1
|
Meza-Torres J, Tinevez JY, Crouzols A, Mary H, Kim M, Hunault L, Chamorro-Rodriguez S, Lejal E, Altamirano-Silva P, Groussard D, Gobaa S, Peltier J, Chassaing B, Dupuy B. Clostridioides difficile binary toxin CDT induces biofilm-like persisting microcolonies. Gut Microbes 2025; 17:2444411. [PMID: 39719371 DOI: 10.1080/19490976.2024.2444411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/07/2024] [Accepted: 12/09/2024] [Indexed: 12/26/2024] Open
Abstract
Clinical symptoms of Clostridioides difficile infection (CDI) range from diarrhea to pseudomembranous colitis. A major challenge in managing CDI is the high rate of relapse. Several studies correlate the production of CDT binary toxin by clinical strains of C. difficile with higher relapse rates. Although the mechanism of action of CDT on host cells is known, its exact contribution to CDI is still unclear. To understand the physiological role of CDT during CDI, we established two hypoxic relevant intestinal models, Transwell and Microfluidic Intestine-on-Chip systems. Both were challenged with the epidemic strain UK1 CDT+ and its isogenic CDT- mutant. We report that CDT induces mucin-associated microcolonies that increase C. difficile colonization and display biofilm-like properties by enhancing C. difficile resistance to vancomycin. Importantly, biofilm-like microcolonies were also observed in the cecum and colon of infected mice. Hence, our study shows that CDT induces biofilm-like microcolonies, increasing C. difficile persistence and risk of relapse.
Collapse
Affiliation(s)
- Jazmin Meza-Torres
- Pathogenesis of Bacterial Anaerobes, Department of Microbiology, Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Paris, France
| | - Jean-Yves Tinevez
- Image Analysis Hub, Department of Cell Biology and Infection, Institut Pasteur, Université Paris Cité, Paris, France
| | - Aline Crouzols
- Pathogenesis of Bacterial Anaerobes, Department of Microbiology, Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Paris, France
| | - Héloïse Mary
- Biomaterials and Microfluidics Core Facility, Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, Paris, France
| | - Minhee Kim
- Biomaterials and Microfluidics Core Facility, Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, Paris, France
| | - Lise Hunault
- Antibodies in Therapy and Pathology, Department of Immunology, Institut Pasteur, Paris, France
| | - Susan Chamorro-Rodriguez
- Pathogenesis of Bacterial Anaerobes, Department of Microbiology, Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Paris, France
| | - Emilie Lejal
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Pamela Altamirano-Silva
- Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, San José, Costa Rica
| | | | - Samy Gobaa
- Biomaterials and Microfluidics Core Facility, Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, Paris, France
| | - Johann Peltier
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Benoit Chassaing
- Microbiome-Host Interactions, Department of Microbiology, Institut Pasteur, Université Paris Cité, INSERM U1306, Paris, France
- Mucosal Microbiota in Chronic Inflammatory Diseases, INSERM U1016, CNRS UMR 8104, Université Paris Cité, Paris, France
| | - Bruno Dupuy
- Pathogenesis of Bacterial Anaerobes, Department of Microbiology, Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Paris, France
| |
Collapse
|
2
|
Mäklin T, Taira A, Arredondo-Alonso S, Shao Y, Stratton MR, Lawley TD, Aaltonen LA, Corander J. Geographical variation in the incidence of colorectal cancer and urinary tract cancer is associated with population exposure to colibactin-producing Escherichia coli. THE LANCET. MICROBE 2024:101015. [PMID: 39644909 DOI: 10.1016/j.lanmic.2024.101015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 12/09/2024]
Abstract
Biomedical research has implicated the bacterial metabolite colibactin as a causal risk factor for several cancer types, in particular, colorectal cancer. Colibactin has been known to drive tumorigenesis by inducing double-strand breaks in the DNA of epithelial cells exposed to colibactin-producing bacteria. Some phylogroup B2 Escherichia coli secrete colibactin during interbacterial warfare, concomitantly exposing the host to an increasing risk of DNA damage. This Personal View reviews the current knowledge about the cancer-colibactin interface and summarises metagenomics-based and population-genomics-based surveys to show that the prevalence of dominant colibactin-producing lineages of E coli varies considerably across geographical regions. The prevalence is further strongly associated with the age-standardised incidences of colorectal cancer, bladder cancer, and prostate cancer, suggesting that the degree of colibactin exposure in a population might contribute to the geographical variation of these cancers. Our observations provide a strong impetus for further research and the development of novel interventions to reduce the risks for colibactin-related cancers.
Collapse
Affiliation(s)
- Tommi Mäklin
- Department of Mathematics and Statistics University of Helsinki, Helsinki, Finland
| | - Aurora Taira
- Department of Medical and Clinical Genetics University of Helsinki, Helsinki, Finland
| | | | - Yan Shao
- Wellcome Sanger Institute, Hinxton, UK
| | | | | | - Lauri A Aaltonen
- Department of Medical and Clinical Genetics University of Helsinki, Helsinki, Finland
| | - Jukka Corander
- Department of Mathematics and Statistics University of Helsinki, Helsinki, Finland; Department of Biostatistics, University of Oslo, Oslo, Norway; Wellcome Sanger Institute, Hinxton, UK; Department of Genetics, University of Cambridge, Cambridge, UK.
| |
Collapse
|
3
|
Fofanova TY, Karandikar UC, Auchtung JM, Wilson RL, Valentin AJ, Britton RA, Grande-Allen KJ, Estes MK, Hoffman K, Ramani S, Stewart CJ, Petrosino JF. A novel system to culture human intestinal organoids under physiological oxygen content to study microbial-host interaction. PLoS One 2024; 19:e0300666. [PMID: 39052651 PMCID: PMC11271918 DOI: 10.1371/journal.pone.0300666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/01/2024] [Indexed: 07/27/2024] Open
Abstract
Mechanistic investigation of host-microbe interactions in the human gut are hindered by difficulty of co-culturing microbes with intestinal epithelial cells. On one hand the gut bacteria are a mix of facultative, aerotolerant or obligate anaerobes, while the intestinal epithelium requires oxygen for growth and function. Thus, a coculture system that can recreate these contrasting oxygen requirements is critical step towards our understanding microbial-host interactions in the human gut. Here, we demonstrate Intestinal Organoid Physoxic Coculture (IOPC) system, a simple and cost-effective method for coculturing anaerobic intestinal bacteria with human intestinal organoids (HIOs). Using commensal anaerobes with varying degrees of oxygen tolerance, such as nano-aerobe Bacteroides thetaiotaomicron and strict anaerobe Blautia sp., we demonstrate that IOPC can successfully support 24-48 hours HIO-microbe coculture. The IOPC recapitulates the contrasting oxygen conditions across the intestinal epithelium seen in vivo. The IOPC cultured HIOs showed increased barrier integrity, and induced expression of immunomodulatory genes. A transcriptomic analysis suggests that HIOs from different donors show differences in the magnitude of their response to coculture with anaerobic bacteria. Thus, the IOPC system provides a robust coculture setup for investigating host-microbe interactions in complex, patient-derived intestinal tissues, that can facilitate the study of mechanisms underlying the role of the microbiome in health and disease.
Collapse
Affiliation(s)
- Tatiana Y. Fofanova
- Alkek Centre for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Umesh C. Karandikar
- Alkek Centre for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Jennifer M. Auchtung
- Alkek Centre for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Reid L. Wilson
- Department of Bioengineering, Rice University, Houston, TX, United States of America
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States of America
| | - Antonio J. Valentin
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Robert A. Britton
- Alkek Centre for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - K. Jane Grande-Allen
- Department of Bioengineering, Rice University, Houston, TX, United States of America
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States of America
| | - Kristi Hoffman
- Alkek Centre for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Sashirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Christopher J. Stewart
- Alkek Centre for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
- Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
| | - Joseph F. Petrosino
- Alkek Centre for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| |
Collapse
|
4
|
Ladowski JM, Sudan DL. Normothermic Preservation of the Intestinal Allograft. Gastroenterol Clin North Am 2024; 53:221-231. [PMID: 38719374 PMCID: PMC11346631 DOI: 10.1016/j.gtc.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Intestinal allotransplantation was first described in the 1960s and successfully performed in the 1980s. Since that time, less progress has been made in the preservation of the allograft before transplantation and static cold storage remains the current standard. Normothermic machine perfusion represents an opportunity to simultaneously preserve, assess, and recondition the organ for transplantation and improve the procurement radius for allografts. The substantial progress made in the field during the last 60 years, coupled with the success of the preclinical animal model of machine perfusion-preserved intestinal transplantation, suggest we are approaching the point of clinical application.
Collapse
Affiliation(s)
- Joseph M Ladowski
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Debra L Sudan
- Division Chief of Abdominal Transplant in the Department of Surgery, Duke Transplant Center, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
5
|
Huang Z, Teng W, Yao L, Xie K, Hang S, He R, Li Y. mTOR signaling pathway regulation HIF-1 α effects on LPS induced intestinal mucosal epithelial model damage. BMC Mol Cell Biol 2024; 25:13. [PMID: 38654163 PMCID: PMC11036631 DOI: 10.1186/s12860-024-00509-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 04/05/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Sepsis-induced small-intestinal injury is associated with increased morbidity and mortality. Our previous study and other papers have shown that HIF-1α has a protective effect on intestinal mucosal injury in septic rats. The purpose of this study is to further verify the protective effect of HIF-1α on intestinal mucosa and its molecular mechanism in vitro experiments. METHODS Caco-2 cells were selected and experiment was divided into 2 parts. Part I: HIF-1α activator and inhibitor were used to treat lipopolysacchrides (LPS)-stimulated Caco-2 cells respectively, to explore the effect of HIF-1α on LPS induced Caco-2 cell epithelial model; Part II: mTOR activator or inhibitor combined with or without HIF-1α activator, inhibitor to treat LPS-stimulated Caco-2 cells respectively, and then the molecular mechanism of HIF-1α reducing LPS induced Caco-2 cell epithelial model damage was detected. RESULTS The results showed that HIF-1α activator decreased the permeability and up regulated tight junction (TJ) expression, while HIF-1α inhibitor had the opposite effect with the HIF-1α activator. mTOR activation increased, while mTOR inhibition decreased HIF-1α protein and expression of its downstream target molecules, which can be attenuated by HIF-1α activator or inhibitor. CONCLUSION This study once again confirmed that HIF-1α alleviates LPS-induced mucosal epithelial model damage through P70S6K signalling pathway. It is of great value to explore whether HIF-2α plays crucial roles in the regulation of mucosal epithelial model functions in the future.
Collapse
Affiliation(s)
- Zeyong Huang
- Department of Anesthesiology, Shulan (Hangzhou) Hospital, Shulan International Medical College, Zhejiang Shuren College, 310015, Hangzhou, China
| | - Wenbin Teng
- Department of Anesthesiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, 310001, Hangzhou, China
| | - Liuxu Yao
- Rehabilitation Medicine Center, Department of Anesthesiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 310014, Hangzhou, China
| | - Kai Xie
- Department of Anesthesiology, Shaoxing People's Hospital, Zhejiang University, 312000, Shaoxing, China
| | - Suqin Hang
- Department of Anesthesiology, Shulan (Hangzhou) Hospital, Shulan International Medical College, Zhejiang Shuren College, 310015, Hangzhou, China
| | - Rui He
- Department of Anesthesiology, Shaoxing People's Hospital, Zhejiang University, 312000, Shaoxing, China.
| | - Yuhong Li
- Department of Anesthesiology, Shulan (Hangzhou) Hospital, Shulan International Medical College, Zhejiang Shuren College, 310015, Hangzhou, China.
- Department of Anesthesiology, Shulan (Hangzhou) Hospital, Shulan International Medical College, Shuren University, 848 Dongxin Road, Xiacheng District, 310004, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Xiao J, Guo X, Wang Z. Crosstalk between hypoxia-inducible factor-1α and short-chain fatty acids in inflammatory bowel disease: key clues toward unraveling the mystery. Front Immunol 2024; 15:1385907. [PMID: 38605960 PMCID: PMC11007100 DOI: 10.3389/fimmu.2024.1385907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
The human intestinal tract constitutes a complex ecosystem, made up of countless gut microbiota, metabolites, and immune cells, with hypoxia being a fundamental environmental characteristic of this ecology. Under normal physiological conditions, a delicate balance exists among these complex "residents", with disruptions potentially leading to inflammatory bowel disease (IBD). The core pathology of IBD features a disrupted intestinal epithelial barrier, alongside evident immune and microecological disturbances. Central to these interconnected networks is hypoxia-inducible factor-1α (HIF-1α), which is a key regulator in gut cells for adapting to hypoxic conditions and maintaining gut homeostasis. Short-chain fatty acids (SCFAs), as pivotal gut metabolites, serve as vital mediators between the host and microbiota, and significantly influence intestinal ecosystem. Recent years have seen a surge in research on the roles and therapeutic potential of HIF-1α and SCFAs in IBD independently, yet reviews on HIF-1α-mediated SCFAs regulation of IBD under hypoxic conditions are scarce. This article summarizes evidence of the interplay and regulatory relationship between SCFAs and HIF-1α in IBD, pivotal for elucidating the disease's pathogenesis and offering promising therapeutic strategies.
Collapse
Affiliation(s)
- Jinyin Xiao
- Graduate School, Hunan University of Traditional Chinese Medicine, Changsha, China
- Department of Anorectal, the Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Xiajun Guo
- Department of Geriatric, the First People’s Hospital of Xiangtan City, Xiangtan, China
| | - Zhenquan Wang
- Department of Anorectal, the Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| |
Collapse
|
7
|
Teng W, Subsomwong P, Narita K, Nakane A, Asano K. Heat Shock Protein SSA1 Enriched in Hypoxic Secretome of Candida albicans Exerts an Immunomodulatory Effect via Regulating Macrophage Function. Cells 2024; 13:127. [PMID: 38247818 PMCID: PMC10814802 DOI: 10.3390/cells13020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
Candida albicans is an opportunistic pathogenic yeast that can survive in both normoxic and hypoxic environments. The involvement of C. albicans secretome on host biological processes has been demonstrated. However, the immunoregulatory function of C. albicans secretome released under hypoxic condition remains unclear. This study demonstrated the differences in cytokine responses and protein profiles between secretomes prepared under normoxic and hypoxic conditions. Furthermore, the immunoregulatory effects of heat shock protein SSA1(Ssa1), a protein candidate enriched in the hypoxic secretome, were investigated. Stimulation of mouse bone marrow-derived macrophages (BMMs) with Ssa1 resulted in the significant production of interleukin (IL)-10, IL-6, and tumor necrosis factor (TNF)-α as well as the significant expression of M2b macrophage markers (CD86, CD274 and tumor necrosis factor superfamily member 14), suggesting that C. albicans Ssa1 may promote macrophage polarization towards an M2b-like phenotype. Proteomic analysis of Ssa1-treated BMMs also revealed that Ssa1 reduced inflammation-related factors (IL-18-binding protein, IL-1 receptor antagonist protein, OX-2 membrane glycoprotein and cis-aconitate decarboxylase) and enhanced the proteins involved in anti-inflammatory response (CMRF35-like molecule 3 and macrophage colony-stimulating factor 1 receptor). Based on these results, we investigated the effect of Ssa1 on C. albicans infection and showed that Ssa1 inhibited the uptake of C. albicans by BMMs. Taken together, our results suggest that C. albicans alters its secretome, particularly by promoting the release of Ssa1, to modulate host immune response and survive under hypoxic conditions.
Collapse
Affiliation(s)
- Wei Teng
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (W.T.); (P.S.)
| | - Phawinee Subsomwong
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (W.T.); (P.S.)
| | - Kouji Narita
- Insititue for Animal Experimentation, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan;
| | - Akio Nakane
- Department of Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan;
| | - Krisana Asano
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (W.T.); (P.S.)
- Department of Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan;
| |
Collapse
|
8
|
Mergani A, Meurer M, Wiebe E, Dümmer K, Wirz K, Lehmann J, Brogden G, Schenke M, Künnemann K, Naim HY, Grassl GA, von Köckritz-Blickwede M, Seeger B. Alteration of cholesterol content and oxygen level in intestinal organoids after infection with Staphylococcus aureus. FASEB J 2023; 37:e23279. [PMID: 37902583 DOI: 10.1096/fj.202300799r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/16/2023] [Accepted: 10/13/2023] [Indexed: 10/31/2023]
Abstract
The pathogenicity elicited by Staphylococcus (S.) aureus, one of the best-studied bacteria, in the intestine is not well understood. Recently, we demonstrated that S. aureus infection induces alterations in membrane composition that are associated with concomitant impairment of intestinal function. Here, we used two organoid models, induced pluripotent stem cell (iPSC)-derived intestinal organoids and colonic intestinal stem cell-derived intestinal organoids (colonoids), to examine how sterol metabolism and oxygen levels change in response to S. aureus infection. HPLC quantification showed differences in lipid homeostasis between infected and uninfected cells, characterized by a remarkable decrease in total cellular cholesterol. As the altered sterol metabolism is often due to oxidative stress response, we next examined intracellular and extracellular oxygen levels. Three different approaches to oxygen measurement were applied: (1) cell-penetrating nanoparticles to quantify intracellular oxygen content, (2) sensor plates to quantify extracellular oxygen content in the medium, and (3) a sensor foil system for oxygen distribution in organoid cultures. The data revealed significant intracellular and extracellular oxygen drop after infection in both intestinal organoid models as well as in Caco-2 cells, which even 48 h after elimination of extracellular bacteria, did not return to preinfection oxygen levels. In summary, we show alterations in sterol metabolism and intra- and extracellular hypoxia as a result of S. aureus infection. These results will help understand the cellular stress responses during sustained bacterial infections in the intestinal epithelium.
Collapse
Affiliation(s)
- AhmedElmontaser Mergani
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Marita Meurer
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Elena Wiebe
- Institute for Food Quality and Food Safety, Research Group Food Toxicology and Replacement/Complementary Methods to Animal Testing, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Katrin Dümmer
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Katrin Wirz
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Judith Lehmann
- Institute for Food Quality and Food Safety, Research Group Food Toxicology and Replacement/Complementary Methods to Animal Testing, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Graham Brogden
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Maren Schenke
- Institute for Food Quality and Food Safety, Research Group Food Toxicology and Replacement/Complementary Methods to Animal Testing, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Katrin Künnemann
- Institute of Medical Microbiology and Hospital Epidemiology and German Center for Infection Research (DZIF), Partner Site Hannover, Hannover Medical School, Hannover, Germany
| | - Hassan Y Naim
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Guntram A Grassl
- Institute of Medical Microbiology and Hospital Epidemiology and German Center for Infection Research (DZIF), Partner Site Hannover, Hannover Medical School, Hannover, Germany
| | - Maren von Köckritz-Blickwede
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Bettina Seeger
- Institute for Food Quality and Food Safety, Research Group Food Toxicology and Replacement/Complementary Methods to Animal Testing, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
9
|
Grzymajło K, Dutkiewicz A, Czajkowska J, Carolak E, Aleksandrowicz A, Waszczuk W. Salmonella adhesion is decreased by hypoxia due to adhesion and motility structure crosstalk. Vet Res 2023; 54:99. [PMID: 37875985 PMCID: PMC10598919 DOI: 10.1186/s13567-023-01233-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/28/2023] [Indexed: 10/26/2023] Open
Abstract
Initial stages of Salmonella Typhimurium infection involve a series of coordinated events aimed at reaching, attaching to, and invading host cells. Virulence factors such as flagella, fimbriae, and secretion systems play crucial roles in these events and are regulated in response to the host environment. The first point of contact between the pathogen and host is the intestinal epithelial layer, which normally serves as a barrier against invading pathogens, but can also be an entry site for pathogens. The integrity of this barrier can be modulated by the hypoxic environment of the intestines, created by the presence of trillions of microbes. Variable oxygen concentrations can strongly affect many functions of the gut, including secretion of cytokines and growth factors from the host site and affect the ability of Salmonella to persist, invade, and replicate. In this study, we investigated the first stages of Salmonella Typhimurium infection under hypoxic conditions in vitro and found that low oxygen levels significantly decreased bacterial adhesion. Using adhesion and motility assays, biofilm formation tests, as well as gene expression and cytokine secretion analysis, we identified a hypoxia-specific cross-talk between the expression of type 1 fimbriae and flagella, suggesting that altered flagellin expression levels affect the motility of bacteria and further impact their adhesion level, biofilm formation ability, and innate immune response. Overall, understanding how Salmonella interacts with its variable host environment provides insights into the virulence mechanisms of the bacterium and information regarding strategies for preventing or treating infections. Further research is required to fully understand the complex interplay between Salmonella and its host environment.
Collapse
Affiliation(s)
- Krzysztof Grzymajło
- Faculty of Veterinary Medicine, Department of Biochemistry and Molecular Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland.
| | - Agata Dutkiewicz
- Faculty of Veterinary Medicine, Department of Biochemistry and Molecular Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Joanna Czajkowska
- Faculty of Veterinary Medicine, Department of Biochemistry and Molecular Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Ewa Carolak
- Faculty of Veterinary Medicine, Department of Biochemistry and Molecular Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Adrianna Aleksandrowicz
- Faculty of Veterinary Medicine, Department of Biochemistry and Molecular Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Wiktoria Waszczuk
- Faculty of Veterinary Medicine, Department of Biochemistry and Molecular Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
10
|
Haroun E, Dutta D, Lim SH. Effects of GBT1118, a voxelotor analog, on intestinal pathophysiology in sickle cell disease. Br J Haematol 2023. [PMID: 37052197 DOI: 10.1111/bjh.18813] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023]
Abstract
Voxelotor is an allosteric haemoglobin (Hb) modulator that binds covalently and reversibly to Hb alpha chain to facilitate improved Hb-O2 affinity and arterial oxygen. It, therefore, reduces the susceptibility of erythrocytes carrying Haemoglobin S to sickle. In this study, we have used GBT1118, an analog of voxelotor, to treat male Townes sickle cell disease (SCD) mice to investigate whether the Hb modulator could attenuate the intestinal pathophysiologic changes associated with SCD. Compared with mice fed with control chow, GBT1118-treated mice showed improvement in the intestinal pathophysiology. These mice exhibited improved small intestinal barrier functions, reduced intestinal microbial density, reduced enterocyte injury, lower serum lipopolysaccharides and smaller spleens. These improvements were observed after only 3 weeks of GBT1118 treatment. Benefits were also observed after experimentally-induced vaso-occlusive crisis (VOC). Recovery from the VOC-induced changes was faster in mice that were treated with GBT1118. The improved small intestinal barrier function was associated with higher expression of genes encoding enterocyte E-cadherin, JAM-A, ZO-1, MUC-2 and occludin while the lower intestinal microbial density associated with higher expression of genes encoding the antimicrobial peptides defensin-α 1 and defensin-α 4. Our findings provide the evidence to support the beneficial effects of GBT1118 in SCD-related intestinal pathophysiology.
Collapse
Affiliation(s)
- Elio Haroun
- Division of Hematology and Oncology, Department of Medicine, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Dibyendu Dutta
- Division of Hematology and Oncology, Department of Medicine, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Seah H Lim
- Division of Hematology and Oncology, Department of Medicine, State University of New York Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
11
|
Tang X, Zhou J, Koski TM, Liu S, Zhao L, Sun J. Hypoxia-induced tracheal elasticity in vector beetle facilitates the loading of pinewood nematode. eLife 2023; 12:84621. [PMID: 36995744 PMCID: PMC10063229 DOI: 10.7554/elife.84621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/21/2023] [Indexed: 03/31/2023] Open
Abstract
Many pathogens rely on their insect vectors for transmission. Such pathogens are under selection to improve vector competence for their transmission by employing various tissue or cellular responses of vectors. However, whether pathogens can actively cause hypoxia in vectors and exploit hypoxia responses to promote their vector competence is still unknown. Fast dispersal of pinewood nematode (PWN), the causal agent for the destructive pine wilt disease and subsequent infection of pine trees, is characterized by the high vector competence of pine sawyer beetles (Monochamus spp.), and a single beetle can harbor over 200,000 PWNs in its tracheal system. Here, we demonstrate that PWN loading activates hypoxia in tracheal system of the vector beetles. Both PWN loading and hypoxia enhanced tracheal elasticity and thickened the apical extracellular matrix (aECM) of the tracheal tubes while a notable upregulated expression of a resilin-like mucin protein Muc91C was observed at the aECM layer of PWN-loaded and hypoxic tracheal tubes. RNAi knockdown of Muc91C reduced tracheal elasticity and aECM thickness under hypoxia conditions and thus decreasing PWN loading. Our study suggests a crucial role of hypoxia-induced developmental responses in shaping vector tolerance to the pathogen and provides clues for potential molecular targets to control pathogen dissemination.
Collapse
Affiliation(s)
- Xuan Tang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiao Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tuuli-Marjaana Koski
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Shiyao Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lilin Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianghua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, China
| |
Collapse
|
12
|
Sabaté Del Río J, Ro J, Yoon H, Park TE, Cho YK. Integrated technologies for continuous monitoring of organs-on-chips: Current challenges and potential solutions. Biosens Bioelectron 2023; 224:115057. [PMID: 36640548 DOI: 10.1016/j.bios.2022.115057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Organs-on-chips (OoCs) are biomimetic in vitro systems based on microfluidic cell cultures that recapitulate the in vivo physicochemical microenvironments and the physiologies and key functional units of specific human organs. These systems are versatile and can be customized to investigate organ-specific physiology, pathology, or pharmacology. They are more physiologically relevant than traditional two-dimensional cultures, can potentially replace the animal models or reduce the use of these models, and represent a unique opportunity for the development of personalized medicine when combined with human induced pluripotent stem cells. Continuous monitoring of important quality parameters of OoCs via a label-free, non-destructive, reliable, high-throughput, and multiplex method is critical for assessing the conditions of these systems and generating relevant analytical data; moreover, elaboration of quality predictive models is required for clinical trials of OoCs. Presently, these analytical data are obtained by manual or automatic sampling and analyzed using single-point, off-chip traditional methods. In this review, we describe recent efforts to integrate biosensing technologies into OoCs for monitoring the physiologies, functions, and physicochemical microenvironments of OoCs. Furthermore, we present potential alternative solutions to current challenges and future directions for the application of artificial intelligence in the development of OoCs and cyber-physical systems. These "smart" OoCs can learn and make autonomous decisions for process optimization, self-regulation, and data analysis.
Collapse
Affiliation(s)
- Jonathan Sabaté Del Río
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Jooyoung Ro
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea; Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Heejeong Yoon
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Tae-Eun Park
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Yoon-Kyoung Cho
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea; Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
13
|
Xiang X, Wang X, Shang Y, Ding Y. Microfluidic intestine-on-a-chip: Current progress and further perspectives of probiotic-foodborne pathogen interactions. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
14
|
Monteduro AG, Rizzato S, Caragnano G, Trapani A, Giannelli G, Maruccio G. Organs-on-chips technologies – A guide from disease models to opportunities for drug development. Biosens Bioelectron 2023; 231:115271. [PMID: 37060819 DOI: 10.1016/j.bios.2023.115271] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 11/24/2022] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
Current in-vitro 2D cultures and animal models present severe limitations in recapitulating human physiopathology with striking discrepancies in estimating drug efficacy and side effects when compared to human trials. For these reasons, microphysiological systems, organ-on-chip and multiorgans microdevices attracted considerable attention as novel tools for high-throughput and high-content research to achieve an improved understanding of diseases and to accelerate the drug development process towards more precise and eventually personalized standards. This review takes the form of a guide on this fast-growing field, providing useful introduction to major themes and indications for further readings. We start analyzing Organs-on-chips (OOC) technologies for testing the major drug administration routes: (1) oral/rectal route by intestine-on-a-chip, (2) inhalation by lung-on-a-chip, (3) transdermal by skin-on-a-chip and (4) intravenous through vascularization models, considering how drugs penetrate in the bloodstream and are conveyed to their targets. Then, we focus on OOC models for (other) specific organs and diseases: (1) neurodegenerative diseases with brain models and blood brain barriers, (2) tumor models including their vascularization, organoids/spheroids, engineering and screening of antitumor drugs, (3) liver/kidney on chips and multiorgan models for gastrointestinal diseases and metabolic assessment of drugs and (4) biomechanical systems recapitulating heart, muscles and bones structures and related diseases. Successively, we discuss technologies and materials for organ on chips, analyzing (1) microfluidic tools for organs-on-chips, (2) sensor integration for real-time monitoring, (3) materials and (4) cell lines for organs on chips. (Nano)delivery approaches for therapeutics and their on chip assessment are also described. Finally, we conclude with a critical discussion on current significance/relevance, trends, limitations, challenges and future prospects in terms of revolutionary impact on biomedical research, preclinical models and drug development.
Collapse
Affiliation(s)
- Anna Grazia Monteduro
- Omnics Research Group, Department of Mathematics and Physics "Ennio De Giorgi", University of Salento and Institute of Nanotechnology, CNR-Nanotec and INFN Sezione di Lecce, Via per Monteroni, 73100, Lecce, Italy
| | - Silvia Rizzato
- Omnics Research Group, Department of Mathematics and Physics "Ennio De Giorgi", University of Salento and Institute of Nanotechnology, CNR-Nanotec and INFN Sezione di Lecce, Via per Monteroni, 73100, Lecce, Italy
| | - Giusi Caragnano
- Omnics Research Group, Department of Mathematics and Physics "Ennio De Giorgi", University of Salento and Institute of Nanotechnology, CNR-Nanotec and INFN Sezione di Lecce, Via per Monteroni, 73100, Lecce, Italy
| | - Adriana Trapani
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Gianluigi Giannelli
- National Institute of Gastroenterology IRCCS "Saverio de Bellis", Research Hospital, Castellana Grotte, Bari, Italy
| | - Giuseppe Maruccio
- Omnics Research Group, Department of Mathematics and Physics "Ennio De Giorgi", University of Salento and Institute of Nanotechnology, CNR-Nanotec and INFN Sezione di Lecce, Via per Monteroni, 73100, Lecce, Italy.
| |
Collapse
|
15
|
Chapman JA, Stewart CJ. Methodological challenges in neonatal microbiome research. Gut Microbes 2023; 15:2183687. [PMID: 36843005 PMCID: PMC9980642 DOI: 10.1080/19490976.2023.2183687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/16/2023] [Indexed: 02/28/2023] Open
Abstract
Following microbial colonization at birth, the gut microbiome plays a vital role in the healthy development of human neonates and impacts both health and disease in later life. Understanding the development of the neonatal gut microbiome and how it interacts with the neonatal host are therefore important areas of study. However, research within this field must address a range of specific challenges that impact the design and implementation of research methods. If not considered ahead of time, these challenges have the potential to introduce biases into studies, negatively affecting the relevance, reproducibility, and impact of any findings. This review outlines the nature of these challenges and points to current and future solutions, as outlined in the literature, to assist researchers in the early stages of study design.
Collapse
Affiliation(s)
- Jonathan A Chapman
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Christopher J Stewart
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
16
|
Lun J, Zhang H, Guo J, Yu M, Fang J. Hypoxia inducible factor prolyl hydroxylases in inflammatory bowel disease. Front Pharmacol 2023; 14:1045997. [PMID: 37201028 PMCID: PMC10187758 DOI: 10.3389/fphar.2023.1045997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 04/18/2023] [Indexed: 05/20/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic disease that is characterized by intestinal inflammation. Epithelial damage and loss of intestinal barrier function are believed to be the hallmark pathologies of the disease. In IBD, the resident and infiltrating immune cells consume much oxygen, rendering the inflamed intestinal mucosa hypoxic. In hypoxia, the hypoxia-inducible factor (HIF) is induced to cope with the lack of oxygen and protect intestinal barrier. Protein stability of HIF is tightly controlled by prolyl hydroxylases (PHDs). Stabilization of HIF through inhibition of PHDs is appearing as a new strategy of IBD treatment. Studies have shown that PHD-targeting is beneficial to the treatment of IBD. In this Review, we summarize the current understanding of the role of HIF and PHDs in IBD and discuss the therapeutic potential of targeting PHD-HIF pathway for IBD treatment.
Collapse
Affiliation(s)
- Jie Lun
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongwei Zhang
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Jing Guo
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mengchao Yu
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, China
| | - Jing Fang
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Jing Fang,
| |
Collapse
|
17
|
Kwon JE, Jo SH, Song WS, Lee JS, Jeon HJ, Park JH, Kim YR, Baek JH, Kim MG, Kwon SY, Kim JS, Yang YH, Kim YG. Investigation of metabolic crosstalk between host and pathogenic Clostridioides difficile via multiomics approaches. Front Bioeng Biotechnol 2022; 10:971739. [PMID: 36118584 PMCID: PMC9478559 DOI: 10.3389/fbioe.2022.971739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022] Open
Abstract
Clostridioides difficile is a gram-positive anaerobic bacterium that causes antibiotic-associated infections in the gut. C. difficile infection develops in the intestine of a host with an imbalance of the intestinal microbiota and, in severe cases, can lead to toxic megacolon, intestinal perforation, and even death. Despite its severity and importance, however, the lack of a model to understand host-pathogen interactions and the lack of research results on host cell effects and response mechanisms under C. difficile infection remain limited. Here, we developed an in vitro anaerobic-aerobic C. difficile infection model that enables direct interaction between human gut epithelial cells and C. difficile through the Mimetic Intestinal Host–Microbe Interaction Coculture System. Additionally, an integrative multiomics approach was applied to investigate the biological changes and response mechanisms of host cells caused by C. difficile in the early stage of infection. The C. difficile infection model was validated through the induction of disaggregation of the actin filaments and disruption of the intestinal epithelial barrier as the toxin-mediated phenotypes following infection progression. In addition, an upregulation of stress-induced chaperones and an increase in the ubiquitin proteasomal pathway were identified in response to protein stress that occurred in the early stage of infection, and downregulation of proteins contained in the electron transfer chain and ATP synthase was observed. It has been demonstrated that host cell energy metabolism is inhibited through the glycolysis of Caco-2 cells and the reduction of metabolites belonging to the TCA cycle. Taken together, our C. difficile infection model suggests a new biological response pathway in the host cell induced by C. difficile during the early stage of infection at the molecular level under anaerobic-aerobic conditions. Therefore, this study has the potential to be applied to the development of future therapeutics through basic metabolic studies of C. difficile infection.
Collapse
Affiliation(s)
- Ji-Eun Kwon
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
| | - Sung-Hyun Jo
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
| | - Won-Suk Song
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
| | - Jae-Seung Lee
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
| | - Hyo-Jin Jeon
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
| | - Ji-Hyeon Park
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
| | - Ye-Rim Kim
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
| | - Ji-Hyun Baek
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
| | - Min-Gyu Kim
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
| | - Seo-Young Kwon
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
| | - Jae-Seok Kim
- Department of Laboratory Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, Konkuk University, Seoul, South Korea
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
- *Correspondence: Yun-Gon Kim,
| |
Collapse
|
18
|
Steiner CA, Cartwright IM, Taylor CT, Colgan SP. Hypoxia-inducible factor as a bridge between healthy barrier function, wound healing, and fibrosis. Am J Physiol Cell Physiol 2022; 323:C866-C878. [PMID: 35912990 PMCID: PMC9467472 DOI: 10.1152/ajpcell.00227.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/07/2022] [Accepted: 07/23/2022] [Indexed: 11/22/2022]
Abstract
The healthy mammalian intestine is lined by a single layer of epithelial cells. These cells provide a selectively permeable barrier to luminal contents and normally do so in an efficient and effective manner. Barrier function in the healthy mucosa is provided via several mechanisms including epithelial junctional complexes, mucus production, as well as mucosal-derived antimicrobial proteins. As tissue metabolism is central to the maintenance of homeostasis in the mucosa, intestinal [Formula: see text] levels are uniquely low due to counter-current blood flow and the presence of the microbiota, resulting in the stabilization of the transcription factor hypoxia-inducible factor (HIF). Ongoing studies have revealed that HIF molds normal intestinal metabolism and is central to the coordination of barrier regulation during both homeostasis and active disease. During acute inflammation, HIF is central to controlling the rapid restitution of the epithelium consistent with normal wound healing responses. In contrast, HIF may also contribute to the fibrostenotic response associated with chronic, nonresolving inflammation. As such, HIF may function as a double-edged sword in the overall course of the inflammatory response. Here, we review recent literature on the contribution of HIF to mucosal barrier function, wound healing, and fibrosis.
Collapse
Affiliation(s)
- Calen A Steiner
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado
| | - Ian M Cartwright
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado
| | - Cormac T Taylor
- School of Medicine, Conway Institute and Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Sean P Colgan
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado
| |
Collapse
|
19
|
Pinget GV, Tan JK, Ni D, Taitz J, Daien CI, Mielle J, Moore RJ, Stanley D, Simpson S, King NJC, Macia L. Dysbiosis in imiquimod-induced psoriasis alters gut immunity and exacerbates colitis development. Cell Rep 2022; 40:111191. [PMID: 35977500 DOI: 10.1016/j.celrep.2022.111191] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 05/30/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
Psoriasis has long been associated with inflammatory bowel disease (IBD); however, a causal link is yet to be established. Here, we demonstrate that imiquimod-induced psoriasis (IMQ-pso) in mice disrupts gut homeostasis, characterized by increased proportions of colonic CX3CR1hi macrophages, altered cytokine production, and bacterial dysbiosis. Gut microbiota from these mice produce higher levels of succinate, which induce de novo proliferation of CX3CR1hi macrophages ex vivo, while disrupted gut homeostasis primes IMQ-pso mice for more severe colitis with dextran sulfate sodium (DSS) challenge. These results demonstrate that changes in the gut environment in psoriasis lead to greater susceptibility to IBD in mice, suggesting a two-hit requirement, that is, psoriasis-induced altered gut homeostasis and a secondary environmental challenge. This may explain the increased prevalence of IBD in patients with psoriasis.
Collapse
Affiliation(s)
- Gabriela Veronica Pinget
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Medical Sciences, Chronic Diseases Theme, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jian Kai Tan
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Medical Sciences, Chronic Diseases Theme, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Duan Ni
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Medical Sciences, Chronic Diseases Theme, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jemma Taitz
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Medical Sciences, Chronic Diseases Theme, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Claire Immediato Daien
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; CHRU Montpellier, University of Montpellier & INSERM U1046, CNRS UMR, PhyMedExp, 9214 Montpellier, France
| | - Julie Mielle
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; CHRU Montpellier, University of Montpellier & INSERM U1046, CNRS UMR, PhyMedExp, 9214 Montpellier, France
| | | | - Dragana Stanley
- School of Health, Medical and Applied Sciences, Central Queensland University, Kawana, QLD 4701, Australia
| | - Stephen Simpson
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, Faculty of Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Nicholas Jonathan Cole King
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Medical Sciences, Chronic Diseases Theme, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Laurence Macia
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Medical Sciences, Chronic Diseases Theme, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; Sydney Cytometry, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
20
|
Burge KY, Gunasekaran A, Makoni MM, Mir AM, Burkhart HM, Chaaban H. Clinical Characteristics and Potential Pathogenesis of Cardiac Necrotizing Enterocolitis in Neonates with Congenital Heart Disease: A Narrative Review. J Clin Med 2022; 11:3987. [PMID: 35887751 PMCID: PMC9320426 DOI: 10.3390/jcm11143987] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 12/10/2022] Open
Abstract
Neonates with congenital heart disease (CHD) are at an increased risk of developing necrotizing enterocolitis (NEC), an acute inflammatory intestinal injury most commonly associated with preterm infants. The rarity of this complex disease, termed cardiac NEC, has resulted in a dearth of information on its pathophysiology. However, a higher incidence in term infants, effects on more distal regions of the intestine, and potentially a differential immune response may distinguish cardiac NEC as a distinct condition from the more common preterm, classical NEC. In this review, risk factors, differentiated from those of classical NEC, are discussed according to their potential contribution to the disease process, and a general pathogenesis is postulated for cardiac NEC. Additionally, biomarkers specific to cardiac NEC, clinical outcomes, and strategies for achieving enteral feeds are discussed. Working towards an understanding of the mechanisms underlying cardiac NEC may aid in future diagnosis of the condition and provide potential therapeutic targets.
Collapse
Affiliation(s)
- Kathryn Y. Burge
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.Y.B.); (A.G.); (M.M.M.)
| | - Aarthi Gunasekaran
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.Y.B.); (A.G.); (M.M.M.)
| | - Marjorie M. Makoni
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.Y.B.); (A.G.); (M.M.M.)
| | - Arshid M. Mir
- Department of Pediatrics, Division of Cardiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Harold M. Burkhart
- Department of Surgery, Division of Cardiovascular and Thoracic Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Hala Chaaban
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.Y.B.); (A.G.); (M.M.M.)
| |
Collapse
|
21
|
Kim MB, Hwangbo S, Jang S, Jo YK. Bioengineered Co-culture of organoids to recapitulate host-microbe interactions. Mater Today Bio 2022; 16:100345. [PMID: 35847376 PMCID: PMC9283667 DOI: 10.1016/j.mtbio.2022.100345] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 11/05/2022] Open
Abstract
The recent spike in the instances of complex physiological host-microbe interactions has raised the demand for developing in vitro models that recapitulate the microbial microenvironment in the human body. Organoids are steadily emerging as an in vitro culture system that closely mimics the structural, functional, and genetic features of complex human organs, particularly for better understanding host-microbe interactions. Recent advances in organoid culture technology have become new avenues for assessing the pathogenesis of symbiotic interactions, pathogen-induced infectious diseases, and various other diseases. The co-cultures of organoids with microbes have shown great promise in simulating host-microbe interactions with a high level of complexity for further advancement in related fields. In this review, we provide an overview of bioengineering approaches for microbe-co-cultured organoids. Latest developments in the applications of microbe-co-cultured organoids to study human physiology and pathophysiology are also highlighted. Further, an outlook on future research on bioengineered organoid co-cultures for various applications is presented.
Collapse
|
22
|
Oktariani AF, Ramona Y, Sudaryatma PE, Dewi IAMM, Shetty K. Role of Marine Bacterial Contaminants in Histamine Formation in Seafood Products: A Review. Microorganisms 2022; 10:microorganisms10061197. [PMID: 35744715 PMCID: PMC9227395 DOI: 10.3390/microorganisms10061197] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 02/07/2023] Open
Abstract
Histamine is a toxic biogenic amine commonly found in seafood products or their derivatives. This metabolite is produced by histamine-producing bacteria (HPB) such as Proteus vulgaris, P. mirabilis, Enterobacter aerogenes, E. cloacae, Serratia fonticola, S. liquefaciens, Citrobacter freundii, C. braakii, Clostridium spp., Raoultella planticola, R. ornithinolytica, Vibrio alginolyticus, V. parahaemolyticus, V. olivaceus, Acinetobacter lowffi, Plesiomonas shigelloides, Pseudomonas putida, P. fluorescens, Aeromonas spp., Photobacterium damselae, P. phosphoreum, P. leiognathi, P. iliopiscarium, P. kishitanii, and P. aquimaris. In this review, the role of these bacteria in histamine production in fish and seafood products with consequences for human food poisoning following consumption are discussed. In addition, methods to control their activity in countering histamine production are proposed.
Collapse
Affiliation(s)
- Adnorita Fandah Oktariani
- Doctoral Study Program of Biology, Faculty of Mathematics and Natural Sciences, Udayana University, Denpasar 80361, Bali, Indonesia;
- PT. Intimas Surya, Denpasar 80222, Bali, Indonesia
| | - Yan Ramona
- Doctoral Study Program of Biology, Faculty of Mathematics and Natural Sciences, Udayana University, Denpasar 80361, Bali, Indonesia;
- Integrated Laboratory for Biosciences and Biotechnology, Udayana University, Denpasar 80361, Bali, Indonesia
- Correspondence: (Y.R.); (K.S.); Tel.: +62-85101523213 (Y.R.)
| | | | - Ida Ayu Mirah Meliana Dewi
- School of Biology, Faculty of Mathematics and Natural Sciences, Udayana University, Denpasar 80361, Bali, Indonesia;
| | - Kalidas Shetty
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA
- Correspondence: (Y.R.); (K.S.); Tel.: +62-85101523213 (Y.R.)
| |
Collapse
|
23
|
De Gregorio V, Sgambato C, Urciuolo F, Vecchione R, Netti PA, Imparato G. Immunoresponsive microbiota-gut-on-chip reproduces barrier dysfunction, stromal reshaping and probiotics translocation under inflammation. Biomaterials 2022; 286:121573. [PMID: 35617781 DOI: 10.1016/j.biomaterials.2022.121573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 01/21/2022] [Accepted: 05/07/2022] [Indexed: 11/25/2022]
|
24
|
Li C, Humayun M, Walker GM, Park KY, Connors B, Feng J, Pellitteri Hahn MC, Scarlett CO, Li J, Feng Y, Clark RL, Hefti H, Schrope J, Venturelli OS, Beebe DJ. Under-Oil Autonomously Regulated Oxygen Microenvironments: A Goldilocks Principle-Based Approach for Microscale Cell Culture. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104510. [PMID: 35118834 PMCID: PMC8981459 DOI: 10.1002/advs.202104510] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/20/2021] [Indexed: 05/14/2023]
Abstract
Oxygen levels in vivo are autonomously regulated by a supply-demand balance, which can be altered in disease states. However, the oxygen levels of in vitro cell culture systems, particularly microscale cell culture, are typically dominated by either supply or demand. Further, the oxygen microenvironment in these systems is rarely monitored or reported. Here, a method to establish and dynamically monitor autonomously regulated oxygen microenvironments (AROM) using an oil overlay in an open microscale cell culture system is presented. Using this method, the oxygen microenvironment is dynamically regulated via the supply-demand balance of the system. Numerical simulation and experimental validation of oxygen transport within multi-liquid-phase, microscale culture systems involving a variety of cell types, including mammalian, fungal, and bacterial cells are presented. Finally, AROM is applied to establish a coculture between cells with disparate oxygen demands-primary intestinal epithelial cells (oxygen consuming) and Bacteroides uniformis (an anaerobic species prevalent in the human gut).
Collapse
Affiliation(s)
- Chao Li
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Mouhita Humayun
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Glenn M Walker
- Department of Biomedical Engineering, University of Mississippi University, Madison, MS, 38677, USA
| | - Keon Young Park
- Department of Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Bryce Connors
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jun Feng
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Molly C Pellitteri Hahn
- Analytical Instrumentation Center-Mass Spec Facility, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Cameron O Scarlett
- Analytical Instrumentation Center-Mass Spec Facility, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jiayi Li
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Yanbo Feng
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Ryan L Clark
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Hunter Hefti
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jonathan Schrope
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53726, USA
| | - Ophelia S Venturelli
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - David J Beebe
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
25
|
Mooli RGR, Mukhi D, Pasupulati AK, Evers SS, Sipula IJ, Jurczak M, Seeley RJ, Shah YM, Ramakrishnan SK. Intestinal HIF-2α Regulates GLP-1 Secretion via Lipid Sensing in L-Cells. Cell Mol Gastroenterol Hepatol 2021; 13:1057-1072. [PMID: 34902628 PMCID: PMC8873605 DOI: 10.1016/j.jcmgh.2021.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Compelling evidence shows that glucagon-like peptide-1 (GLP-1) has a profound effect in restoring normoglycemia in type 2 diabetic patients by increasing pancreatic insulin secretion. Although L-cells are the primary source of circulating GLP-1, the current therapies do not target L-cells to increase GLP-1 levels. Our study aimed to determine the molecular underpinnings of GLP-1 secretion as an impetus to identify new interventions to target endogenous L-cells. METHODS We used genetic mouse models of intestine-specific overexpression of hypoxia-inducible factor (HIF)-1α and HIF-2α (VhlΔIE), conditional overexpression of intestinal HIF-2α (Hif-2αLSL;Vilin-Cre/ERT2), and intestine-specific HIF-2α knockout mice (Hif-2αΔIE) to show that HIF signaling, especially HIF-2α, regulates GLP-1 secretion. RESULTS Our data show that intestinal HIF signaling improved glucose homeostasis in a GLP-1-dependent manner. Intestinal HIF potentiated GLP-1 secretion via the lipid sensor G-protein-coupled receptor (GPR)40 enriched in L-cells. We show that HIF-2α regulates GPR40 in L-cells and potentiates fatty acid-induced GLP-1 secretion via extracellular regulated kinase (ERK). Using a genetic model of intestine-specific overexpression of HIF-2α, we show that HIF-2α is sufficient to increase GLP-1 levels and attenuate diet-induced metabolic perturbations such as visceral adiposity, glucose intolerance, and hepatic steatosis. Lastly, we show that intestinal HIF-2α signaling acts as a priming mechanism crucial for postprandial lipid-mediated GLP-1 secretion. Thus, disruption of intestinal HIF-2α decreases GLP-1 secretion. CONCLUSIONS In summary, we show that intestinal HIF signaling, particularly HIF-2α, regulates the lipid sensor GPR40, which is crucial for the lipid-mediated GLP-1 secretion, and suggest that HIF-2α is a potential target to induce endogenous GLP-1 secretion.
Collapse
Affiliation(s)
- Raja Gopal Reddy Mooli
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Dhanunjay Mukhi
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anil K. Pasupulati
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Ian J. Sipula
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael Jurczak
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Yatrik M. Shah
- Department of Molecular and Integrative Physiology, Ann Arbor, Michigan,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Sadeesh K. Ramakrishnan
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania,Correspondence Address correspondence to: Sadeesh K. Ramakrishnan, PhD, Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15237. fax: (412) 648-3290.
| |
Collapse
|
26
|
Lee H, Shin W, Kim HJ, Kim J. Turn-On Fluorescence Sensing of Oxygen with Dendrimer-Encapsulated Platinum Nanoparticles as Tunable Oxidase Mimics for Spatially Resolved Measurement of Oxygen Gradient in a Human Gut-on-a-Chip. Anal Chem 2021; 93:16123-16132. [PMID: 34807579 DOI: 10.1021/acs.analchem.1c03891] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Turn-on type fluorescence sensing of O2 is considered a promising approach to developing ways to measure O2 in microenvironments with spatially distributed O2 levels. As a class of nanomaterials with a high degree of control over composition and structure, dendrimer-encapsulated nanoparticles (DENs) are promising candidates to mimic biological enzymes. Here, we report a strategy to monitor spatially distributed O2 across a three-dimensional (3D) human intestinal epithelial layer in a gut-on-a-chip in a turn-on fluorescence sensing manner. The strategy is based on the oxidase-mimetic activity of Pt DENs for catalytic oxidation of nonfluorescent Amplex Red to highly fluorescent resorufin in the presence of O2. We synthesized Pt DENs using two different types of dendrimers (i.e., amine-terminated or hydroxyl-terminated generation 6 polyamidoamine (PAMAM) dendrimers) with six different Pt2+/dendrimer ratios (i.e., 55, 200, 220, 550, 880, and 1320). After clarifying the intrinsic oxidase-mimetic activity of Pt DENs, we determined tunable oxidase-mimetic activity of Pt DENs, especially with fine-tuning the ratios of the Pt precursor ions and dendrimers. Particularly, the optimal Pt DENs having a Pt2+/dendrimer ratio of 1320 exhibited an ∼117-fold increase in the oxidase-mimetic activity for catalyzing the aerobic oxidation of Amplex Red to resorufin compared to one having a Pt2+/dendrimer ratio of 200. This study exemplified a simple yet effective approach for spatially resolved imaging of O2 using metal nanoparticle-based oxidase mimics in microphysiological environments like a human gut-on-a-chip.
Collapse
Affiliation(s)
- Hyein Lee
- Department of Chemistry, Research Institute for Basic Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Woojung Shin
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hyun Jung Kim
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Joohoon Kim
- Department of Chemistry, Research Institute for Basic Sciences, Kyung Hee University, Seoul 02447, Republic of Korea.,KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
27
|
De Galan C, De Vos M, Hindryckx P, Laukens D, Van Welden S. Long-Term Environmental Hypoxia Exposure and Haematopoietic Prolyl Hydroxylase-1 Deletion Do Not Impact Experimental Crohn's Like Ileitis. BIOLOGY 2021; 10:biology10090887. [PMID: 34571764 PMCID: PMC8464968 DOI: 10.3390/biology10090887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/23/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Hypoxia-induced signalling represents an important contributor to inflammatory bowel disease (IBD) pathophysiology. However, available data solely focus on colonic inflammation while the primary disease location in Crohn’s disease patients is the terminal ileum. Therefore, we explored the effects of environmental hypoxia and immune cell-specific deletion of oxygen sensor prolyl hydroxylase (PHD) 1 in a Crohn’s like ileitis mouse model. Five-week-old TNF∆ARE/+ mice and wildtype (WT) littermates were housed in normoxia (21% O2) or hypoxia (8% O2) for 10 weeks. Although environmental hypoxia increased both systemic as ileal markers of hypoxia, the body weight evolution in both WT and TNF∆ARE/+ mice was not affected. Interestingly, hypoxia did increase circulatory monocytes, ileal mononuclear phagocytes and proinflammatory cytokine expression in WT mice. However, no histological or inflammatory gene expression differences in the ileum could be identified between TNF∆ARE/+ mice housed in hypoxia versus normoxia nor between TNF∆ARE/+ and WT mice with additional loss of immune cell-specific Phd1 expression. This is the first study showing that long-term environmental hypoxia or haematopoietic Phd1-deletion does not impact experimental ileitis. Therefore, it strongly questions whether targeting hypoxia-induced signalling via currently available PHD inhibitors would exert an immune suppressive effect in IBD patients with ileal inflammation. Abstract Environmental hypoxia and hypoxia-induced signalling in the gut influence inflammatory bowel disease pathogenesis, however data is limited to colitis. Hence, we investigated the effect of environmental hypoxia and immune cell-specific deletion of oxygen sensor prolyl hydroxylase (PHD) 1 in a Crohn’s like ileitis mouse model. Therefore, 5-week-old C57/BL6 TNF∆ARE/+ mice and wildtype (WT) littermates were housed in normoxia (21% O2) or hypoxia (8% O2) for 10 weeks. Systemic inflammation was assessed by haematology. Distal ileal hypoxia was evaluated by pimonidazole staining. The ileitis degree was scored on histology, characterized via qPCR and validated in haematopoietic Phd1-deficient TNF∆ARE/+ mice. Our results demonstrated that hypoxia did not impact body weight evolution in WT and TNF∆ARE/+ mice. Hypoxia increased red blood cell count, haemoglobin, haematocrit and increased pimonidazole intensity in the ileum. Interestingly, hypoxia evoked an increase in circulatory monocytes, ileal mononuclear phagocytes and proinflammatory cytokine expression in WT mice. Despite these alterations, no histological or ileal gene expression differences could be identified between TNF∆ARE/+ mice housed in hypoxia versus normoxia nor between haematopoietic Phd1-deficient TNF∆ARE/+ and their WT counterparts. Therefore, we demonstrated for the first time that long-term environmental hypoxia or haematopoietic Phd1-deletion does not impact experimental ileitis development.
Collapse
Affiliation(s)
- Cara De Galan
- Department of Internal Medicine and Paediatrics, Ghent University, 9000 Ghent, Belgium; (C.D.G.); (M.D.V.); (P.H.); (D.L.)
- Ghent Gut Inflammation Group (GGIG), Ghent University, 9000 Ghent, Belgium
- VIB Centre for Inflammation Research, 9000 Ghent, Belgium
| | - Martine De Vos
- Department of Internal Medicine and Paediatrics, Ghent University, 9000 Ghent, Belgium; (C.D.G.); (M.D.V.); (P.H.); (D.L.)
- Ghent Gut Inflammation Group (GGIG), Ghent University, 9000 Ghent, Belgium
| | - Pieter Hindryckx
- Department of Internal Medicine and Paediatrics, Ghent University, 9000 Ghent, Belgium; (C.D.G.); (M.D.V.); (P.H.); (D.L.)
- Department of Gastroenterology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Debby Laukens
- Department of Internal Medicine and Paediatrics, Ghent University, 9000 Ghent, Belgium; (C.D.G.); (M.D.V.); (P.H.); (D.L.)
- Ghent Gut Inflammation Group (GGIG), Ghent University, 9000 Ghent, Belgium
- VIB Centre for Inflammation Research, 9000 Ghent, Belgium
| | - Sophie Van Welden
- Department of Internal Medicine and Paediatrics, Ghent University, 9000 Ghent, Belgium; (C.D.G.); (M.D.V.); (P.H.); (D.L.)
- Ghent Gut Inflammation Group (GGIG), Ghent University, 9000 Ghent, Belgium
- VIB Centre for Inflammation Research, 9000 Ghent, Belgium
- Correspondence: ; Tel.: +32-9-332-58-30
| |
Collapse
|
28
|
Signore MA, De Pascali C, Giampetruzzi L, Siciliano PA, Francioso L. Gut-on-Chip microphysiological systems: Latest advances in the integration of sensing strategies and adoption of mature detection mechanisms. SENSING AND BIO-SENSING RESEARCH 2021. [DOI: 10.1016/j.sbsr.2021.100443] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
29
|
Wang C, Dang T, Baste J, Anil Joshi A, Bhushan A. A novel standalone microfluidic device for local control of oxygen tension for intestinal-bacteria interactions. FASEB J 2021; 35:e21291. [PMID: 33506497 DOI: 10.1096/fj.202001600rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 12/14/2022]
Abstract
The intestinal environment is unique because it supports the intestinal epithelial cells under a normal oxygen environment and the microbiota under an anoxic environment. Due to importance of understanding the interactions between the epithelium and the microbiota, there is a strong need for developing representative and simple experimental models. Current approaches do not capture the partitioned oxygen environment, require external anaerobic chambers, or are complex. Another major limitation is that with the solutions that can mimic this oxygen environment, the oxygenation level of the epithelial cells is not known, raising the question whether the cells are hypoxic or not. We report standalone microfluidic devices that form a partitioned oxygen environment without the use of an external anaerobic chamber or oxygen scavengers to coculture intestinal epithelial and bacterial cells. By changing the thickness of the device cover, the oxygen tension in the chamber was modulated. We verified the oxygen levels using several tests: microscale oxygen sensitive sensors which were integrated within the devices, immunostaining of Caco-2 cells to determine hypoxia levels, and genetically encoded bacteria to visualize the growth. Collectively, these methods monitored oxygen concentrations in the devices more comprehensively than previous reports and allowed for control of oxygen tension to match the requirements of both intestinal cells and anaerobic bacteria. Our experimental model is supported by the mathematical model that considered diffusion of oxygen into the top chamber. This allowed us to experimentally determine the oxygen consumption rate of the intestinal epithelial cells under perfusion.
Collapse
Affiliation(s)
- Chengyao Wang
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Thao Dang
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Jasmine Baste
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Advait Anil Joshi
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Abhinav Bhushan
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| |
Collapse
|
30
|
de Buhr N, Martens A, Meurer M, Bonilla MC, Söbbeler F, Twele L, Neudeck S, Wendt M, Beineke A, Kästner S, von Köckritz-Blickwede M. In vivo oxygen measurement in cerebrospinal fluid of pigs to determine physiologic and pathophysiologic oxygen values during CNS infections. BMC Neurosci 2021; 22:45. [PMID: 34182939 PMCID: PMC8240281 DOI: 10.1186/s12868-021-00648-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/10/2021] [Indexed: 12/18/2022] Open
Abstract
During infection and inflammation, a reduced oxygen level clearly affects cellular functions. Oxygen levels during CNS infections are unknown. Here we established and evaluated an in vivo measurement system to characterize the oxygen level in parallel with bacterial numbers (CFU/mL), the cell number and pH level inside the CSF of healthy compared to Streptococcus suis-infected pigs. The animals were anesthetized over a seven-hour period with isoflurane in air/oxygen at physiologic arterial partial pressure of oxygen. Oxygen levels in CSF of anesthetized pigs were compared to euthanized pigs. The detected partial pressure of oxygen in the CSF remained constant in a range of 47-63 mmHg, independent of the infection status (bacterial or cell number). In contrast, the pH value showed a slight drop during infection, which correlated with cell and bacterial number in CSF. We present physiologic oxygen and pH values in CSF during the onset of bacterial meningitis.
Collapse
Affiliation(s)
- Nicole de Buhr
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany.
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany.
| | - Alexander Martens
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Marita Meurer
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Marta C Bonilla
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Franz Söbbeler
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Lara Twele
- Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Stephan Neudeck
- Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Michael Wendt
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Sabine Kästner
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
- Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Maren von Köckritz-Blickwede
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany.
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany.
| |
Collapse
|
31
|
Han X, Mslati MA, Davies E, Chen Y, Allaire JM, Vallance BA. Creating a More Perfect Union: Modeling Intestinal Bacteria-Epithelial Interactions Using Organoids. Cell Mol Gastroenterol Hepatol 2021; 12:769-782. [PMID: 33895425 PMCID: PMC8273413 DOI: 10.1016/j.jcmgh.2021.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 02/08/2023]
Abstract
Intestinal organoids have become indispensable tools for many gastrointestinal researchers, advancing their studies of nontransformed intestinal epithelial cells, and their roles in an array of diseases, including inflammatory bowel disease and colon cancer. In many cases. these diseases, as well as many enteric infections, reflect pathogenic interactions between bacteria and the gut epithelium. The complexity of studying this microbe-epithelial interface in vivo has led to significant focus on modeling this cross-talk using organoid models. Considering how quickly the organoid field is advancing, it can be difficult to keep up to date with the latest techniques, as well as their respective strengths and weaknesses. This review addresses the advantages of using organoids derived from adult stem cells and the recently identified differences that biopsy location and patient age can have on organoids and their interactions with microbes. Several approaches to introducing bacteria in a relevant (apical) manner (ie, microinjecting 3-dimensional spheroids, polarity-reversed organoids, and 2-dimensional monolayers) also are addressed, as are the key readouts that can be obtained using these models. Lastly, the potential for new approaches, such as air-liquid interface, to facilitate studying bacterial interactions with important but understudied epithelial subsets such as goblet cells and their products, is evaluated.
Collapse
Affiliation(s)
- Xiao Han
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthias A Mslati
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Emily Davies
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yan Chen
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joannie M Allaire
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Bruce A Vallance
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
32
|
Adverse Effects of Heat Stress on the Intestinal Integrity and Function of Pigs and the Mitigation Capacity of Dietary Antioxidants: A Review. Animals (Basel) 2021; 11:ani11041135. [PMID: 33921090 PMCID: PMC8071411 DOI: 10.3390/ani11041135] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 12/16/2022] Open
Abstract
Heat stress (HS) significantly affects the performance of pigs by its induced stressors such as inflammation, hypoxia and oxidative stress (OS), which mightily strain the intestinal integrity and function of pigs. As heat stress progresses, several mechanisms in the intestinal epithelium involved in the absorption of nutrients and its protective functions are altered. Changes in these mechanisms are mainly driven by cellular oxidative stress, which promotes disruption of intestinal homeostasis, leading to intestinal permeability, emphasizing intestinal histology and morphology with little possibility of recovering even after exposure to HS. Identification and understanding of these altered mechanisms are crucial for providing appropriate intervention strategies. Therefore, it is this papers' objective to review the important components for intestinal integrity that are negatively affected by HS and its induced stressors. With due consideration to the amelioration of such effects through nutritional intervention, this work will also look into the capability of dietary antioxidants in mitigating such adverse effects and maintaining the intestine's integrity and function upon the pigs' exposure to high environmental temperature.
Collapse
|
33
|
Feng D, Christensen JT, Yetman AT, Lindsey ML, Singh AB, Salomon JD. The microbiome’s relationship with congenital heart disease: more than a gut feeling. JOURNAL OF CONGENITAL CARDIOLOGY 2021. [DOI: 10.1186/s40949-021-00060-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AbstractPatients with congenital heart disease (CHD) are at risk for developing intestinal dysbiosis and intestinal epithelial barrier dysfunction due to abnormal gut perfusion or hypoxemia in the context of low cardiac output or cyanosis. Intestinal dysbiosis may contribute to systemic inflammation thereby worsening clinical outcomes in this patient population. Despite significant advances in the management and survival of patients with CHD, morbidity remains significant and questions have arisen as to the role of the microbiome in the inflammatory process. Intestinal dysbiosis and barrier dysfunction experienced in this patient population are increasingly implicated in critical illness. This review highlights possible CHD-microbiome interactions, illustrates underlying signaling mechanisms, and discusses future directions and therapeutic translation of the basic research.
Collapse
|
34
|
Fritsche E, Haarmann-Stemmann T, Kapr J, Galanjuk S, Hartmann J, Mertens PR, Kämpfer AAM, Schins RPF, Tigges J, Koch K. Stem Cells for Next Level Toxicity Testing in the 21st Century. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006252. [PMID: 33354870 DOI: 10.1002/smll.202006252] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/13/2020] [Indexed: 06/12/2023]
Abstract
The call for a paradigm change in toxicology from the United States National Research Council in 2007 initiates awareness for the invention and use of human-relevant alternative methods for toxicological hazard assessment. Simple 2D in vitro systems may serve as first screening tools, however, recent developments infer the need for more complex, multicellular organotypic models, which are superior in mimicking the complexity of human organs. In this review article most critical organs for toxicity assessment, i.e., skin, brain, thyroid system, lung, heart, liver, kidney, and intestine are discussed with regards to their functions in health and disease. Embracing the manifold modes-of-action how xenobiotic compounds can interfere with physiological organ functions and cause toxicity, the need for translation of such multifaceted organ features into the dish seems obvious. Currently used in vitro methods for toxicological applications and ongoing developments not yet arrived in toxicity testing are discussed, especially highlighting the potential of models based on embryonic stem cells and induced pluripotent stem cells of human origin. Finally, the application of innovative technologies like organs-on-a-chip and genome editing point toward a toxicological paradigm change moves into action.
Collapse
Affiliation(s)
- Ellen Fritsche
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
- Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | | | - Julia Kapr
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Saskia Galanjuk
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Julia Hartmann
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Peter R Mertens
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke-University Magdeburg, Magdeburg, 39106, Germany
| | - Angela A M Kämpfer
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Roel P F Schins
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Julia Tigges
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Katharina Koch
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| |
Collapse
|
35
|
Lauer AN, Scholtysik R, Beineke A, Baums CG, Klose K, Valentin-Weigand P, Ishikawa H, Schroten H, Klein-Hitpass L, Schwerk C. A Comparative Transcriptome Analysis of Human and Porcine Choroid Plexus Cells in Response to Streptococcus suis Serotype 2 Infection Points to a Role of Hypoxia. Front Cell Infect Microbiol 2021; 11:639620. [PMID: 33763387 PMCID: PMC7982935 DOI: 10.3389/fcimb.2021.639620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/01/2021] [Indexed: 11/14/2022] Open
Abstract
Streptococcus suis (S. suis) is an important opportunistic pathogen, which can cause septicemia and meningitis in pigs and humans. Previous in vivo observations in S. suis-infected pigs revealed lesions at the choroid plexus (CP). In vitro experiments with primary porcine CP epithelial cells (PCPEC) and human CP epithelial papilloma (HIBCPP) cells demonstrated that S. suis can invade and traverse the CP epithelium, and that the CP contributes to the inflammatory response via cytokine expression. Here, next generation sequencing (RNA-seq) was used to compare global transcriptome profiles of PCPEC and HIBCPP cells challenged with S. suis serotype (ST) 2 infected in vitro, and of pigs infected in vivo. Identified differentially expressed genes (DEGs) were, amongst others, involved in inflammatory responses and hypoxia. The RNA-seq data were validated via quantitative PCR of selected DEGs. Employing Gene Set Enrichment Analysis (GSEA), 18, 28, and 21 enriched hallmark gene sets (GSs) were identified for infected HIBCPP cells, PCPEC, and in the CP of pigs suffering from S. suis ST2 meningitis, respectively, of which eight GSs overlapped between the three different sample sets. The majority of these GSs are involved in cellular signaling and pathways, immune response, and development, including inflammatory response and hypoxia. In contrast, suppressed GSs observed during in vitro and in vivo S. suis ST2 infections included those, which were involved in cellular proliferation and metabolic processes. This study suggests that similar cellular processes occur in infected human and porcine CP epithelial cells, especially in terms of inflammatory response.
Collapse
Affiliation(s)
- Alexa N Lauer
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Rene Scholtysik
- Institute for Cell Biology, University Hospital Essen, Essen, Germany
| | - Andreas Beineke
- Institute for Pathology, University of Veterinary Medicine, Hannover, Germany
| | - Christoph Georg Baums
- Faculty of Veterinary Medicine, Institute of Bacteriology and Mycology, Leipzig University, Leipzig, Germany
| | - Kristin Klose
- Faculty of Veterinary Medicine, Institute of Veterinary Pathology, Leipzig University, Leipzig, Germany
| | | | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Horst Schroten
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | | | - Christian Schwerk
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
36
|
Chen Y, Gaber T. Hypoxia/HIF Modulates Immune Responses. Biomedicines 2021; 9:biomedicines9030260. [PMID: 33808042 PMCID: PMC8000289 DOI: 10.3390/biomedicines9030260] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
Oxygen availability varies throughout the human body in health and disease. Under physiological conditions, oxygen availability drops from the lungs over the blood stream towards the different tissues into the cells and the mitochondrial cavities leading to physiological low oxygen conditions or physiological hypoxia in all organs including primary lymphoid organs. Moreover, immune cells travel throughout the body searching for damaged cells and foreign antigens facing a variety of oxygen levels. Consequently, physiological hypoxia impacts immune cell function finally controlling innate and adaptive immune response mainly by transcriptional regulation via hypoxia-inducible factors (HIFs). Under pathophysiological conditions such as found in inflammation, injury, infection, ischemia and cancer, severe hypoxia can alter immune cells leading to dysfunctional immune response finally leading to tissue damage, cancer progression and autoimmunity. Here we summarize the effects of physiological and pathophysiological hypoxia on innate and adaptive immune activity, we provide an overview on the control of immune response by cellular hypoxia-induced pathways with focus on the role of HIFs and discuss the opportunity to target hypoxia-sensitive pathways for the treatment of cancer and autoimmunity.
Collapse
Affiliation(s)
- Yuling Chen
- Charité—Universitätsmedizin Berlin, Corporate Ember of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, Charitéplatz 1, 10117 Berlin, Germany;
| | - Timo Gaber
- Charité—Universitätsmedizin Berlin, Corporate Ember of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, Charitéplatz 1, 10117 Berlin, Germany;
- German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-513364
| |
Collapse
|
37
|
Gut Microbiota-Derived Short-Chain Fatty Acids Facilitate Microbiota:Host Cross talk and Modulate Obesity and Hypertension. Curr Hypertens Rep 2021; 23:8. [PMID: 33537923 PMCID: PMC7992370 DOI: 10.1007/s11906-020-01125-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the evidence supporting a role of short-chain fatty acids (SCFAs) as messengers facilitating cross talk between the host and gut microbiota and discuss the effects of altered SCFA signaling in obesity and hypertension. RECENT FINDINGS Recent evidence suggests there to be a significant contribution of gut microbiota-derived SCFAs to microbe:host communication and host metabolism. SCFA production within the intestine modulates intestinal pH, microbial composition, and intestinal barrier integrity. SCFA signaling through host receptors, such as PPARγ and GPCRs, modulates host health and disease physiology. Alterations in SCFA signaling and downstream effects on inflammation are implicated in the development of obesity and hypertension. SCFAs are crucial components of the holobiont relationship; in the proper environment, they support normal gut, immune, and metabolic function. Dysregulation of microbial SCFA signaling affects downstream host metabolism, with implications in obesity and hypertension.
Collapse
|
38
|
Butyrate Protects Porcine Colon Epithelium from Hypoxia-Induced Damage on a Functional Level. Nutrients 2021; 13:nu13020305. [PMID: 33498991 PMCID: PMC7911740 DOI: 10.3390/nu13020305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/07/2021] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
The large intestinal epithelium is confronted with the necessity to adapt quickly to varying levels of oxygenation. In contrast to other tissues, it meets this requirement successfully and remains unharmed during (limited) hypoxic periods. The large intestine is also the site of bacterial fermentation producing short-chain fatty acids (SCFA). Amongst these SCFA, butyrate has been reported to ameliorate many pathological conditions. Thus, we hypothesized that butyrate protects the colonocytes from hypoxic damage. We used isolated porcine colon epithelium mounted in Ussing chambers, incubated it with or without butyrate and simulated hypoxia by changing the gassing regime to test this hypothesis. We found an increase in transepithelial conductance and a decrease in short-circuit current across the epithelia when simulating hypoxia for more than 30 min. Incubation with 50 mM butyrate significantly ameliorated these changes to the epithelial integrity. In order to characterize the protective mechanism, we compared the effects of butyrate to those of iso-butyrate and propionate. These two SCFAs exerted similar effects to butyrate. Therefore, we propose that the protective effect of butyrate on colon epithelium under hypoxia is not (only) based on its nutritive function, but rather on the intracellular signaling effects of SCFA.
Collapse
|
39
|
The Landscape of Interactions between Hypoxia-Inducible Factors and Reactive Oxygen Species in the Gastrointestinal Tract. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8893663. [PMID: 33542787 PMCID: PMC7843172 DOI: 10.1155/2021/8893663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/29/2020] [Accepted: 12/26/2020] [Indexed: 12/17/2022]
Abstract
The gastrointestinal tract (GT) is the major organ involved in digestion, absorption, and immunity, which is prone to oxidative destruction by high levels of reactive oxygen species (ROS) from luminal oxidants, such as food, drugs, and pathogens. Excessive ROS will lead to oxidative stresses and disrupt essential biomolecules, which also act as cellular signaling molecules in response to growth factors, hormones, and oxygen tension changes. Hypoxia-inducible factors (HIFs) are critical regulators mediating responses to cellular oxygen tension changes, which are also involved in energy metabolism, immunity, renewal, and microbial homeostasis in the GT. This review discusses interactions between HIF (mainly HIF-1α) and ROS and relevant diseases in the GT combined with our lab's work. It might help to develop new therapies for gastrointestinal diseases associated with ROS and HIF-1α.
Collapse
|
40
|
Kim YI, Yi EJ, Kim YD, Lee AR, Chung J, Ha HC, Cho JM, Kim SR, Ko HJ, Cheon JH, Hong YR, Chang SY. Local Stabilization of Hypoxia-Inducible Factor-1α Controls Intestinal Inflammation via Enhanced Gut Barrier Function and Immune Regulation. Front Immunol 2021; 11:609689. [PMID: 33519819 PMCID: PMC7840603 DOI: 10.3389/fimmu.2020.609689] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
Intestinal epithelial cells are adapted in mucosal hypoxia and hypoxia-inducible factors in these cells can fortify barrier integrity to support mucosal tissue healing. Here we investigated whether hypoxia-related pathways could be proposed as potential therapeutic targets for inflammatory bowel disease. We developed a novel hypoxia-inducible factor (HIF) prolyl hydroxylase inhibitor, CG-598 which stabilized HIF-1α in the gut tissue. Treatment of CG-598 did not affect extra-intestinal organs or cause any significant adverse effects such as erythropoiesis. In the experimental murine colitis model, CG-598 ameliorated intestinal inflammation with reduction of inflammatory lesions and pro-inflammatory cytokines. CG-598 treatment fortified barrier function by increasing the expression of intestinal trefoil factor, CD73, E-cadherin and mucin. Also, IL-10 and IL-22 were induced from lamina propria CD4+ T-cells. The effectiveness of CG-598 was comparable to other immunosuppressive therapeutics such as TNF-blockers or JAK inhibitors. These results suggest that CG-598 could be a promising therapeutic candidate to treat inflammatory bowel disease.
Collapse
Affiliation(s)
- Young-In Kim
- Laboratory of Microbiology, College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea
| | - Eun-Je Yi
- Laboratory of Microbiology, College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea
| | - Young-Dae Kim
- Institute for Drug Discovery, CrystalGenomics, Inc., Seongnam-si, South Korea
| | - A Reum Lee
- Institute for Drug Discovery, CrystalGenomics, Inc., Seongnam-si, South Korea
| | - Jiwoung Chung
- Institute for Drug Discovery, CrystalGenomics, Inc., Seongnam-si, South Korea
| | - Hae Chan Ha
- Institute for Drug Discovery, CrystalGenomics, Inc., Seongnam-si, South Korea
| | - Joong Myung Cho
- Institute for Drug Discovery, CrystalGenomics, Inc., Seongnam-si, South Korea
| | - Seong-Ryeol Kim
- Laboratory of Microbiology and Immunology, Department of Pharmacy, Kangwon National University, Chuncheon-si, South Korea
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, Department of Pharmacy, Kangwon National University, Chuncheon-si, South Korea
| | - Jae-Hee Cheon
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
| | - Yong Rae Hong
- Institute for Drug Discovery, CrystalGenomics, Inc., Seongnam-si, South Korea
| | - Sun-Young Chang
- Laboratory of Microbiology, College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea
| |
Collapse
|
41
|
Monpara JD, Sodha SJ, Gupta PK. COVID-19 associated complications and potential therapeutic targets. Eur J Pharmacol 2020; 886:173548. [PMID: 32926918 PMCID: PMC7486300 DOI: 10.1016/j.ejphar.2020.173548] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/19/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023]
Abstract
The global pandemic COVID-19, caused by novel coronavirus SARS-CoV-2, has emerged as severe public health issue crippling world health care systems. Substantial knowledge has been generated about the pathophysiology of the disease and possible treatment modalities in a relatively short span of time. As of August 19, 2020, there is no approved drug for the treatment of COVID-19. More than 600 clinical trials for potential therapeutics are underway and the results are expected soon. Based on early experience, different treatment such as anti-viral drugs (remdesivir, favipiravir, lopinavir/ritonavir), corticosteroids (methylprednisolone, dexamethasone) or convalescent plasma therapy are recommended in addition to supportive care and symptomatic therapy. There are several treatments currently being investigated to address the pathological conditions associated with COVID-19. This review provides currently available information and insight into pathophysiology of the disease, potential targets, and relevant clinical trials for COVID-19.
Collapse
Affiliation(s)
- Jasmin D Monpara
- University of the Sciences, 600 South 43rd Street, Philadelphia, PA, 19104, USA.
| | - Srushti J Sodha
- University of the Sciences, 600 South 43rd Street, Philadelphia, PA, 19104, USA
| | - Pardeep K Gupta
- University of the Sciences, 600 South 43rd Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
42
|
Intestinal Immune Homeostasis and Inflammatory Bowel Disease: A Perspective on Intracellular Response Mechanisms. GASTROINTESTINAL DISORDERS 2020. [DOI: 10.3390/gidisord2030024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of inflammatory bowel disease (IBD) involves perturbation of intestinal immune homeostasis in genetically susceptible individuals. A mutual interplay between intestinal epithelial cells (IECs) and gut resident microbes maintains a homeostatic environment across the gut. An idiopathic gastrointestinal (GI) complication triggers aberrant physiological stress in the epithelium and peripheral myeloid cells, leading to a chronic inflammatory condition. Indeed, events in the endoplasmic reticulum (ER) and mitochondria contribute to orchestrating intracellular mechanisms such as the unfolded protein response (UPR) and oxidative stress, respectively, to resolve aberrant cellular stress. This review highlights the signaling cascades encrypted within ER and mitochondria in IECs and/or myeloid cells to dissipate chronic stress in maintaining intestinal homeostasis.
Collapse
|
43
|
Chung H, Lee YH. Hypoxia: A Double-Edged Sword During Fungal Pathogenesis? Front Microbiol 2020; 11:1920. [PMID: 32903454 PMCID: PMC7434965 DOI: 10.3389/fmicb.2020.01920] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/21/2020] [Indexed: 12/18/2022] Open
Abstract
Molecular oxygen functions as an electron acceptor for aerobic respiration and a substrate for key metabolisms and cellular processes. Most eukaryotes develop direct or indirect oxygen sensors and reprogram transcriptional and translational metabolisms to adapt to altered oxygen availability under varying oxygen concentrations. Human fungal pathogens manipulate transcriptional levels of genes related to virulence as well as oxygen-dependent metabolisms such as ergosterol homeostasis when they are confronted with oxygen limitation (hypoxia) during infection. Oxygen states in plant tissues also vary depending on site, species, and external environment, potentially providing hypoxia to plant pathogens during infection. In this review, knowledge on the regulation of oxygen sensing and adaptive mechanisms in eukaryotes and nascent understanding of hypoxic responses in plant pathogens are summarized and discussed.
Collapse
Affiliation(s)
- Hyunjung Chung
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea.,Center for Fungal Genetic Resources, Plant Immunity Research Center, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
44
|
Ruan W, Engevik MA, Chang-Graham AL, Danhof HA, Goodwin A, Engevik KA, Shi Z, Hall A, Rienzi SCD, Venable S, Britton RA, Hyser J, Versalovic J. Enhancing responsiveness of human jejunal enteroids to host and microbial stimuli. J Physiol 2020; 598:3085-3105. [PMID: 32428244 PMCID: PMC7674265 DOI: 10.1113/jp279423] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
Abstract
KEY POINTS Enteroids are a physiologically relevant model to examine the human intestine and its functions. Previously, the measurable cytokine response of human intestinal enteroids has been limited following exposure to host or microbial pro-inflammatory stimuli. Modifications to enteroid culture conditions facilitated robust human cytokine responses to pro-inflammatory stimuli. This new human enteroid culture methodology refines the ability to study microbiome:human intestinal epithelium interactions in the laboratory. ABSTRACT The intestinal epithelium is the primary interface between the host, the gut microbiome and its external environment. Since the intestinal epithelium contributes to innate immunity as a first line of defence, understanding how the epithelium responds to microbial and host stimuli is an important consideration in promoting homeostasis. Human intestinal enteroids (HIEs) are primary epithelial cell cultures that can provide insights into the biology of the intestinal epithelium and innate immune responses. One potential limitation of using HIEs for innate immune studies is the relative lack of responsiveness to factors that stimulate epithelial cytokine production. We report technical refinements, including removal of extracellular antioxidants, to facilitate enhanced cytokine responses in HIEs. Using this new method, we demonstrate that HIEs have distinct cytokine profiles in response to pro-inflammatory stimuli derived from host and microbial sources. Overall, we found that host-derived cytokines tumour necrosis factor and interleukin-1α stimulated reactive oxygen species and a large repertoire of cytokines. In contrast, microbial lipopolysaccharide, lipoteichoic acid and flagellin stimulated a limited number of cytokines and histamine did not stimulate the release of any cytokines. Importantly, HIE-secreted cytokines were functionally active, as denoted by the ability of human blood-derived neutrophil to migrate towards HIE supernatant containing interleukin-8. These findings establish that the immune responsiveness of HIEs depends on medium composition and stimuli. By refining the experimental culture medium and creating an environment conducive to epithelial cytokine responses by human enteroids, HIEs can facilitate exploration of many experimental questions pertaining to the role of the intestinal epithelium in innate immunity.
Collapse
Affiliation(s)
- Wenly Ruan
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Section of Gastroenterology, Hepatology, and Nutrition, Texas Children's Hospital, Houston, Texas, USA
| | - Melinda A Engevik
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | | | - Heather A Danhof
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Annie Goodwin
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Section of Gastroenterology, Hepatology, and Nutrition, Texas Children's Hospital, Houston, Texas, USA
| | - Kristen A Engevik
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Zhongcheng Shi
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Anne Hall
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Sara C Di Rienzi
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Susan Venable
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Robert A Britton
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Joseph Hyser
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - James Versalovic
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
45
|
Zhou C, Li L, Li T, Sun L, Yin J, Guan H, Wang L, Zhu H, Xu P, Fan X, Sheng B, Xiao W, Qiu Y, Yang H. SCFAs induce autophagy in intestinal epithelial cells and relieve colitis by stabilizing HIF-1α. J Mol Med (Berl) 2020; 98:1189-1202. [PMID: 32696223 DOI: 10.1007/s00109-020-01947-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 06/19/2020] [Accepted: 06/25/2020] [Indexed: 12/20/2022]
Abstract
Hypoxia-inducible factor-1α (HIF-1α) is a critical regulator of barrier integrity during colonic mucosal injury. Previous works have shown that the absence of autophagy is implicated in the development of inflammatory bowel disease (IBD). Additionally, changes in bacterial profiles in the gut are intimately associated with IBD. Although HIF-1α, autophagy, microbiota, and their metabolites are all involved in the pathogenesis of IBD, their roles are not known. In this study, we investigated the relationship between HIF-1α and autophagy in healthy and inflammatory states using transgenic mice, colitis models, and cell culture models. We confirmed that the absence of intestinal epithelial HIF-1α changed the composition of the intestinal microbes and increased the susceptibility of mice to dextran sodium sulfate (DSS)-induced colitis. In addition, autophagy levels in the intestinal epithelial cells (IECs) were significantly reduced in IEC-specific HIF-1α-deficient (HIF-1α∆IEC) mice. Moreover, in the cell culture models, butyrate treatment significantly increased autophagy in HT29 cells under normal conditions, whereas butyrate had little effect on autophagy after HIF-1α ablation. Furthermore, in the DSS-induced colitis model, butyrate administration relieved the colonic injury and suppressed inflammation in Cre-/HIF-1α- (HIF-1αloxP/loxP) mice. However, the butyrate-mediated protection against colonic injury was considerably diminished in the HIF-1α∆IEC mice. These results show that HIF-1α, autophagy, and intestinal microbes are essential for the maintenance of intestinal homeostasis. Butyrate can alleviate DSS-induced colitis by regulating autophagy via HIF-1α. These insights may have important implications for the development of therapeutic strategies for IBD. KEY MESSAGES: • The absence of intestinal epithelial HIF-1α leads to downregulation of autophagy in mice. • The absence of intestinal epithelial HIF-1α exacerbates DSS-induced colitis. • Short-chain fatty acids (SCFAs) can alleviate DSS-induced colitis by regulating autophagy via HIF-1α.
Collapse
Affiliation(s)
- Chao Zhou
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Liangzi Li
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Teming Li
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Lihua Sun
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jiuheng Yin
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Haidi Guan
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Liucan Wang
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hongbing Zhu
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Peng Xu
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xin Fan
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Baifa Sheng
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yuan Qiu
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China. .,State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, China.
| | - Hua Yang
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
46
|
Xia QS, Lu FE, Wu F, Huang ZY, Dong H, Xu LJ, Gong J. New role for ceramide in hypoxia and insulin resistance. World J Gastroenterol 2020; 26:2177-2186. [PMID: 32476784 PMCID: PMC7235208 DOI: 10.3748/wjg.v26.i18.2177] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/08/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
Ceramides are significant metabolic products of sphingolipids in lipid metabolism and are associated with insulin resistance and hepatic steatosis. In chronic inflammatory pathological conditions, hypoxia occurs, the metabolism of ceramide changes, and insulin resistance arises. Hypoxia-inducible factors (HIFs) are a family of transcription factors activated by hypoxia. In hypoxic adipocytes, HIF-1α upregulates pla2g16 (a novel HIF-1α target gene) gene expression to activate the NLRP3 inflammasome pathway and stimulate insulin resistance, and adipocyte-specific Hif1a knockout can ameliorate homocysteine-induced insulin resistance in mice. The study on the HIF-2α—NEU3—ceramide pathway also reveals the role of ceramide in hypoxia and insulin resistance in obese mice. Under obesity-induced intestinal hypoxia, HIF-2α increases the production of ceramide by promoting the expression of the gene Neu3 encoding sialidase 3, which is a key enzyme in ceramide synthesis, resulting in insulin resistance in high-fat diet-induced obese mice. Moreover, genetic and pathophysiologic inhibition of the HIF-2α—NEU3—ceramide pathway can alleviate insulin resistance, suggesting that these could be potential drug targets for the treatment of metabolic diseases. Herein, the effects of hypoxia and ceramide, especially in the intestine, on metabolic diseases are summarized.
Collapse
Affiliation(s)
- Qing-Song Xia
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Fu-Er Lu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Fan Wu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zhao-Yi Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Hui Dong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Li-Jun Xu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Jing Gong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| |
Collapse
|
47
|
Dengler F. Activation of AMPK under Hypoxia: Many Roads Leading to Rome. Int J Mol Sci 2020; 21:ijms21072428. [PMID: 32244507 PMCID: PMC7177550 DOI: 10.3390/ijms21072428] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is known as a pivotal cellular energy sensor, mediating the adaptation to low energy levels by deactivating anabolic processes and activating catabolic processes in order to restore the cellular ATP supply when the cellular AMP/ATP ratio is increased. Besides this well-known role, it has also been shown to exert protective effects under hypoxia. While an insufficient supply with oxygen might easily deplete cellular energy levels, i.e., ATP concentration, manifold other mechanisms have been suggested and are heavily disputed regarding the activation of AMPK under hypoxia independently from cellular AMP concentrations. However, an activation of AMPK preceding energy depletion could induce a timely adaptation reaction preventing more serious damage. A connection between AMPK and the master regulator of hypoxic adaptation via gene transcription, hypoxia-inducible factor (HIF), has also been taken into account, orchestrating their concerted protective action. This review will summarize the current knowledge on mechanisms of AMPK activation under hypoxia and its interrelationship with HIF.
Collapse
Affiliation(s)
- Franziska Dengler
- Institute of Veterinary Physiology, University of Leipzig, D-04103 Leipzig, Germany
| |
Collapse
|
48
|
Ozbakir HF, Anderson NT, Fan KC, Mukherjee A. Beyond the Green Fluorescent Protein: Biomolecular Reporters for Anaerobic and Deep-Tissue Imaging. Bioconjug Chem 2020; 31:293-302. [PMID: 31794658 PMCID: PMC7033020 DOI: 10.1021/acs.bioconjchem.9b00688] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fluorescence imaging represents cornerstone technology for studying biological function at the cellular and molecular levels. The technology's centerpiece is a prolific collection of genetic reporters based on the green fluorescent protein (GFP) and related analogs. More than two decades of protein engineering have endowed the GFP repertoire with an incredible assortment of fluorescent proteins, allowing scientists immense latitude in choosing reporters tailored to various cellular and environmental contexts. Nevertheless, GFP and derivative reporters have specific limitations that hinder their unrestricted use for molecular imaging. These challenges have inspired the development of new reporter proteins and imaging mechanisms. Here, we review how these developments are expanding the frontiers of reporter gene techniques to enable nondestructive studies of cell function in anaerobic environments and deep inside intact animals-two important biological contexts that are fundamentally incompatible with the use of GFP-based reporters.
Collapse
Affiliation(s)
- Harun F. Ozbakir
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Nolan T. Anderson
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Kang-Ching Fan
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Arnab Mukherjee
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Department of Chemistry, University of California, Santa Barbara, California 93106, United States
- Neuroscience Research Institute, University of California, Santa Barbara, California 93106, United States
- Center for Bioengineering, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
49
|
Kim R, Attayek PJ, Wang Y, Furtado KL, Tamayo R, Sims CE, Allbritton NL. An in vitro intestinal platform with a self-sustaining oxygen gradient to study the human gut/microbiome interface. Biofabrication 2019; 12:015006. [PMID: 31519008 PMCID: PMC6933551 DOI: 10.1088/1758-5090/ab446e] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An oxygen gradient formed along the length of colonic crypts supports stem-cell proliferation at the normoxic crypt base while supporting obligate anaerobe growth in the anoxic colonic lumen. Primary human colonic epithelial cells derived from human gastrointestinal stem cells were cultured within a device possessing materials of tailored oxygen permeability to produce an oxygen-depleted luminal (0.8% ± 0.1% O2) and oxygen-rich basal (11.1% ± 0.5% O2) compartment. This oxygen difference created a stable oxygen gradient across the colonic epithelial cells which remained viable and properly polarized. Facultative and obligate anaerobes Lactobacillus rhamnosus, Bifidobacterium adolescentis, and Clostridium difficile grew readily within the luminal compartment. When formed along the length of an in vitro crypt, the oxygen gradient facilitated cell compartmentalization within the crypt by enhancing confinement of the proliferative cells to the crypt base. This platform provides a simple system to create a physiological oxygen gradient across an intestinal mimic while simultaneously supporting anaerobe co-culture.
Collapse
Affiliation(s)
- Raehyun Kim
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, and North Carolina State University, Raleigh, North Carolina
| | - Peter J. Attayek
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, and North Carolina State University, Raleigh, North Carolina
| | - Yuli Wang
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina
| | - Kathleen L. Furtado
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina
| | - Rita Tamayo
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina
| | - Christopher E. Sims
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina
| | - Nancy L. Allbritton
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, and North Carolina State University, Raleigh, North Carolina
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
50
|
Yadav RK, Tripathi CB, Saraf SA, Ansari MN, Saeedan AS, Aldosary S, Rajinikanth PS, Kaithwas G. Alpha-linolenic acid based nano-suspension protect against lipopolysaccharides induced mastitis by inhibiting NFκBp65, HIF-1α, and mitochondria-mediated apoptotic pathway in albino Wistar rats. Toxicol Appl Pharmacol 2019; 377:114628. [PMID: 31207257 DOI: 10.1016/j.taap.2019.114628] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/30/2019] [Accepted: 06/12/2019] [Indexed: 12/25/2022]
|