1
|
Zheng J, Li YY, Lu YS, Wang D, Liu C, Peng HL, Shi CH, Xie KZ, Zhang K, Sun LL, Zhou CM, Gu WJ. Impact of different continuous fertilizations on the antibiotic resistome associated with a subtropical triple-cropping system over one decade. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 367:125564. [PMID: 39716502 DOI: 10.1016/j.envpol.2024.125564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
The prevalence of antibiotic resistance genes (ARGs) in agricultural soils has garnered significant attention. However, the long-term impacts of various nitroge (N)-substitution fertilization regimes on the distribution of soil ARGs and their dominant drivers in a subtropical triple-cropping system remain largely unexplored. This study employed a metagenomic approach to analyze soil ARGs, microbial communities, mobile genetic elements (MGEs), and viruses from a maize-maize-cabbage rotation field experiment with five different fertilization regimes. Soil samples were collected in 2012 and 2021. A total of 615 unique ARG subtypes were identified, with multidrug, bacitracin, and rifamycin resistance genes being the most abundant. Notably, ARG types. the continuous application of fresh chicken manure (CM) over 10 years significantly increased both the count of unique ARG subtypes and the total ARG abundance compared to other fertilization regimes, such as inorganic fertilizer and composted chicken manure. Specifically, the abundance of genes associated with antibiotic target replacement (e.g., sul1 and sul2) in the CM-treated soil rose by 8.83-fold from 2021 to 2012. Our random forest analysis revealed that the abundance of three MGEs (QacEdelta, plasmids, and IstB), two viral families (Myoviridae and Podoviridae), two bacterial phyla (Chloroflexi and Planctomycetes), and two environmental factors (pH and soil organic matter (SOM)) significantly influenced the distribution of ARGs. Furthermore, variance decomposition analysis underscored the critical roles of the three MGEs and the two viral families in the dissemination of ARGs, suggesting that horizontal gene transfer (HGT) may play a key role in ARG spread. These findings enhance our understanding of how different fertilization practices influence ARG dissemination in subtropical triple-cropping agroecosystems over the long term and provide valuable insights for optimizing fertilization management strategies.
Collapse
Affiliation(s)
- Jin Zheng
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou, 510640, China
| | - Ya-Ying Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou, 510640, China; State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yu-Sheng Lu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou, 510640, China
| | - Dan Wang
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou, 510640, China
| | - Chong Liu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou, 510640, China
| | - Huan-Long Peng
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou, 510640, China
| | - Chao-Hong Shi
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou, 510640, China
| | - Kai-Zhi Xie
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou, 510640, China
| | - Kun Zhang
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou, 510640, China
| | - Li-Li Sun
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou, 510640, China
| | - Chang-Min Zhou
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou, 510640, China
| | - Wen-Jie Gu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou, 510640, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China; State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Academy of Agricultural Sciences, Guangzhou, China.
| |
Collapse
|
2
|
Gao SM, Wang P, Li Q, Shu WS, Tang LY, Lin ZL, Li JT, Huang LN. Deciphering microbial metabolic interactions and their implications for community dynamics in acid mine drainage sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135478. [PMID: 39137550 DOI: 10.1016/j.jhazmat.2024.135478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/28/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
The microbially-mediated reduction processes have potential for the bioremediation of acid mine drainage (AMD), which represents a worldwide environment problem. However, we know little about the microbial interactions in anaerobic AMD sediments. Here we utilized genome-resolved metagenomics to uncover the nature of cooperative and competitive metabolic interactions in 90 AMD sediments across Southern China. Our analyses recovered well-represented prokaryotic communities through the reconstruction of 2625 population genomes. Functional analyses of these genomes revealed extensive metabolic handoffs which occurred more frequently in nitrogen metabolism than in sulfur metabolism, as well as stable functional redundancy across sediments resulting from populations with low genomic relatedness. Genome-scale metabolic modeling showed that metabolic competition promoted microbial co-occurrence relationships, suggesting that community assembly was dominated by habitat filtering in sediments. Notably, communities colonizing more extreme conditions tended to be highly competitive, which was typically accompanied with increased network complexity but decreased stability of the microbiome. Finally, our results demonstrated that heterotrophic Thermoplasmatota associated with ferric iron and sulfate reduction contributed most to the elevated levels of competition. Our study shed light on the cooperative and competitive metabolisms of microbiome in the hazardous AMD sediments, which may provide preliminary clues for the AMD bioremediation in the future.
Collapse
Affiliation(s)
- Shao-Ming Gao
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Pandeng Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Qi Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Wen-Sheng Shu
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Ling-Yun Tang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Zhi-Liang Lin
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jin-Tian Li
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China.
| | - Li-Nan Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
3
|
He Y, Zhuo S, Gao D, Pan Y, Li M, Pan J, Jiang Y, Hu Y, Guo J, Lin Q, Sanford RA, Sun W, Shang J, Wei N, Peng S, Jiang Z, Li S, Li Y, Dong Y, Shi L. Viral communities in a pH>10 serpentinite-like environment: insight into diversity and potential roles in modulating the microbiomes by bioactive vitamin B 9 synthesis. Appl Environ Microbiol 2024; 90:e0085024. [PMID: 39016614 PMCID: PMC11337834 DOI: 10.1128/aem.00850-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/26/2024] [Indexed: 07/18/2024] Open
Abstract
Viral communities exist in a variety of ecosystems and play significant roles in mediating biogeochemical processes, whereas viruses inhabiting strongly alkaline geochemical systems remain underexplored. In this study, the viral diversity, potential functionalities, and virus-host interactions in a strongly alkaline environment (pH = 10.4-12.4) exposed to the leachates derived from the serpentinization-like reactions of smelting slags were investigated. The viral populations (e.g., Herelleviridae, Queuovirinae, and Inoviridae) were closely associated with the dominating prokaryotic hosts (e.g., Meiothermus, Trueperaceae, and Serpentinomonas) in this ultrabasic environment. Auxiliary metabolic genes (AMGs) suggested that viruses may enhance hosts' fitness by facilitating cofactor biosynthesis, hydrogen metabolism, and carbon cycling. To evaluate the activity of synthesis of essential cofactor vitamin B9 by the viruses, a viral folA (vfolA) gene encoding dihydrofolate reductase (DHFR) was introduced into a thymidine-auxotrophic strain Escherichia coli MG1655 ΔfolA mutant, which restored the growth of the latter in the absence of thymidine. Notably, the homologs of the validated vDHFR were globally distributed in the viromes across various ecosystems. The present study sheds new light on the unique viral communities in hyperalkaline ecosystems and their potential beneficial impacts on the coexisting microbial consortia by supplying essential cofactors. IMPORTANCE This study presents a comprehensive investigation into the diversity, potential functionalities, and virus-microbe interactions in an artificially induced strongly alkaline environment. Functional validation of the detected viral folA genes encoding dihydrofolate reductase substantiated the synthesis of essential cofactors by viruses, which may be ubiquitous, considering the broad distribution of the viral genes associated with folate cycling.
Collapse
Affiliation(s)
- Yu He
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Shiyan Zhuo
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Donghao Gao
- School of Environmental Studies, China University of Geosciences, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Yue Pan
- College of Land Science and Technology, China Agricultural University, Beijing, China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Studies, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Jie Pan
- Archaeal Biology Center, Institute for Advanced Studies, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yongguang Jiang
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Yidan Hu
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Jinzhi Guo
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Qin Lin
- Shanghai Biozeron Biological Technology Co. Ltd, China, Shanghai, China
| | - Robert A. Sanford
- Department of Earth Science & Environmental Change, University of Illinois Urbana-Champaign, Urbana, llinois, USA
| | - Weimin Sun
- Guangdong Institute of Eco-environmental and Soil Science, Guangdong, China
| | - Jianying Shang
- College of Land Science and Technology, China Agricultural University, Beijing, China
- Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Na Wei
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Shuming Peng
- Institute of Ecological Environment, Chengdu University of Technology, Chengdu, China
| | - Zhou Jiang
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Shuyi Li
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Yongzhe Li
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Yiran Dong
- School of Environmental Studies, China University of Geosciences, Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan, China
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Beijing, China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, Wuhan, China
| | - Liang Shi
- School of Environmental Studies, China University of Geosciences, Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan, China
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Beijing, China
| |
Collapse
|
4
|
Zhu S, Tan Z, Guo Z, Zheng H, Zhang B, Qin Z, Xie J, Lin Y, Sheng B, Qiu G, Preis S, Wei C. Symbiotic virus-bacteria interactions in biological treatment of coking wastewater manipulating bacterial physiological activities. WATER RESEARCH 2024; 257:121741. [PMID: 38744061 DOI: 10.1016/j.watres.2024.121741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/11/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024]
Abstract
Biological treatment is commonly used in coking wastewater (CWW) treatment. Prokaryotic microbial communities in CWW treatment have been comprehensively studied. However, viruses, as the critical microorganisms affecting microbial processes and thus engineering parameters, still remain poorly understood in CWW treatment context. Employing viromics sequencing, the composition and function of the viral community in CWW treatment were discovered, revealing novel viral communities and key auxiliary metabolic functions. Caudovirales appeared to be the predominant viral order in the oxic-hydrolytic-oxic (OHO) CWW treatment combination, showing relative abundances of 62.47 %, 56.64 % and 92.20 % in bioreactors O1, H and O2, respectively. At the family level, Myoviridae, Podoviridae and Siphoviridae mainly prevailed in bioreactors O1 and H while Phycodnaviridae dominated in O2. A total of 56.23-92.24% of novel viral contigs defied family-level characterization in this distinct CWW habitat. The virus-host prediction results revealed most viruses infecting the specific functional taxa Pseudomonas, Acidovorax and Thauera in the entire OHO combination, demonstrating the viruses affecting bacterial physiology and pollutants removal from CWW. Viral auxiliary metabolic genes (AMGs) were screened, revealing their involvement in the metabolism of contaminants and toxicity tolerance. In the bioreactor O1, AMGs were enriched in detoxification and phosphorus ingestion, where glutathione S-transferase (GSTs) and beta-ketoadipyl CoA thiolase (fadA) participated in biodegradation of polycyclic aromatic hydrocarbons and phenols, respectively. In the bioreactors H and O2, the AMGs focused on cell division and epicyte formation of the hosts, where GDPmannose 4,6-dehydratase (gmd) related to lipopolysaccharides biosynthesis was considered to play an important role in the growth of nitrifiers. The diversities of viruses and AMGs decreased along the CWW treatment process, pointing to a reinforced virus-host adaptive strategy in stressful operation environments. In this study, the symbiotic virus-bacteria interaction patterns were proposed with a theoretical basis for promoting CWW biological treatment efficiency. The findings filled the gaps in the virus-bacteria interactions at the full-scale CWW treatment and provided great value for understanding the mechanism of biological toxicity and sludge activity in industrial wastewater treatment.
Collapse
Affiliation(s)
- Shuang Zhu
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| | - Zhijie Tan
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Ziyu Guo
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Huijian Zheng
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Baoshan Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zhi Qin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Junting Xie
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yuexia Lin
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Binbin Sheng
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Sergei Preis
- Department of Materials and Environmental Technology, Tallinn University of Technology, Tallinn 19086, Estonia
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
5
|
Hassan S, Bhadwal SS, Khan M, Sabreena, Nissa KU, Shah RA, Bhat HM, Bhat SA, Lone IM, Ganai BA. Revitalizing contaminated lands: A state-of-the-art review on the remediation of mine-tailings using phytoremediation and genomic approaches. CHEMOSPHERE 2024; 356:141889. [PMID: 38583533 DOI: 10.1016/j.chemosphere.2024.141889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
The mining industry has historically served as a critical reservoir of essential raw materials driving global economic progress. Nevertheless, the consequential by-product known as mine tailings has consistently produced a substantial footprint of environmental contamination. With annual discharges of mine tailings surpassing 10 billion tons globally, the need for effective remediation strategies is more pressing than ever as traditional physical and chemical remediation techniques are hindered by their high costs and limited efficacy. Phytoremediation utilizing plants for remediation of polluted soil has developed as a promising and eco-friendly approach to addressing mine tailings contamination. Furthermore, sequencing of genomic DNA and transcribed RNA extracted from mine tailings presents a pivotal opportunity to provide critical supporting insights for activities directed towards the reconstruction of ecosystem functions on contaminated lands. This review explores the growing prominence of phytoremediation and metagenomics as an ecologically sustainable techniques for rehabilitating mine-tailings. The present study envisages that plant species such as Solidago chilensis, Festuca arundinacea, Lolium perenne, Polygonum capitatum, Pennisetum purpureum, Maireana brevifolia, Prosopis tamarugo etc. could be utilized for the remediation of mine-tailings. Furthermore, a critical evaluation of the organic and inorganic ammendments that optimize conditions for the remediation of mine tailings is also provided. The focus of this review extends to the exploration of environmental genomics to characterize microbial communities in mining sites. By delving into the multifaceted dimensions of phytoremediation and genomics for mine tailings, this study contributes to the ongoing efforts to revitalize contaminated lands for a sustainable and environmentally friendly future.
Collapse
Affiliation(s)
- Shahnawaz Hassan
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India.
| | - Siloni Singh Bhadwal
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Misba Khan
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Sabreena
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Khair-Ul Nissa
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Rameez Ahmad Shah
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Haneef Mohammad Bhat
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Shabir Ahmad Bhat
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Ishfaq Maqbool Lone
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Bashir Ahmad Ganai
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India.
| |
Collapse
|
6
|
Yang X, Zhou Y, Xia R, Liao J, Liu J, Yu P. Microplastics and chemical leachates from plastic pipes are associated with increased virulence and antimicrobial resistance potential of drinking water microbial communities. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132900. [PMID: 37935064 DOI: 10.1016/j.jhazmat.2023.132900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/06/2023] [Accepted: 10/29/2023] [Indexed: 11/09/2023]
Abstract
There is increasing recognition of the potential impacts of microplastics (MPs) on human health. As drinking water is the most direct route of human exposure to MPs, there is an urgent need to elucidate MPs source and fate in drinking water distribution system (DWDS). Here, we showed polypropylene random plastic pipes exposed to different water quality (chlorination and heating) and environmental (freeze-thaw) conditions accelerated MPs generation and chemical leaching. MPs showed various morphology and aggregation states, and chemical leaches exhibited distinct profiles due to different physicochemical treatments. Based on the physiological toxicity of leachates, oxidative stress level was negatively correlated with disinfection by-products in the leachates. Microbial network analysis demonstrated exposure to leachates (under three treatments) undermined microbial community stability and increased the relative abundance and dominance of pathogenic bacteria. Leachate physical and chemical properties (i.e., MPs abundance, hydrodynamic diameter, zeta potential, total organic carbon, dissolved ECs) exerted significant (p < 0.05) effects on the functional genes related to virulence, antibiotic resistance and metabolic pathways. Notably, chlorination significantly increased correlations among pathogenic bacteria, virulence genes, and antibiotic resistance genes. Overall, this study advances the understanding of direct and indirect risks of these MPs released from plastic pipes in the DWDS.
Collapse
Affiliation(s)
- Xinxin Yang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
| | - Yisu Zhou
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
| | - Rong Xia
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jingqiu Liao
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24060, United States
| | - Jingqing Liu
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China.
| | - Pingfeng Yu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China.
| |
Collapse
|
7
|
Maza-Márquez P, Lee MD, Bebout BM. Community ecology and functional potential of bacteria, archaea, eukarya and viruses in Guerrero Negro microbial mat. Sci Rep 2024; 14:2561. [PMID: 38297006 PMCID: PMC10831059 DOI: 10.1038/s41598-024-52626-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/22/2024] [Indexed: 02/02/2024] Open
Abstract
In this study, the microbial ecology, potential environmental adaptive mechanisms, and the potential evolutionary interlinking of genes between bacterial, archaeal and viral lineages in Guerrero Negro (GN) microbial mat were investigated using metagenomic sequencing across a vertical transect at millimeter scale. The community composition based on unique genes comprised bacteria (98.01%), archaea (1.81%), eukarya (0.07%) and viruses (0.11%). A gene-focused analysis of bacteria archaea, eukarya and viruses showed a vertical partition of the community. The greatest coverages of genes of bacteria and eukarya were detected in first layers, while the highest coverages of genes of archaea and viruses were found in deeper layers. Many genes potentially related to adaptation to the local environment were detected, such as UV radiation, multidrug resistance, oxidative stress, heavy metals, salinity and desiccation. Those genes were found in bacterial, archaeal and viral lineages with 6477, 44, and 1 genes, respectively. The evolutionary histories of those genes were studied using phylogenetic analysis, showing an interlinking between domains in GN mat.
Collapse
Affiliation(s)
- P Maza-Márquez
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, USA.
- University of Granada, Granada, Spain.
| | - M D Lee
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, USA
- Blue Marble Space Institute of Science, Seattle, WA, USA
| | - B M Bebout
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, USA
| |
Collapse
|
8
|
Chen T, Wen X, Zhou J, Lu Z, Li X, Yan B. A critical review on the migration and transformation processes of heavy metal contamination in lead-zinc tailings of China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122667. [PMID: 37783414 DOI: 10.1016/j.envpol.2023.122667] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/11/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
The health risks of lead-zinc (Pb-Zn) tailings from heavy metal (HMs) contamination have been gaining increasing public concern. The dispersal of HMs from tailings poses a substantial threat to ecosystems. Therefore, studying the mechanisms of migration and transformation of HMs in Pb-Zn tailings has significant ecological and environmental significance. Initially, this study encapsulated the distribution and contamination status of Pb-Zn tailings in China. Subsequently, we comprehensively scrutinized the mechanisms governing the migration and transformation of HMs in the Pb-Zn tailings from a geochemical perspective. This examination reveals the intricate interplay between various biotic and abiotic constituents, including environmental factors (EFs), characteristic minerals, organic flotation reagents (OFRs), and microorganisms within Pb-Zn tailings interact through a series of physical, chemical, and biological processes, leading to the formation of complexes, chelates, and aggregates involving HMs and OFRs. These interactions ultimately influence the migration and transformation of HMs. Finally, we provide an overview of contaminant migration prediction and ecological remediation in Pb-Zn tailings. In this systematic review, we identify several forthcoming research imperatives and methodologies. Specifically, understanding the dynamic mechanisms underlying the migration and transformation of HMs is challenging. These challenges encompass an exploration of the weathering processes of characteristic minerals and their interactions with HMs, the complex interplay between HMs and OFRs in Pb-Zn tailings, the effects of microbial community succession during the storage and remediation of Pb-Zn tailings, and the importance of utilizing process-based models in predicting the fate of HMs, and the potential for microbial remediation of tailings.
Collapse
Affiliation(s)
- Tao Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, University Town, Guangzhou, 510006, China.
| | - Xiaocui Wen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Jiawei Zhou
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Zheng Lu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Xueying Li
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Bo Yan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| |
Collapse
|
9
|
Fan L, Peng W, Duan H, Lü F, Zhang H, He P. Presence and role of viruses in anaerobic digestion of food waste under environmental variability. MICROBIOME 2023; 11:170. [PMID: 37537690 PMCID: PMC10401857 DOI: 10.1186/s40168-023-01585-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 05/28/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND The interaction among microorganisms in the anaerobic digestion of food waste (ADFW) reactors lead to the degradation of organics and the recycling of energy. Viruses are an important component of the microorganisms involved in ADFW, but are rarely investigated. Furthermore, little is known about how viruses affect methanogenesis. RESULTS Thousands of viral sequences were recovered from five full-scale ADFW reactors. Gene-sharing networks indicated that the ADFW samples contained substantial numbers of unexplored anaerobic-specific viruses. Moreover, the viral communities in five full-scale reactors exhibited both commonalities and heterogeneities. The lab-scale dynamic analysis of typical ADFW scenarios suggested that the viruses had similar kinetic characteristics to their prokaryotic hosts. By associating with putative hosts, a majority of the bacteria and archaea phyla were found to be infected by viruses. Viruses may influence prokaryotic ecological niches, and thus methanogenesis, by infecting key functional microorganisms, such as sulfate-reducing bacteria (SRB), syntrophic acetate-oxidizing bacteria (SAOB), and methanogens. Metabolic predictions for the viruses suggested that they may collaborate with hosts at key steps of sulfur and long-chain fatty acid (LCFA) metabolism and could be involved in typical methanogenesis pathways to participate in methane production. CONCLUSIONS Our results expanded the diversity of viruses in ADFW systems and suggested two ways that viral manipulated ADFW biochemical processes. Video Abstract.
Collapse
Affiliation(s)
- Lu Fan
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, China
| | - Wei Peng
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
- Shanghai Engineering Research Center of Multi-Source Solid Wastes Co-processing and Energy Utilization, Shanghai, 200092, China.
| | - Haowen Duan
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, China
| | - Fan Lü
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
- Shanghai Engineering Research Center of Multi-Source Solid Wastes Co-processing and Energy Utilization, Shanghai, 200092, China
| | - Hua Zhang
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
- Shanghai Engineering Research Center of Multi-Source Solid Wastes Co-processing and Energy Utilization, Shanghai, 200092, China
| | - Pinjing He
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
- Shanghai Engineering Research Center of Multi-Source Solid Wastes Co-processing and Energy Utilization, Shanghai, 200092, China.
| |
Collapse
|
10
|
Cheng Z, Li X, Palomo A, Yang Q, Han L, Wu Z, Li Z, Zhang M, Chen L, Zhao B, Yu K, Zhang C, Hou S, Zheng Y, Xia Y. Virus impacted community adaptation in oligotrophic groundwater environment revealed by Hi-C coupled metagenomic and viromic study. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131944. [PMID: 37390685 DOI: 10.1016/j.jhazmat.2023.131944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/02/2023]
Abstract
Viruses play a crucial role in microbial mortality, diversity and biogeochemical cycles. Groundwater is the largest global freshwater and one of the most oligotrophic aquatic systems on Earth, but how microbial and viral communities are shaped in this special habitat is largely unexplored. In this study, we collected groundwater samples from 23 to 60 m aquifers at Yinchuan Plain, China. In total, 1920 non-reductant viral contigs were retrieved from metagenomes and viromes constructed by Illumina and Nanopore hybrid sequencing. Only 3% of them could be clustered with known viruses, most of which were Caudoviricetes. Coupling 1.2 Tb Hi-C sequencing with CRISPR matching and homology search, we connected 469 viruses with their hosts while some viral clusters presented a broad-host-range trait. Meanwhile, a large proportion of biosynthesis related auxiliary metabolism genes were identified. Those characteristics might benefit viruses for a better survival in this special oligotrophic environment. Additionally, the groundwater virome showed genomic features distinct from those of the open ocean and wastewater treatment facilities in GC distribution and unannotated gene compositions. This paper expands the current knowledge of the global viromic records and serves as a foundation for a more thorough understanding of viruses in groundwater.
Collapse
Affiliation(s)
- Zhanwen Cheng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiang Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Alejandro Palomo
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qing Yang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Long Han
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ziqi Wu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zengyi Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Miao Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liming Chen
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bixi Zhao
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kaiqiang Yu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chuanlun Zhang
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Department of Ocean Science & Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 510000, China
| | - Shengwei Hou
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Department of Ocean Science & Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 510000, China
| | - Yan Zheng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Department of Ocean Science & Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yu Xia
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
11
|
Gao R, Ma B, Hu M, Fang L, Chen G, Zhang W, Wang Y, Song X, Li F. Ecological drivers and potential functions of viral communities in flooded arsenic-contaminated paddy soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162289. [PMID: 36804971 DOI: 10.1016/j.scitotenv.2023.162289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/21/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
This work revealed the profile of viral communities in paddy soils with different levels of arsenic (As) contamination during the flooded period. The structure of viral communities differed significantly in highly and moderately As-contaminated soils. The diversity of soil viral communities under high As contamination decreased. Siphoviridae, Podoviridae, Myoviridae, and Microviridae were the dominant viral families in all samples, and the relative abundances of five of the top 20 viral genera were significantly different between highly and moderately As-contaminated groups. Seventeen dissimilatory As(V)-reducing bacteria were predicted to host 161 viral operational taxonomic units (vOTUs), mainly affiliated with the genera of Sulfurospirillum, Deferribacter, Bacillus and Fusibacter. Among them, 28 vOTUs were also associated with Fe(III)-reducing bacteria, which belonged to different species of the genus Shewanella. Procrustes analysis showed that the community structure of soil viruses was strongly correlated with both prokaryotic community structure and geochemical properties. Random forest analyses revealed that the Total-Fe, DCB-Fe and oxalate-Fe were the most significant variables on viral community richness, while the total-As concentration was an important factor on the Shannon index. Furthermore, As resistance genes (ArsC, ArsR and ArsD), As methylation genes (arsM) and As transporter genes (Pst and Pit) were identified among the auxiliary metabolic genes (AMGs) of the virome. This work revealed that the viruses might influence microbial adaptation in response to As-induced stress, and provided a perspective on the potential virus-mediated biogeochemical cycling of As.
Collapse
Affiliation(s)
- Ruichuan Gao
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Min Hu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Liping Fang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Guanhong Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Wenqiang Zhang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yiling Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinwei Song
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
12
|
Tang X, Zhong L, Tang L, Fan C, Zhang B, Wang M, Dong H, Zhou C, Rensing C, Zhou S, Zeng G. Lysogenic bacteriophages encoding arsenic resistance determinants promote bacterial community adaptation to arsenic toxicity. THE ISME JOURNAL 2023:10.1038/s41396-023-01425-w. [PMID: 37161002 DOI: 10.1038/s41396-023-01425-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/11/2023]
Abstract
Emerging evidence from genomics gives us a glimpse into the potential contribution of lysogenic bacteriophages (phages) to the environmental adaptability of their hosts. However, it is challenging to quantify this kind of contribution due to the lack of appropriate genetic markers and the associated controllable environmental factors. Here, based on the unique transformable nature of arsenic (the controllable environmental factor), a series of flooding microcosms was established to investigate the contribution of arsM-bearing lysogenic phages to their hosts' adaptation to trivalent arsenic [As(III)] toxicity, where arsM is the marker gene associated with microbial As(III) detoxification. In the 15-day flooding period, the concentration of As(III) was significantly increased, and this elevated As(III) toxicity visibly inhibited the bacterial population, but the latter quickly adapted to As(III) toxicity. During the flooding period, some lysogenic phages re-infected new hosts after an early burst, while others persistently followed the productive cycle (i.e., lytic cycle). The unique phage-host interplay contributed to the rapid spread of arsM among soil microbiota, enabling the quick recovery of the bacterial community. Moreover, the higher abundance of arsM imparted a greater arsenic methylation capability to soil microbiota. Collectively, this study provides experimental evidence for lysogenic phages assisting their hosts in adapting to an extreme environment, which highlights the ecological perspectives on lysogenic phage-host mutualism.
Collapse
Affiliation(s)
- Xiang Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China
| | - Linrui Zhong
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Changzheng Fan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China.
| | - Baowei Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Mier Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Haoran Dong
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Christopher Rensing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China.
| |
Collapse
|
13
|
Luo ZH, Li Q, Chen N, Tang LY, Liao B, Yang TT, Huang LN. Genome-resolved metagenomics reveals depth-related patterns of microbial community structure and functions in a highly stratified, AMD overlaying mine tailings. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130774. [PMID: 36641850 DOI: 10.1016/j.jhazmat.2023.130774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Acid mine drainage (AMD) is a worldwide environmental problem, yet bioremediation is hampered by a limited knowledge of the reductive microbial processes in the AMD ecosystem. Here, we generate extensive metagenome and geochemical datasets to investigate how microbial populations and metabolic capacities driving major element cycles are structured in a highly stratified, AMD overlaying tailings environment. The results demonstrated an explicit depth-dependent differentiation of microbial community composition and function profiles between the surface and deeper tailings layers, paralleling the dramatic shifts in major physical and geochemical properties. Specifically, key genes involved in sulfur and iron oxidation were significantly enriched in the surface tailings, whereas those associated with reductive nitrogen, sulfur, and iron processes were enriched in the deeper layers. Genome-resolved metagenomics retrieved 406 intermediate or high-quality genomes spanning 26 phyla, including major new groups (e.g., Patescibacteria and DPANN). Metabolic models involving nitrogen, sulfur, iron, and carbon cycles were proposed based on the functional potentials of the abundant microbial genomes, emphasizing syntrophy and the importance of lesser-known taxa in the degradation of complex carbon compounds. These results have implications for in situ AMD bioremediation.
Collapse
Affiliation(s)
- Zhen-Hao Luo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qi Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Nan Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ling-Yun Tang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bin Liao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tao-Tao Yang
- Guangdong Heavy Metal Mine Ecological Restoration Engineering Technology Research Center, Shaoguan, China
| | - Li-Nan Huang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
14
|
Diverse Methylmercury (MeHg) Producers and Degraders Inhabit Acid Mine Drainage Sediments, but Few Taxa Correlate with MeHg Accumulation. mSystems 2023; 8:e0073622. [PMID: 36507660 PMCID: PMC9948709 DOI: 10.1128/msystems.00736-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Methylmercury (MeHg) is a notorious neurotoxin, and its production and degradation in the environment are mainly driven by microorganisms. A variety of microbial MeHg producers carrying the gene pair hgcAB and degraders carrying the merB gene have been separately reported in recent studies. However, surprisingly little attention has been paid to the simultaneous investigation of the diversities of microbial MeHg producers and degraders in a given habitat, and no studies have been performed to explore to what extent these two contrasting microbial groups correlate with MeHg accumulation in the habitat of interest. Here, we collected 86 acid mine drainage (AMD) sediments from an area spanning approximately 500,000 km2 in southern China and profiled the sediment-borne putative MeHg producers and degraders using genome-resolved metagenomics. 46 metagenome-assembled genomes (MAGs) containing hgcAB and 93 MAGs containing merB were obtained, including those from various taxa without previously known MeHg-metabolizing microorganisms. These diverse MeHg-metabolizing MAGs were formed largely via multiple independent horizontal gene transfer (HGT) events. The putative MeHg producers from Deltaproteobacteria and Firmicutes as well as MeHg degraders from Acidithiobacillia were closely correlated with MeHg accumulation in the sediments. Furthermore, these three taxa, in combination with two abiotic factors, explained over 60% of the variance in MeHg accumulation. Most of the members of these taxa were characterized by their metabolic potential for nitrogen fixation and copper tolerance. Overall, these findings improve our understanding of the ecology of MeHg-metabolizing microorganisms and likely have implications for the development of management strategies for the reduction of MeHg accumulation in the AMD sediments. IMPORTANCE Microorganisms are the main drivers of MeHg production and degradation in the environment. However, little attention has been paid to the simultaneous investigation of the diversities of microbial MeHg producers and degraders in a given habitat. We used genome-resolved metagenomics to reveal the vast phylogenetic and metabolic diversities of putative MeHg producers and degraders in AMD sediments. Our results show that the diversity of MeHg-metabolizing microorganisms (particularly MeHg degraders) in AMD sediments is much higher than was previously recognized. Via multiple linear regression analysis, we identified both microbial and abiotic factors affecting MeHg accumulation in AMD sediments. Despite their great diversity, only a few taxa of MeHg-metabolizing microorganisms were closely correlated with MeHg accumulation. This work underscores the importance of using genome-resolved metagenomics to survey MeHg-metabolizing microorganisms and provides a framework for the illumination of the microbial basis of MeHg accumulation via the characterization of physicochemical properties, MeHg-metabolizing microorganisms, and the correlations between them.
Collapse
|
15
|
Tundra Soil Viruses Mediate Responses of Microbial Communities to Climate Warming. mBio 2023; 14:e0300922. [PMID: 36786571 PMCID: PMC10127799 DOI: 10.1128/mbio.03009-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
The rise of global temperature causes the degradation of the substantial reserves of carbon (C) stored in tundra soils, in which microbial processes play critical roles. Viruses are known to influence the soil C cycle by encoding auxiliary metabolic genes and infecting key microorganisms, but their regulation of microbial communities under climate warming remains unexplored. In this study, we evaluated the responses of viral communities for about 5 years of experimental warming at two depths (15 to 25 cm and 45 to 55 cm) in the Alaskan permafrost region. Our results showed that the viral community and functional gene composition and abundances (including viral functional genes related to replication, structure, infection, and lysis) were significantly influenced by environmental conditions such as total nitrogen (N), total C, and soil thawing duration. Although long-term warming did not impact the viral community composition at the two depths, some glycoside hydrolases encoded by viruses were more abundant at both depths of the warmed plots. With the continuous reduction of total C, viruses may alleviate methane release by altering infection strategies on methanogens. Importantly, viruses can adopt lysogenic and lytic lifestyles to manipulate microbial communities at different soil depths, respectively, which could be one of the major factors causing the differences in microbial responses to warming. This study provides a new ecological perspective on how viruses regulate the responses of microbes to warming at community and functional scales. IMPORTANCE Permafrost thawing causes microbial release of greenhouse gases, exacerbating climate warming. Some previous studies examined the responses of the microbial communities and functions to warming in permafrost region, but the roles of viruses in mediating the responses of microbial communities to warming are poorly understood. This study revealed that warming induced changes in some viral functional classes and in the virus/microbe ratios for specific lineages, which might influence the entire microbial community. Furthermore, differences in viral communities and functions, along with soil depths, are important factors influencing microbial responses to warming. Collectively, our study revealed the regulation of microbial communities by viruses and demonstrated the importance of viruses in the microbial ecology research.
Collapse
|
16
|
Zhao J, Wang Z, Li C, Shi T, Liang Y, Jiao N, Zhang Y. Significant Differences in Planktonic Virus Communities Between "Cellular Fraction" (0.22 ~ 3.0 µm) and "Viral Fraction" (< 0.22 μm) in the Ocean. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02167-6. [PMID: 36585490 DOI: 10.1007/s00248-022-02167-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Compared to free-living viruses (< 0.22 m) in the ocean, planktonic viruses in the "cellular fraction" (0.22 ~ 3.0 μm) are now far less well understood, and the differences between them remain largely unexplored. Here, we revealed that even in the same seawater samples, the "cellular fraction" comprised significantly distinct virus communities from the free virioplankton, with only 13.87% overlap in viral contigs at the species level. Compared to the viral genomes deposited in NCBI RefSeq database, 99% of the assembled viral genomes in the "cellular fraction" represented novel genera. Notably, the assembled (near-) complete viral genomes within the "cellular fraction" were significantly larger than that in the "viral fraction," and the "cellular fraction" contained three times more species of giant viruses or jumbo phages with genomes > 200 kb than the "viral fraction." The longest complete genomes of jumbo phage (~ 252 kb) and giant virus (~ 716 kb) were both detected only in the "cellular fraction." Moreover, a relatively higher proportion of proviruses were predicted within the "cellular fraction" than "viral fraction." Besides the substantial divergence in viral community structure, the different fractions also contained their unique viral auxiliary metabolic genes; e.g., those potentially participating in inorganic carbon fixation in deep sea were detected only in the "cellular-fraction" viromes. In addition, there was a considerable divergence in the community structure of both "cellular fraction" and "viral fraction" viromes between the surface and deep-sea habitats, suggesting that they might have similar environmental adaptation properties. The findings deepen our understanding of the complexity of viral community structure and function in the ocean.
Collapse
Affiliation(s)
- Jiulong Zhao
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zengmeng Wang
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengcheng Li
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Tongmei Shi
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yantao Liang
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China
| | - Yongyu Zhang
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
17
|
Luo XQ, Wang P, Li JL, Ahmad M, Duan L, Yin LZ, Deng QQ, Fang BZ, Li SH, Li WJ. Viral community-wide auxiliary metabolic genes differ by lifestyles, habitats, and hosts. MICROBIOME 2022; 10:190. [PMID: 36333738 PMCID: PMC9636769 DOI: 10.1186/s40168-022-01384-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/04/2022] [Indexed: 06/02/2023]
Abstract
BACKGROUND Viral-encoded auxiliary metabolic genes (AMGs) are important toolkits for modulating their hosts' metabolisms and the microbial-driven biogeochemical cycles. Although the functions of AMGs have been extensively reported in numerous environments, we still know little about the drivers that shape the viral community-wide AMG compositions in natural ecosystems. Exploring the drivers of viral community-wide AMG compositions is critical for a deeper understanding of the complex interplays among viruses, hosts, and the environments. RESULTS Here, we investigated the impact of viral lifestyles (i.e., lytic and lysogenic), habitats (i.e., water, particle, and sediment), and prokaryotic hosts on viral AMG profiles by utilizing metagenomic and metatranscriptomic techniques. We found that viral lifestyles were the most important drivers, followed by habitats and host identities. Specifically, irrespective of what habitats viruses came from, lytic viruses exhibited greater AMG diversity and tended to encode AMGs for chaperone biosynthesis, signaling proteins, and lipid metabolism, which could boost progeny reproduction, whereas temperate viruses were apt to encode AMGs for host survivability. Moreover, the lytic and temperate viral communities tended to mediate the microbial-driven biogeochemical cycles, especially nitrogen metabolism, in different manners via AMGs. When focusing on each lifestyle, we further found clear dissimilarity in AMG compositions between water and sediment, as well the divergent AMGs encoded by viruses infecting different host orders. CONCLUSIONS Overall, our study provides a first systematic characterization of the drivers of viral community-wide AMG compositions and further expands our knowledge of the distinct interactions of lytic and temperate viruses with their prokaryotic hosts from an AMG perspective, which is critical for understanding virus-host-environment interactions in natural conditions. Video Abstract.
Collapse
Affiliation(s)
- Xiao-Qing Luo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Pandeng Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
- School of Ecology, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China.
| | - Jia-Ling Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Manzoor Ahmad
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Li Duan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Ling-Zi Yin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Qi-Qi Deng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Bao-Zhu Fang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Shan-Hui Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.
| |
Collapse
|
18
|
Zhou YL, Mara P, Vik D, Edgcomb VP, Sullivan MB, Wang Y. Ecogenomics reveals viral communities across the Challenger Deep oceanic trench. Commun Biol 2022; 5:1055. [PMID: 36192584 PMCID: PMC9529941 DOI: 10.1038/s42003-022-04027-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 09/23/2022] [Indexed: 11/23/2022] Open
Abstract
Despite the environmental challenges and nutrient scarcity, the geographically isolated Challenger Deep in Mariana trench, is considered a dynamic hotspot of microbial activity. Hadal viruses are the least explored microorganisms in Challenger Deep, while their taxonomic and functional diversity and ecological impact on deep-sea biogeochemistry are poorly described. Here, we collect 13 sediment cores from slope and bottom-axis sites across the Challenger Deep (down to ~11 kilometers depth), and identify 1,628 previously undescribed viral operational taxonomic units at species level. Community-wide analyses reveals 1,299 viral genera and distinct viral diversity across the trench, which is significantly higher at the bottom-axis vs. slope sites of the trench. 77% of these viral genera have not been previously identified in soils, deep-sea sediments and other oceanic settings. Key prokaryotes involved in hadal carbon and nitrogen cycling are predicted to be potential hosts infected by these viruses. The detected putative auxiliary metabolic genes suggest that viruses at Challenger Deep could modulate the carbohydrate and sulfur metabolisms of their potential hosts, and stabilize host's cell membranes under extreme hydrostatic pressures. Our results shed light on hadal viral metabolic capabilities, contribute to understanding deep sea ecology and on functional adaptions of hadal viruses for future research.
Collapse
Affiliation(s)
- Ying-Li Zhou
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Paraskevi Mara
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Dean Vik
- Department of Microbiology and Center of Microbiome Science, The Ohio State University, Columbus, OH, USA
| | - Virginia P Edgcomb
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Matthew B Sullivan
- Department of Microbiology and Center of Microbiome Science, The Ohio State University, Columbus, OH, USA
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, USA
| | - Yong Wang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China.
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
| |
Collapse
|
19
|
Qi H, Huang D, Wang F, Ye M, Jiang X. Spatial dynamics of prokaryotic microbial communities in sediments of the Yellow Sea: Assembly process, co-occurrence relationships, and environmental implications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115645. [PMID: 35797911 DOI: 10.1016/j.jenvman.2022.115645] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Marine sediment microorganisms play an important role in the biogeochemical cycle of elements and the transformation of exogenous pollutants; therefore, it is important to study the microbial assembly process and inter taxa associations. In this study, we investigated the profiles and assembly processes of microbial communities of sediments collected from 19 points in the Yellow Sea. As revealed by 16S rRNA sequencing, Proteobacteria (43.11%-65.54%) was the dominant phylum in marine sediment. Further, the physicochemical properties of sediments were significantly influenced by depth (P < 0.05), and the effects of homogeneous selection became greater with increasing depth. The microbial species located in marine sediment at 35°N had a significantly higher co-occurrence relationship (82.76%) than those at 34°N (57.99%) and 36°N (54.07%). Additionally, the microbial community structure of the sediments changed significantly at the genus level with strong fluctuations in the physicochemical properties. By contrast, the carbon, nitrogen, and sulfur associated functional gene diversity and abundance showed no clear variation among different locations, indicating the probable functional redundancy and a potential functional gene pool of the microbes in marine sediments. This study could provide new insights into the composition of microorganisms in sediments in the Yellow Sea, the driving force of microbial diversity, the assembly process, the modes of species' co-occurrence, and their ecological functions.
Collapse
Affiliation(s)
- Huiyuan Qi
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Dan Huang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Fenghe Wang
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China
| | - Mao Ye
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China.
| | - Xin Jiang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China
| |
Collapse
|
20
|
Gao C, Liang Y, Jiang Y, Paez-Espino D, Han M, Gu C, Wang M, Yang Y, Liu F, Yang Q, Gong Z, Zhang X, Luo Z, He H, Guo C, Shao H, Zhou C, Shi Y, Xin Y, Xing J, Tang X, Qin Q, Zhang YZ, He J, Jiao N, McMinn A, Tian J, Suttle CA, Wang M. Virioplankton assemblages from challenger deep, the deepest place in the oceans. iScience 2022; 25:104680. [PMID: 35942087 PMCID: PMC9356048 DOI: 10.1016/j.isci.2022.104680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/25/2022] [Accepted: 06/23/2022] [Indexed: 11/26/2022] Open
Abstract
Hadal ocean biosphere, that is, the deepest part of the world's oceans, harbors a unique microbial community, suggesting a potential uncovered co-occurring virioplankton assemblage. Herein, we reveal the unique virioplankton assemblages of the Challenger Deep, comprising 95,813 non-redundant viral contigs from the surface to the hadal zone. Almost all of the dominant viral contigs in the hadal zone were unclassified, potentially related to Alteromonadales and Oceanospirillales. 2,586 viral auxiliary metabolic genes from 132 different KEGG orthologous groups were mainly related to the carbon, nitrogen, sulfur, and arsenic metabolism. Lysogenic viral production and integrase genes were augmented in the hadal zone, suggesting the prevalence of viral lysogenic life strategy. Abundant rve genes in the hadal zone, which function as transposase in the caudoviruses, further suggest the prevalence of viral-mediated horizontal gene transfer. This study provides fundamental insights into the virioplankton assemblages of the hadal zone, reinforcing the necessity of incorporating virioplankton into the hadal biogeochemical cycles.
Collapse
Affiliation(s)
- Chen Gao
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
- UMT-OUC Joint Center for Marine Studies, Qingdao 266003, China
| | - Yantao Liang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
- UMT-OUC Joint Center for Marine Studies, Qingdao 266003, China
| | - Yong Jiang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
- UMT-OUC Joint Center for Marine Studies, Qingdao 266003, China
| | - David Paez-Espino
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Mammoth Biosciences, Inc., South San Francisco, CA, USA
| | - Meiaoxue Han
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
- UMT-OUC Joint Center for Marine Studies, Qingdao 266003, China
| | - Chengxiang Gu
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
- UMT-OUC Joint Center for Marine Studies, Qingdao 266003, China
| | - Meiwen Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
- UMT-OUC Joint Center for Marine Studies, Qingdao 266003, China
| | - Yumei Yang
- Inquire Life Diagnostics, Inc, Xi’an 710100, China
| | - Fengjiao Liu
- The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Qingwei Yang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
- UMT-OUC Joint Center for Marine Studies, Qingdao 266003, China
| | - Zheng Gong
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
- UMT-OUC Joint Center for Marine Studies, Qingdao 266003, China
| | - Xinran Zhang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
- UMT-OUC Joint Center for Marine Studies, Qingdao 266003, China
| | - Zhixiang Luo
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
- UMT-OUC Joint Center for Marine Studies, Qingdao 266003, China
| | - Hui He
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
- UMT-OUC Joint Center for Marine Studies, Qingdao 266003, China
| | - Cui Guo
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
- UMT-OUC Joint Center for Marine Studies, Qingdao 266003, China
| | - Hongbing Shao
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
- UMT-OUC Joint Center for Marine Studies, Qingdao 266003, China
| | - Chun Zhou
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Physical Oceanography, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yang Shi
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Physical Oceanography, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yu Xin
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China
| | - Jinyan Xing
- The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xuexi Tang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
| | - Qilong Qin
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China
| | - Yu-Zhong Zhang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China
| | - Jianfeng He
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, China
| | - Nianzhi Jiao
- Institute of Marine Microbes and Ecospheres, State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Andrew McMinn
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7001, Australia
| | - Jiwei Tian
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Physical Oceanography, Ministry of Education, Ocean University of China, Qingdao 266100, China
- Laboratory for Ocean and Climate Dynamics, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Curtis A. Suttle
- Departments of Earth, Ocean and Atmospheric Sciences, Microbiology and Immunology and Botany and Institute for the Oceans and Fisheries, the University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Min Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
- UMT-OUC Joint Center for Marine Studies, Qingdao 266003, China
- The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| |
Collapse
|
21
|
Li XY, Mei C, Luo XY, Wulamu D, Zhan S, Huang YP, Yang H. Dynamics of the intestinal bacterial community in black soldier fly larval guts and its influence on insect growth and development. INSECT SCIENCE 2022. [PMID: 35811567 DOI: 10.1111/1744-7917.13095] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 06/05/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Black soldier fly (BSF), Hermetia illucens (Diptera: Stratiomyidae), is a prominent insect for the bioconversion of various organic wastes. As a saprotrophic insect, the BSF inhabits microbe-rich environments. However, the influences of the intestinal microorganisms on BSF growth and development are not very clear. In this study, the dynamics of the intestinal bacterial community of BSF larvae (BSFL) were analyzed using pyrosequencing. Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria were the most prevalent bacterial phyla in the intestines of all larval instars. The dynamic changes in bacterial community compositions among different larval instars were striking at the genus level. Klebsiella, Clostridium, Providencia, and Dysgonomonas were the relatively most abundant bacteria in the 1st- to 4th-instar BSFL, respectively. Dysgonomonas and Providencia also dominated the 5th- and 6th-instar larvae, at ratios of 31.1% and 47.2%, respectively. In total, 148 bacterial strains affiliated with 20 genera were isolated on different media under aerobic and anaerobic conditions. Among them, 6 bacteria, BSF1-BSF6, were selected for further study. The inoculation of the 6 isolates independently into germ-free BSFL feeding on an artificial diet showed that all the bacteria, except BSF4, significantly promoted BSF growth and development compared with the germ-free control. Citrobacter, Dysgonomonas, Klebsiella, Ochrobactrum, and Providencia promoted BSF development significantly by increasing the weight gains of larvae and pupae, as well as increasing the prepupae and eclosion rates. In addition, Citrobacter, Klebsiella and Providencia shortened the BSF life cycle significantly. The results illustrate the promotive effects of intestinal bacteria on BSF growth and development.
Collapse
Affiliation(s)
- Xin-Yu Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Cheng Mei
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Xing-Yu Luo
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dilinuer Wulamu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Shuai Zhan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yong-Ping Huang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hong Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
22
|
Chu Y, Zhao Z, Cai L, Zhang G. Viral diversity and biogeochemical potential revealed in different prawn-culture sediments by virus-enriched metagenome analysis. ENVIRONMENTAL RESEARCH 2022; 210:112901. [PMID: 35227678 DOI: 10.1016/j.envres.2022.112901] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
As the most numerous biological entities on Earth, viruses affect the microbial dynamics, metabolism and biogeochemical cycles in the aquatic ecosystems. Viral diversity and functions in ocean have been relatively well studied, but our understanding of viruses in mariculture systems is limited. To fill this knowledge gap, we studied viral diversity and potential biogeochemical impacts of sediments from four different prawn-mariculture ecosystems (mono-culture of prawn and poly-culture of prawn with jellyfish, sea cucumber, and clam) using a metagenomic approach with prior virus-like particles (VLPs) separation. We found that the order Caudovirales was the predominant viral category and accounted for the most volume (78.39% of classified viruses). Sediment viruses were verified to have a high diversity by using the construct phylogenetic tree of terL gene, with three potential novel clades being identified. Meanwhile, compared with viruses inhabiting other ecosystems based on gene-sharing network, our results revealed that mariculture sediments harbored considerable unexplored viral diversity and that maricultural species were potentially important drivers of the viral community structure. Notably, viral auxiliary metabolic genes were identified and suggested that viruses influence carbon and sulfur cycling, as well as cofactors/vitamins and amino acid metabolism, which indirectly participate in biogeochemical cycling. Overall, our findings revealed the genomic diversity and ecological function of viral communities in prawn mariculture sediments, and suggested the role of viruses in microbial ecology and biogeochemistry.
Collapse
Affiliation(s)
- Yunmeng Chu
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, 361021, Fujian, China
| | - Zelong Zhao
- Shanghai BIOZERON Biotechnology Co., Ltd., Shanghai, 201800, China
| | - Lixi Cai
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, 361021, Fujian, China; Faculty of Basic Medicine, Putian University, Putian, 351100, Fujian, China
| | - Guangya Zhang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, 361021, Fujian, China.
| |
Collapse
|
23
|
Wang L, Wang Y, Huang X, Ma R, Li J, Wang F, Jiao N, Zhang R. Potential metabolic and genetic interaction among viruses, methanogen and methanotrophic archaea, and their syntrophic partners. ISME COMMUNICATIONS 2022; 2:50. [PMID: 37938729 PMCID: PMC9723712 DOI: 10.1038/s43705-022-00135-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/30/2022] [Accepted: 06/15/2022] [Indexed: 04/27/2023]
Abstract
The metabolism of methane in anoxic ecosystems is mainly mediated by methanogens and methane-oxidizing archaea (MMA), key players in global carbon cycling. Viruses are vital in regulating their host fate and ecological function. However, our knowledge about the distribution and diversity of MMA viruses and their interactions with hosts is rather limited. Here, by searching metagenomes containing mcrA (the gene coding for the α-subunit of methyl-coenzyme M reductase) from a wide variety of environments, 140 viral operational taxonomic units (vOTUs) that potentially infect methanogens or methane-oxidizing archaea were retrieved. Four MMA vOTUs (three infecting the order Methanobacteriales and one infecting the order Methanococcales) were predicted to cross-domain infect sulfate-reducing bacteria. By facilitating assimilatory sulfur reduction, MMA viruses may increase the fitness of their hosts in sulfate-depleted anoxic ecosystems and benefit from synthesis of the sulfur-containing amino acid cysteine. Moreover, cell-cell aggregation promoted by MMA viruses may be beneficial for both the viruses and their hosts by improving infectivity and environmental stress resistance, respectively. Our results suggest a potential role of viruses in the ecological and environmental adaptation of methanogens and methane-oxidizing archaea.
Collapse
Affiliation(s)
- Long Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xingyu Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ruijie Ma
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Jiangtao Li
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| | - Fengping Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| |
Collapse
|
24
|
Zhang B, Deng J, Xie J, Wu H, Wei C, Li Z, Qiu G, Wei C, Zhu S. Microbial community composition and function prediction involved in the hydrolytic bioreactor of coking wastewater treatment process. Arch Microbiol 2022; 204:426. [PMID: 35751757 DOI: 10.1007/s00203-022-03052-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 04/08/2022] [Accepted: 06/03/2022] [Indexed: 11/25/2022]
Abstract
The hydrolytic acidification process has a strong ability to conduct denitrogenation and increase the biological oxygen demand/chemical oxygen demand ratio in O/H/O coking wastewater treatment system. More than 80% of the total nitrogen (TN) was removed in the hydrolytic bioreactor, and the hydrolytic acidification process contributed to the provision of carbon sources for the subsequent nitrification process. The structure and diversity of microbial communities were elaborated using high-throughput MiSeq of the 16S rRNA genes. The results revealed that the operational taxonomic units (OTUs) belonged to phyla Bacteroidetes, Betaproteobacteria, and Alphaproteobacteria were the dominant taxa involved in the denitrogenation and degradation of refractory contaminants in the hydrolytic bioreactor, with relative abundances of 22.94 ± 3.72, 29.77 ± 2.47, and 18.23 ± 0.26%, respectively. The results of a redundancy analysis showed that the OTUs belonged to the genera Thiobacillus, Rhodoplanes, and Hylemonella in the hydrolytic bioreactor strongly positively correlated with the chemical oxygen demand, TN, and the removal of phenolics, respectively. The results of a microbial co-occurrence network analysis showed that the OTUs belonged to the phylum Bacteroidetes and the genus Rhodoplanes had a significant impact on the efficiency of removal of contaminants that contained nitrogen in the hydrolytic bioreactor. The potential function profiling results indicate the complementarity of nitrogen metabolism, methane metabolism, and sulfur metabolism sub-pathways that were considered to play a significant role in the process of denitrification. These results provide new insights into the further optimization of the performance of the hydrolytic bioreactor in coking wastewater treatment.
Collapse
Affiliation(s)
- Baoshan Zhang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jinsi Deng
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Junting Xie
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Haizhen Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Cong Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Zemin Li
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, China.
| | - Shuang Zhu
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
25
|
Shi LD, Dong X, Liu Z, Yang Y, Lin JG, Li M, Gu JD, Zhu LZ, Zhao HP. A mixed blessing of viruses in wastewater treatment plants. WATER RESEARCH 2022; 215:118237. [PMID: 35245718 DOI: 10.1016/j.watres.2022.118237] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Activated sludge of wastewater treatment plants harbors a very high diversity of both microorganisms and viruses, wherein the latter control microbial dynamics and metabolisms by infection and lysis of cells. However, it remains poorly understood how viruses impact the biochemical processes of activated sludge, for example in terms of treatment efficiency and pollutant removal. Using metagenomic and metatranscriptomic deep sequencing, the present study recovered thousands of viral sequences from activated sludge samples of three conventional wastewater treatment plants. Gene-sharing network indicated that most of viruses could not be assigned to known viral genera, implying activated sludge as an underexplored reservoir for new viruses and viral diversity. In silico predictions of virus-host linkages demonstrated that infected microbial hosts, mostly belonging to bacteria, were transcriptionally active and able to hydrolyze polymers including starches, celluloses, and proteins. Some viruses encode auxiliary metabolic genes (AMGs) involved in carbon, nitrogen, and sulfur cycling, and antibiotic resistance genes (ARGs) for resistance to multiple drugs. The virus-encoded AMGs may enhance the biodegradation of contaminants like starches and celluloses, suggesting a positive role for viruses in strengthening the performance of activated sludge. However, ARGs would be disseminated to different microorganisms using viruses as gene shuttles, demonstrating the possibility for viruses to facilitate the spread of antibiotic resistance in the environment. Collectively, this study highlights the mixed blessing of viruses in wastewater treatment plants, and deciphers how they manipulate the biochemical processes in the activated sludge, with implications for both environmental protection and ecosystem security.
Collapse
Affiliation(s)
- Ling-Dong Shi
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiyang Dong
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Zongbao Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Yuchun Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - Jih-Gaw Lin
- Institute of Environmental Engineering, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Ji-Dong Gu
- Environmental Science and Engineering Program, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
| | - Li-Zhong Zhu
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - He-Ping Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
26
|
Patterns and ecological drivers of viral communities in acid mine drainage sediments across Southern China. Nat Commun 2022; 13:2389. [PMID: 35501347 PMCID: PMC9061769 DOI: 10.1038/s41467-022-30049-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 04/14/2022] [Indexed: 11/09/2022] Open
Abstract
Recent advances in environmental genomics have provided unprecedented opportunities for the investigation of viruses in natural settings. Yet, our knowledge of viral biogeographic patterns and the corresponding drivers is still limited. Here, we perform metagenomic deep sequencing on 90 acid mine drainage (AMD) sediments sampled across Southern China and examine the biogeography of viruses in this extreme environment. The results demonstrate that prokaryotic communities dictate viral taxonomic and functional diversity, abundance and structure, whereas other factors especially latitude and mean annual temperature also impact viral populations and functions. In silico predictions highlight lineage-specific virus-host abundance ratios and richness-dependent virus-host interaction structure. Further functional analyses reveal important roles of environmental conditions and horizontal gene transfers in shaping viral auxiliary metabolic genes potentially involved in phosphorus assimilation. Our findings underscore the importance of both abiotic and biotic factors in predicting the taxonomic and functional biogeographic dynamics of viruses in the AMD sediments. The biogeography of viral communities in extreme environments remains understudied. Here, the authors use metagenomic sequencing on 90 acid mine drainage sediments sampled across Southern China, showing the predominant effects of prokaryotic communities and the influence of environmental variables on viral taxonomy and function.
Collapse
|
27
|
Cao MM, Liu SY, Bi L, Chen SJ, Wu HY, Ge Y, Han B, Zhang LM, He JZ, Han LL. Distribution Characteristics of Soil Viruses Under Different Precipitation Gradients on the Qinghai-Tibet Plateau. Front Microbiol 2022; 13:848305. [PMID: 35464951 PMCID: PMC9022101 DOI: 10.3389/fmicb.2022.848305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Viruses are extremely abundant in the soil environment and have potential roles in impacting on microbial population, evolution, and nutrient biogeochemical cycles. However, how environment and climate changes affect soil viruses is still poorly understood. Here, a metagenomic approach was used to investigate the distribution, diversity, and potential biogeochemical impacts of DNA viruses in 12 grassland soils under three precipitation gradients on the Qinghai-Tibet Plateau, which is one of the most sensitive areas to climate change. A total of 557 viral operational taxonomic units were obtained, spanning 152 viral families from the 30 metagenomes. Both virus-like particles (VLPs) and microbial abundance increased with average annual precipitation. A significant positive correlation of VLP counts was observed with soil water content, total carbon, total nitrogen, soil organic matter, and total phosphorus. Among these biological and abiotic factors, SWC mainly contributed to the variability in VLP abundance. The order Caudovirales (70.1% of the identified viral order) was the predominant viral type in soils from the Qinghai-Tibet Plateau, with the Siphoviridae family being the most abundant. Remarkably, abundant auxiliary carbohydrate-active enzyme (CAZyme) genes represented by glycoside hydrolases were identified, indicating that soil viruses may play a potential role in the carbon cycle on the Qinghai-Tibet Plateau. There were more diverse hosts and abundant CAZyme genes in soil with moderate precipitation. Our study provides a strong evidence that changes in precipitation impact not only viral abundance and virus–host interactions in soil but also the viral functional potential, especially carbon cycling.
Collapse
Affiliation(s)
- Miao-Miao Cao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Si-Yi Liu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,The Zhongke-Ji'an Institute for Eco-Environmental Sciences, Ji'an, China
| | - Li Bi
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Shu-Jun Chen
- Information Technology Center, Tsinghua University, Beijing, China
| | - Hua-Yong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yuan Ge
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Bing Han
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Li-Mei Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ji-Zheng He
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.,Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Li-Li Han
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
28
|
Bi L, Yu DT, Han LL, Du S, Yuan CY, He JZ, Hu HW. Unravelling the ecological complexity of soil viromes: Challenges and opportunities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152217. [PMID: 34890674 DOI: 10.1016/j.scitotenv.2021.152217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/26/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
Viruses are extremely abundant and ubiquitous in soil, and significantly contribute to various terrestrial ecosystem processes such as biogeochemical nutrient cycling, microbiome regulation and community assembly, and host evolutionary dynamics. Despite their numerous dominance and functional importance, understanding soil viral ecology is a formidable challenge, because of the technological challenges to characterize the abundance, diversity and community compositions of viruses, and their interactions with other organisms in the complex soil environment. Viruses may engage in a myriad of biological interactions within soil food webs across a broad range of spatiotemporal scales and are exposed to various biotic and abiotic disturbances. Current studies on the soil viromes, however, often describe the complexity of their tremendous diversity, but lack of exploring their potential ecological roles. In this article, we summarized the major methods to decipher the ecology of soil viruses, discussed biotic and abiotic factors and global change factors that shape the diversity and composition of soil viromes, and the ecological roles of soil viruses. We also proposed a new framework to understand the ecological complexity of viruses from micro to macro ecosystem scales and to predict and unravel their activities in terrestrial ecosystems.
Collapse
Affiliation(s)
- Li Bi
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Dan-Ting Yu
- State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, Fujian Normal University, Fujian 350007, China; School of Geographical Sciences, Fujian Normal University, Fujian 350007, China.
| | - Li-Li Han
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shuai Du
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Cheng-Yu Yuan
- State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, Fujian Normal University, Fujian 350007, China; School of Geographical Sciences, Fujian Normal University, Fujian 350007, China
| | - Ji-Zheng He
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Hang-Wei Hu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
29
|
Ma L, Yang W, Huang S, Liu R, Li H, Huang X, Xiong J, Liu X. Integrative Assessments on Molecular Taxonomy of Acidiferrobacter thiooxydans ZJ and Its Environmental Adaptation Based on Mobile Genetic Elements. Front Microbiol 2022; 13:826829. [PMID: 35250944 PMCID: PMC8889020 DOI: 10.3389/fmicb.2022.826829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Acidiferrobacter spp. are facultatively anaerobic acidophiles that belong to a distinctive Acidiferrobacteraceae family, which are similar to Ectothiorhodospiraceae phylogenetically, and are closely related to Acidithiobacillia class/subdivision physiologically. The limited genome information has kept them from being studied on molecular taxonomy and environmental adaptation in depth. Herein, Af. thiooxydans ZJ was isolated from acid mine drainage (AMD), and the complete genome sequence was reported to scan its genetic constitution for taxonomic and adaptative feature exploration. The genome has a single chromosome of 3,302,271 base pairs (bp), with a GC content of 63.61%. The phylogenetic tree based on OrthoANI highlighted the unique position of Af. thiooxydans ZJ, which harbored more unique genes among the strains from Ectothiorhodospiraceae and Acidithiobacillaceae by pan-genome analysis. The diverse mobile genetic elements (MGEs), such as insertion sequence (IS), clustered regularly interspaced short palindromic repeat (CRISPR), prophage, and genomic island (GI), have been identified and characterized in Af. thiooxydans ZJ. The results showed that Af. thiooxydans ZJ may effectively resist the infection of foreign viruses and gain functional gene fragments or clusters to shape its own genome advantageously. This study will offer more evidence of the genomic plasticity and improve our understanding of evolutionary adaptation mechanisms to extreme AMD environment, which could expand the potential utilization of Af. thiooxydans ZJ as an iron and sulfur oxidizer in industrial bioleaching.
Collapse
Affiliation(s)
- Liyuan Ma
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, China.,Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Weiyi Yang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Shanshan Huang
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Rui Liu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Huiying Li
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Xinping Huang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Junming Xiong
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Xueduan Liu
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| |
Collapse
|
30
|
McKay LJ, Nigro OD, Dlakić M, Luttrell KM, Rusch DB, Fields MW, Inskeep WP. Sulfur cycling and host-virus interactions in Aquificales-dominated biofilms from Yellowstone's hottest ecosystems. THE ISME JOURNAL 2022; 16:842-855. [PMID: 34650231 PMCID: PMC8857204 DOI: 10.1038/s41396-021-01132-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 12/26/2022]
Abstract
Modern linkages among magmatic, geochemical, and geobiological processes provide clues about the importance of thermophiles in the origin of biogeochemical cycles. The aim of this study was to identify the primary chemoautotrophs and host-virus interactions involved in microbial colonization and biogeochemical cycling at sublacustrine, vapor-dominated vents that represent the hottest measured ecosystems in Yellowstone National Park (~140 °C). Filamentous microbial communities exposed to extreme thermal and geochemical gradients were sampled using a remotely operated vehicle and subjected to random metagenome sequencing and microscopic analyses. Sulfurihydrogenibium (phylum Aquificae) was the predominant lineage (up to 84% relative abundance) detected at vents that discharged high levels of dissolved H2, H2S, and CO2. Metabolic analyses indicated carbon fixation by Sulfurihydrogenibium spp. was powered by the oxidation of reduced sulfur and H2, which provides organic carbon for heterotrophic community members. Highly variable Sulfurihydrogenibium genomes suggested the importance of intra-population diversity under extreme environmental and viral pressures. Numerous lytic viruses (primarily unclassified taxa) were associated with diverse archaea and bacteria in the vent community. Five circular dsDNA uncultivated virus genomes (UViGs) of ~40 kbp length were linked to the Sulfurihydrogenibium metagenome-assembled genome (MAG) by CRISPR spacer matches. Four UViGs contained consistent genome architecture and formed a monophyletic cluster with the recently proposed Pyrovirus genus within the Caudovirales. Sulfurihydrogenibium spp. also contained CRISPR arrays linked to plasmid DNA with genes for a novel type IV filament system and a highly expressed β-barrel porin. A diverse suite of transcribed secretion systems was consistent with direct microscopic analyses, which revealed an extensive extracellular matrix likely critical to community structure and function. We hypothesize these attributes are fundamental to the establishment and survival of microbial communities in highly turbulent, extreme-gradient environments.
Collapse
Affiliation(s)
- Luke J. McKay
- grid.41891.350000 0001 2156 6108Department of Land Resources & Environmental Sciences, Montana State University, Bozeman, MT 59717 USA ,grid.41891.350000 0001 2156 6108Thermal Biology Institute, Montana State University, Bozeman, MT 59717 USA ,grid.41891.350000 0001 2156 6108Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717 USA
| | - Olivia D. Nigro
- grid.256872.c0000 0000 8741 0387Department of Natural Science, Hawaii Pacific University, Honolulu, HI 96813 USA
| | - Mensur Dlakić
- grid.41891.350000 0001 2156 6108Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT 59717 USA
| | - Karen M. Luttrell
- grid.64337.350000 0001 0662 7451Department of Geology & Geophysics, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Douglas B. Rusch
- grid.411377.70000 0001 0790 959XCenter for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405 USA
| | - Matthew W. Fields
- grid.41891.350000 0001 2156 6108Thermal Biology Institute, Montana State University, Bozeman, MT 59717 USA ,grid.41891.350000 0001 2156 6108Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT 59717 USA
| | - William P. Inskeep
- grid.41891.350000 0001 2156 6108Department of Land Resources & Environmental Sciences, Montana State University, Bozeman, MT 59717 USA ,grid.41891.350000 0001 2156 6108Thermal Biology Institute, Montana State University, Bozeman, MT 59717 USA
| |
Collapse
|
31
|
Huang Y, Li XT, Jiang Z, Liang ZL, Wang P, Liu ZH, Li LZ, Yin HQ, Jia Y, Huang ZS, Liu SJ, Jiang CY. Key Factors Governing Microbial Community in Extremely Acidic Mine Drainage (pH <3). Front Microbiol 2021; 12:761579. [PMID: 34917049 PMCID: PMC8670003 DOI: 10.3389/fmicb.2021.761579] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/28/2021] [Indexed: 12/05/2022] Open
Abstract
The microbial community of acid mine drainage (AMD) fascinates researchers by their adaption and roles in shaping the environment. Molecular surveys have recently helped to enhance the understanding of the distribution, adaption strategy, and ecological function of microbial communities in extreme AMD environments. However, the interactions between the environment and microbial community of extremely acidic AMD (pH <3) from different mining areas kept unanswered questions. Here, we measured physicochemical parameters and profiled the microbial community of AMD collected from four mining areas with different mineral types to provide a better understanding of biogeochemical processes within the extremely acidic water environment. The prominent physicochemical differences across the four mining areas were in SO42−, metal ions, and temperature, and distinct microbial diversity and community assemblages were also discovered in these areas. Mg2+ and SO42− were the predominant factors determining the microbial structure and prevalence of dominant taxa in AMD. Leptospirillum, Ferroplasma, and Acidithiobacillus were abundant but showed different occurrence patterns in AMD from different mining areas. More diverse communities and functional redundancy were identified in AMD of polymetallic mining areas compared with AMD of copper mining areas. Functional prediction revealed iron, sulfur, nitrogen, and carbon metabolisms driven by microorganisms were significantly correlated with Mg2+ and SO42−, Ca2+, temperature, and Fe2+, which distinguish microbial communities of copper mine AMD from that of polymetallic mine AMD. In summary, microbial diversity, composition, and metabolic potential were mainly shaped by Mg2+ and SO42− concentrations of AMD, suggesting that the substrate concentrations may contribute to the distinct microbiological profiles of AMD from different mining areas. These findings highlight the microbial community structure in extremely acidic AMD forming by types of minerals and the interactions of physicochemical parameters and microbiology, providing more clues of the microbial ecological function and adaptation mechanisms in the extremely acidic environment.
Collapse
Affiliation(s)
- Ye Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xiu-Tong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Zhen Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Zong-Lin Liang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Pei Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Zheng-Hua Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China.,Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Liang-Zhi Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China.,Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Hua-Qun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China.,Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Yan Jia
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Zhong-Sheng Huang
- Zijin Mining Group Company Limited, Fujian, China.,School of Metallurgy and Environment, Central South University, Changsha, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
32
|
Genomic Insights into the Ecological Role and Evolution of a Novel Thermoplasmata Order, " Candidatus Sysuiplasmatales". Appl Environ Microbiol 2021; 87:e0106521. [PMID: 34524897 DOI: 10.1128/aem.01065-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent omics studies have provided invaluable insights into the metabolic potential, adaptation, and evolution of novel archaeal lineages from a variety of extreme environments. We utilized a genome-resolved metagenomic approach to recover eight medium- to high-quality metagenome-assembled genomes (MAGs) that likely represent a new order ("Candidatus Sysuiplasmatales") in the class Thermoplasmata from mine tailings and acid mine drainage (AMD) sediments sampled from two copper mines in South China. 16S rRNA gene-based analyses revealed a narrow habitat range for these uncultured archaea limited to AMD and hot spring-related environments. Metabolic reconstruction indicated a facultatively anaerobic heterotrophic lifestyle. This may allow the archaea to adapt to oxygen fluctuations and is thus in marked contrast to the majority of lineages in the domain Archaea, which typically show obligately anaerobic metabolisms. Notably, "Ca. Sysuiplasmatales" could conserve energy through degradation of fatty acids, amino acid metabolism, and oxidation of reduced inorganic sulfur compounds (RISCs), suggesting that they may contribute to acid generation in the extreme mine environments. Unlike the closely related orders Methanomassiliicoccales and "Candidatus Gimiplasmatales," "Ca. Sysuiplasmatales" lacks the capacity to perform methanogenesis and carbon fixation. Ancestral state reconstruction indicated that "Ca. Sysuiplasmatales," the closely related orders Methanomassiliicoccales and "Ca. Gimiplasmatales," and the orders SG8-5 and RBG-16-68-12 originated from a facultatively anaerobic ancestor capable of carbon fixation via the bacterial-type H4F Wood-Ljungdahl pathway (WLP). Their metabolic divergence might be attributed to different evolutionary paths. IMPORTANCE A wide array of archaea populate Earth's extreme environments; therefore, they may play important roles in mediating biogeochemical processes such as iron and sulfur cycling. However, our knowledge of archaeal biology and evolution is still limited, since the majority of the archaeal diversity is uncultured. For instance, most order-level lineages except Thermoplasmatales, Aciduliprofundales, and Methanomassiliicoccales within Thermoplasmata do not have cultured representatives. Here, we report the discovery and genomic characterization of a novel order, "Ca. Sysuiplasmatales," within Thermoplasmata in extremely acidic mine environments. "Ca. Sysuiplasmatales" are inferred to be facultatively anaerobic heterotrophs and likely contribute to acid generation through the oxidation of RISCs. The physiological divergence between "Ca. Sysuiplasmatales" and closely related Thermoplasmata lineages may be attributed to different evolutionary paths. These results expand our knowledge of archaea in the extreme mine ecosystem.
Collapse
|
33
|
Li Z, Pan D, Wei G, Pi W, Zhang C, Wang JH, Peng Y, Zhang L, Wang Y, Hubert CRJ, Dong X. Deep sea sediments associated with cold seeps are a subsurface reservoir of viral diversity. THE ISME JOURNAL 2021; 15:2366-2378. [PMID: 33649554 PMCID: PMC8319345 DOI: 10.1038/s41396-021-00932-y] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/11/2022]
Abstract
In marine ecosystems, viruses exert control on the composition and metabolism of microbial communities, influencing overall biogeochemical cycling. Deep sea sediments associated with cold seeps are known to host taxonomically diverse microbial communities, but little is known about viruses infecting these microorganisms. Here, we probed metagenomes from seven geographically diverse cold seeps across global oceans to assess viral diversity, virus-host interaction, and virus-encoded auxiliary metabolic genes (AMGs). Gene-sharing network comparisons with viruses inhabiting other ecosystems reveal that cold seep sediments harbour considerable unexplored viral diversity. Most cold seep viruses display high degrees of endemism with seep fluid flux being one of the main drivers of viral community composition. In silico predictions linked 14.2% of the viruses to microbial host populations with many belonging to poorly understood candidate bacterial and archaeal phyla. Lysis was predicted to be a predominant viral lifestyle based on lineage-specific virus/host abundance ratios. Metabolic predictions of prokaryotic host genomes and viral AMGs suggest that viruses influence microbial hydrocarbon biodegradation at cold seeps, as well as other carbon, sulfur and nitrogen cycling via virus-induced mortality and/or metabolic augmentation. Overall, these findings reveal the global diversity and biogeography of cold seep viruses and indicate how viruses may manipulate seep microbial ecology and biogeochemistry.
Collapse
Affiliation(s)
- Zexin Li
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
| | - Donald Pan
- Department of Ecology and Environmental Studies, The Water School, Florida Gulf Coast University, Fort Myers, FL, USA
| | - Guangshan Wei
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Weiling Pi
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
| | - Chuwen Zhang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
| | - Jiang-Hai Wang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
| | - Yongyi Peng
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
| | - Lu Zhang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yong Wang
- Department of Life Science, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Casey R J Hubert
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Xiyang Dong
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China.
| |
Collapse
|
34
|
Huang D, Yu P, Ye M, Schwarz C, Jiang X, Alvarez PJJ. Enhanced mutualistic symbiosis between soil phages and bacteria with elevated chromium-induced environmental stress. MICROBIOME 2021; 9:150. [PMID: 34183048 PMCID: PMC8240259 DOI: 10.1186/s40168-021-01074-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/07/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND Microbe-virus interactions have broad implications on the composition, function, and evolution of microbiomes. Elucidating the effects of environmental stresses on these interactions is critical to identify the ecological function of viral communities and understand microbiome environmental adaptation. Heavy metal-contaminated soils represent a relevant ecosystem to study the interplay between microbes, viruses, and environmental stressors. RESULTS Metagenomic analysis revealed that Cr pollution adversely altered the abundance, diversity, and composition of viral and bacterial communities. Host-phage linkage based on CRISPR indicated that, in soils with high Cr contamination, the abundance of phages associated with heavy metal-tolerant hosts increased, as did the relative abundance of phages with broad host ranges (identified as host-phage linkages across genera), which would facilitate transfection and broader distribution of heavy metal resistance genes in the bacterial community. Examining variations along the pollutant gradient, enhanced mutualistic phage-bacterium interactions were observed in the face of greater environmental stresses. Specifically, the fractions of lysogens in bacterial communities (identified by integrase genes within bacterial genomes and prophage induction assay by mitomycin-C) were positively correlated with Cr contamination levels. Furthermore, viral genomic analysis demonstrated that lysogenic phages under higher Cr-induced stresses carried more auxiliary metabolic genes regulating microbial heavy metal detoxification. CONCLUSION With the intensification of Cr-induced environmental stresses, the composition, replication strategy, and ecological function of the phage community all evolve alongside the bacterial community to adapt to extreme habitats. These result in a transformation of the phage-bacterium interaction from parasitism to mutualism in extreme environments and underscore the influential role of phages in bacterial adaptation to pollution-related stress and in related biogeochemical processes. Video Abstract.
Collapse
Affiliation(s)
- Dan Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Pingfeng Yu
- Department of Civil and Environmental Engineering, Rice University, Houston, 77005, USA.
| | - Mao Ye
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China.
| | - Cory Schwarz
- Department of Civil and Environmental Engineering, Rice University, Houston, 77005, USA
| | - Xin Jiang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, 77005, USA
| |
Collapse
|
35
|
Chacon-Baca E, Santos A, Sarmiento AM, Luís AT, Santisteban M, Fortes JC, Dávila JM, Diaz-Curiel JM, Grande JA. Acid Mine Drainage as Energizing Microbial Niches for the Formation of Iron Stromatolites: The Tintillo River in Southwest Spain. ASTROBIOLOGY 2021; 21:443-463. [PMID: 33351707 DOI: 10.1089/ast.2019.2164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The Iberian Pyrite Belt in southwest Spain hosts some of the largest and diverse extreme acidic environments with textural variation across rapidly changing biogeochemical gradients at multiple scales. After almost three decades of studies, mostly focused on molecular evolution and metagenomics, there is an increasing awareness of the multidisciplinary potential of these types of settings, especially for astrobiology. Since modern automatized exploration on extraterrestrial surfaces is essentially based on the morphological recognition of biosignatures, a macroscopic characterization of such sedimentary extreme environments and how they look is crucial to identify life properties, but it is a perspective that most molecular approaches frequently miss. Although acid mine drainage (AMD) systems are toxic and contaminated, they offer at the same time the bioengineering tools for natural remediation strategies. This work presents a biosedimentological characterization of the clastic iron stromatolites in the Tintillo river. They occur as laminated terraced iron formations that are the most distinctive sedimentary facies at the Tintillo river, which is polluted by AMD. Iron stromatolites originate from fluvial abiotic factors that interact with biological zonation. The authigenic precipitation of schwertmannite and jarosite results from microbial-mineral interactions between mineral and organic matrices. The Tintillo iron stromatolites are composed of bacterial filaments and diatoms as Nitzschia aurariae, Pinnularia aljustrelica, Stauroneis kriegeri, and Fragilaria sp. Furthermore, the active biosorption and bioleaching of sulfur are suggested by the black and white coloration of microbial filaments inside stromatolites. AMD systems are hazardous due to physical, chemical, and biological agents, but they also provide biogeochemical sources with which to infer past geochemical conditions on Earth and inform exploration efforts on extraterrestrial surfaces in the future.
Collapse
Affiliation(s)
- Elizabeth Chacon-Baca
- Departamento de Geología, Facultad de Ciencias de la Tierra, Universidad Autónoma de Nuevo Léon (UANL), Linares, México
| | - Ana Santos
- Department of Applied Geosciences, CCTH-Science and Technology Research Centre, University of Huelva, Huelva, Spain
- Applied Geosciences Research Group (RNM276), Departamento de Ciencias de la Tierra, Facultad de Ciencias Experimentales, Universidad de Huelva, Huelva, Spain
| | - Aguasanta Miguel Sarmiento
- Department of Water, Mining and Environment, Scientific and Technological Center of Huelva, University of Huelva, Huelva, Spain
- Sustainable Mining Engineering Research Group, Department of Mining, Mechanic, Energetic and Construction Engineering, Higher Technical School of Engineering, University of Huelva, Huelva, Spain
| | - Ana Teresa Luís
- Department of Water, Mining and Environment, Scientific and Technological Center of Huelva, University of Huelva, Huelva, Spain
- GeoBioTec Research Unit, Department of Geosciences, University of Aveiro, Aveiro, Portugal
| | - Maria Santisteban
- Department of Water, Mining and Environment, Scientific and Technological Center of Huelva, University of Huelva, Huelva, Spain
- Sustainable Mining Engineering Research Group, Department of Mining, Mechanic, Energetic and Construction Engineering, Higher Technical School of Engineering, University of Huelva, Huelva, Spain
| | - Juan Carlos Fortes
- Department of Water, Mining and Environment, Scientific and Technological Center of Huelva, University of Huelva, Huelva, Spain
- Sustainable Mining Engineering Research Group, Department of Mining, Mechanic, Energetic and Construction Engineering, Higher Technical School of Engineering, University of Huelva, Huelva, Spain
| | - José Miguel Dávila
- Department of Water, Mining and Environment, Scientific and Technological Center of Huelva, University of Huelva, Huelva, Spain
- Sustainable Mining Engineering Research Group, Department of Mining, Mechanic, Energetic and Construction Engineering, Higher Technical School of Engineering, University of Huelva, Huelva, Spain
| | - Jesus M Diaz-Curiel
- Departamento de Geología, Escuela Técnica Superior de Ingenieros de Minas, Madrid, Spain
| | - Jose Antonio Grande
- Department of Water, Mining and Environment, Scientific and Technological Center of Huelva, University of Huelva, Huelva, Spain
- Sustainable Mining Engineering Research Group, Department of Mining, Mechanic, Energetic and Construction Engineering, Higher Technical School of Engineering, University of Huelva, Huelva, Spain
| |
Collapse
|
36
|
Cook R, Hooton S, Trivedi U, King L, Dodd CER, Hobman JL, Stekel DJ, Jones MA, Millard AD. Hybrid assembly of an agricultural slurry virome reveals a diverse and stable community with the potential to alter the metabolism and virulence of veterinary pathogens. MICROBIOME 2021; 9:65. [PMID: 33743832 PMCID: PMC7981956 DOI: 10.1186/s40168-021-01010-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/02/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND Viruses are the most abundant biological entities on Earth, known to be crucial components of microbial ecosystems. However, there is little information on the viral community within agricultural waste. There are currently ~ 2.7 million dairy cattle in the UK producing 7-8% of their own bodyweight in manure daily, and 28 million tonnes annually. To avoid pollution of UK freshwaters, manure must be stored and spread in accordance with guidelines set by DEFRA. Manures are used as fertiliser, and widely spread over crop fields, yet little is known about their microbial composition. We analysed the virome of agricultural slurry over a 5-month period using short and long-read sequencing. RESULTS Hybrid sequencing uncovered more high-quality viral genomes than long or short-reads alone; yielding 7682 vOTUs, 174 of which were complete viral genomes. The slurry virome was highly diverse and dominated by lytic bacteriophage, the majority of which represent novel genera (~ 98%). Despite constant influx and efflux of slurry, the composition and diversity of the slurry virome was extremely stable over time, with 55% of vOTUs detected in all samples over a 5-month period. Functional annotation revealed a diverse and abundant range of auxiliary metabolic genes and novel features present in the community, including the agriculturally relevant virulence factor VapE, which was widely distributed across different phage genera that were predicted to infect several hosts. Furthermore, we identified an abundance of phage-encoded diversity-generating retroelements, which were previously thought to be rare on lytic viral genomes. Additionally, we identified a group of crAssphages, including lineages that were previously thought only to be found in the human gut. CONCLUSIONS The cattle slurry virome is complex, diverse and dominated by novel genera, many of which are not recovered using long or short-reads alone. Phages were found to encode a wide range of AMGs that are not constrained to particular groups or predicted hosts, including virulence determinants and putative ARGs. The application of agricultural slurry to land may therefore be a driver of bacterial virulence and antimicrobial resistance in the environment. Video abstract.
Collapse
Affiliation(s)
- Ryan Cook
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, College Road, Loughborough, Leicestershire, LE12 5RD, UK
| | - Steve Hooton
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, College Road, Loughborough, Leicestershire, LE12 5RD, UK
| | - Urmi Trivedi
- Edinburgh Genomics, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Liz King
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, College Road, Loughborough, Leicestershire, LE12 5RD, UK
| | - Christine E R Dodd
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, College Road, Loughborough, Leicestershire, LE12 5RD, UK
| | - Jon L Hobman
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, College Road, Loughborough, Leicestershire, LE12 5RD, UK
| | - Dov J Stekel
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, College Road, Loughborough, Leicestershire, LE12 5RD, UK
| | - Michael A Jones
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, College Road, Loughborough, Leicestershire, LE12 5RD, UK.
| | - Andrew D Millard
- Dept Genetics and Genome Biology, University of Leicester, University Road, Leicester, Leicestershire, LE1 7RH, UK.
| |
Collapse
|
37
|
Luo ZH, Li Q, Lai Y, Chen H, Liao B, Huang LN. Diversity and Genomic Characterization of a Novel Parvarchaeota Family in Acid Mine Drainage Sediments. Front Microbiol 2020; 11:612257. [PMID: 33408709 PMCID: PMC7779479 DOI: 10.3389/fmicb.2020.612257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/01/2020] [Indexed: 12/03/2022] Open
Abstract
Recent genome-resolved metagenomic analyses of microbial communities from diverse environments have led to the discovery of many novel lineages that significantly expand the phylogenetic breadth of Archaea. Here, we report the genomic characterization of a new archaeal family based on five metagenome-assembled genomes retrieved from acid mine drainage sediments. Phylogenomic analyses placed these uncultivated archaea at the root of the candidate phylum Parvarchaeota, which expand this lesser-known phylum into two family levels. Genes involved in environmental adaptation and carbohydrate and protein utilization were identified in the ultra-small genomes (estimated size 0.53–0.76 Mb), indicating a survival strategy in this harsh environment (low pH and high heavy metal content). The detection of genes with homology to sulfocyanin suggested a potential involvement in iron cycling. Nevertheless, the absence of the ability to synthesize amino acids and nucleotides implies that these archaea may acquire these biomolecules from the environment or other community members. Applying evolutionary history analysis to Parvarchaeota suggested that members of the two families could broaden their niches by acquiring the potentials of utilizing different substrates. This study expands our knowledge of the diversity, metabolic capacity, and evolutionary history of the Parvarchaeota.
Collapse
Affiliation(s)
- Zhen-Hao Luo
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qi Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yan Lai
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hao Chen
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bin Liao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Li-Nan Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|