1
|
Lv L, Zhang F, Zhou H, Xiao W, Hu Y, Wang W, Zhu Z, Zhu F, Qin D, Hu X. Seasonal Variations in the Structure and Function of the Gut Flora in Adult Male Rhesus Macaques Reared in Outdoor Colonies. Microorganisms 2025; 13:117. [PMID: 39858885 PMCID: PMC11767529 DOI: 10.3390/microorganisms13010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
The seasonal variations that occur in the gut microbiota of healthy adult rhesus monkeys kept in outdoor groups under conventional rearing patterns and how these variations are affected by environmental variables are relatively poorly understood. In this study, we collected 120 fecal samples from 30 adult male rhesus monkeys kept in outdoor groups across four seasons and recorded the temperature and humidity of the housing facilities, as well as the proportions of fruit and vegetables in their diet. A 16S rRNA sequencing analysis showed that the alpha diversity of the gut microbiota of the rhesus monkeys was higher in winter and spring than in summer and autumn. A principal coordinate analysis (PCoA) further demonstrated notable seasonal variations in the composition and functionality of the gut microbiota in the rhesus monkeys. The phyla Firmicutes and Bacteroidetes and the genus Prevotella 9 were the significantly dominant groups in all 120 fecal samples from the rhesus monkeys. A linear discriminant analysis (LDA) effect size (LEfSe) analysis (LDA > 4) indicated that at the phylum level, Firmicutes was significantly enriched in winter, Bacteroidetes was significantly enriched in summer, and Proteobacteria and Campylobacter were significantly enriched in spring. At the genus level, Helicobacter and Ralstonia were significantly enriched in spring; Prevotella 9, Streptococcus, and Prevotella were significantly enriched in summer; and UCG_005 was significantly enriched in autumn. The beneficial genera Lactobacillus, Limosilactobacillus, and Ligilactobacillus and the beneficial species Lactobacillus johnsonii, Limosilactobacillus reuteri, Ligilactobacillus murinus, and Lactobacillus amylovorus all showed the same seasonal trend; namely, their average relative abundance was markedly greater during the winter months compared to other seasons. Compared with other seasons, carbohydrate metabolic function was significantly upregulated in winter (p < 0.01), amino acid metabolic function was relatively increased in spring, and energy metabolic function and the metabolic function of cofactors and vitamins were significantly downregulated in winter and relatively upregulated in summer. A variance partitioning analysis (VPA) and redundancy analysis (RDA) showed that the proportions of fruits and vegetables in the diet, but not climatic factors (temperature and humidity), significantly influenced the seasonal changes in the gut microbiota. These variations were related to changes in the proportions of fruits and vegetables. This research presents novel findings regarding the influence of external environmental factors on the gastrointestinal environment of rhesus monkeys.
Collapse
Affiliation(s)
- Longbao Lv
- University of Chinese Academy of Sciences, Beijing 101408, China;
- National Resource Center for Non-Human Primates, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals, Kunming Institute of Zoology (Primate Facility), Chinese Academy of Sciences, Kunming 650107, China; (F.Z.); (W.X.)
| | - Feiyan Zhang
- National Resource Center for Non-Human Primates, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals, Kunming Institute of Zoology (Primate Facility), Chinese Academy of Sciences, Kunming 650107, China; (F.Z.); (W.X.)
| | - Haimei Zhou
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming 650500, China;
| | - Wenxian Xiao
- National Resource Center for Non-Human Primates, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals, Kunming Institute of Zoology (Primate Facility), Chinese Academy of Sciences, Kunming 650107, China; (F.Z.); (W.X.)
| | - Yingzhou Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming 650201, China; (Y.H.); (W.W.); (Z.Z.); (F.Z.)
| | - Wenchao Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming 650201, China; (Y.H.); (W.W.); (Z.Z.); (F.Z.)
| | - Zhu Zhu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming 650201, China; (Y.H.); (W.W.); (Z.Z.); (F.Z.)
| | - Fangming Zhu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming 650201, China; (Y.H.); (W.W.); (Z.Z.); (F.Z.)
| | - Dongdong Qin
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming 650500, China;
| | - Xintian Hu
- University of Chinese Academy of Sciences, Beijing 101408, China;
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming 650201, China; (Y.H.); (W.W.); (Z.Z.); (F.Z.)
| |
Collapse
|
2
|
Ma X, Hu X, Liu K, Wang W, Jia W, Gao H, Lu M, Liu J, Chen Y, Ma Y, Li Y, Nie Y. Spatiotemporal differences induced changes in the structure and function of the gut microbiota in an endangered ungulate. Anim Microbiome 2024; 6:74. [PMID: 39707511 DOI: 10.1186/s42523-024-00362-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 11/29/2024] [Indexed: 12/23/2024] Open
Abstract
The composition and function of animal gut microbiota are shaped by various factors, among which diet is one of the major factors. Diet is affected by seasonal shifts and geographical differences, which in turn impact the host's nutritional levels. To adapt to these environmental changes, the gut microbiome often produces matching responses. Understanding the relationships among the environment, diet, host and the gut microbiome is helpful for exploring the environmental adaptation of wildlife. Here, we chose wild sika deer (Cervus nippon), which is composed natural allopatric populations, to explore how the environment shapes the gut microbiome and affects the relationship between microbiota composition and function and the mutual adaptation of the seasonal living environment to seasonal dietary changes. To this purpose we used DNA metabarcoding, 16S RNA gene amplification sequencing, metagenomic shotgun sequencing and nutritional analyses to comprehensively examine the relationships among the forage plant, nutrient status and host gut microbiome. Our analyses showed spatiotemporal differences in diet between the Tiebu and Hunchun regions, which ultimately led to varying intakes of protein, cellulose, and soluble sugar. The microbiome composition and function showed unique characteristics in each group, and significant differences were detected at the gene level for the protein absorption and metabolism pathway, the carbohydrate metabolic absorption pathway, and cellulase enzyme function, which are related to nutrition. We also found differences in the pathogenic bacteria and resistance mechanisms genes of the gut microbiota in different groups. Our results showed that the gut microbiome of allopatric populations adapts to changes in food composition and nutrition in different seasons and areas to help the host cope with spatiotemporal changes in the living environment. At the same time, varying levels of human activity can have potential health impacts on wild animals.
Collapse
Grants
- 32225033, 32071496, 32100399 National Natural Science Foundation of China
- 32225033, 32071496, 32100399 National Natural Science Foundation of China
- 32225033, 32071496, 32100399 National Natural Science Foundation of China
- 32225033, 32071496, 32100399 National Natural Science Foundation of China
- 32225033, 32071496, 32100399 National Natural Science Foundation of China
- 32225033, 32071496, 32100399 National Natural Science Foundation of China
- 32225033, 32071496, 32100399 National Natural Science Foundation of China
- 32225033, 32071496, 32100399 National Natural Science Foundation of China
- 32225033, 32071496, 32100399 National Natural Science Foundation of China
- 32225033, 32071496, 32100399 National Natural Science Foundation of China
- 32225033, 32071496, 32100399 National Natural Science Foundation of China
- 32225033, 32071496, 32100399 National Natural Science Foundation of China
- No. 2022YFF1301500 Ministry of Science and Technology of China
- No. 2022YFF1301500 Ministry of Science and Technology of China
- No. 2022YFF1301500 Ministry of Science and Technology of China
- No. 2022YFF1301500 Ministry of Science and Technology of China
- No. 2022YFF1301500 Ministry of Science and Technology of China
- No. 2022YFF1301500 Ministry of Science and Technology of China
- No. 2022YFF1301500 Ministry of Science and Technology of China
- No. 2022YFF1301500 Ministry of Science and Technology of China
- No. 2022YFF1301500 Ministry of Science and Technology of China
- No. 2022YFF1301500 Ministry of Science and Technology of China
- No. 2022YFF1301500 Ministry of Science and Technology of China
- No. 2022YFF1301500 Ministry of Science and Technology of China
Collapse
Affiliation(s)
- Xiaofan Ma
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyu Hu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kai Liu
- School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Wei Wang
- School of Life Sciences, Hebei University, Baoding, 071002, China
| | - Wei Jia
- School of Life Sciences, Guizhou Normal University, Guiyang, 550001, China
| | - Huayao Gao
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Lu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yunfeng Chen
- School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Yingjie Ma
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, 830046, China
| | - Yumei Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yonggang Nie
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Gillingham MAF, Prüter H, Montero BK, Kempenaers B. The costs and benefits of a dynamic host microbiome. Trends Ecol Evol 2024:S0169-5347(24)00281-7. [PMID: 39690056 DOI: 10.1016/j.tree.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/31/2024] [Accepted: 11/11/2024] [Indexed: 12/19/2024]
Abstract
All species host a rich community of microbes. This microbiome is dynamic, and displays seasonal, daily, and even hourly changes, but also needs to be resilient to fulfill important roles for the host. In evolutionary ecology, the focus of microbiome dynamism has been on how it can facilitate host adaptation to novel environments. However, an hitherto largely overlooked issue is that the host needs to keep its microbiome in check, which is costly and leads to trade-offs with investing in other fitness-related traits. Investigating these trade-offs in natural vertebrate systems by collecting longitudinal data will lead to deeper insight into the evolutionary mechanisms that shape host-microbiome interactions.
Collapse
Affiliation(s)
- Mark A F Gillingham
- Department of Ornithology, Max Planck Institute for Biological Intelligence, Eberhard Gwinner Straße, 82319 Seewiesen, Germany.
| | - Hanna Prüter
- Department of Ornithology, Max Planck Institute for Biological Intelligence, Eberhard Gwinner Straße, 82319 Seewiesen, Germany
| | - B Karina Montero
- Biodiversity Research Institute, Consejo Superior de Investigaciones Científicas (CSIC) and Oviedo University-Principality of Asturias, University of Oviedo, Campus of Mieres, Mieres E-33600, Spain
| | - Bart Kempenaers
- Department of Ornithology, Max Planck Institute for Biological Intelligence, Eberhard Gwinner Straße, 82319 Seewiesen, Germany
| |
Collapse
|
4
|
Chen W, Chen X, Zhang Y, Wu H, Zhao D. Variation on gut microbiota diversity of endangered red pandas ( Ailurus fulgens) living in captivity acrosss geographical latitudes. Front Microbiol 2024; 15:1420305. [PMID: 39165571 PMCID: PMC11333448 DOI: 10.3389/fmicb.2024.1420305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/17/2024] [Indexed: 08/22/2024] Open
Abstract
The gut microbiome plays important roles in metabolic and immune system related to the health of host. This study applied non-invasive sampling and 16S rDNA high-throughput sequencing to study the gut microbiota structure of red pandas (Ailurus fulgens) for the first time under different geographical latitudes in captivity. The results showed that the two predominant phyla Firmicutes (59.30%) and Proteobacteria (38.58%) constituted 97.88% of the total microbiota in all the fecal samples from north group (red pandas from Tianjin Zoo and Jinan Zoo) and south group (red pandas from Nanjing Hongshan Forest Zoo). The relative abundance of Cyanobacteria in north group was significantly higher than that in south group. At the genus level, Escherichia-Shigella (24.82%) and Clostridium_sensu_stricto_1 (23.00%) were common dominant genera. The relative abundance of norank_f__norank_o__Chloroplast, Terrisporobacter and Anaeroplasma from south group was significantly higher than that of north group. Alpha and Beta analysis consistently showed significant differences between north group and south group, however, the main functions of intestinal microbiota were basically the same, which play an important role in metabolic pathways, biosynthesis of secondary metabolites, microbial metabolism in different environments, and amino acid biosynthesis. The variations in gut microbiota between the northern and southern populations of the same species, both kept in captivity, which are primarily driven by significant differences in climate and diet. These findings provide a deeper understanding of the gut microbiota in red pandas and have important implications for their conservation, particularly in optimizing diet and environmental conditions in captivity.
Collapse
Affiliation(s)
| | | | | | - Hong Wu
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Dapeng Zhao
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin, China
| |
Collapse
|
5
|
Worsley SF, Davies CS, Lee CZ, Mannarelli ME, Burke T, Komdeur J, Dugdale HL, Richardson DS. Longitudinal gut microbiome dynamics in relation to age and senescence in a wild animal population. Mol Ecol 2024; 33:e17477. [PMID: 39010794 DOI: 10.1111/mec.17477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/25/2024] [Accepted: 05/15/2024] [Indexed: 07/17/2024]
Abstract
In humans, gut microbiome (GM) differences are often correlated with, and sometimes causally implicated in, ageing. However, it is unclear how these findings translate in wild animal populations. Studies that investigate how GM dynamics change within individuals, and with declines in physiological condition, are needed to fully understand links between chronological age, senescence and the GM, but have rarely been done. Here, we use longitudinal data collected from a closed population of Seychelles warblers (Acrocephalus sechellensis) to investigate how bacterial GM alpha diversity, composition and stability are associated with host senescence. We hypothesised that GM diversity and composition will differ, and become more variable, in older adults, particularly in the terminal year prior to death, as the GM becomes increasingly dysregulated due to senescence. However, GM alpha diversity and composition remained largely invariable with respect to adult age and did not differ in an individual's terminal year. Furthermore, there was no evidence that the GM became more heterogenous in senescent age groups (individuals older than 6 years), or in the terminal year. Instead, environmental variables such as season, territory quality and time of day, were the strongest predictors of GM variation in adult Seychelles warblers. These results contrast with studies on humans, captive animal populations and some (but not all) studies on non-human primates, suggesting that GM deterioration may not be a universal hallmark of senescence in wild animal species. Further work is needed to disentangle the factors driving variation in GM-senescence relationships across different host taxa.
Collapse
Affiliation(s)
- Sarah F Worsley
- School of Biological Sciences, University of East Anglia, Norfolk, UK
| | - Charli S Davies
- School of Biological Sciences, University of East Anglia, Norfolk, UK
| | - Chuen Zhang Lee
- School of Biological Sciences, University of East Anglia, Norfolk, UK
| | | | - Terry Burke
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Jan Komdeur
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Hannah L Dugdale
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds, UK
| | - David S Richardson
- School of Biological Sciences, University of East Anglia, Norfolk, UK
- Nature Seychelles, Mahé, Republic of Seychelles
| |
Collapse
|
6
|
Finnegan PM, Garber PA, McKenney AC, Bicca-Marques JC, De la Fuente MF, Abreu F, Souto A, Schiel N, Amato KR, Mallott EK. Group membership, not diet, structures the composition and functional potential of the gut microbiome in a wild primate. mSphere 2024; 9:e0023324. [PMID: 38940510 PMCID: PMC11288025 DOI: 10.1128/msphere.00233-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024] Open
Abstract
The gut microbiome has the potential to buffer temporal variations in resource availability and consumption, which may play a key role in the ability of animals to adapt to a broad range of habitats. We investigated the temporal composition and function of the gut microbiomes of wild common marmosets (Callithrix jacchus) exploiting a hot, dry environment-Caatinga-in northeastern Brazil. We collected fecal samples during two time periods (July-August and February-March) for 2 years from marmosets belonging to eight social groups. We used 16S rRNA gene amplicon sequencing, metagenomic sequencing, and butyrate RT-qPCR to assess changes in the composition and potential function of their gut microbiomes. Additionally, we identified the plant, invertebrate, and vertebrate components of the marmosets' diet via DNA metabarcoding. Invertebrate, but not plant or vertebrate, consumption varied across the year. However, gut microbiome composition and potential function did not markedly vary across study periods or as a function of diet composition. Instead, the gut microbiome differed markedly in both composition and potential function across marmosets residing in different social groups. We highlight the likely role of factors, such as behavior, residence, and environmental heterogeneity, in modulating the structure of the gut microbiome. IMPORTANCE In a highly socially cohesive and cooperative primate, group membership more strongly predicts gut microbiome composition and function than diet.
Collapse
Affiliation(s)
- Peter M. Finnegan
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Paul A. Garber
- Department of Anthropology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- International Centre of Biodiversity and Primate Conservation, Dali University, Dali, Yunnan, China
| | - Anna C. McKenney
- Department of Natural Sciences, Parkland College, Champaign, Illinois, USA
| | - Júlio César Bicca-Marques
- Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católicado Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Filipa Abreu
- Comparative BioCognition, Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
| | - Antonio Souto
- Department of Zoology, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Nicola Schiel
- Laboratório de Etologia Teórica e Aplicada, Department of Biology, Federal Rural University of Pernambuco, Recife, Brazil
| | - Katherine R. Amato
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Elizabeth K. Mallott
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
7
|
Jose L, Lee W, Hanya G, Tuuga A, Goossens B, Tangah J, Matsuda I, Kumar VS. Gut microbial community in proboscis monkeys ( Nasalis larvatus): implications for effects of geographical and social factors. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231756. [PMID: 39050721 PMCID: PMC11265907 DOI: 10.1098/rsos.231756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/23/2024] [Accepted: 05/22/2024] [Indexed: 07/27/2024]
Abstract
Recent technological advances have enabled comprehensive analyses of the previously uncharacterized microbial community in the gastrointestinal tracts of numerous animal species; however, the gut microbiota of several species, such as the endangered proboscis monkey (Nasalis larvatus) examined in this study, remains poorly understood. Our study sought to establish the first comprehensive data on the gut microbiota of free-ranging foregut-fermenting proboscis monkeys and to determine how their microbiota are affected locally by environmental factors, i.e. geographical distance, and social factors, i.e. the number of adult females within harem groups and the number of adults and subadults within non-harem groups, in a riverine forest in Sabah, Malaysian Borneo. Using 16S rRNA gene sequencing of 264 faecal samples collected from free-ranging proboscis monkeys, we demonstrated the trend that their microbial community composition is not particularly distinctive compared with other foregut- and hindgut-fermenting primates. The microbial alpha diversity was higher in larger groups and individuals inhabiting diverse vegetation (i.e. presumed to have a diverse diet). For microbial beta diversity, some measures were significant, showing higher values with larger geographical distances between samples. These results suggest that social factors such as increased inter-individual interactions, which can occur with larger groups, as well as physical distances between individuals or differences in dietary patterns, may affect the gut microbial communities.
Collapse
Affiliation(s)
- Lilian Jose
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah88400, Malaysia
| | - Wanyi Lee
- National Taiwan University, Taipei10617, Taiwan
- Center for Ecological Research, Kyoto University, Inuyama484-8506, Japan
| | - Goro Hanya
- Center for Ecological Research, Kyoto University, Inuyama484-8506, Japan
| | - Augustine Tuuga
- Sabah Wildlife Department, Wisma Muis, Kota Kinabalu, Sabah88100, Malaysia
| | - Benoit Goossens
- Sabah Wildlife Department, Wisma Muis, Kota Kinabalu, Sabah88100, Malaysia
- Danau Girang Field Centre, Sabah Wildlife Department, Wisma Muis, Kota Kinabalu, Sabah88100, Malaysia
- Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University, CardiffCF10 3AX, UK
| | - Joseph Tangah
- Sabah Forestry Department, Forest Research Centre, Sandakan, Sabah, Malaysia
| | - Ikki Matsuda
- Wildlife Research Center of Kyoto University, 2-24 Tanaka-Sekiden-cho, Sakyo, Kyoto606-8203, Japan
- Chubu Institute for Advanced Studies, Chubu University, 1200, Matsumoto-cho, Kasugai-shi, Aichi487-8501, Japan
- Chubu University Academy of Emerging Sciences, 1200, Matsumoto-cho, Kasugai-shi, Aichi487-8501, Japan
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah88400, Malaysia
| | - Vijay Subbiah Kumar
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah88400, Malaysia
| |
Collapse
|
8
|
Amato KR, Pradhan P, Mallott EK, Shirola W, Lu A. Host-gut microbiota interactions during pregnancy. Evol Med Public Health 2024; 12:7-23. [PMID: 38288320 PMCID: PMC10824165 DOI: 10.1093/emph/eoae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/07/2023] [Indexed: 01/31/2024] Open
Abstract
Mammalian pregnancy is characterized by a well-known suite of physiological changes that support fetal growth and development, thereby positively affecting both maternal and offspring fitness. However, mothers also experience trade-offs between current and future maternal reproductive success, and maternal responses to these trade-offs can result in mother-offspring fitness conflicts. Knowledge of the mechanisms through which these trade-offs operate, as well as the contexts in which they operate, is critical for understanding the evolution of reproduction. Historically, hormonal changes during pregnancy have been thought to play a pivotal role in these conflicts since they directly and indirectly influence maternal metabolism, immunity, fetal growth and other aspects of offspring development. However, recent research suggests that gut microbiota may also play an important role. Here, we create a foundation for exploring this role by constructing a mechanistic model linking changes in maternal hormones, immunity and metabolism during pregnancy to changes in the gut microbiota. We posit that marked changes in hormones alter maternal gut microbiome composition and function both directly and indirectly via impacts on the immune system. The gut microbiota then feeds back to influence maternal immunity and metabolism. We posit that these dynamics are likely to be involved in mediating maternal and offspring fitness as well as trade-offs in different aspects of maternal and offspring health and fitness during pregnancy. We also predict that the interactions we describe are likely to vary across populations in response to maternal environments. Moving forward, empirical studies that combine microbial functional data and maternal physiological data with health and fitness outcomes for both mothers and infants will allow us to test the evolutionary and fitness implications of the gestational microbiota, enriching our understanding of the ecology and evolution of reproductive physiology.
Collapse
Affiliation(s)
- Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, IL 60208, USA
| | - Priyanka Pradhan
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Elizabeth K Mallott
- Department of Anthropology, Northwestern University, Evanston, IL 60208, USA
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Wesley Shirola
- Department of Psychology, Northwestern University, Evanston, IL 60208, USA
| | - Amy Lu
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
9
|
Lapid R, Motro Y, Craddock H, Khalfin B, King R, Bar-Gal GK, Moran-Gilad J. Fecal microbiota of the synanthropic golden jackal (Canis aureus). Anim Microbiome 2023; 5:37. [PMID: 37542305 PMCID: PMC10403885 DOI: 10.1186/s42523-023-00259-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023] Open
Abstract
The golden jackal (Canis aureus), is a medium canid carnivore widespread throughout the Mediterranean region and expanding into Europe. This species thrives near human settlements and is implicated in zoonoses such as rabies. This study explores for the first time, the golden jackal fecal microbiota. We analyzed 111 fecal samples of wild golden jackals using 16S rRNA amplicon sequencing the connection of the microbiome to animal characteristics, burden of pathogens and geographic and climate characteristics. We further compared the fecal microbiota of the golden jackal to the black-backed jackal and domestic dog. We found that the golden jackal fecal microbiota is dominated by the phyla Bacteroidota, Fusobacteriota and Firmicutes. The golden jackal fecal microbiota was associated with different variables, including geographic region, age-class, exposure to rabies oral vaccine, fecal parasites and toxoplasmosis. A remarkable variation in the relative abundance of different taxa was also found associated with different variables, such as age-class. Linear discriminant analysis effect size (LEfSe) analysis found abundance of specific taxons in each region, Megasphaera genus in group 1, Megamonas genus in group 2 and Bacteroides coprocola species in group 3. We also found a different composition between the fecal microbiota of the golden jackal, blacked-backed jackal and the domestic dog. Furthermore, LEfSe analysis found abundance of Fusobacterium and Bacteroides genera in the golden jackal, Clostridia class in blacked-backed jackal and Megamonas genus in domestic dog. The golden jackal fecal microbiota is influenced by multiple factors including host traits and pathogen burden. The characterization of the microbiota of this thriving species may aid in mapping its spread and proximity to human settlements. Moreover, understanding the jackal microbiota could inform the study of potential animal and human health risks and inform control measures.
Collapse
Affiliation(s)
- Roi Lapid
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O.B. 12, 7610001, Rehovot, Israel
| | - Yair Motro
- Department of Health Policy and Management, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
| | - Hillary Craddock
- Department of Health Policy and Management, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
| | - Boris Khalfin
- Department of Health Policy and Management, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
| | - Roni King
- Science and Conservation Division, Israel Nature and Parks Authority, 3 Am Ve'Olamo St., 95463, Jerusalem, Israel
| | - Gila Kahila Bar-Gal
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O.B. 12, 7610001, Rehovot, Israel
| | - Jacob Moran-Gilad
- Department of Health Policy and Management, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel.
| |
Collapse
|
10
|
Venkataraman VV, Mekonnen A. Geladas. Curr Biol 2023; 33:R382-R384. [PMID: 37220724 DOI: 10.1016/j.cub.2023.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Vivek V. Venkataraman introduces gelada monkeys.
Collapse
Affiliation(s)
- Vivek V Venkataraman
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada.
| | - Addisu Mekonnen
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
11
|
Zhao J, Yao Y, Dong M, Xiao H, Xiong Y, Yang S, Li D, Xie M, Ni Q, Zhang M, Xu H. Diet and high altitude strongly drive convergent adaptation of gut microbiota in wild macaques, humans, and dogs to high altitude environments. Front Microbiol 2023; 14:1067240. [PMID: 36910187 PMCID: PMC9995840 DOI: 10.3389/fmicb.2023.1067240] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
Animal gut microbiota plays an indispensable role in host adaptation to different altitude environments. At present, little is known about the mechanism of animal gut microbiota in host adaptation to high altitude environments. Here, we selected wild macaques, humans, and dogs with different levels of kinship and intimate relationships in high altitude and low altitude environments, and analyzed the response of their gut microbiota to the host diet and altitude environments. Alpha diversity analysis found that at high altitude, the gut microbiota diversity of wild macaques with more complex diet in the wild environments is much higher than that of humans and dogs with simpler diet (p < 0.05), and beta diversity analysis found that the UniFrac distance between humans and dogs was significantly lower than between humans and macaques (p < 0.05), indicating that diet strongly drive the convergence of gut microbiota among species. Meanwhile, alpha diversity analysis found that among three subjects, the gut microbiota diversity of high altitude population is higher than that of low altitude population (ACE index in three species, Shannon index in dog and macaque and Simpson index in dog, p < 0.05), and beta diversity analysis found that the UniFrac distances among the three subjects in the high altitude environments were significantly lower than in the low altitude environments (p < 0.05). Additionally, core shared ASVs analysis found that among three subjects, the number of core microbiota in high altitude environments is higher than in low altitude environments, up to 5.34 times (1,105/207), and the proportion and relative abundance of the core bacteria types in each species were significantly higher in high altitude environments than in low altitude environments (p < 0.05). The results showed that high altitude environments played an important role in driving the convergence of gut microbiota among species. Furthermore, the neutral community model trial found that the gut microbiota of the three subjects was dispersed much more at high altitude than at low altitude, implying that the gut microbiota convergence of animals at high altitudes may be partly due to the microbial transmission between hosts mediated by human activities.
Collapse
Affiliation(s)
- Junsong Zhao
- College of Life Science, Sichuan Agricultural University, Ya’an, China
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, China
| | - Yongfang Yao
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Mengmeng Dong
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Hongtao Xiao
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Ying Xiong
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Shengzhi Yang
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Diyan Li
- School of Pharmacy, Chengdu University, Chengdu, China
| | - Meng Xie
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Qingyong Ni
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mingwang Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Huailiang Xu
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| |
Collapse
|
12
|
Taxonomic, Genomic, and Functional Variation in the Gut Microbiomes of Wild Spotted Hyenas Across 2 Decades of Study. mSystems 2023; 8:e0096522. [PMID: 36533929 PMCID: PMC9948708 DOI: 10.1128/msystems.00965-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The gut microbiome provides vital functions for mammalian hosts, yet research on its variability and function across adult life spans and multiple generations is limited in large mammalian carnivores. Here, we used 16S rRNA gene and metagenomic high-throughput sequencing to profile the bacterial taxonomic composition, genomic diversity, and metabolic function of fecal samples collected from 12 wild spotted hyenas (Crocuta crocuta) residing in the Masai Mara National Reserve, Kenya, over a 23-year period spanning three generations. The metagenomic data came from four of these hyenas and spanned two 2-year periods. With these data, we determined the extent to which host factors predicted variation in the gut microbiome and identified the core microbes present in the guts of hyenas. We also investigated novel genomic diversity in the mammalian gut by reporting the first metagenome-assembled genomes (MAGs) for hyenas. We found that gut microbiome taxonomic composition varied temporally, but despite this, a core set of 14 bacterial genera were identified. The strongest predictors of the microbiome were host identity and age, suggesting that hyenas possess individualized microbiomes and that these may change with age during adulthood. The gut microbiome functional profiles of the four adult hyenas were also individual specific and were associated with prey abundance, indicating that the functions of the gut microbiome vary with host diet. We recovered 149 high-quality MAGs from the hyenas' guts; some MAGs were classified as taxa previously reported for other carnivores, but many were novel and lacked species-level matches to genomes in existing reference databases. IMPORTANCE There is a gap in knowledge regarding the genomic diversity and variation of the gut microbiome across a host's life span and across multiple generations of hosts in wild mammals. Using two types of sequencing approaches, we found that although gut microbiomes were individualized and temporally variable among hyenas, they correlated similarly to large-scale changes in the ecological conditions experienced by their hosts. We also recovered 149 high-quality MAGs from the hyena gut, greatly expanding the microbial genome repertoire known for hyenas, carnivores, and wild mammals in general. Some MAGs came from genera abundant in the gastrointestinal tracts of canid species and other carnivores, but over 80% of MAGs were novel and from species not previously represented in genome databases. Collectively, our novel body of work illustrates the importance of surveying the gut microbiome of nonmodel wild hosts, using multiple sequencing methods and computational approaches and at distinct scales of analysis.
Collapse
|
13
|
Johnson KVA, Watson KK, Dunbar RIM, Burnet PWJ. Sociability in a non-captive macaque population is associated with beneficial gut bacteria. Front Microbiol 2022; 13:1032495. [PMID: 36439813 PMCID: PMC9691693 DOI: 10.3389/fmicb.2022.1032495] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/03/2022] [Indexed: 11/12/2022] Open
Abstract
The relationship between social behaviour and the microbiome is known to be reciprocal. Research in wild animal populations, particularly in primate social groups, has revealed the role that social interactions play in microbial transmission, whilst studies in laboratory animals have demonstrated that the gut microbiome can affect multiple aspects of behaviour, including social behaviour. Here we explore behavioural variation in a non-captive animal population with respect to the abundance of specific bacterial genera. Social behaviour based on grooming interactions is assessed in a population of rhesus macaques (Macaca mulatta), and combined with gut microbiome data. We focus our analyses on microbiome genera previously linked to sociability and autistic behaviours in rodents and humans. We show in this macaque population that some of these genera are also related to an individual's propensity to engage in social interactions. Interestingly, we find that several of the genera positively related to sociability, such as Faecalibacterium, are well known for their beneficial effects on health and their anti-inflammatory properties. In contrast, the genus Streptococcus, which includes pathogenic species, is more abundant in less sociable macaques. Our results indicate that microorganisms whose abundance varies with individual social behaviour also have functional links to host immune status. Overall, these findings highlight the connections between social behaviour, microbiome composition, and health in an animal population.
Collapse
Affiliation(s)
- Katerina V.-A. Johnson
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom,Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom,*Correspondence: Katerina V.-A. Johnson,
| | - Karli K. Watson
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, United States
| | - Robin I. M. Dunbar
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
14
|
Daily Activity Pattern of Geladas (Theropithecus gelada, Ruppell 1835) in Kotu Forest, Northern Ethiopia. ScientificWorldJournal 2022; 2022:7302240. [PMID: 36199438 PMCID: PMC9529442 DOI: 10.1155/2022/7302240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Gelada (Theropithecus gelada) is one of the endemic primates of Ethiopia. The ecology of meta populations of geladas outside protected areas is less studied, and their population status is uncertain. As a result, we conducted a study to investigate the daily activity pattern of gelada in Kotu forest and associated grasslands in northern Ethiopia from August 2017 to February 2018 covering both wet and dry seasons. The instantaneous scan sampling method was employed to collect behavioral data. The activity pattern of three selected focal groups of geladas was studied, and predominant behavioral activities were scanned in 15 minutes intervals from dawn 7:00 h to dusk at 18:00 h. Feeding comprised 61.65% of the total scan, followed by moving 18.49%. Feeding activity was more frequent during the dry season (about 65%) than in the wet season (58.20%). On the other hand, moving activity was more frequent during the dry season (about 22%) than in the wet season (about 14%). The daily activity pattern of gelada showed a feeding peak early in the morning and in the late afternoon. The time allocated by geladas for feeding and moving in the study area is higher than other activities. Therefore, there is a need for further in-depth research on diet availability and quality to justify why geladas allocate more time for feeding and moving nexus for conservation interventions.
Collapse
|
15
|
Xu X, Xia Y, Sun B. Linking the bacterial microbiome between gut and habitat soil of Tibetan macaque ( Macaca thibetana). Ecol Evol 2022; 12:e9227. [PMID: 36177115 PMCID: PMC9471045 DOI: 10.1002/ece3.9227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/15/2022] [Accepted: 07/28/2022] [Indexed: 11/09/2022] Open
Abstract
Soil is a part of the habitat environment of terrestrial or semi-terrestrial mammals, which contains a wide variety of microbes. Although the soil microbiome of the host habitat is considered to be a potentially important influence factor on the mammalian gut microbiome and health, few data are currently available to explore the relationship between gut and host habitat soil microbiome in wild primates. Here, marked divergence of the bacterial microbiome in composition and structure between Tibetan macaques (Macaca thibetana) guts and its habitat soil were detected. In addition, we found that most of the core genera abundance and ASVs in the Tibetan macaques' gut bacterial microbiome could be detected in the corresponding soil samples, but with low abundance. However, the core abundant genera abundant in soil are almost undetectable in the gut of Tibetan macaques. Although there are some ASVs shared by gut and soil bacterial microbiome, the abundant shared ASVs in the guts of Tibetan macaques were rare bacterial taxa in the corresponding soil samples. Notably, all the ASVs shared by guts and soil were present in the soil at relatively low abundance, whereas they were affiliated with diverse bacterial taxa. By linking the bacterial microbiome between Tibetan macaques' gut and its habitat soil, our findings suggest that the predominant bacterial groups from the soil were not likely to colonize the Tibetan macaques' gut, whereas the low-abundance but diverse soil bacteria could be selected by the gut. Whether these rare and low-abundant bacteria are permanent residents of the soil or a source of fecal contamination remains to be determined in future study.
Collapse
Affiliation(s)
- Xiaojuan Xu
- School of Life ScienceHefei Normal UniversityHefeiChina
| | - Yingna Xia
- School of Resource and Environmental EngineeringAnhui UniversityHefeiChina
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral EcologyAnhui UniversityHefeiChina
| | - Binghua Sun
- School of Resource and Environmental EngineeringAnhui UniversityHefeiChina
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral EcologyAnhui UniversityHefeiChina
| |
Collapse
|
16
|
Qin W, Li S, Wu N, Wen Z, Xie J, Ma H, Zhang S. Main Factors Influencing the Gut Microbiota of Datong Yaks in Mixed Group. Animals (Basel) 2022; 12:ani12141777. [PMID: 35883324 PMCID: PMC9312300 DOI: 10.3390/ani12141777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary This study examined the differences and similarities in gut microbial diversity and ecological assembly processes of Datong yaks, including domestic males and females and wild males, which were fed together on the Qinghai-Tibet Plateau in a mixed group. The results revealed that mixed grouping could influence the gut microbiota of these three groups of yaks and improve the gut microbial diversity of domestic females. The findings of this study can help to understand the effects of mixed grouping on the gut microbiota of livestock on the Qinghai-Tibet Plateau and improve the production of Datong yaks. Abstract The Datong yak (Bos grunniens) is the first artificial breed of yaks in the world and has played an important role in the improvement of domestic yak quality on the Qinghai-Tibet Plateau. The Datong yak breeding farm in the Qinghai province of China is the main place for the breeding and feeding of Datong yaks. It hosts domestic Datong yaks and wild male yaks, mainly in mixed groups. Different managements have different effects on livestock. The gut microbiota is closely related to the health and immunity of Datong yaks, and mixed grouping can affect the composition and diversity of the gut microbiota of Datong yaks. To reveal the effects of mixed grouping on the gut microbiota of Datong yaks and wild yaks and identify the main dominant factors, we compared the gut microbial diversities of domestic males and females and wild males based on 16S rRNA V3–V4 regions using fresh fecal samples. The data showed significant differences in the gut microbial diversity of these three groups, and the α-diversity was the highest in wild males. Different factors influence the gut microbiota, and the main influencing factors were different in different groups, including sex differences, host genetics, and physical interactions. We also compared ecological assembly processes in the three groups. The results showed that mixed grouping contributed to the improvement of gut microbial diversity in domestic females. Our study provides effective and feasible suggestions for the feeding and management of the Datong yaks.
Collapse
Affiliation(s)
- Wen Qin
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China;
| | - Shuang Li
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China;
| | - Nan Wu
- College of Ecological and Environmental Engineering, Qinghai University, Xining 810016, China; (N.W.); (Z.W.)
| | - Zhouxuan Wen
- College of Ecological and Environmental Engineering, Qinghai University, Xining 810016, China; (N.W.); (Z.W.)
| | - Jiuxiang Xie
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China;
| | - Hongyi Ma
- Forestry and Grassland Comprehensive Service Center of Yushu Prefecture, Yushu 815000, China;
| | - Shoudong Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Coastal Ecosystems Research Station of the Yangtze River Estuary, School of Life Sciences, Fudan University, Shanghai 200433, China
- Global Flyway Ecology, Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, 9700 CC Groningen, The Netherlands
- Correspondence:
| |
Collapse
|
17
|
Bi Y, Wei H, Nian H, Liu R, Ji W, Liu H, Bao J. Socializing Models During Lactation Alter Colonic Mucosal Gene Expression and Fecal Microbiota of Growing Piglets. Front Microbiol 2022; 13:819011. [PMID: 35875524 PMCID: PMC9301273 DOI: 10.3389/fmicb.2022.819011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 05/30/2022] [Indexed: 11/28/2022] Open
Abstract
The enrichment of the social environment during lactation alleviates the stress of weaned piglets. It is significant to understand how the enriched social environment improves the weaning stress of piglets. RNA sequencing (RNA-seq) of colonic mucosa, 16S rRNA sequencing of feces, and short-chain fatty acids (SCFAs) of colonic content were used to determine the effects of social contact during lactation. In this study, thirty litter lactating piglets were divided into intermittent social contact (ISC) group that contacted with neighbors intermittently, continuous social contact (CSC) group that contacted with neighbors starting at day (D) 14 after birth, and control (CON) group in which piglets were kept in their original litter. The piglets were weaned at D35 and regrouped at D36. The colonic mucosal RNA-seq, fecal microbes, and SCFAs of colonic contents of 63-day-old piglets were analyzed. The results of RNA-seq showed that compared with the CON group, the pathways of digestion and absorption of minerals, protein, and vitamins of piglets were changed in the ISC group, whereas the pathways of retinol metabolism and nitrogen metabolism in the colonic mucosal were affected and stimulated the immune response in the CSC group. Compared with the CON group, the abundances of pernicious microorganisms (Desulfovibrio, Pseudomonas, Brevundimonas, etc.) in the CSC group and pernicious microorganisms (Desulfovibrio, Neisseria, Sutterella, etc.) and beneficial bacteria (Bifidobacterium, Megamonas, and Prevotella_9) in the ISC group were significantly higher (p < 0.05). The abundances of proinflammatory bacteria (Coriobacteriaceae_unclassified, Coprococcus_3, and Ruminococcus_2) in the CSC group were significantly increased (p < 0.05), but the abundances of SCFAs producing bacteria (Lachnospiraceae_UCG-010, Parabacteroides, Anaerotruncus, etc.) and those of anti-inflammatory bacteria (Eubacterium, Parabacteroides, Ruminiclostridium_9, and Alloprevotella) were significantly reduced (p < 0.05) in the CSC group. Compared with the CON group, the concentrations of microbial metabolites, acetate, and propionate in the colonic contents were reduced (p < 0.05) in the ISC group, whereas the concentration of acetate was reduced (p < 0.05) in the CSC group. Therefore, both ISC and CSC during lactation affected the composition of fecal microbes and changed the expression of intestinal mucosal genes related to nutrient metabolism and absorption of piglets.
Collapse
Affiliation(s)
- Yanju Bi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Haidong Wei
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Haoyang Nian
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Runze Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Wenbo Ji
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Honggui Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| |
Collapse
|
18
|
Sadoughi B, Schneider D, Daniel R, Schülke O, Ostner J. Aging gut microbiota of wild macaques are equally diverse, less stable, but progressively personalized. MICROBIOME 2022; 10:95. [PMID: 35718778 PMCID: PMC9206754 DOI: 10.1186/s40168-022-01283-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Pronounced heterogeneity of age trajectories has been identified as a hallmark of the gut microbiota in humans and has been explained by marked changes in lifestyle and health condition. Comparatively, age-related personalization of microbiota is understudied in natural systems limiting our comprehension of patterns observed in humans from ecological and evolutionary perspectives. RESULTS Here, we tested age-related changes in the diversity, stability, and composition of the gut bacterial community using 16S rRNA gene sequencing with dense repeated sampling over three seasons in a cross-sectional age sample of adult female Assamese macaques (Macaca assamensis) living in their natural forest habitat. Gut bacterial composition exhibited a personal signature which became less stable as individuals aged. This lack of stability was not explained by differences in microbiota diversity but rather linked to an increase in the relative abundance of rare bacterial taxa. The lack of age-related changes in core taxa or convergence with age to a common state of the community hampered predicting gut bacterial composition of aged individuals. On the contrary, we found increasing personalization of the gut bacterial composition with age, indicating that composition in older individuals was increasingly divergent from the rest of the population. Reduced direct transmission of bacteria resulting from decreasing social activity may contribute to, but not be sufficient to explain, increasing personalization with age. CONCLUSIONS Together, our results challenge the assumption of a constant microbiota through adult life in a wild primate. Within the limits of this study, the fact that increasing personalization of the aging microbiota is not restricted to humans suggests the underlying process to be evolved instead of provoked only by modern lifestyle of and health care for the elderly. Video abstract.
Collapse
Affiliation(s)
- Baptiste Sadoughi
- Department of Behavioral Ecology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August-University Göttingen, Kellnerweg 6, D-37077, Göttingen, Germany.
- Research Group Primate Social Evolution, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany.
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany.
- Leibniz ScienceCampus Primate Cognition, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany.
| | - Dominik Schneider
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Oliver Schülke
- Department of Behavioral Ecology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August-University Göttingen, Kellnerweg 6, D-37077, Göttingen, Germany
- Research Group Primate Social Evolution, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Julia Ostner
- Department of Behavioral Ecology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August-University Göttingen, Kellnerweg 6, D-37077, Göttingen, Germany
- Research Group Primate Social Evolution, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| |
Collapse
|
19
|
Liu Y, Li Y, Li J, Zhou Q, Li X. Gut Microbiome Analyses of Wild Migratory Freshwater Fish (Megalobrama terminalis) Through Geographic Isolation. Front Microbiol 2022; 13:858454. [PMID: 35464925 PMCID: PMC9026196 DOI: 10.3389/fmicb.2022.858454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/01/2022] [Indexed: 01/11/2023] Open
Abstract
Gut microbiome is considered as a critical role in host digestion and metabolic homeostasis. Nevertheless, the lack of knowledge concerning how the host-associated gut microbiome underpins the host metabolic capability and regulates digestive functions hinders the exploration of gut microbiome variation in diverse geographic population. In the present study, we selected the black Amur bream (Megalobrama terminalis) that inhabits southern China drainage with multiple geographic populations and relatively high digestive plasticity as a candidate to explore the potential effects of genetic variation and environmental discrepancy on fish gut microbiome. Here, high-throughput 16S rRNA gene sequencing was utilized to decipher the distinct composition and diversity of the entire gut microbiota in wild M. terminalis distributed throughout southern China. The results indicated that mainland (MY and XR) populations exhibited a higher alpha diversity than that of the Hainan Island (WS) population. Moreover, a clear taxon shift influenced by water temperature, salinity (SA), and gonadosomatic index (GSI) in the course of seasonal variation was observed in the gut bacterial community. Furthermore, geographic isolation and seasonal variation significantly impacted amino acid, lipid, and carbohydrate metabolism of the fish gut microbiome. Specifically, each geographic population that displayed its own unique regulation pattern of gut microbiome was recognized as a specific digestion strategy to enhance adaptive capability in the resident environment. Consequently, this discovery suggested that long-term geographic isolation leads to variant environmental factors and genotypes, which made a synergetic effect on the diversity of the gut microbiome in wild M. terminalis. In addition, the findings provide effective information for further exploring ecological fitness countermeasures in the fish population.
Collapse
Affiliation(s)
- Yaqiu Liu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Areas, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou, China
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yuefei Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou, China
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Jie Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou, China
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Chinese Academy of Fishery Sciences, Guangzhou, China
- *Correspondence: Jie Li
| | - Qiong Zhou
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Areas, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Xinhui Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou, China
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
20
|
Yildirim E, Ilina L, Laptev G, Filippova V, Brazhnik E, Dunyashev T, Dubrovin A, Novikova N, Tiurina D, Tarlavin N, Laishev K. The structure and functional profile of ruminal microbiota in young and adult reindeers ( Rangifer tarandus) consuming natural winter-spring and summer-autumn seasonal diets. PeerJ 2021; 9:e12389. [PMID: 34900412 PMCID: PMC8627130 DOI: 10.7717/peerj.12389] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/04/2021] [Indexed: 01/04/2023] Open
Abstract
Background The key natural area of Russian reindeer (Rangifer tarandus, Nenets breed) is arctic zones, with severe climatic conditions and scarce feed resources, especially in the cold winter season. The adaptation of reindeer to these conditions is associated not only with the genetic potential of the animal itself. The rumen microbiome provides significant assistance in adapting animals to difficult conditions by participating in the fiber digestion. The aim of our study is to investigate the taxonomy and predicted metabolic pathways of the ruminal microbiota (RM) during the winter–spring (WS) and summer–autumn (SA) seasons, in calves and adult reindeer inhabiting the natural pastures of the Yamalo-Nenetsky Autonomous District of the Russian Federation. Methods The RM in reindeer was studied using the Next Generation Sequencing method with the MiSeq (Illumina, San Diego, CA, USA) platform. Reconstruction and prediction of functional profiles of the metagenome, gene families, and enzymes were performed using the software package PICRUSt2 (v.2.3.0). Results The nutritional value of WS and SA diets significantly differed. Crude fiber content in the WS diet was higher by 22.4% (p < 0.05), compared to SA, indicating possibly poorer digestibility and necessity of the adaptation of the RM to this seasonal change. A total of 22 bacterial superphyla and phyla were found in the rumen, superphylum Bacteroidota and phylum Firmicutes being the dominating taxa (up to 48.1% ± 4.30% and 46.1% ± 4.80%, respectively); while only two archaeal phyla presented as minor communities (no more then 0.54% ± 0.14% totally). The percentages of the dominating taxa were not affected by age or season. However, significant changes in certain minor communities were found, with seasonal changes being more significant than age-related ones. The percentage of phylum Actinobacteriota significantly increased (19.3-fold) in SA, compared to WS (p = 0.02) in adults, and the percentage of phylum Cyanobacteria increased up to seven-fold (p = 0.002) in adults and calves. Seasonal changes in RM can improve the ability of reindeer to withstand the seasons characterized by a low availability of nutrients. The PICRUSt2 results revealed 257 predicted metabolic pathways in RM: 41 pathways were significantly (p < 0.05) influenced by season and/or age, including the processes of synthesis of vitamins, volatile fatty acids, and pigments; metabolism of protein, lipids, and energy; pathogenesis, methanogenesis, butanediol to pyruvate biosynthesis, cell wall biosynthesis, degradation of neurotransmitters, lactic acid fermentation, and biosynthesis of nucleic acids. A large part of these changeable pathways (13 of 41) was related to the synthesis of vitamin K homologues. Conclusion The results obtained improve our knowledge on the structure and possible metabolic pathways of the RM in reindeer, in relation to seasonal changes.
Collapse
Affiliation(s)
- Elena Yildirim
- Molecular Genetic laboratory, BIOTROF+ LTD, Saint-Petersburg, Russia
| | - Larisa Ilina
- Molecular Genetic laboratory, BIOTROF+ LTD, Saint-Petersburg, Russia
| | - Georgy Laptev
- Molecular Genetic laboratory, BIOTROF+ LTD, Saint-Petersburg, Russia
| | | | - Evgeni Brazhnik
- Molecular Genetic laboratory, BIOTROF+ LTD, Saint-Petersburg, Russia
| | - Timur Dunyashev
- Molecular Genetic laboratory, BIOTROF+ LTD, Saint-Petersburg, Russia
| | - Andrey Dubrovin
- Molecular Genetic laboratory, BIOTROF+ LTD, Saint-Petersburg, Russia
| | - Natalia Novikova
- Molecular Genetic laboratory, BIOTROF+ LTD, Saint-Petersburg, Russia
| | - Daria Tiurina
- Molecular Genetic laboratory, BIOTROF+ LTD, Saint-Petersburg, Russia
| | - Nikolay Tarlavin
- Molecular Genetic laboratory, BIOTROF+ LTD, Saint-Petersburg, Russia
| | - Kasim Laishev
- Department of Animal Husbandry and Environmental Management of the Arctic, Federal Research Center of Russian Academy Sciences, Pushkin, Saint-Petersurg, Russia
| |
Collapse
|
21
|
Cui Z, Holmes AJ, Zhang W, Hu D, Shao Q, Wang Z, Lu J, Raubenheimer D. Seasonal diet and microbiome shifts in wild rhesus macaques are better correlated at the level of nutrient components than food items. Integr Zool 2021; 17:1147-1161. [PMID: 34767280 DOI: 10.1111/1749-4877.12601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Food supply is one of the major drivers of animal behavior, and the gut microbiome is an important mediator between food supply and its effects on physiology. However, predicting the outcome of diet change on microbiome and consequences for the animal has proven extremely challenging. We propose this reflects processes occurring at different scales. Inadequate accounting for the multi-level complexity of nutrition (nutrients, foods, diets) obscures the diet influence on microbiome and subsequently animal. Here, we present a detailed year-round, multi-level analysis of diet and microbiome changes in a wild population of a temperate primate, the rhesus macaque (Macaca mulatta). Total daily food and nutrient intake of 6 male and 6 female macaques was monitored in each of the 4 seasons (total 120 days observations). For each individual, we found significant variation in the microbiome between all 4 seasons. This response was more strongly correlated with changes in macronutrient intake than with food items and much of the response could be explained at the level of 6 ecological guilds-sets of taxa sharing similar responses to nutrient intake. We conclude that study of diet, microbiome, and animal performance in ecology will more effectively identify patterns if diet is recorded at the level of nutrient intake. Although microbiome response to diet does show variation in species-level taxa in response to food items, there is greater commonality in response at the level of guilds. A goal for microbiome researchers should be to identify genes encoding microbial attributes that can define such guilds.
Collapse
Affiliation(s)
- Zhenwei Cui
- Centre for Nutritional Ecology, Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou, China.,School of Life Sciences, Institute of Biodiversity and Ecology, Zhengzhou University, Zhengzhou, China.,School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Andrew J Holmes
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Wenjuan Zhang
- School of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Dalong Hu
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Qi Shao
- School of Life Sciences, Institute of Biodiversity and Ecology, Zhengzhou University, Zhengzhou, China
| | - Zhenlong Wang
- School of Life Sciences, Institute of Biodiversity and Ecology, Zhengzhou University, Zhengzhou, China
| | - Jiqi Lu
- School of Life Sciences, Institute of Biodiversity and Ecology, Zhengzhou University, Zhengzhou, China
| | - David Raubenheimer
- Centre for Nutritional Ecology, Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou, China.,Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
22
|
Barelli C, Donati C, Albanese D, Pafčo B, Modrý D, Rovero F, Hauffe HC. Interactions between parasitic helminths and gut microbiota in wild tropical primates from intact and fragmented habitats. Sci Rep 2021; 11:21569. [PMID: 34732823 PMCID: PMC8566450 DOI: 10.1038/s41598-021-01145-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/18/2021] [Indexed: 02/08/2023] Open
Abstract
The mammalian gastrointestinal tract harbours a highly complex ecosystem composed of a variety of micro- (bacteria, fungi, viruses, protozoans) and macro-organisms (helminths). Although most microbiota research focuses on the variation of single gut components, the crosstalk between components is still poorly characterized, especially in hosts living under natural conditions. We investigated the gut micro-biodiversity (bacteria, fungi and helminths) of 158 individuals of two wild non-human primates, the Udzungwa red colobus (Procolobus gordonorum) and the yellow baboon (Papio cynocephalus). These species have contrasting diets and lifestyles, but live sympatrically in both human-impacted and pristine forests in the Udzungwa Mountains of Tanzania. Using non-invasive faecal pellets, helminths were identified using standard microscopy while bacteria and fungi were characterized by sequencing the V1–V3 variable region of the 16S rRNA gene for bacteria and the ITS1–ITS2 fragment for fungi. Our results show that both diversity and composition of bacteria and fungi are associated with variation in helminth presence. Although interactions differed by habitat type, in both primates we found that Strongyloides was negatively associated and Trichuris was positively associated with bacterial and fungal richness. To our knowledge, this is one of the few studies demonstrating an interaction between helminth and gut microbiota communities in wild non-human primates.
Collapse
Affiliation(s)
- Claudia Barelli
- Conservation Genetic Research Unit, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele All'Adige, Italy. .,Department of Biology, University of Florence, Sesto Fiorentino, Italy.
| | - Claudio Donati
- Computational Biology Research Unit, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele All'Adige, Italy
| | - Davide Albanese
- Computational Biology Research Unit, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele All'Adige, Italy
| | - Barbora Pafčo
- Department of Pathology and Parasitology, University of Veterinary Sciences, Brno, Czech Republic.,Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - David Modrý
- Department of Pathology and Parasitology, University of Veterinary Sciences, Brno, Czech Republic.,Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Ceske Budejovice, Czech Republic.,Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Francesco Rovero
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Heidi C Hauffe
- Conservation Genetic Research Unit, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele All'Adige, Italy
| |
Collapse
|
23
|
Jiang F, Gao H, Qin W, Song P, Wang H, Zhang J, Liu D, Wang D, Zhang T. Marked Seasonal Variation in Structure and Function of Gut Microbiota in Forest and Alpine Musk Deer. Front Microbiol 2021; 12:699797. [PMID: 34552569 PMCID: PMC8450597 DOI: 10.3389/fmicb.2021.699797] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/04/2021] [Indexed: 01/14/2023] Open
Abstract
Musk deer (Moschus spp.) is a globally endangered species due to excessive hunting and habitat fragmentation. Captive breeding of musk deer can efficiently relieve the hunting pressure and contribute to the conservation of the wild population and musk supply. However, its effect on the gut microbiota of musk deer is unclear. Recent studies have indicated that gut microbiota is associated with host health and its environmental adaption, influenced by many factors. Herein, high-throughput sequencing of the 16S rRNA gene was used based on 262 fecal samples from forest musk deer (M. berezovskii) (FMD) and 90 samples from alpine musk deer (M. chrysogaster) (AMD). We sought to determine whether seasonal variation can affect the structure and function of gut microbiota in musk deer. The results demonstrated that FMD and AMD had higher α-diversity of gut microbiota in the cold season than in the warm season, suggesting that season change can affect gut microbiota diversity in musk deer. Principal coordinate analysis (PCoA) also revealed significant seasonal differences in the structure and function of gut microbiota in AMD and FMD. Particularly, phyla Firmicutes and Bacteroidetes significantly dominated the 352 fecal samples from captive FMD and AMD. The relative abundance of Firmicutes and the ratio of Firmicutes to Bacteroidetes were significantly decreased in summer than in spring and substantially increased in winter than in summer. In contrast, the relative abundance of Bacteroidetes showed opposite results. Furthermore, dominant bacterial genera and main metabolic functions of gut microbiota in musk deer showed significant seasonal differences. Overall, the abundance of main gut microbiota metabolic functions in FMD was significantly higher in the cold season. WGCNA analysis indicated that OTU6606, OTU5027, OTU7522, and OTU3787 were at the core of the network and significantly related with the seasonal variation. These results indicated that the structure and function in the gut microbiota of captive musk deer vary with seasons, which is beneficial to the environmental adaptation and the digestion and metabolism of food. This study provides valuable insights into the healthy captive breeding of musk deer and future reintroduction programs to recover wild populations.
Collapse
Affiliation(s)
- Feng Jiang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences (CAS), Xining, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| | - Hongmei Gao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences (CAS), Xining, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| | - Wen Qin
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Pengfei Song
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences (CAS), Xining, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Haijing Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences (CAS), Xining, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jingjie Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences (CAS), Xining, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| | - Daoxin Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences (CAS), Xining, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| | - Dong Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences (CAS), Xining, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Tongzuo Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences (CAS), Xining, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| |
Collapse
|
24
|
Martínez-Mota R, Righini N, Mallott EK, Gillespie TR, Amato KR. The relationship between pinworm (Trypanoxyuris) infection and gut bacteria in wild black howler monkeys (Alouatta pigra). Am J Primatol 2021; 83:e23330. [PMID: 34529285 DOI: 10.1002/ajp.23330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 07/17/2021] [Accepted: 09/04/2021] [Indexed: 12/21/2022]
Abstract
Gut bacteria may coexist with other groups of organisms, such as nematode parasites, that inhabit the gastrointestinal tract of primates; however, the possible effects of endoparasites on bacterial communities are frequently overlooked. Here we explored whether infection with Trypanoxyuris, an oxyurid gastrointestinal parasite, is associated with changes in the gut bacterial community of wild black howler monkeys (Alouatta pigra), by comparing gut bacterial communities of consistently infected individuals and individuals that never tested positive for Trypanoxyuris throughout different months across the year. We additionally controlled for other sources of variation reported to influence the primate microbiome including individual identity, social group, and seasonality. Trypanoxyuris infection was not related to differences in gut bacterial alpha diversity, but was weakly associated with differences in gut bacterial community structure. In contrast, among the covariates considered, both individual identity and social group were more strongly associated with variation in the howler gut bacterial community. Our results suggest that gastrointestinal parasites may be associated, to some extent, with shifts in the gut bacterial communities hosted by free-ranging primates, although a causal link still needs to be established. Further studies of wild primate hosts infected with parasite species with different pathogenicity are needed to better elucidate health-related consequences from the parasite-microbiome interplay.
Collapse
Affiliation(s)
- Rodolfo Martínez-Mota
- Centro de Investigaciones Tropicales (CITRO), Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Nicoletta Righini
- Instituto de Investigaciones en Comportamiento Alimentario y Nutrición (IICAN), Universidad de Guadalajara, Ciudad Guzmán, Jalisco, Mexico
| | - Elizabeth K Mallott
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Thomas R Gillespie
- Department of Environmental Sciences, Program in Population Biology, Ecology, and Evolutionary Biology, Emory University, Atlanta, Georgia, USA.,Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
25
|
Fu H, Zhang L, Fan C, Liu C, Li W, Cheng Q, Zhao X, Jia S, Zhang Y. Environment and host species identity shape gut microbiota diversity in sympatric herbivorous mammals. Microb Biotechnol 2021; 14:1300-1315. [PMID: 33369229 PMCID: PMC8313255 DOI: 10.1111/1751-7915.13687] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 10/07/2020] [Indexed: 02/01/2023] Open
Abstract
The previous studies have reported that the mammalian gut microbiota is a physiological consequence; nonetheless, the factors influencing its composition and function remain unclear. In this study, to evaluate the contributions of the host and environment to the gut microbiota, we conducted a sequencing analysis of 16S rDNA and shotgun metagenomic DNA from plateau pikas and yaks, two sympatric herbivorous mammals, and further compared the sequences in summer and winter. The results revealed that both pikas and yaks harboured considerably more distinct communities between summer and winter. We detected the over-representation of Verrucomicrobia and Proteobacteria in pikas, and Archaea and Bacteroidetes in yaks. Firmicutes and Actinobacteria, associated with energy-efficient acquisition, significantly enriched in winter. The diversity of the microbial community was determined by the interactive effects between the host and season. Metagenomic analysis revealed that methane-metabolism-related pathway of yaks was significantly enriched in summer, while some pathogenic pathways were more abundant in pikas. Both pikas and yaks had a higher capacity for lipid degradation in winter. Pika and yak shared more OTUs when food shortage occurred in winter, and this caused a convergence in gut microbial composition and function. From winter to summer, the network module number increased from one to five in pikas, which was different in yaks. Our study demonstrates that the host is a dominant factor in shaping the microbial communities and that seasonality promotes divergence or convergence based on dietary quality across host species identity.
Collapse
Affiliation(s)
- Haibo Fu
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningQinghai810008China
- Qinghai Provincial Key Laboratory of Animal Ecological GenomicsXiningQinghai ProvinceChina
- University of Chinese Academy of SciencesBeijing100049China
| | - Liangzhi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningQinghai810008China
- Qinghai Provincial Key Laboratory of Animal Ecological GenomicsXiningQinghai ProvinceChina
| | - Chao Fan
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningQinghai810008China
- Qinghai Provincial Key Laboratory of Animal Ecological GenomicsXiningQinghai ProvinceChina
- University of Chinese Academy of SciencesBeijing100049China
| | - Chuanfa Liu
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningQinghai810008China
- Qinghai Provincial Key Laboratory of Animal Ecological GenomicsXiningQinghai ProvinceChina
- University of Chinese Academy of SciencesBeijing100049China
| | - Wenjing Li
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningQinghai810008China
- Qinghai Provincial Key Laboratory of Animal Ecological GenomicsXiningQinghai ProvinceChina
| | - Qi Cheng
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningQinghai810008China
- Qinghai Provincial Key Laboratory of Animal Ecological GenomicsXiningQinghai ProvinceChina
- University of Chinese Academy of SciencesBeijing100049China
| | - Xinquan Zhao
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningQinghai810008China
- Qinghai Provincial Key Laboratory of Animal Ecological GenomicsXiningQinghai ProvinceChina
| | - Shangang Jia
- College of Grassland Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Yanming Zhang
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningQinghai810008China
- Qinghai Provincial Key Laboratory of Animal Ecological GenomicsXiningQinghai ProvinceChina
| |
Collapse
|
26
|
Miller CM, Snyder-Mackler N, Nguyen N, Fashing PJ, Tung J, Wroblewski EE, Gustison ML, Wilson ML. Extragroup paternity in gelada monkeys, Theropithecus gelada, at Guassa, Ethiopia and a comparison with other primates. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
27
|
Baniel A, Amato KR, Beehner JC, Bergman TJ, Mercer A, Perlman RF, Petrullo L, Reitsema L, Sams S, Lu A, Snyder-Mackler N. Seasonal shifts in the gut microbiome indicate plastic responses to diet in wild geladas. MICROBIOME 2021; 9:26. [PMID: 33485388 PMCID: PMC7828014 DOI: 10.1186/s40168-020-00977-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/07/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND Adaptive shifts in gut microbiome composition are one route by which animals adapt to seasonal changes in food availability and diet. However, outside of dietary shifts, other potential environmental drivers of gut microbial composition have rarely been investigated, particularly in organisms living in their natural environments. RESULTS Here, we generated the largest wild nonhuman primate gut microbiome dataset to date to identify the environmental drivers of gut microbial diversity and function in 758 samples collected from wild Ethiopian geladas (Theropithecus gelada). Because geladas live in a cold, high-altitude environment and have a low-quality grass-based diet, they face extreme thermoregulatory and energetic constraints. We tested how proxies of food availability (rainfall) and thermoregulatory stress (temperature) predicted gut microbiome composition of geladas. The gelada gut microbiome composition covaried with rainfall and temperature in a pattern that suggests distinct responses to dietary and thermoregulatory challenges. Microbial changes were driven by differences in the main components of the diet across seasons: in rainier periods, the gut was dominated by cellulolytic/fermentative bacteria that specialized in digesting grass, while during dry periods the gut was dominated by bacteria that break down starches found in underground plant parts. Temperature had a comparatively smaller, but detectable, effect on the gut microbiome. During cold and dry periods, bacterial genes involved in energy, amino acid, and lipid metabolism increased, suggesting a stimulation of fermentation activity in the gut when thermoregulatory and nutritional stress co-occurred, and potentially helping geladas to maintain energy balance during challenging periods. CONCLUSION Together, these results shed light on the extent to which gut microbiota plasticity provides dietary and metabolic flexibility to the host, and might be a key factor to thriving in changing environments. On a longer evolutionary timescale, such metabolic flexibility provided by the gut microbiome may have also allowed members of Theropithecus to adopt a specialized diet, and colonize new high-altitude grassland habitats in East Africa. Video abstract.
Collapse
Affiliation(s)
- Alice Baniel
- Department of Anthropology, Stony Brook University, Stony Brook, NY, 11794, USA.
| | - Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, IL, 60208, USA
| | - Jacinta C Beehner
- Department of Psychology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Anthropology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Thore J Bergman
- Department of Psychology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Arianne Mercer
- Department of Psychology, University of Washington, Seattle, WA, 98195, USA
| | - Rachel F Perlman
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Lauren Petrullo
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Laurie Reitsema
- Department of Anthropology, University of Georgia, Athens, GA, 30602, USA
| | - Sierra Sams
- Department of Psychology, University of Washington, Seattle, WA, 98195, USA
| | - Amy Lu
- Department of Anthropology, Stony Brook University, Stony Brook, NY, 11794, USA.
| | - Noah Snyder-Mackler
- Department of Psychology, University of Washington, Seattle, WA, 98195, USA.
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85281, USA.
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA.
- Department of Biology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
28
|
Xia T, Yao Y, Wang C, Dong M, Wu Y, Li D, Xie M, Ni Q, Zhang M, Xu H. Seasonal dynamics of gut microbiota in a cohort of wild Tibetan macaques (Macaca thibetana) in western China. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2020.e01409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
29
|
Exploration of the effects of altitude change on bacteria and fungi in the rumen of yak (Bos grunniens). Arch Microbiol 2020; 203:835-846. [PMID: 33070234 DOI: 10.1007/s00203-020-02072-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/18/2020] [Accepted: 10/01/2020] [Indexed: 12/14/2022]
Abstract
The yak (Bos grunniens) is a ruminant animal with strong regional adaptability. However, little is known about the adaptation of the rumen microbial community of yaks at different altitudes and the adaptation mechanism of the host and intestinal microorganisms to the habitat. We investigated the adaptability of the rumen microorganisms of yaks at high and low altitudes. We also compared and analyzed the abundance and diversity of core microorganisms and those that varied between different animals. The aim was to compare the rumen bacterial and fungal communities of grazing yak living at two elevations. Bacteroidetes, Firmicutes, Ascomycota, and Chytridiomycota were the dominant bacteria in the plateau and low-altitude regions. Significant differences between the dominant microorganisms in the rumen of yaks were evident in the two regions. The proportion of fiber-degrading bacteria was significantly different between yaks dwelling at high-altitude and low-altitude regions. The abundance of starch-degrading bacteria was not significantly different with altitude. Species clustering similarity analysis showed that the rumen microorganisms in the two areas were obviously isolated and clustered into branches. Functional prediction showed significant differences in rumen microbial methane metabolism, starch and sucrose metabolism, ion-coupled transporter and bacterial secretion system at different altitudes. Overall, the results of this study improved our understanding of the abundance and composition of microorganisms in the rumen of yak at different altitudes.
Collapse
|
30
|
Li Y, Chen T, Liang J, Li Y, Huang Z. Seasonal variation in the gut microbiota of rhesus macaques inhabiting limestone forests of southwest Guangxi, China. Arch Microbiol 2020; 203:787-798. [PMID: 33057745 DOI: 10.1007/s00203-020-02069-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 11/27/2022]
Abstract
Data on the gut microbiota of animals can provide new insights into dietary ecology of hosts, consequently assisting in understanding their adaptation strategy and evolutionary potential. We studied the gut microbiota composition and function of the wild rhesus macaques (Macaca mulatta) using 16S rRNA sequencing method. Our results revealed that the gut microbiota of the wild rhesus macaques was dominated by Firmicutes, Bacteroidetes, and Spirochaetes. Diversity and richness of gut microbiota were higher during the dry season than the rainy season. Specifically, higher proportions of Firmicutes, Tenericutes, Cyanobacteria, and unclassified bacteria at the phylum level and more Coprococcus at the genus level were detected in the dry season. Predictive functional analysis showed that pathways associated with carbohydrate metabolism and drug resistance (antimicrobial and antineoplastic) were richer in the dry season. These seasonal differences in microbiota could be due to their heavier dependence on leaf-based diet in the dry season. Additionally, macaques in limestone forests had a higher percentage of Spirochaetes, probably suggesting that the proportion of fruits in dietary composition also play an important role in the gut microbiota. We concluded that diet was strongly linked to the diversity, composition, and function of the gut microbiota in the wild groups of rhesus macaques living in the limestone forest, highlighting the importance of diet in the gut microbiota of macaques and the need to conduct further study on the adaptation strategy in response of environmental changes in the ground of gut microbiota.
Collapse
Affiliation(s)
- Yuhui Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, No. 15 Yu Cai Road, Guilin, China
| | - Ting Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, No. 15 Yu Cai Road, Guilin, China
| | - Jipeng Liang
- Administration Centre of Guangxi Chongzuo White-headed Langur National Nature Reserve, Chongzuo, China
| | - Youbang Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China.
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, No. 15 Yu Cai Road, Guilin, China.
| | - Zhonghao Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China.
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, No. 15 Yu Cai Road, Guilin, China.
| |
Collapse
|
31
|
Microbial transmission in animal social networks and the social microbiome. Nat Ecol Evol 2020; 4:1020-1035. [DOI: 10.1038/s41559-020-1220-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/11/2020] [Indexed: 12/15/2022]
|
32
|
Mallott EK, Borries C, Koenig A, Amato KR, Lu A. Reproductive hormones mediate changes in the gut microbiome during pregnancy and lactation in Phayre's leaf monkeys. Sci Rep 2020; 10:9961. [PMID: 32561791 PMCID: PMC7305161 DOI: 10.1038/s41598-020-66865-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/28/2020] [Indexed: 12/20/2022] Open
Abstract
Studies in multiple host species have shown that gut microbial diversity and composition change during pregnancy and lactation. However, the specific mechanisms underlying these shifts are not well understood. Here, we use longitudinal data from wild Phayre's leaf monkeys to test the hypothesis that fluctuations in reproductive hormone concentrations contribute to gut microbial shifts during pregnancy. We described the microbial taxonomic composition of 91 fecal samples from 15 females (n = 16 cycling, n = 36 pregnant, n = 39 lactating) using 16S rRNA gene amplicon sequencing and assessed whether the resulting data were better explained by overall reproductive stage or by fecal estrogen (fE) and progesterone (fP) concentrations. Our results indicate that while overall reproductive stage affected gut microbiome composition, the observed patterns were driven by reproductive hormones. Females had lower gut microbial diversity during pregnancy and fP concentrations were negatively correlated with diversity. Additionally, fP concentrations predicted both unweighted and weighted UniFrac distances, while reproductive state only predicted unweighted UniFrac distances. Seasonality (rainfall and periods of phytoprogestin consumption) additionally influenced gut microbial diversity and composition. Our results indicate that reproductive hormones, specifically progestagens, contribute to the shifts in the gut microbiome during pregnancy and lactation.
Collapse
Affiliation(s)
| | - Carola Borries
- Department of Anthropology, Stony Brook University, Stony Brook, NY, USA
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Andreas Koenig
- Department of Anthropology, Stony Brook University, Stony Brook, NY, USA
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, IL, USA
| | - Amy Lu
- Department of Anthropology, Stony Brook University, Stony Brook, NY, USA
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
33
|
Williams CL, Garcia-Reyero N, Martyniuk CJ, Tubbs CW, Bisesi JH. Regulation of endocrine systems by the microbiome: Perspectives from comparative animal models. Gen Comp Endocrinol 2020; 292:113437. [PMID: 32061639 DOI: 10.1016/j.ygcen.2020.113437] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/29/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023]
Abstract
The microbiome regulates endocrine systems and influences many aspects of hormone signaling. Using examples from different animal taxa, we highlight the state of the science in microbiome research as it relates to endocrinology and endocrine disruption research. Using a comparative approach discussing fish, birds, and mammals, we demonstrate the bidirectional interaction between microbiota and hormone systems, presenting concepts that include (1) gastrointestinal microbiome regulation of the neuroendocrine feeding axis; (2) stress hormones and microbial communities; (3) the role of site-specific microbiota in animal reproduction; (4) microbiome effects on the neuroendocrine systems and behavior; and (5) novel mechanisms of endocrine disruption through the microbiome. This mini-review demonstrates that hormones can directly affect the richness and diversity of microbiota and conversely, microbiota can influence hormone production and mediate their functions in animals. In addition, microbiota can influence the action of a diverse range of neurotransmitters and neuropeptides in the central nervous system, which can lead to behavioral disruptions. As many animals have species-specific reproductive behaviors, it is important to understand how shifts in the microbiota relate to these complex interactions between sexes. This is especially important for captive animals on specialized diets, and there are significant implications for microbiome research in conservation and reproductive biology. For example, microbial metabolites may modify motility of gametes or modulate hormone-receptor interactions in reproductive tissues. Thus, efforts to incorporate metabolomics into the science of microbiome-endocrine relationships, both those produced by the host and those generated from microbial metabolism, are increasingly needed. These concepts have fostered an exciting emerging era in comparative endocrinology.
Collapse
Affiliation(s)
- Candace L Williams
- Reproductive Sciences, San Diego Zoo Global Institute for Conservation Research, Escondido, CA 92027, USA.
| | - Natàlia Garcia-Reyero
- Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS 39180, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher W Tubbs
- Reproductive Sciences, San Diego Zoo Global Institute for Conservation Research, Escondido, CA 92027, USA
| | - Joseph H Bisesi
- Department of Environmental and Global Health and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
34
|
Grueter CC, Qi X, Zinner D, Bergman T, Li M, Xiang Z, Zhu P, Migliano AB, Miller A, Krützen M, Fischer J, Rubenstein DI, Vidya TNC, Li B, Cantor M, Swedell L. Multilevel Organisation of Animal Sociality. Trends Ecol Evol 2020; 35:834-847. [PMID: 32473744 DOI: 10.1016/j.tree.2020.05.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 12/16/2022]
Abstract
Multilevel societies (MLSs), stable nuclear social units within a larger collective encompassing multiple nested social levels, occur in several mammalian lineages. Their architectural complexity and size impose specific demands on their members requiring adaptive solutions in multiple domains. The functional significance of MLSs lies in their members being equipped to reap the benefits of multiple group sizes. Here, we propose a unifying terminology and operational definition of MLS. To identify new avenues for integrative research, we synthesise current literature on the selective pressures underlying the evolution of MLSs and their implications for cognition, intersexual conflict, and sexual selection. Mapping the drivers and consequences of MLS provides a reference point for the social evolution of many taxa, including our own species.
Collapse
Affiliation(s)
- Cyril C Grueter
- School of Human Sciences, The University of Western Australia, Perth, WA 6009, Australia; Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| | - Xiaoguang Qi
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, College of Life Sciences, Xi'an, 710069, China.
| | - Dietmar Zinner
- Cognitive Ethology Laboratory, German Primate Center (DPZ), Leibniz Institute for Primate Research, 37077 Göttingen, Germany; Leibniz ScienceCampus for Primate Cognition, 37077 Göttingen, Germany
| | - Thore Bergman
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ming Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chaoyang District, Beijing 100101, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | - Zuofu Xiang
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Pingfen Zhu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chaoyang District, Beijing 100101, China
| | | | - Alex Miller
- School of Human Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Michael Krützen
- Department of Anthropology, University of Zurich, 8057, Zürich, Switzerland
| | - Julia Fischer
- Cognitive Ethology Laboratory, German Primate Center (DPZ), Leibniz Institute for Primate Research, 37077 Göttingen, Germany; Department for Primate Cognition, Georg-August-University of Göttingen, 37077 Göttingen, Germany
| | - Daniel I Rubenstein
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - T N C Vidya
- Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, India
| | - Baoguo Li
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, College of Life Sciences, Xi'an, 710069, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | - Maurício Cantor
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, 78464, Germany; Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, 78464, Germany; Department of Biology, University of Konstanz, Konstanz, 78464, Germany; Departamento de Ecologia e Zoologia, Universidade Federal de Santa Catarina, Florianópolis, 88048-970, Brazil; Centro de Estudos do Mar, Universidade Federal do Paraná, Pontal do Paraná, 83255-000, Brazil; School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, 2000, South Africa
| | - Larissa Swedell
- Department of Anthropology, Queens College, City University of New York, Flushing, NY 11367-1597, USA; New York Consortium in Evolutionary Primatology, New York, NY 11367, USA; Anthropology, Biology and Psychology Programs, CUNY Graduate Center, 365 Fifth Avenue, New York, NY 10016, USA; Department of Archaeology, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa
| |
Collapse
|
35
|
The Gut Microbiota Communities of Wild Arboreal and Ground-Feeding Tropical Primates Are Affected Differently by Habitat Disturbance. mSystems 2020; 5:5/3/e00061-20. [PMID: 32457237 PMCID: PMC7253362 DOI: 10.1128/msystems.00061-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Gut microbiota diversity has become the subject of extensive research in human and nonhuman animals, linking diversity and composition to gut function and host health. Because wild primates are good indicators of tropical ecosystem health, we developed the idea that they are a suitable model to observe the consequences of advancing global change (e.g., habitat degradation) on gut microbiota. So far, most of the studies focus mainly on gut bacteria; however, they are not the only component of the gut: fungi also serve essential functions in gut homeostasis. Here, for the first time, we explore and measure diversity and composition of both bacterial and fungal microbiota components of two tropical primate species living in highly different habitat types (intact versus degraded forests). Results on their microbiota diversity and composition are discussed in light of conservation issues and potential applications. Human exploitation and destruction of tropical resources are currently threatening innumerable wild animal species, altering natural ecosystems and thus, food resources, with profound effects on gut microbiota. Given their conservation status and the importance to tropical ecosystems, wild nonhuman primates make excellent models to investigate the effect of human disturbance on the diversity of host-associated microbiota. Previous investigations have revealed a loss of fecal bacterial diversity in primates living in degraded compared to intact forests. However, these data are available for a limited number of species, and very limited information is available on the fungal taxa hosted by the gut. Here, we estimated the diversity and composition of gut bacterial and fungal communities in two primates living sympatrically in both human-modified and pristine forests in the Udzungwa Mountains of Tanzania. Noninvasively collected fecal samples of 12 groups of the Udzungwa red colobus (Procolobus gordonorum) (n = 89), a native and endangered primate (arboreal and predominantly leaf-eating), and five groups of the yellow baboon (Papio cynocephalus) (n = 69), a common species of least concern (ground-feeding and omnivorous), were analyzed by the V1-V3 region of the 16S rRNA gene (bacterial) and ITS1-ITS2 (fungal) sequencing. Gut bacterial diversities were associated with habitat in both species, most likely depending on their ecological niches and associated digestive physiology, dietary strategies, and locomotor behavior. In addition, fungal communities also show distinctive traits across hosts and habitat type, highlighting the importance of investigating this relatively unexplored gut component. IMPORTANCE Gut microbiota diversity has become the subject of extensive research in human and nonhuman animals, linking diversity and composition to gut function and host health. Because wild primates are good indicators of tropical ecosystem health, we developed the idea that they are a suitable model to observe the consequences of advancing global change (e.g., habitat degradation) on gut microbiota. So far, most of the studies focus mainly on gut bacteria; however, they are not the only component of the gut: fungi also serve essential functions in gut homeostasis. Here, for the first time, we explore and measure diversity and composition of both bacterial and fungal microbiota components of two tropical primate species living in highly different habitat types (intact versus degraded forests). Results on their microbiota diversity and composition are discussed in light of conservation issues and potential applications.
Collapse
|
36
|
Bighorn sheep gut microbiomes associate with genetic and spatial structure across a metapopulation. Sci Rep 2020; 10:6582. [PMID: 32313214 PMCID: PMC7171152 DOI: 10.1038/s41598-020-63401-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/28/2020] [Indexed: 12/11/2022] Open
Abstract
Studies in laboratory animals demonstrate important relationships between environment, host traits, and microbiome composition. However, host-microbiome relationships in natural systems are understudied. Here, we investigate metapopulation-scale microbiome variation in a wild mammalian host, the desert bighorn sheep (Ovis canadensis nelsoni). We sought to identify over-represented microbial clades and understand how landscape variables and host traits influence microbiome composition across the host metapopulation. To address these questions, we performed 16S sequencing on fecal DNA samples from thirty-nine bighorn sheep across seven loosely connected populations in the Mojave Desert and assessed relationships between microbiome composition, environmental variation, geographic distribution, and microsatellite-derived host population structure and heterozygosity. We first used a phylogenetically-informed algorithm to identify bacterial clades conserved across the metapopulation. Members of genus Ruminococcaceae, genus Lachnospiraceae, and family Christensenellaceae R7 group were among the clades over-represented across the metapopulation, consistent with their known roles as rumen symbionts in domestic livestock. Additionally, compositional variation among hosts correlated with individual-level geographic and genetic structure, and with population-level differences in genetic heterozygosity. This study identifies microbiome community variation across a mammalian metapopulation, potentially associated with genetic and geographic population structure. Our results imply that microbiome composition may diverge in accordance with landscape-scale environmental and host population characteristics.
Collapse
|
37
|
Rojas CA, Holekamp KE, Winters AD, Theis KR. Body site-specific microbiota reflect sex and age-class among wild spotted hyenas. FEMS Microbiol Ecol 2020; 96:5700710. [PMID: 31926016 DOI: 10.1093/femsec/fiaa007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 01/10/2020] [Indexed: 02/06/2023] Open
Abstract
Host-associated microbial communities, henceforth 'microbiota', can affect the physiology and behavior of their hosts. In mammals, host ecological, social and environmental variables are associated with variation in microbial communities. Within individuals in a given mammalian species, the microbiota also partitions by body site. Here, we build on this work and sequence the bacterial 16S rRNA gene to profile the microbiota at six distinct body sites (ear, nasal and oral cavities, prepuce, rectum and anal scent gland) in a population of wild spotted hyenas (Crocuta crocuta), which are highly social, large African carnivores. We inquired whether microbiota at these body sites vary with host sex or social rank among juvenile hyenas, and whether they differ between juvenile females and adult females. We found that the scent gland microbiota differed between juvenile males and juvenile females, whereas the prepuce and rectal microbiota differed between adult females and juvenile females. Social rank, however, was not a significant predictor of microbiota profiles. Additionally, the microbiota varied considerably among the six sampled body sites and exhibited strong specificity among individual hyenas. Thus, our findings suggest that site-specific niche selection is a primary driver of microbiota structure in mammals, but endogenous host factors may also be influential.
Collapse
Affiliation(s)
- Connie A Rojas
- Department of Integrative Biology, Michigan State University, 288 Farm Lane, East Lansing, MI, 48824, USA.,BEACON Center for the Study of Evolution in Action, Michigan State University, 567 Wilson Rd, East Lansing, MI, 48824, USA.,Ecology, Evolutionary Biology and Behavior, Michigan State University, 293 Farm Lane, East Lansing, MI, 48824, USA
| | - Kay E Holekamp
- Department of Integrative Biology, Michigan State University, 288 Farm Lane, East Lansing, MI, 48824, USA.,BEACON Center for the Study of Evolution in Action, Michigan State University, 567 Wilson Rd, East Lansing, MI, 48824, USA.,Ecology, Evolutionary Biology and Behavior, Michigan State University, 293 Farm Lane, East Lansing, MI, 48824, USA
| | - Andrew D Winters
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, 540 E Canfield St, Detroit, MI, 48201, USA
| | - Kevin R Theis
- BEACON Center for the Study of Evolution in Action, Michigan State University, 567 Wilson Rd, East Lansing, MI, 48824, USA.,Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, 540 E Canfield St, Detroit, MI, 48201, USA
| |
Collapse
|
38
|
Wu Y, Yao Y, Dong M, Xia T, Li D, Xie M, Wu J, Wen A, Wang Q, Zhu G, Ni Q, Zhang M, Xu H. Characterisation of the gut microbial community of rhesus macaques in high-altitude environments. BMC Microbiol 2020; 20:68. [PMID: 32216756 PMCID: PMC7098161 DOI: 10.1186/s12866-020-01747-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 03/05/2020] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND The mammal intestinal microbiota is involved in various physiological processes and plays a key role in host environment adaption. However, for non-human primates (NHPs), little is known about their gut microbial community in high-altitude environments and even less about their adaption to such habitats. We characterised the gut microbial community of rhesus macaques from multiple high-altitude environments and compared it to those of low-altitude populations. RESULTS We collected faecal samples of rhesus macaques from four high-altitude populations (above 3000 m) and three low-altitude populations (below 500 m). By calculating the alpha diversity index, we found that high-altitude populations exhibited a higher diversity. Statistical analysis of beta diversity indicated significant differences between high- and low-altitude populations. Significant differences were also detected at the phylum and family levels. At the phylum level, the high-altitude gut microbial community was dominated by Firmicutes (63.42%), while at low altitudes, it was dominated by Bacteroidetes (47.4%). At the family level, the high-altitude population was dominated by Ruminococcaceae (36.2%), while the low-altitude one was dominated by Prevotellaceae (39.6%). Some families, such as Christensenellaceae and Rikenellaceae, were consistently higher abundant in all high-altitude populations. We analysed the overlap of operational taxonomic units (OTUs) in high-altitude populations and determined their core OTUs (shared by all four high-altitude populations). However, when compared with the low-altitude core OTUs, only 65% were shared, suggesting a divergence in core OTUs. Function prediction indicated a significant difference in gene copy number of 35 level-2 pathways between high- and low-altitude populations; 29 of them were higher in high altitudes, especially in membrane transport and carbohydrate metabolism. CONCLUSIONS The gut microbial community of high-altitude rhesus macaques was significantly distinct from that of low-altitude populations in terms of diversity, composition and function. High-altitude populations were dominated by Firmicutes and Ruminococcace, while in low-altitude populations, Bacteroidetes and Prevotellaceae were dominant. The difference in gut microbiota between these two populations may be caused by differences in host diet, environmental temperature and oxygen pressure. These differentiated gut microbial microorganisms may play a critical role in the adaptive evolution of rhesus macaques to high-altitude environments.
Collapse
Affiliation(s)
- Yuhan Wu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Yucheng District, Ya'an, Sichuan, 625014, People's Republic of China
| | - Yongfang Yao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Yucheng District, Ya'an, Sichuan, 625014, People's Republic of China
| | - Mengmeng Dong
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Yucheng District, Ya'an, Sichuan, 625014, People's Republic of China
| | - Tianrui Xia
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Yucheng District, Ya'an, Sichuan, 625014, People's Republic of China
| | - Diyan Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Meng Xie
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Yucheng District, Ya'an, Sichuan, 625014, People's Republic of China
| | - Jiayun Wu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Yucheng District, Ya'an, Sichuan, 625014, People's Republic of China
| | - Anxiang Wen
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Yucheng District, Ya'an, Sichuan, 625014, People's Republic of China
| | - Qin Wang
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Yucheng District, Ya'an, Sichuan, 625014, People's Republic of China
| | - Guangxiang Zhu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Yucheng District, Ya'an, Sichuan, 625014, People's Republic of China
| | - Qingyong Ni
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mingwang Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huailiang Xu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Yucheng District, Ya'an, Sichuan, 625014, People's Republic of China.
| |
Collapse
|
39
|
Sacco AJ, Mayhew JA, Watsa M, Erkenswick G, Binder AK. Detection of neopterin in the urine of captive and wild platyrrhines. BMC ZOOL 2020. [DOI: 10.1186/s40850-020-00051-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Non-invasive biomarkers can facilitate health assessments in wild primate populations by reducing the need for direct access to animals. Neopterin is a biomarker that is a product of the cell-mediated immune response, with high levels being indicative of poor survival expectations in some cases. The measurement of urinary neopterin concentration (UNC) has been validated as a method for monitoring cell-mediated immune system activation in multiple catarrhine species, but to date there is no study testing its utility in the urine of platyrrhine species. In this study, we collected urine samples across three platyrrhine families including small captive populations of Leontopithecus rosalia and Pithecia pithecia, and larger wild populations of Leontocebus weddelli, Saguinus imperator, Alouatta seniculus, and Plecturocebus toppini, to evaluate a commercial enzyme-linked immunosorbent assay (ELISA) for the measurement of urinary neopterin in platyrrhines.
Results
Our results revealed measured UNC fell within the sensitivity range of the assay in all urine samples collected from captive and wild platyrrhine study species via commercial ELISA, and results from several dilutions met expectations. We found significant differences in the mean UNC across all study species. Most notably, we observed higher UNC in the wild population of L. weddelli which is known to have two filarial nematode infections compared to S. imperator, which only have one.
Conclusion
Our study confirms that neopterin is measurable via commercial ELISA in urine collected from captive and wild individuals of six genera of platyrrhines across three different families. These findings promote the future utility of UNC as a promising biomarker for field primatologists conducting research in Latin America to non-invasively evaluate cell-mediated immune system activation from urine.
Collapse
|
40
|
Bird S, Prewer E, Kutz S, Leclerc L, Vilaça ST, Kyle CJ. Geography, seasonality, and host-associated population structure influence the fecal microbiome of a genetically depauparate Arctic mammal. Ecol Evol 2019; 9:13202-13217. [PMID: 31871639 PMCID: PMC6912892 DOI: 10.1002/ece3.5768] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/19/2019] [Accepted: 09/25/2019] [Indexed: 12/17/2022] Open
Abstract
The Canadian Arctic is an extreme environment with low floral and faunal diversity characterized by major seasonal shifts in temperature, moisture, and daylight. Muskoxen (Ovibos moschatus) are one of few large herbivores able to survive this harsh environment. Microbiome research of the gastrointestinal tract may hold clues as to how muskoxen exist in the Arctic, but also how this species may respond to rapid environmental changes. In this study, we investigated the effects of season (spring/summer/winter), year (2007-2016), and host genetic structure on population-level microbiome variation in muskoxen from the Canadian Arctic. We utilized 16S rRNA gene sequencing to characterize the fecal microbial communities of 78 male muskoxen encompassing two population genetic clusters. These clusters are defined by Arctic Mainland and Island populations, including the following: (a) two mainland sampling locations of the Northwest Territories and Nunavut and (b) four locations of Victoria Island. Between these geographic populations, we found that differences in the microbiome reflected host-associated genetic cluster with evidence of migration. Within populations, seasonality influenced bacterial diversity with no significant differences between years of sampling. We found evidence of pathogenic bacteria, with significantly higher presence in mainland samples. Our findings demonstrate the effects of seasonality and the role of host population-level structure in driving fecal microbiome differences in a large Arctic mammal.
Collapse
Affiliation(s)
- Samantha Bird
- Forensic Science ProgramTrent UniversityPeterboroughONCanada
| | - Erin Prewer
- Environmental and Life Sciences Graduate ProgramTrent UniversityPeterboroughONCanada
| | - Susan Kutz
- Faculty of Veterinary MedicineUniversity of CalgaryCalgaryABCanada
- Canadian Wildlife Health CooperativeAlberta NodeFaculty of Veterinary MedicineUniversity of CalgaryCalgaryABCanada
| | | | - Sibelle T. Vilaça
- Environmental and Life Sciences Graduate ProgramTrent UniversityPeterboroughONCanada
- Biology DepartmentTrent UniversityPeterboroughONCanada
| | - Christopher J. Kyle
- Forensic Science ProgramTrent UniversityPeterboroughONCanada
- Environmental and Life Sciences Graduate ProgramTrent UniversityPeterboroughONCanada
| |
Collapse
|
41
|
Kuthyar S, Manus MB, Amato KR. Leveraging non-human primates for exploring the social transmission of microbes. Curr Opin Microbiol 2019; 50:8-14. [PMID: 31585390 DOI: 10.1016/j.mib.2019.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/16/2019] [Accepted: 09/02/2019] [Indexed: 12/15/2022]
Abstract
Host social interactions can provide multiple complex pathways for microbial transmission. Here, we suggest non-human primates as models to study the social transmission of commensal or mutualistic microbes due to their high sociality, wide range of group compositions and dominance structures, and diverse group interactions. Microbial sharing from social interactions can positively impact host health by promoting microbial diversity and influencing immunity. Microbes may also drive their own transmission by shaping host behavior, which could lead to fitness benefits for both microbes and hosts. Variation in patterns of social interactions at both the individual and group scale make non-human primates an ideal system to explore the relationship between social behavior, microbial sharing, and their impact on host health and evolution.
Collapse
Affiliation(s)
- Sahana Kuthyar
- Department of Anthropology, Northwestern University, Evanston, IL 60208, United States
| | - Melissa B Manus
- Department of Anthropology, Northwestern University, Evanston, IL 60208, United States
| | - Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, IL 60208, United States.
| |
Collapse
|
42
|
Clayton JB, Shields-Cutler RR, Hoops SL, Al-Ghalith GA, Sha JC, Johnson TJ, Knights D. Bacterial community structure and function distinguish gut sites in captive red-shanked doucs (Pygathrix nemaeus). Am J Primatol 2019; 81:e22977. [PMID: 30997937 PMCID: PMC6800578 DOI: 10.1002/ajp.22977] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/22/2019] [Accepted: 04/01/2019] [Indexed: 12/12/2022]
Abstract
The mammalian order primates contains wide species diversity. Members of the subfamily Colobinae are unique amongst extant primates in that their gastrointestinal systems more closely resemble those of ruminants than other members of the primate order. In the growing literature surrounding nonhuman primate microbiomes, analysis of microbial communities has been limited to the hindgut, since few studies have captured data on other gut sites, including the foregut of colobine primates. In this study, we used the red-shanked douc (Pygathrix nemaeus) as a model for colobine primates to study the relationship between gastrointestinal bacterial community structure and gut site within and between subjects. We analyzed fecal and pregastric stomach content samples, representative of the hindgut and foregut respectively, using 16S recombinant DNA (rDNA) sequencing and identified microbiota using closed-reference operational taxonomic unit (OTU) picking against the GreenGenes database. Our results show divergent bacterial communities clearly distinguish the foregut and hindgut microbiomes. We found higher bacterial biodiversity and a higher Firmicutes:Bacteroides ratio in the hindgut as opposed to the foregut. These gut sites showed strong associations with bacterial function. Specifically, energy metabolism was upregulated in the hindgut, whereas detoxification was increased in the foregut. Our results suggest a red-shanked douc's foregut microbiome is no more concordant with its own hindgut than it is with any other red-shanked douc's hindgut microbiome, thus reinforcing the notion that the bacterial communities of the foregut and hindgut are distinctly unique. OPEN PRACTICES: This article has been awarded Open Materials and Open Data badges. All materials and data are publicly accessible via the IRIS Repository at https://www.iris-database.org/iris/app/home/detail?id=york:934328. Learn more about the Open Practices badges from the Center for Open Science: https://osf.io/tvyxz/wiki.
Collapse
Affiliation(s)
- Jonathan B. Clayton
- Department of Computer Science and Engineering, University of Minnesota, 4-192 Keller Hall, 200 Union St SE, Minneapolis, MN 55455, USA
- GreenViet Biodiversity Conservation Center, K39/21 Thanh Vinh Street, Son Tra District, Danang, Vietnam
- Primate Microbiome Project, 6-124 MCB, 420 Washington Ave SE, Minneapolis, MN 55455, USA
- Biotechnology Institute, University of Minnesota, 1479 Gortner Avenue, Saint Paul, MN 55108, USA
| | - Robin R. Shields-Cutler
- Biotechnology Institute, University of Minnesota, 1479 Gortner Avenue, Saint Paul, MN 55108, USA
- Department of Biology, Macalester College, 1600 Grand Ave, St. Paul, MN 55105, USA
| | - Susan L. Hoops
- Biotechnology Institute, University of Minnesota, 1479 Gortner Avenue, Saint Paul, MN 55108, USA
| | - Gabriel A. Al-Ghalith
- Bioinformatics and Computational Biology, 200 Union St SE, University of Minnesota, Minneapolis, MN 55455, USA
| | - John C.M. Sha
- School of Sociology and Anthropology, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Timothy J. Johnson
- Primate Microbiome Project, 6-124 MCB, 420 Washington Ave SE, Minneapolis, MN 55455, USA
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Avenue, Saint Paul, MN 55108, USA
- University of Minnesota, Mid-Central Research and Outreach Center, Willmar, Minnesota, USA
| | - Dan Knights
- Department of Computer Science and Engineering, University of Minnesota, 4-192 Keller Hall, 200 Union St SE, Minneapolis, MN 55455, USA
- Primate Microbiome Project, 6-124 MCB, 420 Washington Ave SE, Minneapolis, MN 55455, USA
- Biotechnology Institute, University of Minnesota, 1479 Gortner Avenue, Saint Paul, MN 55108, USA
| |
Collapse
|
43
|
Björk JR, Dasari M, Grieneisen L, Archie EA. Primate microbiomes over time: Longitudinal answers to standing questions in microbiome research. Am J Primatol 2019; 81:e22970. [PMID: 30941803 PMCID: PMC7193701 DOI: 10.1002/ajp.22970] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/05/2019] [Accepted: 03/07/2019] [Indexed: 12/16/2022]
Abstract
To date, most insights into the processes shaping vertebrate gut microbiomes have emerged from studies with cross-sectional designs. While this approach has been valuable, emerging time series analyses on vertebrate gut microbiomes show that gut microbial composition can change rapidly from 1 day to the next, with consequences for host physical functioning, health, and fitness. Hence, the next frontier of microbiome research will require longitudinal perspectives. Here we argue that primatologists, with their traditional focus on tracking the lives of individual animals and familiarity with longitudinal fecal sampling, are well positioned to conduct research at the forefront of gut microbiome dynamics. We begin by reviewing some of the most important ecological processes governing microbiome change over time, and briefly summarizing statistical challenges and approaches to microbiome time series analysis. We then introduce five questions of general interest to microbiome science where we think field-based primate studies are especially well positioned to fill major gaps: (a) Do early life events shape gut microbiome composition in adulthood? (b) Do shifting social landscapes cause gut microbial change? (c) Are gut microbiome phenotypes heritable across variable environments? (d) Does the gut microbiome show signs of host aging? And (e) do gut microbiome composition and dynamics predict host health and fitness? For all of these questions, we highlight areas where primatologists are uniquely positioned to make substantial contributions. We review preliminary evidence, discuss possible study designs, and suggest future directions.
Collapse
Affiliation(s)
- Johannes R Björk
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
| | - Mauna Dasari
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
| | - Laura Grieneisen
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota
| | - Elizabeth A Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
| |
Collapse
|
44
|
Youngblut ND, Reischer GH, Walters W, Schuster N, Walzer C, Stalder G, Ley RE, Farnleitner AH. Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nat Commun 2019; 10:2200. [PMID: 31097702 PMCID: PMC6522487 DOI: 10.1038/s41467-019-10191-3] [Citation(s) in RCA: 270] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/25/2019] [Indexed: 02/06/2023] Open
Abstract
Multiple factors modulate microbial community assembly in the vertebrate gut, though studies disagree as to their relative contribution. One cause may be a reliance on captive animals, which can have very different gut microbiomes compared to their wild counterparts. To resolve this disagreement, we analyze a new, large, and highly diverse animal distal gut 16 S rRNA microbiome dataset, which comprises 80% wild animals and includes members of Mammalia, Aves, Reptilia, Amphibia, and Actinopterygii. We decouple the effects of host evolutionary history and diet on gut microbiome diversity and show that each factor modulates different aspects of diversity. Moreover, we resolve particular microbial taxa associated with host phylogeny or diet and show that Mammalia have a stronger signal of cophylogeny. Finally, we find that environmental filtering and microbe-microbe interactions differ among host clades. These findings provide a robust assessment of the processes driving microbial community assembly in the vertebrate intestine.
Collapse
Affiliation(s)
- Nicholas D Youngblut
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Max Planck Ring 5, 72076, Tübingen, Germany.
| | - Georg H Reischer
- TU Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Group for Environmental Microbiology and Molecular Diagnostics 166/5/3, Gumpendorfer Straße 1a, 1060, Vienna, Austria
- ICC Interuniversity Cooperation Centre Water & Health, 1160, Vienna, Austria
| | - William Walters
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Max Planck Ring 5, 72076, Tübingen, Germany
| | - Nathalie Schuster
- TU Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Group for Environmental Microbiology and Molecular Diagnostics 166/5/3, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Chris Walzer
- Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, 1160, Austria
| | - Gabrielle Stalder
- Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, 1160, Austria
| | - Ruth E Ley
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Max Planck Ring 5, 72076, Tübingen, Germany
| | - Andreas H Farnleitner
- TU Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Group for Environmental Microbiology and Molecular Diagnostics 166/5/3, Gumpendorfer Straße 1a, 1060, Vienna, Austria
- ICC Interuniversity Cooperation Centre Water & Health, 1160, Vienna, Austria
- Research Division Water Quality and Health, Karl Landsteiner University for Health Sciences, 3500, Krems an der Donau, Austria
| |
Collapse
|
45
|
Hu X, Liu G, Li Y, Wei Y, Lin S, Liu S, Zheng Y, Hu D. High-Throughput Analysis Reveals Seasonal Variation of the Gut Microbiota Composition Within Forest Musk Deer ( Moschus berezovskii). Front Microbiol 2018; 9:1674. [PMID: 30093891 PMCID: PMC6070636 DOI: 10.3389/fmicb.2018.01674] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/04/2018] [Indexed: 01/08/2023] Open
Abstract
The gut microbiota plays a key role in the nutritional ecology of ruminants, and host diet has a significant effect on these microbial communities. Longitudinal studies assessing variation of seasonal microbiota in animals can provide a comparative context for interpreting the adaptive significance of such changes. However, few studies have investigated the effects of seasonally-related dietary shifts on the gut microbial communities of endangered forest musk deer (FMD), and the national breeding programs need this information to promote the growth of captive populations. The present study applied bacterial 16S rRNA genes based on high-throughput sequencing to profile the fecal microbial communities of FMD across four seasons. Microbial diversity was higher in seasons with dry leaf diets (winter and spring) compared to seasons with fresh leaf diets (summer and autumn). The dominant microbial phyla were Firmicutes and Bacteroidetes, and the core bacterial taxa also comprised mostly (94.40% of shared OTUs) Firmicutes (37 taxa) and Bacteroidetes (6 taxa), which were relatively stable across different seasons. The Firmicutes-Bacteroidetes ratio declined in seasons with fresh leaf diets relative to seasons with dry leaf diets, and the dominant genera among the four seasons showed no significant variation in abundance. This work explores the seasonal variation in the microbial communities of FMD for the first time, and reveals how gut microbial community dynamics vary seasonally in accordance with differences in dietary plants (fresh and dry leaf). These results indicate that the annual cyclic reconfiguration of FMD gut microbiota could be associated with shifts in dietary nutrients, which is important information to inform captive FMD management.
Collapse
Affiliation(s)
- Xiaolong Hu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Laboratory of Non-invasive Research Technology for Endangered Species, College of Nature Conservation, Beijing Forestry University, Beijing, China
| | - Gang Liu
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing, China
| | - Yimeng Li
- Laboratory of Non-invasive Research Technology for Endangered Species, College of Nature Conservation, Beijing Forestry University, Beijing, China
| | - Yuting Wei
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Laboratory of Non-invasive Research Technology for Endangered Species, College of Nature Conservation, Beijing Forestry University, Beijing, China
| | - Shaobi Lin
- Zhangzhou Pien Tze Huang Pharmaceutical, Co., Ltd., Zhangzhou, China
| | - Shuqiang Liu
- Laboratory of Non-invasive Research Technology for Endangered Species, College of Nature Conservation, Beijing Forestry University, Beijing, China
| | - Yunlin Zheng
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Defu Hu
- Laboratory of Non-invasive Research Technology for Endangered Species, College of Nature Conservation, Beijing Forestry University, Beijing, China
| |
Collapse
|