588-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND The standardization of biological data using unique identifiers is vital for seamless data integration, comprehensive interpretation, and reproducibility of research findings, contributing to advancements in bioinformatics and systems biology. Despite being widely accepted as a universal identifier, scientific names for biological species have inherent limitations, including lack of stability, uniqueness, and convertibility, hindering their effective use as identifiers in databases, particularly in natural product (NP) occurrence databases, posing a substantial obstacle to utilizing this valuable data for large-scale research applications. RESULT To address these challenges and facilitate high-throughput analysis of biological data involving scientific names, we developed PhyloSophos, a Python package that considers the properties of scientific names and taxonomic systems to accurately map name inputs to entries within a chosen reference database. We illustrate the importance of assessing multiple taxonomic databases and considering taxonomic syntax-based pre-processing using NP occurrence databases as an example, with the ultimate goal of integrating heterogeneous information into a single, unified dataset. CONCLUSIONS We anticipate PhyloSophos to significantly aid in the systematic processing of poorly digitized and curated biological data, such as biodiversity information and ethnopharmacological resources, enabling full-scale bioinformatics analysis using these valuable data resources.
Collapse
Affiliation(s)
- Min Hyung Cho
- Bioinformatics and Molecular Design Research Center (BMDRC), 209, Veritas A Hall, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea.
| | - Kwang-Hwi Cho
- School of Systems Biomedical Science, Soongsil University, Seoul, 06978, South Korea
| | - Kyoung Tai No
- Bioinformatics and Molecular Design Research Center (BMDRC), 209, Veritas A Hall, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea
- Department of Integrative Biotechnology and Translational Medicine, 214, Veritas A Hall, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea
| |
Collapse
|
44
|
Kamal M, Mukherjee S, Joshi B, Sindhu ZUD, Wangchuk P, Haider S, Ahmed N, Talukder MH, Geary TG, Yadav AK. Model nematodes as a practical innovation to promote high throughput screening of natural products for anthelmintics discovery in South Asia: Current challenges, proposed practical and conceptual solutions. Mol Biochem Parasitol 2023; 256:111594. [PMID: 37730126 DOI: 10.1016/j.molbiopara.2023.111594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/27/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023]
Abstract
With the increasing prevalence of anthelmintic resistance in animals recorded globally, and the threat of resistance in human helminths, the need for novel anthelmintic drugs is greater than ever. Most research aimed at discovering novel anthelmintic leads relies on high throughput screening (HTS) of large libraries of synthetic small molecules in industrial and academic settings in developed countries, even though it is the tropical countries that are most plagued by helminth infections. Tropical countries, however, have the advantage of possessing a rich flora that may yield natural products (NP) with promising anthelmintic activity. Focusing on South Asia, which produces one of the world's highest research outputs in NP and NP-based anthelmintic discovery, we find that limited basic research and funding, a lack of awareness of the utility of model organisms, poor industry-academia partnerships and lack of technological innovations greatly limit anthelmintics research in the region. Here we propose that utilizing model organisms including the free-living nematode Caenorhabditis elegans, that can potentially allow rapid target identification of novel anthelmintics, and Oscheius tipulae, a closely related, free-living nematode which is found abundantly in soil in hotter temperatures, could be a much-needed innovation that can enable cost-effective and efficient HTS of NPs for discovering compounds with anthelmintic/antiparasitic potential in South Asia and other tropical regions that historically have devoted limited funding for such research. Additionally, increased collaborations at the national, regional and international level between parasitologists and pharmacologists/ethnobotanists, setting up government-industry-academia partnerships to fund academic research, creating a centralized, regional collection of plant extracts or purified NPs as a dereplication strategy and HTS library, and holding regional C. elegans/O. tipulae-based anthelmintics workshops and conferences to share knowledge and resources regarding model organisms may collectively promote and foster a NP-based anthelmintics landscape in South Asia and beyond.
Collapse
Affiliation(s)
- Muntasir Kamal
- Department of Molecular Genetics, University of Toronto, Toronto, Canada.
| | - Suprabhat Mukherjee
- Department of Animal Science, Kazi Nazrul University, Asansol 713340, West Bengal, India
| | - Bishnu Joshi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Zia-Ud-Din Sindhu
- Department of Parasitology, University of Agriculture Faisalabad, Pakistan
| | - Phurpa Wangchuk
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns Campus, QLD 4878, Australia
| | | | - Nurnabi Ahmed
- Department of Parasitology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | | | - Timothy G Geary
- Institute of Parasitology, McGill University, Montreal, Canada; School of Biological Sciences, Queen's University-Belfast, Belfast, NI, UK
| | - Arun K Yadav
- Department of Zoology, North-Eastern Hill University, Shillong 793022, India
| |
Collapse
|
45
|
Rani DM, Wongso H, Purwoko RY, Winarto NB, Shalas AF, Triatmoko B, Pratama ANW, Keller PA, Nugraha AS. Anti-cancer bioprospecting on medicinal plants from Indonesia: A review. PHYTOCHEMISTRY 2023; 216:113881. [PMID: 37827225 DOI: 10.1016/j.phytochem.2023.113881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023]
Abstract
The Indonesian archipelago is home to the second largest biodiversity in the world and is inhabited by more than 300 ethnic groups with a total population of more than 270 million. The indigenous population still rely on traditional medicine practices, especially the use of plant-based remedies. Although modern science-based exploration on Indonesian medicinal plants started with the European settlement in the archipelago in the 16th century, it was not until the 1970's that the phytochemistry of Indonesian medicinal plants was recognized for its potency. The need for new cancer cures to increase the quality of human life has led to the bioprospecting of medicinal plants including those of Indonesian origin. Despite published reports on the anticancer potency of Indonesian medicinal plants, to date there has been no comprehensive review on this topic. In this manuscript, we review the phytochemical and pharmacological studies on medicinal plants from Indonesia related to cancer therapy. Established databases (GARUDA, SciFinder, and PubMed) were used to collate data from 1990 to 2022, resulting in the description of 134 medicinal plants and their phytochemical and pharmacological properties including examples containing potent agents against breast, leukaemia, cervix, lung, and colon cancer cell lines based on in vitro bioassays and in vivo evaluation. These findings provide valuable insights into the bioprospecting of Indonesian medicinal plant providing directions for future studies, including the development of new therapeutics, both as botanicals or by using conventional dosage.
Collapse
Affiliation(s)
- Dinar Mutia Rani
- Drug Utilisation and Discovery Research Group, Faculty of Pharmacy, Universitas Jember, Jember, 68121, Indonesia.
| | - Hendris Wongso
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia; Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency, Jl. Raya Bandung-Sumedang KM 21, Sumedang, 45363, Indonesia.
| | - Reza Yuridian Purwoko
- Research Center for Pre-Clinical and Clinical Medicine, Research Organization for Health, National Research and Innovation Agency, Indonesia.
| | - Naura Bathari Winarto
- Drug Utilisation and Discovery Research Group, Faculty of Pharmacy, Universitas Jember, Jember, 68121, Indonesia.
| | - Alvan Febrian Shalas
- Department of Pharmacy, Faculty of Medicine, Brawijaya University, Malang, 65145, Indonesia.
| | - Bawon Triatmoko
- Drug Utilisation and Discovery Research Group, Faculty of Pharmacy, Universitas Jember, Jember, 68121, Indonesia.
| | | | - Paul A Keller
- School of Chemistry and Molecular Biosciences, Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia.
| | - Ari Satia Nugraha
- Drug Utilisation and Discovery Research Group, Faculty of Pharmacy, Universitas Jember, Jember, 68121, Indonesia; School of Chemistry and Molecular Biosciences, Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia.
| |
Collapse
|
46
|
Fan M, Jin C, Li D, Deng Y, Yao L, Chen Y, Ma YL, Wang T. Multi-level advances in databases related to systems pharmacology in traditional Chinese medicine: a 60-year review. Front Pharmacol 2023; 14:1289901. [PMID: 38035021 PMCID: PMC10682728 DOI: 10.3389/fphar.2023.1289901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023] Open
Abstract
The therapeutic effects of traditional Chinese medicine (TCM) involve intricate interactions among multiple components and targets. Currently, computational approaches play a pivotal role in simulating various pharmacological processes of TCM. The application of network analysis in TCM research has provided an effective means to explain the pharmacological mechanisms underlying the actions of herbs or formulas through the lens of biological network analysis. Along with the advances of network analysis, computational science has coalesced around the core chain of TCM research: formula-herb-component-target-phenotype-ZHENG, facilitating the accumulation and organization of the extensive TCM-related data and the establishment of relevant databases. Nonetheless, recent years have witnessed a tendency toward homogeneity in the development and application of these databases. Advancements in computational technologies, including deep learning and foundation model, have propelled the exploration and modeling of intricate systems into a new phase, potentially heralding a new era. This review aims to delves into the progress made in databases related to six key entities: formula, herb, component, target, phenotype, and ZHENG. Systematically discussions on the commonalities and disparities among various database types were presented. In addition, the review raised the issue of research bottleneck in TCM computational pharmacology and envisions the forthcoming directions of computational research within the realm of TCM.
Collapse
Affiliation(s)
- Mengyue Fan
- Innovation Research Institute of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ching Jin
- Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL, United States
| | - Daping Li
- Innovation Research Institute of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yingshan Deng
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Yao
- Innovation Research Institute of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yongjun Chen
- Innovation Research Institute of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yu-Ling Ma
- Oxford Chinese Medicine Research Centre, University of Oxford, Oxford, United Kingdom
| | - Taiyi Wang
- Innovation Research Institute of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Oxford Chinese Medicine Research Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
47
|
Nuzillard JM. Use of carbon-13 NMR to identify known natural products by querying a nuclear magnetic resonance database-An assessment. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2023; 61:582-588. [PMID: 37583258 DOI: 10.1002/mrc.5386] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/17/2023]
Abstract
The quick identification of known organic low molecular weight compounds, also known as structural dereplication, is a highly important task in the chemical profiling of natural resource extracts. To that end, a method that relies on carbon-13 nuclear magnetic resonance (NMR) spectroscopy, elaborated in earlier works of the author's research group, requires the availability of a dedicated database that establishes relationships between chemical structures, biological and chemical taxonomy, and spectroscopy. The construction of such a database, called acd_lotus, was reported earlier, and its usefulness was illustrated by only three examples. This article presents the results of structure searches carried out starting from 58 carbon-13 NMR data sets recorded on compounds selected in the metabolomics section of the biological magnetic resonance bank (BMRB). Two compound retrieval methods were employed. The first one involves searching in the acd_lotus database using commercial software. The second one operates through the freely accessible web interface of the nmrshiftdb2 database, which includes the compounds present in acd_lotus and many others. The two structural dereplication methods have proved to be efficient and can be used together in a complementary way.
Collapse
|
48
|
Mullowney MW, Duncan KR, Elsayed SS, Garg N, van der Hooft JJJ, Martin NI, Meijer D, Terlouw BR, Biermann F, Blin K, Durairaj J, Gorostiola González M, Helfrich EJN, Huber F, Leopold-Messer S, Rajan K, de Rond T, van Santen JA, Sorokina M, Balunas MJ, Beniddir MA, van Bergeijk DA, Carroll LM, Clark CM, Clevert DA, Dejong CA, Du C, Ferrinho S, Grisoni F, Hofstetter A, Jespers W, Kalinina OV, Kautsar SA, Kim H, Leao TF, Masschelein J, Rees ER, Reher R, Reker D, Schwaller P, Segler M, Skinnider MA, Walker AS, Willighagen EL, Zdrazil B, Ziemert N, Goss RJM, Guyomard P, Volkamer A, Gerwick WH, Kim HU, Müller R, van Wezel GP, van Westen GJP, Hirsch AKH, Linington RG, Robinson SL, Medema MH. Artificial intelligence for natural product drug discovery. Nat Rev Drug Discov 2023; 22:895-916. [PMID: 37697042 DOI: 10.1038/s41573-023-00774-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2023] [Indexed: 09/13/2023]
Abstract
Developments in computational omics technologies have provided new means to access the hidden diversity of natural products, unearthing new potential for drug discovery. In parallel, artificial intelligence approaches such as machine learning have led to exciting developments in the computational drug design field, facilitating biological activity prediction and de novo drug design for molecular targets of interest. Here, we describe current and future synergies between these developments to effectively identify drug candidates from the plethora of molecules produced by nature. We also discuss how to address key challenges in realizing the potential of these synergies, such as the need for high-quality datasets to train deep learning algorithms and appropriate strategies for algorithm validation.
Collapse
Affiliation(s)
| | - Katherine R Duncan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Somayah S Elsayed
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Neha Garg
- School of Chemistry and Biochemistry, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Justin J J van der Hooft
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - David Meijer
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Barbara R Terlouw
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Friederike Biermann
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
- Institute of Molecular Bio Science, Goethe-University Frankfurt, Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), Frankfurt am Main, Germany
| | - Kai Blin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Marina Gorostiola González
- Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
- ONCODE institute, Leiden, The Netherlands
| | - Eric J N Helfrich
- Institute of Molecular Bio Science, Goethe-University Frankfurt, Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), Frankfurt am Main, Germany
| | - Florian Huber
- Center for Digitalization and Digitality, Hochschule Düsseldorf, Düsseldorf, Germany
| | - Stefan Leopold-Messer
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Kohulan Rajan
- Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller-University Jena, Jena, Germany
| | - Tristan de Rond
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Jeffrey A van Santen
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Maria Sorokina
- Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller University, Jena, Germany
- Pharmaceuticals R&D, Bayer AG, Berlin, Germany
| | - Marcy J Balunas
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Mehdi A Beniddir
- Équipe "Chimie des Substances Naturelles", Université Paris-Saclay, CNRS, BioCIS, Orsay, France
| | - Doris A van Bergeijk
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Laura M Carroll
- Structural and Computational Biology Unit, EMBL, Heidelberg, Germany
| | - Chase M Clark
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | - Chao Du
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
| | | | - Francesca Grisoni
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, Utrecht, The Netherlands
| | | | - Willem Jespers
- Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Olga V Kalinina
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Drug Bioinformatics, Medical Faculty, Saarland University, Homburg, Germany
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | | | - Hyunwoo Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University Seoul, Goyang-si, Republic of Korea
| | - Tiago F Leao
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Joleen Masschelein
- Center for Microbiology, VIB-KU Leuven, Heverlee, Belgium
- Department of Biology, KU Leuven, Heverlee, Belgium
| | - Evan R Rees
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Raphael Reher
- Institute of Pharmaceutical Biology and Biotechnology, University of Marburg, Marburg, Germany
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Daniel Reker
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Duke Microbiome Center, Duke University, Durham, NC, USA
| | - Philippe Schwaller
- Laboratory of Artificial Chemical Intelligence, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | - Michael A Skinnider
- Adapsyn Bioscience, Hamilton, Ontario, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Allison S Walker
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Egon L Willighagen
- Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, Maastricht, The Netherlands
| | - Barbara Zdrazil
- European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridgeshire, UK
| | - Nadine Ziemert
- Interfaculty Institute for Microbiology and Infection Medicine Tuebingen (IMIT), Institute for Bioinformatics and Medical Informatics (IBMI), University of Tuebingen, Tuebingen, Germany
| | | | - Pierre Guyomard
- Bonsai team, CRIStAL - Centre de Recherche en Informatique Signal et Automatique de Lille, Université de Lille, Villeneuve d'Ascq Cedex, France
| | - Andrea Volkamer
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
- In silico Toxicology and Structural Bioinformatics, Institute of Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - William H Gerwick
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Hyun Uk Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
- German Center for infection research (DZIF), Braunschweig, Germany
- Helmholtz International Lab for Anti-Infectives, Saarbrücken, Germany
| | - Gilles P van Wezel
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
- Netherlands Institute of Ecology, NIOO-KNAW, Wageningen, The Netherlands
| | - Gerard J P van Westen
- Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden, The Netherlands.
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany.
- Department of Pharmacy, Saarland University, Saarbrücken, Germany.
- German Center for infection research (DZIF), Braunschweig, Germany.
- Helmholtz International Lab for Anti-Infectives, Saarbrücken, Germany.
| | - Roger G Linington
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada.
| | - Serina L Robinson
- Department of Environmental Microbiology, Eawag: Swiss Federal Institute for Aquatic Science and Technology, Dübendorf, Switzerland.
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands.
- Institute of Biology, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
49
|
Esther Rubavathy SM, Palanisamy K, Priyankha S, Thilagavathi R, Prakash M, Selvam C. Discovery of novel HDAC8 inhibitors from natural compounds by in silico high throughput screening. J Biomol Struct Dyn 2023; 41:9492-9502. [PMID: 36369945 DOI: 10.1080/07391102.2022.2142668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/27/2022] [Indexed: 11/14/2022]
Abstract
A class I histone deacetylase HDAC8 is associated with several diseases, including cancer, intellectual impairment and parasite infection. Most of the HDAC inhibitors that have so far been found to inhibit HDAC8 limit their efficacy in the clinic by producing toxicities. It is therefore very desirable to develop specific HDAC8 inhibitors. The emergence of HDAC inhibitors derived from natural sources has become quite popular. In recent decades, it has been shown that naturally occurring HDAC inhibitors have strong anticancer properties. A total of 0.2 million natural compounds were screened against HDAC8 from the Universal Natural Product Database (UNPD). Molecular docking was performed for these natural compounds and the top six hits were obtained. In addition, molecular dynamics (MD) simulations were used to evaluate the structural stability and binding affinity of the inhibitors, which showed that the protein-ligand complexes remained stable throughout the 100 ns simulation. MM-PBSA method demonstrated that the selected compounds have high affinity towards HDAC8. We infer from our findings that Hit-1 (-29.35 kcal mol-1), Hit-2 (-29.15 kcal mol-1) and Hit-6 (-30.28 kcal mol-1) have better binding affinity and adhesion to ADMET (absorption, distribution, metabolism, excretion and toxicity) characteristics against HDAC8. To compare our discussions and result in an effective way. We performed molecular docking, MD and MM-PBSA analysis for the FDA-approved drug romidepsin. The above results show that our hits show better binding affinity than the compound romidepsin (-12.03 ± 4.66 kcal mol-1). The important hotspot residues Asp29, Ile34, Trp141, Phe152, Asp267, Met274 and Tyr306 have significantly contributed to the protein-ligand interaction. These findings suggest that in vitro testing and additional optimization may lead to the development of HDAC8 inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- S M Esther Rubavathy
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chengalpattu, Tamil Nadu, India
| | - Kandhan Palanisamy
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chengalpattu, Tamil Nadu, India
| | - S Priyankha
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chengalpattu, Tamil Nadu, India
| | - Ramasamy Thilagavathi
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, India
| | - Muthuramalingam Prakash
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chengalpattu, Tamil Nadu, India
| | - Chelliah Selvam
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
| |
Collapse
|
50
|
Kang N, Kim EA, Heo SY, Heo SJ. Structure-Based In Silico Screening of Marine Phlorotannins for Potential Walrus Calicivirus Inhibitor. Int J Mol Sci 2023; 24:15774. [PMID: 37958757 PMCID: PMC10647355 DOI: 10.3390/ijms242115774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
A new calicivirus isolated from a walrus was reported in 2004. Since unknown marine mammalian zoonotic viruses could pose great risks to human health, this study aimed to develop therapeutic countermeasures to quell any potential outbreak of a pandemic caused by this virus. We first generated a 3D model of the walrus calicivirus capsid protein and identified compounds from marine natural products, especially phlorotannins, as potential walrus calicivirus inhibitors. A 3D model of the target protein was generated using homology modeling based on two publicly available template sequences. The sequence of the capsid protein exhibited 31.3% identity and 42.7% similarity with the reference templates. The accuracy and reliability of the predicted residues were validated via Ramachandran plotting. Molecular docking simulations were performed between the capsid protein 3D model and 17 phlorotannins. Among them, five phlorotannins demonstrated markedly stable docking profiles; in particular, 2,7-phloroglucinol-6,6-bieckol showed favorable structural integrity and stability during molecular dynamics simulations. The results indicate that the phlorotannins are promising walrus calicivirus inhibitors. Overall, the study findings showcase the rapid turnaround of in silico-based drug discovery approaches, providing useful insights for developing potential therapies against novel pathogenic viruses, especially when the 3D structures of the viruses remain experimentally unknown.
Collapse
Affiliation(s)
| | | | | | - Soo-Jin Heo
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (N.K.); (E.-A.K.); (S.-Y.H.)
| |
Collapse
|