1
|
Soleymani Y, Batouli SAH, Ahangar AA, Pourabbasi A. Association of glycosylated hemoglobin concentrations with structural and functional brain changes in the normoglycemic population: A systematic review. J Neuroendocrinol 2024; 36:e13437. [PMID: 39099230 DOI: 10.1111/jne.13437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/30/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024]
Abstract
Optimal glucose control is crucial for maintaining brain health and preventing metabolic and cognitive disorders in the general population. Glycosylated hemoglobin (HbA1c) serves as a key marker for assessing glucose intolerance and its impact on brain structure and function in healthy individuals. However, existing literature presents conflicting findings, necessitating a systematic review to consolidate current knowledge in this domain. This systematic review examines 26 English-language studies involving participants aged 15 years and above, investigating the relationship between HbA1c levels and brain health. Studies focusing on normal/general populations and utilizing magnetic resonance imaging (MRI) as the imaging modality were included. Exclusion criteria encompassed review articles, abstracts, letters, animal studies, and research involving neuropsychiatric or metabolic diseases. Data were gathered from PubMed, Scopus, and Web of Science databases up to November 2023. Analysis reveals significant associations between HbA1c levels and various brain metrics, including volume, cortical thickness, fractional anisotropy, mean diffusivity, activity, and connectivity. However, findings exhibit inconsistency, likely attributed to disparities in sample characteristics and study sizes. Notably, hippocampal volume, white matter hyperintensity, and ventral attention network connectivity emerge as frequently affected structures and functions, mirroring trends observed in diabetic populations. Despite inconclusive evidence, glucose intolerance appears to exert considerable influence on select brain structures and functions in individuals without diagnosed metabolic disorders. Understanding these associations is critical for mitigating the risk of cognitive decline and dementia in healthy populations. Future investigations should aim to elucidate the intricate relationship between HbA1c concentrations and brain health parameters in normoglycemic individuals.
Collapse
Affiliation(s)
- Yunus Soleymani
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Amir Hossein Batouli
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Akbari Ahangar
- Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, Oxford, Mississippi, USA
| | - Ata Pourabbasi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Yong J, Song J. CaMKII activity and metabolic imbalance-related neurological diseases: Focus on vascular dysfunction, synaptic plasticity, amyloid beta accumulation, and lipid metabolism. Biomed Pharmacother 2024; 175:116688. [PMID: 38692060 DOI: 10.1016/j.biopha.2024.116688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/03/2024] Open
Abstract
Metabolic syndrome (MetS) is characterized by insulin resistance, hyperglycemia, excessive fat accumulation and dyslipidemia, and is known to be accompanied by neuropathological symptoms such as memory loss, anxiety, and depression. As the number of MetS patients is rapidly increasing globally, studies on the mechanisms of metabolic imbalance-related neuropathology are emerging as an important issue. Ca2+/calmodulin-dependent kinase II (CaMKII) is the main Ca2+ sensor and contributes to diverse intracellular signaling in peripheral organs and the central nervous system (CNS). CaMKII exerts diverse functions in cells, related to mechanisms such as RNA splicing, reactive oxygen species (ROS) generation, cytoskeleton, and protein-protein interactions. In the CNS, CaMKII regulates vascular function, neuronal circuits, neurotransmission, synaptic plasticity, amyloid beta toxicity, lipid metabolism, and mitochondrial function. Here, we review recent evidence for the role of CaMKII in neuropathologic issues associated with metabolic disorders.
Collapse
Affiliation(s)
- Jeongsik Yong
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun, Jeollanam-do, Republic of Korea.
| |
Collapse
|
3
|
Kuate Defo A, Bakula V, Pisaturo A, Labos C, Wing SS, Daskalopoulou SS. Diabetes, antidiabetic medications and risk of dementia: A systematic umbrella review and meta-analysis. Diabetes Obes Metab 2024; 26:441-462. [PMID: 37869901 DOI: 10.1111/dom.15331] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/12/2023] [Accepted: 09/29/2023] [Indexed: 10/24/2023]
Abstract
AIMS The objective of this umbrella review and meta-analysis was to evaluate the effect of diabetes on risk of dementia, as well as the mitigating effect of antidiabetic treatments. MATERIALS AND METHODS We conducted a systematic umbrella review on diabetes and its treatment, and a meta-analysis focusing on treatment. We searched MEDLINE/PubMed, Embase, PsycINFO, CINAHL and the Cochrane Library for systematic reviews and meta-analyses assessing the risk of cognitive decline/dementia in individuals with diabetes until 2 July 2023. We conducted random-effects meta-analyses to obtain risk ratios and 95% confidence intervals estimating the association of metformin, thiazolidinediones, pioglitazone, dipeptidyl peptidase-4 inhibitors, α-glucosidase inhibitors, meglitinides, insulin, sulphonylureas, glucagon-like peptide-1 receptor agonists (GLP1RAs) and sodium-glucose cotransporter-2 inhibitors (SGLT2is) with risk of dementia from cohort/case-control studies. The subgroups analysed included country and world region. Risk of bias was assessed with the AMSTAR tool and Newcastle-Ottawa Scale. RESULTS We included 100 reviews and 27 cohort/case-control studies (N = 3 046 661). Metformin, thiazolidinediones, pioglitazone, GLP1RAs and SGLT2is were associated with significant reduction in risk of dementia. When studies examining metformin were divided by country, the only significant effect was for the United States. Moreover, the effect of metformin was significant in Western but not Eastern populations. No significant effect was observed for dipeptidyl peptidase-4 inhibitors, α-glucosidase inhibitors, or insulin, while meglitinides and sulphonylureas were associated with increased risk. CONCLUSIONS Metformin, thiazolidinediones, pioglitazone, GLP1RAs and SGLT2is were associated with reduced risk of dementia. More longitudinal studies aimed at determining their relative benefit in different populations should be conducted.
Collapse
Affiliation(s)
- Alvin Kuate Defo
- Vascular Health Unit, Research Institute of the McGill University Health Centre, Department of Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Veselko Bakula
- Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | - Christopher Labos
- Vascular Health Unit, Research Institute of the McGill University Health Centre, Department of Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Simon S Wing
- Division of Endocrinology & Metabolism, Department of Medicine, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Stella S Daskalopoulou
- Vascular Health Unit, Research Institute of the McGill University Health Centre, Department of Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Division of Internal Medicine, Department of Medicine, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
4
|
ElSayed NA, Aleppo G, Bannuru RR, Bruemmer D, Collins BS, Ekhlaspour L, Hilliard ME, Johnson EL, Khunti K, Lingvay I, Matfin G, McCoy RG, Perry ML, Pilla SJ, Polsky S, Prahalad P, Pratley RE, Segal AR, Seley JJ, Stanton RC, Gabbay RA. 14. Children and Adolescents: Standards of Care in Diabetes-2024. Diabetes Care 2024; 47:S258-S281. [PMID: 38078582 PMCID: PMC10725814 DOI: 10.2337/dc24-s014] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The American Diabetes Association (ADA) "Standards of Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, an interprofessional expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations and a full list of Professional Practice Committee members, please refer to Introduction and Methodology. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
5
|
Litmanovitch E, Geva R, Leshem A, Lezinger M, Heyman E, Gidron M, Yarmolovsky J, Sasson E, Tal S, Rachmiel M. Missed meal boluses and poorer glycemic control impact on neurocognitive function may be associated with white matter integrity in adolescents with type 1 diabetes. Front Endocrinol (Lausanne) 2023; 14:1141085. [PMID: 37091855 PMCID: PMC10113499 DOI: 10.3389/fendo.2023.1141085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/13/2023] [Indexed: 04/25/2023] Open
Abstract
Background The notion that pediatric type 1 diabetes impacts brain function and structure early in life is of great concern. Neurological manifestations, including neurocognitive and behavioral symptoms, may be present from childhood, initially mild and undetectable in daily life. Despite intensive management and technological therapeutic interventions, most pediatric patients do not achieve glycemic control targets for HbA1c. One of the most common causes of such poor control and frequent transient hyperglycemic episodes may be lifestyle factors, including missed meal boluses. Objective The aim of this study was to assess the association between specific neurocognitive accomplishments-learning and memory, inhibition ability learning, and verbal and semantic memory-during meals with and without bolusing, correlated to diffusion tensor imaging measurements of major related tracts, and glycemic control in adolescents with type 1 diabetes compared with their healthy siblings of similar age. Study design and methods This is a case-control study of 12- to 18-year-old patients with type 1 diabetes (N = 17, 8 male patients, diabetes duration of 6.53 ± 4.1 years) and their healthy siblings (N = 13). All were hospitalized for 30 h for continuous glucose monitoring and repeated neurocognitive tests as a function of a missed or appropriate pre-meal bolus. This situation was mimicked by controlled, patient blinded manipulation of lunch pre-meal bolus administration to enable capillary glucose level of <180 mg/dl and to >240 mg/d 2 hours after similar meals, at a similar time. The diabetes team randomly and blindly manipulated post-lunch glucose levels by subcutaneous injection of either rapid-acting insulin or 0.9% NaCl solution before lunch. A specific neurocognitive test battery was performed twice, after each manipulation, and its results were compared, along with additional neurocognitive tasks administered during hospitalization without insulin manipulation. Participants underwent brain imaging, including diffusion tensor imaging and tractography. Results A significant association was demonstrated between glycemic control and performance in the domains of executive functions, inhibition ability, learning and verbal memory, and semantic memory. Inhibition ability was specifically related to food management. Poorer glycemic control (>8.3%) was associated with a slower reaction time. Conclusion These findings highlight the potential impairment of brain networks responsible for learning, memory, and controlled reactivity to food in adolescents with type 1 diabetes whose glycemic control is poor.
Collapse
Affiliation(s)
- Edna Litmanovitch
- The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| | - Ronny Geva
- The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel
- Department of Psychology, The Developmental Neuropsychology Lab, Bar Ilan University, Ramat Gan, Israel
| | - Avital Leshem
- Pediatric Endocrinology and Diabetes Institute, Shamir (Assaf Harofeh) Medical Center, Be'er Ya'akov, Israel
| | - Mirit Lezinger
- Pediatric Neurology and Epilepsy Department, Shamir (Assaf Harofeh) Medical Center, Be’er Ya’akov, Israel
| | - Eli Heyman
- Pediatric Neurology and Epilepsy Department, Shamir (Assaf Harofeh) Medical Center, Be’er Ya’akov, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Maor Gidron
- Department of Psychology, The Developmental Neuropsychology Lab, Bar Ilan University, Ramat Gan, Israel
| | - Jessica Yarmolovsky
- Department of Psychology, The Developmental Neuropsychology Lab, Bar Ilan University, Ramat Gan, Israel
| | - Efrat Sasson
- Radiology Department, Shamir (Assaf Harofeh) Medical Center, Be'er Ya'akov, Israel
| | - Sigal Tal
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Radiology Department, Shamir (Assaf Harofeh) Medical Center, Be'er Ya'akov, Israel
| | - Marianna Rachmiel
- Pediatric Endocrinology and Diabetes Institute, Shamir (Assaf Harofeh) Medical Center, Be'er Ya'akov, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- *Correspondence: Marianna Rachmiel,
| |
Collapse
|
6
|
ElSayed NA, Aleppo G, Aroda VR, Bannuru RR, Brown FM, Bruemmer D, Collins BS, Hilliard ME, Isaacs D, Johnson EL, Kahan S, Khunti K, Leon J, Lyons SK, Perry ML, Prahalad P, Pratley RE, Seley JJ, Stanton RC, Gabbay RA, on behalf of the American Diabetes Association. 14. Children and Adolescents: Standards of Care in Diabetes-2023. Diabetes Care 2023; 46:S230-S253. [PMID: 36507640 PMCID: PMC9810473 DOI: 10.2337/dc23-s014] [Citation(s) in RCA: 88] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The American Diabetes Association (ADA) "Standards of Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations and a full list of Professional Practice Committee members, please refer to Introduction and Methodology. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
7
|
Rahmati M, Keshvari M, Mirnasuri S, Yon DK, Lee SW, Il Shin J, Smith L. The global impact of COVID-19 pandemic on the incidence of pediatric new-onset type 1 diabetes and ketoacidosis: A systematic review and meta-analysis. J Med Virol 2022; 94:5112-5127. [PMID: 35831242 PMCID: PMC9350204 DOI: 10.1002/jmv.27996] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/29/2022] [Accepted: 07/11/2022] [Indexed: 12/15/2022]
Abstract
Viral infections may increase the risk of developing type 1 diabetes (T1D), and recent reports suggest that Coronavirus Disease 2019 (COVID-19) might have increased the incidence of pediatric T1D and/or diabetic ketoacidosis (DKA). Therefore, this meta-analysis aims to estimate the risk of global pediatric new-onset T1D, DKA, and severe DKA before and after the COVID-19 pandemic. A systematic search of MEDLINE/PubMed, CINAHL, Scopus, and EMBASE was conducted for articles published up to March 2022. A random-effects meta-analysis was performed to compare the relative risk of T1D and DKA among pediatric patients with T1D between the COVID-19 pre-pandemic and pandemic periods. We also compared glucose and HbA1c values in children who were newly diagnosed with T1D before and after the COVID-19 pandemic. The global incidence rate of T1D in the 2019 period was 19.73 per 100 000 children and 32.39 per 100 000 in the 2020 period. Compared with pre-COVID-19 pandemic, the number of worldwide pediatric new-onset T1D, DKA, and severe DKA during the first year of the COVID-19 pandemic increased by 9.5%, 25%, and 19.5%, respectively. Compared with pre-COVID-19 pandemic levels, the median glucose, and HbA1c values in newly diagnosed T1D children after the COVID-19 pandemic increased by 6.43% and 6.42%, respectively. The COVID-19 pandemic has significantly increased the risk of global pediatric new-onset T1D, DKA, and severe DKA. Moreover, higher glucose and HbA1c values in newly diagnosed T1D children after the COVID-19 pandemic mandates targeted measures to raise public and physician awareness.
Collapse
Affiliation(s)
- Masoud Rahmati
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human SciencesLorestan UniversityKhoramabadIran
| | - Maryam Keshvari
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human SciencesLorestan UniversityKhoramabadIran
| | | | - Dong K. Yon
- Department of Pediatrics, Kyung Hee University Medical CenterKyung Hee University College of MedicineSeoulRepublic of Korea
| | - Seung W. Lee
- Department of Data ScienceSejong University College of Software ConvergenceSeoulRepublic of Korea
- Sungkyunkwan University School of MedicineSuwonRepublic of Korea
| | - Jae Il Shin
- Department of PediatricsYonsei University College of MedicineSeoulRepublic of Korea
| | - Lee Smith
- Centre for Health, Performance, and WellbeingAnglia Ruskin UniversityCambridgeUK
| |
Collapse
|
8
|
Chen J, Wu J, Huang X, Sun R, Xiang Z, Xu Y, Chen S, Xu W, Yang J, Chen Y. Differences in structural connectivity between diabetic and psychological erectile dysfunction revealed by network-based statistic: A diffusion tensor imaging study. Front Endocrinol (Lausanne) 2022; 13:892563. [PMID: 35966068 PMCID: PMC9365033 DOI: 10.3389/fendo.2022.892563] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/01/2022] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Type 2 diabetes mellitus (T2DM) has been found to be associated with abnormalities of the central and peripheral vascular nervous system, which were considered to be involved in the development of cognitive impairments and erectile dysfunction (ED). In addition, altered brain function and structure were identified in patients with ED, especially psychological ED (pED). However, the similarities and the differences of the central neural mechanisms underlying pED and T2DM with ED (DM-ED) remained unclear. METHODS Diffusion tensor imaging data were acquired from 30 T2DM, 32 ED, and 31 DM-ED patients and 47 healthy controls (HCs). Then, whole-brain structural networks were constructed, which were mapped by connectivity matrices (90 × 90) representing the white matter between 90 brain regions parcellated by the anatomical automatic labeling template. Finally, the method of network-based statistic (NBS) was applied to assess the group differences of the structural connectivity. RESULTS Our NBS analysis demonstrated three subnetworks with reduced structural connectivity in DM, pED, and DM-ED patients when compared to HCs, which were predominantly located in the prefrontal and subcortical areas. Compared with DM patients, DM-ED patients had an impaired subnetwork with increased structural connectivity, which were primarily located in the parietal regions. Compared with pED patients, an altered subnetwork with increased structural connectivity was identified in DM-ED patients, which were mainly located in the prefrontal and cingulate areas. CONCLUSION These findings highlighted that the reduced structural connections in the prefrontal and subcortical areas were similar mechanisms to those associated with pED and DM-ED. However, different connectivity patterns were found between pED and DM-ED, and the increased connectivity in the frontal-parietal network might be due to the compensation mechanisms that were devoted to improving erectile function.
Collapse
Affiliation(s)
- Jianhuai Chen
- Department of Andrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jindan Wu
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xinfei Huang
- Department of Andrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Rui Sun
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ziliang Xiang
- Department of Andrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Xu
- Department of Andrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Shi Chen
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Weilong Xu
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Yang
- Department of Urology, Jiangsu Provincial People’s Hospital, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Urology, People’s Hospital of Xinjiang Kizilsu Kirgiz Autonomous Prefecture, Artux, Xinjiang, China
- *Correspondence: Yun Chen, ; Jie Yang,
| | - Yun Chen
- Department of Andrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Yun Chen, ; Jie Yang,
| |
Collapse
|
9
|
Abstract
The American Diabetes Association (ADA) "Standards of Medical Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee (https://doi.org/10.2337/dc22-SPPC), are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations, please refer to the Standards of Care Introduction (https://doi.org/10.2337/dc22-SINT). Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
10
|
Luna R, Talanki Manjunatha R, Bollu B, Jhaveri S, Avanthika C, Reddy N, Saha T, Gandhi F. A Comprehensive Review of Neuronal Changes in Diabetics. Cureus 2021; 13:e19142. [PMID: 34868777 PMCID: PMC8628358 DOI: 10.7759/cureus.19142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2021] [Indexed: 12/11/2022] Open
Abstract
There has been an exponential rise in diabetes mellitus (DM) cases on a global scale. Diabetes affects almost every system of the body, and the nervous system is no exception. Although the brain is dependent on glucose, providing it with the energy required for optimal functionality, glucose also plays a key role in the regulation of oxidative stress, cell death, among others, which furthermore contribute to the pathophysiology of neurological disorders. The variety of biochemical processes engaged in this process is only matched by the multitude of clinical consequences resulting from it. The wide-ranging effects on the central and peripheral nervous system include, but are not limited to axonopathies, neurodegenerative diseases, neurovascular diseases, and general cognitive impairment. All language search was conducted on MEDLINE, COCHRANE, EMBASE, and GOOGLE SCHOLAR till September 2021. The following search strings and Medical Subject Headings (MeSH terms) were used: "Diabetes Mellitus," "CNS," "Diabetic Neuropathy," and "Insulin." We explored the literature on diabetic neuropathy, covering its epidemiology, pathophysiology with the respective molecular pathways, clinical consequences with a special focus on the central nervous system and finally, measures to prevent and treat neuronal changes. Diabetes is slowly becoming an epidemic, rapidly increasing the clinical burden on account of its wide-ranging complications. This review focuses on the neuronal changes occurring in diabetes such as the impact of hyperglycemia on brain function and structure, its association with various neurological disorders, and a few diabetes-induced peripheral neuropathic changes. It is an attempt to summarize the relevant literature about neuronal consequences of DM as treatment options available today are mostly focused on achieving better glycemic control; further research on novel treatment options to prevent or delay the progression of neuronal changes is still needed.
Collapse
Affiliation(s)
- Rudy Luna
- Neurofisiología, Instituto Nacional de Neurologia y Neurocirugia, CDMX, MEX
| | | | | | | | - Chaithanya Avanthika
- Medicine and Surgery; Pediatrics, Karnataka Institute of Medical Sciences, Hubli, IND
| | - Nikhil Reddy
- Internal Medicine, Kamineni Academy of Medical Science and Research Centre, Hyderabad, IND
| | - Tias Saha
- Internal Medicine, Diabetic Association Medical College, Faridpur, BGD
| | - Fenil Gandhi
- Medicine, Shree Krishna Hospital, Anand, IND
- Research Project Associate, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
11
|
Creo AL, Cortes TM, Jo HJ, Huebner AR, Dasari S, Tillema JM, Lteif AN, Klaus KA, Ruegsegger GN, Kudva YC, Petersen RC, Port JD, Nair KS. Brain functions and cognition on transient insulin deprivation in type 1 diabetes. JCI Insight 2021; 6:144014. [PMID: 33561011 PMCID: PMC8021100 DOI: 10.1172/jci.insight.144014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/03/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is a risk factor for dementia and structural brain changes. It remains to be determined whether transient insulin deprivation that frequently occurs in insulin-treated individuals with T1D alters brain function. METHODS We therefore performed functional and structural magnetic resonance imaging, magnetic resonance spectroscopy, and neuropsychological testing at baseline and following 5.4 ± 0.6 hours of insulin deprivation in 14 individuals with T1D and compared results with those from 14 age-, sex-, and BMI-matched nondiabetic (ND) participants with no interventions. RESULTS Insulin deprivation in T1D increased blood glucose, and β-hydroxybutyrate, while reducing bicarbonate levels. Participants with T1D showed lower baseline brain N-acetyl aspartate and myo-inositol levels but higher cortical fractional anisotropy, suggesting unhealthy neurons and brain microstructure. Although cognitive functions did not differ between participants with T1D and ND participants at baseline, significant changes in fine motor speed as well as attention and short-term memory occurred following insulin deprivation in participants with T1D. Insulin deprivation also reduced brain adenosine triphosphate levels and altered the phosphocreatine/adenosine triphosphate ratio. Baseline differences in functional connectivity in brain regions between participants with T1D and ND participants were noted, and on insulin deprivation further alterations in functional connectivity between regions, especially cortical and hippocampus-caudate regions, were observed. These alterations in functional connectivity correlated to brain metabolites and to changes in cognition. CONCLUSION Transient insulin deprivation therefore caused alterations in executive aspects of cognitive function concurrent with functional connectivity between memory regions and the sensory cortex. These findings have important clinical implications, as many patients with T1D inadvertently have periods of transient insulin deprivation. TRIAL REGISTRATION ClinicalTrials.gov NCT03392441. FUNDING Clinical and Translational Science Award (UL1 TR002377) from the National Center for Advancing Translational Science; NIH grants (R21 AG60139 and R01 AG62859); the Mayo Foundation.
Collapse
Affiliation(s)
- Ana L Creo
- Division of Pediatric Endocrinology and Metabolism
| | | | | | | | | | | | - Aida N Lteif
- Division of Pediatric Endocrinology and Metabolism
| | | | | | - Yogish C Kudva
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition
| | | | - John D Port
- Division of Neuroradiology, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
12
|
Redondo MJ, Libman I, Maahs DM, Lyons SK, Saraco M, Reusch J, Rodriguez H, DiMeglio LA. The Evolution of Hemoglobin A 1c Targets for Youth With Type 1 Diabetes: Rationale and Supporting Evidence. Diabetes Care 2021; 44:301-312. [PMID: 33431422 PMCID: PMC7818324 DOI: 10.2337/dc20-1978] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/08/2020] [Indexed: 02/03/2023]
Abstract
The American Diabetes Association 2020 Standards of Medical Care in Diabetes (Standards of Care) recommends a hemoglobin A1c (A1C) of <7% (53 mmol/mol) for many children with type 1 diabetes (T1D), with an emphasis on target personalization. A higher A1C target of <7.5% may be more suitable for youth who cannot articulate symptoms of hypoglycemia or have hypoglycemia unawareness and for those who do not have access to analog insulins or advanced diabetes technologies or who cannot monitor blood glucose regularly. Even less stringent A1C targets (e.g., <8%) may be warranted for children with a history of severe hypoglycemia, severe morbidities, or short life expectancy. During the "honeymoon" period and in situations where lower mean glycemia is achievable without excessive hypoglycemia or reduced quality of life, an A1C <6.5% may be safe and effective. Here, we provide a historical perspective of A1C targets in pediatrics and highlight evidence demonstrating detrimental effects of hyperglycemia in children and adolescents, including increased likelihood of brain structure and neurocognitive abnormalities, microvascular and macrovascular complications, long-term effects, and increased mortality. We also review data supporting a decrease over time in overall severe hypoglycemia risk for youth with T1D, partly associated with the use of newer insulins and devices, and weakened association between lower A1C and severe hypoglycemia risk. We present common barriers to achieving glycemic targets in pediatric diabetes and discuss some strategies to address them. We aim to raise awareness within the community on Standards of Care updates that impact this crucial goal in pediatric diabetes management.
Collapse
Affiliation(s)
- Maria J Redondo
- Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| | - Ingrid Libman
- Division of Pediatric Endocrinology, Diabetes and Metabolism, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
| | - David M Maahs
- Division of Pediatric Endocrinology and Diabetes, Stanford University, Stanford, CA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA
- Health Research and Policy (Epidemiology), Stanford University, Stanford, CA
| | - Sarah K Lyons
- Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| | | | - Jane Reusch
- University of Colorado and Rocky Mountain Regional VA Medical Center, Aurora, CO
| | - Henry Rodriguez
- USF Diabetes and Endocrinology Section, University of South Florida, Tampa, FL
| | - Linda A DiMeglio
- Division of Pediatric Endocrinology and Diabetology and Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
13
|
Abstract
The American Diabetes Association (ADA) "Standards of Medical Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee (https://doi.org/10.2337/dc21-SPPC), are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations, please refer to the Standards of Care Introduction (https://doi.org/10.2337/dc21-SINT). Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
14
|
Kordestani-Moghadam P, Assari S, Nouriyengejeh S, Mohammadipour F, Pourabbasi A. Cognitive Impairments and Associated Structural Brain Changes in Metabolic Syndrome and Implications of Neurocognitive Intervention. J Obes Metab Syndr 2020; 29:174-179. [PMID: 32747611 PMCID: PMC7539347 DOI: 10.7570/jomes20021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 03/29/2020] [Accepted: 04/26/2020] [Indexed: 12/18/2022] Open
Abstract
Currently, metabolic syndrome has become a global health problem. Alterations in neurocognitive functions among patients with metabolic syndrome are important issues in this disorder. In this paper, studies on metabolic syndrome were reviewed and their importance emphasized for the benefit of experts and policy makers. Metabolic syndrome activates inflammatory mediators that disrupt brain metabolism. These mediators can be activated by metabolic inflammation and microvascular disorders and may further cause damage to the white matter and impair cognitive function. These alterations can result in serious changes in cognitive abilities. The association between cognitive changes and metabolic syndrome has been independently evaluated in several studies. In addition, some areas of research in the field of metabolic syndrome include the effectiveness of neurocognitive interventions to enhance normal behaviors or reduce risky behaviors in patients. Structural brain correlates of health-related behaviors provide a basis for designing more effective behavioral interventions by identifying the corresponding brain regions and using behavioral interventions.
Collapse
Affiliation(s)
| | - Shervin Assari
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Sarah Nouriyengejeh
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mohammadipour
- Student Research Committee, Lorestan University of Medical Science, Khorramabad, Iran
| | - Ata Pourabbasi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Abstract
The American Diabetes Association (ADA) "Standards of Medical Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee (https://doi.org/10.2337/dc20-SPPC), are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations, please refer to the Standards of Care Introduction (https://doi.org/10.2337/dc20-SINT). Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
16
|
Buchmann N, Fink A, Tegeler C, Demuth I, Doblhammer G, Steinhagen-Thiessen E. Different treatment forms of type II diabetes and the risk of dementia in German health claims data. Acta Diabetol 2019; 56:995-1003. [PMID: 31119454 DOI: 10.1007/s00592-019-01332-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 03/22/2019] [Indexed: 12/11/2022]
Abstract
AIMS The association between type II diabetes (T2D) and increased all-cause dementia risk is well established. However, to date, there is no definite proof that a specific therapy for diabetes can halt a progress of cognitive decline. Therefore, we analyzed a large longitudinal random sample of German health claims data to focus on associations between T2D and dementia and to elucidate the role of different treatment forms of T2D on the risk for dementia. METHODS We used a longitudinal random sample (n = 250,000) of claims data of the largest public sickness fund in Germany, the Allgemeine Ortskrankenkasse (AOK). Dementia was defined as ICD-10 codes G31.0, G31.82, G23.1, F00, F01, F02, F03, and F05, and T2D was defined as E11-E14. We performed Cox proportional hazard models to explore the transition into dementia and to calculate the relative risk of dementia dependent on T2D and different T2D treatment forms. RESULTS All models were adjusted for sex, age, and each patient's history of depression, renal insufficiency, and cardiovascular comorbidities. Non-pharmacologic-treated diabetics showed a 23% increased dementia risk (p < 0.001) and oral ADM-treated diabetics showed a 16% increased risk (p < 0.001). Insulin-dependent diabetics is still the highest dementia risk (40%; p < 0.001) and obesity additionally attenuated this risk (75%; p < 0.001) increased risk. CONCLUSIONS We found that diabetes is an independent risk factor for all-cause dementia. An increased risk for dementia in insulin-dependent and obese subjects with diabetes was evident. Longitudinal studies on the effect of different forms of therapy and weight reduction are needed to verify the results of this study.
Collapse
Affiliation(s)
- Nikolaus Buchmann
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Lipid Clinic at the Interdisciplinary Metabolism Center, Berlin, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Anne Fink
- German Center for Neurodegenerative Diseases, Sigmund-Freud-Str. 27, 53127, Bonn, Germany
- Rostock Center for the Study of Demographic Change, Konrad-Zuse-Str.1, 18057, Rostock, Germany
| | - Christina Tegeler
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Lipid Clinic at the Interdisciplinary Metabolism Center, Berlin, Germany
| | - Ilja Demuth
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Lipid Clinic at the Interdisciplinary Metabolism Center, Berlin, Germany
| | - Gabriele Doblhammer
- German Center for Neurodegenerative Diseases, Sigmund-Freud-Str. 27, 53127, Bonn, Germany.
- Rostock Center for the Study of Demographic Change, Konrad-Zuse-Str.1, 18057, Rostock, Germany.
- Institute for Sociology and Demography, University Rostock, Ulmenstr. 69, 18057, Rostock, Germany.
| | - Elisabeth Steinhagen-Thiessen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Lipid Clinic at the Interdisciplinary Metabolism Center, Berlin, Germany
| |
Collapse
|
17
|
Changes in the Brain-Derived Neurotrophic Factor Are Associated with Improvements in Diabetes Risk Factors after Exercise Training in Adolescents with Obesity: The HEARTY Randomized Controlled Trial. Neural Plast 2018; 2018:7169583. [PMID: 30363954 PMCID: PMC6186331 DOI: 10.1155/2018/7169583] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 07/24/2018] [Accepted: 08/19/2018] [Indexed: 12/20/2022] Open
Abstract
Obesity in youth increases the risk of type 2 diabetes (T2D), and both are risk factors for neurocognitive deficits. Exercise attenuates the risk of obesity and T2D while improving cognitive function. In adults, these benefits are associated with the actions of the brain-derived neurotrophic factor (BDNF), a protein critical in modulating neuroplasticity, glucose regulation, fat oxidation, and appetite regulation in adults. However, little research exists in youth. This study examined the associations between changes in diabetes risk factors and changes in BDNF levels after 6 months of exercise training in adolescents with obesity. The sample consisted of 202 postpubertal adolescents with obesity (70% females) aged 14-18 years who were randomized to 6 months of aerobic and/or resistance training or nonexercise control. All participants received a healthy eating plan designed to induce a 250/kcal deficit per day. Resting serum BDNF levels and diabetes risk factors, such as fasting glucose, insulin, homeostasis model assessment (HOMA-B-beta cell insulin secretory capacity) and (HOMA-IS-insulin sensitivity), and hemoglobin A1c (HbA1c), were measured after an overnight fast at baseline and 6 months. There were no significant intergroup differences on changes in BDNF or diabetes risk factors. In the exercise group, increases in BDNF were associated with reductions in fasting glucose (β = -6.57, SE = 3.37, p = 0.05) and increases in HOMA-B (β = 0.093, SE = 0.03, p = 0.004) after controlling for confounders. No associations were found between changes in diabetes risk factors and BDNF in controls. In conclusion, exercise-induced reductions in some diabetes risk factors were associated with increases in BDNF in adolescents with obesity, suggesting that exercise training may be an effective strategy to promote metabolic health and increases in BDNF, a protein favoring neuroplasticity. This trial is registered with ClinicalTrials.gov NCT00195858, September 12, 2005 (funded by the Canadian Institutes of Health Research).
Collapse
|