1
|
Mao Q, Zhou S, Liu S, Peng C, Yin X, Li J, Zhang Y, Zhou W, Hou G, Jiang W, Liu H. Emergence of novel reassortant H3N3 avian influenza viruses with increased pathogenicity in chickens in 2023. Emerg Microbes Infect 2024; 13:2287683. [PMID: 37990831 PMCID: PMC10795584 DOI: 10.1080/22221751.2023.2287683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023]
Affiliation(s)
- Qiuyan Mao
- China Animal Health and Epidemiology Center, Qingdao, People’s Republic of China
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, People’s Republic of China
| | - Shuning Zhou
- China Animal Health and Epidemiology Center, Qingdao, People’s Republic of China
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, People’s Republic of China
| | - Shuo Liu
- China Animal Health and Epidemiology Center, Qingdao, People’s Republic of China
| | - Cheng Peng
- China Animal Health and Epidemiology Center, Qingdao, People’s Republic of China
| | - Xin Yin
- China Animal Health and Epidemiology Center, Qingdao, People’s Republic of China
| | - Jinping Li
- China Animal Health and Epidemiology Center, Qingdao, People’s Republic of China
| | - Yaxin Zhang
- China Animal Health and Epidemiology Center, Qingdao, People’s Republic of China
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Wanting Zhou
- China Animal Health and Epidemiology Center, Qingdao, People’s Republic of China
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, People’s Republic of China
| | - Guangyu Hou
- China Animal Health and Epidemiology Center, Qingdao, People’s Republic of China
| | - Wenming Jiang
- China Animal Health and Epidemiology Center, Qingdao, People’s Republic of China
| | - Hualei Liu
- China Animal Health and Epidemiology Center, Qingdao, People’s Republic of China
| |
Collapse
|
2
|
Cargnin Faccin F, Cáceres CJ, Gay LC, Seibert B, van Bentem N, Rodriguez LA, Soares Fraiha AL, Cardenas M, Geiger G, Ortiz L, Carnaccini S, Kapczynski DR, Rajao DS, Perez DR. Mass vaccination with reassortment-impaired live H9N2 avian influenza vaccine. NPJ Vaccines 2024; 9:136. [PMID: 39097573 PMCID: PMC11297921 DOI: 10.1038/s41541-024-00923-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/12/2024] [Indexed: 08/05/2024] Open
Abstract
Avian influenza poses a severe threat to poultry production and global food security, prompting the development of vaccination programs in numerous countries. Modified live virus (MLV) vaccines, with their potential for mass application, offer a distinct advantage over existing options. However, concerns surrounding reversion, recombination, and unintended transmission have hindered the progress of MLV development for avian influenza in poultry. To address these concerns, we engineered reassortment-impaired, non-transmissible, safe, immunogenic, and protective MLVs through the rearrangement of internal gene segments and additional modifications to the surface gene segments HA and NA. The unique peptide marker aspartic acid-arginine-proline-alanine-valine-isoleucine-alanine-asparragine (DRPAVIAN) was incorporated into HA, while NA was modified to encode the chicken interleukin-18 (ckIL18) gene (MLV-H9N2-IL). In vitro, the MLV-H9N2 and MLV-H9N2-IL candidates demonstrated stability and virus titers comparable to the wild-type H9N2 strain. In chickens, the MLV-H9N2 and MLV-H9N2-IL candidates did not transmit via direct contact. Co-infection studies with wild-type virus confirmed that the altered HA and NA segments exhibited fitness disadvantages and did not reassort. Vaccinated chickens showed no clinical signs upon vaccination, all seroconverted, and the inclusion of ckIL18 in the MLV-H9N2-IL vaccine enhanced neutralizing antibody production. A significant decrease in viral loads post-challenge underscored the protective effect of the MLVs. The MLV-H9N2-IL vaccine, administered via drinking water, proved immunogenic in chickens in a dose-dependent manner, generating protective levels of neutralizing antibodies upon aggressive homologous virus challenge. In summary, this study lays the groundwork for safe MLVs against avian influenza suitable for mass vaccination efforts.
Collapse
Affiliation(s)
- Flavio Cargnin Faccin
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - C Joaquin Cáceres
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - L Claire Gay
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Brittany Seibert
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Nick van Bentem
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Division of Farm Animal Health, Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Luis A Rodriguez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ana Luiza Soares Fraiha
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Departamento de Medicina Veterinária Preventiva, Universidade Federal de Minas Gerais, Belo, Horizonte, Minas Gerais, Brazil
| | - Matias Cardenas
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Ginger Geiger
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Lucia Ortiz
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Silvia Carnaccini
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Darrell R Kapczynski
- Exotic and Emerging Avian Viral Disease Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, USDA, Athens, GA, USA
| | - Daniela S Rajao
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Daniel R Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| |
Collapse
|
3
|
Fusaro A, Pu J, Zhou Y, Lu L, Tassoni L, Lan Y, Lam TTY, Song Z, Bahl J, Chen J, Gao GF, Monne I, Liu J. Proposal for a Global Classification and Nomenclature System for A/H9 Influenza Viruses. Emerg Infect Dis 2024; 30:1-13. [PMID: 39043566 PMCID: PMC11286050 DOI: 10.3201/eid3008.231176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
Influenza A/H9 viruses circulate worldwide in wild and domestic avian species, continuing to evolve and posing a zoonotic risk. A substantial increase in human infections with A/H9N2 subtype avian influenza viruses (AIVs) and the emergence of novel reassortants carrying A/H9N2-origin internal genes has occurred in recent years. Different names have been used to describe the circulating and emerging A/H9 lineages. To address this issue, an international group of experts from animal and public health laboratories, endorsed by the WOAH/FAO Network of Expertise on Animal Influenza, has created a practical lineage classification and nomenclature system based on the analysis of 10,638 hemagglutinin sequences from A/H9 AIVs sampled worldwide. This system incorporates phylogenetic relationships and epidemiologic characteristics designed to trace emerging and circulating lineages and clades. To aid in lineage and clade assignment, an online tool has been created. This proposed classification enables rapid comprehension of the global spread and evolution of A/H9 AIVs.
Collapse
|
4
|
Lean FZX, Falchieri M, Furman N, Tyler G, Robinson C, Holmes P, Reid SM, Banyard AC, Brown IH, Man C, Núñez A. Highly pathogenic avian influenza virus H5N1 infection in skua and gulls in the United Kingdom, 2022. Vet Pathol 2024; 61:421-431. [PMID: 38140946 DOI: 10.1177/03009858231217224] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
The reemergence of the highly pathogenic avian influenza virus (HPAIV) subtype H5N1 in the United Kingdom in 2021-2022 has caused unprecedented epizootic events in wild birds and poultry. During the summer of 2022, there was a shift in virus transmission dynamics resulting in increased HPAIV infection in seabirds, and consequently, a profound impact on seabird populations. To understand the pathological impact of HPAIV in seabirds, we evaluated the virus antigen distribution and associated pathological changes in the tissues of great skua (Stercorarius skua, n = 8), long-tailed skua (Stercorarius longicaudus, n = 1), European herring gull (Larus argentatus, n = 5), and black-headed gull (Chroicocephalus ridibundus, n = 4), which succumbed to natural infection of HPAIV during the summer of 2022. Cases were collected from Shetland, including Scatness (mainland), No Ness (mainland), Clumlie (mainland), Hermaness (island), Fair Isle (island), Noss (island), and the West Midlands, South East, and South West of England. Grossly, gizzard ulceration was observed in one great skua and pancreatic necrosis was observed in 4 herring gulls, with intralesional viral antigen detected subsequently. Microscopical analysis revealed neuro-, pneumo-, lymphoid-, and cardiomyotropism of HPAIV H5N1, with the most common virus-associated pathological changes being pancreatic and splenic necrosis. Examination of the reproductive tract of the great skua revealed HPAIV-associated oophoritis and salpingitis, and virus replication within the oviductal epithelium. The emergence of HPAIV in seabirds Stercorariidae and Laridae, particularly during summer 2022, has challenged the dogma of HPAIV dynamics, posing a significant threat to wild bird life with potential implications for the reproductive performance of seabirds of conservation importance.
Collapse
Affiliation(s)
- Fabian Z X Lean
- Animal and Plant Health Agency, Weybridge, UK
- Royal Veterinary College, Hertfordshire, UK
| | | | | | | | | | - Paul Holmes
- APHA Shrewsbury Veterinary Investigation Centre, UK
| | | | | | - Ian H Brown
- Animal and Plant Health Agency, Weybridge, UK
| | | | | |
Collapse
|
5
|
Han J, Chang W, Fang J, Hou X, Li Z, Wang J, Deng W. The H9N2 avian influenza virus increases APEC adhesion to oviduct epithelia by viral NS1 protein-mediated activation of the TGF-β pathway. J Virol 2024; 98:e0151223. [PMID: 38415626 PMCID: PMC10949501 DOI: 10.1128/jvi.01512-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
H9N2 avian influenza is a low-pathogenic avian influenza circulating in poultry and wild birds worldwide and frequently contributes to chicken salpingitis that is caused by avian pathogenic Escherichia coli (APEC), leading to huge economic losses and risks for food safety. Currently, how the H9N2 virus contributes to APEC infection and facilitates salpingitis remains elusive. In this study, in vitro chicken oviduct epithelial cell (COEC) model and in vivo studies were performed to investigate the role of H9N2 viruses on secondary APEC infection, and we identified that H9N2 virus enhances APEC infection both in vitro and in vivo. To understand the mechanisms behind this phenomenon, adhesive molecules on the cell surface facilitating APEC adhesion were checked, and we found that H9N2 virus could upregulate the expression of fibronectin, which promotes APEC adhesion onto COECs. We further investigated how fibronectin expression is regulated by H9N2 virus infection and revealed that transforming growth factor beta (TGF-β) signaling pathway is activated by the NS1 protein of the virus, thus regulating the expression of adhesive molecules. These new findings revealed the role of H9N2 virus in salpingitis co-infected with APEC and discovered the molecular mechanisms by which the H9N2 virus facilitates APEC infection, offering new insights to the etiology of salpingitis with viral-bacterial co-infections.IMPORTANCEH9N2 avian influenza virus (AIV) widely infects poultry and is sporadically reported in human infections. The infection in birds frequently causes secondary bacterial infections, resulting in severe symptoms like pneumonia and salpingitis. Currently, the mechanism that influenza A virus contributes to secondary bacterial infection remains elusive. Here we discovered that H9N2 virus infection promotes APEC infection and further explored the underlying molecular mechanisms. We found that fibronectin protein on the cell surface is vital for APEC adhesion and also showed that H9N2 viral protein NS1 increased the expression of fibronectin by activating the TGF-β signaling pathway. Our findings offer new information on how AIV infection promotes APEC secondary infection, providing potential targets for mitigating severe APEC infections induced by H9N2 avian influenza, and also give new insights on the mechanisms on how viruses promote secondary bacterial infections in animal and human diseases.
Collapse
Affiliation(s)
- Jinjie Han
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenchi Chang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Junyang Fang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaolan Hou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhijun Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jingyu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Wen Deng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
6
|
Amin F, Mukhtar N, Ali M, Shehzad R, Ayub S, Aslam A, Sheikh AA, Sultan B, Mahmood MD, Shahid MF, Yaqub S, Aslam HB, Aziz MW, Yaqub T. Mapping Genetic Markers Associated with Antigenicity and Host Range in H9N2 Influenza A Viruses Infecting Poultry in Pakistan. Avian Dis 2024; 68:43-51. [PMID: 38687107 DOI: 10.1637/aviandiseases-d-23-00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/26/2023] [Indexed: 05/02/2024]
Abstract
The aim of the current study was to map the genetic diversity in the haemagglutinin (HA) glycoprotein of influenza A viruses (IAVs) of the H9N2 subtype. Twenty-five H9N2 IAVs were isolated from broiler chickens from March to July 2019. The HA gene was amplified, and phylogenetic analysis was performed to determine the evolutionary relationship. Important antigenic amino acid residues of HA attributed to immune escape and zoonotic potential were compared among H9N2 IAVs. Phylogenetic analysis revealed that sublineage B2 under the G1 lineage in Pakistan was found to be diversified, and newly sequenced H9N2 isolates were nested into two clades (A and B). Mutations linked to the antigenic variation and potential immune escape were observed as G72E (1/25, 4%), A180T (3/25, 12%), and A180V (1/25, 4%). A twofold significant reduction (P < 0.01) in log2 hemagglutination inhibition titers was observed with H9N2 IAV naturally harboring amino acid V180 instead of A180 in HA protein. Moreover, in the last 20 years, complete substitution at residues (T127D, D135N, and L150N) and partial substitution at residues (72, 74, 131, 148, 180, 183, 188, 216, 217, and 249, mature H9 HA numbering) associated with changes in antigenicity were observed. The presence of L216 in all H9N2 IAV isolates and T/V180 in four isolates in the receptor-binding site reveals the potential of these viruses to cross the species barrier to infect human or mammals. The current study observed the circulation of antigenically diverse H9N2 IAV variants that possess potential mutations that can escape the host immune system.
Collapse
Affiliation(s)
- Faisal Amin
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
- Grand Parent Laboratory, Lahore 54500, Pakistan
| | - Nadia Mukhtar
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Muzaffar Ali
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Rehman Shehzad
- Grand Parent Laboratory, Lahore 54500, Pakistan
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore 54590, Pakistan
| | - Saima Ayub
- Institute of Public Health, Lahore 54610, Pakistan
| | - Asim Aslam
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Ali Ahmed Sheikh
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | | | | | - Muhammad Furqan Shahid
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
- Veterinary Research Institute, Lahore 54600, Pakistan
| | - Saima Yaqub
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Hassaan Bin Aslam
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Muhammad Waqar Aziz
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Tahir Yaqub
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan,
| |
Collapse
|
7
|
Liu J, Yan P, Li Y, Yu J, Huang Y, Bai R, Liu M, Wang N, Liu L, Zhu J, Xiao J, Guo L, Liu G, Zhang F, Yang X, He B, Zeng J, Zeng X. Gut microbiota and serum metabolome reveal the mechanism by which TCM polysaccharides alleviate salpingitis in laying hens challenged by bacteria. Poult Sci 2024; 103:103288. [PMID: 38064885 PMCID: PMC10749910 DOI: 10.1016/j.psj.2023.103288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 12/29/2023] Open
Abstract
This paper aimed to evaluate the effect of 3 kinds of TCM polysaccharides instead of antibiotics in preventing salpingitis in laying hens. After feeding the laying hens with Lotus leaf polysaccharide, Poria polysaccharide, and Epimedium polysaccharide, mixed bacteria (E. coli and Staphylococcus aureus) were used to infect the oviduct to establish an inflammation model. Changes in antioxidant, serum immunity, anti-inflammatory, gut microbiota, and serum metabolites were evaluated. The results showed that the 3 TCM polysaccharides could increase the expression of antioxidant markers SOD, GSH, and CAT, and reduce the accumulation of MDA in the liver; the contents of IgA and IgM in serum were increased. Decreased the mRNA expression of TLR4, NFκB, TNF-α, IFN-γ, IL1β, IL6, and IL8, and increased the mRNA expression of anti-inflammatory factor IL5 in oviduct tissue. 16sRNA high-throughput sequencing revealed that the 3 TCM polysaccharides improved the intestinal flora disturbance caused by bacterial infection, increased the abundance of beneficial bacteria such as Bacteroides and Actinobacillus, and decreased the abundance of harmful bacteria such as Romboutsia, Turicibacter, and Streptococcus. Metabolomics showed that the 3 TCM polysaccharides could increase the content of metabolites such as 3-hydroxybutyric acid and isobutyl-L-carnitine, and these results could alleviate the further development of salpingitis. In conclusion, the present study has found that using TCM polysaccharides instead of antibiotics was a feasible way to prevent bacterial salpingitis in laying hens, which might make preventing this disease no longer an issue for breeding laying hens.
Collapse
Affiliation(s)
- Jiali Liu
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| | - Pupu Yan
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| | - Yana Li
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| | - Jie Yu
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| | - Yongxi Huang
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| | - Ruonan Bai
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| | - Man Liu
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| | - Ning Wang
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| | - Lian Liu
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| | - Jun Zhu
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| | - Junhao Xiao
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| | - Liwei Guo
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China.
| | - Guoping Liu
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| | - Fuxian Zhang
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| | - Xiaolin Yang
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| | - Bin He
- Institute of Animal Husbandry and Veterinary Medicine, Wuhan Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Jianguo Zeng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Xiaoqin Zeng
- The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
8
|
Naiqing X, Tang X, Wang X, Cai M, Liu X, Lu X, Hu S, Gu M, Hu J, Gao R, Liu K, Chen Y, Liu X, Wang X. Hemagglutinin affects replication, stability and airborne transmission of the H9N2 subtype avian influenza virus. Virology 2024; 589:109926. [PMID: 37952465 DOI: 10.1016/j.virol.2023.109926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
H9N2 subtype avian influenza virus (AIV) can transmit by direct as well as airborne contacts. It has been widespread in poultry and continued to contribute to zoonotic spillover events by providing its six internal genes for the reassortment of novel influenza viruses (eg, H7N9) that infect poultry and humans. Compared to H7N9, H9N2 virus displays an efficient airborne transmissibility in poultry, but the mechanisms of transmission difference have been insufficiently studied. The Hemagglutinin (HA) and viral polymerase acidic protein (PA) have been implicated in the airborne transmission of influenza A viruses. Accordingly, we generated the reassortant viruses of circulating airborne transmissible H9N2 and non-airborne transmissible H7N9 viruses carrying HA and/or PA gene. The introduction of the PA gene from H7N9 into the genome of H9N2 virus resulted in a reduction in airborne transmission among chickens, while the isolated introduction of the HA gene segment completely eliminated airborne transmission among chickens. We further showed that introduction of HA gene of non-transmissible H7N9 did not influence the HA/NA balance of H9N2 virus, but increased the threshold for membrane fusion and decreased the acid stability. Thus, our results indicate that HA protein plays a key role in replication, stability, and airborne transmission of the H9N2 subtype AIV.
Collapse
Affiliation(s)
- Xu Naiqing
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Xinen Tang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Xin Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Miao Cai
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Xiaolong Lu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Min Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Ruyi Gao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Kaituo Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.
| | - Yu Chen
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| |
Collapse
|
9
|
Alizadeh M, Raj S, Shojadoost B, Matsuyama-Kato A, Boodhoo N, Abdelaziz K, Sharif S. In ovo administration of retinoic acid enhances cell-mediated immune responses against an inactivated H9N2 avian influenza virus vaccine. Vaccine 2023; 41:7281-7289. [PMID: 37923694 DOI: 10.1016/j.vaccine.2023.10.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 10/15/2023] [Accepted: 10/22/2023] [Indexed: 11/07/2023]
Abstract
The H9N2 subtype avian influenza virus (AIV) is a low pathogenic AIV that infects avian species and lead to huge economical losses in the poultry industry. The unique immunomodulatory properties of Retinoic acid (RA), an active component of vitamin A, highlights its potential to enhance chicken's resistance to infectious diseases and perhaps vaccine-induced immunity. Therefore, the present study evaluated the effects of in ovo supplementation of RA on the immunogenicity and protective efficacy of an inactivated avian influenza virus vaccine. On embryonic day 18, eggs were inoculated with either 90 μmol RA/200 μL/egg or diluent into the amniotic sac. On days 7 and 21 post-hatch, birds were vaccinated with 15 μg of β-propiolactone (BPL) inactivated H9N2 virus via the intramuscular route. One group received BPL in combination with an adjuvant, while the other group received saline solution and served as a non-vaccinated control group. Serum samples were collected on days 7, 14, 21, 28, 35, and 42 post-primary vaccination (ppv) for antibody analysis. On day 24 ppv, spleens were collected, and splenocytes were isolated to analyze cytokine expression, interferon gamma (IFN-γ) production, and cell population. On day 28 ppv, birds in all groups were infected with H9N2 virus and oral and cloacal swabs were collected for TCID50 (50 % Tissue Culture Infectious Dose) assay up to day 7 post-infection. The results demonstrated that in ovo administration of RA did not significantly enhance the AIV vaccine-induced antibody response against H9N2 virus compared to the group that received the vaccine alone. However, RA supplementation enhanced the frequency of macrophages (KUL01+), expression of inflammatory cytokines and production of IFN-γ by splenocytes. In addition, RA administration reduced oral shedding of AIV on day 5 post-infection. In conclusion, these findings suggest that RA can be supplemented in ovo to enhance AIV vaccine efficacy against LPAIV.
Collapse
Affiliation(s)
- Mohammadali Alizadeh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | - Sugandha Raj
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | | | - Ayumi Matsuyama-Kato
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | - Nitish Boodhoo
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | - Khaled Abdelaziz
- Animal and Veterinary Sciences Department, Clemson University, Clemson, SC 29634, USA.
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
10
|
Zhou J, Qiao ML, Jahejo AR, Han XY, Wang P, Wang Y, Ren JL, Niu S, Zhao YJ, Zhang D, Bi YH, Wang QH, Si LL, Fan RW, Shang GJ, Tian WX. Effect of Avian Influenza Virus subtype H9N2 on the expression of complement-associated genes in chicken erythrocytes. Br Poult Sci 2023:1-9. [PMID: 36939295 DOI: 10.1080/00071668.2023.2191308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
The H9N2 subtype avian influenza virus can infect both chickens and humans. Previous studies have reported a role for erythrocytes in immunity. However, the role of H9N2 against chicken erythrocytes and the presence of complement-related genes in erythrocytes has not been studied. This research investigated the effect of H9N2 on complement-associated gene expression in chicken erythrocytes. The expression of complement-associated genes (C1s, C1q, C2, C3, C3ar1, C4, C4a, C5, C5ar1, C7, CD93 and CFD) was detected by reverse transcription-polymerase chain reaction (RT-PCR). Quantitative Real-Time PCR (qRT-PCR) was used to analyse the differential expression of complement-associated genes in chicken erythrocytes at 0 h, 2 h, 6 h and 10 h after the interaction between H9N2 virus and chicken erythrocytes in vitro and 3, 7 and 14 d after H9N2 virus nasal infection of chicks. Expression levels of C1q, C4, C1s, C2, C3, C5, C7 and CD93 were significantly up-regulated at 2 h and significantly down-regulated at 10 h. Gene expression levels of C1q, C3ar1, C4a, CFD and C5ar1 were seen to be different at each time point. The expression levels of C1q, C4, C1s, C2, C3, C5, C7, CFD, C3ar1, C4a and C5ar1 were significantly up-regulated at 7 d and the gene expression of levels of C3, CD93 and C5ar1 were seen to be different at each time point. The results confirmed that all the complement-associated genes were expressed in chicken erythrocytes and showed the H9N2 virus interaction with chicken erythrocytes and subsequent regulation of chicken erythrocyte complement-associated genes expression. This study reported, for the first time, the relationship between H9N2 and complement system of chicken erythrocytes, which will provide a foundation for further research into the prevention and control of H9N2 infection.
Collapse
Affiliation(s)
- J Zhou
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.,Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - M L Qiao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.,Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - A R Jahejo
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.,Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - X Y Han
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.,Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - P Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.,Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Y Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.,Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - J L Ren
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.,Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - S Niu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.,Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Y J Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.,Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - D Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.,Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Y H Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, China
| | - Q H Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - L L Si
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - R W Fan
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.,Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - G J Shang
- Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - W X Tian
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.,Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| |
Collapse
|
11
|
Cho HK, Kang YM, Sagong M, Kim J, Kim H, An S, Lee YJ, Kang HM. Protection of SPF Chickens by H9N2 Y439 and G1 Lineage Vaccine against Homologous and Heterologous Viruses. Vaccines (Basel) 2023; 11:vaccines11030538. [PMID: 36992122 DOI: 10.3390/vaccines11030538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
Prior to the identification of low pathogenic avian influenza H9N2 viruses belonging to the Y280 lineage in 2020, Y439 lineage viruses had been circulating in the Republic of Korea since 1996. Here, we developed a whole inactivated vaccine (vac564) by multiple passage of Y439 lineage viruses and then evaluated immunogenicity and protective efficacy in specific-pathogen-free chickens. We found that LBM564 could be produced at high yield in eggs (108.4EID50/0.1 mL; 1024 hemagglutinin units) and was immunogenic (8.0 ± 1.2 log2) in chickens. The vaccine showed 100% inhibition of virus in the cecal tonsil with no viral shedding detected in either oropharyngeal or cloacal swabs after challenge with homologous virus. However, it did not induce effective protection against challenge with heterologous virus. An imported commercial G1 lineage vaccine inhibited viral replication against Y280 and Y439 lineage viruses in major tissues, although viral shedding in oropharyngeal and cloacal swabs was observed up until 5 dpi after exposure to both challenge viruses. These results suggest that a single vaccination with vac564 could elicit immune responses, showing it to be capable of protecting chickens against the Y439 lineage virus. Thus, our results suggest the need to prepare suitable vaccines for use against newly emerging and re-emerging H9N2 viruses.
Collapse
Affiliation(s)
- Hyun-Kyu Cho
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Republic of Korea
| | - Yong-Myung Kang
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Republic of Korea
| | - Mingeun Sagong
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Republic of Korea
| | - Juhun Kim
- Bioapp Institute, 394 Jigok-ro, Pohang-si 37668, Republic of Korea
| | - Hyunjun Kim
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Republic of Korea
| | - Sungjun An
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Republic of Korea
| | - Youn-Jeong Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Republic of Korea
| | - Hyun-Mi Kang
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Republic of Korea
| |
Collapse
|
12
|
Cheng X, Ning Z. Research progress on bird eggshell quality defects: a review. Poult Sci 2023; 102:102283. [PMID: 36399932 PMCID: PMC9673113 DOI: 10.1016/j.psj.2022.102283] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
The eggshell quality declined with extending of chicken laying cycles. Eggshell quality is a crucial feature that not only affects consumer preference, but also influences producers' economic profitability. The eggshell ultrastructure consists of mammillary, palisade, and vertical crystal layers. Any defect in shell structure results in a reduction in eggshell quality. Speckled, translucent, pimpled, and soft eggshells are common defects that cause significant financial losses for farmers and food security concerns for consumers. Therefore, reducing the faulty eggshells is critical for poultry production. Defective eggshell quality has been attributed to hereditary factors and external environmental stimuli. As such, improvements can be carried out through selective breeding and environmental control of components such as temperature, moisture, and diet formula balance. In this review, the molecular mechanisms of the main eggshell quality defects (speckled, translucent, pimpled, broken, and soft-shell eggs) and the relevant improvement methods are detailed. We hope this review will serve as a useful resource for poultry production management and effectively increasing eggshell quality.
Collapse
Affiliation(s)
- Xue Cheng
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhonghua Ning
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
13
|
Adlhoch C, Fusaro A, Gonzales JL, Kuiken T, Marangon S, Niqueux É, Staubach C, Terregino C, Aznar I, Guajardo IM, Baldinelli F. Avian influenza overview September - December 2022. EFSA J 2023; 21:e07786. [PMID: 36698491 PMCID: PMC9851911 DOI: 10.2903/j.efsa.2023.7786] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Between October 2021 and September 2022 Europe has suffered the most devastating highly pathogenic avian influenza (HPAI) epidemic with a total of 2,520 outbreaks in poultry, 227 outbreaks in captive birds, and 3,867 HPAI virus detections in wild birds. The unprecedent geographical extent (37 European countries affected) resulted in 50 million birds culled in affected establishments. In the current reporting period, between 10 September and 2 December 2022, 1,163 HPAI virus detections were reported in 27 European countries in poultry (398), captive (151) and wild birds (613). A decrease in HPAI virus detections in colony-breeding seabirds species and an increase in the number of detections in waterfowl has been observed. The continuous circulation of the virus in the wild reservoir has led to the frequent introduction of the virus into poultry populations. It is suspected that waterfowl might be more involved than seabirds in the incursion of HPAI virus into poultry establishments. In the coming months, the increasing infection pressure on poultry establishments might increase the risk of incursions in poultry, with potential further spread, primarily in areas with high poultry densities. The viruses detected since September 2022 (clade 2.3.4.4b) belong to eleven genotypes, three of which have circulated in Europe during the summer months, while eight represent new genotypes. HPAI viruses were also detected in wild and farmed mammal species in Europe and North America, showing genetic markers of adaptation to replication in mammals. Since the last report, two A(H5N1) detections in humans in Spain, one A(H5N1), one A(H5N6) and one A(H9N2) human infection in China as well as one A(H5) infection without NA-type result in Vietnam were reported, respectively. The risk of infection is assessed as low for the general population in the EU/EEA, and low to medium for occupationally exposed people.
Collapse
|
14
|
Adlhoch C, Fusaro A, Gonzales JL, Kuiken T, Marangon S, Niqueux É, Staubach C, Terregino C, Guajardo IM, Chuzhakina K, Baldinelli F. Avian influenza overview June - September 2022. EFSA J 2022; 20:e07597. [PMID: 36247870 PMCID: PMC9552036 DOI: 10.2903/j.efsa.2022.7597] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The 2021-2022 highly pathogenic avian influenza (HPAI) epidemic season is the largest HPAI epidemic so far observed in Europe, with a total of 2,467 outbreaks in poultry, 47.7 million birds culled in the affected establishments, 187 outbreaks in captive birds, and 3,573 HPAI virus detections in wild birds with an unprecedent geographical extent reaching from Svalbard islands to South Portugal and Ukraine, affecting 37 European countries. Between 11 June and 9 September 2022, 788 HPAI virus detections were reported in 16 European countries in poultry (56), captive (22) and wild birds (710). Several colony-breeding seabird species exhibited widespread and massive mortality from HPAI A(H5N1) virus along the northwest coast of Europe. This resulted in an unprecedentedly high level of HPAI virus detections in wild birds between June and August 2022 and represents an ongoing risk of infection for domestic birds. HPAI outbreaks were still observed in poultry from June to September with five-fold more infected premises than observed during the same period in 2021 and mostly distributed along the Atlantic coast. Response options to this new epidemiological situation include the definition and rapid implementation of suitable and sustainable HPAI mitigation strategies such as appropriate biosecurity measures and surveillance strategies for early detection in the different poultry production systems. The viruses currently circulating in Europe belong to clade 2.3.4.4b with seven genotypes, three of which identified for the first time during this time period, being detected during summer. HPAI A(H5) viruses were also detected in wild mammal species in Europe and North America and showed genetic markers of adaptation to replication in mammals. Since the last report, two A(H5N6), two A(H9N2) and one A(H10N3) human infections were reported in China. The risk of infection is assessed as low for the general population in the EU/EEA, and low to medium for occupationally exposed people.
Collapse
|
15
|
Adlhoch C, Fusaro A, Gonzales JL, Kuiken T, Marangon S, Niqueux É, Staubach C, Terregino C, Aznar I, Guajardo IM, Baldinelli F. Avian influenza overview March - June 2022. EFSA J 2022; 20:e07415. [PMID: 35949938 PMCID: PMC9356771 DOI: 10.2903/j.efsa.2022.7415] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The 2021-2022 highly pathogenic avian influenza (HPAI) epidemic season is the largest epidemic so far observed in Europe, with a total of 2,398 outbreaks in poultry, 46 million birds culled in the affected establishments, 168 detections in captive birds, and 2,733 HPAI events in wild birds in 36 European countries. Between 16 March and 10 June 2022, 1,182 HPAI virus detections were reported in 28 EU/EEA countries and United Kingdom in poultry (750), and in wild (410) and captive birds (22). During this reporting period, 86% of the poultry outbreaks were secondary due to between-farm spread of HPAI virus. France accounted for 68% of the overall poultry outbreaks, Hungary for 24% and all other affected countries for less than 2% each. Most detections in wild birds were reported by Germany (158), followed by the Netherlands (98) and the United Kingdom (48). The observed persistence of HPAI (H5) virus in wild birds since the 2020-2021 epidemic wave indicates that it may have become endemic in wild bird populations in Europe, implying that the health risk from HPAI A(H5) for poultry, humans, and wildlife in Europe remains present year-round, with the highest risk in the autumn and winter months. Response options to this new epidemiological situation include the definition and the rapid implementation of suitable and sustainable HPAI mitigation strategies such as appropriate biosecurity measures and surveillance strategies for early detection measures in the different poultry production systems. Medium to long-term strategies for reducing poultry density in high-risk areas should also be considered. The results of the genetic analysis indicate that the viruses currently circulating in Europe belong to clade 2.3.4.4b. HPAI A(H5) viruses were also detected in wild mammal species in Canada, USA and Japan, and showed genetic markers of adaptation to replication in mammals. Since the last report, four A(H5N6), two A(H9N2) and two A(H3N8) human infections were reported in China and one A(H5N1) in USA. The risk of infection is assessed as low for the general population in the EU/EEA, and low to medium for occupationally exposed people.
Collapse
|
16
|
Panzarin V, Marciano S, Fortin A, Brian I, D’Amico V, Gobbo F, Bonfante F, Palumbo E, Sakoda Y, Le KT, Chu DH, Shittu I, Meseko C, Haido AM, Odoom T, Diouf MN, Djegui F, Steensels M, Terregino C, Monne I. Redesign and Validation of a Real-Time RT-PCR to Improve Surveillance for Avian Influenza Viruses of the H9 Subtype. Viruses 2022; 14:v14061263. [PMID: 35746734 PMCID: PMC9227555 DOI: 10.3390/v14061263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 02/01/2023] Open
Abstract
Avian influenza viruses of the H9 subtype cause significant losses to poultry production in endemic regions of Asia, Africa and the Middle East and pose a risk to human health. The availability of reliable and updated diagnostic tools for H9 surveillance is thus paramount to ensure the prompt identification of this subtype. The genetic variability of H9 represents a challenge for molecular-based diagnostic methods and was the cause for suboptimal detection and false negatives during routine diagnostic monitoring. Starting from a dataset of sequences related to viruses of different origins and clades (Y439, Y280, G1), a bioinformatics workflow was optimized to extract relevant sequence data preparatory for oligonucleotides design. Analytical and diagnostic performances were assessed according to the OIE standards. To facilitate assay deployment, amplification conditions were optimized with different nucleic extraction systems and amplification kits. Performance of the new real-time RT-PCR was also evaluated in comparison to existing H9-detection methods, highlighting a significant improvement of sensitivity and inclusivity, in particular for G1 viruses. Data obtained suggest that the new assay has the potential to be employed under different settings and geographic areas for a sensitive detection of H9 viruses.
Collapse
Affiliation(s)
- Valentina Panzarin
- EU/OIE/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (S.M.); (A.F.); (I.B.); (V.D.); (F.G.); (F.B.); (E.P.); (C.T.); (I.M.)
- Correspondence:
| | - Sabrina Marciano
- EU/OIE/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (S.M.); (A.F.); (I.B.); (V.D.); (F.G.); (F.B.); (E.P.); (C.T.); (I.M.)
| | - Andrea Fortin
- EU/OIE/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (S.M.); (A.F.); (I.B.); (V.D.); (F.G.); (F.B.); (E.P.); (C.T.); (I.M.)
| | - Irene Brian
- EU/OIE/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (S.M.); (A.F.); (I.B.); (V.D.); (F.G.); (F.B.); (E.P.); (C.T.); (I.M.)
| | - Valeria D’Amico
- EU/OIE/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (S.M.); (A.F.); (I.B.); (V.D.); (F.G.); (F.B.); (E.P.); (C.T.); (I.M.)
| | - Federica Gobbo
- EU/OIE/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (S.M.); (A.F.); (I.B.); (V.D.); (F.G.); (F.B.); (E.P.); (C.T.); (I.M.)
| | - Francesco Bonfante
- EU/OIE/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (S.M.); (A.F.); (I.B.); (V.D.); (F.G.); (F.B.); (E.P.); (C.T.); (I.M.)
| | - Elisa Palumbo
- EU/OIE/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (S.M.); (A.F.); (I.B.); (V.D.); (F.G.); (F.B.); (E.P.); (C.T.); (I.M.)
| | - Yoshihiro Sakoda
- OIE Reference Laboratory for Avian Influenza, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; (Y.S.); (K.T.L.)
| | - Kien Trung Le
- OIE Reference Laboratory for Avian Influenza, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; (Y.S.); (K.T.L.)
| | - Duc-Huy Chu
- Department of Animal Health, Ministry of Agriculture and Rural Development (MARD), Hanoi 115-19, Vietnam;
| | - Ismaila Shittu
- Regional Laboratory for Animal Influenzas and Other Transboundary Animal Diseases, National Veterinary Research Institute (NVRI), Vom 930010, Nigeria; (I.S.); (C.M.)
| | - Clement Meseko
- Regional Laboratory for Animal Influenzas and Other Transboundary Animal Diseases, National Veterinary Research Institute (NVRI), Vom 930010, Nigeria; (I.S.); (C.M.)
| | - Abdoul Malick Haido
- Laboratoire Central de l’Élevage (LABOCEL), Ministère de l’Agriculture et de l’Elevage, Niamey 485, Niger;
| | - Theophilus Odoom
- Accra Veterinary Laboratory, Veterinary Services Directorate, Ministry of Food & Agriculture, Accra M161, Ghana;
| | - Mame Nahé Diouf
- Laboratoire National de l’Élevage et de Recherches Vétérinaires (LNERV) de l’Institut Sénégalais de Recherches Agricoles (ISRA), Dakar-Hann 2057, Senegal;
| | - Fidélia Djegui
- Laboratoire de Diagnostic Vétérinaire et de Sérosurveillance (LADISERO), Parakou 23, Benin;
| | - Mieke Steensels
- AI/ND National Reference Laboratory, Sciensano, 1050 Brussels, Belgium;
| | - Calogero Terregino
- EU/OIE/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (S.M.); (A.F.); (I.B.); (V.D.); (F.G.); (F.B.); (E.P.); (C.T.); (I.M.)
| | - Isabella Monne
- EU/OIE/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (S.M.); (A.F.); (I.B.); (V.D.); (F.G.); (F.B.); (E.P.); (C.T.); (I.M.)
| |
Collapse
|
17
|
Machine Learning for the Prediction of Antiviral Compounds Targeting Avian Influenza A/H9N2 Viral Proteins. Symmetry (Basel) 2022. [DOI: 10.3390/sym14061114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Avian influenza subtype A/H9N2—which infects chickens, reducing egg production by up to 80%—may be transmissible to humans. In humans, this virus is very harmful since it attacks the respiratory system and reproductive tract, replicating in both. Previous attempts to find antiviral candidates capable of inhibiting influenza A/H9N2 transmission were unsuccessful. This study aims to better characterize A/H9N2 to facilitate the discovery of antiviral compounds capable of inhibiting its transmission. The Symmetry of this study is to apply several machine learning methods to perform virtual screening to identify H9N2 antivirus candidates. The parameters used to measure the machine learning model’s quality included accuracy, sensitivity, specificity, balanced accuracy, and receiver operating characteristic score. We found that the extreme gradient boosting method yielded better results in classifying compounds predicted to be suitable antiviral compounds than six other machine learning methods, including logistic regression, k-nearest neighbor analysis, support vector machine, multilayer perceptron, random forest, and gradient boosting. Using this algorithm, we identified 10 candidate synthetic compounds with the highest scores. These high scores predicted that the molecular fingerprint may involve strong bonding characteristics. Thus, we were able to find significant candidates for synthetic H9N2 antivirus compounds and identify the best machine learning method to perform virtual screenings.
Collapse
|
18
|
HU X, LI S, YANG D, GU N, LIU J, WANG Y, LIU L, SUN Y. Modified Gexiazhuyu decoction alleviates chronic salpingitis p38 signaling pathway. J TRADIT CHIN MED 2022; 42:213-220. [PMID: 35473341 PMCID: PMC9924770 DOI: 10.19852/j.cnki.jtcm.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
OBJECTIVE To investigate pharmacodynamic effects of modified Gexiazhuyu decoction (MGXZYD) and explore the underlying mechanism in the treatment of chronic salpingitis METHODS: Chronic salpingitis model rats were firstly constructed and the blood was collected to detect the whole blood viscosity and plasma viscosity. Rat oviduct were collected to evaluate the macroscopic damage and the pathological injury and fibrosis of oviduct by hematoxylin-eosin (HE) and Masson staining. Elisa assay was to detect the production interleukin-1 β (IL-1β) in serum and collagen I (COL-1), matrix metalloprotein 9 (MMP-9), tissue inhibitor of metalloproteinases 1 (TIMP-1) in oviduct tissue. And immunohistochemical staining with MMP-9 and TIMP-1 in oviduct tissue were examined. Western blot was used to detect the expressions of p38 mitogen-activated protein kinases (p38MAPK), phospho-p38MPAK (p-p38MPAK), transforming growth factor-β1 (TGF-β1) in oviduct. The expression of α-smooth muscle actin (α-SMA), p-p38MPAK, in oviduct tissue were detected by immunofluorescence method. The mRNA of p-p38MAPK, α -SMA, COL-1, MMP-9, TIMP-1 was measured by reverse transcription-polymerase chain reaction. RESULTS Rats administrated with MGXZYD demonstrated decreased the whole blood viscosity and plasma viscosity. MGXZYD obviously improved the tubal wall thickening, swelling and pelvic adhesion. And HE and Masson staining showed MGXZYD improved the pathological injury and fibrosis of oviduct. The results of MTT assay and flow cytometry indicated that MGXZYD could decreased the NIN-3T3 cells viability and improved the apoptosis. Besides, MGXZYD inhibited the protein and / or mRNA of TGF-β1, IL-1β, COL-1, α-SMA, p-p38MAPK expressions and increased the production of MMP-9/TIMP-1. CONCLUSION MGXZYD could prevent the progression of chronic salpingitis by inhibited the fibrocyte and inflammation which inhibited the p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Xijiao HU
- 1 Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Heilongjiang 150001, China
- 5 Heilongjiang University of Traditional Chinese Medicine, Heilongjiang 150040, China
| | - Shuoxi LI
- 2 Jiamusi College of Heilongjiang University of Traditional Chinese Medicine, Heilongjiang 154000, China
| | - Dongxia YANG
- 3 Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Heilongjiang 150001, China
| | - Na GU
- 4 General Hospital of Heilongjiang Forest Industry, Heilongjiang 150040, China
| | - Jinzhe LIU
- 5 Heilongjiang University of Traditional Chinese Medicine, Heilongjiang 150040, China
| | - Yawen WANG
- 5 Heilongjiang University of Traditional Chinese Medicine, Heilongjiang 150040, China
| | - Li LIU
- 6 First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Heilongjiang 150040, China
- LIU Li, the First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Heilongjiang 150040, China.
| | - Yiming SUN
- 7 Heilongjiang Academy of Chinese Medicine Sciences, Heilongjiang 150036, China
- SUN Yiming, Heilongjiang Academy of Chinese Medicine Sciences, Heilongjiang 150036, China.
| |
Collapse
|
19
|
Adlhoch C, Fusaro A, Gonzales JL, Kuiken T, Marangon S, Niqueux É, Staubach C, Terregino C, Aznar I, Muñoz Guajardo I, Baldinelli F. Avian influenza overview December 2021 - March 2022. EFSA J 2022; 20:e07289. [PMID: 35386927 PMCID: PMC8978176 DOI: 10.2903/j.efsa.2022.7289] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Between 9 December 2021 and 15 March 2022, 2,653 highly pathogenic avian influenza (HPAI) virus detections were reported in 33 EU/EEA countries and the UK in poultry (1,030), in wild (1,489) and in captive birds (133). The outbreaks in poultry were mainly reported by France (609), where two spatiotemporal clusters have been identified since October 2021, followed by Italy (131), Hungary (73) and Poland (53); those reporting countries accounted together for 12.8 of the 17.5 million birds that were culled in the HPAI affected poultry establishments in this reporting period. The majority of the detections in wild birds were reported by Germany (767), the Netherlands (293), the UK (118) and Denmark (74). HPAI A(H5) was detected in a wide range of host species in wild birds, indicating an increasing and changing risk for virus incursion into poultry farms. The observed persistence and continuous circulation of HPAI viruses in migratory and resident wild birds will continue to pose a risk for the poultry industry in Europe for the coming months. This requires the definition and the rapid implementation of suitable and sustainable HPAI mitigation strategies such as appropriate biosecurity measures, surveillance plans and early detection measures in the different poultry production systems. The results of the genetic analysis indicate that the viruses currently circulating in Europe belong to clade 2.3.4.4b. Some of these viruses were also detected in wild mammal species in the Netherlands, Slovenia, Finland and Ireland showing genetic markers of adaptation to replication in mammals. Since the last report, the UK reported one human infection with A(H5N1), China 17 human infections with A(H5N6), and China and Cambodia 15 infections with A(H9N2) virus. The risk of infection for the general population in the EU/EEA is assessed as low, and for occupationally exposed people, low to medium.
Collapse
|
20
|
Adlhoch C, Fusaro A, Gonzales JL, Kuiken T, Marangon S, Niqueux É, Staubach C, Terregino C, Aznar I, Muñoz Guajardo I, Baldinelli F. Avian influenza overview May - September 2021. EFSA J 2022; 20:e07122. [PMID: 35079292 PMCID: PMC8777557 DOI: 10.2903/j.efsa.2022.7122] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The 2020-2021 avian influenza epidemic with a total of 3,777 reported highly pathogenic avian influenza (HPAI) detections and approximately 22,900,000 affected poultry birds in 31 European Countries appears to be one of the largest HPAI epidemics that has ever occurred in Europe. Between 15 May and 15 September 2021, 162 HPAI virus detections were reported in 17 EU/EEA countries and the UK in poultry (51), in wild (91) and captive birds (20). The detections in poultry were mainly reported by Kosovo (20), Poland (17) and Albania (6). HPAI virus was detected during the summer months in resident wild bird populations mainly in northern Europe. The data presented in this report indicates that HPAI virus is still circulating in domestic and wild bird populations in some European countries and that the epidemic is not over yet. Based on these observations, it appears that the persistence of HPAI A(H5) in Europe continues to pose a risk of further virus incursions in domestic bird populations. Furthermore, during summer, HPAI viruses were detected in poultry and several wild bird species in areas in Russia that are linked to key migration areas of wild waterbirds; this is of concern due to the possible introduction and spread of novel virus strains via wild birds migrating to the EU countries during the autumn from the eastern breeding to the overwintering sites. Nineteen different virus genotypes have been identified so far in Europe and Central Asia since July 2020, confirming a high propensity for this virus to undergo reassortment events. Since the last report, 15 human infections due to A(H5N6) HPAI and five human cases due to A(H9N2) low pathogenic avian influenza (LPAI) virus have been reported from China. Some of these cases were caused by a virus with an HA gene closely related to the A(H5) viruses circulating in Europe. The viruses characterised to date retain a preference for avian-type receptors; however, the reports of transmission events of A(H5) viruses to mammals and humans in Russia, as well as the recent A(H5N6) human cases in China may indicate a continuous risk of these viruses adapting to mammals. The risk of infection for the general population in the EU/EEA is assessed as very low, and for occupationally exposed people low, with large uncertainty due to the high diversity of circulating viruses in the bird populations.
Collapse
|
21
|
Adlhoch C, Fusaro A, Gonzales JL, Kuiken T, Marangon S, Niqueux É, Staubach C, Terregino C, Aznar I, Guajardo IM, Lima E, Baldinelli F. Avian influenza overview February - May 2021. EFSA J 2021; 19:e06951. [PMID: 34925560 PMCID: PMC8647004 DOI: 10.2903/j.efsa.2021.6951] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The 2020-2021 epidemic with a total of 3,555 reported HPAI detections and around 22,400,000 affected poultry birds in 28 European Countries appears to be one of the largest and most devastating HPAI epidemics ever occurred in Europe. Between 24 February and 14 May 2021, 1,672 highly pathogenic avian influenza (HPAI) virus detections were reported in 24 EU/EEA countries and the UK in poultry (n=580), and in wild (n=1,051) and captive birds (n=41). The majority of the detections in poultry were reported by Poland that accounted for 297 outbreaks occurring in a densely populated poultry area over a short period of time, followed by Germany with 168 outbreaks. Germany accounted for 603 detections in wild birds, followed by Denmark and Poland with 167 and 56 detections, respectively. A second peak of HPAI-associated wild bird mortality was observed from February to April 2021 in north-west Europe. The observed longer persistence of HPAI in wild birds compared to previous years may result in a continuation of the risk for juveniles of wild birds and mammals, as well as for virus entry into poultry farms. Therefore, enhanced awareness among farmers to continue applying stringent biosecurity measures and to monitor and report increases in daily mortality and drops in production parameters, are recommended. Sixteen different genotypes were identified to date in Europe and Russia, suggesting a high propensity of these viruses to reassort. The viruses characterized to date retain a preference for avian-type receptors; however, transmission events to mammals and the identification of sporadic mutations of mammal adaptation, indicate ongoing evolution processes and possible increased ability of viruses within this clade to further adapt and transmit to mammals including humans. Since the last report, two human infections due to A(H5N6) HPAI were reported from China and Laos and 10 human cases due to A(H9N2) low pathogenic avian influenza (LPAI) virus identified in China and Cambodia. The risk of infection for the general population in the EU/EEA is assessed as very low and for occupationally exposed people low. People exposed during avian influenza outbreaks should adhere to protection measures, strictly wear personal protective equipment and get tested immediately when developing respiratory symptoms or conjunctivitis within 10 days after exposure.
Collapse
|
22
|
Adlhoch C, Fusaro A, Gonzales JL, Kuiken T, Marangon S, Niqueux É, Staubach C, Terregino C, Aznar I, Muñoz Guajardo I, Baldinelli F. Avian influenza overview September - December 2021. EFSA J 2021; 19:e07108. [PMID: 34987626 PMCID: PMC8698678 DOI: 10.2903/j.efsa.2021.7108] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Between 16 September and 8 December 2021, 867 highly pathogenic avian influenza (HPAI) virus detections were reported in 27 EU/EEA countries and the UK in poultry (316), in wild (523) and in captive birds (28). The detections in poultry were mainly reported by Italy (167) followed by Hungary and Poland (35 each). Tha majority of the detections in wild birds were reported by Germany (280), Netherlands (65) and United Kingdom (53). The observed persistence and continuous circulation of HPAI viruses in migratory and resident wild birds will continue to pose a risk for the poultry industry in Europe for the coming months. The frequent occurrence of HPAI A(H5) incursions in commercial farms (including poultry production types considered at low avian influenza risk) raises concern about the capacity of the applied biosecurity measures to prevent virus introduction. Short-term preparedness and medium- and long-term prevention strategies, including revising and reinforcing biosecurity measures, reduction of the density of commercial poultry farms and possible appropriate vaccination strategies, should be implemented. The results of the genetic analysis indicate that the viruses characterised during this reporting period belong to clade 2.3.4.4b. Some of the characterized HPAI A(H5N1) viruses detected in Sweden, Germany, Poland and United Kingdom are related to the viruses which have been circulating in Europe since October 2020; in North, Central, South and East Europe novel reassortant A(H5N1) virus has been introduced starting from October 2021. HPAI A(H5N1) was also detected in wild mammal species in Sweden, Estonia and Finland; some of these strains characterised so far present an adaptive marker that is associated with increased virulence and replication in mammals. Since the last report, 13 human infections due to HPAI A(H5N6) and two human cases due to LPAI A(H9N2) virus have been reported from China. Some of these A(H5N6) cases were caused by a reassortant virus of clade 2.3.4.4b, which possessed an HA gene closely related to the A(H5) viruses circulating in Europe. The risk of infection for the general population in the EU/EEA is assessed as low, and for occupationally exposed people, low to medium, with large uncertainty due to the high diversity of circulating viruses in the bird populations.
Collapse
|
23
|
Cáceres CJ, Rajao DS, Perez DR. Airborne Transmission of Avian Origin H9N2 Influenza A Viruses in Mammals. Viruses 2021; 13:v13101919. [PMID: 34696349 PMCID: PMC8540072 DOI: 10.3390/v13101919] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/17/2022] Open
Abstract
Influenza A viruses (IAV) are widespread viruses affecting avian and mammalian species worldwide. IAVs from avian species can be transmitted to mammals including humans and, thus, they are of inherent pandemic concern. Most of the efforts to understand the pathogenicity and transmission of avian origin IAVs have been focused on H5 and H7 subtypes due to their highly pathogenic phenotype in poultry. However, IAV of the H9 subtype, which circulate endemically in poultry flocks in some regions of the world, have also been associated with cases of zoonotic infections. In this review, we discuss the mammalian transmission of H9N2 and the molecular factors that are thought relevant for this spillover, focusing on the HA segment. Additionally, we discuss factors that have been associated with the ability of these viruses to transmit through the respiratory route in mammalian species. The summarized information shows that minimal amino acid changes in the HA and/or the combination of H9N2 surface genes with internal genes of human influenza viruses are enough for the generation of H9N2 viruses with the ability to transmit via aerosol.
Collapse
|
24
|
Assersohn K, Brekke P, Hemmings N. Physiological factors influencing female fertility in birds. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202274. [PMID: 34350009 PMCID: PMC8316823 DOI: 10.1098/rsos.202274] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 07/12/2021] [Indexed: 05/30/2023]
Abstract
Fertility is fundamental to reproductive success, but not all copulation attempts result in a fertilized embryo. Fertilization failure is especially costly for females, but we still lack a clear understanding of the causes of variation in female fertility across taxa. Birds make a useful model system for fertility research, partly because their large eggs are easily studied outside of the female's body, but also because of the wealth of data available on the reproductive productivity of commercial birds. Here, we review the factors contributing to female infertility in birds, providing evidence that female fertility traits are understudied relative to male fertility traits, and that avian fertility research has been dominated by studies focused on Galliformes and captive (relative to wild) populations. We then discuss the key stages of the female reproductive cycle where fertility may be compromised, and make recommendations for future research. We particularly emphasize that studies must differentiate between infertility and embryo mortality as causes of hatching failure, and that non-breeding individuals should be monitored more routinely where possible. This review lays the groundwork for developing a clearer understanding of the causes of female infertility, with important consequences for multiple fields including reproductive science, conservation and commercial breeding.
Collapse
Affiliation(s)
- Katherine Assersohn
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Patricia Brekke
- Institute of Zoology, Zoological Society of London, Regents Park, London NW1 4RY, UK
| | - Nicola Hemmings
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
25
|
Fang H, Quan H, Zhang Y, Li Q, Wang Y, Yuan S, Huang S, He C. Co-Infection of Escherichia coli, Enterococcus faecalis and Chlamydia psittaci Contributes to Salpingitis of Laying Layers and Breeder Ducks. Pathogens 2021; 10:pathogens10060755. [PMID: 34203970 PMCID: PMC8232623 DOI: 10.3390/pathogens10060755] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 11/20/2022] Open
Abstract
Salpingitis is manifested as hemorrhagic follicular inflammation exudations and peritonitis, leading to reduced egg production and high culling of breeder flocks. From 2018 to 2021, increasing salpingitis during egg peak is threatening the poultry industry post-artificial insemination, both in breeder layers and breeder ducks across China. In our study, Escherichia coli (E. coli), Enterococcus faecalis(E. faecalis) and Chlamydia psittaci (C. psittaci) were isolated and identified from the diseased oviducts using biochemical tests and PCR. To identify and isolate pathogenicity, we inoculated the isolates into laying hens via an intravaginal route. Later, laying hens developed typical salpingitis after receiving the combination of the aforementioned three isolates (1 × 105 IFU/mL of C. psittaci and 1 × 106 CFU/mL of E. faecalis and E. coli, respectively), while less oviduct inflammation was observed in the layers inoculated with the above isolate alone. Furthermore, 56 breeder ducks were divided into seven groups, eight ducks per group. The birds received the combination of three isolates, synergic infection of E. coli and E. faecalis, and C. psittaci alone via vaginal tract, while the remaining ducks were inoculated with physiological saline as the control group. Egg production was monitored daily and lesions of oviducts and follicles were determined post-infection on day 6. Interestingly, typical salpingitis, degenerated follicles and yolk peritonitis were obviously found in the synergic infection of three isolates and the birds inoculated with C. psittaci alone developed hemorrhagic follicles and white exudates in oviducts, while birds with E. faecalis or E. coli alone did not develop typical salpingitis. Finally, higher E. coli loads were determined in the oviducts as compared to E. faecalis and C. psittaci infection. Taken together, the combination of E. coli and E. faecalis, and C. psittaci could induce typical salpingitis and yolk peritonitis both in laying hens and breeder ducks. Secondary infection of E. coli and E. faecalis via artificial insemination is urgently needed for investigation against salpingitis.
Collapse
Affiliation(s)
- Huanxin Fang
- College of Life Science and Engineering, Foshan University, Foshan 528011, China; (H.F.); (S.Y.); (S.H.)
| | - Hongkun Quan
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agriculture University, Beijing 100193, China; (H.Q.); (Y.Z.); (Q.L.); (Y.W.)
| | - Yuhang Zhang
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agriculture University, Beijing 100193, China; (H.Q.); (Y.Z.); (Q.L.); (Y.W.)
| | - Qiang Li
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agriculture University, Beijing 100193, China; (H.Q.); (Y.Z.); (Q.L.); (Y.W.)
| | - Yihui Wang
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agriculture University, Beijing 100193, China; (H.Q.); (Y.Z.); (Q.L.); (Y.W.)
| | - Sheng Yuan
- College of Life Science and Engineering, Foshan University, Foshan 528011, China; (H.F.); (S.Y.); (S.H.)
| | - Shujian Huang
- College of Life Science and Engineering, Foshan University, Foshan 528011, China; (H.F.); (S.Y.); (S.H.)
| | - Cheng He
- College of Life Science and Engineering, Foshan University, Foshan 528011, China; (H.F.); (S.Y.); (S.H.)
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agriculture University, Beijing 100193, China; (H.Q.); (Y.Z.); (Q.L.); (Y.W.)
- Correspondence:
| |
Collapse
|
26
|
Adlhoch C, Fusaro A, Gonzales JL, Kuiken T, Marangon S, Niqueux É, Staubach C, Terregino C, Muñoz Guajardo I, Lima E, Baldinelli F. Avian influenza overview December 2020 - February 2021. EFSA J 2021; 19:e06497. [PMID: 33717356 PMCID: PMC7927793 DOI: 10.2903/j.efsa.2021.6497] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Between 8 December 2020 and 23 February 2021, 1,022 highly pathogenic avian influenza (HPAI) virus detectionswere reported in 25 EU/EEA countries and the UK in poultry (n=592), wild (n=421) and captive birds (n=9).The majority of the detections were reported by Francethat accounted for 442 outbreaks in poultry,mostly located inthe Landes regionandaffecting the foie gras production industry,and six wild bird detections; Germany,who reported 207 detections in wild birds and 50 poultry outbreaks; Denmark,with 63 detections in wild birds and one poultry outbreak; and Poland,with 37 poultry outbreaks and 24 wild bird detections. Due to the continued presence of HPAI A(H5) viruses in wild birds and the environment,there is still a risk of avian influenza incursions with the potential further spread between establishments, primarily in areas with high poultry densities. As the currently circulating HPAI A(H5N8) virus cancause high mortality also in affected duck farms, mortality eventscan be seen as a good indicator of virus presence. However,also subclinical virusspread in this type of poultry production system have been reported.To improve early detection of infection in poultry within the surveillance zone, the clinical inspection of duck establishments should be complemented by encouraging farmers to collect dead birds to be pooled and tested weekly (bucket sampling).Six different genotypes were identified to date in Europe and Russia, suggesting a high propensity of these viruses to undergo multiple reassortment events. To date, no evidence of fixation of known mutations previously described as associated to zoonotic potential has been observed in HPAI viruses currently circulanting in Europe based on the available sequences.Seven cases due to A(H5N8) HPAI virus have been reported from Russia, all were poultry workerswith mild or no symptoms. Five human cases due to A(H5N6) HPAI and 10 cases due to A(H9N2) LPAI viruseshave been reported from China. The risk for the general population as well as travel-related imported human cases is assessed as very lowand the risk forpeople occupationally exposedpeople as low.Any human infections with avian influenza viruses are notifiablewithin 24 hoursthrough the Early Warning and Response System (EWRS) and the International Health Regulations (IHR) notification system.
Collapse
|
27
|
Adlhoch C, Fusaro A, Gonzales JL, Kuiken T, Marangon S, Niqueux É, Staubach C, Terregino C, Baldinelli F. Avian influenza overview August - December 2020. EFSA J 2020; 18:e06379. [PMID: 33343738 PMCID: PMC7744019 DOI: 10.2903/j.efsa.2020.6379] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Between 15 August and 7 December 2020, 561highly pathogenic avian influenza (HPAI) virus detections were reported in 15EU/EEA countries and UK in wild birds, poultry andcaptive birds, with Germany (n=370), Denmark (n=65), the Netherlands (n=57) being the most affected countries.The majority of the detections have been reported in wild birds(n=510), primarily in barnacle goose, greylag goose, andEurasian wigeon. Raptors have also been detected infected, particularly common buzzard. The majority of the birds had been found dead or moribund,however, there are also reports ofHPAI virus infection in apparently healthy ducks or geese.A total of 43 HPAI outbreaks were notified in poultry;with signs of avian influenza infection being observed in at least 33 outbreaks;the most likely source of infection was indirect contact with wild birds. Three HPAI virus subtypes, A(H5N8) (n=518), A(H5N5) (n=17) and A(H5N1) (n=6),and four different genotypes were identified, suggesting the occurrence of multiple virus introductions into Europe.The reassortant A(H5N1) virus identified in EU/EEA countries has acquired gene segments from low pathogenic viruses and is not related to A(H5N1) viruses of e.g. clade 2.3.2.1c causing human infections outside of Europe. As the autumn migration of wild waterbirds to their wintering areasin Europe continues, and given the expected local movements of these birds, there is still a high risk of introduction andfurther spread ofHPAI A(H5) viruses within Europe.The risk of virus spread from wild birds to poultry is high and Member States should enforce in 'high risk areas' of their territories the measures provided for in Commission Implementing Decision (EU) 2018/1136.Detection of outbreaks in breeder farms in Denmark, the Netherlands and United Kingdom, highlight also the risk of introduction via contaminated materials (bedding/straw) and equipment.Maintaining high and sustainable surveillance and biosecurityparticularly in high-risk areas is of utmost importance. Two human cases due to zoonoticA(H5N1) and A(H9N2) avian influenza virus infection were reportedduring the reporting period. The risk for the general population as well as travel-related imported human cases are assessed as very low.
Collapse
|
28
|
Stephens CB, Spackman E, Pantin-Jackwood MJ. Effects of an H7 Highly Pathogenic and Related Low Pathogenic Avian Influenza Virus on Chicken Egg Production, Viability, and Virus Contamination of Egg Contents and Surfaces. Avian Dis 2020; 64:143-148. [PMID: 32550614 DOI: 10.1637/0005-2086-64.2.143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/07/2020] [Indexed: 11/05/2022]
Abstract
Both highly pathogenic (HP) and low pathogenic (LP) avian influenza virus (AIV) can cause decreases or even cessation of egg production in chickens and turkeys. Production of abnormal eggs (deformed, thin-shelled, soft-shelled) can also be caused by AIV infection. Additionally, egg surfaces and contents may also be contaminated with virus. Because data quantifying these effects are lacking, white Plymouth Rock hens were inoculated with HP or LP AIV while in production. No decreases in egg production or abnormal eggs were observed with LPAIV-infected hens. No lesions or viral antigen staining in ovary and oviduct were observed in LPAIV-infected hens 3 days postchallenge. LPAIV RNA was detected on eggs collected from 12 hr to 11 days postinoculation (PI) and was on or in 6.4% (15/234) of the eggs. Titer equivalents of LPAIV ranged from 1.3-2.5 log10 50% egg infectious doses (EID50). No virus was detected in embryo tissue from eggs laid by LPAIV-infected hens. In contrast, egg production by HPAIV-inoculated hens decreased at 72 hr PI and 18.4% (16/87) of the eggs were abnormal. However, viability was similar to that of the sham inoculates. HPAIV RNA was detected in or on 11.1% (9/81) of the eggs from 36 hr through 96 hr PI, when the hens were euthanatized. HPAIV RNA was detected on 6.2% of eggshells, in 4.2% of albumin/yolk samples, and in 8.3% of embryo tissue. Forty percent of the abnormal eggs were positive for HPAIV RNA. Titer equivalents on or in HPAIV-contaminated eggs ranges from 1.0-4.0 log10 EID50. Lesions and viral antigen staining were present in the ovary and all sections of the oviduct of infected hens 3 days postchallenge. These data will inform models using production-based triggers for LPAIV monitoring and for risk assessments to determine the disposition of eggs from flocks infected with LPAIV or HPAIV.
Collapse
Affiliation(s)
- Christopher B Stephens
- Exotic and Emerging Avian Viral Diseases Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, United States Department of Agriculture, Agricultural Research Service, Athens, GA 30605
| | - Erica Spackman
- Exotic and Emerging Avian Viral Diseases Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, United States Department of Agriculture, Agricultural Research Service, Athens, GA 30605,
| | - Mary J Pantin-Jackwood
- Exotic and Emerging Avian Viral Diseases Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, United States Department of Agriculture, Agricultural Research Service, Athens, GA 30605
| |
Collapse
|
29
|
Hassan MSH, Abdul-Careem MF. Avian Viruses that Impact Table Egg Production. Animals (Basel) 2020; 10:E1747. [PMID: 32993040 PMCID: PMC7601732 DOI: 10.3390/ani10101747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/09/2020] [Accepted: 09/21/2020] [Indexed: 01/12/2023] Open
Abstract
Eggs are a common source of protein and other nutrient components for people worldwide. Commercial egg-laying birds encounter several challenges during the long production cycle. An efficient egg production process requires a healthy bird with a competent reproductive system. Several viral pathogens that can impact the bird's health or induce reversible or irreversible lesions in the female reproductive organs adversely interfere with the egg industry. The negative effects exerted by viral diseases create a temporary or permanent decrease in egg production, in addition to the production of low-quality eggs. Several factors including, but not limited to, the age of the bird, and the infecting viral strain and part of reproductive system involved contribute to the form of reproductive disease encountered. Advanced methodologies have successfully elucidated some of the virus-host interactions relevant to the hen's reproductive performance, however, this branch needs further research. This review discusses the major avian viral infections that have been reported to adversely affect egg productivity and quality and aims to summarize the current understanding of the mechanisms that underlie the observed negative effects.
Collapse
Affiliation(s)
- Mohamed S. H. Hassan
- Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada;
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| | - Mohamed Faizal Abdul-Careem
- Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada;
| |
Collapse
|
30
|
Adlhoch C, Fusaro A, Kuiken T, Niqueux É, Staubach C, Terregino C, Muñoz Guajardo I, Baldinelli F. Avian influenza overview May - August 2020. EFSA J 2020; 18:e06270. [PMID: 33281980 PMCID: PMC7525800 DOI: 10.2903/j.efsa.2020.6270] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Between 16 May and 15 August 2020, seven highly pathogenic avian influenza (HPAI) A(H5N8) virus outbreaks were reported in Europe in poultry, with one outbreak reported in Bulgaria(n=1) andsix in Hungary (n=6) and one low pathogenic avian influenza (LPAI) A(H5N3) virus outbreak was reported in poultry in Italy. All six outbreaks detected in Hungary were secondary outbreaks and seem to be the tail end of the HPAI A(H5N8) epidemic that wasobserved in poultry over the winter and spring in central Europe from December 2019 (n=334).Genetic analysis of the HPAI A(H5N8) viruses isolated during this reporting period from Bulgaria and Hungary did not identify any major changes compared tothe viruses collected in the respective countries during the first months of 2020. This suggests a persistence of the virus in the two countries rather than new introductions via infectedwild birds. HPAI A(H5N8) virus has been detected in poultry and wild birds in western Russia within the reporting period, and as of the middle of September also in Kazakhstan. The presence of HPAI virus in western Russiaand in north Kazakhstan,spatially associated with autumnmigration routes of wild waterbirds, is of concern due to the possible spread of the virus via wild birds migrating to the EU.It is highly recommended thatMember States take appropriate measures to promptly detect suspected cases of HPAI, including increasing biosecurity measures. According to past experiences (2005-2006 and 2016-2017 epidemic waves), the northern and eastern European areas might be at higher risk of virus introduction in the coming autumn-winter seasonand should be the key regions where prompt response measures to early detect the virusshould be set up. One human case due to A(H9N2) avian influenza virus infection was reported during the reporting period.
Collapse
|
31
|
Dharmayanti NLPI, Indriani R, Nurjanah D. Vaccine Efficacy on the Novel Reassortant H9N2 Virus in Indonesia. Vaccines (Basel) 2020; 8:vaccines8030449. [PMID: 32785201 PMCID: PMC7565121 DOI: 10.3390/vaccines8030449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/26/2020] [Accepted: 07/30/2020] [Indexed: 01/08/2023] Open
Abstract
Vaccination is one of the leading methods of controlling the spread of the Avian Influenza (AI) viruses in Indonesia. The variety of circulating viruses and their ability to mutate must be followed by updating the vaccine master seed used in the field. In this study, we identified the reassortant H9N2 viruses in chicken farms that showed significant problems in decreased egg production with high mortality. The reassortant H9N2 viruses derived the PB2 gene from the H5N1 virus. The pathogenicity test results of the reassortant virus showed various clinical signs of illness, a high mortality rate (10%), and decreased egg production down to 63.12% at two weeks post-infection. In a vaccine efficacy test, the vaccinated groups showed minimally decreased egg production that started to increase to more than 80% at 4-7 weeks post-challenge. Our study showed that inactivated bivalent and monovalent reassortant H9N2 vaccines can induce antibody response, reducing the mortality and virus shedding caused by reassortant H9N2 virus infection. The reassortant H9N2 virus is a threat that requires vigilance in poultry farms and the industry. The vaccines used in this study can be one of the options for control or prevention measures on farms infected with the reassortant H9N2 viruses.
Collapse
|
32
|
Adlhoch C, Fusaro A, Kuiken T, Smietanka K, Staubach C, Guajardo M, Baldinelli F. Avian influenza overview August - November2019. EFSA J 2020; 17:e05988. [PMID: 32626216 PMCID: PMC7008850 DOI: 10.2903/j.efsa.2019.5988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Between 16 August and 15 November 2019, one low pathogenic avian influenza (LPAI) A(H5) outbreak in poultry in France was reported in Europe. Genetic characterisation reveals that the virusclusterswith Eurasian LPAI viruses. No highly pathogenic avian influenza (HPAI) outbreaks in birds were notified in Europe in the relevant period for this report. HPAI A(H5N6) viruswas identified in chickens in Nigeria, this isthe first report of HPAI A(H5N6) from the African continent.FewerHPAI outbreaks in Asia and Africa were reported during the time period for this report compared with the previous reporting period. Apart from the long‐term epidemic of HPAI A(H5N2)in Taiwan, only six HPAI outbreakswere reported in domestic birds from Nepal, South Africa and Taiwan. Furthermore, no HPAI detections fromwild birds were reported worldwide in the relevant time period forthis report.Even if the risk of incursion of HPAI from wild birds into poultryestablishments in Europe is currently assessed as low, it is important to maintain passive surveillance activities. The focus should be on wild bird species that are in the revised list of target species in order to detect any incursion of HPAI virus early and initiate a warning.Despite the decrease in the number of avian influenza outbreaks over recent months, it is important to maintain a high alert level andhigh standard of biosecurity onpoultry establishments.In Europe, no human infections due toHPAI viruses detected in wild bird or poultry outbreaks, have been reported. The risk of zoonotic transmission to the general public in Europe is considered to be very low.
Collapse
|
33
|
Abstract
Influenza A viruses (IAVs) of the H9 subtype are enzootic in Asia, the Middle East, and parts of North and Central Africa, where they cause significant economic losses to the poultry industry. Of note, some strains of H9N2 viruses have been linked to zoonotic episodes of mild respiratory diseases. Because of the threat posed by H9N2 viruses to poultry and human health, these viruses are considered of pandemic concern by the World Health Organization (WHO). H9N2 IAVs continue to diversify into multiple antigenically and phylogenetically distinct lineages that can further promote the emergence of strains with pandemic potential. Somewhat neglected compared with the H5 and H7 subtypes, there are numerous indicators that H9N2 viruses could be involved directly or indirectly in the emergence of the next influenza pandemic. The goal of this work is to discuss the state of knowledge on H9N2 IAVs and to provide an update on the contemporary global situation.
Collapse
Affiliation(s)
- Silvia Carnaccini
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, Georgia 30602, USA
| | - Daniel R Perez
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
34
|
Adlhoch C, Fusaro A, Kuiken T, Niqueux E, Staubach C, Terregino C, Guajardo IM, Baldinelli F. Avian influenza overview February - May 2020. EFSA J 2020; 18:e06194. [PMID: 32874346 PMCID: PMC7448026 DOI: 10.2903/j.efsa.2020.6194] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Between 16 February and 15 May 2020, 290highly pathogenic avian influenza (HPAI) A(H5) virus outbreakswere reported in Europe in poultry (n=287), captive birds (n=2) and wild birds (n=1)in Bulgaria, Czechia,Germany,Hungary andPolandand two low pathogenic avian influenza (LPAI) A(H7N1) virus outbreaks were reported in poultry in Italy. 258 of 287 poultry outbreaks detected in Europe were secondary outbreaks, suggesting that in the large majoryty of cases the spread of the virus was not due to wild birds.Allthe HPAI outbreaks were A(H5N8) apart from three,which were reported as A(H5N2) from Bulgaria. Genetic analysis of the HPAI A(H5N8) viruses isolated from the eastern and central European countries indicates that this is a reassortant between HPAI A(H5N8) viruses from Africa and LPAI viruses from Eurasia. Two distict subtypes were identified in Bulgaria, a novel reassortant A(H5N2) and A(H5N8) that is persisting in the country since 2016. There could be several reasons why only very few HPAI cases were detected in wild birds in this 2019-2020 epidemic season and a better knowledge of wild bird movements and virus-host interaction (e.g. susceptibility of the hosts to this virus) could help to understand the reasons for poor detection of HPAI infected wild birds. In comparison with the last reporting period, a decreasing number of HPAI A(H5)-affected countries and outbreaks were reported from outside Europe. However, there is considerable uncertainty regarding the current epidemiological situation in many countries out of Europe. Four human cases due to A(H9N2) virus infection were reported during the reporting period from China.
Collapse
|
35
|
de Wit JJ, Fabri THF, Molenaar RJ, Dijkman R, de Bruijn N, Bouwstra R. Major difference in clinical outcome and replication of a H3N1 avian influenza strain in young pullets and adult layers. Avian Pathol 2020; 49:286-295. [PMID: 32064915 DOI: 10.1080/03079457.2020.1731423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this study, we investigated the pathogenicity, replication and tropism of the low pathogenic avian influenza (LPAI) strain A/chicken/Belgium/460/2019(H3N1) in adult SPF layers and young SPF males. The inoculated hens showed 58% mortality and a 100% drop in egg production in the second week post inoculation. The high viral loads in the cloacal samples coincided with the period of the positive immunohistochemistry of the oviduct, acute peritonitis and time of mortality, suggesting that the replication of H3N1 in the oviduct was a major component of the onset of clinical disease and increased level of excretion of the virus. In the inoculated young birds, the clinical signs were very mild with the exception of one bird. The results suggest that the time of replication of the virus was much shorter than in the adult layers; some of the young males did not show any proof of being infected at all. To conclude, the results of the study in young birds confirmed the intravenous pathogenicity test results but also showed that the clinical signs in adult layers were very severe. Based on the mortality without a bacterial component, complete drop of egg production and post mortem findings, this H3N1 strain is a moderately virulent strain, the highest category for LPAI strains. It is important to realize that if HPAI did not exist, this moderately virulent H3N1 virus would most likely to be considered as a very virulent virus.
Collapse
Affiliation(s)
- J J de Wit
- Royal GD, Deventer, The Netherlands.,Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
36
|
Adlhoch C, Fusaro A, Kuiken T, Niqueux E, Staubach C, Terregino C, Guajardo IM, Baldinelli F. Avian influenza overview November 2019- February2020. EFSA J 2020; 18:e06096. [PMID: 32874270 PMCID: PMC7448010 DOI: 10.2903/j.efsa.2020.6096] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Between 16 November 2019 and 15 February 2020, 36 highly pathogenic avian influenza (HPAI) A(H5N8) virus outbreakswere reported in Europe in poultry (n=34), captive birds (n=1) and wild birds (n=2), in Poland, Hungary, Slovakia, Romania, Germany, Czechiaand Ukraine,one HPAI outbreakcaused by a simultaneous infection with A(H5N2) and A(H5N8) was reported in poultry in Bulgaria, andtwo low pathogenic avian influenza (LPAI) A(H5) virus outbreaks were reported in poultryin the United Kingdom and in Denmark. Genomic characterisation of the HPAI A(H5N8) viruses suggests that they are reassortants of HPAI A(H5N8) viruses from Africa and LPAI viruses from Eurasia. It is likely that this reassortment occurred in wild migratory birds in Asia during the summer and then spread to eastern Europe with the autumnmigration. This is the first time that wild bird migration from Africa to Eurasia has been implicated in the long-distance spread of HPAI viruses to the EU. Given the late incursion of HPAI A(H5N8) virus into the EU in this winter season (first outbreak reported on 30 December 2019), its overall restriction to eastern Europe, and the approaching spring migration, the risk of the virus spreadingfurther in the west via wild birds is decreasing for the coming months. Genetic analysis of the HPAI A(H5N2) and A(H5N8) viruses detected in the Bulgarian outbreak reveals that these virusesare both related to the 2018-19 Bulgarian HPAI A(H5N8) viruses and not to the HPAI A(H5N8) viruses currently circulating in Europe.An increasing number of HPAI A(H5N1), A(H5N2), A(H5N5) and A(H5N6) virus outbreaks in poultry in Asia were reported during the time period for this report compared with the previous reporting period. Single outbreaks of HPAI A(H5N8) virus were notified by Saudi Arabia and South Africa. Furthermore, in contrast to the last report, HPAI virus-positive wild birds were reported from Israel and one of the key migration areas in northern China.Two human cases due to A(H9N2) virus infection were reported during the reporting period.
Collapse
|
37
|
Abstract
The earliest recorded cases of what was likely high-pathogenicity AIV in poultry were reported in Italy in the 1870s. Avian influenza infection has been recognized in domestic poultry through the modern era of poultry production. Infection of poultry with either low pathogenic (LP) or highly pathogenic (HP) avian influenza viruses (AIVs) can result in substantial economic consequences. Productivity can be reduced directly and indirectly because of disease leading to decreased egg or meat yield, mortality, vaccination costs, and restricted trade. Aquatic birds are the natural hosts for AIV, and infection tends to be subclinical, although some strains of HPAIV can cause losses in domestic ducks. Biosecurity and vaccination are the most common methods of preventing infection of poultry. Approaches to AIV control vary widely, but elimination of the disease in poultry is a common goal. The basics of AIV biology, clinical disease, molecular aspects, and AIV detection are briefly reviewed.
Collapse
Affiliation(s)
- Erica Spackman
- Exotic and Emerging Avian Viral Diseases Unit, US National Poultry Research Center, US Department of Agriculture, Agricultural Research Service, Athens, GA, USA.
| |
Collapse
|
38
|
Kariithi HM, Welch CN, Ferreira HL, Pusch EA, Ateya LO, Binepal YS, Apopo AA, Dulu TD, Afonso CL, Suarez DL. Genetic characterization and pathogenesis of the first H9N2 low pathogenic avian influenza viruses isolated from chickens in Kenyan live bird markets. INFECTION GENETICS AND EVOLUTION 2019; 78:104074. [PMID: 31634645 DOI: 10.1016/j.meegid.2019.104074] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/11/2019] [Accepted: 10/13/2019] [Indexed: 12/13/2022]
Abstract
Poultry production plays an important role in the economy and livelihoods of rural households in Kenya. As part of a surveillance program, avian influenza virus (AIV)-specific real-time RT-PCR (RRT-PCR) was used to screen 282 oropharyngeal swabs collected from chickens at six live bird markets (LBMs) and 33 backyard poultry farms in Kenya and 8 positive samples were detected. Virus was isolated in eggs from five samples, sequenced, and identified as H9N2 low pathogenic AIV (LPAIV) G1 lineage, with highest nucleotide sequence identity (98.6-99.9%) to a 2017 Ugandan H9N2 isolate. The H9N2 contained molecular markers for mammalian receptor specificity, implying their zoonotic potential. Virus pathogenesis and transmissibility was assessed by inoculating low and medium virus doses of a representative Kenyan H9N2 LPAIV isolate into experimental chickens and exposing them to naïve uninfected chickens at 2 -days post inoculation (dpi). Virus shedding was determined at 2/4/7 dpi and 2/5 days post placement (dpp), and seroconversion determined at 14 dpi/12 dpp. None of the directly-inoculated or contact birds exhibited any mortality or clinical disease signs. All directly-inoculated birds in the low dose group shed virus during the experiment, while only one contact bird shed virus at 2 dpp. Only two directly-inoculated birds that shed high virus titers seroconverted in that group. All birds in the medium dose group shed virus at 4/7 dpi and at 5 dpp, and they all seroconverted at 12/14 dpp. This is the first reported detection of H9N2 LPAIV from Kenya and it was shown to be infectious and transmissible in chickens by direct contact and represents a new disease threat to poultry and potentially to people.
Collapse
Affiliation(s)
- Henry M Kariithi
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O Box 57811, 00200, Kaptagat Road, Loresho, Nairobi, Kenya; Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA.
| | - Catharine N Welch
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA.
| | - Helena L Ferreira
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA; University of Sao Paulo, ZMV- FZEA, Pirassununga 13635900, Brazil.
| | - Elizabeth A Pusch
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA.
| | - Leonard O Ateya
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O Box 57811, 00200, Kaptagat Road, Loresho, Nairobi, Kenya.
| | - Yatinder S Binepal
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O Box 57811, 00200, Kaptagat Road, Loresho, Nairobi, Kenya.
| | - Auleria A Apopo
- Directorate of Veterinary Services, State Department of Livestock, Ministry of Agriculture, Livestock, Fisheries and Irrigation, Private Bag-00625, Nairobi, Kenya.
| | - Thomas D Dulu
- Directorate of Veterinary Services, State Department of Livestock, Ministry of Agriculture, Livestock, Fisheries and Irrigation, Private Bag-00625, Nairobi, Kenya.
| | - Claudio L Afonso
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA.
| | - David L Suarez
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA.
| |
Collapse
|
39
|
Adlhoch C, Fusaro A, Kuiken T, Monne I, Smietanka K, Staubach C, Muñoz Guajardo I, Baldinelli F. Avian influenza overview February- August 2019. EFSA J 2019; 17:e05843. [PMID: 32626437 PMCID: PMC7009306 DOI: 10.2903/j.efsa.2019.5843] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Between 16 February and 15 August 2019, five HPAI A(H5N8) outbreaks at poultry establishments in Bulgaria, two low pathogenic avian influenza (LPAI) A(H5N1) outbreaks in poultry in Denmark and one in captive birds in Germany, one LPAI A(H7N3) outbreak in poultry in Italy and one LPAI A(H7N7) outbreak in poultry in Denmark were reported in Europe. Genetic characterisation reveals that viruses from Denmark cluster with viruses previously identified in wild birds and poultry in Europe; while the Italian isolate clusters with LPAI viruses circulating in wild birds in Central Asia. No avian influenza outbreaks in wild birds were notified in Europe in the relevant period for this report. A decreased number of outbreaks in poultry and wild birds in Asia, Africa and the Middle East was reported during the time period for this report, particularly during the last three months. Furthermore, only six affected wild birds were reported in the relevant time period of this report. Currently there is no evidence of a new HPAI virus incursion from Asia into Europe. However, passive surveillance systems may not be sensitive for early detection if the prevalence or case fatality in wild birds is very low. Therefore, it is important to encourage and maintain passive surveillance in Europe encouraging a search for carcasses of wild bird species that are in the revised list of target species in order to detect any incursion of HPAI virus early and initiate warning. No human infections due to HPAI viruses - detected in wild birds and poultry outbreaks in Europe - have been reported during the last years and the risk of zoonotic transmission to the general public in Europe is considered very low.
Collapse
|
40
|
A Global Perspective on H9N2 Avian Influenza Virus. Viruses 2019; 11:v11070620. [PMID: 31284485 PMCID: PMC6669617 DOI: 10.3390/v11070620] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/30/2019] [Accepted: 07/01/2019] [Indexed: 11/26/2022] Open
Abstract
H9N2 avian influenza viruses have become globally widespread in poultry over the last two decades and represent a genuine threat both to the global poultry industry but also humans through their high rates of zoonotic infection and pandemic potential. H9N2 viruses are generally hyperendemic in affected countries and have been found in poultry in many new regions in recent years. In this review, we examine the current global spread of H9N2 avian influenza viruses as well as their host range, tropism, transmission routes and the risk posed by these viruses to human health.
Collapse
|
41
|
Novianti AN, Rahardjo K, Prasetya RR, Nastri AM, Dewantari JR, Rahardjo AP, Estoepangestie ATS, Shimizu YK, Poetranto ED, Soegiarto G, Mori Y, Shimizu K. Whole-Genome Sequence of an Avian Influenza A/H9N2 Virus Isolated from an Apparently Healthy Chicken at a Live-Poultry Market in Indonesia. Microbiol Resour Announc 2019; 8:e01671-18. [PMID: 31023807 PMCID: PMC6486264 DOI: 10.1128/mra.01671-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/25/2019] [Indexed: 11/21/2022] Open
Abstract
We isolated an avian influenza A/H9N2 virus from an apparently healthy chicken at a live-poultry market in January 2018. This is the first report of a whole-genome sequence of A/H9N2 virus in Indonesia. Phylogenetic analyses indicated that intrasubtype reassortment of genome segments is involved in the genesis of the A/H9N2 virus.
Collapse
Affiliation(s)
| | - Krisnoadi Rahardjo
- Indonesia-Japan Collaborative Research Center, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Rima R Prasetya
- Indonesia-Japan Collaborative Research Center, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Aldise M Nastri
- Indonesia-Japan Collaborative Research Center, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Jezzy R Dewantari
- Indonesia-Japan Collaborative Research Center, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Adi P Rahardjo
- Faculty of Veterinary Medicine, Airlangga University, Surabaya, Indonesia
| | | | - Yohko K Shimizu
- Indonesia-Japan Collaborative Research Center, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
- Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Emmanuel D Poetranto
- Faculty of Veterinary Medicine, Airlangga University, Surabaya, Indonesia
- Indonesia-Japan Collaborative Research Center, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Gatot Soegiarto
- Indonesia-Japan Collaborative Research Center, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Yasuko Mori
- Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazufumi Shimizu
- Indonesia-Japan Collaborative Research Center, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
- Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
42
|
Adlhoch C, Kuiken T, Monne I, Mulatti P, Smietanka K, Staubach C, Guajardo IM, Baldinelli F. Avian influenza overview November 2018 - February 2019. EFSA J 2019; 17:e05664. [PMID: 32626274 PMCID: PMC7009136 DOI: 10.2903/j.efsa.2019.5664] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
No human infections due to highly pathogenic avian influenza (HPAI) A(H5N8) or A(H5N6) viruses ‐ detected in wild birds and poultry outbreaks in Europe ‐ have been reported so far and the risk of zoonotic transmission to the general public in Europe is considered very low. Between 16 November 2018 and 15 February 2019, two HPAI A(H5N8) outbreaks in poultry establishments in Bulgaria, two HPAI A(H5N6) outbreaks in wild birds in Denmark and one low pathogenic avian influenza (LPAI) A(H5N3) in captive birds in the Netherlands were reported in the European Union (EU). Genetic characterisation of the HPAI A(H5N6) viruses reveals that they cluster with the A(H5N6) viruses that have been circulating in Europe since December 2017. The wild bird species involved were birds of prey and were likely infected due to hunting or scavenging infected wild waterfowl. However, HPAI virus was not detected in other wild birds during this period. Outside the EU, two HPAI outbreaks were reported in poultry during the reporting period from western Russia. Sequence information on an HPAI A(H5N6) virus found in a common gull in western Russia in October 2018 suggests that the virus clusters within clade 2.3.4.4c and is closely related to viruses that transmitted zoonotically in China. An increasing number of outbreaks in poultry and wild birds in Asia, Africa and the Middle East was observed during the time period for this report. Currently there is no evidence of a new HPAI virus incursion from Asia into Europe. However, passive surveillance systems may not be sensitive enough if the prevalence or case fatality in wild birds is very low. Nevertheless, it is important to encourage and maintain a certain level of passive surveillance in Europe testing single sick or dead wild birds and birds of prey as they may be sensitive sentinel species for the presence of HPAI virus in the environment. A well‐targeted active surveillance might complement passive surveillance to collect information on HPAI infectious status of apparently healthy wild bird populations.
Collapse
|
43
|
Adlhoch C, Brouwer A, Kuiken T, Miteva A, Mulatti P, Smietanka K, Staubach C, Gogin A, Muñoz Guajardo I, Baldinelli F. Avian influenza overview August - November 2018. EFSA J 2018; 16:e05573. [PMID: 32625795 PMCID: PMC7009621 DOI: 10.2903/j.efsa.2018.5573] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Between 16 August and 15 November 2018, 14 highly pathogenic avian influenza (HPAI) A(H5N8) outbreaks in poultry establishments in Bulgaria and seven HPAI A(H5N6) outbreaks, one in captive birds in Germany and six in wild birds in Denmark and the Netherlands were reported in the European Union (EU). No human infection due to HPAI A(H5N8) and A(H5N6) viruses have been reported in Europe so far. Seroconversion of people exposed during outbreaks in Russia has been reported in one study. Although the risk of zoonotic transmission to the general public in Europe is considered to be very low, appropriate personal protection measures of people exposed will reduce any potential risk. Genetic clustering of the viruses isolated from poultry in Bulgaria suggests three separate introductions in 2016 and a continuing circulation and transmission of these viruses within domestic ducks. Recent data from Bulgaria provides further indication that the sensitivity of passive surveillance of HPAI A(H5N8) in domestic ducks may be significantly compromised. Increased vigilance is needed especially during the periods of cold spells in winter when aggregations of wild birds and their movements towards areas with more favourable weather conditions may be encouraged. Two HPAI outbreaks in poultry were reported during this period from western Russia. Low numbers of HPAI outbreaks were observed in Africa and Asia, no HPAI cases were detected in wild birds in the time period relevant for this report. Although a few HPAI outbreaks were reported in Africa and Asia during the reporting period, the probability of HPAI virus introductions from non‐EU countries via wild birds particularly via the north‐eastern route from Russia is increasing, as the fall migration of wild birds from breeding and moulting sites to the wintering sites continues. Furthermore, the lower temperatures and ultraviolet radiation in winter can facilitate the environmental survival of any potential AI viruses introduced to Europe.
Collapse
|