1
|
Zheng X, Zhang W, Wu Y, Wu J, Chen Y, Long M. Biodegradation of organosulfur with extra carbon source: Insights into biofilm formation and bacterial metabolic processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175758. [PMID: 39182787 DOI: 10.1016/j.scitotenv.2024.175758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/11/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Organosulfur compounds are prevalent in wastewater, presenting challenges for biodegradation, particularly in low-carbon environments. Supplementing additional carbon sources not only provides essential nutrients for microbial growth but also serves as regulators, influencing adaptive changes in biofilm and enhancing the survival of microorganisms in organosulfur-induced stress bioreactors. This study aims to elucidate the biodegradation of organosulfur under varying carbon source levels, placing specific emphasis on functional bacteria and metabolic processes. It has been observed that higher levels of carbon supplementation led to significantly improved total sulfur (TS) removal efficiencies, exceeding 83 %, and achieve a high organosulfur CH3SH removal efficiency of ~100 %. However, in the reactor with no external carbon source added, the oxidation end-product SO42- accumulated significantly, surpassing 120 mEq/m2-day. Furthermore, the TB-EPS concentration consistently increasedwith the ascending glucose concentration. The analysis of bacterial community reveals the enrichment of functional bacteria involved in sulfur metabolism and biofilm formation (e.g. Ferruginibacter, Rhodopeudomonas, Gordonia, and Thiobacillus). Correspondingly, the gene expressions related to the pathway of organosulfur to SO42- were notably enhanced (e.g. MTO increased by 27.7 %). In contrast, extra carbon source facilitated the transfer of organosulfur into amino acids in sulfur metabolism and promoted assimilation. These metabolic insights, coupled with kinetic transformation results, further validate distinct sulfur pathways under different carbon source conditions. The intricate interplay between bacteria growth regulation, pollutant biodegradation, and microbial metabolites underscores a complex network relationship that significantly contributes to efficient operation of bioreactors.
Collapse
Affiliation(s)
- Xiong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Wei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Min Long
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
2
|
Dong W, Zhou J, Zhang CJ, Yang Q, Li M. Methylotrophic substrates stimulated higher methane production than competitive substrates in mangrove sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175677. [PMID: 39181265 DOI: 10.1016/j.scitotenv.2024.175677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Although mangrove forests can uptake atmospheric CO2 and store carbon as organic matter called "blue carbon", it is also an important natural source of greenhouse gas methane. Methanogens are major contributors to methane and play important roles in the global carbon cycle. However, our understanding of the key microbes and metabolic pathways responsible for methanogenesis under specific substrates in mangrove sediments is still very limited. Here, we set an anaerobic incubation to evaluate the responses of methanogens in mangrove sediments from South China to the addition of diverse methanogenic substrates (H2/CO2, acetate, trimethylamine (TMA), and methanethiol (MT)) and further investigated the dynamics of the whole microbial community. Our results showed that diverse substrates stimulated methanogenic activities at different times. The stimulation of methanogenesis was more pronounced at early and late periods by the addition of methylotrophic substrates TMA and MT, respectively. The amplicon sequencing analysis showed that genus Methanococcoides was mainly responsible for TMA-utilized methanogenesis in mangrove sediment, while the multitrophic Methanococcus was most abundant in H2/CO2 and MT treatments. Apart from that, the bacteria enrichments of Syntrophotalea, Clostridium_sensu_stricto_12, Fusibacter in MT treatments might also be associated with the stimulation of methane production. In addition, the metagenomic analysis suggested that Methanosarcinaceae was also one of the key methanogens in MT treatments with different genomic information compared to that in TMA treatments. Finally, the total relative abundances of methanogenesis-related genes were also highest in TMA and MT treatments. These results will help advance our understanding of the contributions of different methanogenesis pathways and methanogens to methane emissions in mangrove sediments.
Collapse
Affiliation(s)
- Weiling Dong
- Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jinjie Zhou
- Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Cui-Jing Zhang
- Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Qin Yang
- Department of Biological Information, Shenzhen GenDow Biotech Co., Ltd., Shenzhen, Guangdong, China
| | - Meng Li
- Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
3
|
Zhang X, Zhao B, Zhang Y, Zhang J, Li Y, Zhong J, Diao J, Ma F, Liu H, Duan K. Sources, interactions, influencing factors and ecological risks of microplastics and antibiotic resistance genes in soil: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175226. [PMID: 39098429 DOI: 10.1016/j.scitotenv.2024.175226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/13/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
Microplastics (MPs) and antibiotic resistance genes (ARGs) are gaining increasing attention as they pose a threat to the ecological environment and human health as emerging contaminants. MPs has been proved to be a hot spot in ARGs, and although it has been extensively studied in water environment, the results of bibliometrics statistical analysis in this paper showed that relevant studies in soil ecological environment are currently in the initial stage. In view of this, the paper provides a systematic review of the sources, interactions, influencing factors, and ecological risks associated with MPs and ARGs in soil environments. Additionally, the mechanism and influencing factors of plastisphere formation and resistance are elaborated in detail. The MPs properties, soil physicochemical properties, soil environmental factors and agricultural activities are the primarily factors affecting the interaction between MPs and ARGs in soil. Challenges and development directions of related research in the future are also prospected. It is hoped that the review could assist in a deeper comprehension and exploration of the interaction mechanism between MPs and ARGs in soil as well as the function of MPs in the transmission process of ARGs among diverse environmental media and organisms, and provide theory basis and reference for the MPs and ARGs pollution control and remediation in soil.
Collapse
Affiliation(s)
- Xin Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Baowei Zhao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China.
| | - Yin Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Jian Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Yingquan Li
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Jinkui Zhong
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Jingru Diao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Fengfeng Ma
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Hui Liu
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Kaixiang Duan
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| |
Collapse
|
4
|
Zhou W, Shen X, Xu Z, Yang Q, Jiao M, Li H, Zhang L, Ling J, Liu H, Dong J, Suo A. Specialists regulate microbial network and community assembly in subtropical seagrass sediments under differing land use conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122486. [PMID: 39278015 DOI: 10.1016/j.jenvman.2024.122486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Microorganisms in the sediment play a pivotal role in the functioning and stability of seagrass ecosystems and their dynamics are influenced by the nutrient acquisition strategies of host plants. While the distinct impacts of microbial generalists and specialists on community dynamics are recognized, their distribution patterns and ecological roles within seagrass ecosystems remain largely unexplored. To address this issue, we conducted an analysis of community assembly processes and co-occurrence relationships of both microbial generalists and specialists within sediment profiles (0-100 cm) from seagrass habitats subjected to differing land use conditions. The results revealed that seagrasses in Yifeng Estuary experienced the large proportion of cultivated land and exhibited higher organic carbon content in the 0-20 cm surface sediment layer. Nitrogen-cycling bacteria were predominantly associated with seagrasses from Yifeng Estuary, whereas Vibrio spp. was more prevalent in seagrasses from Liusha Bay. Notably, seagrass Halophia beccarii (YHB) in Yifeng Estuary harbored higher niche breadths for both microbial generalist and specialist compared to Halodule uninervis (LHU) and Halophia ovalis (LHO) from Liusha Bay. Stochastic processes were pivotal in shaping seagrass sediment microbial communities, with a higher immigration rate observed in YHB, suggesting greater microbial turnover in this area. Additionally, YHB sediment presented lower drift and higher dispersal limitation among generalists compared to LHU and LHO, whereas the pattern was reversed among specialists. Specialists were found to play a crucial role in shaping microbial interactions within YHB sediment, with genera Halioglobus identified as keystone species in the network. The specialists were further found to significantly influence microbial β-diversity in seagrass sediment directly. Overall, our findings illustrated how microbial generalists and specialists were distributed in seagrass sediments in response to land use changes and provided new insights into the potential roles of microbial regulation in degraded seagrass ecosystems.
Collapse
Affiliation(s)
- Weiguo Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xiaomei Shen
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Zhimeng Xu
- Haide college, Ocean University of China, Qingdao, 266003, China
| | - Qingsong Yang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Mengyu Jiao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Hanying Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Li Zhang
- Marine Environmental Engineering Center, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Juan Ling
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| | - Hongbin Liu
- The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Junde Dong
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Anning Suo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Marine Environmental Engineering Center, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
5
|
Cheng S, Meng F, Wang Y, Zhang J, Zhang L. The potential linkage between sediment oxygen demand and microbes and its contribution to the dissolved oxygen depletion in the Gan River. Front Microbiol 2024; 15:1413447. [PMID: 39144217 PMCID: PMC11322766 DOI: 10.3389/fmicb.2024.1413447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
The role of sediment oxygen demand (SOD) in causing dissolved oxygen (DO) depletion is widely acknowledged, with previous studies mainly focusing on chemical and biological SOD separately. However, the relationship between the putative functions of sediment microbes and SOD, and their impact on DO depletion in overlying water, remains unclear. In this study, DO depletion was observed in the downstream of the Gan River during the summer. Sediments were sampled from three downstream sites (YZ, Down1, and Down2) and one upstream site (CK) as a control. Aquatic physicochemical parameters and SOD levels were measured, and microbial functions were inferred from taxonomic genes through analyses of the 16S rRNA gene. The results showed that DO depletion sites exhibited a higher SOD rate compared to CK. The microbial community structure was influenced by the spatial variation of Proteobacteria, Chloroflexi, and Bacteroidota, with total organic carbon (TOC) content acting as a significant environmental driver. A negative correlation was observed between microbial diversity and DO concentration (p < 0.05). Aerobic microbes were more abundant in DO depletion sites, particularly Proteobacteria. Microbes involved in various biogeochemical cycles, such as carbon (methane oxidation, methanotrophs, and methylotrophs), nitrogen (nitrification and denitrification), sulfur (sulfide and sulfur compound oxidation), and manganese cycles (manganese oxidation), exhibited higher abundance in DO depletion sites, except for the iron cycle (iron oxidation). These processes were negatively correlated with DO concentration and positively with SOD (p < 0.05). Overall, the results highlight that aerobic bacteria's metabolic processes consume oxygen, increasing the SOD rate and contributing to DO depletion in the overlying water. Additionally, the study underscores the importance of targeting the removal of in situ microbial molecular mechanisms associated with toxic H2S and CH4 to support reoxygenation efforts in rehabilitating DO depletion sites in the Gan River, aiding in identifying factors controlling DO consumption and offering practical value for the river's restoration and management.
Collapse
Affiliation(s)
- Shoutao Cheng
- Country School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, China
| | - Fansheng Meng
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Yeyao Wang
- Country School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, China
- China National Environmental Monitoring Center, Beijing, China
| | - Jiasheng Zhang
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Lingsong Zhang
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing, China
| |
Collapse
|
6
|
Zvi-Kedem T, Lalzar M, Sun J, Li J, Tchernov D, Meron D. Exploring the Microbial Mosaic: Insights into Composition, Diversity, and Environmental Drivers in the Pearl River Estuary Sediments. Microorganisms 2024; 12:1273. [PMID: 39065043 PMCID: PMC11279356 DOI: 10.3390/microorganisms12071273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
River estuaries are dynamic and complex ecosystems influenced by various natural processes, including climatic fluctuations and anthropogenic activities. The Pearl River Estuary (PRE), one of the largest in China, receives significant land-based pollutants due to its proximity to densely populated areas and urban development. This study aimed to characterize the composition, diversity, and distribution patterns of sediment microbial communities (bacteria, archaea, and eukaryotes) and investigated the connection with environmental parameters within the PRE and adjacent shelf. Physicochemical conditions, such as oxygen levels, nitrogen compounds, and carbon content, were analyzed. The study found that the microbial community structure was mainly influenced by site location and core depth, which explained approximately 67% of the variation in each kingdom. Sites and core depths varied in sediment properties such as organic matter content and redox conditions, leading to distinct microbial groups associated with specific chemical properties of the sediment, notably C/N ratio and NH4+ concentration. Despite these differences, certain dominant taxonomic groups were consistently present across all sites: Gammaproteobacteria in bacteria; Bathyarchaeia, Nitrososphaeria, and Thermoplasmata in archaea; and SAR in Eukaryota. The community diversity index was the highest in the bacteria kingdom, while the lowest values were observed at site P03 across the three kingdoms and were significantly different from all other sites. Overall, this study highlights the effect of depth, core depth, and chemical properties on sediment microbiota composition. The sensitivity and dynamism of the microbiota, along with the possibility of identifying specific markers for changes in environmental conditions, is valuable for managing and preserving the health of estuaries and coastal ecosystems.
Collapse
Affiliation(s)
- Tal Zvi-Kedem
- Morris Kahn Marine Research Station, Faculty of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel; (T.Z.-K.); (D.T.)
| | - Maya Lalzar
- Bioinformatics Services Unit, University of Haifa, Haifa 3498838, Israel;
| | - Jing Sun
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China; (J.S.); (J.L.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Zhuhai 519080, China
| | - Jiying Li
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China; (J.S.); (J.L.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Zhuhai 519080, China
| | - Dan Tchernov
- Morris Kahn Marine Research Station, Faculty of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel; (T.Z.-K.); (D.T.)
| | - Dalit Meron
- Morris Kahn Marine Research Station, Faculty of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel; (T.Z.-K.); (D.T.)
| |
Collapse
|
7
|
Seidel L, Broman E, Ståhle M, Bergström K, Forsman A, Hylander S, Ketzer M, Dopson M. Climate change induces shifts in coastal Baltic Sea surface water microorganism stress and photosynthesis gene expression. Front Microbiol 2024; 15:1393538. [PMID: 38912348 PMCID: PMC11190084 DOI: 10.3389/fmicb.2024.1393538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024] Open
Abstract
The world's oceans are challenged by climate change linked warming with typically highly populated coastal areas being particularly susceptible to these effects. Many studies of climate change on the marine environment use large, short-term temperature manipulations that neglect factors such as long-term adaptation and seasonal cycles. In this study, a Baltic Sea 'heated' bay influenced by thermal discharge since the 1970s from a nuclear reactor (in relation to an unaffected nearby 'control' bay) was used to investigate how elevated temperature impacts surface water microbial communities and activities. 16S rRNA gene amplicon based microbial diversity and population structure showed no difference in alpha diversity in surface water microbial communities, while the beta diversity showed a dissimilarity between the bays. Amplicon sequencing variant relative abundances between the bays showed statistically higher values for, e.g., Ilumatobacteraceae and Burkholderiaceae in the heated and control bays, respectively. RNA transcript-derived activities followed a similar pattern in alpha and beta diversity with no effect on Shannon's H diversity but a significant difference in the beta diversity between the bays. The RNA data further showed more elevated transcript counts assigned to stress related genes in the heated bay that included heat shock protein genes dnaKJ, the co-chaperonin groS, and the nucleotide exchange factor heat shock protein grpE. The RNA data also showed elevated oxidative phosphorylation transcripts in the heated (e.g., atpHG) compared to control (e.g., atpAEFB) bay. Furthermore, genes related to photosynthesis had generally higher transcript numbers in the control bay, such as photosystem I (psaAC) and II genes (psbABCEH). These increased stress gene responses in the heated bay will likely have additional cascading effects on marine carbon cycling and ecosystem services.
Collapse
Affiliation(s)
- Laura Seidel
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Elias Broman
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Baltic Sea Centre, Stockholm University, Stockholm, Sweden
| | - Magnus Ståhle
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Kristofer Bergström
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Anders Forsman
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Samuel Hylander
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Marcelo Ketzer
- Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| |
Collapse
|
8
|
Polrot A, Lee S, Kirby JR, Shum P, Birkett JW, Sharples GP. Microcosm study reveals the microbial and environmental effects on tributyltin degradation in an estuarine sediment. CHEMOSPHERE 2024; 357:142085. [PMID: 38642770 DOI: 10.1016/j.chemosphere.2024.142085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
Tributyltin (TBT) is one of the most harmful contaminants ever released into the aquatic environment. Despite being banned, it is still present at many locations throughout the world. Its degradation in sediment mainly occurs through microbial biodegradation, a process that remains unclear. This study therefore aimed at better understanding TBT biodegradation in estuarine sediment and the microbial community associated with it. Microcosm experiments were set up, embracing a range of environmental control parameters. Major community shifts were recorded, mainly attributed to the change in oxygen status. The highest percentage of degradation (36,8%) occurred at 4 °C in anaerobic conditions. These results are encouraging for the in-situ bioremediation of TBT contaminated muddy sediment in temperate ports worldwide. However, with TBT able to persist in the coastal environment for decades when undisturbed in anoxic sediment, further research is needed to fully understand the mechanisms that triggered this biodegradation observed in the microcosms.
Collapse
Affiliation(s)
- A Polrot
- Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, United Kingdom.
| | - S Lee
- École Centrale de Lyon, CNRS, UMR 5005, Université de Lyon, Écully, 69134, France
| | - J R Kirby
- Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, United Kingdom
| | - P Shum
- Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, United Kingdom
| | - J W Birkett
- Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, United Kingdom
| | - G P Sharples
- Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, United Kingdom
| |
Collapse
|
9
|
Mahmood M, Kato N, Nakai S, Gotoh T, Nishijima W, Umehara A. Controlling organic carbon increase in oxygenated marine sediment by using decarburization slag. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120820. [PMID: 38603849 DOI: 10.1016/j.jenvman.2024.120820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/08/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024]
Abstract
The chemical oxygen demand (COD) in the Seto Inland Sea, Japan has increased in the recent decades due to the increase of bottom dissolved oxygen (DO) concentration which stimulated several autotrophic microorganisms, specially sulfur oxidizing bacteria (SOB). This increased SOB activity due to the oxygenation of the bottom sediment synthesized new organic matter (OM) which contributed dissolved organic carbon to the overlying seawater. This phenomenon further led to hypoxia in some subareas in the Seto Inland Sea. Higher pH or alkaline environment has been found to be an unfavorable condition for SOB. In this research, we used decarburization slag to elevate the pH of sediment to control the SOB activity and consequently reduce OM production in the sediment. Ignition loss of the surface sediment increased from 5.14% 6.38% after 21 days of incubation with aeration; whereas the sediment showed the less ignition loss of 5.71% after 21 days when the slag was incubated in the same experimental setup. Microbial community analysis showed less SOB activity in the slag added aerated sediment which accounts for the controlled increase of OM in the sediment. An additional experiment was conducted with magnesium oxide to confirm whether elevated pH can control the OM increase in sediment due to rising DO. All these results showed that decarburization slag can elevate the pH of the sediment to a certain level which can control the SOB activity followed by controlled increase of OM in the sediment. The findings may be beneficial to control accumulation of sedimentary OM which can act as a source of organic carbon in the overlying seawater.
Collapse
Affiliation(s)
- Mukseet Mahmood
- Department of Oceanography and Coastal Sciences, Louisiana State University, Louisiana, USA
| | - Natsuki Kato
- Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima, Japan
| | - Satoshi Nakai
- Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima, Japan.
| | - Takehiko Gotoh
- Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima, Japan
| | - Wataru Nishijima
- Environmental Research and Management Center, Hiroshima University, Hiroshima, Japan
| | - Akira Umehara
- Environmental Research and Management Center, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
10
|
Chen T, Deng C, Wu Z, Liu T, Zhang Y, Xu X, Zhao X, Li J, Li S, Xu N, Yu K. Metagenomic analysis unveils the underexplored roles of prokaryotic viruses in a full-scale landfill leachate treatment plant. WATER RESEARCH 2023; 245:120611. [PMID: 37722141 DOI: 10.1016/j.watres.2023.120611] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 09/20/2023]
Abstract
Enormous viral populations have been identified in activated sludge systems, but their ecological and biochemical roles in landfill leachate treatment plants remain poorly understood. To address this knowledge gap, we conducted an in-depth analysis using 36 metagenomic datasets that we collected and sequenced during a half-year time-series sampling campaign at six sites in a full-scale landfill leachate treatment plant (LLTP), elucidating viral distribution, virus‒host dynamics, virus-encoded auxiliary metabolic genes (AMGs), and viral contributions to the spread of virulence and antibiotic resistance genes. Our findings demonstrated that viral and prokaryotic communities differed widely among different treatment units, with stability over time. LLTP viruses were linked to various prokaryotic hosts, spanning 35 bacterial phyla and one archaeal phylum, which included the core microbes involved in biological treatments, as well as some of the less well-characterized microbial dark matter phyla. By encoding 2364 auxiliary metabolic genes (AMGs), viruses harbored the potential to regulate microbial nucleotide metabolism, facilitate the biodegradation of complex organic matter, and enhance flocculation and settling in biological treatment plants. The abundance distribution of AMGs varied considerably across treatment units and showed a lifestyle-dependent pattern with temperate virus-associated AMGs exhibiting a higher average abundance in downstream biological treatment units and effluent water. Meanwhile, temperate viruses tended to carry a higher load of virulence factor genes (VFGs), antibiotic resistance genes (ARGs), and biotic and metal resistance genes (BMRGs), and engaged in more frequent gene exchanges with prokaryotes than lytic viruses, thus acting as a pivotal contributor to the dissemination of pathogenicity and resistance genes in downstream LLTP units. This study provided a comprehensive profile of viral and prokaryotic communities in the LLTP and unveiled the varying roles of different-lifestyle viruses in biochemical processes and water quality safety.
Collapse
Affiliation(s)
- Tianyi Chen
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China; Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Chunfang Deng
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China; Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Zongzhi Wu
- Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Tang Liu
- Environmental Microbiome Engineering and Innovative Genomics Laboratory, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yuanyan Zhang
- Jiangxi Academy of Eco-Environmental Sciences & Planning, Nanchang 330029, China
| | - Xuming Xu
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Xiaohui Zhao
- Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jiarui Li
- Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shaoyang Li
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Nan Xu
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Ke Yu
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
11
|
Dick JM, Meng D. Community- and genome-based evidence for a shaping influence of redox potential on bacterial protein evolution. mSystems 2023; 8:e0001423. [PMID: 37289197 PMCID: PMC10308962 DOI: 10.1128/msystems.00014-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/28/2023] [Indexed: 06/09/2023] Open
Abstract
Despite deep interest in how environments shape microbial communities, whether redox conditions influence the sequence composition of genomes is not well known. We predicted that the carbon oxidation state (ZC) of protein sequences would be positively correlated with redox potential (Eh). To test this prediction, we used taxonomic classifications for 68 publicly available 16S rRNA gene sequence data sets to estimate the abundances of archaeal and bacterial genomes in river & seawater, lake & pond, geothermal, hyperalkaline, groundwater, sediment, and soil environments. Locally, ZC of community reference proteomes (i.e., all the protein sequences in each genome, weighted by taxonomic abundances but not by protein abundances) is positively correlated with Eh corrected to pH 7 (Eh7) for the majority of data sets for bacterial communities in each type of environment, and global-scale correlations are positive for bacterial communities in all environments. In contrast, archaeal communities show approximately equal frequencies of positive and negative correlations in individual data sets, and a positive pan-environmental correlation for archaea only emerges after limiting the analysis to samples with reported oxygen concentrations. These results provide empirical evidence that geochemistry modulates genome evolution and may have distinct effects on bacteria and archaea. IMPORTANCE The identification of environmental factors that influence the elemental composition of proteins has implications for understanding microbial evolution and biogeography. Millions of years of genome evolution may provide a route for protein sequences to attain incomplete equilibrium with their chemical environment. We developed new tests of this chemical adaptation hypothesis by analyzing trends of the carbon oxidation state of community reference proteomes for microbial communities in local- and global-scale redox gradients. The results provide evidence for widespread environmental shaping of the elemental composition of protein sequences at the community level and establish a rationale for using thermodynamic models as a window into geochemical effects on microbial community assembly and evolution.
Collapse
Affiliation(s)
- Jeffrey M. Dick
- Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring of Ministry of Education, School of Geosciences and Info-Physics, Central South University, Changsha, China
| | - Delong Meng
- Key Laboratory of Biometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| |
Collapse
|
12
|
Seidel L, Broman E, Nilsson E, Ståhle M, Ketzer M, Pérez-Martínez C, Turner S, Hylander S, Pinhassi J, Forsman A, Dopson M. Climate change-related warming reduces thermal sensitivity and modifies metabolic activity of coastal benthic bacterial communities. THE ISME JOURNAL 2023; 17:855-869. [PMID: 36977742 PMCID: PMC10202955 DOI: 10.1038/s41396-023-01395-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023]
Abstract
Besides long-term average temperature increases, climate change is projected to result in a higher frequency of marine heatwaves. Coastal zones are some of the most productive and vulnerable ecosystems, with many stretches already under anthropogenic pressure. Microorganisms in coastal areas are central to marine energy and nutrient cycling and therefore, it is important to understand how climate change will alter these ecosystems. Using a long-term heated bay (warmed for 50 years) in comparison with an unaffected adjacent control bay and an experimental short-term thermal (9 days at 6-35 °C) incubation experiment, this study provides new insights into how coastal benthic water and surface sediment bacterial communities respond to temperature change. Benthic bacterial communities in the two bays reacted differently to temperature increases with productivity in the heated bay having a broader thermal tolerance compared with that in the control bay. Furthermore, the transcriptional analysis showed that the heated bay benthic bacteria had higher transcript numbers related to energy metabolism and stress compared to the control bay, while short-term elevated temperatures in the control bay incubation experiment induced a transcript response resembling that observed in the heated bay field conditions. In contrast, a reciprocal response was not observed for the heated bay community RNA transcripts exposed to lower temperatures indicating a potential tipping point in community response may have been reached. In summary, long-term warming modulates the performance, productivity, and resilience of bacterial communities in response to warming.
Collapse
Affiliation(s)
- Laura Seidel
- Centre for ecology and evolution in microbial model systems (EEMiS), Linnaeus University, Kalmar, Sweden.
| | - Elias Broman
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Baltic Sea Centre, Stockholm University, Stockholm, Sweden
| | - Emelie Nilsson
- Centre for ecology and evolution in microbial model systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Magnus Ståhle
- Centre for ecology and evolution in microbial model systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Marcelo Ketzer
- Centre for ecology and evolution in microbial model systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Clara Pérez-Martínez
- Centre for ecology and evolution in microbial model systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Stephanie Turner
- Centre for ecology and evolution in microbial model systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Samuel Hylander
- Centre for ecology and evolution in microbial model systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Jarone Pinhassi
- Centre for ecology and evolution in microbial model systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Anders Forsman
- Centre for ecology and evolution in microbial model systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Mark Dopson
- Centre for ecology and evolution in microbial model systems (EEMiS), Linnaeus University, Kalmar, Sweden
| |
Collapse
|
13
|
Xiong X, Li Y, Zhang C, Zhou X. Water quality improvement and consequent N 2O emission reduction in hypoxic freshwater utilizing green oxygen-carrying biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162251. [PMID: 36796685 DOI: 10.1016/j.scitotenv.2023.162251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/04/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Declines in dissolved oxygen (DO) levels in aquatic systems worldwide negatively influence biodiversity, nutrient biogeochemistry, drinking water quality, and greenhouse gas emission. As a response, oxygen-carrying dual-modified sediment-based biochar (O-DM-SBC) as a green and sustainable emerging material was utilized for simultaneous hypoxia restoration, water quality improvement, and greenhouse gas reduction. Column incubation experiments were carried out using the water and sediment samples from a tributary of the Yangtze River. The application of O-DM-SBC effectively increased the DO concentration from ~1.99 mg/L to ~6.44 mg/L and decreased the concentrations of TN and NH4+-N by 61.1 % and 78.3 %, respectively, during the 30-day incubation period. Moreover, the N2O emission was apparently inhibited by O-DM-SBC with a 50.2 % decrease in daily flux under the functional coupling of biochar (SBC) and oxygen nanobubbles (ONBs). Path analysis supported that the treatments (SBC, modification, and ONBs) had joint effects on N2O emission by changing the concentration and composition of dissolved inorganic nitrogen (e.g., NH4+-N, NO2--N and NO3--N). The nitrogen-transforming bacteria were found to be significantly promoted by O-DM-SBC at the end of the incubation, while the archaeal community seemed to be more active in the SBC groups without ONB, confirming their different mechanisms. The PICRUSt2 prediction results revealed that most nitrogen metabolism genes including nitrification (i.e., amoABC), denitrification (i.e., nirK and nosZ), and assimilatory nitrate reduction (i.e., nirB and gdhA) were largely enriched in O-DM-SBC, indicating the active nitrogen-cycling network was established, thus achieving simultaneous nitrogen pollution control and N2O emission reduction. Our findings not only confirm the beneficial effect of O-DM-SBC amendment on nitrogen pollution control and N2O emission mitigation in hypoxic freshwater, but also contribute to a more comprehensive understanding of the effect of oxygen-carrying biochar on nitrogen cycling microbial communities.
Collapse
Affiliation(s)
- Xinyan Xiong
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Chi Zhang
- College of Mechanics and Materials, Hohai University, Xikang Road #1, Nanjing 210098, PR China.
| | - Xinyi Zhou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
14
|
Seidel L, Sachpazidou V, Ketzer M, Hylander S, Forsman A, Dopson M. Long-term warming modulates diversity, vertical structuring of microbial communities, and sulfate reduction in coastal Baltic Sea sediments. Front Microbiol 2023; 14:1099445. [PMID: 37065140 PMCID: PMC10090409 DOI: 10.3389/fmicb.2023.1099445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/10/2023] [Indexed: 03/31/2023] Open
Abstract
Coastal waters such as those found in the Baltic Sea already suffer from anthropogenic related problems including increased algal blooming and hypoxia while ongoing and future climate change will likely worsen these effects. Microbial communities in sediments play a crucial role in the marine energy- and nutrient cycling, and how they are affected by climate change and shape the environment in the future is of great interest. The aims of this study were to investigate potential effects of prolonged warming on microbial community composition and nutrient cycling including sulfate reduction in surface (∼0.5 cm) to deeper sediments (∼ 24 cm). To investigate this, 16S rRNA gene amplicon sequencing was performed, and sulfate concentrations were measured and compared between sediments in a heated bay (which has been used as a cooling water outlet from a nearby nuclear power plant for approximately 50 years) and a nearby but unaffected control bay. The results showed variation in overall microbial diversity according to sediment depth and higher sulfate flux in the heated bay compared to the control bay. A difference in vertical community structure reflected increased relative abundances of sulfur oxidizing- and sulfate reducing bacteria along with a higher proportion of archaea, such as Bathyarchaeota, in the heated compared to the control bay. This was particularly evident closer to the sediment surface, indicating a compression of geochemical zones in the heated bay. These results corroborate findings in previous studies and additionally point to an amplified effect of prolonged warming deeper in the sediment, which could result in elevated concentrations of toxic compounds and greenhouse gases closer to the sediment surface.
Collapse
Affiliation(s)
- Laura Seidel
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | | | | | | | | | | |
Collapse
|
15
|
Marshall AJ, Phillips L, Longmore A, Hayden HL, Tang C, Heidelberg KB, Mele P. Using metatranscriptomics to better understand the role of microbial nitrogen cycling in coastal sediment benthic flux denitrification efficiency. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023. [PMID: 36992633 DOI: 10.1111/1758-2229.13148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/27/2023] [Indexed: 06/19/2023]
Abstract
Spatial and temporal variability in benthic flux denitrification efficiency occurs across Port Phillip Bay, Australia. Here, we assess the capacity for untargeted metatranscriptomics to resolve spatiotemporal differences in the microbial contribution to benthic nitrogen cycling. The most abundant sediment transcripts assembled were associated with the archaeal nitrifier Nitrosopumilus. In sediments close to external inputs of organic nitrogen, the dominant transcripts were associated with Nitrosopumilus nitric oxide nitrite reduction (nirK). The environmental conditions close to organic nitrogen inputs that select for increased transcription in Nitrosopumilus (amoCAB, nirK, nirS, nmo, hcp) additionally selected for increased transcription of bacterial nitrite reduction (nxrB) and transcripts associated with anammox (hzo) but not denitrification (bacterial nirS/nirk). In sediments that are more isolated from external inputs of organic nitrogen dominant transcripts were associated with nitrous oxide reduction (nosZ) and changes in nosZ transcript abundance were uncoupled from transcriptional profiles associated with archaeal nitrification. Coordinated transcription of coupled community-level nitrification-denitrification was not well supported by metatranscriptomics. In comparison, the abundance of archaeal nirK transcripts were site- and season-specific. This study indicates that the transcription of archaeal nirK in response to changing environmental conditions may be an important and overlooked feature of coastal sediment nitrogen cycling.
Collapse
Affiliation(s)
- Alexis J Marshall
- La Trobe University, AgriBio Centre for AgriBiosciences, Bundoora, Australia
- Department of Jobs, Precincts and Regions, AgriBio, Centre for AgriBiosciences, Bundoora, Australia
| | - Lori Phillips
- Department of Jobs, Precincts and Regions, AgriBio, Centre for AgriBiosciences, Bundoora, Australia
| | - Andrew Longmore
- Centre for Aquatic Pollution Identification and Management, Melbourne University, Parkville, Australia
| | - Helen L Hayden
- Department of Jobs, Precincts and Regions, AgriBio, Centre for AgriBiosciences, Bundoora, Australia
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Caixian Tang
- La Trobe University, AgriBio Centre for AgriBiosciences, Bundoora, Australia
| | - Karla B Heidelberg
- Department of Biology, The University of Southern California, Los Angeles, California, USA
| | - Pauline Mele
- La Trobe University, AgriBio Centre for AgriBiosciences, Bundoora, Australia
- Department of Jobs, Precincts and Regions, AgriBio, Centre for AgriBiosciences, Bundoora, Australia
| |
Collapse
|
16
|
Liu H, Lin G, Gao D, Chen H, He M, Lu J. Geographic Scale Influences the Interactivities Between Determinism and Stochasticity in the Assembly of Sedimentary Microbial Communities on the South China Sea Shelf. MICROBIAL ECOLOGY 2023; 85:121-136. [PMID: 35039906 DOI: 10.1007/s00248-021-01946-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Determinism and stochasticity in microbial community composition decisions have attracted wide attention. However, there is no consensus on their interrelationships and relative importance, and the mechanism controlling the interaction between the two ecological processes remains to be revealed. The interaction of the two ecological processes on the continental shelf of the South China Sea was studied by performing 16S rRNA gene amplicon sequencing on 90 sediments at multiple depths in five sites. Three nearshore sites have higher microbial diversity than those two close to the shelf margin. Different microbial composition was observed between sites and microbial composition of nearshore sites was positively correlated with total nitrogen, total sulfur, total organic carbon, and dissolved oxygen, while that of offshore was positively correlated with total carbon, salinity, and photosynthetically active radiation. The null model test showed that the community composition among layers of the same site and between nearby sites was mainly dominated by the homogeneous selection, while that between distant sites was mainly affected by dispersal limitation, which indicates that geographic scale influences the interactivities of determinism and stochasticity. Our research indicates that the balance of these two ecological processes along the geographic scale is mainly determined by the dispersal ability of microbes and environmental heterogeneity between areas. The study provides new insights into how deterministic and stochastic processes shape microbial community composition on the continental shelf.
Collapse
Affiliation(s)
- Hualin Liu
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Genmei Lin
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Dong Gao
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Hongyu Chen
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Miao He
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Jianguo Lu
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China.
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, 510275, Guangdong, China.
- Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519000, China.
| |
Collapse
|
17
|
Vigouroux G, Destouni G. Gap identification in coastal eutrophication research - Scoping review for the Baltic system case. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156240. [PMID: 35644392 DOI: 10.1016/j.scitotenv.2022.156240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/13/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Coastal eutrophication is a major issue worldwide, also affecting the Baltic Sea and its coastal waters. Effective management responses to coastal eutrophication require good understanding of the interacting coastal pressures from land, the open sea, and the atmosphere, and associated coastal ecosystem impacts. In this study, we investigate how research on Baltic coastal eutrophication has handled these interactions so far and what key research gaps still remain. We do this through a scoping review, identifying 832 scientific papers with a focus on Baltic coastal eutrophication. These are categorized in terms of study focus, methods, and consideration of coastal system components and land-coast-sea interactions. The coastal component categories include coastal functions (including also socio-economic driver aspects), pressures that are natural (or mediated by a natural process or system) or directly anthropogenic, and management responses. The classification results show that considerably more studies focus on coastal eutrophication pressures (52%) or impacts (39%) than on characterizing the coastal eutrophication itself (20%). Moreover, few studies investigate pressures and impacts together, indicating that feedbacks are understudied. Regarding methods, more studies focus on data collection (62%) than on linking and synthetic methods (44%; e.g., modelling), and very few studies use remote sensing (6%) or participatory (3%) methods. Coastal links with land and open sea are mentioned but much less investigated. Among the coastal functions, studies considering ecological aspects are dominant, but much fewer studies investigate human aspects and the coastal filter function. Among the coastal pressures, studies considering nutrient loads are dominant, but much fewer studies investigate the sources of these loads, especially long-lived legacy sources and possible solutions for their mitigation. Overall, few studies investigate synergies, trade-offs and incentives for various solutions to address cross-scale multi-solution management.
Collapse
Affiliation(s)
- Guillaume Vigouroux
- Department of Physical Geography, Stockholm University, 106 91 Stockholm, Sweden.
| | - Georgia Destouni
- Department of Physical Geography, Stockholm University, 106 91 Stockholm, Sweden.
| |
Collapse
|
18
|
Shahabi-Ghahfarokhi S, Rahmati-Abkenar M, Jaeger L, Josefsson S, Djerf H, Yu C, Åström M, Ketzer M. The response of metal mobilization and redistribution to reoxygenation in Baltic Sea anoxic sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155809. [PMID: 35561927 DOI: 10.1016/j.scitotenv.2022.155809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
To bring life back to anoxic coastal and sea basins, reoxygenation of anoxic/hypoxic zones has been proposed. This research focuses on the metals released during the oxidization of sediments from two locations in the anoxic Eastern Gotland Basin under a laboratory-scale study. Triplicate experimental cores and reference cores were collected from the North and South Eastern Gotland Basins. The oxygenation of the water column took place over a 96-hour experiment in a dark and 5 °C environment. In 12 and 24 hour intervals, the surface waters were exchanged and, over time, analyzed for pH, electroconductivity (EC), total organic carbon (TOC), soluble metal concentrations, and the top samples (0-10 cm) were analyzed with 3-step (E1: water-soluble, E2: exchangeable, and E3: organic-bound) sequential chemical extraction (SCE). Results show stable pH and decreasing EC in the column waters. The EC indicates that metals are released in the initial phases (12 h) of reoxygenation for both sites. Arsenic, Ba, Co, Mn, Rb, U, K, Sr, and Mo are released into the water column during the 96 hour experiment, and based on the calculations for the entire East Gotland Basin, would mean 8, 50, 0.55, 734, 53, 27, 347,178, 3468, and 156 μg L-1 are released, respectively. Elements Mn, Mo, U, and As are released in higher concentrations during the experiment than previously measured in the Eastern Gotland Basin, which provides vital information for future proposed remediation and natural geochemical processes with their known environmental impacts. The SCE results show that redox-sensitive metals (Mn, U, and Mo) are released in the highest concentrations into the solution. The relationship between the highest released metals (beside redox-sensitive) into solution over the oxygenation and their initial abundant phase is noticed, where the smallest released concentrations belong to K < Rb < Sr in E2, and As<Ba in E3, respectively.
Collapse
Affiliation(s)
- Sina Shahabi-Ghahfarokhi
- Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science, Sweden.
| | - Mahboubeh Rahmati-Abkenar
- Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science, Sweden; Stockholm Environment Institute, Stockholm, Sweden
| | - Leonie Jaeger
- Carl von Ossietzky University of Oldenburg, Institute for Chemistry and Biology of the Marine Environment (ICBM), Oldenburg, Germany
| | | | - Henric Djerf
- Department of Environmental Science and Bioscience, Kristianstad University, Sweden
| | - Changxun Yu
- Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science, Sweden
| | - Mats Åström
- Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science, Sweden
| | - Marcelo Ketzer
- Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science, Sweden
| |
Collapse
|
19
|
Broman E, Izabel-Shen D, Rodríguez-Gijón A, Bonaglia S, Garcia SL, Nascimento FJA. Microbial functional genes are driven by gradients in sediment stoichiometry, oxygen, and salinity across the Baltic benthic ecosystem. MICROBIOME 2022; 10:126. [PMID: 35965333 PMCID: PMC9377124 DOI: 10.1186/s40168-022-01321-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/05/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND Microorganisms in the seafloor use a wide range of metabolic processes, which are coupled to the presence of functional genes within their genomes. Aquatic environments are heterogenous and often characterized by natural physiochemical gradients that structure these microbial communities potentially changing the diversity of functional genes and its associated metabolic processes. In this study, we investigated spatial variability and how environmental variables structure the diversity and composition of benthic functional genes and metabolic pathways across various fundamental environmental gradients. We analyzed metagenomic data from sediment samples, measured related abiotic data (e.g., salinity, oxygen and carbon content), covering 59 stations spanning 1,145 km across the Baltic Sea. RESULTS The composition of genes and microbial communities were mainly structured by salinity plus oxygen, and the carbon to nitrogen (C:N) ratio for specific metabolic pathways related to nutrient transport and carbon metabolism. Multivariate analyses indicated that the compositional change in functional genes was more prominent across environmental gradients compared to changes in microbial taxonomy even at genus level, and indicate functional diversity adaptation to local environments. Oxygen deficient areas (i.e., dead zones) were more different in gene composition when compared to oxic sediments. CONCLUSIONS This study highlights how benthic functional genes are structured over spatial distances and by environmental gradients and resource availability, and suggests that changes in, e.g., oxygenation, salinity, and carbon plus nitrogen content will influence functional metabolic pathways in benthic habitats. Video Abstract.
Collapse
Affiliation(s)
- Elias Broman
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
- Baltic Sea Centre, Stockholm University, Stockholm, Sweden
| | - Dandan Izabel-Shen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Alejandro Rodríguez-Gijón
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
- Science for Life Laboratory, Stockholm, Sweden
| | - Stefano Bonaglia
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Sarahi L. Garcia
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
- Science for Life Laboratory, Stockholm, Sweden
| | - Francisco J. A. Nascimento
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
- Baltic Sea Centre, Stockholm University, Stockholm, Sweden
| |
Collapse
|
20
|
Gerstenbacher CM, Finzi AC, Rotjan RD, Novak AB. A review of microplastic impacts on seagrasses, epiphytes, and associated sediment communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119108. [PMID: 35259472 DOI: 10.1016/j.envpol.2022.119108] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/11/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Microplastics have been discovered ubiquitously in marine environments. While their accumulation is noted in seagrass ecosystems, little attention has yet been given to microplastic impacts on seagrass plants and their associated epiphytic and sediment communities. We initiate this discussion by synthesizing the potential impacts microplastics have on relevant seagrass plant, epiphyte, and sediment processes and functions. We suggest that microplastics may harm epiphytes and seagrasses via impalement and light/gas blockage, and increase local concentrations of toxins, causing a disruption in metabolic processes. Further, microplastics may alter nutrient cycling by inhibiting dinitrogen fixation by diazotrophs, preventing microbial processes, and reducing root nutrient uptake. They may also harm seagrass sediment communities via sediment characteristic alteration and organism complications associated with ingestion. All impacts will be exacerbated by the high trapping efficiency of seagrasses. As microplastics become a permanent and increasing member of seagrass ecosystems it will be pertinent to direct future research towards understanding the extent microplastics impact seagrass ecosystems.
Collapse
Affiliation(s)
| | - Adrien C Finzi
- Department of Biology, Boston University, MA, 02215, USA
| | - Randi D Rotjan
- Department of Biology, Boston University, MA, 02215, USA
| | - Alyssa B Novak
- Department of Earth and Environment, Boston University, MA, 02215, USA.
| |
Collapse
|
21
|
Seidel L, Broman E, Ståhle M, Nilsson E, Turner S, Hendrycks W, Sachpazidou V, Forsman A, Hylander S, Dopson M. Long-Term Warming of Baltic Sea Coastal Waters Affects Bacterial Communities in Bottom Water and Sediments Differently. Front Microbiol 2022; 13:873281. [PMID: 35755995 PMCID: PMC9226639 DOI: 10.3389/fmicb.2022.873281] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Coastal marine ecosystems are some of the most diverse natural habitats while being highly vulnerable in the face of climate change. The combination of anthropogenic influence from land and ongoing climate change will likely have severe effects on the environment, but the precise response remains uncertain. This study compared an unaffected "control" Baltic Sea bay to a "heated" bay that has undergone artificial warming from cooling water release from a nuclear power plant for ~50 years. This heated the water in a similar degree to IPCC SSP5-8.5 predictions by 2100 as natural systems to study temperature-related climate change effects. Bottom water and surface sediment bacterial communities and their biogeochemical processes were investigated to test how future coastal water warming alters microbial communities; shifts seasonal patterns, such as increased algae blooming; and influences nutrient and energy cycling, including elevated respiration rates. 16S rRNA gene amplicon sequencing and geochemical parameters demonstrated that heated bay bottom water bacterial communities were influenced by increased average temperatures across changing seasons, resulting in an overall Shannon's H diversity loss and shifts in relative abundances. In contrast, Shannon's diversity increased in the heated surface sediments. The results also suggested a trend toward smaller-sized microorganisms within the heated bay bottom waters, with a 30% increased relative abundance of small size picocyanobacteria in the summer (June). Furthermore, bacterial communities in the heated bay surface sediment displayed little seasonal variability but did show potential changes of long-term increased average temperature in the interplay with related effects on bottom waters. Finally, heated bay metabolic gene predictions from the 16S rRNA gene sequences suggested raised anaerobic processes closer to the sediment-water interface. In conclusion, climate change will likely alter microbial seasonality and diversity, leading to prolonged and increased algae blooming and elevated respiration rates within coastal waters.
Collapse
Affiliation(s)
- Laura Seidel
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Elias Broman
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Magnus Ståhle
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Emelie Nilsson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Stephanie Turner
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Wouter Hendrycks
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Varvara Sachpazidou
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Anders Forsman
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Samuel Hylander
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| |
Collapse
|
22
|
Li Y, Xiong X, Zhang C, Liu A. Sustainable restoration of anoxic freshwater using environmentally-compatible oxygen-carrying biochar: Performance and mechanisms. WATER RESEARCH 2022; 214:118204. [PMID: 35219183 DOI: 10.1016/j.watres.2022.118204] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
The long-term decline in dissolved oxygen (DO) levels in freshwater systems including rivers and lakes has become a worldwide concern, which can threaten biodiversity, nutrient biogeochemistry, water quality and ultimately human health. Herein, we report a sustainable restoration strategy for anoxic freshwater using local sediment-based biochar as novel oxygen nanobubble carriers. Column incubation experiments were conducted with water and sediment samples from an urban tributary of the Yangtze River. The oxygen-carrying sediment-based biochar (O-SBC) showed long-lasting re-oxygenation performance for anoxic river waters during 28-day period, in which DO was rapidly elevated from ∼0.14 to ∼7.87 mg/L and gradually maintained at ∼4.78 mg/L until the end. O-SBC with multiple functions switched the sediments from a source to a sink of nutrients, and its release of oxygen nanobubbles contributed further decrements of 66.3% NH4+-N and 142.9% PO43--P except for physical blocking and physicochemical adsorption. Notably, a comprehensive focus on restoration mechanism was explored in view of microbial community response. The re-oxygenation was followed by a ∼5.05% increase of bacterial diversity (Shannon index) in water, but a ∼2.40% decrease in sediments. A proliferation of some specific aerobic populations was observed, of which the nitrifying Nitrospira abundances were ∼10-fold higher in the water from O-SBC than the control. Additionally, functional genes involved in nitrous oxide reduction, polyphosphate synthesis/degradation, and thiosulfate oxidation were also enriched. Taken together, our findings can not only expand the promising candidates for oxygen nanobubble carriers based on sediment recycling, but also highlight the microbial molecular mechanisms for anoxic freshwater restoration based on nutrient cycle regulation.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Xinyan Xiong
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Chi Zhang
- College of Mechanics and Materials, Hohai University, Xikang Road #1, Nanjing 210098, PR China.
| | - An Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Xueyuan Avenue #1066, Shenzhen 518060, PR China
| |
Collapse
|
23
|
Lu XM, Chen YL. Varying characteristics and driving mechanisms of antibiotic resistance genes in farmland soil amended with high-density polyethylene microplastics. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128196. [PMID: 35030489 DOI: 10.1016/j.jhazmat.2021.128196] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
The differential effects of microplastics and phthalates released from microplastics on antibiotic resistance genes in soil remain unknown. This study aims to analyze the varying characteristics and driving mechanisms of antibiotic resistance genes in soils amended with high-density polyethylene microplastics (with and without phthalates) through a 60-day microcosm experiment. The results indicate that the amended high-density polyethylene microplastics (containing phthalates) enhanced the abundance of antibiotic resistance genes in the soil, a phenomenon that markedly increased with the amendment period. Nevertheless, the addition of high-density polyethylene microplastics (without phthalates) mitigated the abundance of antibiotic resistance genes, which was less significant with increasing amendment period. Furthermore, addition of high-density polyethylene microplastics altered the soil properties, especially porosity. The phthalates released from high-density polyethylene microplastics and the changes in the soil properties transformed soil bacterial communities, resulting in increased abundance of bacterial hosts harboring antibiotic resistance genes (Calditrichaeota, Candidate division CPR1, Candidatus Delongbacteria, Candidatus Kapabacteria, Candidatus Spechtbacteria, Candidatus Wildermuthbacteria, and Ignavibacteriae), thereby enhancing the abundance of antibiotic resistance genes. These findings suggest that compared to microplastics, the phthalates released from microplastics considerably affect the antibiotic resistance genes in soils, thereby promoting the propagation of antibiotic resistance genes in agricultural environments.
Collapse
Affiliation(s)
- Xiao-Ming Lu
- School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, China.
| | - Yi-Lan Chen
- School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, China
| |
Collapse
|
24
|
DNA- and RNA-based bacterial communities and geochemical zonation under changing sediment porewater dynamics on the Aldabra Atoll. Sci Rep 2022; 12:4257. [PMID: 35277525 PMCID: PMC8917147 DOI: 10.1038/s41598-022-07980-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 02/28/2022] [Indexed: 11/26/2022] Open
Abstract
The remote Aldabra Atoll, Seychelles, provides the rare opportunity to study bacterial communities in pristine carbonate sediments across an entire biome. The four sampled sites cover sand with high porewater exchange, bioturbated silt and mud with intermediate exchange, as well as a seasonally and episodically desiccated landlocked pool. As sediments harbour dead cells and environmental DNA alongside live cells, we used bacterial 16S rRNA gene and transcript analysis to distinguish between past and present inhabitants. Previously described laminated sediments mirroring past conditions in the Cerin, France could not be retrieved. Thus, the aim was adjusted to determine whether bacterial community composition and diversity follow typical geochemical zonation patterns at different locations of the atoll. Our data confirm previous observations that diversity decreases with depth. In the lagoon, the bacterial community composition changed from Pseudomonas dominating in the sand to diverse mixed surface and sulphate reduction zones in the anaerobic mud with strongly negative Eh. The latter correlated with high total alkalinity, ammonia, and total sulphide, alongside a decrease in SO42−/Cl− and high relative abundances of sulphate reducing (Halo-) Desulfovibrio, sulphur oxidizing Arcobacteraceae, photo(hetero)troph Cyanobacteria, Alphaproteobacteria, and fermenting Propionigenium. In contrast to expectations, deeper mud and pool sediments harboured high abundances of Halomonas or Alphaproteobacteria alongside high C/N and increased salinity. We believe that this atypical community shift may be driven by a change in the complexity of available organic matter.
Collapse
|
25
|
Seidel L, Ketzer M, Broman E, Shahabi-Ghahfarokhi S, Rahmati-Abkenar M, Turner S, Ståhle M, Bergström K, Manoharan L, Ali A, Forsman A, Hylander S, Dopson M. Weakened resilience of benthic microbial communities in the face of climate change. ISME COMMUNICATIONS 2022; 2:21. [PMID: 37938692 PMCID: PMC9723771 DOI: 10.1038/s43705-022-00104-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 07/29/2023]
Abstract
Increased ocean temperature associated with climate change is especially intensified in coastal areas and its influence on microbial communities and biogeochemical cycling is poorly understood. In this study, we sampled a Baltic Sea bay that has undergone 50 years of warmer temperatures similar to RCP5-8.5 predictions due to cooling water release from a nuclear power plant. The system demonstrated reduced oxygen concentrations, decreased anaerobic electron acceptors, and higher rates of sulfate reduction. Chemical analyses, 16S rRNA gene amplicons, and RNA transcripts all supported sediment anaerobic reactions occurring closer to the sediment-water interface. This resulted in higher microbial diversities and raised sulfate reduction and methanogenesis transcripts, also supporting increased production of toxic sulfide and the greenhouse gas methane closer to the sediment surface, with possible release to oxygen deficient waters. RNA transcripts supported prolonged periods of cyanobacterial bloom that may result in increased climate change related coastal anoxia. Finally, while metatranscriptomics suggested increased energy production in the heated bay, a large number of stress transcripts indicated the communities had not adapted to the increased temperature and had weakened resilience. The results point to a potential feedback loop, whereby increased temperatures may amplify negative effects at the base of coastal biochemical cycling.
Collapse
Affiliation(s)
- Laura Seidel
- Centre for ecology and evolution in microbial model systems (EEMiS), Linnaeus University, Kalmar, Sweden.
| | - Marcelo Ketzer
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Elias Broman
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | | | | | - Stephanie Turner
- Centre for ecology and evolution in microbial model systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Magnus Ståhle
- Centre for ecology and evolution in microbial model systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Kristofer Bergström
- Centre for ecology and evolution in microbial model systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Lokeshwaran Manoharan
- National Bioinformatics Infrastructure Sweden (NBIS), SciLifeLab, Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Ashfaq Ali
- National Bioinformatics Infrastructure Sweden (NBIS), SciLifeLab, Department of Immunotechnology, Lund University, Lund, Sweden
| | - Anders Forsman
- Centre for ecology and evolution in microbial model systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Samuel Hylander
- Centre for ecology and evolution in microbial model systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Mark Dopson
- Centre for ecology and evolution in microbial model systems (EEMiS), Linnaeus University, Kalmar, Sweden
| |
Collapse
|
26
|
Lu XM, Jiang XQ, Liu XP. Response process and adaptation mechanism of estuarine benthic microbiota to polyvinyl chloride microplastics with and without phthalates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150693. [PMID: 34599949 DOI: 10.1016/j.scitotenv.2021.150693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to explore the response mechanisms of the microbiota in estuarine sediments amended with polyvinyl chloride (PVC) microplastics (MPs) with and without phthalates (PAEs) through a 60-day microcosm experiment. The results indicated that addition of MPs increased the porosity of the sediment. However, the sediment porosity decreased with the length of the amendment period. Following amendment with MPs containing PAEs, the sediment PAE content increased over time. The addition of MPs without PAEs increased the relative abundance of the dominant phyla of bacteria (Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Gemmatimonadetes, and Planctomycetes) and eukaryotes (Ascomycota, Bacillariophyta, Chordata, and Streptophyta), whereas the relative abundance decreased over time following the addition of MPs containing PAEs. The PAEs released from MPs had greater effects on these phyla than the MPs themselves. The dominant bacteria were more sensitive to MPs than the dominant eukaryotes. After a 60-day amendment with MPs containing PAEs, the bacterial and eukaryotic species numbers were lower by 5.4% and 3.4%, respectively, the relative abundance of certain genes involved in metabolism was lower, and the relative abundance of stress-related genes was higher. These findings provide insight into the microbial response and adaptation mechanisms in estuarine environments polluted with MPs.
Collapse
Affiliation(s)
- Xiao-Ming Lu
- School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, China.
| | - Xiao-Qiang Jiang
- School of Urban Operations Management, Shanghai Urban Construction Vocational College, Shanghai 200438, China
| | - Xue-Ping Liu
- School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, China
| |
Collapse
|
27
|
Westmeijer G, Mehrshad M, Turner S, Alakangas L, Sachpazidou V, Bunse C, Pinhassi J, Ketzer M, Åström M, Bertilsson S, Dopson M. Connectivity of Fennoscandian Shield terrestrial deep biosphere microbiomes with surface communities. Commun Biol 2022; 5:37. [PMID: 35017653 PMCID: PMC8752596 DOI: 10.1038/s42003-021-02980-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/15/2021] [Indexed: 12/20/2022] Open
Abstract
The deep biosphere is an energy constrained ecosystem yet fosters diverse microbial communities that are key in biogeochemical cycling. Whether microbial communities in deep biosphere groundwaters are shaped by infiltration of allochthonous surface microorganisms or the evolution of autochthonous species remains unresolved. In this study, 16S rRNA gene amplicon analyses showed that few groups of surface microbes infiltrated deep biosphere groundwaters at the Äspö Hard Rock Laboratory, Sweden, but that such populations constituted up to 49% of the microbial abundance. The dominant persisting phyla included Patescibacteria, Proteobacteria, and Epsilonbacteraeota. Despite the hydrological connection of the Baltic Sea with the studied groundwaters, infiltrating microbes predominantly originated from deep soil groundwater. Most deep biosphere groundwater populations lacked surface representatives, suggesting that they have evolved from ancient autochthonous populations. We propose that deep biosphere groundwater communities in the Fennoscandian Shield consist of selected infiltrated and indigenous populations adapted to the prevailing conditions. Westmeijer et al. employ high-throughput sequencing to investigate the connection between deep biosphere groundwaters and surface microbial communities. They suggest that the microbial communities of deep biosphere groundwaters in the Fennoscandian Shield are mostly comprised of autochthonous species, rather than migratory surface representatives.
Collapse
Affiliation(s)
- George Westmeijer
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Stuvaregatan 4, 39 231, Kalmar, Sweden.
| | - Maliheh Mehrshad
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, P.O. Box 7050, 75 007, Uppsala, Sweden
| | - Stephanie Turner
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Stuvaregatan 4, 39 231, Kalmar, Sweden
| | - Linda Alakangas
- Swedish Nuclear Fuel and Waste Management Co (SKB), 57 229, Oskarshamn, Sweden
| | - Varvara Sachpazidou
- Department of Biology and Environmental Sciences, Linnaeus University, 39 231, Kalmar, Sweden
| | - Carina Bunse
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Stuvaregatan 4, 39 231, Kalmar, Sweden.,Helmholtz-Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), 26129, Oldenburg, Germany
| | - Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Stuvaregatan 4, 39 231, Kalmar, Sweden
| | - Marcelo Ketzer
- Department of Biology and Environmental Sciences, Linnaeus University, 39 231, Kalmar, Sweden
| | - Mats Åström
- Department of Biology and Environmental Sciences, Linnaeus University, 39 231, Kalmar, Sweden
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, P.O. Box 7050, 75 007, Uppsala, Sweden
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Stuvaregatan 4, 39 231, Kalmar, Sweden
| |
Collapse
|
28
|
Seidel L, Broman E, Turner S, Ståhle M, Dopson M. Interplay between eutrophication and climate warming on bacterial communities in coastal sediments differs depending on water depth and oxygen history. Sci Rep 2021; 11:23384. [PMID: 34862412 PMCID: PMC8642432 DOI: 10.1038/s41598-021-02725-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/19/2021] [Indexed: 01/04/2023] Open
Abstract
Coastal aquatic systems suffer from nutrient enrichment, which results in accelerated eutrophication effects due to increased microbial metabolic rates. Climate change related prolonged warming will likely accelerate existing eutrophication effects, including low oxygen concentrations. However, how the interplay between these environmental changes will alter coastal ecosystems is poorly understood. In this study, we compared 16S rRNA gene amplicon based bacterial communities in coastal sediments of a Baltic Sea basin in November 2013 and 2017 at three sites along a water depth gradient with varying bottom water oxygen histories. The shallow site showed changes of only 1.1% in relative abundance of bacterial populations in 2017 compared to 2013, while the deep oxygen-deficient site showed up to 11% changes in relative abundance including an increase of sulfate-reducing bacteria along with a 36% increase in organic matter content. The data suggested that bacterial communities in shallow sediments were more resilient to seasonal oxygen decline, while bacterial communities in sediments subjected to long-term hypoxia seemed to be sensitive to oxygen changes and were likely to be under hypoxic/anoxic conditions in the future. Our data demonstrate that future climate changes will likely fuel eutrophication related spread of low oxygen zones.
Collapse
Affiliation(s)
- Laura Seidel
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden.
| | - Elias Broman
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden.,Baltic Sea Centre, Stockholm University, Stockholm, Sweden
| | - Stephanie Turner
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Magnus Ståhle
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| |
Collapse
|
29
|
Dalcin Martins P, de Jong A, Lenstra WK, van Helmond NAGM, Slomp CP, Jetten MSM, Welte CU, Rasigraf O. Enrichment of novel Verrucomicrobia, Bacteroidetes, and Krumholzibacteria in an oxygen-limited methane- and iron-fed bioreactor inoculated with Bothnian Sea sediments. Microbiologyopen 2021; 10:e1175. [PMID: 33650794 PMCID: PMC7914226 DOI: 10.1002/mbo3.1175] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/16/2022] Open
Abstract
Microbial methane oxidation is a major biofilter preventing larger emissions of this powerful greenhouse gas from marine coastal areas into the atmosphere. In these zones, various electron acceptors such as sulfate, metal oxides, nitrate, or oxygen can be used. However, the key microbial players and mechanisms of methane oxidation are poorly understood. In this study, we inoculated a bioreactor with methane‐ and iron‐rich sediments from the Bothnian Sea to investigate microbial methane and iron cycling under low oxygen concentrations. Using metagenomics, we investigated shifts in microbial community composition after approximately 2.5 years of bioreactor operation. Marker genes for methane and iron cycling, as well as respiratory and fermentative metabolism, were identified and used to infer putative microbial metabolism. Metagenome‐assembled genomes representing novel Verrucomicrobia, Bacteroidetes, and Krumholzibacteria were recovered and revealed a potential for methane oxidation, organic matter degradation, and iron cycling, respectively. This work brings new hypotheses on the identity and metabolic versatility of microorganisms that may be members of such functional guilds in coastal marine sediments and highlights that microorganisms potentially composing the methane biofilter in these sediments may be more diverse than previously appreciated.
Collapse
Affiliation(s)
- Paula Dalcin Martins
- Department of Microbiology, Radboud University Nijmegen, Nijmegen, The Netherlands.,Soehngen Institute of Anaerobic Microbiology (SIAM), Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Anniek de Jong
- Department of Microbiology, Radboud University Nijmegen, Nijmegen, The Netherlands.,Netherlands Earth System Science Centre (NESSC), Utrecht, The Netherlands
| | - Wytze K Lenstra
- Netherlands Earth System Science Centre (NESSC), Utrecht, The Netherlands.,Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands
| | - Niels A G M van Helmond
- Netherlands Earth System Science Centre (NESSC), Utrecht, The Netherlands.,Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands
| | - Caroline P Slomp
- Netherlands Earth System Science Centre (NESSC), Utrecht, The Netherlands.,Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Radboud University Nijmegen, Nijmegen, The Netherlands.,Soehngen Institute of Anaerobic Microbiology (SIAM), Radboud University Nijmegen, Nijmegen, The Netherlands.,Netherlands Earth System Science Centre (NESSC), Utrecht, The Netherlands
| | - Cornelia U Welte
- Department of Microbiology, Radboud University Nijmegen, Nijmegen, The Netherlands.,Soehngen Institute of Anaerobic Microbiology (SIAM), Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Olivia Rasigraf
- Department of Microbiology, Radboud University Nijmegen, Nijmegen, The Netherlands.,Netherlands Earth System Science Centre (NESSC), Utrecht, The Netherlands.,Geomicrobiology, German Research Centre for Geosciences (GFZ), Potsdam, Germany
| |
Collapse
|
30
|
Zhang Y, Thompson KN, Branck T, Yan Yan, Nguyen LH, Franzosa EA, Huttenhower C. Metatranscriptomics for the Human Microbiome and Microbial Community Functional Profiling. Annu Rev Biomed Data Sci 2021; 4:279-311. [PMID: 34465175 DOI: 10.1146/annurev-biodatasci-031121-103035] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Shotgun metatranscriptomics (MTX) is an increasingly practical way to survey microbial community gene function and regulation at scale. This review begins by summarizing the motivations for community transcriptomics and the history of the field. We then explore the principles, best practices, and challenges of contemporary MTX workflows: beginning with laboratory methods for isolation and sequencing of community RNA, followed by informatics methods for quantifying RNA features, and finally statistical methods for detecting differential expression in a community context. In thesecond half of the review, we survey important biological findings from the MTX literature, drawing examples from the human microbiome, other (nonhuman) host-associated microbiomes, and the environment. Across these examples, MTX methods prove invaluable for probing microbe-microbe and host-microbe interactions, the dynamics of energy harvest and chemical cycling, and responses to environmental stresses. We conclude with a review of open challenges in the MTX field, including making assays and analyses more robust, accessible, and adaptable to new technologies; deciphering roles for millions of uncharacterized microbial transcripts; and solving applied problems such as biomarker discovery and development of microbial therapeutics.
Collapse
Affiliation(s)
- Yancong Zhang
- Harvard Chan Microbiome in Public Health Center and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA; , .,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Kelsey N Thompson
- Harvard Chan Microbiome in Public Health Center and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA; , .,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Tobyn Branck
- Harvard Chan Microbiome in Public Health Center and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA; , .,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Department of Systems, Synthetic, and Quantitative Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Yan Yan
- Harvard Chan Microbiome in Public Health Center and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA; , .,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Long H Nguyen
- Harvard Chan Microbiome in Public Health Center and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA; , .,Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA.,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02108, USA
| | - Eric A Franzosa
- Harvard Chan Microbiome in Public Health Center and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA; , .,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Curtis Huttenhower
- Harvard Chan Microbiome in Public Health Center and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA; , .,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| |
Collapse
|
31
|
Mahmood M, Taki S, Nakai S, Gotoh T, Nishijima W, Umehara A, Aoyagi T, Sato Y, Hori T, Katayama Y, Hajdu-Rahkama R, Puhakka JA. Increase in sedimentary organic carbon with a change from hypoxic to oxic conditions. MARINE POLLUTION BULLETIN 2021; 168:112397. [PMID: 33962085 DOI: 10.1016/j.marpolbul.2021.112397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
In the Seto Inland Sea, Japan, chemical oxygen demand has increased over recent decades, while average dissolved oxygen concentrations in the bottom water have increased. In this study, we investigated responses of organic carbon (OC) in hypoxic sediment to changes of redox conditions using experimental columns containing sediment and overlying water. Surface sediment showed an increase in OC along with the change to an aerobic condition. Microbial community analysis showed a predominance of sulfur-oxidizing bacteria (SOB) such as Sulfurovum sp. in the sediment. This dominance could account for the increased OC. Additionally, the dissolved organic carbon (DOC) concentration in the overlying water increased. Further experiments using sandy sediment showed that biodegradation of Sulfurimonas denitrificans was associated with DOC release. These results show that a change in the sedimentary environment (increase in dissolved oxygen) increased the sedimentary OC and DOC of overlying water by stimulating certain autotrophic bacteria, especially the SOB.
Collapse
Affiliation(s)
- Mukseet Mahmood
- Graduate School of Engineering, Hiroshima University, Hiroshima, Japan
| | - Shunsuke Taki
- Graduate School of Engineering, Hiroshima University, Hiroshima, Japan
| | - Satoshi Nakai
- Graduate School of Engineering, Hiroshima University, Hiroshima, Japan.
| | - Takehiko Gotoh
- Graduate School of Engineering, Hiroshima University, Hiroshima, Japan
| | - Wataru Nishijima
- Environmental Research Management Center, Hiroshima University, Hiroshima, Japan
| | - Akira Umehara
- Environmental Research Management Center, Hiroshima University, Hiroshima, Japan
| | - Tomo Aoyagi
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Yuya Sato
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Tomoyuki Hori
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan.
| | - Yoko Katayama
- Center for Conservation Science, Tokyo National Research Institute for Cultural Properties, Tokyo, Japan
| | - Reka Hajdu-Rahkama
- Materials Science and Environmental Engineering, Tampere University, Tampere, Finland
| | - Jaakko A Puhakka
- Materials Science and Environmental Engineering, Tampere University, Tampere, Finland
| |
Collapse
|
32
|
The Fennoscandian Shield deep terrestrial virosphere suggests slow motion 'boom and burst' cycles. Commun Biol 2021; 4:307. [PMID: 33686191 PMCID: PMC7940616 DOI: 10.1038/s42003-021-01810-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 02/08/2021] [Indexed: 12/22/2022] Open
Abstract
The deep biosphere contains members from all three domains of life along with viruses. Here we investigate the deep terrestrial virosphere by sequencing community nucleic acids from three groundwaters of contrasting chemistries, origins, and ages. These viromes constitute a highly unique community compared to other environmental viromes and sequenced viral isolates. Viral host prediction suggests that many of the viruses are associated with Firmicutes and Patescibacteria, a superphylum lacking previously described active viruses. RNA transcript-based activity implies viral predation in the shallower marine water-fed groundwater, while the deeper and more oligotrophic waters appear to be in ‘metabolic standby’. Viral encoded antibiotic production and resistance systems suggest competition and antagonistic interactions. The data demonstrate a viral community with a wide range of predicted hosts that mediates nutrient recycling to support a higher microbial turnover than previously anticipated. This suggests the presence of ‘kill-the-winner’ oscillations creating slow motion ‘boom and burst’ cycles. Karin Holmfeldt et al. sequence metagenomes and metatranscriptomes of viruses in deep groundwaters down to 448 m below the surface. The results reveal ecological dynamics of viruses including slow motion ‘boom and burst’ cycles and a ‘kill the winner’ model potentially driven by viral predation.
Collapse
|
33
|
Wallenius AJ, Dalcin Martins P, Slomp CP, Jetten MSM. Anthropogenic and Environmental Constraints on the Microbial Methane Cycle in Coastal Sediments. Front Microbiol 2021; 12:631621. [PMID: 33679659 PMCID: PMC7935538 DOI: 10.3389/fmicb.2021.631621] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/29/2021] [Indexed: 12/05/2022] Open
Abstract
Large amounts of methane, a potent greenhouse gas, are produced in anoxic sediments by methanogenic archaea. Nonetheless, over 90% of the produced methane is oxidized via sulfate-dependent anaerobic oxidation of methane (S-AOM) in the sulfate-methane transition zone (SMTZ) by consortia of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria (SRB). Coastal systems account for the majority of total marine methane emissions and typically have lower sulfate concentrations, hence S-AOM is less significant. However, alternative electron acceptors such as metal oxides or nitrate could be used for AOM instead of sulfate. The availability of electron acceptors is determined by the redox zonation in the sediment, which may vary due to changes in oxygen availability and the type and rate of organic matter inputs. Additionally, eutrophication and climate change can affect the microbiome, biogeochemical zonation, and methane cycling in coastal sediments. This review summarizes the current knowledge on the processes and microorganisms involved in methane cycling in coastal sediments and the factors influencing methane emissions from these systems. In eutrophic coastal areas, organic matter inputs are a key driver of bottom water hypoxia. Global warming can reduce the solubility of oxygen in surface waters, enhancing water column stratification, increasing primary production, and favoring methanogenesis. ANME are notoriously slow growers and may not be able to effectively oxidize methane upon rapid sedimentation and shoaling of the SMTZ. In such settings, ANME-2d (Methanoperedenaceae) and ANME-2a may couple iron- and/or manganese reduction to AOM, while ANME-2d and NC10 bacteria (Methylomirabilota) could couple AOM to nitrate or nitrite reduction. Ultimately, methane may be oxidized by aerobic methanotrophs in the upper millimeters of the sediment or in the water column. The role of these processes in mitigating methane emissions from eutrophic coastal sediments, including the exact pathways and microorganisms involved, are still underexplored, and factors controlling these processes are unclear. Further studies are needed in order to understand the factors driving methane-cycling pathways and to identify the responsible microorganisms. Integration of the knowledge on microbial pathways and geochemical processes is expected to lead to more accurate predictions of methane emissions from coastal zones in the future.
Collapse
Affiliation(s)
- Anna J. Wallenius
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Paula Dalcin Martins
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Caroline P. Slomp
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, Netherlands
| | - Mike S. M. Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, Netherlands
| |
Collapse
|
34
|
Bin Hudari MS, Vogt C, Richnow HH. Effect of Temperature on Acetate Mineralization Kinetics and Microbial Community Composition in a Hydrocarbon-Affected Microbial Community During a Shift From Oxic to Sulfidogenic Conditions. Front Microbiol 2021; 11:606565. [PMID: 33391229 PMCID: PMC7773710 DOI: 10.3389/fmicb.2020.606565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/23/2020] [Indexed: 01/04/2023] Open
Abstract
Aquifer thermal energy storage (ATES) allows for the seasonal storage and extraction of heat in the subsurface thus reducing reliance on fossil fuels and supporting decarbonization of the heating and cooling sector. However, the impacts of higher temperatures toward biodiversity and ecosystem services in the subsurface environment remain unclear. Here, we conducted a laboratory microcosm study comprising a hydrocarbon-degrading microbial community from a sulfidic hydrocarbon-contaminated aquifer spiked with 13C-labeled acetate and incubated at temperatures between 12 and 80°C to evaluate (i) the extent and rates of acetate mineralization and (ii) the resultant temperature-induced shifts in the microbial community structure. We observed biphasic mineralization curves at 12, 25, 38, and 45°C, arising from immediate and fast aerobic mineralization due to an initial oxygen exposure, followed by slower mineralization at sulfidogenic conditions. At 60°C and several replicates at 45°C, acetate was only aerobically mineralized. At 80°C, no mineralization was observed within 178 days. Rates of acetate mineralization coupled to sulfate reduction at 25 and 38°C were six times faster than at 12°C. Distinct microbial communities developed in oxic and strictly anoxic phases of mineralization as well as at different temperatures. Members of the Alphaproteobacteria were dominant in the oxic mineralization phase at 12–38°C, succeeded by a more diverse community in the anoxic phase composed of Deltaproteobacteria, Clostridia, Spirochaetia, Gammaproteobacteria and Anaerolinea, with varying abundances dependent on the temperature. In the oxic phases at 45 and 60°C, phylotypes affiliated to spore-forming Bacilli developed. In conclusion, temperatures up to 38°C allowed aerobic and anaerobic acetate mineralization albeit at varying rates, while mineralization occurred mainly aerobically between 45 and 60°C; thermophilic sulfate reducers being active at temperatures > 45°C were not detected. Hence, temperature may affect dissolved organic carbon mineralization rates in ATES while the variability in the microbial community composition during the transition from micro-oxic to sulfidogenic conditions highlights the crucial role of electron acceptor availability when combining ATES with bioremediation.
Collapse
Affiliation(s)
| | - Carsten Vogt
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Hans Hermann Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research, Leipzig, Germany
| |
Collapse
|
35
|
Idczak J, Brodecka-Goluch A, Łukawska-Matuszewska K, Graca B, Gorska N, Klusek Z, Pezacki PD, Bolałek J. A geophysical, geochemical and microbiological study of a newly discovered pockmark with active gas seepage and submarine groundwater discharge (MET1-BH, central Gulf of Gdańsk, southern Baltic Sea). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140306. [PMID: 32629244 DOI: 10.1016/j.scitotenv.2020.140306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/31/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
High-resolution bathymetric data were collected with a multi-beam echosounder in the southern part of the Baltic Sea (region MET1, Gulf of Gdańsk) revealing the presence of a 10 m deep and 50 m in diameter pockmark (MET1-BH) on the sea bottom (78.7 m). To date, no such structures have been observed to reach this size in the Baltic Sea. The salinity of the near-bottom water in the pockmark was about 2 PSU (about 31.22 mmol/l Cl-), which clearly indicated the presence of a submarine groundwater discharge (SGD). Water column, sediments and the seabed structure were investigated in the MET1-BH area using various hydroacoustic devices: multi-beam and splitbeam echosounders and a sub-bottom profiler. Geochemical analyses of sediment pore waters (CH4, Cl-, Br-, F-, SO42-, Ca2+, Mg2+, K+, Na+, ∑H2S, dP, dSi, NH4+, DIC, DOC) and microbiological analysis of sediments (16S rRNA) were performed. The content of CH4 and CO2 in the outflowing gas and its origin (δ13C-CH4 and δ2D-CH4) were determined. Hydroacoustic data showed that gas was emitted intensively from the inside of the structure. The height and intensity of the gas flares varied depending on the hydrostatic pressure. The gas contained 76.1% of CH4, 17.6% of CO2 and 0.39% of He. Methane source was microbial. Geophysical investigation revealed the presence of dislocations in sub-surface sediment layers in the MET1 region, which could have created a passage for groundwater and gas. Geochemical analyses pointed to intensive processes of organic matter decomposition in this area, active methanogenesis in the surface sediment layer, lack of the sulphate-methane transition, and freshwater seepage at a depth of ~88 m (bottom of the pockmark), probably from Upper Cretaceous deposits. The Prokaryota composition, atypical for marine surface sediments, resulted from the combination of freshwater and high organic matter content, and reflected active in situ methanogensis.
Collapse
Affiliation(s)
- Jakub Idczak
- Faculty of Oceanography and Geography, Institute of Oceanography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Aleksandra Brodecka-Goluch
- Faculty of Oceanography and Geography, Institute of Oceanography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland.
| | - Katarzyna Łukawska-Matuszewska
- Faculty of Oceanography and Geography, Institute of Oceanography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Bożena Graca
- Faculty of Oceanography and Geography, Institute of Oceanography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Natalia Gorska
- Faculty of Oceanography and Geography, Institute of Oceanography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Zygmunt Klusek
- Institute of Oceanology, Polish Academy of Sciences, Powstanców Warszawy 55, 81-712 Sopot, Poland
| | - Patryk D Pezacki
- Faculty of Oceanography and Geography, Institute of Oceanography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Jerzy Bolałek
- Faculty of Oceanography and Geography, Institute of Oceanography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| |
Collapse
|
36
|
Karthikeyan S, Kim M, Heritier-Robbins P, Hatt JK, Spain JC, Overholt WA, Huettel M, Kostka JE, Konstantinidis KT. Integrated Omics Elucidate the Mechanisms Driving the Rapid Biodegradation of Deepwater Horizon Oil in Intertidal Sediments Undergoing Oxic-Anoxic Cycles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10088-10099. [PMID: 32667785 DOI: 10.1021/acs.est.0c02834] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Crude oil buried in intertidal sands may be exposed to alternating oxic and anoxic conditions but the effect of this tidally induced biogeochemical oscillation remains poorly understood, limiting the effectiveness of remediation and managing efforts after oil spills. Here, we used a combination of metatranscriptomics and genome-resolved metagenomics to study microbial activities in oil-contaminated sediments during oxic-anoxic cycles in laboratory chambers that closely emulated in situ conditions. Approximately 5-fold higher reductions in the total petroleum hydrocarbons were observed in the oxic as compared to the anoxic phases with a relatively constant ratio between aerobic and anaerobic oil decomposition rates even after prolonged anoxic conditions. Metatranscriptomics analysis indicated that the oxic phases promoted oil biodegradation in subsequent anoxic phases by microbially mediated reoxidation of alternative electron acceptors like sulfide and by providing degradation-limiting nitrogen through biological nitrogen fixation. Most population genomes reconstructed from the mesocosm samples represented uncultured taxa and were present typically as members of the rare biosphere in metagenomic data from uncontaminated field samples, implying that the intertidal communities are adapted to changes in redox conditions. Collectively, these results have important implications for enhancing oil spill remediation efforts in beach sands and coastal sediments and underscore the role of uncultured taxa in such efforts.
Collapse
Affiliation(s)
- Smruthi Karthikeyan
- Department of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta 30332-0002, Georgia, United States
| | - Minjae Kim
- Department of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta 30332-0002, Georgia, United States
| | - Patrick Heritier-Robbins
- Department of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta 30332-0002, Georgia, United States
| | - Janet K Hatt
- Department of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta 30332-0002, Georgia, United States
| | - Jim C Spain
- Center for Environmental Diagnostics & Bioremediation, University of West Florida, 11000 University Parkway, Pensacola 32514, Florida, United States
| | - Will A Overholt
- School of Biological Sciences, Georgia Institute of Technology, Atlanta 30332-0002, Georgia, United States
| | - Markus Huettel
- Department of Earth, Ocean and Atmospheric Sciences, Florida State University, Tallahassee 32306-4320, Florida, United States
| | - Joel E Kostka
- School of Biological Sciences, Georgia Institute of Technology, Atlanta 30332-0002, Georgia, United States
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta 30332-0002, Georgia, United States
| | - Konstantinos T Konstantinidis
- Department of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta 30332-0002, Georgia, United States
- School of Biological Sciences, Georgia Institute of Technology, Atlanta 30332-0002, Georgia, United States
| |
Collapse
|
37
|
Zheng S, Wang B, Xu G, Liu F. Effects of Organic Phosphorus on Methylotrophic Methanogenesis in Coastal Lagoon Sediments With Seagrass ( Zostera marina) Colonization. Front Microbiol 2020; 11:1770. [PMID: 32849394 PMCID: PMC7411354 DOI: 10.3389/fmicb.2020.01770] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/06/2020] [Indexed: 02/03/2023] Open
Abstract
Methanogens are the major contributors of greenhouse gas methane and play significant roles in the degradation and transformation of organic matter. These organisms are particularly abundant in Swan Lake, which is a shallow lagoon located in Rongcheng Bay, Yellow Sea, northern China, where eutrophication from overfertilization commonly results in anoxic environments. High organic phosphorus content is a key component of the total phosphorus in Swan Lake and is possibly a key factor affecting the eutrophication and carbon and nitrogen cycling in Swan Lake. The effects of organic phosphorus on eutrophication have been well-studied with respect to bacteria, such as cyanobacteria, unlike the effects of organic phosphorus on methanogenesis. In this study, different sediment layer samples of seagrass-vegetated and unvegetated areas in Swan Lake were investigated to understand the effects of organic phosphorus on methylotrophic methanogenesis. The results showed that phytate phosphorus significantly promoted methane production in the deepest sediment layer of vegetated regions but suppressed it in unvegetated regions. Amplicon sequencing revealed that methylotrophic Methanococcoides actively dominated in all enrichment samples from both regions with additions of trimethylamine or phytate phosphorus, whereas methylotrophic Methanolobus and Methanosarcina predominated in the enrichments obtained from vegetated and unvegetated sediments, respectively. These results prompted further study of the effects of phytate phosphorus on two methanogen isolates, Methanolobus psychrophilus, a type strain, Methanosarcina mazei, an isolate from Swan Lake sediments. Cultivation experiments showed that phytate phosphorus could inhibit methane production by M. psychrophilus but promote methane production by M. mazei. These culture-based studies revealed the effects of organic phosphorus on methylotrophic methanogenesis in coastal lagoon sediments and improves our understanding of the mechanisms of organic carbon cycling leading to methanogenesis mediated by organic phosphorus dynamics in coastal wetlands.
Collapse
Affiliation(s)
- Shiling Zheng
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Bingchen Wang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Gang Xu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Fanghua Liu
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Institute of Eco-environmental Science and Technology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
38
|
Trench-Fiol S, Fink P. Metatranscriptomics From a Small Aquatic System: Microeukaryotic Community Functions Through the Diurnal Cycle. Front Microbiol 2020; 11:1006. [PMID: 32523568 PMCID: PMC7261829 DOI: 10.3389/fmicb.2020.01006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/24/2020] [Indexed: 11/13/2022] Open
Abstract
Light is an important factor for the growth of planktonic organisms, and many of them depend on the diurnal light/dark cycle to regulate key metabolic processes. So far, most of the diel responses were only studied in single species or marine and large lake communities. Yet, we lack information on whether these processes are regulated similarly in small aquatic systems such as ponds. Here, we investigated the activity of a microeukaryotic community from a temperate, small freshwater pond in response to the diurnal cycle. For this, we took samples at midday and night during the Central European summer. We extracted pigments and RNA from samples and the sequencing of eukaryotic transcripts allowed us to obtain day and night metatranscriptomes. Differentially expressed transcripts primarily corresponded to photosynthesis-related and translational processes, and were found to be upregulated at midday with high light conditions compared to darkness. Unique gene ontology classes were found at each respective condition. During the day, ontology classes including photoreception for photosynthesis, defense, and stress mechanisms dominated, while motility, ribosomal assembly and other large, energy-consuming processes were restricted to the night. Euglenophyta and Chlorophyta dominated the active phototrophic community, as shown by the pigment composition analysis. Regarding the gene expression patterns, we could confirm that the pond community appears to follow similar diurnal dynamics as those described for larger aquatic ecosystems. Overall, combining pigment analyses, metatranscriptomics, and data on physicochemical factors yielded considerably more insight into the metabolic processes performed by the microeukaryotic community of a small freshwater ecosystem.
Collapse
Affiliation(s)
- Stephanie Trench-Fiol
- Workgroup Aquatic Chemical Ecology, Institute for Zoology, University of Cologne, Cologne, Germany
| | - Patrick Fink
- Workgroup Aquatic Chemical Ecology, Institute for Zoology, University of Cologne, Cologne, Germany
- Department of Aquatic Ecosystem Analysis and Management, Helmholtz Centre for Environmental Research – UFZ, Magdeburg, Germany
- Department River Ecology, Helmholtz Centre for Environmental Research – UFZ, Magdeburg, Germany
| |
Collapse
|
39
|
Moncada C, Hassenrück C, Gärdes A, Conaco C. Microbial community composition of sediments influenced by intensive mariculture activity. FEMS Microbiol Ecol 2019; 95:5289376. [PMID: 30649441 DOI: 10.1093/femsec/fiz006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 01/10/2019] [Indexed: 12/22/2022] Open
Abstract
Marine aquaculture is a major industry that supports the economy in many countries, including the Philippines. However, excess feeds and fish waste generated by mariculture activities contribute an immense nutrient load to the environment that can affect the underlying sediment. To better understand these impacts, we compared the physicochemical characteristics and microbial community composition of sediments taken at a fish cage and an off cage site in Bolinao, Philippines. Sediments and pore water at the fish cage site showed evidence of greater organic enrichment relative to the off cage site. Under these conditions, we found lower relative abundance of dissimilatory sulfate reductase and nitrite reductase genes, suggesting shifts in prevalent nutrient cycling processes. This is further supported by 16S rRNA gene sequencing that revealed differences in the community composition between sites. Fish cage sediments favored the growth of taxa that thrive in anaerobic, organic carbon-enriched environments, such as members of class Anaerolineae, which can potentially serve as bioindicators of eutrophication in sediments. This study demonstrates that intensive mariculture activity can cause eutrophic sediment conditions that influence microbial community structure and function.
Collapse
Affiliation(s)
- Chyrene Moncada
- Marine Science Institute, University of the Philippines Diliman, Velasquez Street, Quezon City 1101, Philippines
| | - Christiane Hassenrück
- Tropical Marine Microbiology Group, Leibniz Centre for Tropical Marine Research, Fahrenheitstraße 6, 283 59 Bremen, Germany
| | - Astrid Gärdes
- Tropical Marine Microbiology Group, Leibniz Centre for Tropical Marine Research, Fahrenheitstraße 6, 283 59 Bremen, Germany
| | - Cecilia Conaco
- Marine Science Institute, University of the Philippines Diliman, Velasquez Street, Quezon City 1101, Philippines
| |
Collapse
|
40
|
Increasing oxygen deficiency changes rare and moderately abundant bacterial communities in coastal soft sediments. Sci Rep 2019; 9:16341. [PMID: 31704947 PMCID: PMC6841974 DOI: 10.1038/s41598-019-51432-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/25/2019] [Indexed: 11/20/2022] Open
Abstract
Coastal hypoxia is a major environmental problem worldwide. Hypoxia-induced changes in sediment bacterial communities harm marine ecosystems and alter biogeochemical cycles. Nevertheless, the resistance of sediment bacterial communities to hypoxic stress is unknown. We investigated changes in bacterial communities during hypoxic-anoxic disturbance by artificially inducing oxygen deficiency to the seafloor for 0, 3, 7, and 48 days, with subsequent molecular biological analyses. We further investigated relationships between bacterial communities, benthic macrofauna and nutrient effluxes across the sediment-water-interface during hypoxic-anoxic stress, considering differentially abundant operational taxonomic units (OTUs). The composition of the moderately abundant OTUs changed significantly after seven days of oxygen deficiency, while the abundant and rare OTUs first changed after 48 days. High bacterial diversity maintained the resistance of the communities during oxygen deficiency until it dropped after 48 days, likely due to anoxia-induced loss of macrofaunal diversity and bioturbation. Nutrient fluxes, especially ammonium, correlated positively with the moderate and rare OTUs, including potential sulfate reducers. Correlations may reflect bacteria-mediated nutrient effluxes that accelerate eutrophication. The study suggests that even slightly higher bottom-water oxygen concentrations, which could sustain macrofaunal bioturbation, enable bacterial communities to resist large compositional changes and decrease the harmful consequences of hypoxia in marine ecosystems.
Collapse
|
41
|
von Hoyningen-Huene AJE, Schneider D, Fussmann D, Reimer A, Arp G, Daniel R. Bacterial succession along a sediment porewater gradient at Lake Neusiedl in Austria. Sci Data 2019; 6:163. [PMID: 31471542 PMCID: PMC6717209 DOI: 10.1038/s41597-019-0172-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/26/2019] [Indexed: 12/26/2022] Open
Abstract
We provide bacterial 16S rRNA community and hydrochemical data from water and sediments of Lake Neusiedl, Austria. The sediments were retrieved at 5 cm intervals from 30–40 cm push cores. The lake water community was recovered by filtration through a 3.0/0.2 µm filter sandwich. For 16S rRNA gene amplicon-based community profiling, DNA was extracted from the sediment and filters and the bacterial V3-V4 regions were amplified and sequenced using a MiSeq instrument (Illumina). The reads were quality-filtered and processed using open source bioinformatic tools, such as PEAR, cutadapt and VSEARCH. The taxonomy was assigned against the SILVA SSU NR 132 database. The bacterial community structure was visualised in relation to water and porewater chemistry data. The bacterial community in the water column is distinct from the sediment. The most abundant phyla in the sediment shift from Proteobacteria to Chloroflexota (formerly Chloroflexi). Ammonium and total alkalinity increase while sulphate concentrations in the porewater decrease. The provided data are of interest for studies targeting biogeochemical cycling in lake sediments. Design Type(s) | source-based data analysis objective • biodiversity assessment objective | Measurement Type(s) | freshwater metagenome | Technology Type(s) | DNA sequencing | Factor Type(s) | Environment • depth | Sample Characteristic(s) | metagenome • Neusiedlersee • lake |
Machine-accessible metadata file describing the reported data (ISA-Tab format)
Collapse
Affiliation(s)
- Avril Jean Elisabeth von Hoyningen-Huene
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Dominik Schneider
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Dario Fussmann
- Geobiology, Faculty of Geosciences and Geography, Georg-August-University Göttingen, Göttingen, Germany
| | - Andreas Reimer
- Geobiology, Faculty of Geosciences and Geography, Georg-August-University Göttingen, Göttingen, Germany
| | - Gernot Arp
- Geobiology, Faculty of Geosciences and Geography, Georg-August-University Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany.
| |
Collapse
|
42
|
Miettinen H, Bomberg M, Nyyssönen M, Reunamo A, Jørgensen KS, Vikman M. Oil degradation potential of microbial communities in water and sediment of Baltic Sea coastal area. PLoS One 2019; 14:e0218834. [PMID: 31265451 PMCID: PMC6605675 DOI: 10.1371/journal.pone.0218834] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/10/2019] [Indexed: 11/19/2022] Open
Abstract
Two long-term potentially oil exposed Baltic Sea coastal sites near old oil refineries and harbours were compared to nearby less exposed sites in terms of bacterial, archaeal and fungal microbiomes and oil degradation potential. The bacterial, archaeal and fungal diversities were similar in oil exposed and less exposed sampling sites based on bacterial and archaeal 16S rRNA gene and fungal 5.8S rRNA gene amplicon sequencing from both DNA and RNA fractions. The number of genes participating in alkane degradation (alkB) or PAH-ring hydroxylation (PAH–RHDα) were detected by qPCR in all water and sediment samples. These numbers correlated with the number of bacterial 16S rRNA gene copies in sediment samples but not with the concentration of petroleum hydrocarbons or PAHs. This indicates that both the clean and the more polluted sites at the Baltic Sea coastal areas have a potential for petroleum hydrocarbon degradation. The active community (based on RNA) of the coastal Baltic Sea water differed largely from the total community (based on DNA). The most noticeable difference was seen in the bacterial community in the water samples were the active community was dominated by Cyanobacteria and Proteobacteria whereas in total bacterial community Actinobacteria was the most abundant phylum. The abundance, richness and diversity of Fungi present in water and sediment samples was in general lower than that of Bacteria and Archaea. Furthermore, the sampling location influenced the fungal community composition, whereas the bacterial and archaeal communities were not influenced. This may indicate that the fungal species that are adapted to the Baltic Sea environments are few and that Fungi are potentially more vulnerable to or affected by the Baltic Sea conditions than Bacteria and Archaea.
Collapse
Affiliation(s)
- Hanna Miettinen
- Solutions for Natural Resources and Environment, VTT Technical Research Centre of Finland Ltd, VTT, Finland
- * E-mail:
| | - Malin Bomberg
- Solutions for Natural Resources and Environment, VTT Technical Research Centre of Finland Ltd, VTT, Finland
| | - Mari Nyyssönen
- Solutions for Natural Resources and Environment, VTT Technical Research Centre of Finland Ltd, VTT, Finland
| | - Anna Reunamo
- Marine Research Centre, Finnish Environment Institute SYKE, Helsinki, Finland
| | | | - Minna Vikman
- Solutions for Natural Resources and Environment, VTT Technical Research Centre of Finland Ltd, VTT, Finland
| |
Collapse
|
43
|
Horton DJ, Theis KR, Uzarski DG, Learman DR. Microbial community structure and microbial networks correspond to nutrient gradients within coastal wetlands of the Laurentian Great Lakes. FEMS Microbiol Ecol 2019; 95:fiz033. [PMID: 30855669 PMCID: PMC6447756 DOI: 10.1093/femsec/fiz033] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 03/10/2019] [Indexed: 12/16/2022] Open
Abstract
Microbial communities within the soil of Laurentian Great Lakes coastal wetlands drive biogeochemical cycles and provide several other ecosystem services. However, there exists a lack of understanding of how microbial communities respond to nutrient gradients and human activity in these systems. This research sought to address the lack of understanding through exploration of relationships among nutrient gradients, microbial community diversity, and microbial networks. Significant differences in microbial community structure were found among coastal wetlands within the western basin of Lake Erie and all other wetlands studied (three regions within Saginaw Bay and one region in the Beaver Archipelago). These diversity differences coincided with higher nutrient levels within the Lake Erie region. Site-to-site variability also existed within the majority of the regions studied, suggesting site-scale heterogeneity may impact microbial community structure. Several subnetworks of microbial communities and individual community members were related to chemical gradients among wetland regions, revealing several candidate indicator communities and taxa that may be useful for Great Lakes coastal wetland management. This research provides an initial characterization of microbial communities among Great Lakes coastal wetlands and demonstrates that microbial communities could be negatively impacted by anthropogenic activities.
Collapse
Affiliation(s)
- Dean J Horton
- Institute for Great Lakes Research and Department of Biology, Central Michigan University, Mt. Pleasant, MI, USA
| | - Kevin R Theis
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI, USA
| | - Donald G Uzarski
- Institute for Great Lakes Research and Department of Biology, Central Michigan University, Mt. Pleasant, MI, USA
| | - Deric R Learman
- Institute for Great Lakes Research and Department of Biology, Central Michigan University, Mt. Pleasant, MI, USA
| |
Collapse
|
44
|
Ni G, Harnawan P, Seidel L, Ter Heijne A, Sleutels T, Buisman CJN, Dopson M. Haloalkaliphilic microorganisms assist sulfide removal in a microbial electrolysis cell. JOURNAL OF HAZARDOUS MATERIALS 2019; 363:197-204. [PMID: 30308358 DOI: 10.1016/j.jhazmat.2018.09.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 06/08/2023]
Abstract
Several industrial processes produce toxic sulfide containing streams that are often scrubbed using caustic solutions. An alternative, cost effective sulfide treatment method is bioelectrochemical sulfide removal. For the first time, a haloalkaliphilic sulfide-oxidizing microbial consortium was introduced to the anodic chamber of a microbial electrolysis cell operated at alkaline pH and with 1.0 M sodium ions. Under anode potential control, the highest sulfide removal rate was 2.16 mM/day and chemical analysis supported that the electrical current generation was from the sulfide oxidation. Biotic operation produced a maximum current density of 3625 mA/m2 compared to 210 mA/m2 while under abiotic operation. Furthermore, biotic electrical production was maintained for a longer period than for abiotic operation, potentially due to the passivation of the electrode by elemental sulfur during abiotic operation. The use of microorganisms reduced the energy input in this study compared to published electrochemical sulfide removal technologies. Sulfide-oxidizing populations dominated both the planktonic and electrode-attached communities with 16S rRNA gene sequences aligning within the genera Thioalkalivibrio, Thioalkalimicrobium, and Desulfurivibrio. The dominance of the Desulfurivibrio-like population on the anode surface offered evidence for the first haloalkaliphilic bacterium able to couple electrons from sulfide oxidation to extracellular electron transfer to the anode.
Collapse
Affiliation(s)
- Gaofeng Ni
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, P.O. Box 1113, Leeuwarden, 8911 MA, the Netherlands; Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden.
| | - Pebrianto Harnawan
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, P.O. Box 1113, Leeuwarden, 8911 MA, the Netherlands
| | - Laura Seidel
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Annemiek Ter Heijne
- Sub-Department of Environmental Technology, Wageningen University, Bornse Weilanden 9, P.O. Box 17, 6700 AA, Wageningen, the Netherlands
| | - Tom Sleutels
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, P.O. Box 1113, Leeuwarden, 8911 MA, the Netherlands
| | - Cees J N Buisman
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, P.O. Box 1113, Leeuwarden, 8911 MA, the Netherlands; Sub-Department of Environmental Technology, Wageningen University, Bornse Weilanden 9, P.O. Box 17, 6700 AA, Wageningen, the Netherlands
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| |
Collapse
|
45
|
Ding W, Zhang W, Wang R, Sun Y, Pei B, Gao Z, Qian PY. Distribution, diversity and functional dissociation of the mac genes in marine biofilms. BIOFOULING 2019; 35:230-243. [PMID: 30950294 DOI: 10.1080/08927014.2019.1593384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Bacteria produce metamorphosis-associated contractile (MAC) structures to induce larval metamorphosis in Hydroides elegans. The distribution and diversity of mac gene homologs in marine environments are largely unexplored. In the present study mac genes were examined in marine environments by analyzing 101 biofilm and 91 seawater metagenomes. There were more mac genes in biofilms than in seawater, and substratum type, location, or sampling time did not affect the mac genes in biofilms. The mac gene clusters were highly diverse and often incomplete while the three MAC components co-occurred with other genes of different functions. Genomic analysis of four Pseudoalteromonas and two Streptomyces strains revealed the mac genes transfers among different microbial taxa. It is proposed that mac genes are more specific to biofilms; gene transfer among different microbial taxa has led to highly diverse mac gene clusters; and in most cases, the three MAC components function individually rather than forming a complex.
Collapse
Affiliation(s)
- Wei Ding
- a Department of Ocean Science and Division of Life Science , Hong Kong University of Science and Technology , Hong Kong , PR China
| | - Weipeng Zhang
- a Department of Ocean Science and Division of Life Science , Hong Kong University of Science and Technology , Hong Kong , PR China
| | - Ruojun Wang
- a Department of Ocean Science and Division of Life Science , Hong Kong University of Science and Technology , Hong Kong , PR China
| | - Yanan Sun
- a Department of Ocean Science and Division of Life Science , Hong Kong University of Science and Technology , Hong Kong , PR China
| | - Bite Pei
- a Department of Ocean Science and Division of Life Science , Hong Kong University of Science and Technology , Hong Kong , PR China
| | - Zhaoming Gao
- b Sanya Institute of Deep-sea Science and Engineering , Chinese Academy of Sciences , Hainan , PR China
| | - Pei-Yuan Qian
- a Department of Ocean Science and Division of Life Science , Hong Kong University of Science and Technology , Hong Kong , PR China
| |
Collapse
|
46
|
Broman E, Li L, Fridlund J, Svensson F, Legrand C, Dopson M. Spring and Late Summer Phytoplankton Biomass Impact on the Coastal Sediment Microbial Community Structure. MICROBIAL ECOLOGY 2019; 77:288-303. [PMID: 30019110 PMCID: PMC6394492 DOI: 10.1007/s00248-018-1229-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
Two annual Baltic Sea phytoplankton blooms occur in spring and summer. The bloom intensity is determined by nutrient concentrations in the water, while the period depends on weather conditions. During the course of the bloom, dead cells sink to the sediment where their degradation consumes oxygen to create hypoxic zones (< 2 mg/L dissolved oxygen). These zones prevent the establishment of benthic communities and may result in fish mortality. The aim of the study was to determine how the spring and autumn sediment chemistry and microbial community composition changed due to degradation of diatom or cyanobacterial biomass, respectively. Results from incubation of sediment cores showed some typical anaerobic microbial processes after biomass addition such as a decrease in NO2- + NO3- in the sediment surface (0-1 cm) and iron in the underlying layer (1-2 cm). In addition, an increase in NO2- + NO3- was observed in the overlying benthic water in all amended and control incubations. The combination of NO2- + NO3- diffusion plus nitrification could not account for this increase. Based on 16S rRNA gene sequences, the addition of cyanobacterial biomass during autumn caused a large increase in ferrous iron-oxidizing archaea while diatom biomass amendment during spring caused minor changes in the microbial community. Considering that OTUs sharing lineages with acidophilic microorganisms had a high relative abundance during autumn, it was suggested that specific niches developed in sediment microenvironments. These findings highlight the importance of nitrogen cycling and early microbial community changes in the sediment due to sinking phytoplankton before potential hypoxia occurs.
Collapse
Affiliation(s)
- Elias Broman
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, 39182, Kalmar, Sweden.
| | - Lingni Li
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, 39182, Kalmar, Sweden
| | - Jimmy Fridlund
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, 39182, Kalmar, Sweden
| | - Fredrik Svensson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, 39182, Kalmar, Sweden
| | - Catherine Legrand
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, 39182, Kalmar, Sweden
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, 39182, Kalmar, Sweden
| |
Collapse
|
47
|
Metatranscriptomes Reveal That All Three Domains of Life Are Active but Are Dominated by Bacteria in the Fennoscandian Crystalline Granitic Continental Deep Biosphere. mBio 2018; 9:mBio.01792-18. [PMID: 30459191 PMCID: PMC6247080 DOI: 10.1128/mbio.01792-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A newly designed sampling apparatus was used to fix RNA under in situ conditions in the deep continental biosphere and benchmarks a strategy for deep biosphere metatranscriptomic sequencing. This apparatus enabled the identification of active community members and the processes they carry out in this extremely oligotrophic environment. This work presents for the first time evidence of eukaryotic, archaeal, and bacterial activity in two deep subsurface crystalline rock groundwaters from the Äspö Hard Rock Laboratory with different depths and geochemical characteristics. The findings highlight differences between organic carbon-fed shallow communities and carbon dioxide- and hydrogen-fed old saline waters. In addition, the data reveal a large portion of uncharacterized microorganisms, as well as the important role of candidate phyla in the deep biosphere, but also the disparity in microbial diversity when using standard microbial 16S rRNA gene amplification versus the large unknown portion of the community identified with unbiased metatranscriptomes. The continental subsurface is suggested to contain a significant part of the earth’s total biomass. However, due to the difficulty of sampling, the deep subsurface is still one of the least understood ecosystems. Therefore, microorganisms inhabiting this environment might profoundly influence the global nutrient and energy cycles. In this study, in situ fixed RNA transcripts from two deep continental groundwaters from the Äspö Hard Rock Laboratory (a Baltic Sea-influenced water with a residence time of <20 years, defined as “modern marine,” and an “old saline” groundwater with a residence time of thousands of years) were subjected to metatranscriptome sequencing. Although small subunit (SSU) rRNA gene and mRNA transcripts aligned to all three domains of life, supporting activity within these community subsets, the data also suggested that the groundwaters were dominated by bacteria. Many of the SSU rRNA transcripts grouped within newly described candidate phyla or could not be mapped to known branches on the tree of life, suggesting that a large portion of the active biota in the deep biosphere remains unexplored. Despite the extremely oligotrophic conditions, mRNA transcripts revealed a diverse range of metabolic strategies that were carried out by multiple taxa in the modern marine water that is fed by organic carbon from the surface. In contrast, the carbon dioxide- and hydrogen-fed old saline water with a residence time of thousands of years predominantly showed the potential to carry out translation. This suggested these cells were active, but waiting until an energy source episodically becomes available.
Collapse
|
48
|
Broman E, Sachpazidou V, Dopson M, Hylander S. Diatoms dominate the eukaryotic metatranscriptome during spring in coastal 'dead zone' sediments. Proc Biol Sci 2018; 284:rspb.2017.1617. [PMID: 28978732 DOI: 10.1098/rspb.2017.1617] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/04/2017] [Indexed: 01/05/2023] Open
Abstract
An important characteristic of marine sediments is the oxygen concentration that affects many central metabolic processes. There has been a widespread increase in hypoxia in coastal systems (referred to as 'dead zones') mainly caused by eutrophication. Hence, it is central to understand the metabolism and ecology of eukaryotic life in sediments during changing oxygen conditions. Therefore, we sampled coastal 'dead zone' Baltic Sea sediment during autumn and spring, and analysed the eukaryotic metatranscriptome from field samples and after incubation in the dark under oxic or anoxic conditions. Bacillariophyta (diatoms) dominated the eukaryotic metatranscriptome in spring and were also abundant during autumn. A large fraction of the diatom RNA reads was associated with the photosystems suggesting a constitutive expression in darkness. Microscope observation showed intact diatom cells and these would, if hatched, represent a significant part of the pelagic phytoplankton biomass. Oxygenation did not significantly change the relative proportion of diatoms nor resulted in any major shifts in metabolic 'signatures'. By contrast, diatoms rapidly responded when exposed to light suggesting that light is limiting diatom development in hypoxic sediments. Hence, it is suggested that diatoms in hypoxic sediments are on 'standby' to exploit the environment if they reach suitable habitats.
Collapse
Affiliation(s)
- Elias Broman
- Centre for Ecology and Evolution in Microbial model Systems - EEMiS, Linnaeus University, 39182 Kalmar, Sweden
| | - Varvara Sachpazidou
- Centre for Ecology and Evolution in Microbial model Systems - EEMiS, Linnaeus University, 39182 Kalmar, Sweden
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial model Systems - EEMiS, Linnaeus University, 39182 Kalmar, Sweden
| | - Samuel Hylander
- Centre for Ecology and Evolution in Microbial model Systems - EEMiS, Linnaeus University, 39182 Kalmar, Sweden
| |
Collapse
|
49
|
Broman E, Sachpazidou V, Pinhassi J, Dopson M. Oxygenation of Hypoxic Coastal Baltic Sea Sediments Impacts on Chemistry, Microbial Community Composition, and Metabolism. Front Microbiol 2017; 8:2453. [PMID: 29312168 PMCID: PMC5733055 DOI: 10.3389/fmicb.2017.02453] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/27/2017] [Indexed: 01/24/2023] Open
Abstract
The Baltic Sea has undergone severe eutrophication during the last century, resulting in increased algal blooms and the development of hypoxic bottom waters. In this study, we sampled oxygen deficient sediment cores from a Baltic Sea coastal bay and exposed the bottom water including the sediment surface to oxygen shifts via artificial addition of air during laboratory incubation. Surface sediment (top 1 cm) from the replicate cores were sliced in the field as well as throughout the laboratory incubations and chemical parameters were analyzed along with high throughput sequencing of community DNA and RNA. After oxygenation, dissolved iron decreased in the water overlying the sediment while inorganic sulfur compounds (thiosulfate and tetrathionate) increased when the water was kept anoxic. Oxygenation of the sediment also maintained RNA transcripts attributed to sulfide and sulfur oxidation as well as nitrogen fixation in the sediment surface. Based on 16S rRNA gene and metatranscriptomic analyses it was found that oxygenation of the sediment surface caused a bloom of the Epsilonproteobacteria genus Arcobacter. In addition, the formation of a thick white film was observed that was likely filamentous zero-valent sulfur produced by the Arcobacter spp. Based on these results, sulfur cycling and nitrogen fixation that were evident in the field samples were ongoing during re-oxygenation of the sediment. These processes potentially added organic nitrogen to the system and facilitated the re-establishment of micro- and macroorganism communities in the benthic zone.
Collapse
Affiliation(s)
- Elias Broman
- Biology and Environmental Sciences, Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Varvara Sachpazidou
- Biology and Environmental Sciences, Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Jarone Pinhassi
- Biology and Environmental Sciences, Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Mark Dopson
- Biology and Environmental Sciences, Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| |
Collapse
|