1
|
Yu J, Wen Z, Hu W, Chen M, Zhang Y, Liu S, Wang G, Wang Z, Wang D, Zhai SL, Wei WK, Li T, Liao M. Influenza D virus infection in China, 2022-2023. Emerg Microbes Infect 2024; 13:2343907. [PMID: 38738553 PMCID: PMC11097708 DOI: 10.1080/22221751.2024.2343907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/11/2024] [Indexed: 05/14/2024]
Abstract
Influenza D virus (IDV) plays an important role in the bovine respiratory disease (BRD) complex. Its potential for the zoonotic transmission is of particular concern. In China, IDV has previously been identified in agricultural animals by molecular surveys with no live virus isolates reported. In this study, live IDVs were successfully isolated from cattle in China, which prompted us to further investigate the national prevalence, antigenic property, and infection biology of the virus. IDV RNA was detected in 11.1% (51/460) of cattle throughout the country in 2022-2023. Moreover, we conducted the first IDV serosurveillance in China, revealing a high seroprevalence (91.4%, 393/430) of IDV in cattle during the 2022-2023 winter season. Notably, all the 16 provinces from which cattle originated possessed seropositive animals, and 3 of them displayed the 100% IDV-seropositivity rate. In contrast, a very low seroprevalence of IDV was observed in pigs (3%, 3/100) and goats (1%, 1/100) during the same period of investigation. Furthermore, besides D/Yama2019 lineage-like IDVs, we discovered the D/660 lineage-like IDV in Chinese cattle, which has not been detected to date in Asia. Finally, the Chinese IDVs replicated robustly in diverse cell lines but less efficiently in the swine cell line. Considering the nationwide distribution, high seroprevalence, and appreciably genetic diversity, further studies are required to fully evaluate the risk of Chinese IDVs for both animal and human health in China, which can be evidently facilitated by IDV isolates reported in this study.
Collapse
Affiliation(s)
- Jieshi Yu
- State Key Laboratory of Swine and Poultry Breeding Industry, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, People’s Republic of China
| | - Zhenyu Wen
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Wanke Hu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, People’s Republic of China
| | - Mingwang Chen
- Zhongshan Animal Disease Control Center, Zhongshan, People’s Republic of China
| | - Yuanlong Zhang
- Guangdong Animal Disease Control Center, Guangzhou, People’s Republic of China
| | - Shasha Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Gang Wang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, People’s Republic of China
| | - Zhao Wang
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Dan Wang
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Shao-lun Zhai
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, People’s Republic of China
| | - Wen-kang Wei
- State Key Laboratory of Swine and Poultry Breeding Industry, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, People’s Republic of China
| | - Tianyu Li
- Zhongshan Animal Disease Control Center, Zhongshan, People’s Republic of China
- College of Animal Science and Technology, Guangxi University, Nanning, People’s Republic of China
| | - Ming Liao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, People’s Republic of China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, People’s Republic of China
| |
Collapse
|
2
|
Limaye S, Lohar T, Dube H, Ramasamy S, Kale M, Kulkarni-Kale U, Kuchipudi SV. Rapid evolution leads to extensive genetic diversification of cattle flu Influenza D virus. Commun Biol 2024; 7:1276. [PMID: 39375524 PMCID: PMC11458855 DOI: 10.1038/s42003-024-06954-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024] Open
Abstract
Influenza D virus (IDV), the cattle flu virus, is a novel multi-host RNA virus, circulating silently worldwide, with widespread seropositivity among US cattle, reaching up to 80% in some areas raising a potential threat of cattle-to-human transmission. Currently, five genetic lineages of IDV have been described, but their evolutionary dynamics have not been studied. Although IDV was first identified in 2011, our comprehensive analysis of all known IDV genomes suggests that the earliest ancestors of IDV likely to have evolved towards the end of the 20th century and D/OK lineage appears to have emerged in 2005. We confirmed a significantly higher substitution rate in IDV than in Influenza C virus, which is consistent with their global distribution and multi-host tropism. We identified multiple sub-populations within the D/OK lineage, highlighting extensive diversification and dissemination. Other findings are evidence for potential reassortment among IDV strains in the USA and transboundary circulation of IDV in Europe with introductions into Danish cattle, some of which potentially originated from France. IDV, an emerging virus with a higher rate of evolution and uncontrolled circulation, could facilitate its adaptation to humans. Our findings underscore the importance of targeted surveillance for IDV in humans and at-risk animal populations.
Collapse
Affiliation(s)
- Sanket Limaye
- Bioinformatics Centre, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411007, India
| | - Tejas Lohar
- Department of Statistics, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411007, India
| | - Harita Dube
- Department of Statistics, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411007, India
| | - Santhamani Ramasamy
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, 15261, USA
| | - Mohan Kale
- Department of Statistics, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411007, India
| | - Urmila Kulkarni-Kale
- Bioinformatics Centre, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411007, India.
- Department of Natural Sciences and Environmental Health, University of South Eastern Norway, Bo, Norway.
- CIS-Citadel Precision Medicine LLC, Hyderabad, India.
| | - Suresh V Kuchipudi
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, 15261, USA.
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
3
|
Limaye S, Shelke A, Kale MM, Kulkarni-Kale U, Kuchipudi SV. IDV Typer: An Automated Tool for Lineage Typing of Influenza D Viruses Based on Return Time Distribution. Viruses 2024; 16:373. [PMID: 38543738 PMCID: PMC10976072 DOI: 10.3390/v16030373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/24/2024] [Accepted: 02/24/2024] [Indexed: 05/23/2024] Open
Abstract
Influenza D virus (IDV) is the most recent addition to the Orthomyxoviridae family and cattle serve as the primary reservoir. IDV has been implicated in Bovine Respiratory Disease Complex (BRDC), and there is serological evidence of human infection of IDV. Evolutionary changes in the IDV genome have resulted in the expansion of genetic diversity and the emergence of multiple lineages that might expand the host tropism and potentially increase the pathogenicity to animals and humans. Therefore, there is an urgent need for automated, accurate and rapid typing tools for IDV lineage typing. Currently, IDV lineage typing is carried out using BLAST-based searches and alignment-based molecular phylogeny of the hemagglutinin-esterase fusion (HEF) gene sequences, and lineage is assigned to query sequences based on sequence similarity (BLAST search) and proximity to the reference lineages in the tree topology, respectively. To minimize human intervention and lineage typing time, we developed IDV Typer server, implementing alignment-free method based on return time distribution (RTD) of k-mers. Lineages are assigned using HEF gene sequences. The server performs with 100% sensitivity and specificity. The IDV Typer server is the first application of an RTD-based alignment-free method for typing animal viruses.
Collapse
Affiliation(s)
- Sanket Limaye
- Bioinformatics Centre, Savitribai Phule Pune University (Formerly University of Pune), Pune 411007, India; (S.L.); (A.S.)
| | - Anant Shelke
- Bioinformatics Centre, Savitribai Phule Pune University (Formerly University of Pune), Pune 411007, India; (S.L.); (A.S.)
| | - Mohan M. Kale
- Department of Statistics, Savitribai Phule Pune University (Formerly University of Pune), Pune 411007, India;
| | - Urmila Kulkarni-Kale
- Bioinformatics Centre, Savitribai Phule Pune University (Formerly University of Pune), Pune 411007, India; (S.L.); (A.S.)
| | - Suresh V. Kuchipudi
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
| |
Collapse
|
4
|
Alvarez I, Ducatez M, Guo Y, Lion A, Widgren A, Dubourdeau M, Baillif V, Saias L, Zohari S, Bergquist J, Meyer G, Valarcher JF, Hägglund S. Proteomic and Lipidomic Profiling of Calves Experimentally Co-Infected with Influenza D Virus and Mycoplasma bovis: Insights into the Host-Pathogen Interactions. Viruses 2024; 16:361. [PMID: 38543727 PMCID: PMC10975297 DOI: 10.3390/v16030361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 05/23/2024] Open
Abstract
The role of Influenza D virus (IDV) in bovine respiratory disease remains unclear. An in vivo experiment resulted in increased clinical signs, lesions, and pathogen replication in calves co-infected with IDV and Mycoplasma bovis (M. bovis), compared to single-infected calves. The present study aimed to elucidate the host-pathogen interactions and profile the kinetics of lipid mediators in the airways of these calves. Bronchoalveolar lavage (BAL) samples collected at 2 days post-infection (dpi) were used for proteomic analyses by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Additionally, lipidomic analyses were performed by LC-MS/MS on BAL samples collected at 2, 7 and 14 dpi. Whereas M. bovis induced the expression of proteins involved in fibrin formation, IDV co-infection counteracted this coagulation mechanism and downregulated other acute-phase response proteins, such as complement component 4 (C4) and plasminogen (PLG). The reduced inflammatory response against M. bovis likely resulted in increased M. bovis replication and delayed M. bovis clearance, which led to a significantly increased abundance of oxylipids in co-infected calves. The identified induced oxylipids mainly derived from arachidonic acid; were likely oxidized by COX-1, COX-2, and LOX-5; and peaked at 7 dpi. This paper presents the first characterization of BAL proteome and lipid mediator kinetics in response to IDV and M. bovis infection in cattle and raises hypotheses regarding how IDV acts as a co-pathogen in bovine respiratory disease.
Collapse
Affiliation(s)
- Ignacio Alvarez
- Division of Ruminant Medicine, Department of Clinical Sciences, Swedish University of Agriculture Sciences, 8 Almas Allé, 75007 Uppsala, Sweden (J.-F.V.); (S.H.)
| | - Mariette Ducatez
- IHAP, Université de Tolouse, INRAE, ENVT, 31076 Toulouse, France
| | - Yongzhi Guo
- Division of Ruminant Medicine, Department of Clinical Sciences, Swedish University of Agriculture Sciences, 8 Almas Allé, 75007 Uppsala, Sweden (J.-F.V.); (S.H.)
| | - Adrien Lion
- IHAP, Université de Tolouse, INRAE, ENVT, 31076 Toulouse, France
| | - Anna Widgren
- Department of Chemistry-BMC, Analytical Chemistry and Neurochemistry, Uppsala University, Husargatan 3, 75124 Uppsala, Sweden; (A.W.); (J.B.)
| | | | | | - Laure Saias
- Ambiotis SAS, 3 Rue des Satellites, 31400 Toulouse, France
| | - Siamak Zohari
- Department of Microbiology, Swedish Veterinary Agency, Ullsvägen 2B, 75189 Uppsala, Sweden;
| | - Jonas Bergquist
- Department of Chemistry-BMC, Analytical Chemistry and Neurochemistry, Uppsala University, Husargatan 3, 75124 Uppsala, Sweden; (A.W.); (J.B.)
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Ulls väg 26, 75007 Uppsala, Sweden
| | - Gilles Meyer
- IHAP, Université de Tolouse, INRAE, ENVT, 31076 Toulouse, France
| | - Jean-Francois Valarcher
- Division of Ruminant Medicine, Department of Clinical Sciences, Swedish University of Agriculture Sciences, 8 Almas Allé, 75007 Uppsala, Sweden (J.-F.V.); (S.H.)
| | - Sara Hägglund
- Division of Ruminant Medicine, Department of Clinical Sciences, Swedish University of Agriculture Sciences, 8 Almas Allé, 75007 Uppsala, Sweden (J.-F.V.); (S.H.)
| |
Collapse
|
5
|
Lanave G, Camero M, Coppola C, Marchi S, Cascone G, Salina F, Coltraro M, Odigie AE, Montomoli E, Chiapponi C, Cicirelli V, Martella V, Trombetta CM. Serological Evidence for Circulation of Influenza D Virus in the Ovine Population in Italy. Pathogens 2024; 13:162. [PMID: 38392900 PMCID: PMC10892703 DOI: 10.3390/pathogens13020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Influenza D virus (IDV) is a novel orthomyxovirus initially isolated from pigs exhibiting influenza-like disease in the USA. Since then, IDV has been detected worldwide in several host species, including livestock animals, whilst specific antibodies have been identified in humans, raising concerns about interspecies transmission and zoonotic risks. Few data regarding the seroprevalence of IDV in small ruminants have been available to date. In this study, we assessed the prevalence of antibodies against IDV in ovine serum samples in Sicily, Southern Italy. Six hundred serum samples, collected from dairy sheep herds located in Sicily in 2022, were tested by haemagglutination inhibition (HI) and virus neutralization (VN) assays using reference strains, D/660 and D/OK, representative of two distinct IDV lineages circulating in Italy. Out of 600 tested samples, 168 (28.0%) tested positive to either IDV strain D/660 or D/OK or to both by HI whilst 378 (63.0%) tested positive to either IDV strain D/660 or D/OK or to both by VN. Overall, our findings demonstrate that IDV circulates in ovine dairy herds in Sicily. Since IDV seems to have a broad host range and it has zoonotic potential, it is important to collect epidemiological information on susceptible species.
Collapse
Affiliation(s)
- Gianvito Lanave
- Department of Veterinary Medicine, University Aldo Moro of Bari, 70010 Valenzano, Italy; (M.C.); (A.E.O.); (V.C.); (V.M.)
| | - Michele Camero
- Department of Veterinary Medicine, University Aldo Moro of Bari, 70010 Valenzano, Italy; (M.C.); (A.E.O.); (V.C.); (V.M.)
| | - Chiara Coppola
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.C.); (S.M.); (E.M.); (C.M.T.)
| | - Serena Marchi
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.C.); (S.M.); (E.M.); (C.M.T.)
| | - Giuseppe Cascone
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (G.C.); (F.S.); (M.C.)
| | - Felice Salina
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (G.C.); (F.S.); (M.C.)
| | - Miriana Coltraro
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (G.C.); (F.S.); (M.C.)
| | - Amienwanlen E. Odigie
- Department of Veterinary Medicine, University Aldo Moro of Bari, 70010 Valenzano, Italy; (M.C.); (A.E.O.); (V.C.); (V.M.)
| | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.C.); (S.M.); (E.M.); (C.M.T.)
- VisMederi S.r.l., 53035 Monteriggioni, Italy
| | - Chiara Chiapponi
- OIE Reference Laboratory for Swine Influenza, Sede Territoriale di Parma, Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, 25124 Brescia, Italy;
| | - Vincenzo Cicirelli
- Department of Veterinary Medicine, University Aldo Moro of Bari, 70010 Valenzano, Italy; (M.C.); (A.E.O.); (V.C.); (V.M.)
| | - Vito Martella
- Department of Veterinary Medicine, University Aldo Moro of Bari, 70010 Valenzano, Italy; (M.C.); (A.E.O.); (V.C.); (V.M.)
| | - Claudia M. Trombetta
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.C.); (S.M.); (E.M.); (C.M.T.)
| |
Collapse
|
6
|
Kwasnik M, Rola J, Rozek W. Influenza D in Domestic and Wild Animals. Viruses 2023; 15:2433. [PMID: 38140674 PMCID: PMC10748149 DOI: 10.3390/v15122433] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Influenza D virus (IDV) infections have been observed in animals worldwide, confirmed through both serological and molecular tests, as well as virus isolation. IDV possesses unique properties that distinguish it from other influenza viruses, primarily attributed to the hemagglutinin-esterase fusion (HEF) surface glycoprotein, which determines the virus' tropism and wide host range. Cattle are postulated to be the reservoir of IDV, and the virus is identified as one of the causative agents of bovine respiratory disease (BRD) syndrome. Animals associated with humans and susceptible to IDV infection include camels, pigs, small ruminants, and horses. Notably, high seroprevalence towards IDV, apart from cattle, is also observed in camels, potentially constituting a reservoir of the virus. Among wild and captive animals, IDV infections have been confirmed in feral pigs, wild boars, deer, hedgehogs, giraffes, wildebeests, kangaroos, wallabies, and llamas. The transmission potential and host range of IDV may contribute to future viral differentiation. It has been confirmed that influenza D may pose a threat to humans as a zoonosis, with seroprevalence noted in people with professional contact with cattle.
Collapse
Affiliation(s)
| | | | - Wojciech Rozek
- Department of Virology, National Veterinary Research Institute, Al. Partyzantow 57, 24-100 Pulawy, Poland; (M.K.); (J.R.)
| |
Collapse
|
7
|
Jallow MM, Barry MA, Fall A, Ndiaye NK, Kiori D, Sy S, Goudiaby D, Niang MN, Fall G, Fall M, Dia N. Influenza A Virus in Pigs in Senegal and Risk Assessment of Avian Influenza Virus (AIV) Emergence and Transmission to Human. Microorganisms 2023; 11:1961. [PMID: 37630521 PMCID: PMC10459748 DOI: 10.3390/microorganisms11081961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
We conducted an active influenza surveillance in the single pig slaughterhouse in Dakar to investigate the epidemiology and genetic characteristics of influenza A viruses (IAVs) and to provide serologic evidence of avian influenza virus (AIV) infection in pigs at interfaces with human populations in Senegal. Nasal swab and blood samples were collected on a weekly basis from the same animal immediately after slaughter. Influenza A viruses were diagnosed using RT-qPCR and a subset of positive samples for H3 and H1 subtypes were selected for full genome amplification and NGS sequencing. Serum samples were tested by HI assay for the detection of antibodies recognizing four AIVs, including H9N2, H5N1, H7N7 and H5N2. Between September 2018 and December 2019, 1691 swine nasal swabs were collected and tested. Influenza A virus was detected in 30.7% (520/1691), and A/H1N1pdm09 virus was the most commonly identified subtype with 38.07% (198/520), followed by A/H1N2 (16.3%) and A/H3N2 (5.2%). Year-round influenza activity was noted in pigs, with the highest incidence between June and September. Phylogenetic analyses revealed that the IAVs were closely related to human IAV strains belonging to A/H1N1pdm09 and seasonal H3N2 lineages. Genetic analysis revealed that Senegalese strains possessed several key amino acid changes, including D204 and N241D in the receptor binding site, S31N in the M2 gene and P560S in the PA protein. Serological analyses revealed that 83.5% (95%CI = 81.6-85.3) of the 1636 sera tested were positive for the presence of antibodies against either H9N2, H5N1, H7N7 or H5N2. Influenza H7N7 (54.3%) and H9N2 (53.6%) were the dominant avian subtypes detected in Senegalese pigs. Given the co-circulation of multiple subtypes of influenza viruses among Senegalese pigs, the potential exists for the emergence of new hybrid viruses of unpredictable zoonotic and pandemic potential in the future.
Collapse
Affiliation(s)
- Mamadou Malado Jallow
- Institut Pasteur de Dakar, Département de Virologie, Dakar BP 220, Senegal; (M.M.J.); (A.F.); (N.K.N.); (D.K.); (S.S.); (D.G.); (M.N.N.); (G.F.)
- Département de Biologie Animale, Faculté des Sciences et Techniques, Université Cheikh Anta DIOP de Dakar, Dakar BP 206, Senegal;
| | - Mamadou Aliou Barry
- Institut Pasteur de Dakar, Unité d’Epidémiologie des Maladies Infectieuses, Dakar BP 220, Senegal;
| | - Amary Fall
- Institut Pasteur de Dakar, Département de Virologie, Dakar BP 220, Senegal; (M.M.J.); (A.F.); (N.K.N.); (D.K.); (S.S.); (D.G.); (M.N.N.); (G.F.)
| | - Ndiendé Koba Ndiaye
- Institut Pasteur de Dakar, Département de Virologie, Dakar BP 220, Senegal; (M.M.J.); (A.F.); (N.K.N.); (D.K.); (S.S.); (D.G.); (M.N.N.); (G.F.)
| | - Davy Kiori
- Institut Pasteur de Dakar, Département de Virologie, Dakar BP 220, Senegal; (M.M.J.); (A.F.); (N.K.N.); (D.K.); (S.S.); (D.G.); (M.N.N.); (G.F.)
| | - Sara Sy
- Institut Pasteur de Dakar, Département de Virologie, Dakar BP 220, Senegal; (M.M.J.); (A.F.); (N.K.N.); (D.K.); (S.S.); (D.G.); (M.N.N.); (G.F.)
| | - Déborah Goudiaby
- Institut Pasteur de Dakar, Département de Virologie, Dakar BP 220, Senegal; (M.M.J.); (A.F.); (N.K.N.); (D.K.); (S.S.); (D.G.); (M.N.N.); (G.F.)
| | - Mbayame Ndiaye Niang
- Institut Pasteur de Dakar, Département de Virologie, Dakar BP 220, Senegal; (M.M.J.); (A.F.); (N.K.N.); (D.K.); (S.S.); (D.G.); (M.N.N.); (G.F.)
| | - Gamou Fall
- Institut Pasteur de Dakar, Département de Virologie, Dakar BP 220, Senegal; (M.M.J.); (A.F.); (N.K.N.); (D.K.); (S.S.); (D.G.); (M.N.N.); (G.F.)
| | - Malick Fall
- Département de Biologie Animale, Faculté des Sciences et Techniques, Université Cheikh Anta DIOP de Dakar, Dakar BP 206, Senegal;
| | - Ndongo Dia
- Institut Pasteur de Dakar, Département de Virologie, Dakar BP 220, Senegal; (M.M.J.); (A.F.); (N.K.N.); (D.K.); (S.S.); (D.G.); (M.N.N.); (G.F.)
| |
Collapse
|
8
|
Alvarez I, Hägglund S, Näslund K, Eriksson A, Ahlgren E, Ohlson A, Ducatez MF, Meyer G, Valarcher JF, Zohari S. Detection of Influenza D-Specific Antibodies in Bulk Tank Milk from Swedish Dairy Farms. Viruses 2023; 15:v15040829. [PMID: 37112809 PMCID: PMC10141034 DOI: 10.3390/v15040829] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Influenza D virus (IDV) has been detected in bovine respiratory disease (BRD) outbreaks, and experimental studies demonstrated this virus's capacity to cause lesions in the respiratory tract. In addition, IDV-specific antibodies were detected in human sera, which indicated that this virus plays a potential zoonotic role. The present study aimed to extend our knowledge about the epidemiologic situation of IDV in Swedish dairy farms, using bulk tank milk (BTM) samples for the detection of IDV antibodies. A total of 461 and 338 BTM samples collected during 2019 and 2020, respectively, were analyzed with an in-house indirect ELISA. In total, 147 (32%) and 135 (40%) samples were IDV-antibody-positive in 2019 and 2020, respectively. Overall, 2/125 (2%), 11/157 (7%) and 269/517 (52%) of the samples were IDV-antibody-positive in the northern, middle and southern regions of Sweden. The highest proportion of positive samples was repeatedly detected in the south, in the county of Halland, which is one of the counties with the highest cattle density in the country. In order to understand the epidemiology of IDV, further research in different cattle populations and in humans is required.
Collapse
Affiliation(s)
- Ignacio Alvarez
- Division of Ruminant Medicine, Department of Clinical Sciences, Swedish University of Agriculture Sciences, 8 Almas Allé, 75007 Uppsala, Sweden
| | - Sara Hägglund
- Division of Ruminant Medicine, Department of Clinical Sciences, Swedish University of Agriculture Sciences, 8 Almas Allé, 75007 Uppsala, Sweden
| | - Katarina Näslund
- Department of Microbiology, National Veterinary Institute, Ulls väg 2B, 75189 Uppsala, Sweden
| | - Axel Eriksson
- Division of Ruminant Medicine, Department of Clinical Sciences, Swedish University of Agriculture Sciences, 8 Almas Allé, 75007 Uppsala, Sweden
| | - Evelina Ahlgren
- Department of Microbiology, National Veterinary Institute, Ulls väg 2B, 75189 Uppsala, Sweden
| | - Anna Ohlson
- Växa Sverige AB, Uppsala, Ulls Väg 29A, 75651 Uppsala, Sweden
| | | | - Gilles Meyer
- IHAP, Université de Toulouse, INRAE, ENVT, 31076 Toulouse, France
| | - Jean-Francois Valarcher
- Division of Ruminant Medicine, Department of Clinical Sciences, Swedish University of Agriculture Sciences, 8 Almas Allé, 75007 Uppsala, Sweden
| | - Siamak Zohari
- Department of Microbiology, National Veterinary Institute, Ulls väg 2B, 75189 Uppsala, Sweden
| |
Collapse
|
9
|
Influenza D Virus: A Review and Update of Its Role in Bovine Respiratory Syndrome. Viruses 2022; 14:v14122717. [PMID: 36560721 PMCID: PMC9785601 DOI: 10.3390/v14122717] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 12/07/2022] Open
Abstract
Bovine respiratory disease (BRD) is one of the most prevalent, deadly, and costly diseases in young cattle. BRD has been recognized as a multifactorial disease caused mainly by viruses (bovine herpesvirus, BVDV, parainfluenza-3 virus, respiratory syncytial virus, and bovine coronavirus) and bacteria (Mycoplasma bovis, Pasteurella multocida, Mannheimia haemolytica and Histophilus somni). However, other microorganisms have been recognized to cause BRD. Influenza D virus (IDV) is a novel RNA pathogen belonging to the family Orthomyxoviridae, first discovered in 2011. It is distributed worldwide in cattle, the main reservoir. IDV has been demonstrated to play a role in BRD, with proven ability to cause respiratory disease, a high transmission rate, and potentiate the effects of other pathogens. The transmission mechanisms of this virus are by direct contact and by aerosol route over short distances. IDV causes lesions in the upper respiratory tract of calves and can also replicate in the lower respiratory tract and cause pneumonia. There is currently no commercial vaccine or specific treatment for IDV. It should be noted that IDV has zoonotic potential and could be a major public health concern if there is a drastic change in its pathogenicity to humans. This review summarizes current knowledge regarding IDV structure, pathogenesis, clinical significance, and epidemiology.
Collapse
|
10
|
Robinson E, Schulein C, Jacobson BT, Jones K, Sago J, Huber V, Jutila M, Bimczok D, Rynda-Apple A. Pathophysiology of Influenza D Virus Infection in Specific-Pathogen-Free Lambs with or without Prior Mycoplasma ovipneumoniae Exposure. Viruses 2022; 14:1422. [PMID: 35891403 PMCID: PMC9321583 DOI: 10.3390/v14071422] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
Polymicrobial pneumonias occur frequently in cattle, swine, and sheep, resulting in major economic losses. Individual pathogens comprising these complex infections may be mild on their own but can instead exhibit synergism or increase host susceptibility. Two examples of such pathogens, Mycoplasma ovipneumoniae (M. ovipneumoniae) and influenza D viruses (IDVs), naturally infect domestic sheep. In sheep, the role of M. ovipneumoniae in chronic nonprogressive pneumonia is well-established, but the pathogenesis of IDV infection has not previously been studied. We utilized a specific-pathogen-free sheep flock to study the clinical response to IDV infection in naïve vs. M. ovipneumoniae-exposed lambs. Lambs were inoculated intranasally with M. ovipneumoniae or mock infection, followed after four weeks by infection with IDV. Pathogen shedding was tracked, and immunological responses were evaluated by measuring acute phase response and IDV-neutralizing antibody titers. While lamb health statuses remained subclinical, M. ovipneumoniae-exposed lambs had significantly elevated body temperatures during IDV infection compared to M. ovipneumoniae-naïve, IDV-infected lambs. Moreover, we found a positive correlation between prior M. ovipneumoniae burden, early-infection IDV shedding, and IDV-neutralizing antibody response. Our findings suggest that IDV infection may not induce clinical symptoms in domestic sheep, but previous M. ovipneumoniae exposure may promote mild IDV-associated inflammation.
Collapse
Affiliation(s)
- Ema Robinson
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA; (E.R.); (C.S.); (B.T.J.); (K.J.); (M.J.); (D.B.)
| | - Clyde Schulein
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA; (E.R.); (C.S.); (B.T.J.); (K.J.); (M.J.); (D.B.)
| | - B. Tegner Jacobson
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA; (E.R.); (C.S.); (B.T.J.); (K.J.); (M.J.); (D.B.)
| | - Kerri Jones
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA; (E.R.); (C.S.); (B.T.J.); (K.J.); (M.J.); (D.B.)
| | - Jonathon Sago
- Montana State Veterinary Diagnostic Laboratory, 1911 West Lincoln Street, Bozeman, MT 59718, USA;
| | - Victor Huber
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA;
| | - Mark Jutila
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA; (E.R.); (C.S.); (B.T.J.); (K.J.); (M.J.); (D.B.)
| | - Diane Bimczok
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA; (E.R.); (C.S.); (B.T.J.); (K.J.); (M.J.); (D.B.)
| | - Agnieszka Rynda-Apple
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA; (E.R.); (C.S.); (B.T.J.); (K.J.); (M.J.); (D.B.)
| |
Collapse
|
11
|
Chen Z, Zeng Y, Wei Y, Wang Q, Liu M, Zhang B, Liu J, Zhu Q, Xu S. Influenza D virus Matrix protein 1 restricts the type I interferon response by degrading TRAF6. Virology 2022; 568:1-11. [DOI: 10.1016/j.virol.2022.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 01/04/2023]
|
12
|
Enhanced Pathogenesis Caused by Influenza D Virus and Mycoplasma bovis Coinfection in Calves: a Disease Severity Linked with Overexpression of IFN-γ as a Key Player of the Enhanced Innate Immune Response in Lungs. Microbiol Spectr 2021; 9:e0169021. [PMID: 34937196 PMCID: PMC8694133 DOI: 10.1128/spectrum.01690-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bovine respiratory disease (BRD) is a major disease of young cattle whose etiology lies in complex interactions between pathogens and environmental and host factors. Despite a high frequency of codetection of respiratory pathogens in BRD, data on the molecular mechanisms and pathogenesis associated with viral and bacterial interactions are still limited. In this study, we investigated the effects of a coinfection with influenza D virus (IDV) and Mycoplasma bovis in cattle. Naive calves were infected by aerosol with a French IDV strain and an M. bovis strain. The combined infection shortened the incubation period, worsened the disease, and led to more severe macroscopic and microscopic lesions compared to these parameters in calves infected with only one pathogen. In addition, IDV promoted colonization of the lower respiratory tract (LRT) by M. bovis and increased white cell recruitment to the airway lumen. The transcriptomic analysis highlighted an upregulation of immune genes in the lungs of coinfected calves. The gamma interferon (IFN-γ) gene was shown to be the gene most statistically overexpressed after coinfection at 2 days postinfection (dpi) and at least until 7 dpi, which correlated with the high level of lymphocytes in the LRT. Downregulation of the PACE4 and TMPRSS2 endoprotease genes was also highlighted, being a possible reason for the faster clearance of IDV in the lungs of coinfected animals. Taken together, our coinfection model with two respiratory pathogens that when present alone induce moderate clinical signs of disease was shown to increase the severity of the disease in young cattle and a strong transcriptomic innate immune response in the LRT, especially for IFN-γ. IMPORTANCE Bovine respiratory disease (BRD) is among the most prevalent diseases in young cattle. BRD is due to complex interactions between viruses and/or bacteria, most of which have a moderate individual pathogenicity. In this study, we showed that coinfection with influenza D virus (IDV) and Mycoplasma bovis increased the severity of the respiratory disease in calves in comparison with IDV or M. bovis infection. IDV promoted M. bovis colonization of the lower respiratory tract and increased white cell recruitment to the airway lumen. The transcriptomic analysis highlighted an upregulation of immune genes in the lungs of coinfected calves. The IFN-γ gene in particular was highly overexpressed after coinfection, correlated with the disease severity, immune response, and white cell recruitment in the lungs. In conclusion, we showed that IDV facilitates coinfections within the BRD complex by modulating the local innate immune response, providing new insights into the mechanisms involved in severe respiratory diseases.
Collapse
|
13
|
Nemanichvili N, Berends AJ, Tomris I, Barnard KN, Parrish CR, Gröne A, Rijks JM, Verheije MH, de Vries RP. Influenza D binding properties vary amongst the two major virus clades and wildlife species. Vet Microbiol 2021; 264:109298. [PMID: 34906835 DOI: 10.1016/j.vetmic.2021.109298] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/17/2021] [Accepted: 12/05/2021] [Indexed: 12/22/2022]
Abstract
The influenza D virus (IDV) uses a trimeric hemagglutinin-esterase fusion protein (HEF) for attachment to 9-O-acetylated sialic acid receptors on the cell surface of host species. So far research has revealed that farm animals such as cattle, domestic pigs, goats, sheep and horses contain the necessary receptors on the epithelial surface of the respiratory tract to accommodate binding of the IDV HEF protein of both worldwide clades D/Oklahoma (D/OK) and D/Oklahoma/660 (D/660). More recently, seroprevalence studies have identified IDV-seropositive wildlife such as wild boar, deer, dromedaries, and small ruminants. However, no research has thus far been conducted in wildlife to reveal the distribution of acetylated sialic acid receptors that accommodate binding of IDV. Using our previously developed tissue microarray (TMA) system, we developed TMAs containing respiratory tissues of various wild and domestic species including wild boar, deer, dromedary, springbok, water buffalo, tiger, hedgehog, and Asian elephant. Protein histochemical staining of these TMAs with HEF proteins showed no receptor binding for wild Suidae, Cervidae and tiger. However, receptors were present in dromedary, springbok, water buffalo, Asian elephant, and hedgehog. In contrast to previously tested farm animals, a difference in host tropism was observed between the D/OK and D/660 clade HEF proteins in Asian elephant, and water buffalo. These results show that IDV can attach to the respiratory tract of wildlife which might facilitate transmission of IDV between wildlife and domestic animals.
Collapse
Affiliation(s)
- Nikoloz Nemanichvili
- Division of Pathology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, the Netherlands
| | - Alinda J Berends
- Division of Pathology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, the Netherlands
| | - Ilhan Tomris
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, the Netherlands
| | - Karen N Barnard
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Colin R Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Baker Institute for Animal Health, Cornell University, Ithaca, NY, 14853, USA
| | - Andrea Gröne
- Division of Pathology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, the Netherlands
| | - Jolianne M Rijks
- Dutch Wildlife Health Centre, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, the Netherlands
| | - Monique H Verheije
- Division of Pathology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, the Netherlands
| | - Robert P de Vries
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, the Netherlands.
| |
Collapse
|
14
|
Sreenivasan CC, Sheng Z, Wang D, Li F. Host Range, Biology, and Species Specificity of Seven-Segmented Influenza Viruses-A Comparative Review on Influenza C and D. Pathogens 2021; 10:1583. [PMID: 34959538 PMCID: PMC8704295 DOI: 10.3390/pathogens10121583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023] Open
Abstract
Other than genome structure, influenza C (ICV), and D (IDV) viruses with seven-segmented genomes are biologically different from the eight-segmented influenza A (IAV), and B (IBV) viruses concerning the presence of hemagglutinin-esterase fusion protein, which combines the function of hemagglutinin and neuraminidase responsible for receptor-binding, fusion, and receptor-destroying enzymatic activities, respectively. Whereas ICV with humans as primary hosts emerged nearly 74 years ago, IDV, a distant relative of ICV, was isolated in 2011, with bovines as the primary host. Despite its initial emergence in swine, IDV has turned out to be a transboundary bovine pathogen and a broader host range, similar to influenza A viruses (IAV). The receptor specificities of ICV and IDV determine the host range and the species specificity. The recent findings of the presence of the IDV genome in the human respiratory sample, and high traffic human environments indicate its public health significance. Conversely, the presence of ICV in pigs and cattle also raises the possibility of gene segment interactions/virus reassortment between ICV and IDV where these viruses co-exist. This review is a holistic approach to discuss the ecology of seven-segmented influenza viruses by focusing on what is known so far on the host range, seroepidemiology, biology, receptor, phylodynamics, species specificity, and cross-species transmission of the ICV and IDV.
Collapse
Affiliation(s)
- Chithra C. Sreenivasan
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA; (C.C.S.); (D.W.)
| | - Zizhang Sheng
- Aaron Diamond AIDS Research Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA;
| | - Dan Wang
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA; (C.C.S.); (D.W.)
| | - Feng Li
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA; (C.C.S.); (D.W.)
| |
Collapse
|
15
|
Serological Surveillance of Influenza D Virus in Ruminants and Swine in West and East Africa, 2017-2020. Viruses 2021; 13:v13091749. [PMID: 34578330 PMCID: PMC8473344 DOI: 10.3390/v13091749] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/11/2022] Open
Abstract
Influenza D virus (IDV) was first isolated in 2011 in Oklahoma, USA from pigs presenting with influenza-like symptoms. IDV is known to mainly circulate in ruminants, especially cattle. In Africa, there is limited information on the epidemiology of IDV, although the virus has likely circulated in the region since 2012. In the present study, we investigated the seropositivity of IDV among domestic ruminants and swine in West and East Africa from 2017 to 2020. Serum samples were analyzed using the hemagglutination inhibition (HI) assay. Our study demonstrated that IDV is still circulating in Africa, with variations in seropositivity among countries and species. The highest seropositivity was detected in cattle (3.9 to 20.9%). Our data highlights a need for extensive surveillance of IDV in Africa in order to better understand the epidemiology of the virus in the region.
Collapse
|
16
|
Identification of One Critical Amino Acid Residue of the Nucleoprotein as a Determinant for In Vitro Replication Fitness of Influenza D Virus. J Virol 2021; 95:e0097121. [PMID: 34190601 DOI: 10.1128/jvi.00971-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The newly identified influenza D virus (IDV) of the Orthomyxoviridae family has a wide host range with a broad geographical distribution. Despite the first appearance in U.S. pig herds in 2011, subsequent studies demonstrated that IDV is widespread in global cattle populations, supporting a theory that IDV utilizes bovines as a primary reservoir. Our investigation of the two reference influenza D viruses, D/swine/Oklahoma/1334/2011 (OK/11), isolated from swine, and D/Bovine/Oklahoma/660/2013 (660/13), isolated from cattle, revealed that 660/13 replicated to titers approximately 100-fold higher than those for OK/11 in multiple cell lines. By using a recently developed IDV reverse-genetics system derived from low-titer OK/11, we generated recombinant chimeric OK/11 viruses in which one of the seven genome segments was replaced with its counterpart from high-titer 660/13 virus. Further characterization demonstrated that the replication level of the chimeric OK/11 virus was significantly increased only when harboring the 660/13 nucleoprotein (NP) segment. Finally, through both gain-of-function and loss-of-function experiments, we identified that one amino acid residue at position 381, located in the body domain of NP protein, was a key determinant for the replication difference between the low-titer OK/11 virus and the high-titer 660/13 virus. Taken together, our findings provide important insight into IDV replication fitness mediated by the NP protein, which should facilitate future study of the infectious virus particle production mechanism of IDV. IMPORTANCE Little is known about the virus infection and production mechanism for newly discovered influenza D virus (IDV), which utilizes bovines as a primary reservoir, with frequent spillover to new hosts, including swine. In this study, we showed that of two well-characterized IDVs, 660/13 replicated more efficiently (approximately 100-fold higher) than OK/11. Using a recently developed IDV reverse-genetics system, we identified viral nucleoprotein (NP) as a primary determinant of the different replication capacities observed between these two nearly identical viruses. Mechanistic investigation further revealed that a mutation at NP position 381 evidently modulated virus fitness. Taken together, these observations indicate that IDV NP protein performs a critical role in infectious virus particle production. Our study thus illustrates an NP-based mechanism for efficient IDV infection and production in vitro.
Collapse
|
17
|
Tissue Microarrays to Visualize Influenza D Attachment to Host Receptors in the Respiratory Tract of Farm Animals. Viruses 2021; 13:v13040586. [PMID: 33807137 PMCID: PMC8067312 DOI: 10.3390/v13040586] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 12/19/2022] Open
Abstract
The trimeric hemagglutinin-esterase fusion protein (HEF) of influenza D virus (IDV) binds 9-O-acetylated sialic acid receptors, which are expressed in various host species. While cattle are the main reservoir for IDV, the viral genome has also been detected in domestic pigs. In addition, antibodies against IDV have been detected in other farm animals such as sheep, goats, and horses, and even in farmers working with IDV positive animals. Viruses belonging to various IDV clades circulate, but little is known about their differences in host and tissue tropism. Here we used recombinantly produced HEF proteins (HEF S57A) from the major clades D/Oklahoma (D/OK) and D/Oklahoma/660 (D/660) to study their host and tissue tropism and receptor interactions. To this end, we developed tissue microarrays (TMA) composed of respiratory tissues from various farm animals including cattle, domestic pigs, sheep, goats, and horses. Protein histochemical staining of farm animal respiratory tissue-microarrays with HEF proteins showed that cattle have receptors present over the entire respiratory tract while receptors are only present in the nasal and pharyngeal epithelium of pigs, sheep, goats, and horses. No differences in tropism for tissues and animals were observed between clades, while hemagglutination assays showed that D/OK has a 2-fold higher binding affinity than D/660 for receptors on red blood cells. The removal of O-acetylation from receptors via saponification treatment confirmed that receptor-binding of both clades was dependent on O-acetylated sialic acids.
Collapse
|
18
|
Saegerman C, Gaudino M, Savard C, Broes A, Ariel O, Meyer G, Ducatez MF. Influenza D virus in respiratory disease in Canadian, province of Québec, cattle: Relative importance and evidence of new reassortment between different clades. Transbound Emerg Dis 2021; 69:1227-1245. [PMID: 33764631 DOI: 10.1111/tbed.14085] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Influenza D virus (IDV), a segmented single-stranded negative-sense ribonucleic acid (RNA) virus, belongs to the new Delta influenza virus genus of the Orthomyxoviridae family. Cattle were proposed as the natural reservoir of IDV in which infection was associated with mild-to-moderate respiratory clinical signs (i.e. cough, nasal discharge and dyspnoea). METHODS AND PRINCIPAL FINDINGS In order to investigate the role of IDV in bovine respiratory disease, during the period 2017-2020, 883 nasal or naso-pharyngeal swabs from Canadian cattle with respiratory signs (cough and/or dyspnoea) were tested by (RT-)qPCR for IDV and other major bovine viral (bovine herpesvirus 1, bovine viral diarrhoea virus, bovine respiratory syncytial virus, bovine parainfluenza virus 3 and bovine coronavirus) and bacterial (Mannheimia haemolytica, Pasteurella multocida, Histophilus somni and Mycoplasma bovis) respiratory pathogens. In addition, whole-genome sequencing and phylogenetic analyses were carried out on five IDV-positive samples. The prevalence of IDV RT-qPCR (with cut-off: Cq < 38) at animal level was estimated at 5.32% (95% confidence interval: 3.94-7.02). Positive result of IDV was significantly associated with (RT-)qPCR-positive results for bovine respiratory syncytial virus and Mycoplasma bovis. While phylogenetic analyses indicate that most segments belonged to clade D/660, reassortment between clades D/660 and D/OK were evidenced in four samples collected in 2018-2020. CONCLUSIONS AND SIGNIFICANCE Relative importance of influenza D virus and associated pathogens in bovine respiratory disease of Canadian dairy cattle was established. Whole-genome sequencing demonstrated evidence of reassortment between clades D/660 and D/OK. Both these new pieces of information claim for more surveillance of IDV in cattle production worldwide.
Collapse
Affiliation(s)
- Claude Saegerman
- Fundamental and Applied Research for Animal and Health (FARAH) Center, University of Liège, Liège, Belgium
| | | | | | - André Broes
- Biovet Inc., Saint-Hyacinthe, Québec, Canada
| | | | | | | |
Collapse
|
19
|
Abstract
From its initial isolation in the USA in 2011 to the present, influenza D virus (IDV) has been detected in cattle and swine populations worldwide. IDV has exceptional thermal and acid stability and a broad host range. The virus utilizes cattle as its natural reservoir and amplification host with periodic spillover to other mammalian species, including swine. IDV infection can cause mild to moderate respiratory illnesses in cattle and has been implicated as a contributor to bovine respiratory disease (BRD) complex, which is the most common and costly disease affecting the cattle industry. Bovine and swine IDV outbreaks continue to increase globally, and there is increasing evidence indicating that IDV may have the potential to infect humans. This review discusses recent advances in IDV biology and epidemiology, and summarizes our current understanding of IDV pathogenesis and zoonotic potential.
Collapse
Affiliation(s)
- Jieshi Yu
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Feng Li
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Dan Wang
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| |
Collapse
|
20
|
Saegerman C, Bianchini J, Snoeck CJ, Moreno A, Chiapponi C, Zohari S, Ducatez MF. First expert elicitation of knowledge on drivers of emergence of influenza D in Europe. Transbound Emerg Dis 2020; 68:3349-3359. [PMID: 33249766 DOI: 10.1111/tbed.13938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 10/22/2022]
Abstract
The influenza D virus (IDV) was first identified and characterized in 2011. Considering the virus' zoonotic potential, its genome nature (segmented RNA virus), its worldwide circulation in livestock and its role in bovine respiratory disease, an increased interest is given to IDV. However, few data are available on drivers of emergence of IDV. We first listed fifty possible drivers of emergence of IDV in ruminants and swine. As recently carried out for COVID-19 in pets (Transboundary and Emerging Diseases, 2020), a scoring system was developed per driver and scientific experts (N = 28) were elicited to (a) allocate a score to each driver, (b) weight the drivers' scores within each domain and (c) weight the different domains among themselves. An overall weighted score was calculated per driver, and drivers were ranked in decreasing order. Drivers with comparable likelihoods to play a role in the emergence of IDV in ruminants and swine in Europe were grouped using a regression tree analysis. Finally, the robustness of the expert elicitation was verified. Eight drivers were ranked with the highest probability to play a key role in the emergence of IDV: current species specificity of the causing agent of the disease; influence of (il)legal movements of live animals (ruminants, swine) from neighbouring/European Union member states and from third countries for the disease to (re-)emerge in a given country; detection of emergence; current knowledge of the pathogen; vaccine availability; animal density; and transport vehicles of live animals. As there is still limited scientific knowledge on the topic, expert elicitation of knowledge and multi-criteria decision analysis, in addition to clustering and sensitivity analyses, are very important to prioritize future studies, starting from the top eight drivers. The present methodology could be applied to other emerging animal diseases.
Collapse
Affiliation(s)
- Claude Saegerman
- Fundamental and Applied Research for Animal and Health (FARAH) Center, University of Liège, Liège, Belgium
| | - Juana Bianchini
- Fundamental and Applied Research for Animal and Health (FARAH) Center, University of Liège, Liège, Belgium
| | - Chantal J Snoeck
- Clinical and Applied Virology group, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Ana Moreno
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna 'Bruno Ubertini', Brescia, Italy
| | - Chiara Chiapponi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna 'Bruno Ubertini', Brescia, Italy
| | | | | |
Collapse
|
21
|
Gaudino M, Moreno A, Snoeck CJ, Zohari S, Saegerman C, O'Donovan T, Ryan E, Zanni I, Foni E, Sausy A, Hübschen JM, Meyer G, Chiapponi C, Ducatez MF. Emerging Influenza D virus infection in European livestock as determined in serology studies: Are we underestimating its spread over the continent? Transbound Emerg Dis 2020; 68:1125-1135. [PMID: 32871031 DOI: 10.1111/tbed.13812] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 12/24/2022]
Abstract
Influenza D virus (IDV) is a novel orthomyxovirus that was first isolated in 2011 in the United States from a swine exhibiting influenza-like disease. To date, its detection is extended to all continents and in a broad host range: IDV is circulating in cattle, swine, feral swine, camelids, small ruminants and horses. Evidence also suggests a possible species jump to humans, underlining the issue of zoonotic potential. In Europe, serological investigations in cattle have partially allowed the understanding of the virus diffusion in different countries such as Italy, France, Luxembourg and Ireland. The infection is widespread in cattle but limited in other investigated species, consolidating the assumption of cattle as IDV primary host. We hypothesize that commercial livestock trade could play a role in the observed differences in IDV seroprevalence among these areas. Indeed, the overall level of exposure in cattle and swine in destination countries (e.g. Italy) is higher than in origin countries (e.g. France), leading to the hypothesis of a viral shedding following the transportation of young cattle abroad and thus contributing to larger diffusion at countries of destination. IDV large geographic circulation in cattle from Northern to more Southern European countries also supports the hypothesis of a viral spread through livestock trade. This review summarizes available data on IDV seroprevalence in Europe collected so far and integrates unpublished data from IDV European surveillance framework of the last decade. In addition, the possible role of livestock trade and biosecurity measures in this pathogen's spread is discussed.
Collapse
Affiliation(s)
- Maria Gaudino
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Ana Moreno
- Istituto Zooprofilattico Sperimentale Della Lombardia e dell'Emilia Romagna "Bruno Ubertini", Brescia, Italy
| | - Chantal J Snoeck
- Clinical and Applied Virology Group, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | | | - Claude Saegerman
- Fundamental and Applied Research for Animals and Health (FARAH) Center, University of Liège, Liège, Belgium
| | - Tom O'Donovan
- Central Veterinary Research Laboratory, Celbridge, Co. Kildare, Celbridge, Ireland
| | - Eoin Ryan
- Central Veterinary Research Laboratory, Celbridge, Co. Kildare, Celbridge, Ireland
| | - Irene Zanni
- Istituto Zooprofilattico Sperimentale Della Lombardia e dell'Emilia Romagna "Bruno Ubertini", Parma, Italy
| | - Emanuela Foni
- Istituto Zooprofilattico Sperimentale Della Lombardia e dell'Emilia Romagna "Bruno Ubertini", Parma, Italy
| | - Aurelie Sausy
- Clinical and Applied Virology Group, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Judith M Hübschen
- Clinical and Applied Virology Group, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Gilles Meyer
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Chiara Chiapponi
- Istituto Zooprofilattico Sperimentale Della Lombardia e dell'Emilia Romagna "Bruno Ubertini", Parma, Italy
| | | |
Collapse
|
22
|
Saegerman C, Salem E, Ait Lbacha H, Alali S, Zouagui Z, Meyer G, Ducatez MF. Formal estimation of the seropositivity cut-off of the hemagglutination inhibition assay in field diagnosis of influenza D virus in cattle and estimation of the associated true prevalence in Morocco. Transbound Emerg Dis 2020; 68:1392-1399. [PMID: 32815301 DOI: 10.1111/tbed.13805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 08/15/2020] [Accepted: 08/15/2020] [Indexed: 12/17/2022]
Abstract
The influenza D virus (IDV) was discovered less than ten years ago. Increased interest in this virus is due to its nature (RNA virus with high mutation rate), its worldwide circulation in livestock species, its probable role in bovine respiratory disease and its zoonotic potential. Until currently, the establishment of positivity cut-off of the hemagglutination inhibition (HI) assay was not formalized in field conditions for the detection of antibodies directed against IDV in cattle (i.e. the proposed reservoir). In this study, the positivity cut-off of the HI assays was formally established (titre = 10) using a receiver operating characteristic (ROC) curve. This information was used to estimate the sensitivity (68.04 to 73.20%) and the specificity (94.17 to 96.12%) of two different HI assays (HI1 and HI2 , with two different IDV antigens) relatively to virus micro-neutralization test (VNT) as reference test. Based on the above characteristics, the true prevalence of IDV was then estimated in Morocco using a stochastic approach. Irrespective of the HI assays used, the estimation of the true prevalence was statistically equivalent (between 48.44% and 48.73%). In addition, the Spearman rank correlation between HI titres and VNT titres was statistically good (0.76 and 0.81 for HA1 and HA2 , respectively). The positive (0.82 and 0.79 for HA1 and HA2 , respectively) and the negative (0.86 and 0.85 for HA1 and HA2 , respectively) agreement indices between results of HI assays and VNT were good and similar. This study allowed for a formal establishment of a positivity cut-off in HI assays for the detection of antibodies directed against IDV. This information is of prime importance to estimate the diagnostic sensitivity and specificity of the test relatively to the VNT (i.e. the reference test). Using these characteristics, the true prevalence of IDV should be determined in a country.
Collapse
Affiliation(s)
- Claude Saegerman
- Fundamental and Applied Research for Animal and Health (FARAH) Center, University of Liège, Liege, Belgium
| | | | | | - Said Alali
- Institut Agronomique et Vétérinaire Hassan II, Rabat, Morocco
| | - Zaid Zouagui
- Institut Agronomique et Vétérinaire Hassan II, Rabat, Morocco
| | | | | |
Collapse
|
23
|
Chiapponi C, Ducatez M, Faccini S, Foni E, Gaudino M, Hägglund S, Luppi A, Meyer G, Moreno A, Näslund K, Nemanichvili N, Oliva J, Prosperi A, Rosignoli C, Renault V, Saegerman C, Sausy A, Snoeck C, Valarcher J, Verheije H, Zohari S. Risk assessment for influenza D in Europe. ACTA ACUST UNITED AC 2020. [PMCID: PMC7300431 DOI: 10.2903/sp.efsa.2020.en-1853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chiara Chiapponi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” Italy
| | - Mariette Ducatez
- French National Research Institute for Agriculture, Food and the Environment France
| | - Silvia Faccini
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” Italy
| | - Emmanuela Foni
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” Italy
| | - Maria Gaudino
- French National Research Institute for Agriculture, Food and the Environment France
| | | | - Andrea Luppi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” Italy
| | - Gilles Meyer
- French National Research Institute for Agriculture, Food and the Environment France
| | - Ana Moreno
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini”
| | | | | | - Justine Oliva
- French National Research Institute for Agriculture, Food and the Environment France
| | - Alice Prosperi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” Italy
| | - Carlo Rosignoli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” Italy
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Bailey ES, Fieldhouse JK, Alarja NA, Chen DD, Kovalik ME, Zemke JN, Choi JY, Borkenhagen LK, Toh TH, Lee JSY, Chong KS, Gray GC. First sequence of influenza D virus identified in poultry farm bioaerosols in Sarawak, Malaysia. TROPICAL DISEASES TRAVEL MEDICINE AND VACCINES 2020; 6:5. [PMID: 32190346 PMCID: PMC7069008 DOI: 10.1186/s40794-020-0105-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/26/2020] [Indexed: 12/28/2022]
Abstract
In 2018, our team collected aerosols samples from five poultry farms in Malaysia. Influenza D virus was detected in 14% of samples. One sample had an 86.3% identity score similar to NCBI accession number MH785020.1. This is the first molecular sequence of influenza D virus detected in Southeast Asia from a bioaerosol sample. Our findings indicate that further study of role of IDV in poultry is necessary.
Collapse
Affiliation(s)
- Emily S Bailey
- 1Division of Infectious Diseases, Duke University School of Medicine, DUMC Box 102359, Durham, NC 27710 USA.,2Duke Global Health Institute, Duke University, Durham, North Carolina USA.,3Julia Jones Matthews Department of Public Health, Texas Tech University Health Sciences Center, Abilene, TX USA
| | - Jane K Fieldhouse
- 1Division of Infectious Diseases, Duke University School of Medicine, DUMC Box 102359, Durham, NC 27710 USA.,2Duke Global Health Institute, Duke University, Durham, North Carolina USA
| | - Natalie A Alarja
- 1Division of Infectious Diseases, Duke University School of Medicine, DUMC Box 102359, Durham, NC 27710 USA.,2Duke Global Health Institute, Duke University, Durham, North Carolina USA
| | - David D Chen
- 2Duke Global Health Institute, Duke University, Durham, North Carolina USA
| | - Maria E Kovalik
- 2Duke Global Health Institute, Duke University, Durham, North Carolina USA
| | - Juliana N Zemke
- 2Duke Global Health Institute, Duke University, Durham, North Carolina USA
| | - Jessica Y Choi
- 2Duke Global Health Institute, Duke University, Durham, North Carolina USA
| | - Laura K Borkenhagen
- 1Division of Infectious Diseases, Duke University School of Medicine, DUMC Box 102359, Durham, NC 27710 USA.,2Duke Global Health Institute, Duke University, Durham, North Carolina USA
| | - Teck-Hock Toh
- 4Clinical Research Center, Sibu Hospital, Sibu, Sarawak Malaysia.,5Faculty of Medicine, SEGi University, Kota Damansara, Selangor Malaysia
| | | | - Kuek-Sen Chong
- 5Faculty of Medicine, SEGi University, Kota Damansara, Selangor Malaysia.,Divisional Health Office, Sibu, Sarawak Malaysia
| | - Gregory C Gray
- 1Division of Infectious Diseases, Duke University School of Medicine, DUMC Box 102359, Durham, NC 27710 USA.,2Duke Global Health Institute, Duke University, Durham, North Carolina USA.,7Global Health Research Center, Duke-Kunshan University, Kunshan, China.,8Emerging Infectious Disease Program, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
25
|
Yilmaz A, Umar S, Turan N, Aydin O, Tali HE, Oguzoglu TC, Yilmaz H, Richt JA, Ducatez MF. First report of influenza D virus infection in Turkish cattle with respiratory disease. Res Vet Sci 2020; 130:98-102. [PMID: 32169811 DOI: 10.1016/j.rvsc.2020.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/12/2020] [Accepted: 02/20/2020] [Indexed: 01/30/2023]
Abstract
Bovine respiratory infections are the most economically important diseases affecting the cattle industry worldwide including Turkey. Influenza D virus (IDV) could play an important role to trigger bovine respiratory disease (BRD) complex. Since, there is no data about the presence and genotypes of IDV in Turkish cattle herds; this study was performed to investigate IDV in cattle in Turkey. Animals analyzed in this study were from commercial cattle farms having respiratory disease in calves with significant mortality. Nasal swabs and tissue samples from cattle in Marmara, Inner Anatolia and Aegean region of Turkey were analyzed by real-time RT-PCR assay to detect IDV. Among 76 samples form 12 cattle herds, IDV was detected in 3 cattle in a herd. Sequencing and phylogenetic analysis of partial hemagglutinin esterase fusion (HEF) gene showed that the Turkish strain is 95% identical to its European and US counterparts, which suggest intercontinental spread of the virus. These findings highlight the need for future continuous surveillance on larger scale to determine the distribution pattern and evolution of this novel emerging pathogen in Turkish cattle industry.
Collapse
Affiliation(s)
- Aysun Yilmaz
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Büyükcekmece, 35500 Istanbul, Turkey
| | - Sajid Umar
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Büyükcekmece, 35500 Istanbul, Turkey; Department of Veterinary Pathology, PMAS Arid Agriculture University Rawalpindi, Pakistan
| | - Nuri Turan
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Büyükcekmece, 35500 Istanbul, Turkey
| | - Ozge Aydin
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Büyükcekmece, 35500 Istanbul, Turkey
| | - H Emre Tali
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Büyükcekmece, 35500 Istanbul, Turkey
| | - Tuba C Oguzoglu
- Department of Virology, Veterinary Faculty, Ankara University, Diskapi, Ankara, Turkey
| | - Huseyin Yilmaz
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Büyükcekmece, 35500 Istanbul, Turkey.
| | - Juergen A Richt
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, USA
| | - Mariette F Ducatez
- IHAP, Université de Toulouse, INRA, ENVT, 23 Chemin des Capelles, 31076 Toulouse, France
| |
Collapse
|
26
|
Trombetta CM, Marchi S, Manini I, Kistner O, Li F, Piu P, Manenti A, Biuso F, Sreenivasan C, Druce J, Montomoli E. Influenza D Virus: Serological Evidence in the Italian Population from 2005 to 2017. Viruses 2019; 12:E30. [PMID: 31892120 PMCID: PMC7019439 DOI: 10.3390/v12010030] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/18/2019] [Accepted: 12/24/2019] [Indexed: 12/19/2022] Open
Abstract
Influenza D virus is a novel influenza virus, which was first isolated from an ailing swine in 2011 and later detected in cattle, suggesting that these animals may be a primary natural reservoir. To date, few studies have been performed on human samples and there is no conclusive evidence on the ability of the virus to infect humans. The aim of this serological study was to assess the prevalence of antibodies against influenza D virus in human serum samples collected in Italy from 2005 to 2017. Serum samples were analysed by haemagglutination inhibition and virus neutralization assays. The results showed that the prevalence of antibodies against the virus increased in the human population in Italy from 2005 to 2017, with a trend characterized by a sharp increase in some years, followed by a decline in subsequent years. The virus showed the ability to infect and elicit an immune response in humans. However, prevalence peaks in humans appear to follow epidemics in animals and not to persist in the human population.
Collapse
Affiliation(s)
- Claudia M. Trombetta
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro, 53100 Siena, Italy; (S.M.); (I.M.); (E.M.)
| | - Serena Marchi
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro, 53100 Siena, Italy; (S.M.); (I.M.); (E.M.)
| | - Ilaria Manini
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro, 53100 Siena, Italy; (S.M.); (I.M.); (E.M.)
| | - Otfried Kistner
- VisMederi srl, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy; (O.K.); (P.P.)
| | - Feng Li
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; (F.L.); (C.S.)
| | - Pietro Piu
- VisMederi srl, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy; (O.K.); (P.P.)
| | - Alessandro Manenti
- VisMederi Research srl, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy; (A.M.); (F.B.)
| | - Fabrizio Biuso
- VisMederi Research srl, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy; (A.M.); (F.B.)
| | - Chithra Sreenivasan
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; (F.L.); (C.S.)
| | - Julian Druce
- Victorian Infectious Diseases Reference Laboratory, 792 Elizabeth Street, Melbourne, VIC 3000, Australia;
| | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro, 53100 Siena, Italy; (S.M.); (I.M.); (E.M.)
- VisMederi srl, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy; (O.K.); (P.P.)
- VisMederi Research srl, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy; (A.M.); (F.B.)
| |
Collapse
|
27
|
Gorin S, Fablet C, Quéguiner S, Barbier N, Paboeuf F, Hervé S, Rose N, Simon G. Assessment of Influenza D Virus in Domestic Pigs and Wild Boars in France: Apparent Limited Spread within Swine Populations Despite Serological Evidence of Breeding Sow Exposure. Viruses 2019; 12:v12010025. [PMID: 31878133 PMCID: PMC7019313 DOI: 10.3390/v12010025] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022] Open
Abstract
In order to assess influenza D virus (IDV) infections in swine in France, reference reagents were produced in specific pathogen free pigs to ensure serological and virological analyses. Hemagglutination inhibition (HI) assays were carried out on 2090 domestic pig sera collected in 2012-2018 in 102 farms. Only 31 sera from breeding sows sampled in 2014-2015 in six farrow-to-finish herds with respiratory disorders contained IDV-specific antibodies. In two of them, within-herd percentage of positive samples (73.3% and 13.3%, respectively) and HI titers (20-160) suggested IDV infections, but virus persistence was not confirmed following new sampling in 2017. All growing pigs tested seronegative, whatever their age and the sampling year. Moreover, PB1-gene RT-qPCR performed on 452 nasal swabs taken in 2015-2018 on pigs with acute respiratory syndrome (137 farms) gave negative results. In Corse, a Mediterranean island where pigs are mainly bred free-range, 2.3% of sera (n = 177) sampled on adult pigs in 2013-2014 obtained low HI titers. Finally, 0.5% of sera from wild boars hunted in 2009-2016 (n = 644) tested positive with low HI titers. These results provide the first serological evidence that sows were exposed to IDV in France but with a limited spread within the swine population.
Collapse
Affiliation(s)
- Stéphane Gorin
- Swine Virology Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (S.G.); (S.Q.); (N.B.); (S.H.)
| | - Christelle Fablet
- Epidemiology, Health and Welfare Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (C.F.); (N.R.)
| | - Stéphane Quéguiner
- Swine Virology Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (S.G.); (S.Q.); (N.B.); (S.H.)
| | - Nicolas Barbier
- Swine Virology Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (S.G.); (S.Q.); (N.B.); (S.H.)
| | - Frédéric Paboeuf
- SPF Pig Production and Experimentation, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France;
| | - Séverine Hervé
- Swine Virology Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (S.G.); (S.Q.); (N.B.); (S.H.)
| | - Nicolas Rose
- Epidemiology, Health and Welfare Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (C.F.); (N.R.)
| | - Gaëlle Simon
- Swine Virology Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (S.G.); (S.Q.); (N.B.); (S.H.)
- Correspondence: ; Tel.: +33-296-010-163
| |
Collapse
|