1
|
Liang X, Zhou J, Wang M, Wang J, Song H, Xu Y, Li Y. Progress and prospect of polysaccharides as adjuvants in vaccine development. Virulence 2024; 15:2435373. [PMID: 39601191 PMCID: PMC11622597 DOI: 10.1080/21505594.2024.2435373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/07/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024] Open
Abstract
Vaccines are an effective approach to confer immunity against infectious diseases. Modern subunit vaccines offer more precise target and safe protection compared to traditional whole-pathogen vaccines. However, subunit vaccines require adjuvants to stimulate the immune system due to the less immunogenicity. Adjuvants strengthen immunogenicity by enhancing, modulating, and prolonging the immune response. Unfortunately, few adjuvants have sufficient potency and low enough toxicity for clinical use, highlighting the urgent need for new vaccine adjuvants with the characteristics of safety, efficacy, and cost-effectiveness. Notably, some natural polysaccharides have been approved as adjuvants in human vaccines, owing to their intrinsic immunomodulation, low toxicity, and high safety. Natural polysaccharides are mainly derived from plants, bacteria, and yeast. Partly owing to the difficulty of obtaining them, synthetic polysaccharides emerged in clinical trials. The immune mechanisms of both natural and synthetic polysaccharides remain incompletely understood, hindering the rational development of polysaccharide adjuvants. This comprehensive review primarily focused on several promising polysaccharide adjuvants, discussing their recent applications in vaccines and highlighting their immune-modulatory effects. Furthermore, the future perspectives of polysaccharides offer insightful guidance to adjuvant development and application.
Collapse
Affiliation(s)
- Xinlong Liang
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Jiaying Zhou
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Mengmeng Wang
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Jing Wang
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Houhui Song
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Yigang Xu
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Yuan Li
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
- Research and Development Department, Zhejiang Huijia Biotechnology Co. Ltd ., Huzhou, People’s Republic of China
| |
Collapse
|
2
|
Harrison JJ, Nguyen W, Morgan MS, Tang B, Habarugira G, de Malmanche H, Freney ME, Modhiran N, Watterson D, Cox AL, Yan K, Yuen NKY, Bowman DH, Kirkland PD, Bielefeldt-Ohmann H, Suhrbier A, Hall RA, Rawle DJ, Hobson-Peters J. A chimeric vaccine derived from Australian genotype IV Japanese encephalitis virus protects mice from lethal challenge. NPJ Vaccines 2024; 9:134. [PMID: 39085247 PMCID: PMC11291493 DOI: 10.1038/s41541-024-00903-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/23/2024] [Indexed: 08/02/2024] Open
Abstract
In 2022, a genotype IV (GIV) strain of Japanese encephalitis virus (JEV) caused an unprecedented and widespread outbreak of disease in pigs and humans in Australia. As no veterinary vaccines against JEV are approved in Australia and all current approved human and veterinary vaccines are derived from genotype (G) III JEV strains, we used the recently described insect-specific Binjari virus (BinJV) chimeric flavivirus vaccine technology to produce a JEV GIV vaccine candidate. Herein we describe the production of a chimeric virus displaying the structural prM and E proteins of a JEV GIV isolate obtained from a stillborn piglet (JEVNSW/22) in the genomic backbone of BinJV (BinJ/JEVNSW/22-prME). BinJ/JEVNSW/22-prME was shown to be antigenically indistinguishable from the JEVNSW/22 parental virus by KD analysis and a panel of JEV-reactive monoclonal antibodies in ELISA. BinJ/JEVNSW/22-prME replicated efficiently in C6/36 cells, reaching titres of >107 infectious units/mL - an important attribute for vaccine manufacture. As expected, BinJ/JEVNSW/22-prME failed to replicate in a variety of vertebrate cells lines. When used to immunise mice, the vaccine induced a potent virus neutralising response against JEVNSW/22 and to GII and GIII JEV strains. The BinJ/JEVNSW/22-prME vaccine provided complete protection against lethal challenge with JEVNSW/22, whilst also providing partial protection against viraemia and disease for the related Murray Valley encephalitis virus. Our results demonstrate that BinJ/JEVNSW/22-prME is a promising vaccine candidate against JEV.
Collapse
Affiliation(s)
- Jessica J Harrison
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - Wilson Nguyen
- QIMR Berghofer Medical Research Institute, Brisbane, 4029, Australia
| | - Mahali S Morgan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - Bing Tang
- QIMR Berghofer Medical Research Institute, Brisbane, 4029, Australia
| | - Gervais Habarugira
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - Henry de Malmanche
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - Morgan E Freney
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - Naphak Modhiran
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia
- Australian Infectious Disease Research Centre, Brisbane, 4072, 4029, Australia
| | - Abigail L Cox
- QIMR Berghofer Medical Research Institute, Brisbane, 4029, Australia
| | - Kexin Yan
- QIMR Berghofer Medical Research Institute, Brisbane, 4029, Australia
| | - Nicholas K Y Yuen
- School of Veterinary Science, The University of Queensland, Gatton, QLD, 4343, Australia
| | - Dylan H Bowman
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - Peter D Kirkland
- Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, 2568, Australia
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia
- Australian Infectious Disease Research Centre, Brisbane, 4072, 4029, Australia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, 4029, Australia
- Australian Infectious Disease Research Centre, Brisbane, 4072, 4029, Australia
| | - Roy A Hall
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia
- Australian Infectious Disease Research Centre, Brisbane, 4072, 4029, Australia
| | - Daniel J Rawle
- QIMR Berghofer Medical Research Institute, Brisbane, 4029, Australia.
| | - Jody Hobson-Peters
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia.
- Australian Infectious Disease Research Centre, Brisbane, 4072, 4029, Australia.
| |
Collapse
|
3
|
McLelland DJ, Lynch M, Vogelnest L, Eden P, Wallace A, Weller J, Young S, Vaughan-Higgins R, Antipov A, Honda-Okubo Y, Petrovsky N. Safety and immunogenicity of an adjuvanted recombinant spike protein-based severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine, SpikeVet™, in selected Carnivora, Primates and Artiodactyla in Australian zoos. J Vet Pharmacol Ther 2024; 47:308-321. [PMID: 38345094 DOI: 10.1111/jvp.13429] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 07/09/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can infect a broad range of animal species and has been associated with severe disease in some taxa. Few studies have evaluated optimal strategies to mitigate the risk to susceptible zoo animals. This study evaluated the safety and immunogenicity of a protein-based veterinary SARS-CoV-2 vaccine (SpikeVet™) in zoo animals. Two to three doses of SpikeVet™ were administered intramuscularly or subcutaneously 3-4 weeks apart to 354 zoo animals representing 38 species. SpikeVet™ was very well tolerated across all species. Minor adverse effects were observed in 1.69% of animals vaccinated, or 1.04% of vaccine doses administered. Preliminary immunogenicity analyses in representative carnivores (meerkats, lions) and an artiodactylid (domestic goat) showed SpikeVet™-immunized animals developed serum antibodies able to neutralize a range of SARS-CoV-2 variants, including the vaccine-homologous Wuhan and Mu variants, as well as vaccine-heterologous Omicron BA.2 and XBB.1 strains. Prior to vaccination, all eight lions were seropositive for Wuhan strain by surrogate viral neutralization testing, suggesting past infection with SARS-CoV-2 or cross-reactive antibodies generated by another closely related coronavirus. These results from a range of zoo species support the ongoing development of SpikeVet™ as a safe and effective veterinary SARS-CoV-2 vaccine.
Collapse
Affiliation(s)
- David J McLelland
- Zoos South Australia, Adelaide, South Australia, Australia
- Zoo and Aquarium Association, Mosman, New South Wales, Australia
| | | | | | - Paul Eden
- Werribee Open Range Zoo, Werribee, Victoria, Australia
| | - Alisa Wallace
- Taronga Western Plains Zoo, Dubbo, New South Wales, Australia
| | - Jayne Weller
- National Zoo and Aquarium, Canberra, Australian Capital Territory, Australia
| | - Sam Young
- Australia Zoo, Beerwah, Queensland, Australia
| | | | - Anna Antipov
- Vaxine Pty Ltd, Bedford Park, South Australia, Australia
| | | | | |
Collapse
|
4
|
Sanchez PL, Andre G, Antipov A, Petrovsky N, Ross TM. Advax-SM™-Adjuvanted COBRA (H1/H3) Hemagglutinin Influenza Vaccines. Vaccines (Basel) 2024; 12:455. [PMID: 38793706 PMCID: PMC11125990 DOI: 10.3390/vaccines12050455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/25/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Adjuvants enhance immune responses stimulated by vaccines. To date, many seasonal influenza vaccines are not formulated with an adjuvant. In the present study, the adjuvant Advax-SM™ was combined with next generation, broadly reactive influenza hemagglutinin (HA) vaccines that were designed using a computationally optimized broadly reactive antigen (COBRA) methodology. Advax-SM™ is a novel adjuvant comprising inulin polysaccharide and CpG55.2, a TLR9 agonist. COBRA HA vaccines were combined with Advax-SM™ or a comparator squalene emulsion (SE) adjuvant and administered to mice intramuscularly. Mice vaccinated with Advax-SM™ adjuvanted COBRA HA vaccines had increased serum levels of anti-influenza IgG and IgA, high hemagglutination inhibition activity against a panel of H1N1 and H3N2 influenza viruses, and increased anti-influenza antibody secreting cells isolated from spleens. COBRA HA plus Advax-SM™ immunized mice were protected against both morbidity and mortality following viral challenge and, at postmortem, had no detectable lung viral titers or lung inflammation. Overall, the Advax-SM™-adjuvanted COBRA HA formulation provided effective protection against drifted H1N1 and H3N2 influenza viruses.
Collapse
Affiliation(s)
- Pedro L. Sanchez
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA;
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA
| | - Greiciely Andre
- Vaxine Pty Ltd., Adelaide, SA 5046, Australia; (G.A.); (A.A.); (N.P.)
| | - Anna Antipov
- Vaxine Pty Ltd., Adelaide, SA 5046, Australia; (G.A.); (A.A.); (N.P.)
| | - Nikolai Petrovsky
- Vaxine Pty Ltd., Adelaide, SA 5046, Australia; (G.A.); (A.A.); (N.P.)
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA;
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA
- Department of Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
5
|
Yuen NKY, Bielefeldt-Ohmann H, Coyle MP, Henning J. Exposure dynamics of Ross River virus in horses - Horses as potential sentinels (a One Health approach). Epidemiol Infect 2024; 152:e67. [PMID: 38606586 PMCID: PMC11062785 DOI: 10.1017/s0950268824000554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/06/2024] [Accepted: 03/24/2024] [Indexed: 04/13/2024] Open
Abstract
Ross River virus (RRV), the most medically and economically important arbovirus in Australia, has been the most prevalent arbovirus infections in humans for many years. Infected humans and horses often suffer similar clinical symptoms. We conducted a prospective longitudinal study over a 3.5-year period to investigate the exposure dynamics of RRV in three foal cohorts (n = 32) born in a subtropical region of South East Queensland, Australia, between 2020 and 2022. RRV-specific seroconversion was detected in 56% (n = 18) of foals with a median time to seroconversion, after waning of maternal antibodies, of 429 days (95% CI: 294-582). The median age at seroconversion was 69 weeks (95% CI: 53-57). Seroconversion events were only detected between December and March (Southern Hemisphere summer) over the entire study period. Cox proportion hazards regression analyses revealed that seroconversions were significantly (p < 0.05) associated with air temperature in the month of seroconversion. Time-lags in meteorological variables were not significantly (p > 0.05) associated with seroconversion, except for relative humidity (p = 0.036 at 2-month time-lag). This is in contrast to research results of RRV infection in humans, which peaked between March and May (Autumn) and with a 0-3 month time-lag for various meteorological risk factors. Therefore, horses may be suitable sentinels for monitoring active arbovirus circulation and could be used for early arbovirus outbreak detection in human populations.
Collapse
Affiliation(s)
- Nicholas K. Y. Yuen
- School of Veterinary Science, Faculty of Science, The University of Queensland, Gatton, Queensland, Australia
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, Faculty of Science, The University of Queensland, St Lucia, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland, Australia
| | - Mitchell P. Coyle
- Equine Unit, Office of the Director Gatton Campus, Faculty of Science, The University of Queensland, Gatton, Queensland, Australia
| | - Joerg Henning
- School of Veterinary Science, Faculty of Science, The University of Queensland, Gatton, Queensland, Australia
| |
Collapse
|
6
|
Ghali ENHK, Pranav, Chauhan SC, Yallapu MM. Inulin-based formulations as an emerging therapeutic strategy for cancer: A comprehensive review. Int J Biol Macromol 2024; 259:129216. [PMID: 38185294 PMCID: PMC10922702 DOI: 10.1016/j.ijbiomac.2024.129216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/06/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Cancer stands as the second leading cause of death in the United States (US). Most chemotherapeutic agents exhibit severe adverse effects that are attributed to exposure of drugs to off-target tissues, posing a significant challenge in cancer therapy management. In recent years, inulin, a naturally occurring prebiotic fiber has gained substantial attention for its potential in cancer treatment owing to its multitudinous health values. Its distinctive structure, stability, and nutritional properties position it as an effective adjuvant and carrier for drug delivery in cancer therapy. To address some of the above unmet clinical issues, this review summarizes the recent efforts towards the development of inulin-based nanomaterials and nanocomposites for healthcare applications with special emphasis on the multifunctional role of inulin in cancer therapy as a synergist, signaling molecule, immunomodulatory and anticarcinogenic molecule. Furthermore, the review provides a concise overview of ongoing clinical trials and observational studies associated with inulin-based therapy. In conclusion, the current review offers insights on the significant role of inulin interventions in exploring its potential as a therapeutic agent to treat cancer.
Collapse
Affiliation(s)
- Eswara Naga Hanuma Kumar Ghali
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Pranav
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA.
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA.
| |
Collapse
|
7
|
Sakala IG, Honda-Okubo Y, Petrovsky N. Developmental and reproductive safety of Advax-CpG55.2™ adjuvanted COVID-19 and influenza vaccines in mice. Vaccine 2023; 41:6093-6104. [PMID: 37659896 DOI: 10.1016/j.vaccine.2023.08.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 09/04/2023]
Abstract
SpikoGen® is a recombinant spike protein vaccine against COVID-19 that obtained marketing authorization in the Middle East on October 6th, 2021, becoming the first adjuvanted protein-based COVID-19 vaccine of its type to achieve approval. SpikoGen® vaccine utilizes a unique adjuvant Advax-CpG55.2, which comprises delta inulin and CpG55.2 oligonucleotide, a synthetic human toll-like receptor (TLR)-9 agonist. As part of a safety assessment, developmental and reproductive toxicity (DART) studies were undertaken in mice of Advax-CpG55.2 adjuvanted formulations including SpikoGen®, a H7 hemagglutinin influenza vaccine (rH7HA), the bivalent combination of SpikoGen® and rH7HA, and a next-generation quadrivalent spike protein vaccine. In the first study, vaccines were administered intramuscularly to pregnant dams on gestation days (GD) 6.5 and 12.5, and in the second two doses were given in the pre-mating period with a further two doses during gestation. The doses used in the pregnant mice were 250-1000 times the usual human doses on a weight for weight basis. Strong serum antibody responses with neutralizing activity against the relevant virus were seen in the immunized dams and also at the time of weaning in the sera of their pups, consistent with robust maternal antibody transfer. No adverse effects of any of the vaccine formulations were observed in the immunized dams or their pups. Notably, there were no adverse effects of any of the Advax-CpG55.2 adjuvanted vaccines on female mating performance, fertility, ovarian or uterine parameters, embryo-fetal or postnatal survival, fetal growth, or neurofunctional development. No evidence of antigen interference was observed when SpikoGen® vaccine was mixed and co-administered with influenza hemagglutinin vaccine to pregnant dams. Together with the strong safety profile of SpikoGen® vaccine seen in adults and children in human trials, this DART study data supports the safety of Advax-CpG55.2 adjuvanted COVID-19 and influenza vaccine in women of childbearing potential including during pregnancy.
Collapse
Affiliation(s)
- Isaac G Sakala
- Vaxine Pty Ltd., Bedford Park, Adelaide, SA 5042, Australia; Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| | - Yoshikazu Honda-Okubo
- Vaxine Pty Ltd., Bedford Park, Adelaide, SA 5042, Australia; Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| | | |
Collapse
|
8
|
Habarugira G, Harrison JJ, Moran J, Suen WW, Colmant AMG, Hobson-Peters J, Isberg SR, Bielefeldt-Ohmann H, Hall RA. A chimeric vaccine protects farmed saltwater crocodiles from West Nile virus-induced skin lesions. NPJ Vaccines 2023; 8:93. [PMID: 37369653 DOI: 10.1038/s41541-023-00688-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
West Nile virus (WNV) causes skin lesions in farmed crocodiles leading to the depreciation of the value of their hides and significant economic losses. However, there is no commercially available vaccine designed for use in crocodilians against WNV. We tested chimeric virus vaccines composed of the non-structural genes of the insect-specific flavivirus Binjari virus (BinJV) and genes encoding the structural proteins of WNV. The BinJV/WNV chimera, is antigenically similar to wild-type WNV but replication-defective in vertebrates. Intramuscular injection of two doses of BinJV/WNV in hatchling saltwater crocodiles (Crocodylus porosus) elicited a robust neutralising antibody response and conferred protection against viremia and skin lesions after challenge with WNV. In contrast, mock-vaccinated crocodiles became viraemic and 22.2% exhibited WNV-induced lesions. This suggests that the BinJV/WNV chimera is a safe and efficacious vaccine for preventing WNV-induced skin lesions in farmed crocodilians.
Collapse
Affiliation(s)
- Gervais Habarugira
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Jessica J Harrison
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Jasmin Moran
- Centre for Crocodile Research, Noonamah, NT, Australia
| | - Willy W Suen
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
- Australian Centre for Disease Preparedness, The Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, 3219, Australia
| | - Agathe M G Colmant
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia
- Unité des Virus Émergents (UVE) Aix-Marseille Univ-IRD 190-Inserm 1207, Marseille, France
| | - Jody Hobson-Peters
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia
| | | | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia.
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia.
| | - Roy A Hall
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia.
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
9
|
Ciapponi A, Berrueta M, P K Parker E, Bardach A, Mazzoni A, Anderson SA, Argento FJ, Ballivian J, Bok K, Comandé D, Goucher E, Kampmann B, Munoz FM, Rodriguez Cairoli F, Santa María V, Stergachis AS, Voss G, Xiong X, Zamora N, Zaraa S, Buekens PM. Safety of COVID-19 vaccines during pregnancy: A systematic review and meta-analysis. Vaccine 2023; 41:3688-3700. [PMID: 37012114 PMCID: PMC10040368 DOI: 10.1016/j.vaccine.2023.03.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 03/09/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND Assessment of COVID-19 vaccines safety during pregnancy is urgently needed. METHODS We conducted a systematic review and meta-analysis to evaluate the safety of COVID-19 vaccines, including their components and technological platforms used in other vaccines during pregnancy and animal studies to complement direct evidence. We searched literature databases from its inception to September 2021 without language restriction, COVID-19 vaccine websites, and reference lists of other systematic reviews and the included studies. Pairs of reviewers independently selected, data extracted, and assessed the risk of bias of the studies. Discrepancies were resolved by consensus. (PROSPERO CRD42021234185). RESULTS We retrieved 8,837 records from the literature search; 71 studies were included, involving 17,719,495 pregnant persons and 389 pregnant animals. Most studies (94%) were conducted in high-income countries, were cohort studies (51%), and 15% were classified as high risk of bias. We identified nine COVID-19 vaccine studies, seven involving 309,164 pregnant persons, mostly exposed to mRNA vaccines. Among non-COVID-19 vaccines, the most frequent exposures were AS03 and aluminum-based adjuvants. A meta-analysis of studies that adjusted for potential confounders showed no association with adverse outcomes, regardless of the vaccine or the trimester of vaccination. Neither the reported rates of adverse pregnancy outcomes nor reactogenicity exceeded expected background rates, which was the case for ASO3- or aluminum-adjuvanted non-COVID-19 vaccines in the proportion meta-analyses of uncontrolled studies/arms. The only exception was postpartum hemorrhage after COVID-19 vaccination (10.40%; 95% CI: 6.49-15.10%), reported by two studies; however, the comparison with non-exposed pregnant persons, available for one study, found non-statistically significant differences (adjusted OR 1.09; 95% CI 0.56-2.12). Animal studies showed consistent results with studies in pregnant persons. CONCLUSION We found no safety concerns for currently administered COVID-19 vaccines during pregnancy. Additional experimental and real-world evidence could enhance vaccination coverage. Robust safety data for non-mRNA-based COVID-19 vaccines are still needed.
Collapse
Affiliation(s)
- Agustín Ciapponi
- Centro de Investigación de Epidemiología y Salud Pública (CIESP) - Instituto de Efectividad Clínica y Sanitaria (IECS-CONICET), Argentina.
| | - Mabel Berrueta
- Centro de Investigación de Epidemiología y Salud Pública (CIESP) - Instituto de Efectividad Clínica y Sanitaria (IECS-CONICET), Argentina.
| | - Edward P K Parker
- The Vaccine Centre, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK.
| | - Ariel Bardach
- Centro de Investigación de Epidemiología y Salud Pública (CIESP) - Instituto de Efectividad Clínica y Sanitaria (IECS-CONICET), Argentina.
| | - Agustina Mazzoni
- Centro de Investigación de Epidemiología y Salud Pública (CIESP) - Instituto de Efectividad Clínica y Sanitaria (IECS-CONICET), Argentina.
| | - Steven A Anderson
- US Food & Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA.
| | - Fernando J Argento
- Centro de Investigación de Epidemiología y Salud Pública (CIESP) - Instituto de Efectividad Clínica y Sanitaria (IECS-CONICET), Argentina.
| | - Jamile Ballivian
- Centro de Investigación de Epidemiología y Salud Pública (CIESP) - Instituto de Efectividad Clínica y Sanitaria (IECS-CONICET), Argentina
| | - Karin Bok
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, 31 Center Dr # 7A03, Bethesda, MD 20892, USA.
| | - Daniel Comandé
- Centro de Investigación de Epidemiología y Salud Pública (CIESP) - Instituto de Efectividad Clínica y Sanitaria (IECS-CONICET), Argentina.
| | - Erin Goucher
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, USA.
| | - Beate Kampmann
- The Vaccine Centre, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; Vaccines & Immunity Theme, MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, the Gambia; Charité Centre for Global Health, Universitätsmedizin Charité Berlin, Germany.
| | - Flor M Munoz
- The Vaccine Centre, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK.
| | - Federico Rodriguez Cairoli
- Centro de Investigación de Epidemiología y Salud Pública (CIESP) - Instituto de Efectividad Clínica y Sanitaria (IECS-CONICET), Argentina.
| | - Victoria Santa María
- Centro de Investigación de Epidemiología y Salud Pública (CIESP) - Instituto de Efectividad Clínica y Sanitaria (IECS-CONICET), Argentina
| | - Andy S Stergachis
- School of Pharmacy and School of Public Health, University of Washington, 1959 NE Pacific St, BOX 357631, Seattle, WA, USA.
| | - Gerald Voss
- Coalition for Epidemic Preparedness Innovations (CEPI), Oslo, Norway.
| | - Xu Xiong
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, 31 Center Dr # 7A03, Bethesda, MD 20892, USA.
| | - Natalia Zamora
- Centro de Investigación de Epidemiología y Salud Pública (CIESP) - Instituto de Efectividad Clínica y Sanitaria (IECS-CONICET), Argentina
| | - Sabra Zaraa
- Baylor College of Medicine, Texas Children's Hospital, 6621 Fannin St, Houston, TX 77030, USA.
| | - Pierre M Buekens
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, 31 Center Dr # 7A03, Bethesda, MD 20892, USA.
| |
Collapse
|
10
|
Carnet F, Perrin-Cocon L, Paillot R, Lotteau V, Pronost S, Vidalain PO. An inventory of adjuvants used for vaccination in horses: the past, the present and the future. Vet Res 2023; 54:18. [PMID: 36864517 PMCID: PMC9983233 DOI: 10.1186/s13567-023-01151-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/27/2023] [Indexed: 03/04/2023] Open
Abstract
Vaccination is one of the most widely used strategies to protect horses against pathogens. However, available equine vaccines often have limitations, as they do not always provide effective, long-term protection and booster injections are often required. In addition, research efforts are needed to develop effective vaccines against emerging equine pathogens. In this review, we provide an inventory of approved adjuvants for equine vaccines worldwide, and discuss their composition and mode of action when available. A wide range of adjuvants are used in marketed vaccines for horses, the main families being aluminium salts, emulsions, polymers, saponins and ISCOMs. We also present veterinary adjuvants that are already used for vaccination in other species and are currently evaluated in horses to improve equine vaccination and to meet the expected level of protection against pathogens in the equine industry. Finally, we discuss new adjuvants such as liposomes, polylactic acid polymers, inulin, poly-ε-caprolactone nanoparticles and co-polymers that are in development. Our objective is to help professionals in the horse industry understand the composition of marketed equine vaccines in a context of mistrust towards vaccines. Besides, this review provides researchers with a list of adjuvants, either approved or at least evaluated in horses, that could be used either alone or in combination to develop new vaccines.
Collapse
Affiliation(s)
- Flora Carnet
- grid.508204.bLABÉO, 14280 Saint-Contest, France ,grid.412043.00000 0001 2186 4076BIOTARGEN, Normandie University, UNICAEN, 14280 Saint-Contest, France
| | - Laure Perrin-Cocon
- grid.462394.e0000 0004 0450 6033CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Romain Paillot
- grid.451003.30000 0004 0387 5232School of Equine and Veterinary Physiotherapy, Writtle University College, Lordship Road, Writtle, Chelmsford, CM1 3RR UK
| | - Vincent Lotteau
- grid.462394.e0000 0004 0450 6033CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Stéphane Pronost
- LABÉO, 14280, Saint-Contest, France. .,BIOTARGEN, Normandie University, UNICAEN, 14280, Saint-Contest, France.
| | - Pierre-Olivier Vidalain
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France.
| |
Collapse
|
11
|
Akin I, Akdas S, Ceylan MN, Altiner S, Aribal Ayral P, Yazihan N. Evaluation of the safety and efficacy of Advax TM as an adjuvant: A systematic review and meta-analysis. Adv Med Sci 2022; 67:10-17. [PMID: 34562856 DOI: 10.1016/j.advms.2021.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 07/06/2021] [Accepted: 09/03/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE Developing a vaccine with improved immunogenicity is still a growing priority for many diseases. Different types of adjuvants may be beneficial to initiate and maintain the long-lasting immunogenicity of vaccines. Evidence has shown that polysaccharide adjuvants are efficient in improving immunological mechanisms with their biocompatibility and biodegradability characteristics. In this study, we aimed to investigate the safety and efficacy of AdvaxTM an adjuvant derived from delta inulin. METHODS A systematic research was performed in Pubmed, Web of Science, and Scopus databases for the following keywords; "AdvaxTM" OR "delta inulin" until December 14th, 2020. RevMan 5.4.1 software was used for cumulative meta-analysis and bias analysis. We also used GraphPad Prism 6 software for the figures. RESULTS In the cumulative meta-analysis, it was found that seroconversion and geometric mean titers (GMT) levels significantly increased in AdvaxTM-adjuvanted group (mean difference: 12.31, 95% Cl [4.14, 20.47], p = 0.003; 17.10, 95% Cl [4.35, 29.85], p = 0.009, respectively). We also observed that AdvaxTM could be effective in improving immunogenicity by inducing T-cell responses and plasmablast generation in viral vaccines. CONCLUSIONS In this study, it was shown that AdvaxTM is a safe and well-tolerated adjuvant. AdvaxTM could be a potent adjuvant in increasing the protection and immunogenicity of different vaccines without safety issues. However, further studies are needed to verify these effects of AdvaxTM adjuvant.
Collapse
Affiliation(s)
- Irem Akin
- Institute of Health Sciences, Interdisciplinary Food, Metabolism and Clinical Nutrition Department, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Sevginur Akdas
- Institute of Health Sciences, Interdisciplinary Food, Metabolism and Clinical Nutrition Department, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Merve Nur Ceylan
- Institute of Health Sciences, Interdisciplinary Food, Metabolism and Clinical Nutrition Department, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Seda Altiner
- Allergy and Clinical Immunology Clinic, Necip Fazil City Hospital, Kahramanmaras, Ankara, Turkey
| | - Pelin Aribal Ayral
- Institute of Health Sciences, Interdisciplinary Food, Metabolism and Clinical Nutrition Department, Ankara University Faculty of Medicine, Ankara, Turkey; Department of Pathophysiology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Nuray Yazihan
- Institute of Health Sciences, Interdisciplinary Food, Metabolism and Clinical Nutrition Department, Ankara University Faculty of Medicine, Ankara, Turkey; Department of Pathophysiology, Faculty of Medicine, Ankara University, Ankara, Turkey.
| |
Collapse
|
12
|
Afinjuomo F, Abdella S, Youssef SH, Song Y, Garg S. Inulin and Its Application in Drug Delivery. Pharmaceuticals (Basel) 2021; 14:ph14090855. [PMID: 34577554 PMCID: PMC8468356 DOI: 10.3390/ph14090855] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 02/06/2023] Open
Abstract
Inulin’s unique and flexible structure, stabilization/protective effects, and organ targeting ability make it an excellent drug delivery carrier compared to other biodegradable polysaccharides. The three hydroxyl groups attached to each fructose unit serve as an anchor for chemical modification. This, in turn, helps in increasing bioavailability, improving cellular uptake, and achieving targeted, sustained, and controlled release of drugs and biomolecules. This review focuses on the various types of inulin drug delivery systems such as hydrogel, conjugates, nanoparticles, microparticles, micelles, liposomes, complexes, prodrugs, and solid dispersion. The preparation and applications of the different inulin drug delivery systems are further discussed. This work highlights the fact that modification of inulin allows the use of this polymer as multifunctional scaffolds for different drug delivery systems.
Collapse
Affiliation(s)
| | | | | | | | - Sanjay Garg
- Correspondence: ; Tel.: +61-88-302-1575; Fax: +61-88-302-2389
| |
Collapse
|
13
|
Sakala IG, Honda-Okubo Y, Li L, Baldwin J, Petrovsky N. A M2 protein-based universal influenza vaccine containing Advax-SM adjuvant provides newborn protection via maternal or neonatal immunization. Vaccine 2021; 39:5162-5172. [PMID: 34362601 DOI: 10.1016/j.vaccine.2021.07.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/10/2021] [Accepted: 07/14/2021] [Indexed: 02/01/2023]
Abstract
BACKGROUND Despite newborns being at increased risk of serious influenza infection, influenza vaccines are currently not recommended for use in infants under 6 months of age. We therefore sought to evaluate the protective efficacy in mice of an M2-based influenza vaccine (CapM2e) formulated with Advax-SM adjuvant. Vaccine protection was assessed via both passive maternal immunization and direct neonatal immunization. METHODS For maternal transfer studies, female mice were immunized 1 week before and after mating. Blood was collected from both mother and offspring during weaning and pups were challenged when they reached 3 weeks of age with lethal doses of H1N1 and homologous reassortment influenza strain H3N2 with conserved M2. For direct immunization studies, newborns were immunized at 1 and 3 weeks of age and blood was collected prior to challenge at 4 weeks of age. RESULTS Maternal immunization with CapM2e + Advax-SM vaccine induced high maternal M2e antibody levels that were passively transferred to their offspring and provided them with protection against both H1N1 and H3N2 influenza strains when challenged at 3 weeks of age. When used for direct immunization of neonatal mice, CapM2e + Advax-SM vaccine similarly induced high serum M2e antibody levels and protected against H1N1 and H3N2 influenza challenges with protection associated with inhibition of virus replication with a significant reduction in lung virus load in immunized pups. CONCLUSION CapM2e + Advax-SM vaccine could be useful for protecting newborns against diverse influenza A strains, with opportunities to achieve protection by passive maternal immunization or active neonatal immunization. This data supports further development of this promising M2e-based vaccine candidate.
Collapse
Affiliation(s)
- Isaac G Sakala
- Vaxine Pty Ltd, 11 Walkley Avenue, Adelaide 5046, Australia; College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
| | - Yoshikazu Honda-Okubo
- Vaxine Pty Ltd, 11 Walkley Avenue, Adelaide 5046, Australia; College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
| | - Lei Li
- Vaxine Pty Ltd, 11 Walkley Avenue, Adelaide 5046, Australia; College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
| | - Jeremy Baldwin
- Vaxine Pty Ltd, 11 Walkley Avenue, Adelaide 5046, Australia
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, 11 Walkley Avenue, Adelaide 5046, Australia; College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia.
| |
Collapse
|
14
|
Advax-CpG Adjuvant Provides Antigen Dose-Sparing and Enhanced Immunogenicity for Inactivated Poliomyelitis Virus Vaccines. Pathogens 2021; 10:pathogens10050500. [PMID: 33919442 PMCID: PMC8143488 DOI: 10.3390/pathogens10050500] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 11/17/2022] Open
Abstract
Global immunization campaigns have resulted in a major decline in the global incidence of polio cases, with wild-type poliovirus remaining endemic in only two countries. Live oral polio vaccine (OPV) played a role in the reduction in polio case numbers; however, the risk of OPV developing into circulating vaccine-derived poliovirus makes it unsuitable for eradication programs. Trivalent inactivated polio virus (TIPV) vaccines which contain formalin-inactivated antigens produced from virulent types 1, 2 and 3 reference polio strains grown in Vero monkey kidney cells have been advocated as a replacement for OPV; however, TIPVs have weak immunogenicity and multiple boosts are required before peak neutralizing titers are reached. This study examined whether the incorporation of the novel polysaccharide adjuvant, Advax-CpG, could boost the immunogenicity of two TIPV vaccines, (i) a commercially available polio vaccine (IPOL®, Sanofi Pasteur) and (ii) a new TIPV formulation developed by Statens Serum Institut (SSI). Mice were immunized intramuscularly based on recommended vaccine dosage schedules and serum antibody titers were followed for 12 months post-immunization. Advax-CpG significantly enhanced the long-term immunogenicity of both TIPV vaccines and had at least a 10-fold antigen dose-sparing effect. An exception was the poor ability of the SSI TIPV to induce serotype type 1 neutralizing antibodies. Immunization with monovalent IPVs suggested that the low type 1 response to TIPV may be due to antigen competition when the type 1 antigen was co-formulated with the type 2 and 3 antigens. This study provides valuable insights into the complexity of the formulation of multivalent polio vaccines and supports the further development of adjuvanted antigen-sparing TIPV vaccines in the fight to eradicate polio.
Collapse
|
15
|
Vet LJ, Setoh YX, Amarilla AA, Habarugira G, Suen WW, Newton ND, Harrison JJ, Hobson-Peters J, Hall RA, Bielefeldt-Ohmann H. Protective Efficacy of a Chimeric Insect-Specific Flavivirus Vaccine against West Nile Virus. Vaccines (Basel) 2020; 8:vaccines8020258. [PMID: 32485930 PMCID: PMC7349994 DOI: 10.3390/vaccines8020258] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/01/2022] Open
Abstract
Virulent strains of West Nile virus (WNV) are highly neuro-invasive and human infection is potentially lethal. However, no vaccine is currently available for human use. Here, we report the immunogenicity and protective efficacy of a vaccine derived from a chimeric virus, which was constructed using the structural proteins (prM and E) of the Kunjin strain of WNV (WNVKUN) and the genome backbone of the insect-specific flavivirus Binjari virus (BinJV). This chimeric virus (BinJ/WNVKUN-prME) exhibits an insect-specific phenotype and does not replicate in vertebrate cells. Importantly, it authentically presents the prM-E proteins of WNVKUN, which is antigenically very similar to other WNV strains and lineages. Therefore BinJ/WNVKUN-prME represents an excellent candidate to assess as a vaccine against virulent WNV strains, including the highly pathogenic WNVNY99. When CD1 mice were immunized with purified BinJ/WNVKUN-prME, they developed robust neutralizing antibody responses after a single unadjuvanted dose of 1 to 5 μg. We further demonstrated complete protection against viremia and mortality after lethal challenge with WNVNY99, with no clinical or subclinical pathology observed in vaccinated animals. These data suggest that BinJ/WNVKUN-prME represents a safe and effective WNV vaccine candidate that warrants further investigation for use in humans or in veterinary applications.
Collapse
Affiliation(s)
- Laura J. Vet
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia; (L.J.V.); (Y.X.S.); (A.A.A.); (W.W.S.); (N.D.N.); (J.J.H.); (J.H.-P.)
| | - Yin Xiang Setoh
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia; (L.J.V.); (Y.X.S.); (A.A.A.); (W.W.S.); (N.D.N.); (J.J.H.); (J.H.-P.)
| | - Alberto A. Amarilla
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia; (L.J.V.); (Y.X.S.); (A.A.A.); (W.W.S.); (N.D.N.); (J.J.H.); (J.H.-P.)
| | - Gervais Habarugira
- School of Veterinary Science, University of Queensland Gatton Campus, Queensland 4343, Australia;
| | - Willy W. Suen
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia; (L.J.V.); (Y.X.S.); (A.A.A.); (W.W.S.); (N.D.N.); (J.J.H.); (J.H.-P.)
| | - Natalee D. Newton
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia; (L.J.V.); (Y.X.S.); (A.A.A.); (W.W.S.); (N.D.N.); (J.J.H.); (J.H.-P.)
| | - Jessica J. Harrison
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia; (L.J.V.); (Y.X.S.); (A.A.A.); (W.W.S.); (N.D.N.); (J.J.H.); (J.H.-P.)
| | - Jody Hobson-Peters
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia; (L.J.V.); (Y.X.S.); (A.A.A.); (W.W.S.); (N.D.N.); (J.J.H.); (J.H.-P.)
- Australian Infectious Diseases Research Centre, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Roy A. Hall
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia; (L.J.V.); (Y.X.S.); (A.A.A.); (W.W.S.); (N.D.N.); (J.J.H.); (J.H.-P.)
- Australian Infectious Diseases Research Centre, University of Queensland, St Lucia, Queensland 4072, Australia
- Correspondence: (R.A.H.); (H.B.-O.)
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia; (L.J.V.); (Y.X.S.); (A.A.A.); (W.W.S.); (N.D.N.); (J.J.H.); (J.H.-P.)
- School of Veterinary Science, University of Queensland Gatton Campus, Queensland 4343, Australia;
- Australian Infectious Diseases Research Centre, University of Queensland, St Lucia, Queensland 4072, Australia
- Correspondence: (R.A.H.); (H.B.-O.)
| |
Collapse
|
16
|
Barros T, Moran G, Uberti B. Reactive Seizures After Vaccination in a Thoroughbred Broodmare. J Equine Vet Sci 2019. [DOI: 10.1016/j.jevs.2018.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Passive inhalation of dry powder influenza vaccine formulations completely protects chickens against H5N1 lethal viral challenge. Eur J Pharm Biopharm 2018; 133:85-95. [PMID: 30312742 PMCID: PMC7126314 DOI: 10.1016/j.ejpb.2018.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/01/2018] [Accepted: 10/08/2018] [Indexed: 11/30/2022]
Abstract
Bird to human transmission of high pathogenicity avian influenza virus (HPAIV) poses a significant risk of triggering a flu pandemic in the human population. Therefore, vaccination of susceptible poultry during an HPAIV outbreak might be the best remedy to prevent such transmissions. To this end, suitable formulations and an effective mass vaccination method that can be translated to field settings needs to be developed. Our previous study in chickens has shown that inhalation of a non-adjuvanted dry powder influenza vaccine formulation during normal breathing results in partial protection against lethal influenza challenge. The aim of the present study was to improve the effectiveness of pulmonary vaccination by increasing the vaccine dose deposited in the lungs and by the use of suitable adjuvants. Two adjuvants, namely, Bacterium-like Particles (BLP) and Advax, were spray freeze dried with influenza vaccine into dry powder formulations. Delivery of dry formulations directly at the syrinx revealed that BLP and Advax had the potential to boost either systemic or mucosal immune responses or both. Upon passive inhalation of dry influenza vaccine formulations in an optimized set-up, BLP and Advax/BLP adjuvanted formulations induced significantly higher systemic immune responses than the non-adjuvanted formulation. Remarkably, all vaccinated animals not only survived a lethal influenza challenge, but also did not show any shedding of challenge virus except for two out of six animals in the Advax group. Overall, our results indicate that passive inhalation is feasible, effective and suitable for mass vaccination of chickens if it can be adapted to field settings.
Collapse
|
18
|
de Paula Oliveira Santos B, Trentini MM, Machado RB, Rúbia Nunes Celes M, Kipnis A, Petrovsky N, Junqueira-Kipnis AP. Advax4 delta inulin combination adjuvant together with ECMX, a fusion construct of four protective mTB antigens, induces a potent Th1 immune response and protects mice against Mycobacterium tuberculosis infection. Hum Vaccin Immunother 2018; 13:2967-2976. [PMID: 28937879 DOI: 10.1080/21645515.2017.1368598] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Tuberculosis (TB) remains a main public health concern and 10.4 million new cases occurred in 2015 around the world. BCG is the only approved vaccine against TB, but has variable efficacy and new vaccines are needed. We developed two new mTB vaccine candidates based on the recombinant fusion proteins, rCMX and rECMX formulated with Advax4, a new combination adjuvant combining delta inulin, CpG oligonucleotide and murabutide. BALB/c mice were immunized three times intramuscularly with these vaccine formulations. Injection of Advax4 alone increased the percentage of lymphatic endothelial cells and activated macrophages (F480/CD11b+) in the draining lymph nodes consistent with a chemotactic adjuvant effect. Advax4+CMX and Advax4+ECMX induced the highest levels of IgG1 and IgG2a antibodies against rCMX and rECMX, respectively. Immunized mice challenged with Mycobacterium tuberculosis (Mtb) had increased vaccine-specific Th1 responses in the lungs together with reduced Mtb - associated alveolar damage, although only the Advax4+ECMX vaccine demonstrated significant reduction of lung bacterial load. This study confirmed Advax4+ECMX as a potential TB vaccine candidate, with potential for further optimization and clinical development.
Collapse
Affiliation(s)
- Bruno de Paula Oliveira Santos
- a Laboratory of Immunopathology of Infectious Diseases, Department of Microbiology, Immunology, Parasitology, and Pathology, Tropical Institute of Pathology and Public Health , Federal University of Goiás , Goiás , Brazil
| | - Monalisa Martins Trentini
- a Laboratory of Immunopathology of Infectious Diseases, Department of Microbiology, Immunology, Parasitology, and Pathology, Tropical Institute of Pathology and Public Health , Federal University of Goiás , Goiás , Brazil
| | - Renato Beilner Machado
- a Laboratory of Immunopathology of Infectious Diseases, Department of Microbiology, Immunology, Parasitology, and Pathology, Tropical Institute of Pathology and Public Health , Federal University of Goiás , Goiás , Brazil
| | - Mara Rúbia Nunes Celes
- b Laboratory of Pathology, Department of Microbiology, Immunology, Parasitology, and Pathology, Tropical Institute of Pathology and Public Health , Federal University of Goiás , Goiás , Brazil
| | - André Kipnis
- a Laboratory of Immunopathology of Infectious Diseases, Department of Microbiology, Immunology, Parasitology, and Pathology, Tropical Institute of Pathology and Public Health , Federal University of Goiás , Goiás , Brazil
| | - Nikolai Petrovsky
- c Flinders University and Vaxine Pty Ltd, Flinders Medical Center , Adelaide , Australia
| | - Ana Paula Junqueira-Kipnis
- a Laboratory of Immunopathology of Infectious Diseases, Department of Microbiology, Immunology, Parasitology, and Pathology, Tropical Institute of Pathology and Public Health , Federal University of Goiás , Goiás , Brazil
| |
Collapse
|
19
|
Piyasena TBH, Setoh YX, Hobson-Peters J, Prow NA, Bielefeldt-Ohmann H, Khromykh AA, Perera D, Cardosa MJ, Kirkland PD, Hall RA. Differential Diagnosis of Flavivirus Infections in Horses Using Viral Envelope Protein Domain III Antigens in Enzyme-Linked Immunosorbent Assay. Vector Borne Zoonotic Dis 2017; 17:825-835. [PMID: 29083957 DOI: 10.1089/vbz.2017.2172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In Australia, infection of horses with the West Nile virus (WNV) or Murray Valley encephalitis virus (MVEV) occasionally results in severe neurological disease that cannot be clinically differentiated. Confirmatory serological tests to detect antibody specific for MVEV or WNV in horses are often hampered by cross-reactive antibodies induced to conserved epitopes on the envelope (E) protein. This study utilized bacterially expressed recombinant antigens derived from domain III of the E protein (rE-DIII) of MVEV and WNV, respectively, to determine whether these subunit antigens provided specific diagnostic markers of infection with these two viruses. When a panel of 130 serum samples, from horses with known flavivirus infection status, was tested in enzyme-linked immunosorbent assay (ELISA) using rE-DIII antigens, a differential diagnosis of MVEV or WNV was achieved for most samples. Time-point samples from horses exposed to flavivirus infection during the 2011 outbreak of equine encephalitis in south-eastern Australia also indicated that the rE-DIII antigens were capable of detecting and differentiating MVEV and WNV infection in convalescent sera with similar sensitivity and specificity to virus neutralization tests and blocking ELISAs. Overall, these results indicate that the rE-DIII is a suitable antigen for use in rapid immunoassays for confirming MVEV and WNV infections in horses in the Australian context and warrant further assessment on sensitive, high-throughput serological platforms such as multiplex immune assays.
Collapse
Affiliation(s)
- Thisun B H Piyasena
- 1 Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland , St Lucia, Australia
| | - Yin X Setoh
- 1 Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland , St Lucia, Australia
| | - Jody Hobson-Peters
- 1 Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland , St Lucia, Australia
| | - Natalie A Prow
- 1 Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland , St Lucia, Australia
| | - Helle Bielefeldt-Ohmann
- 1 Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland , St Lucia, Australia .,2 School of Veterinary Science, University of Queensland , Gatton, Australia
| | - Alexander A Khromykh
- 1 Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland , St Lucia, Australia
| | - David Perera
- 3 Institute of Health & Community Medicine , Universiti Malaysia Sarawak, Kota Samarahan, Malaysia
| | - Mary J Cardosa
- 3 Institute of Health & Community Medicine , Universiti Malaysia Sarawak, Kota Samarahan, Malaysia
| | - Peter D Kirkland
- 4 Virology Laboratory, Department of Primary Industries, Elizabeth Macarthur Agricultural Institute , Menangle, Australia
| | - Roy A Hall
- 1 Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland , St Lucia, Australia
| |
Collapse
|
20
|
Çokçalışkan C, Türkoğlu T, Uzunlu E, Sareyyüpoğlu B, Hancı İ, İpek A, Arslan A, Babak A, İldeniz G, Gülyaz V. Influence of vaccine potency and booster administration of foot-and-mouth disease vaccines on the antibody response in calves with maternal antibodies. J Vet Sci 2017; 18:315-322. [PMID: 28859271 PMCID: PMC5583419 DOI: 10.4142/jvs.2017.18.s1.315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/31/2017] [Accepted: 06/08/2017] [Indexed: 01/15/2023] Open
Abstract
Foot-and-mouth disease is one of the most important viral diseases of cloven-hoofed animals. Mass vaccination is an effective method to control the disease and is frequently utilized in endemic regions. Sufficient protection of young animals is important in mass vaccination campaigns. Maternal antibodies negatively affect the success of vaccination. Hence, determination of the optimal vaccination age is crucial for the uninterrupted protection of young animals. This study was performed to identify the effect of vaccine potency and booster administration on serum neutralizing antibody titers of calves with different levels of maternal antibodies. Calves (n = 111) on a state farm were used in this study. Oil adjuvant foot-and-mouth disease vaccines with 3 PD50 and 6 PD50 potencies were used with or without booster administration. Serum samples were collected each month up to day 120 postvaccination. Virus neutralization tests were used to measure the serum neutralizing antibody titers and estimate the protection period by using pre-determined cut-off values for protection. The results revealed that a vaccination with a 6 PD50 potency vaccine, preferably followed by a booster dose, should be used to overcome maternal immunity for incessant protection.
Collapse
Affiliation(s)
- Can Çokçalışkan
- Institute of Foot and Mouth Disease (SAP), Ankara 06044, Turkey
| | - Tunçer Türkoğlu
- Institute of Foot and Mouth Disease (SAP), Ankara 06044, Turkey
| | - Ergün Uzunlu
- Institute of Foot and Mouth Disease (SAP), Ankara 06044, Turkey
| | | | - İbrahim Hancı
- Institute of Foot and Mouth Disease (SAP), Ankara 06044, Turkey
| | - Ahmet İpek
- Institute of Foot and Mouth Disease (SAP), Ankara 06044, Turkey
| | - Abdullah Arslan
- Institute of Foot and Mouth Disease (SAP), Ankara 06044, Turkey
| | - Ayca Babak
- Directorate-General for Agriculture and Rural Development, Ankara 06044, Turkey
| | - Gülnur İldeniz
- Directorate-General for State Farms, Ministry of Food, Agriculture and Livestock, Ankara 06044, Turkey
| | - Veli Gülyaz
- Institute of Foot and Mouth Disease (SAP), Ankara 06044, Turkey
| |
Collapse
|
21
|
Counoupas C, Pinto R, Nagalingam G, Britton WJ, Petrovsky N, Triccas JA. Delta inulin-based adjuvants promote the generation of polyfunctional CD4 + T cell responses and protection against Mycobacterium tuberculosis infection. Sci Rep 2017; 7:8582. [PMID: 28819247 PMCID: PMC5561132 DOI: 10.1038/s41598-017-09119-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/19/2017] [Indexed: 01/16/2023] Open
Abstract
There is an urgent need for the rational design of safe and effective vaccines to protect against chronic bacterial pathogens such as Mycobacterium tuberculosis. Advax™ is a novel adjuvant based on delta inulin microparticles that enhances immunity with a minimal inflammatory profile and has entered human trials to protect against viral pathogens. In this report we determined if Advax displays broad applicability against important human pathogens by assessing protective immunity against infection with M. tuberculosis. The fusion protein CysVac2, comprising the M. tuberculosis antigens Ag85B (Rv1886c) and CysD (Rv1285) formulated with Advax provided significant protection in the lungs of M. tuberculosis-infected mice. Protection was associated with the generation of CysVac2-specific multifunctional CD4+ T cells (IFN-γ+TNF+IL-2+). Addition to Advax of the TLR9 agonist, CpG oligonucleotide (AdvaxCpG), improved both the immunogenicity and protective efficacy of CysVac2. Immunisation with CysVac2/AdvaxCpG resulted in heightened release of the chemoattractants, CXCL1, CCL3, and TNF, and rapid influx of monocytes and neutrophils to the site of vaccination, with pronounced early priming of CysVac2-specific CD4+ T cells. As delta inulin adjuvants have shown an excellent safety and tolerability profile in humans, CysVac2/AdvaxCpG is a strong candidate for further preclinical evaluation for progression to human trials.
Collapse
Affiliation(s)
- Claudio Counoupas
- Department of Infectious Diseases and Immunology, University of Sydney, Sydney, Australia
- Mycobacterial Research Program, Centenary Institute, Sydney, Australia
| | - Rachel Pinto
- Department of Infectious Diseases and Immunology, University of Sydney, Sydney, Australia
- Mycobacterial Research Program, Centenary Institute, Sydney, Australia
| | - Gayathri Nagalingam
- Department of Infectious Diseases and Immunology, University of Sydney, Sydney, Australia
- Mycobacterial Research Program, Centenary Institute, Sydney, Australia
| | - Warwick J Britton
- Department of Infectious Diseases and Immunology, University of Sydney, Sydney, Australia
- Mycobacterial Research Program, Centenary Institute, Sydney, Australia
| | - Nikolai Petrovsky
- Department of Endocrinology, Flinders University, Adelaide, Australia
- Vaxine Pty Ltd, Flinders Medical Centre, Adelaide, Australia
| | - James A Triccas
- Department of Infectious Diseases and Immunology, University of Sydney, Sydney, Australia.
- Mycobacterial Research Program, Centenary Institute, Sydney, Australia.
| |
Collapse
|
22
|
Menon V, Ayala VI, Rangaswamy SP, Kalisz I, Whitney S, Galmin L, Ashraf A, LaBranche C, Montefiori D, Petrovsky N, Kalyanaraman VS, Pal R. DNA prime/protein boost vaccination elicits robust humoral response in rhesus macaques using oligomeric simian immunodeficiency virus envelope and Advax delta inulin adjuvant. J Gen Virol 2017; 98:2143-2155. [PMID: 28758637 DOI: 10.1099/jgv.0.000863] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The partial success of the RV144 trial underscores the importance of envelope-specific antibody responses for an effective HIV-1 vaccine. Oligomeric HIV-1 envelope proteins delivered with a potent adjuvant are expected to elicit strong antibody responses with broad neutralization specificity. To test this hypothesis, two SIV envelope proteins were formulated with delta inulin-based adjuvant (Advax) and used to immunize nonhuman primates. Oligomeric gp140-gp145 from SIVmac251 and SIVsmE660 was purified to homogeneity. Oligomers showed high-affinity interaction with CD4 and were highly immunogenic in rabbits, inducing Tier 2 SIV-neutralizing antibodies. The immunogenicity of an oligomeric Env DNA prime and protein boost together with Advax was evaluated in Chinese rhesus macaques. DNA administration elicited antibodies to both envelopes, and titres were markedly enhanced following homologous protein boosts via intranasal and intramuscular routes. Strong antibody responses were detected against the V1 and V2 domains of gp120. During peak immune responses, a low to moderate level of neutralizing activity was detected against Tier 1A/1B SIV isolates, with a moderate level noted against a Tier 2 isolate. Increased serum antibody affinity to SIVmac251 gp140 and generation of Env-specific memory B cells were observed in the immunized macaques. Animals were subjected to low-dose intravaginal challenge with SIVmac251 one week after the last protein boost. One out of three immunized animals was protected from infection. Although performed with a small number of macaques, this study demonstrates the utility of oligomeric envelopes formulated with Advax in eliciting broad antibody responses with the potential to provide protection against SIV transmission.
Collapse
Affiliation(s)
- Veena Menon
- Advanced BioScience Laboratories, Inc., Rockville, MD, USA
| | - Victor I Ayala
- Advanced BioScience Laboratories, Inc., Rockville, MD, USA
| | | | - Irene Kalisz
- Advanced BioScience Laboratories, Inc., Rockville, MD, USA
| | | | - Lindsey Galmin
- Advanced BioScience Laboratories, Inc., Rockville, MD, USA
| | - Asma Ashraf
- Advanced BioScience Laboratories, Inc., Rockville, MD, USA
| | | | | | - Nikolai Petrovsky
- Vaxine Pty Ltd and Flinders University, Bedford Park, SA 5042, Australia
| | | | - Ranajit Pal
- Advanced BioScience Laboratories, Inc., Rockville, MD, USA
| |
Collapse
|
23
|
Honda-Okubo Y, Rajapaksha H, Sajkov D, Gordon D, Cox MMJ, Petrovsky N. Panblok-H1+advax H1N1/2009pdm vaccine: Insights into rapid development of a delta inulin adjuvanted recombinant pandemic influenza vaccine. Hum Vaccin Immunother 2017; 13:1-11. [PMID: 28301280 PMCID: PMC5489286 DOI: 10.1080/21645515.2017.1279765] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Timely vaccine supply is critical during influenza pandemics but is impeded by current virus-based manufacturing methods. The 2009 H1N1/2009pdm 'swine flu' pandemic reinforced the need for innovation in pandemic vaccine design. We report on insights gained during rapid development of a pandemic vaccine based on recombinant haemagglutinin (rHA) formulated with Advax™ delta inulin adjuvant (Panblok-H1/Advax). Panblok-H1/Advax was designed and manufactured within 1 month of the pandemic declaration by WHO and successfully entered human clinical testing in under 3 months from first isolation and sequencing of the novel pandemic virus, requiring several major challenges to be overcome. Panblok-H1/Advax successfully induced neutralising antibodies against the pandemic strain, but also induced cross-neutralising antibodies in a subset of subjects against an H1N1 strain (A/Puerto Rico/8/34) derived from the 1918 Spanish flu, highlighting the possibility to use Advax to induce more broadly cross-protective antibody responses. Interestingly, the rHA from H1N1/2009pdm exhibited variants in the receptor binding domain that had a major impact on receptor binding and hemagglutination ability. We used an in silico structural modeling approach to better understand the unusual behavior of the novel hemagglutinin, thereby demonstrating the power of computational modeling approaches for rapid characterization of new pandemic viruses. While challenges remain in ensuring ultrafast vaccine access for the entire population in response to future pandemics, the adjuvanted recombinant Panblok-H1/Advax vaccine proved its utility during a real-life pandemic situation.
Collapse
Affiliation(s)
- Yoshikazu Honda-Okubo
- a Vaxine Pty Ltd, Flinders Medical Centre , Adelaide , Australia.,b Department of Endocrinology , Flinders University , Adelaide , Australia
| | - Harinda Rajapaksha
- a Vaxine Pty Ltd, Flinders Medical Centre , Adelaide , Australia.,b Department of Endocrinology , Flinders University , Adelaide , Australia
| | - Dimitar Sajkov
- c Australian Respiratory and Sleep Medicine Institute , Adelaide , Australia
| | - David Gordon
- d Microbiology and Infectious Diseases Department , Flinders Medical Centre , Adelaide , Australia
| | | | - Nikolai Petrovsky
- a Vaxine Pty Ltd, Flinders Medical Centre , Adelaide , Australia.,b Department of Endocrinology , Flinders University , Adelaide , Australia
| |
Collapse
|
24
|
Mansfield KL, Hernández-Triana LM, Banyard AC, Fooks AR, Johnson N. Japanese encephalitis virus infection, diagnosis and control in domestic animals. Vet Microbiol 2017; 201:85-92. [PMID: 28284628 DOI: 10.1016/j.vetmic.2017.01.014] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 11/16/2022]
Abstract
Japanese encephalitis virus (JEV) is a significant cause of neurological disease in humans throughout Asia causing an estimated 70,000 human cases each year with approximately 10,000 fatalities. The virus contains a positive sense RNA genome within a host-derived membrane and is classified within the family Flaviviridae. Like many flaviviruses, it is transmitted by mosquitoes, particularly those of the genus Culex in a natural cycle involving birds and some livestock species. Spill-over into domestic animals results in a spectrum of disease ranging from asymptomatic infection in some species to acute neurological signs in others. The impact of JEV infection is particularly apparent in pigs. Although infection in adult swine does not result in symptomatic disease, it is considered a significant reproductive problem causing abortion, still-birth and birth defects. Infected piglets can display fatal neurological disease. Equines are also infected, resulting in non-specific signs including pyrexia, but occasionally leading to overt neurological disease that in extreme cases can lead to death. Veterinary vaccination is available for both pigs and horses. This review of JEV disease in livestock considers the current diagnostic techniques available for detection of the virus. Options for disease control and prevention within the veterinary sector are discussed. Such measures are critical in breaking the link to zoonotic transmission into the human population where humans are dead-end hosts.
Collapse
Affiliation(s)
- Karen L Mansfield
- Wildlife Zoonoses and Vector-Borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom; Department of Clinical Infection, Microbiology and Immunology, Institute for Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, United Kingdom
| | - Luis M Hernández-Triana
- Wildlife Zoonoses and Vector-Borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Ashley C Banyard
- Wildlife Zoonoses and Vector-Borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Anthony R Fooks
- Wildlife Zoonoses and Vector-Borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom; Department of Clinical Infection, Microbiology and Immunology, Institute for Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, United Kingdom
| | - Nicholas Johnson
- Wildlife Zoonoses and Vector-Borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom; Faculty of Health and Medicine, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
| |
Collapse
|
25
|
Diseases of the Nervous System. Vet Med (Auckl) 2017. [PMCID: PMC7322266 DOI: 10.1016/b978-0-7020-5246-0.00014-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
|
27
|
Vaccine Adjuvant Nanotechnologies. MICRO AND NANOTECHNOLOGY IN VACCINE DEVELOPMENT 2017. [PMCID: PMC7151801 DOI: 10.1016/b978-0-323-39981-4.00007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
The increasing sophistication of vaccine adjuvant design has been driven by improved understanding of the importance of nanoscale features of adjuvants to their immunological function. Newly available advanced nanomanufacturing techniques now allow very precise control of adjuvant particle size, shape, texture, and surface chemistry. Novel adjuvant concepts include self-assembling particles and targeted immune delivery. These individual concepts can be combined to create a single integrated vaccine nanoparticle-combining antigen, adjuvants, and DC-targeting elements. In the process, the concept of an adjuvant has broadened to include not only immune-stimulatory substances but also any design features that enhance the immune response against the relevant vaccine antigen. The modern definition of an adjuvant includes not only classical immune stimulators but also any aspects of particle size, shape, and surface chemistry that enhance vaccine immunogenicity. It even includes purely physical processes such as texturing of particle surfaces to maximize immunogenicity. Looking forward, adjuvants will increasingly be seen not as separate add-on items but as wholly integrated elements of a complete vaccine delivery package. Hence, vaccine systems will increasingly approach the complexity and sophistication of pathogens themselves, incorporating highly specific particle properties, contents, and behaviors, all designed to maximize immune system recognition and drive the immune response in the specific direction that affords maximal protection.
Collapse
|
28
|
Characterization of non-lethal West Nile Virus (WNV) infection in horses: Subclinical pathology and innate immune response. Microb Pathog 2016; 103:71-79. [PMID: 28012987 DOI: 10.1016/j.micpath.2016.12.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/27/2016] [Accepted: 12/19/2016] [Indexed: 11/21/2022]
Abstract
Most natural West Nile virus (WNV) infections in humans and horses are subclinical or sub-lethal and non-encephalitic. Yet, the main focus of WNV research remains on the pathogenesis of encephalitic disease, mainly conducted in mouse models. We characterized host responses during subclinical WNV infection in horses and compared outcomes with those obtained in a novel rabbit model of subclinical WNV infection (Suen et al. 2015. Pathogens, 4: 529). Experimental infection of 10 horses with the newly emerging WNV-strain, WNVNSW2011, did not result in neurological disease in any animal but transcriptional upregulation of both type I and II interferon (IFN) was seen in peripheral blood leukocytes prior to or at the time of viremia. Likewise, transcript upregulation for IFNs, TNFα, IL1β, CXCL10, TLRs, and MyD88 was detected in lymphoid tissues, while IFNα, CXCL10, TLR3, ISG15 and IRF7 mRNA was upregulated in brains with histopathological evidence of mild encephalitis, but absence of detectable viral RNA or antigen. These responses were reproduced in the New Zealand White rabbits (Oryctolagus cuniculus) experimentally infected with WNVNSW2011, by intradermal footpad inoculation. Kinetics of the anti-WNV antibody response was similar in horses and rabbits, which for both species may be explained by the early IFN and cytokine responses evident in circulating leukocytes and lymphoid organs. Given the similarities to the majority of equine infection outcomes, immunocompetent rabbits appear to represent a valuable small-animal model for investigating aspects of non-lethal WNV infections, notably mechanisms involved in abrogating morbidity.
Collapse
|
29
|
Wong TM, Petrovsky N, Bissel SJ, Wiley CA, Ross TM. Delta inulin-derived adjuvants that elicit Th1 phenotype following vaccination reduces respiratory syncytial virus lung titers without a reduction in lung immunopathology. Hum Vaccin Immunother 2016; 12:2096-2105. [PMID: 27215855 PMCID: PMC4994749 DOI: 10.1080/21645515.2016.1162931] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 02/17/2016] [Accepted: 03/02/2016] [Indexed: 10/21/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a significant cause of lower respiratory tract infections resulting in bronchiolitis and even mortality in the elderly and young children/infants. Despite the impact of this virus on human health, no licensed vaccine exists. Unlike many other viral infections, RSV infection or vaccination does not induce durable protective antibodies in humans. In order to elicit high titer, neutralizing antibodies against RSV, we investigated the use of the adjuvant Advax™, a novel polysaccharide adjuvant based on delta inulin microparticles, to enhance antibody titers following vaccination. BALB/c mice were vaccinated intramuscularly with live RSV as a vaccine antigen in combination with one of two formulations of Advax™. Advax-1 was comprised of the standard delta inulin adjuvant and Advax-2 was formulated delta inulin plus CpG oligodendronucleotides (ODNs). An additional group of mice were either mock vaccinated, immunized with vaccine only, or administered vaccine plus Imject Alum. Following 3 vaccinations, mice had neutralizing antibody titers that correlated with reduction in viral titers in the lungs. Advax-1 significantly enhanced serum RSV-specific IgG1 levels at week 6 indicative of a Th2 response, similar to titers in mice administered vaccine plus Imject Alum. In contrast, mice vaccinated with vaccine plus Advax-2 had predominately IgG2a titers indicative of a Th1 response that was maintained during the entire study. Interestingly, regardless of which AdvaxTM adjuvant was used, the neutralizing titers were similar between groups, but the viral lung titers were significantly lower (∼10E+3pfu/g) in mice administered vaccine with either AdvaxTM adjuvant compared to mice administered adjuvants only. The lung pathology in vaccinated mice with AdvaxTM was similar to Imject Alum. Overall, RSV vaccine formulated with AdvaxTM had high neutralizing antibody titers with low lung viral titers, but exacerbated lung pathology compared to unvaccinated mice.
Collapse
Affiliation(s)
- Terianne M. Wong
- Center for Vaccines and Immunology, Department of Infectious Diseases, University of Georgia, Athens, GA USA
| | | | | | - Clayton A. Wiley
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ted M. Ross
- Center for Vaccines and Immunology, Department of Infectious Diseases, University of Georgia, Athens, GA USA
| |
Collapse
|
30
|
Uddin MJ, Suen WW, Bosco-Lauth A, Hartwig AE, Hall RA, Bowen RA, Bielefeldt-Ohmann H. Kinetics of the West Nile virus induced transcripts of selected cytokines and Toll-like receptors in equine peripheral blood mononuclear cells. Vet Res 2016; 47:61. [PMID: 27267361 PMCID: PMC4895877 DOI: 10.1186/s13567-016-0347-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 05/17/2016] [Indexed: 12/21/2022] Open
Abstract
West Nile virus (WNV) is one of the most common causes of epidemic viral encephalitis in horses worldwide. Peripheral blood mononuclear cells (PBMCs) are amongst the first to encounter the virus following a mosquito bite. This study aimed to elucidate the transcription kinetics of cytokine, Toll-like receptor (TLRs) and TLRs-associated genes following WNV challenge of equine PBMCs. PBMCs were challenged with an Australian strain of WNV (WNVNSW2011) and transcriptomes were quantified at 2, 6, 12 and 24 h post-infection (pi) using qRT-PCR. Type I and II interferons (IFNα, β and γ) mRNA transcription increased following WNV exposure, as did the transcripts for IL1α, IL1β, IL6, IL8, and IL22, but with slightly varying kinetics. TLR1, 3, 5, 7-9 transcripts were also upregulated in equine PBMCsin response to WNV challenge, as were those for MyD88, NF-κB, TRAF3, STAT1 and 2, IRF3 and 7, ISG15, as well as SOCS1 and 3 compared to the control cells. Expression of selected genes in the draining lymph node, spleen and brain (medulla oblongata) of experimentally infected horses was also assessed and transcription of most of these genes was also upregulated here. Although qRT-PCR detected higher viral RNA at 24 h pi compared to 6 h pi, the virus did not replicate productively in equine PBMCs. The up-regulation of gene-transcription for selected cytokines, IFNs, TLRs and TLRs-associated molecules suggests their involvement in virus recognition and control of WNV infection in the horse.
Collapse
Affiliation(s)
- Muhammad Jasim Uddin
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Willy W Suen
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Angela Bosco-Lauth
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, USA
| | - Airn-Elizabeth Hartwig
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, USA
| | - Roy A Hall
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia
| | - Richard A Bowen
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, USA
| | - Helle Bielefeldt-Ohmann
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia. .,School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia. .,Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
31
|
Rosales-Mendoza S, Salazar-González JA, Decker EL, Reski R. Implications of plant glycans in the development of innovative vaccines. Expert Rev Vaccines 2016; 15:915-25. [DOI: 10.1586/14760584.2016.1155987] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP, Mexico
| | - Jorge A. Salazar-González
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP, Mexico
| | - Eva L. Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, Freiburg, Germany
- BIOSS – Centre for Biological Signalling Studies, Freiburg, Germany
- FRIAS – Freiburg Institute for Advanced Studies, Freiburg, Germany
| |
Collapse
|
32
|
Uddin MJ, Suen WW, Prow NA, Hall RA, Bielefeldt-Ohmann H. West Nile Virus Challenge Alters the Transcription Profiles of Innate Immune Genes in Rabbit Peripheral Blood Mononuclear Cells. Front Vet Sci 2015; 2:76. [PMID: 26697438 PMCID: PMC4677099 DOI: 10.3389/fvets.2015.00076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/30/2015] [Indexed: 11/13/2022] Open
Abstract
The peripheral innate immune response to West Nile virus (WNV) is crucial for control of virus spread to the central nervous system. Therefore, transcriptomes encoding the innate immune response proteins against WNV were investigated in peripheral blood mononuclear cells (PBMCs) of New Zealand White rabbits, a recently established novel rabbit model for WNV pathogenesis studies. PBMCs were challenged with an Australian WNV strain, WNVNSW2011, in vitro, and mRNA expression of selected immune response genes were quantified at 2-, 6-, 12-, and 24-h post-infection (pi) using qRT-PCR. Compared to mock-inoculated PBMCs, WNV-stimulated PBMCs expressed high levels of interferon (IFN) alpha (IFNA), gamma (IFNG), IL6, IL12, IL22, CXCL10, and pentraxin 3 (PTX3) mRNA. Likewise, TLR1, 2, 3, 4, 6, and 10 mRNA became up-regulated with the highest expression seen for TLR3, 4, and 6. TLRs-signaling downstream genes (MyD88, STAT1, TRAF3, IRF7, and IRF9) subsequently became up-regulated. The high expression of IFNs, TLR3, TLR4, TRAF3, STAT1, IRF7, and IRF9 are in accordance with antiviral activities, while expression of TNFA, HO1, iNOS, caspase 3, and caspase 9 transcripts suggests the involvement of oxidative stress and apoptosis in WNV-stimulated rabbit PBMCs, respectively. The level of WNVNSW2011 RNA increased at 24-h pi in PBMCs challenged with virus in vitro compared to input virus. The expression dynamics of selected genes were validated in PBMCs from rabbits experimentally infected with WNV in vivo. Higher expression of IFNA, IFN beta (IFNB), IFNG, TNFA, IL6, IL22, PTX3, TLR3 and TLR4, IRF7, IRF9, STST1, TRAF3, caspase 3, and caspase 9 were seen in PBMCs from WNV-infected rabbits on day 3 post-intradermal virus inoculation compared to PBMCs from uninfected control rabbits. This study highlights the array of cytokines and TLRs involved in the host innate immune response to WNV in the rabbit leukocytes and suggests that these cells may be a useful in vitro model for WNV infection study.
Collapse
Affiliation(s)
- Muhammad J Uddin
- School of Veterinary Science, University of Queensland , Gatton, QLD , Australia
| | - Willy W Suen
- School of Veterinary Science, University of Queensland , Gatton, QLD , Australia
| | - Natalie A Prow
- QIMR Berghofer Medical Research Institute , Brisbane, QLD , Australia
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, University of Queensland , St Lucia, QLD , Australia ; School of Chemistry and Molecular Biosciences, University of Queensland , St Lucia, QLD , Australia
| | - Helle Bielefeldt-Ohmann
- School of Veterinary Science, University of Queensland , Gatton, QLD , Australia ; Australian Infectious Diseases Research Centre, University of Queensland , St Lucia, QLD , Australia ; School of Chemistry and Molecular Biosciences, University of Queensland , St Lucia, QLD , Australia
| |
Collapse
|
33
|
Petrovsky N, Cooper PD. Advax™, a novel microcrystalline polysaccharide particle engineered from delta inulin, provides robust adjuvant potency together with tolerability and safety. Vaccine 2015; 33:5920-6. [PMID: 26407920 PMCID: PMC4639457 DOI: 10.1016/j.vaccine.2015.09.030] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 09/06/2015] [Accepted: 09/11/2015] [Indexed: 12/19/2022]
Abstract
There is an ongoing need for new adjuvants to facilitate development of vaccines against HIV, tuberculosis, malaria and cancer, amongst many others. Unfortunately, the most potent adjuvants are often associated with toxicity and safety issues. Inulin, a plant-derived polysaccharide, has no immunological activity in its native soluble form but when crystallized into a stable microcrystalline particulate from (delta inulin) acquires potent adjuvant activity. Delta inulin has been shown to enhance humoral and cellular immune responses against a broad range of co-administered viral, bacterial, parasitic and toxin antigens. Inulin normally crystallizes as large heterogeneous particles with a broad size distribution and variable solubility temperatures. To ensure reproducible delta inulin particles with a consistent size distribution and temperature of solubility, a current Good Manufacturing Practice (cGMP) process was designed to produce Advax™ adjuvant. In its cCMP form, Advax™ adjuvant has proved successful in human trials of vaccines against seasonal and pandemic influenza, hepatitis B and insect sting anaphylaxis, enhancing antibody and T-cell responses while being safe and well tolerated. Advax™ adjuvant represents a novel human adjuvant that enhances both humoral and cellular immunity. This review describes the discovery and development of Advax™ adjuvant and research into its unique mechanism of action.
Collapse
Affiliation(s)
- Nikolai Petrovsky
- Vaxine Pty Ltd, Flinders Medical Centre, Adelaide, SA 5042, Australia; Department of Endocrinology, Flinders Medical Centre and Flinders University, Adelaide 5042, Australia.
| | - Peter D Cooper
- Vaxine Pty Ltd, Flinders Medical Centre, Adelaide, SA 5042, Australia; John Curtin School of Medical Research, Australian National University, Canberra 2061, Australia
| |
Collapse
|
34
|
Calderon-Gonzalez R, Tobes R, Pareja E, Frande-Cabanes E, Petrovsky N, Alvarez-Dominguez C. Identification and characterisation of T-cell epitopes for incorporation into dendritic cell-delivered Listeria vaccines. J Immunol Methods 2015; 424:111-9. [PMID: 26031451 PMCID: PMC7127673 DOI: 10.1016/j.jim.2015.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 05/25/2015] [Accepted: 05/26/2015] [Indexed: 01/05/2023]
Abstract
Dendritic cells loaded with antigenic peptides, because of their safety and robust immune stimulation, would be ideal for induction of immunity to protect against listeriosis. However, there is no currently accepted method to predict which peptides derived from the Listeria proteome might confer protection. While elution of peptides from MHC molecules after Listeria infection yields high-affinity immune-dominant epitopes, these individual epitopes did not reliably confer Listeria protection. Instead we applied bioinformatic predictions of MHC class I and II epitopes to generate antigenic peptides that were then formulated with Advax™, a novel polysaccharide particulate adjuvant able to enhance cross-presentation prior to being screened for their ability to induce protective T-cell responses. A combination of at least four intermediate strength MHC-I binding epitopes and one weak MHC-II binding epitope when expressed in a single peptide sequence and formulated with Advax adjuvant induced a potent T-cell response and high TNF-α and IL-12 production by dendritic cells resulting in robust listeriosis protection in susceptible mice. This T-cell vaccine approach might be useful for the design of vaccines to protect against listeriosis or other intracellular infections.
Collapse
Affiliation(s)
- Ricardo Calderon-Gonzalez
- Grupo de Genómica, Proteómica y Vacunas, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Raquel Tobes
- Information Technologies Research Group, Era7 Bioinformatics, Granada, Spain
| | - Eduardo Pareja
- Information Technologies Research Group, Era7 Bioinformatics, Granada, Spain
| | - Elisabet Frande-Cabanes
- Grupo de Genómica, Proteómica y Vacunas, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Nikolai Petrovsky
- Department of Diabetes and Endocrinology, Flinders University, Adelaide, Australia; Vaxine Pty Ltd, Flinders Medical Center, Adelaide, Australia
| | - Carmen Alvarez-Dominguez
- Grupo de Genómica, Proteómica y Vacunas, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain.
| |
Collapse
|