1
|
Al Refaai KA, AlSawaftah NA, Abuwatfa W, Husseini GA. Drug Release via Ultrasound-Activated Nanocarriers for Cancer Treatment: A Review. Pharmaceutics 2024; 16:1383. [PMID: 39598507 PMCID: PMC11597164 DOI: 10.3390/pharmaceutics16111383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Conventional cancer chemotherapy often struggles with safely and effectively delivering anticancer therapeutics to target tissues, frequently leading to dose-limiting toxicity and suboptimal therapeutic outcomes. This has created a need for novel therapies that offer greater efficacy, enhanced safety, and improved toxicological profiles. Nanocarriers are nanosized particles specifically designed to enhance the selectivity and effectiveness of chemotherapy drugs while reducing their toxicity. A subset of drug delivery systems utilizes stimuli-responsive nanocarriers, which enable on-demand drug release, prevent premature release, and offer spatial and temporal control over drug delivery. These stimuli can be internal (such as pH and enzymes) or external (such as ultrasound, magnetic fields, and light). This review focuses on the mechanics of ultrasound-induced drug delivery and the various nanocarriers used in conjunction with ultrasound. It will also provide a comprehensive overview of key aspects related to ultrasound-induced drug delivery, including ultrasound parameters and the biological effects of ultrasound waves.
Collapse
Affiliation(s)
- Khaled Armouch Al Refaai
- Biomedical Engineering Program, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates;
| | - Nour A. AlSawaftah
- Materials Science and Engineering Ph.D. Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (N.A.A.); (W.A.)
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Biosciences and Bioengineering Ph.D. Program, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Waad Abuwatfa
- Materials Science and Engineering Ph.D. Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (N.A.A.); (W.A.)
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Biosciences and Bioengineering Ph.D. Program, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Ghaleb A. Husseini
- Biomedical Engineering Program, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates;
- Materials Science and Engineering Ph.D. Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (N.A.A.); (W.A.)
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Biosciences and Bioengineering Ph.D. Program, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| |
Collapse
|
2
|
Kusunose J, Rodriguez WJ, Luo H, Manuel TJ, Phipps MA, Yang PF, Grissom WA, Konrad PE, Chen LM, Dawant BM, Caskey CF. Design and Validation of a Patient-Specific Stereotactic Frame for Transcranial Ultrasound Therapy. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:1030-1041. [PMID: 39024077 PMCID: PMC11465451 DOI: 10.1109/tuffc.2024.3420242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Transcranial-focused ultrasound (tFUS) procedures such as neuromodulation and blood-brain barrier (BBB) opening require precise focus placement within the brain. MRI is currently the most reliable tool for focus localization but can be prohibitive for procedures requiring recurrent therapies. We designed, fabricated, and characterized a patient-specific, 3-D-printed, stereotactic frame for repeated tFUS therapy. The frame is compact, with minimal footprint, can be removed and re-secured between treatments while maintaining sub-mm accuracy, and will allow for precise and repeatable transcranial FUS treatment without the need for MR-guidance following the initial calibration scan. Focus localization and repeatability were assessed via MR-thermometry and MR-acoustic radiation force imaging (ARFI) on an ex vivo skull phantom and in vivo nonhuman primates (NHPs), respectively. Focal localization, registration, steering, and re-steering were accomplished during the initial MRI calibration scan session. Keeping steering coordinates fixed in subsequent therapy and imaging sessions, we found good agreement between steered foci and the intended target, with target registration error (TRE) of 1.2 ± 0.3 ( n = 4 , ex vivo) and 1.0 ± 0.5 ( n = 3 , in vivo) mm. Focus position (steered and non-steered) was consistent, with sub-mm variation in each dimension between studies. Our 3-D-printed, patient-specific stereotactic frame can reliably position and orient the ultrasound transducer for repeated targeting of brain regions using a single MR-based calibration. The compact frame allows for high-precision tFUS to be carried out outside the magnet and could help reduce the cost of tFUS treatments where repeated application of an ultrasound focus is required with high precision.
Collapse
|
3
|
Rigollet S, Rome C, Ador T, Dumont E, Pichon C, Delalande A, Barbier EL, Stupar V. FUS-mediated BBB opening leads to transient perfusion decrease and inflammation without acute or chronic brain lesion. Theranostics 2024; 14:4147-4160. [PMID: 38994025 PMCID: PMC11234282 DOI: 10.7150/thno.96721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/23/2024] [Indexed: 07/13/2024] Open
Abstract
Impact: The permeabilization of the BBB to deliver therapeutics with MR-guided FUS redefines therapeutic strategies as it improves patient outcomes. To ensure the best translation towards clinical treatment, the evaluation of hemodynamic modifications in the CNS is necessary to refine treatment parameters. Methods: MR-guided FUS was applied at 1.5 MHz with a 50 ms burst every 1 s to open the BBB. CBF, BVf and ADC parameters were monitored with MRI. Cavitation was monitored with a PCD during the FUS sequence and classified with the IUD index into three cavitation levels. We distinctly applied the FUS in the cortex or the striatum. After the BBB permeabilization, neuroinflammation markers were quantified longitudinally. Results: The BBB was successfully opened in all animals in this study and only one animal was classified as "hard" and excluded from the rest of the study. 30 min after FUS-induced BBB opening in the cortex, we measured a 54% drop in CBF and a 13% drop in BVf compared to the contralateral side. After permeabilization of the striatum, a 38% drop in CBF and a 15% drop in BVf were measured. CBF values rapidly returned to baseline, and 90 min after BBB opening, no significant differences were observed. We quantified the subsequent neuroinflammation, noting a significant increase in astrocytic recruitment at 2 days and microglial activation at 1 day after FUS. After 7 days, no more inflammation was visible in the brain. Conclusion: FUS-induced BBB opening transiently modifies hemodynamic parameters such as CBF and BVf, suggesting limited nutrients and oxygen supply to the CNS in the hour following the procedure.
Collapse
Affiliation(s)
- Sébastien Rigollet
- Image Guided Therapy, Pessac, France
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Claire Rome
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Thomas Ador
- Université d'Orléans, LI²RSO, Orléans, France
- ART ARNm, Inserm US55, Orléans, France
- Laboratory of Experimental and Molecular Immunology and Neuromodulation (INEM), UMR 7355 CNRS-University of Orleans, Orleans, France
| | | | - Chantal Pichon
- Université d'Orléans, LI²RSO, Orléans, France
- ART ARNm, Inserm US55, Orléans, France
- Institut Universitaire de France, Paris, France
| | - Anthony Delalande
- Université d'Orléans, LI²RSO, Orléans, France
- ART ARNm, Inserm US55, Orléans, France
| | - Emmanuel L. Barbier
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, Grenoble, France
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, CNRS, IRMaGe, Grenoble, France
| | - Vasile Stupar
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, Grenoble, France
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, CNRS, IRMaGe, Grenoble, France
| |
Collapse
|
4
|
Manuel TJ, Sigona MK, Phipps MA, Kusunose J, Luo H, Yang PF, Newton AT, Gore JC, Grissom W, Chen LM, Caskey CF. Small volume blood-brain barrier opening in macaques with a 1 MHz ultrasound phased array. J Control Release 2023; 363:707-720. [PMID: 37827222 DOI: 10.1016/j.jconrel.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/05/2023] [Accepted: 10/08/2023] [Indexed: 10/14/2023]
Abstract
The use of focused ultrasound to open the blood-brain barrier (BBB) has the potential to deliver drugs to specific regions of the brain. The size of the BBB opening and ability to localize the opening determines the spatial extent and is a limiting factor in many applications of BBB opening where targeting a small brain region is desired. Here we evaluate the performance of a system designed for small opening volumes and highlight the unique challenges associated with pushing the spatial precision of this technique. To achieve small volume openings in cortical regions of the macaque brain, we tested a custom 1 MHz array transducer integrated into a magnetic resonance image-guided focused ultrasound system. Using real-time cavitation monitoring, we demonstrated twelve instances of single sonication, small volume BBB opening with average volumes of 59 ± 37 mm3 and 184 ± 2 mm3 in cortical and subcortical targets, respectively. We found high correlation between subject-specific acoustic simulations and observed openings when incorporating grey matter segmentation (R2 = 0.8577), and the threshold for BBB opening based on simulations was 0.53 MPa. Analysis of MRI-based safety assessment and cavitation signals indicate a safe pressure range for 1 MHz BBB opening and suggest that our system can be used to deliver drugs and gene therapy to small brain regions.
Collapse
Affiliation(s)
- Thomas J Manuel
- Vanderbilt University, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
| | - Michelle K Sigona
- Vanderbilt University, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
| | - M Anthony Phipps
- Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
| | - Jiro Kusunose
- Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
| | - Huiwen Luo
- Vanderbilt University, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
| | - Pai-Feng Yang
- Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
| | - Allen T Newton
- Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
| | - John C Gore
- Vanderbilt University, Nashville, TN, USA; Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
| | - William Grissom
- Vanderbilt University, Nashville, TN, USA; Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
| | - Li Min Chen
- Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
| | - Charles F Caskey
- Vanderbilt University, Nashville, TN, USA; Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Nashville, TN, USA.
| |
Collapse
|
5
|
Filippou A, Georgiou A, Nikolaou A, Evripidou N, Damianou C. Advanced software for MRgFUS treatment planning. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 240:107726. [PMID: 37480647 DOI: 10.1016/j.cmpb.2023.107726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND AND OBJECTIVES Herein, a user-friendly software platform for 3-dimensional Focused Ultrasound treatment planning based on Magnetic Resonance Imaging (MRI) images is presented. METHODS The software directly retrieves and loads MRI images. Various design tools can be used on the MRI images to define the treatment area and the sonication parameters. Based on the treatment plan, the software controls the robotic motion and motion pattern of Magnetic Resonance guided Focused Ultrasound (MRgFUS) robotic systems to execute the treatment procedure. Real-time treatment monitoring is achieved through MRI images and thermometry. The software's functionality and performance were evaluated in both laboratory and MRI environments. Different treatment plans were designed on MRI images and sonications were executed on agar-based phantoms and polymer films. RESULTS Magnetic Resonance (MR) thermometry maps were acquired in the agar-based phantoms. An exceptional agreement was observed between the software-planned treatment area and the lesions produced on the polymer films. CONCLUSIONS The developed software was successfully integrated with the MRI and robotic system controls for performing accurate treatment planning and real-time monitoring during sonications. The software provides an extremely user-friendly interface, while in the future it could be enhanced by providing dynamic modulation of the ultrasonic parameters during the treatment process.
Collapse
Affiliation(s)
- Antria Filippou
- Cyprus University of Technology, Department of Electrical Engineering, Computer Engineering, and Informatics, 30 Archbishop Kyprianou Str., Limassol 3036, Cyprus.
| | - Andreas Georgiou
- Cyprus University of Technology, Department of Electrical Engineering, Computer Engineering, and Informatics, 30 Archbishop Kyprianou Str., Limassol 3036, Cyprus
| | - Anastasia Nikolaou
- Cyprus University of Technology, Department of Electrical Engineering, Computer Engineering, and Informatics, 30 Archbishop Kyprianou Str., Limassol 3036, Cyprus.
| | - Nikolas Evripidou
- Cyprus University of Technology, Department of Electrical Engineering, Computer Engineering, and Informatics, 30 Archbishop Kyprianou Str., Limassol 3036, Cyprus.
| | - Christakis Damianou
- Cyprus University of Technology, Department of Electrical Engineering, Computer Engineering, and Informatics, 30 Archbishop Kyprianou Str., Limassol 3036, Cyprus.
| |
Collapse
|
6
|
Bérard C, Truillet C, Larrat B, Dhermain F, Estève MA, Correard F, Novell A. Anticancer drug delivery by focused ultrasound-mediated blood-brain/tumor barrier disruption for glioma therapy: From benchside to bedside. Pharmacol Ther 2023; 250:108518. [PMID: 37619931 DOI: 10.1016/j.pharmthera.2023.108518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
The therapeutic management of gliomas remains particularly challenging. Brain tumors present multiple obstacles that make therapeutic innovation complex, mainly due to the presence of blood-tumor and blood-brain barriers (BTB and BBB, respectively) which prevent penetration of anticancer agents into the brain parenchyma. Focused ultrasound-mediated BBB disruption (FUS-BBBD) provides a physical method for non-invasive, local, and reversible BBB disruption. The safety of this technique has been demonstrated in small and large animal models. This approach promises to enhance drug delivery into the brain tumor and therefore to improve survival outcomes by repurposing existing drugs. Several clinical trials continue to be initiated in the last decade. In this review, we provide an overview of the rationale behind the use of FUS-BBBD in gliomas and summarize the preclinical studies investigating different approaches (free drugs, drug-loaded microbubbles and drug-loaded nanocarriers) in combination with this technology in in vivo glioma models. Furthermore, we discuss the current state of clinical trials and devices developed and review the challenges to overcome for clinical use of FUS-BBBD in glioma therapy.
Collapse
Affiliation(s)
- Charlotte Bérard
- Aix Marseille Univ, APHM, CNRS, INP, Inst Neurophysiopathol, Hôpital Timone, Service Pharmacie, 13005 Marseille, France.
| | - Charles Truillet
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, 91401 Orsay, France.
| | - Benoit Larrat
- Université Paris-Saclay, CEA, CNRS, NeuroSpin/BAOBAB, Centre d'études de Saclay, 91191 Gif-sur-Yvette, France.
| | - Frédéric Dhermain
- Radiation Oncology Department, Gustave Roussy University Hospital, 94805 Villejuif, France.
| | - Marie-Anne Estève
- Aix Marseille Univ, APHM, CNRS, INP, Inst Neurophysiopathol, Hôpital Timone, Service Pharmacie, 13005 Marseille, France.
| | - Florian Correard
- Aix Marseille Univ, APHM, CNRS, INP, Inst Neurophysiopathol, Hôpital Timone, Service Pharmacie, 13005 Marseille, France.
| | - Anthony Novell
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, 91401 Orsay, France.
| |
Collapse
|
7
|
Kim S, Jo Y, Im GH, Lee C, Oh C, Kook G, Kim SG, Lee HJ. Miniaturized MR-compatible ultrasound system for real-time monitoring of acoustic effects in mice using high-resolution MRI. Neuroimage 2023; 276:120201. [PMID: 37269955 DOI: 10.1016/j.neuroimage.2023.120201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/05/2023] Open
Abstract
Visualization of focused ultrasound in high spatial and temporal resolution is crucial for accurately and precisely targeting brain regions noninvasively. Magnetic resonance imaging (MRI) is the most widely used noninvasive tool for whole-brain imaging. However, focused ultrasound studies employing high-resolution (> 9.4 T) MRI in small animals are limited by the small size of the radiofrequency (RF) volume coil and the noise sensitivity of the image to external systems such as bulky ultrasound transducers. This technical note reports a miniaturized ultrasound transducer system packaged directly above a mouse brain for monitoring ultrasound-induced effects using high-resolution 9.4 T MRI. Our miniaturized system integrates MR-compatible materials with electromagnetic (EM) noise reduction techniques to demonstrate echo-planar imaging (EPI) signal changes in the mouse brain at various ultrasound acoustic intensities. The proposed ultrasound-MRI system will enable extensive research in the expanding field of ultrasound therapeutics.
Collapse
Affiliation(s)
- Subeen Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Yehhyun Jo
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Geun Ho Im
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, South Korea
| | - Chanhee Lee
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, South Korea
| | - Chaerin Oh
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Geon Kook
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, South Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, South Korea; Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Hyunjoo J Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea; KAIST Institute for Nano Century (KINC), Daejeon 34141, South Korea.
| |
Collapse
|
8
|
Manuel TJ, Sigona MK, Phipps MA, Kusunose J, Luo H, Yang PF, Newton AT, Gore JC, Grissom W, Chen LM, Caskey CF. Small volume blood-brain barrier opening in macaques with a 1 MHz ultrasound phased array. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.02.530815. [PMID: 36909495 PMCID: PMC10002751 DOI: 10.1101/2023.03.02.530815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Focused ultrasound blood-brain barrier (BBB) opening is a promising tool for targeted delivery of therapeutic agents into the brain. The volume of opening determines the extent of therapeutic administration and sets a lower bound on the size of targets which can be selectively treated. We tested a custom 1 MHz array transducer optimized for cortical regions in the macaque brain with the goal of achieving small volume openings. We integrated this device into a magnetic resonance image guided focused ultrasound system and demonstrated twelve instances of small volume BBB opening with average opening volumes of 59 ± 37 mm 3 and 184 ± 2 mm 3 in cortical and subcortical targets, respectively. We developed real-time cavitation monitoring using a passive cavitation detector embedded in the array and characterized its performance on a bench-top flow phantom mimicking transcranial BBB opening procedures. We monitored cavitation during in-vivo procedures and compared cavitation metrics against opening volumes and safety outcomes measured with FLAIR and susceptibility weighted MR imaging. Our findings show small BBB opening at cortical targets in macaques and characterize the safe pressure range for 1 MHz BBB opening. Additionally, we used subject-specific simulations to investigate variance in measured opening volumes and found high correlation (R 2 = 0.8577) between simulation predictions and observed measurements. Simulations suggest the threshold for 1 MHz BBB opening was 0.53 MPa. This system enables BBB opening for drug delivery and gene therapy to be targeted to more specific brain regions.
Collapse
|
9
|
Regulation of P-glycoprotein and Breast Cancer Resistance Protein Expression Induced by Focused Ultrasound-Mediated Blood-Brain Barrier Disruption: A Pilot Study. Int J Mol Sci 2022; 23:ijms232415488. [PMID: 36555129 PMCID: PMC9779754 DOI: 10.3390/ijms232415488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The blood-brain barrier (BBB) controls brain homeostasis; it is formed by vascular endothelial cells that are physically connected by tight junctions (TJs). The BBB expresses efflux transporters such as P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP), which limit the passage of substrate molecules from blood circulation to the brain. Focused ultrasound (FUS) with microbubbles can create a local and reversible detachment of the TJs. However, very little is known about the effect of FUS on the expression of efflux transporters. We investigated the in vivo effects of moderate acoustic pressures on both P-gp and BCRP expression for up to two weeks after sonication. Magnetic resonance-guided FUS was applied in the striatum of 12 rats. P-gp and BCRP expression were determined by immunohistochemistry at 1, 3, 7, and 14 days postFUS. Our results indicate that FUS-induced BBB opening is capable of (i) decreasing P-gp expression up to 3 days after sonication in both the treated and in the contralateral brain regions and is capable of (ii) overexpressing BCRP up to 7 days after FUS in the sonicated regions only. Our findings may help improve FUS-aided drug delivery strategies by considering both the mechanical effect on the TJs and the regulation of P-gp and BCRP.
Collapse
|
10
|
Molecular Imaging of Ultrasound-Mediated Blood-Brain Barrier Disruption in a Mouse Orthotopic Glioblastoma Model. Pharmaceutics 2022; 14:pharmaceutics14102227. [PMID: 36297663 PMCID: PMC9610067 DOI: 10.3390/pharmaceutics14102227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma (GBM) is an aggressive and malignant primary brain tumor. The blood-brain barrier (BBB) limits the therapeutic options available to tackle this incurable tumor. Transient disruption of the BBB by focused ultrasound (FUS) is a promising and safe approach to increase the brain and tumor concentration of drugs administered systemically. Non-invasive, sensitive, and reliable imaging approaches are required to better understand the impact of FUS on the BBB and brain microenvironment. In this study, nuclear imaging (SPECT/CT and PET/CT) was used to quantify neuroinflammation 48 h post-FUS and estimate the influence of FUS on BBB opening and tumor growth in vivo. BBB disruptions were performed on healthy and GBM-bearing mice (U-87 MG xenograft orthotopic model). The BBB recovery kinetics were followed and quantified by [99mTc]Tc-DTPA SPECT/CT imaging at 0.5 h, 3 h and 24 h post-FUS. The absence of neuroinflammation was confirmed by [18F]FDG PET/CT imaging 48 h post-FUS. The presence of the tumor and its growth were evaluated by [68Ga]Ga-RGD2 PET/CT imaging and post-mortem histological analysis, showing that tumor growth was not influenced by FUS. In conclusion, molecular imaging can be used to evaluate the time frame for systemic treatment combined with transient BBB opening and to test its efficacy over time.
Collapse
|
11
|
Li N, Gaur P, Quah K, Pauly KB. Improving in situ acoustic intensity estimates using MR acoustic radiation force imaging in combination with multifrequency MR elastography. Magn Reson Med 2022; 88:1673-1689. [PMID: 35762849 PMCID: PMC9439407 DOI: 10.1002/mrm.29309] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 11/08/2022]
Abstract
PURPOSE Magnetic resonance acoustic radiation force imaging (MR-ARFI) enables focal spot localization during nonablative transcranial ultrasound therapies. As the acoustic radiation force is proportional to the applied acoustic intensity, measured MR-ARFI displacements could potentially be used to estimate the acoustic intensity at the target. However, variable brain stiffness is an obstacle. The goal of this study was to develop and assess a method to accurately estimate the acoustic intensity at the focus using MR-ARFI displacements in combination with viscoelastic properties obtained with multifrequency MR elastography (MRE). METHODS Phantoms with a range of viscoelastic properties were fabricated, and MR-ARFI displacements were acquired within each phantom using multiple acoustic intensities. Voigt model parameters were estimated for each phantom based on storage and loss moduli measured using multifrequency MRE, and these were used to predict the relationship between acoustic intensity and measured displacement. RESULTS Using assumed viscoelastic properties, MR-ARFI displacements alone could not accurately estimate acoustic intensity across phantoms. For example, acoustic intensities were underestimated in phantoms stiffer than the assumed stiffness and overestimated in phantoms softer than the assumed stiffness. This error was greatly reduced using individualized viscoelasticity measurements obtained from MRE. CONCLUSION We demonstrated that viscoelasticity information from MRE could be used in combination with MR-ARFI displacements to obtain more accurate estimates of acoustic intensity. Additionally, Voigt model viscosity parameters were found to be predictive of the relaxation rate of each phantom's time-varying displacement response, which could be used to optimize patient-specific MR-ARFI pulse sequences.
Collapse
Affiliation(s)
- Ningrui Li
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Pooja Gaur
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Kristin Quah
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Kim Butts Pauly
- Department of Radiology, Stanford University, Stanford, California, USA
| |
Collapse
|
12
|
Hu Z, Yang Y, Xu L, Hao Y, Chen H. Binary acoustic metasurfaces for dynamic focusing of transcranial ultrasound. Front Neurosci 2022; 16:984953. [PMID: 36117633 PMCID: PMC9475195 DOI: 10.3389/fnins.2022.984953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022] Open
Abstract
Transcranial focused ultrasound (tFUS) is a promising technique for non-invasive and spatially targeted neuromodulation and treatment of brain diseases. Acoustic lenses were designed to correct the skull-induced beam aberration, but these designs could only generate static focused ultrasound beams inside the brain. Here, we designed and 3D printed binary acoustic metasurfaces (BAMs) for skull aberration correction and dynamic ultrasound beam focusing. BAMs were designed by binarizing the phase distribution at the surface of the metasurfaces. The phase distribution was calculated based on time reversal to correct the skull-induced phase aberration. The binarization enabled the ultrasound beam to be dynamically steered along wave propagation direction by adjusting the operation frequency of the incident ultrasound wave. The designed BAMs were manufactured by 3D printing with two coding bits, a polylactic acid unit for bit "1" and a water unit for bit "0." BAMs for single- and multi-point focusing through the human skull were designed, 3D printed, and validated numerically and experimentally. The proposed BAMs with subwavelength scale in thickness are simple to design, easy to fabric, and capable of correcting skull aberration and achieving dynamic beam steering.
Collapse
Affiliation(s)
- Zhongtao Hu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, United States
| | - Yaoheng Yang
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, United States
| | - Lu Xu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, United States
| | - Yao Hao
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, United States
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
13
|
Hu Z, Chen S, Yang Y, Gong Y, Chen H. An Affordable and Easy-to-Use Focused Ultrasound Device for Noninvasive and High Precision Drug Delivery to the Mouse Brain. IEEE Trans Biomed Eng 2022; 69:2723-2732. [PMID: 35157574 PMCID: PMC9443669 DOI: 10.1109/tbme.2022.3150781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Focused ultrasound (FUS) combined with microbubble-mediated blood-brain barrier (BBB) opening (FUS-BBBO) is not only a promising technique for clinical applications but also a powerful tool for preclinical research. However, existing FUS devices for preclinical research are expensive, bulky, and lack the precision needed for small animal research, which limits the broad adoption of this promising technique by the research community. Our objective was to design and fabricate an affordable, easy-to-use, high-precision FUS device for small animal research. METHODS We designed and fabricated in-house mini-FUS transducers (∼$80 each in material cost) with three frequencies (1.5, 3.0, and 6.0 MHz) and integrated them with a stereotactic frame for precise mouse brain targeting using established stereotactic procedures. The BBB opening volume by FUS at different acoustic pressures (0.20-0.57 MPa) was quantified using T1-weighted contrast-enhanced magnetic resonance imaging of gadolinium leakage and fluorescence imaging of Evans blue extravasation. RESULTS The targeting accuracy of the device as measured by the offset between the desired target location and the centroid of BBBO was 0.63 ± 0.19 mm. The spatial precision of the device in targeting individual brain structures was improved by the use of higher frequency FUS transducers. The BBB opening volume had high linear correlations with the cavitation index (defined by the ratio between acoustic pressure and frequency) and mechanical index (defined by the ratio between acoustic pressure and the square root of frequency). The correlation coefficient of the cavitation index was slightly higher than that of the mechanical index. CONCLUSION This study demonstrated that spatially accurate and precise BBB opening was achievable using an affordable and easy-to-use FUS device. The BBB opening volume was tunable by modulating the cavitation index. This device is expected to decrease the barriers to the adoption of the FUS-BBBO technique by the broad research community.
Collapse
|
14
|
Do HD, Marie C, Bessoles S, Dhotel H, Seguin J, Larrat B, Doan BT, Scherman D, Escriou V, Hacein-Bey-Abina S, Mignet N. Combination of thermal ablation by focused ultrasound, pFAR4-IL-12 transfection and lipidic adjuvant provide a distal immune response. EXPLORATION OF MEDICINE 2022; 3:398-413. [PMID: 36046055 PMCID: PMC9400762 DOI: 10.37349/etat.2022.00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/19/2022] [Indexed: 11/21/2022] Open
Abstract
Aim: Gene-based immunotherapy against cancer is limited by low gene transfer efficiency. In the literature, interleukin-12 (IL-12) encoding plasmid associated with sonoporation has been shown to enhance antitumoral activity. Moreover, non-viral carriers and high-frequency ultrasound have both been shown to promote immune response activation. Here, IL-12 encoding plasmid, non-viral carrier stimulating the immune response and focused ultrasound were combined in order to improve the antitumoral efficiency. Methods: In order to enhance a gene-based antitumoral immune response, home-made lipids Toll-like receptor 2 (TLR2) agonists and plasmid free of antibiotic resistance version 4 (pFAR4), a mini-plasmid, encoding the IL-12 cytokine were combined with high-intensity focused ultrasound (HIFU). The lipid composition and the combination conditions were selected following in vitro and in vivo preliminary studies. The expression of IL-12 from our plasmid construct was measured in vitro and in vivo. The combination strategy was evaluated in mice bearing colon carcinoma cells (CT26) tumors following their weight, tumor volume, interferon-gamma (IFN-γ), and tumor necrosis factor-alpha (TNF-α) levels in the serum and produced by splenocytes exposed to CT26 tumor cells. Results: Lipid-mediated cell transfection and intratumoral injection into CT26 tumor mice using pFAR4-IL-12 led to the secretion of the IL-12 cytokine into cell supernatant and mice sera, respectively. Conditions of thermal deposition using HIFU were optimized. The plasmid encoding pFAR4-IL-12 or TLR2 agonist alone had no impact on tumor growth compared with control mice, whereas the complete treatment consisting of pFAR4-IL-12, TLR2 lipid agonist, and HIFU limited tumor growth. Moreover, only the complete treatment increased significantly mice survival and provided an abscopal effect on a metastatic CT26 model. Conclusions: The HIFU condition was highly efficient to stop tumor growth. The combined therapy was the most efficient in terms of IL-12 and IFN-γ production and mice survival. The study showed the feasibility and the limits of this combined therapy which has the potential to be improved.
Collapse
Affiliation(s)
- Hai Doan Do
- Université de Paris Cité, CNRS, INSERM, UTCBS, 75006 Paris, France
| | - Corinne Marie
- Université de Paris Cité, CNRS, INSERM, UTCBS, 75006 Paris, France; Chimie ParisTech, Université PSL, F-75005 Paris, France
| | | | - Hélène Dhotel
- Université de Paris Cité, CNRS, INSERM, UTCBS, 75006 Paris, France
| | - Johanne Seguin
- Université de Paris Cité, CNRS, INSERM, UTCBS, 75006 Paris, France
| | - Benoit Larrat
- NeuroSpin, Institut des Sciences du Vivant Frédéric Joliot, Commissariat à l’Energie Atomique et aux Énergies Alternatives (CEA), Université Paris Saclay, 91191 Gif-sur-Yvette, France
| | - Bich-Thuy Doan
- Université PSL, Chimie ParisTech, CNRS, SEISADCNRS, 75005 Paris, France
| | - Daniel Scherman
- Université de Paris Cité, CNRS, INSERM, UTCBS, 75006 Paris, France
| | - Virginie Escriou
- Université de Paris Cité, CNRS, INSERM, UTCBS, 75006 Paris, France
| | - Salima Hacein-Bey-Abina
- Université de Paris Cité, CNRS, INSERM, UTCBS, 75006 Paris, France; Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud, Hôpital Kremlin-Bicêtre, Assistance Publique- Hôpitaux de Paris, 94275 Le-Kremlin-Bicêtre, France
| | - Nathalie Mignet
- Université de Paris Cité, CNRS, INSERM, UTCBS, 75006 Paris, France
| |
Collapse
|
15
|
Dell'Italia J, Sanguinetti JL, Monti MM, Bystritsky A, Reggente N. Current State of Potential Mechanisms Supporting Low Intensity Focused Ultrasound for Neuromodulation. Front Hum Neurosci 2022; 16:872639. [PMID: 35547195 PMCID: PMC9081930 DOI: 10.3389/fnhum.2022.872639] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/28/2022] [Indexed: 01/07/2023] Open
Abstract
Low intensity focused ultrasound (LIFU) has been gaining traction as a non-invasive neuromodulation technology due to its superior spatial specificity relative to transcranial electrical/magnetic stimulation. Despite a growing literature of LIFU-induced behavioral modifications, the mechanisms of action supporting LIFU's parameter-dependent excitatory and suppressive effects are not fully understood. This review provides a comprehensive introduction to the underlying mechanics of both acoustic energy and neuronal membranes, defining the primary variables for a subsequent review of the field's proposed mechanisms supporting LIFU's neuromodulatory effects. An exhaustive review of the empirical literature was also conducted and studies were grouped based on the sonication parameters used and behavioral effects observed, with the goal of linking empirical findings to the proposed theoretical mechanisms and evaluating which model best fits the existing data. A neuronal intramembrane cavitation excitation model, which accounts for differential effects as a function of cell-type, emerged as a possible explanation for the range of excitatory effects found in the literature. The suppressive and other findings need additional theoretical mechanisms and these theoretical mechanisms need to have established relationships to sonication parameters.
Collapse
Affiliation(s)
- John Dell'Italia
- Institute for Advanced Consciousness Studies, Santa Monica, CA, United States
- *Correspondence: John Dell'Italia
| | - Joseph L. Sanguinetti
- Department of Psychology, University of Arizona, Tuscon, AZ, United States
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Martin M. Monti
- Institute for Advanced Consciousness Studies, Santa Monica, CA, United States
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
- Brain Injury Research Center, Department of Neurosurgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| | - Alexander Bystritsky
- Institute for Advanced Consciousness Studies, Santa Monica, CA, United States
- Tiny Blue Dot Foundation, Santa Monica, CA, United States
| | - Nicco Reggente
- Institute for Advanced Consciousness Studies, Santa Monica, CA, United States
- Tiny Blue Dot Foundation, Santa Monica, CA, United States
| |
Collapse
|
16
|
Grudzenski S, Heger S, de Jonge A, Schipp J, Dumont E, Larrat B, Schad L, Platten M, Fatar M. Simulation, Implementation and Measurement of Defined Sound Fields for Blood-Brain Barrier Opening in Rats. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:422-436. [PMID: 34863589 DOI: 10.1016/j.ultrasmedbio.2021.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
The blood-brain barrier (BBB) is the most important obstacle to delivery of therapeutics to the central nervous system. Low-intensity pulsed focused ultrasound (FUS) in combination with microbubbles applied under magnetic resonance imaging (MRI) control provides a non-invasive and safe technique for BBB opening (BBBo). In rodent models, however, settings and application protocols differ significantly. Depending on the strain and size, important variables include ultrasound attenuation and sound field distortion caused by the skull. We examined the ultrasound attenuation of the skull of Wistar rats using a targeted FUS system. By modifying the transducer elements and by varying and simulating the acoustic field of the FUS system, we measured a skull attenuation of about 60%. To evaluate potential application of the targeted FUS system in genetically modified animals with increased sensitivity to brain hemorrhage caused by vascular dysfunction, we assessed safety in healthy animals. Histological and MRI analyses of the central nervous system revealed an increase in the number and severity of hyperacute bleeds with focal pressure. At a pressure of 0.4 MPa, no bleeds were induced, albeit at the cost of a weaker hyperintense MRI signal post BBBo. These results indicate a relationship between pressure and the dimension of permeabilization.
Collapse
Affiliation(s)
- Saskia Grudzenski
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Stefan Heger
- Institute for Biomedical Engineering, Mannheim University, Mannheim, Germany
| | - Andreas de Jonge
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Julia Schipp
- Institute for Biomedical Engineering, Mannheim University, Mannheim, Germany
| | | | - Benoit Larrat
- Université Paris-Saclay, CEA, CNRS, Baobab, NeuroSpin, Gif-sur-Yvette, France
| | - Lothar Schad
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Michael Platten
- Mannheimer Center of Translational Neuroscience (MCTN), Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marc Fatar
- European Center of Angioscience (ECAS), Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
17
|
Qiao Y, Zou C, Wen J, Long X, Cheng C, Yang W, Ye W, Liang D, Liu X, Zheng H. MARFit: An integrated software for real-time MR guided focused ultrasound neuromodulation system. IEEE Trans Neural Syst Rehabil Eng 2022; 30:264-273. [DOI: 10.1109/tnsre.2022.3146286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Yan Y, Chen Y, Liu Z, Cai F, Niu W, Song L, Liang H, Su Z, Yu B, Yan F. Brain Delivery of Curcumin Through Low-Intensity Ultrasound-Induced Blood-Brain Barrier Opening via Lipid-PLGA Nanobubbles. Int J Nanomedicine 2021; 16:7433-7447. [PMID: 34764649 PMCID: PMC8575349 DOI: 10.2147/ijn.s327737] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Background Parkinson's disease (PD) is a progressive neurodegenerative disorder. Owing to the presence of blood-brain barrier (BBB), conventional pharmaceutical agents are difficult to the diseased nuclei and exert their action to inhibit or delay the progress of PD. Recent literatures have demonstrated that curcumin shows the great potential to treat PD. However, its applications are still difficult in vivo due to its poor druggability and low bioavailability through the BBB. Methods Melt-crystallization methods were used to improve the solubility of curcumin, and curcumin-loaded lipid-PLGA nanobubbles (Cur-NBs) were fabricated through encapsulating the curcumin into the cavity of lipid-PLGA nanobubbles. The bubble size, zeta potentials, ultrasound imaging capability and drug encapsulation efficiency of the Cur-NBs were characterized by a series of analytical methods. Low-intensity focused ultrasound (LIFU) combined with Cur-NB was used to open the BBB to facilitate curcumin delivery into the deep brain of PD mice, followed by behavioral evaluation for the treatment efficacy. Results The solubility of curcumin was improved by melt-crystallization methods, with 2627-fold higher than pure curcumin. The resulting Cur-NBs have a nanoscale size about 400 nm and show excellent contrast imaging performance. Curcumin drugs encapsulated into Cur-NBs could be effectively released when Cur-NBs were irradiated by LIFU at the optimized acoustic pressure, achieving 30% cumulative release rate within 6 h. Importantly, Cur-NBs combined with LIFU can open the BBB and locally deliver the curcumin into the deep-seated brain nuclei, significantly enhancing efficacy of curcumin in the Parkinson C57BL/6J mice model in comparison with only Cur-NBs and LIFU groups. Conclusion In this work, we greatly improved the solubility of curcumin and developed Cur-NBs for brain delivery of curcumin against PD through combining with LIFU-mediating BBB. Cur-NBs provide a platform for these potential drugs which are difficult to cross the BBB to treat PD disease or other central nervous system (CNS) diseases.
Collapse
Affiliation(s)
- Yiran Yan
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Yan Chen
- Department of Ultrasonic Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Zhongxun Liu
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Feiyan Cai
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, People's Republic of China
| | - Wanting Niu
- VA Boston Healthcare System, Boston, MA, 02130, USA.,Department of Orthopedics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Liming Song
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Haifeng Liang
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Zhiwen Su
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Bo Yu
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Fei Yan
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, People's Republic of China
| |
Collapse
|
19
|
Tournier N, Comtat C, Lebon V, Gennisson JL. Challenges and Perspectives of the Hybridization of PET with Functional MRI or Ultrasound for Neuroimaging. Neuroscience 2021; 474:80-93. [DOI: 10.1016/j.neuroscience.2020.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 02/08/2023]
|
20
|
Tretbar SH, Fournelle M, Speicher D, Becker FJ, Anastasiadis P, Landgraf L, Roy U, Melzer A. A novel matrix-array-based MR-conditional ultrasound system for local hyperthermia of small animals. IEEE Trans Biomed Eng 2021; 69:758-770. [PMID: 34398748 DOI: 10.1109/tbme.2021.3104865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE The goal of this work was to develop a novel modular focused ultrasound hyperthermia (FUS-HT) system for preclinical applications with the following characteristics: MR-compatible, compact probe for integration into a PET/MR small animal scanner, 3D-beam steering capabilities, high resolution focusing for generation of spatially confined FUS-HT effects. METHODS For 3D-beam steering capabilities, a matrix array approach with 11 11 elements was chosen. For reaching the required level of integration, the array was mounted with a conductive backing directly on the interconnection PCB. The array is driven by a modified version of our 128 channel ultrasound research platform DiPhAS. The system was characterized using sound field measurements and validated using tissue-mimicking phantoms. Preliminary MR-compatibility tests were performed using a 7T Bruker MRI scanner. RESULTS Four 11 11 arrays between 0.5 and 2 MHz were developed and characterized with respect to sound field properties and HT generation. Focus sizes between 1 and 4 mm were reached depending on depth and frequency. We showed heating by 4C within 60 s in phantoms. The integration concept allows a probe thickness of less than 12 mm. CONCLUSION We demonstrated FUS-HT capabilities of our modular system based on matrix arrays and a 128 channel electronics system within a 3D-steering range of up to 30. The suitability for integration into a small animal MR could be demonstrated in basic MR-compatibility tests. SIGNIFICANCE The developed system presents a new generation of FUS-HT for preclinical and translational work providing safe, reversible, localized, and controlled HT.
Collapse
|
21
|
Ultrasound-Mediated Blood-Brain Barrier Opening Improves Whole Brain Gene Delivery in Mice. Pharmaceutics 2021; 13:pharmaceutics13081245. [PMID: 34452206 PMCID: PMC8399273 DOI: 10.3390/pharmaceutics13081245] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 02/05/2023] Open
Abstract
Gene therapy represents a powerful therapeutic tool to treat diseased tissues and provide a durable and effective correction. The central nervous system (CNS) is the target of many gene therapy protocols, but its high complexity makes it one of the most difficult organs to reach, in part due to the blood-brain barrier that protects it from external threats. Focused ultrasound (FUS) coupled with microbubbles appears as a technological breakthrough to deliver therapeutic agents into the CNS. While most studies focus on a specific targeted area of the brain, the present work proposes to permeabilize the entire brain for gene therapy in several pathologies. Our results show that, after i.v. administration and FUS sonication in a raster scan manner, a self-complementary AAV9-CMV-GFP vector strongly and safely infected the whole brain of mice. An increase in vector DNA (19.8 times), GFP mRNA (16.4 times), and GFP protein levels (17.4 times) was measured in whole brain extracts of FUS-treated GFP injected mice compared to non-FUS GFP injected mice. In addition to this increase in GFP levels, on average, a 7.3-fold increase of infected cells in the cortex, hippocampus, and striatum was observed. No side effects were detected in the brain of treated mice. The combining of FUS and AAV-based gene delivery represents a significant improvement in the treatment of neurological genetic diseases.
Collapse
|
22
|
Metwally K, Bastiancich C, Correard F, Novell A, Fernandez S, Guillet B, Larrat B, Mensah S, Estève MA, Da Silva A. Development of a multi-functional preclinical device for the treatment of glioblastoma. BIOMEDICAL OPTICS EXPRESS 2021; 12:2264-2279. [PMID: 33996228 PMCID: PMC8086436 DOI: 10.1364/boe.419412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 05/18/2023]
Abstract
Glioblastoma multiforme (GBM) is one of the most common and aggressive malignant primary brain tumors in adults. The treatment of GBM is limited by the blood-brain barrier (BBB), which limits the diffusion of appropriate concentrations of therapeutic agents at the tumor site. Among experimental therapies, photo-thermal therapy (PTT) mediated by nanoparticles is a promising strategy. To propose a preclinical versatile research instrument for the development of new PTT for GBM, a multipurpose integrated preclinical device was developed. The setup is able to perform: i) BBB permeabilization by focused ultrasound sonication (FUS); ii) PTT with continuous wave laser; iii) in situ temperature monitoring with photo-acoustic (PA) measurements. In vivo preliminary subcutaneous and transcranial experiments were conducted on healthy or tumor-bearing mice. Transcranial FUS-induced BBB permeabilization was validated using single photon emission computed tomography (SPECT) imaging. PTT capacities were monitored by PA thermometry, and are illustrated through subcutaneous and transcranial in vivo experiments. The results show the therapeutic possibilities and ergonomy of such integrated device as a tool for the validation of future treatments.
Collapse
Affiliation(s)
- Khaled Metwally
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
- Aix Marseille Univ, CNRS, Centrale Marseille, LMA, Marseille, France
- Contributed equally to this work
| | - Chiara Bastiancich
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
- Contributed equally to this work
| | - Florian Correard
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
- APHM, Hôpital de la Timone, Service Pharmacie, Marseille, France
| | - Anthony Novell
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Samantha Fernandez
- Aix-Marseille Univ, Centre Européen de Recherche en Imagerie Médicale (CERIMED), Marseille, France
| | - Benjamin Guillet
- Aix-Marseille Univ, Centre Européen de Recherche en Imagerie Médicale (CERIMED), Marseille, France
- Aix-Marseille Univ, INSERM, INRA, Center de Recherche en Cardiovasculaire et Nutrition (C2VN), Marseille, France
| | - Benoit Larrat
- Univ. Paris Saclay, CNRS, CEA, DRF/JOLIOT/NEUROSPIN/BAOBAB, Gif-sur-Yvette, France
| | - Serge Mensah
- Aix Marseille Univ, CNRS, Centrale Marseille, LMA, Marseille, France
| | - Marie-Anne Estève
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
- APHM, Hôpital de la Timone, Service Pharmacie, Marseille, France
| | - Anabela Da Silva
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| |
Collapse
|
23
|
Rahimi S, Jones RM, Hynynen K. A High-Frequency Phased Array System for Transcranial Ultrasound Delivery in Small Animals. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:127-135. [PMID: 32746231 PMCID: PMC7863589 DOI: 10.1109/tuffc.2020.3012868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Existing systems for applying transcranial focused ultrasound (FUS) in small animals produce large focal volumes relative to the size of cerebral structures available for interrogation. The use of high ultrasonic frequencies can improve targeting specificity; however, the aberrations induced by rodent calvaria at megahertz frequencies severely distort the acoustic fields produced by single-element focused transducers. Here, we present the design, fabrication, and characterization of a high-frequency phased array system for transcranial FUS delivery in small animals. A transducer array was constructed by micromachining a spherically curved PZT-5H bowl (diameter = 25 mm, radius of curvature = 20 mm, fundamental frequency = 3.3 MHz) into 64 independent elements of equal surface area. The acoustic field generated by the phased array was measured at various target locations using a calibrated fiber-optic hydrophone, both in free-field conditions as well as through ex vivo rat skullcaps with and without hydrophone-assisted phase aberration corrections. Large field-of-view acoustic field simulations were carried out to investigate potential grating lobe formation. The focal beam size obtained when targeting the array's geometric focus was [Formula: see text] mm in water. The array can steer the FUS beam electronically over cylindrical volumes of 4.5 mm in diameter and 6 mm in height without introducing grating lobes. Insertion of a rat skullcap resulted in substantial distortion of the acoustic field ( [Formula: see text]% [Formula: see text]); however, phase corrections restored partial focal quality ( [Formula: see text]% [Formula: see text]). Using phase corrections, the array is capable of generating a trans-rat skull peak negative focal pressure of up to ~2.0 MPa, which is sufficient for microbubble-mediated blood-brain barrier permeabilization at this frequency.
Collapse
|
24
|
Csaba Z, Vitalis T, Charriaut-Marlangue C, Margaill I, Coqueran B, Leger PL, Parente I, Jacquens A, Titomanlio L, Constans C, Demene C, Santin MD, Lehericy S, Perrière N, Glacial F, Auvin S, Tanter M, Ghersi-Egea JF, Adle-Biassette H, Aubry JF, Gressens P, Dournaud P. A simple novel approach for detecting blood-brain barrier permeability using GPCR internalization. Neuropathol Appl Neurobiol 2020; 47:297-315. [PMID: 32898926 PMCID: PMC7891648 DOI: 10.1111/nan.12665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/30/2020] [Accepted: 08/22/2020] [Indexed: 01/01/2023]
Abstract
Aims Impairment of blood–brain barrier (BBB) is involved in numerous neurological diseases from developmental to aging stages. Reliable imaging of increased BBB permeability is therefore crucial for basic research and preclinical studies. Today, the analysis of extravasation of exogenous dyes is the principal method to study BBB leakage. However, these procedures are challenging to apply in pups and embryos and may appear difficult to interpret. Here we introduce a novel approach based on agonist‐induced internalization of a neuronal G protein‐coupled receptor widely distributed in the mammalian brain, the somatostatin receptor type 2 (SST2). Methods The clinically approved SST2 agonist octreotide (1 kDa), when injected intraperitoneally does not cross an intact BBB. At sites of BBB permeability, however, OCT extravasates and induces SST2 internalization from the neuronal membrane into perinuclear compartments. This allows an unambiguous localization of increased BBB permeability by classical immunohistochemical procedures using specific antibodies against the receptor. Results We first validated our approach in sensory circumventricular organs which display permissive vascular permeability. Through SST2 internalization, we next monitored BBB opening induced by magnetic resonance imaging‐guided focused ultrasound in murine cerebral cortex. Finally, we proved that after intraperitoneal agonist injection in pregnant mice, SST2 receptor internalization permits analysis of BBB integrity in embryos during brain development. Conclusions This approach provides an alternative and simple manner to assess BBB dysfunction and development in different physiological and pathological conditions.
Collapse
Affiliation(s)
- Z Csaba
- NeuroDiderot, Inserm U1141, Université de Paris, Paris, France
| | - T Vitalis
- NeuroDiderot, Inserm U1141, Université de Paris, Paris, France
| | | | - I Margaill
- Research Team "Pharmacology of Cerebral Circulation" EA4475, Faculté de Pharmacie de Paris, Université de Paris, Paris, France
| | - B Coqueran
- Research Team "Pharmacology of Cerebral Circulation" EA4475, Faculté de Pharmacie de Paris, Université de Paris, Paris, France
| | - P-L Leger
- NeuroDiderot, Inserm U1141, Université de Paris, Paris, France
| | - I Parente
- NeuroDiderot, Inserm U1141, Université de Paris, Paris, France
| | - A Jacquens
- NeuroDiderot, Inserm U1141, Université de Paris, Paris, France
| | - L Titomanlio
- NeuroDiderot, Inserm U1141, Université de Paris, Paris, France
| | - C Constans
- Institut Langevin, ESPCI Paris, PSL Research University, CNRS UMR7587, Inserm U979, Inserm Technology Research Accelerator in Biomedical Ultrasound, Université de Paris, Paris, France
| | - C Demene
- Institut Langevin, ESPCI Paris, PSL Research University, CNRS UMR7587, Inserm U979, Inserm Technology Research Accelerator in Biomedical Ultrasound, Université de Paris, Paris, France
| | - M D Santin
- Brain and Spine Institute-ICM, Center for NeuroImaging Research - CENIR, Sorbonne Paris Cité, UPMC Université Paris 06, Inserm U1127, CNRS UMR 7225, Paris, France
| | - S Lehericy
- Brain and Spine Institute-ICM, Center for NeuroImaging Research - CENIR, Sorbonne Paris Cité, UPMC Université Paris 06, Inserm U1127, CNRS UMR 7225, Paris, France
| | - N Perrière
- BrainPlotting, Brain and Spine Institute-ICM, Paris, France
| | - F Glacial
- BrainPlotting, Brain and Spine Institute-ICM, Paris, France
| | - S Auvin
- NeuroDiderot, Inserm U1141, Université de Paris, Paris, France
| | - M Tanter
- Institut Langevin, ESPCI Paris, PSL Research University, CNRS UMR7587, Inserm U979, Inserm Technology Research Accelerator in Biomedical Ultrasound, Université de Paris, Paris, France
| | - J-F Ghersi-Egea
- Fluid Team, Lyon Neurosciences Research Center, Inserm U1028, CNRS, UMR5292, University Lyon-1, Villeurbanne, France
| | - H Adle-Biassette
- NeuroDiderot, Inserm U1141, Université de Paris, Paris, France.,Service d'Anatomie et de Cytologie Pathologiques, Hôpital Lariboisière, APHP, Paris, France
| | - J-F Aubry
- Institut Langevin, ESPCI Paris, PSL Research University, CNRS UMR7587, Inserm U979, Inserm Technology Research Accelerator in Biomedical Ultrasound, Université de Paris, Paris, France
| | - P Gressens
- NeuroDiderot, Inserm U1141, Université de Paris, Paris, France
| | - P Dournaud
- NeuroDiderot, Inserm U1141, Université de Paris, Paris, France
| |
Collapse
|
25
|
Pouget P, Frey S, Ahnine H, Attali D, Claron J, Constans C, Aubry JF, Arcizet F. Neuronavigated Repetitive Transcranial Ultrasound Stimulation Induces Long-Lasting and Reversible Effects on Oculomotor Performance in Non-human Primates. Front Physiol 2020; 11:1042. [PMID: 32973560 PMCID: PMC7466663 DOI: 10.3389/fphys.2020.01042] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/29/2020] [Indexed: 12/17/2022] Open
Abstract
Since the late 2010s, Transcranial Ultrasound Stimulation (TUS) has been used experimentally to carryout safe, non-invasive stimulation of the brain with better spatial resolution than Transcranial Magnetic Stimulation (TMS). This innovative stimulation method has emerged as a novel and valuable device for studying brain function in humans and animals. In particular, single pulses of TUS directed to oculomotor regions have been shown to modulate visuomotor behavior of non-human primates during 100 ms ultrasound pulses. In the present study, a sustained effect was induced by applying 20-s trains of neuronavigated repetitive Transcranial Ultrasound Stimulation (rTUS) to oculomotor regions of the frontal cortex in three non-human primates performing an antisaccade task. With the help of MRI imaging and a frame-less stereotactic neuronavigation system (SNS), we were able to demonstrate that neuronavigated TUS (outside of the MRI scanner) is an efficient tool to carry out neuromodulation procedures in non-human primates. We found that, following neuronavigated rTUS, saccades were significantly modified, resulting in shorter latencies compared to no-rTUS trials. This behavioral modulation was maintained for up to 20 min. Oculomotor behavior returned to baseline after 18-31 min and could not be significantly distinguished from the no-rTUS condition. This study is the first to show that neuronavigated rTUS can have a persistent effect on monkey behavior with a quantified return-time to baseline. The specificity of the effects could not be explained by auditory confounds.
Collapse
Affiliation(s)
- Pierre Pouget
- Institute of Brain and Spinal Cord, UMRS 975 Inserm, CNRS 7225, UMPC, Paris, France
| | | | - Harry Ahnine
- Institute of Brain and Spinal Cord, UMRS 975 Inserm, CNRS 7225, UMPC, Paris, France
| | - David Attali
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, Univ Paris Diderot, Sorbonne Paris Cite, Paris, France.,Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), Inserm U1266, Team Pathophysiology of Psychiatric Disorders, Paris, France.,GHU Paris Psychiatrie et Neurosciences, Site Sainte-Anne, Service Hospitalo-Universitaire, Paris, France
| | - Julien Claron
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, Univ Paris Diderot, Sorbonne Paris Cite, Paris, France
| | - Charlotte Constans
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, Univ Paris Diderot, Sorbonne Paris Cite, Paris, France
| | - Jean-Francois Aubry
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, Univ Paris Diderot, Sorbonne Paris Cite, Paris, France
| | - Fabrice Arcizet
- Institut de la Vision CNRS, Inserm, Sorbonne Université, Paris, France
| |
Collapse
|
26
|
A new safety index based on intrapulse monitoring of ultra-harmonic cavitation during ultrasound-induced blood-brain barrier opening procedures. Sci Rep 2020; 10:10088. [PMID: 32572103 PMCID: PMC7308405 DOI: 10.1038/s41598-020-66994-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 05/29/2020] [Indexed: 11/25/2022] Open
Abstract
Ultrasound-induced blood-brain barrier (BBB) opening using microbubbles is a promising technique for local delivery of therapeutic molecules into the brain. The real-time control of the ultrasound dose delivered through the skull is necessary as the range of pressure for efficient and safe BBB opening is very narrow. Passive cavitation detection (PCD) is a method proposed to monitor the microbubble activity during ultrasound exposure. However, there is still no consensus on a reliable safety indicator able to predict potential damage in the brain. Current approaches for the control of the beam intensity based on PCD employ a full-pulse analysis and may suffer from a lack of sensitivity and poor reaction time. To overcome these limitations, we propose an intra-pulse analysis to monitor the evolution of the frequency content during ultrasound bursts. We hypothesized that the destabilization of microbubbles exposed to a critical level of ultrasound would result in the instantaneous generation of subharmonic and ultra-harmonic components. This specific signature was exploited to define a new sensitive indicator of the safety of the ultrasound protocol. The approach was validated in vivo in rats and non-human primates using a retrospective analysis. Our results demonstrate that intra-pulse monitoring was able to exhibit a sudden appearance of ultra-harmonics during the ultrasound excitation pulse. The repeated detection of such a signature within the excitation pulse was highly correlated with the occurrence of side effects such as hemorrhage and edema. Keeping the acoustic pressure at levels where no such sign of microbubble destabilization occurred resulted in safe BBB openings, as shown by MR images and gross pathology. This new indicator should be more sensitive than conventional full-pulse analysis and can be used to distinguish between potentially harmful and safe ultrasound conditions in the brain with very short reaction time.
Collapse
|
27
|
Theranostic MRI liposomes for magnetic targeting and ultrasound triggered release of the antivascular CA4P. J Control Release 2020; 322:137-148. [PMID: 32145266 DOI: 10.1016/j.jconrel.2020.03.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/05/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
Abstract
Theranostic nanocarriers of antivascular drug encapsulated in thermosensitive ultramagnetic liposomes can be advantageously designed to provide a locally high concentration and an active delivery, with image-guided Magnetic Resonance Imaging (MRI) so as to reliably cure tumor. We propose a novel therapeutic strategy consisting of the magnetic accumulation of Ultra Magnetic Liposomes (UML) followed by High-Intensity Focused Ultrasound (HIFU) to trigger the release of an antivascular agent monitored by MRI. For this purpose, we co-encapsulated Combretastatin A4 phosphate (CA4P), a vascular disrupting agent, in the core of UML to obtain CA4P-loaded thermosensitive Ultra Magnetic Liposomes (CA4P-UML). To assess the HIFU parameters, the CA4P release has been triggered in vitro by local heating HIFU at the lipids transition temperature. Morphology of endothelial cells was assessed to evaluate the effect of encapsulated versus non-encapsulated CA4P. The efficiency of a treatment combining the magnetic targeting of CA4P-UML with the CA4P release triggered by HIFU was studied in CT26 murine tumors. Tumor perfusion and volume regression parameters were monitored by multiparametric quantitative anatomical and dynamic in vivo MRI at 7 T. Additionally, vascularization and cellularity were evaluated ex-vivo by histology. This thorough investigation showed that the combined treatment exhibited a full benefit. A 150-fold improvement compared with the chemotherapy alone was obtained using a magnetic targeting of CA4P-UML triggered by HIFU, and was consistent with an expected effect on vascularization 24 h after treatment.
Collapse
|
28
|
Empirical and Theoretical Characterization of the Diffusion Process of Different Gadolinium-Based Nanoparticles within the Brain Tissue after Ultrasound-Induced Permeabilization of the Blood-Brain Barrier. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:6341545. [PMID: 31866799 PMCID: PMC6914891 DOI: 10.1155/2019/6341545] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/21/2019] [Indexed: 01/08/2023]
Abstract
Low-intensity focused ultrasound (FUS), combined with microbubbles, is able to locally, and noninvasively, open the blood-brain barrier (BBB), allowing nanoparticles to enter the brain. We present here a study on the diffusion process of gadolinium-based MRI contrast agents within the brain extracellular space after ultrasound-induced BBB permeabilization. Three compounds were tested (MultiHance, Gadovist, and Dotarem). We characterized their diffusion through in vivo experimental tests supported by theoretical models. Specifically, by estimation of the free diffusion coefficients from in vitro studies and of apparent diffusion coefficients from in vivo experiments, we have assessed tortuosity in the right striatum of 9 Sprague Dawley rats through a model correctly describing both vascular permeability as a function of time and diffusion processes occurring in the brain tissue. This model takes into account acoustic pressure, particle size, blood pharmacokinetics, and diffusion rates. Our model is able to fully predict the result of a FUS-induced BBB opening experiment at long space and time scales. Recovered values of tortuosity are in agreement with the literature and demonstrate that our improved model allows us to assess that the chosen permeabilization protocol preserves the integrity of the brain tissue.
Collapse
|
29
|
Kamimura HA, Flament J, Valette J, Cafarelli A, Aron Badin R, Hantraye P, Larrat B. Feedback control of microbubble cavitation for ultrasound-mediated blood-brain barrier disruption in non-human primates under magnetic resonance guidance. J Cereb Blood Flow Metab 2019; 39:1191-1203. [PMID: 29381130 PMCID: PMC6668523 DOI: 10.1177/0271678x17753514] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Focused ultrasound (FUS) in combination with microbubbles is capable of noninvasive, site-targeted delivery of drugs through the blood-brain barrier (BBB). Although acoustic parameters are reproducible in small animals, their control remains challenging in primates due to skull heterogeneity. This study describes a 7-T magnetic resonance (MR)-guided FUS system designed for BBB disruption in non-human primates (NHP) with a robust feedback control based on passive cavitation detection (PCD). Contrast enhanced T1-weighted MR images confirmed the BBB opening in NHP sonicated during 2 min with 500-kHz frequency, pulse length of 10 ms, and pulse repetition frequency of 5 Hz. The safe acoustic pressure range from 185 ± 22 kPa to 266 ± 4 kPa in one representative case was estimated from combining data from the acoustic beam profile with the BBB opening and hemorrhage profiles obtained from MR images. A maximum amount of MR contrast agent at focus was observed at 30 min after sonication with a relative contrast enhancement of 67% ± 15% (in comparison to that found in muscles). The feedback control based on PCD using relative spectra was shown to be robust, allowing comparisons across animals and experimental sessions. Finally, we also demonstrated that PCD can test acoustic coupling conditions, which improves the efficacy and safety of ultrasound transmission into the brain.
Collapse
Affiliation(s)
- Hermes As Kamimura
- 1 Molecular Imaging Research Center, Institut de Biologie François Jacob, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Fontenay-aux-Roses, France.,2 NeuroSpin, Institut des Sciences du Vivant Frédéric Joliot, Commissariat à l'Energie Atomique et aux Énergies Alternatives (CEA), Gif-sur-Yvette, France
| | - Julien Flament
- 1 Molecular Imaging Research Center, Institut de Biologie François Jacob, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Fontenay-aux-Roses, France.,3 Institut National de la Santé et de la Recherche Médicale (Inserm), Fontenay-aux-Roses, France
| | - Julien Valette
- 1 Molecular Imaging Research Center, Institut de Biologie François Jacob, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Fontenay-aux-Roses, France
| | - Andrea Cafarelli
- 2 NeuroSpin, Institut des Sciences du Vivant Frédéric Joliot, Commissariat à l'Energie Atomique et aux Énergies Alternatives (CEA), Gif-sur-Yvette, France.,4 The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Romina Aron Badin
- 1 Molecular Imaging Research Center, Institut de Biologie François Jacob, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Fontenay-aux-Roses, France
| | - Philippe Hantraye
- 1 Molecular Imaging Research Center, Institut de Biologie François Jacob, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Fontenay-aux-Roses, France
| | - Benoît Larrat
- 2 NeuroSpin, Institut des Sciences du Vivant Frédéric Joliot, Commissariat à l'Energie Atomique et aux Énergies Alternatives (CEA), Gif-sur-Yvette, France
| |
Collapse
|
30
|
Maimbourg G, Houdouin A, Deffieux T, Tanter M, Aubry JF. Steering Capabilities of an Acoustic Lens for Transcranial Therapy: Numerical and Experimental Studies. IEEE Trans Biomed Eng 2019; 67:27-37. [PMID: 30932823 DOI: 10.1109/tbme.2019.2907556] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
For successful brain therapy, transcranial focused ultrasound must compensate for the time shifts induced locally by the skull. The patient-specific phase profile is currently generated by multi-element arrays which, over time, have tended toward increasing element count. We recently introduced a new approach, consisting of a single-element transducer coupled to an acoustic lens of controlled thickness. By adjusting the local thickness of the lens, we were able to induce phase differences which compensated those induced by the skull. Nevertheless, such an approach suffers from an apparent limitation: the lens is a priori designed for one specific target. In this paper, we demonstrate the possibility of taking advantage of the isoplanatic angle of the aberrating skull in order to steer the focus by mechanically moving the transducer/acoustic lens pair around its initial focusing position. This study, conducted on three human skull samples, demonstrates that tilting of the transducer with the lens restores a single -3 dB focal volume at 914 kHz for a steering up to ±11 mm in the transverse direction, and ±10 mm in the longitudinal direction, around the initial focal region.
Collapse
|
31
|
Çavuşoğlu M, Zhang J, Ielacqua GD, Pellegrini G, Signorell RD, Papachristodoulou A, Brambilla D, Roth P, Weller M, Rudin M, Martin E, Leroux JC, Werner B. Closed-loop cavitation control for focused ultrasound-mediated blood-brain barrier opening by long-circulating microbubbles. Phys Med Biol 2019; 64:045012. [PMID: 30577029 DOI: 10.1088/1361-6560/aafaa5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Focused ultrasound (FUS) exposure in the presence of microbubbles (MBs) has been successfully used in the delivery of various sizes of therapeutic molecules across the blood-brain barrier (BBB). While acoustic pressure is correlated with the BBB opening size, real-time control of BBB opening to avoid vascular and neural damage is still a challenge. This arises mainly from the variability of FUS-MB interactions due to the variations of animal-specific metabolic environment and specific experimental setup. In this study, we demonstrate a closed-loop cavitation control framework to induce BBB opening for delivering large therapeutic molecules without causing macro tissue damages. To this end, we performed in mice long-term (5 min) cavitation monitoring facilitated by using long-circulating MBs. Monitoring the long-term temporal kinetics of the MBs under varying level of FUS pressure allowed to identify in situ, animal specific activity regimes forming pressure-dependent activity bands. This enables to determine the boundaries of each activity band (i.e. steady oscillation, transition, inertial cavitation) independent from the physical and physiological dynamics of the experiment. However, such a calibration approach is time consuming and to speed up characterization of the in situ, animal specific FUS-MB dynamics, we tested a novel method called 'pre-calibration' that closely reproduces the results of long-term monitoring but with a much shorter duration. Once the activity bands are determined from the pre-calibration method, an operation band can be selected around the desired cavitation dose. To drive cavitation in the selected operation band, we developed an adaptive, closed-loop controller that updates the acoustic pressure between each sonication based on measured cavitation dose. Finally, we quantitatively assessed the safety of different activity bands and validated the proposed methods and controller framework. The proposed framework serves to optimize the FUS pressure instantly to maintain the targeted cavitation level while improving safety control.
Collapse
Affiliation(s)
- Mustafa Çavuşoğlu
- Center for MR-Research, University Children's Hospital Zurich, 8032 Zurich, Switzerland. Institute for Biomedical Engineering, ETH Zurich, 8091 Zurich, Switzerland. Information Technology and Electrical Engineering Department, Swiss Federal Institute of Technology, Institute for Biomedical Engineering, ETH Zurich, ETZ F 64.1, Gloriastrasse 35, 8092, Zurich, Switzerland. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
For more than 70 years, the promise of noninvasive neuromodulation using focused ultrasound has been growing while diagnostic ultrasound established itself as a foundation of clinical imaging. Significant technical challenges have been overcome to allow transcranial focused ultrasound to deliver spatially restricted energy into the nervous system at a wide range of intensities. High-intensity focused ultrasound produces reliable permanent lesions within the brain, and low-intensity focused ultrasound has been reported to both excite and inhibit neural activity reversibly. Despite intense interest in this promising new platform for noninvasive, highly focused neuromodulation, the underlying mechanism remains elusive, though recent studies provide further insight. Despite the barriers, the potential of focused ultrasound to deliver a range of permanent and reversible neuromodulation with seamless translation from bench to the bedside warrants unparalleled attention and scientific investment. Focused ultrasound boasts a number of key features such as multimodal compatibility, submillimeter steerable focusing, multifocal, high temporal resolution, coregistration, and the ability to monitor delivered therapy and temperatures in real time. Despite the technical complexity, the future of noninvasive focused ultrasound for neuromodulation as a neuroscience and clinical platform remains bright.
Collapse
Affiliation(s)
- David P Darrow
- Department of Neurosurgery, University of Minnesota, 420 Delaware St SE, MMC 96, Room D-429, Minneapolis, MN, 55455, USA.
| |
Collapse
|
33
|
Goutal S, Gerstenmayer M, Auvity S, Caillé F, Mériaux S, Buvat I, Larrat B, Tournier N. Physical blood-brain barrier disruption induced by focused ultrasound does not overcome the transporter-mediated efflux of erlotinib. J Control Release 2018; 292:210-220. [PMID: 30415015 DOI: 10.1016/j.jconrel.2018.11.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 12/17/2022]
Abstract
Overcoming the efflux mediated by ATP-binding cassette (ABC) transporters at the blood-brain barrier (BBB) remains a challenge for the delivery of small molecule tyrosine kinase inhibitors (TKIs) such as erlotinib to the brain. Inhibition of ABCB1 and ABCG2 at the mouse BBB improved the BBB permeation of erlotinib but could not be achieved in humans. BBB disruption induced by focused ultrasound (FUS) was investigated as a strategy to overcome the efflux transport of erlotinib in vivo. In rats, FUS combined with microbubbles allowed for a large and spatially controlled disruption of the BBB in the left hemisphere. ABCB1/ABCG2 inhibition was performed using elacridar (10 mg/kg i.v). The brain kinetics of erlotinib was studied using 11C-erlotinib Positron Emission Tomography (PET) imaging in 5 groups (n = 4-5 rats per group) including a baseline group, immediately after sonication (FUS), 48 h after FUS (FUS + 48 h), elacridar (ELA) and their combination (FUS + ELA). BBB integrity was assessed using the Evan's Blue (EB) extravasation test. Brain exposure to 11C-erlotinib was measured as the area under the curve (AUC) of the brain kinetics (% injected dose (%ID) versus time (min)) in volumes corresponding to the disrupted (left) and the intact (right) hemispheres, respectively. EB extravasation highlighted BBB disruption in the left hemisphere of animals of the FUS and FUS + ELA groups but not in the control and ELA groups. EB extravasation was not observed 48 h after FUS suggesting recovery of BBB integrity. Compared with the control group (AUCBaseline = 1.4 ± 0.5%ID.min), physical BBB disruption did not impact the brain kinetics of 11C-erlotinib in the left hemisphere (p > .05) either immediately (AUCFUS = 1.2 ± 0.1%ID.min) or 48 h after FUS (AUCFUS+48h = 1.1 ± 0.3%ID.min). Elacridar similarly increased 11C-erlotinib brain exposure to the left hemisphere in the absence (AUCELA = 2.2 ± 0.5%ID.min, p < .001) and in the presence of BBB disruption (AUCFUS+ELA = 2.1 ± 0.5%ID.min, p < .001). AUCleft was never significantly different from AUCright (p > .05), in any of the tested conditions. BBB integrity is not the rate limiting step for erlotinib delivery to the brain which is mainly governed by ABC-mediated efflux. Efflux transport of erlotinib persisted despite BBB disruption.
Collapse
Affiliation(s)
- Sébastien Goutal
- Imagerie Moléculaire In Vivo, IMIV, Institut des sciences du vivant Frédéric Joliot, Direction de la Recherche Fondamentale, CEA, Inserm, CNRS, Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ, Orsay, France; Molecular Imaging Research Center, MIRCen, Institut de Biologie François Jacob, Direction de la Recherche Fondamentale, CEA, Fontenay-Aux-Roses, France
| | - Matthieu Gerstenmayer
- Neurospin, Institut des sciences du vivant Frédéric Joliot, Direction de la Recherche Fondamentale, CEA, Université Paris Saclay, Gif sur Yvette, France
| | - Sylvain Auvity
- Imagerie Moléculaire In Vivo, IMIV, Institut des sciences du vivant Frédéric Joliot, Direction de la Recherche Fondamentale, CEA, Inserm, CNRS, Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ, Orsay, France
| | - Fabien Caillé
- Imagerie Moléculaire In Vivo, IMIV, Institut des sciences du vivant Frédéric Joliot, Direction de la Recherche Fondamentale, CEA, Inserm, CNRS, Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ, Orsay, France
| | - Sébastien Mériaux
- Neurospin, Institut des sciences du vivant Frédéric Joliot, Direction de la Recherche Fondamentale, CEA, Université Paris Saclay, Gif sur Yvette, France
| | - Irène Buvat
- Imagerie Moléculaire In Vivo, IMIV, Institut des sciences du vivant Frédéric Joliot, Direction de la Recherche Fondamentale, CEA, Inserm, CNRS, Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ, Orsay, France
| | - Benoit Larrat
- Neurospin, Institut des sciences du vivant Frédéric Joliot, Direction de la Recherche Fondamentale, CEA, Université Paris Saclay, Gif sur Yvette, France
| | - Nicolas Tournier
- Imagerie Moléculaire In Vivo, IMIV, Institut des sciences du vivant Frédéric Joliot, Direction de la Recherche Fondamentale, CEA, Inserm, CNRS, Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ, Orsay, France.
| |
Collapse
|
34
|
Gerstenmayer M, Fellah B, Magnin R, Selingue E, Larrat B. Acoustic Transmission Factor through the Rat Skull as a Function of Body Mass, Frequency and Position. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:2336-2344. [PMID: 30076032 DOI: 10.1016/j.ultrasmedbio.2018.06.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 05/26/2023]
Abstract
In many transcranial ultrasound studies on rats, the transmission factor is assumed to be independent of animal weight and losses resulting from non-normal incidence angles of the beam are not accounted for. In this study, we measured acoustic transmission factors through 13 excised skulls of male Sprague-Dawley rats weighing between 90 and 520g, at different positions on each skull and at 1, 1.25, 1.5, 1.75 and 2MHz. Our results revealed that insertion loss through rat skull increases linearly with both body mass and frequency and strongly depends on the position, decreasing from the front to the back and from the midline to the lateral sides. Skull thickness also scales linearly with body mass. Reflection explains the main part of the insertion loss compared with attenuation and aberration. These data are helpful in predicting the acoustic pressure at the focus in the brain.
Collapse
Affiliation(s)
- Matthieu Gerstenmayer
- NeuroSpin, Institut pour les sciences du vivant Frédéric Joliot, Direction de la Recherche Fondamentale, Commissariat à l'Energie Atomique, Université Paris Saclay, Gif sur Yvette, France
| | - Benjamin Fellah
- NeuroSpin, Institut pour les sciences du vivant Frédéric Joliot, Direction de la Recherche Fondamentale, Commissariat à l'Energie Atomique, Université Paris Saclay, Gif sur Yvette, France
| | - Rémi Magnin
- NeuroSpin, Institut pour les sciences du vivant Frédéric Joliot, Direction de la Recherche Fondamentale, Commissariat à l'Energie Atomique, Université Paris Saclay, Gif sur Yvette, France
| | - Erwan Selingue
- NeuroSpin, Institut pour les sciences du vivant Frédéric Joliot, Direction de la Recherche Fondamentale, Commissariat à l'Energie Atomique, Université Paris Saclay, Gif sur Yvette, France
| | - Benoit Larrat
- NeuroSpin, Institut pour les sciences du vivant Frédéric Joliot, Direction de la Recherche Fondamentale, Commissariat à l'Energie Atomique, Université Paris Saclay, Gif sur Yvette, France.
| |
Collapse
|
35
|
Bing C, Hong Y, Hernandez C, Rich M, Cheng B, Munaweera I, Szczepanski D, Xi Y, Bolding M, Exner A, Chopra R. Characterization of different bubble formulations for blood-brain barrier opening using a focused ultrasound system with acoustic feedback control. Sci Rep 2018; 8:7986. [PMID: 29789589 PMCID: PMC5964106 DOI: 10.1038/s41598-018-26330-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 05/04/2018] [Indexed: 11/09/2022] Open
Abstract
Focused ultrasound combined with bubble-based agents serves as a non-invasive way to open the blood-brain barrier (BBB). Passive acoustic detection was well studied recently to monitor the acoustic emissions induced by the bubbles under ultrasound energy, but the ability to perform reliable BBB opening with a real-time feedback control algorithm has not been fully evaluated. This study focuses on characterizing the acoustic emissions of different types of bubbles: Optison, Definity, and a custom-made nanobubble. Their performance on reliable BBB opening under real-time feedback control based on acoustic detection was evaluated both in-vitro and in-vivo. The experiments were conducted using a 0.5 MHz focused ultrasound transducer with in-vivo focal pressure ranges from 0.1-0.7 MPa. Successful feedback control was achieved with all three agents when combining with infusion injection. Localized opening was confirmed with Evans blue dye leakage. Microscopic images were acquired to review the opening effects. Under similar total gas volume, nanobubble showed a more reliable opening effect compared to Optison and Definity (p < 0.05). The conclusions obtained from this study confirm the possibilities of performing stable opening using a feedback control algorithm combined with infusion injection. It also opens another potential research area of BBB opening using sub-micron bubbles.
Collapse
Affiliation(s)
- Chenchen Bing
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Yu Hong
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | | | - Megan Rich
- Division of Advanced Medical Imaging Research, University of Alabama, Birmingham, AL, 35294, USA
| | - Bingbing Cheng
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Imalka Munaweera
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Debra Szczepanski
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yin Xi
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.,Department of Clinical Science, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Mark Bolding
- Division of Advanced Medical Imaging Research, University of Alabama, Birmingham, AL, 35294, USA
| | - Agata Exner
- Department of Radiology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Rajiv Chopra
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.,Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
36
|
Shen WB, Anastasiadis P, Nguyen B, Yarnell D, Yarowsky PJ, Frenkel V, Fishman PS. Magnetic Enhancement of Stem Cell-Targeted Delivery into the Brain Following MR-Guided Focused Ultrasound for Opening the Blood-Brain Barrier. Cell Transplant 2018; 26:1235-1246. [PMID: 28933214 PMCID: PMC5657739 DOI: 10.1177/0963689717715824] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Focused ultrasound (FUS)-mediated blood–brain barrier disruption (BBBD) can enable even large therapeutics such as stem cells to enter the brain from the bloodstream. However, the efficiency is relatively low. Our previous study showed that human neural progenitor cells (hNPCs) loaded with superparamagnetic iron oxide nanoparticles (SPIONs) in culture were attracted by an external magnetic field. In vivo, enhanced brain retention was observed near a magnet mounted on the skull in a rat model of traumatic brain injury, where BBBD also occurs. The goal of the current study was to determine whether magnetic attraction of SPION-loaded hNPCs would also enhance their retention in the brain after FUS-mediated BBBD. A small animal magnetic resonance imaging (MRI)-guided FUS system operating at 1.5 MHz was used to treat rats (∼120 g) without tissue damage or hemorrhage. Evidence of successful BBBD was validated with both radiologic enhancement of gadolinium on postsonication TI MRI and whole brain section visualization of Evans blue dye. The procedure was then combined with the application of a powerful magnet to the head directly after intravenous injection of the hNPCs. Validation of cells within the brain was performed by staining with Perls’ Prussian blue for iron and by immunohistochemistry with a human-specific antigen. By injecting equal numbers of iron oxide (SPIONs) and noniron oxide nanoparticles–loaded hNPCs, each labeled with a different fluorophore, we found significantly greater numbers of SPIONs-loaded cells retained in the brain at the site of BBBD as compared to noniron loaded cells. This result was most pronounced in regions of the brain closest to the skull (dorsal cortex) in proximity to the magnet surface. A more powerful magnet and a Halbach magnetic array resulted in more effective retention of SPION-labeled cells in even deeper brain regions such as the striatum and ventral cortex. There, up to 90% of hNPCs observed contained SPIONs compared to 60% to 70% with the less powerful magnet. Fewer cells were observed at 24 h posttreatment compared to 2 h (primarily in the dorsal cortex). These results demonstrate that magnetic attraction can substantially enhance the retention of stem cells after FUS-mediated BBBD. This procedure could provide a safer and less invasive approach for delivering stem cells to the brain, compared to direct intracranial injections, substantially reducing the risk of bleeding and infection.
Collapse
Affiliation(s)
- Wei-Bin Shen
- 1 Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Pavlos Anastasiadis
- 2 Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ben Nguyen
- 2 Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Deborah Yarnell
- 3 Neurology Service, VA Maryland Healthcare System, Baltimore, MD, USA
| | - Paul J Yarowsky
- 1 Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA.,4 Research Service, VA Maryland Healthcare System, Baltimore, MD, USA
| | - Victor Frenkel
- 2 Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,5 Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Paul S Fishman
- 3 Neurology Service, VA Maryland Healthcare System, Baltimore, MD, USA.,6 Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
37
|
Modarres HP, Janmaleki M, Novin M, Saliba J, El-Hajj F, RezayatiCharan M, Seyfoori A, Sadabadi H, Vandal M, Nguyen MD, Hasan A, Sanati-Nezhad A. In vitro models and systems for evaluating the dynamics of drug delivery to the healthy and diseased brain. J Control Release 2018; 273:108-130. [PMID: 29378233 DOI: 10.1016/j.jconrel.2018.01.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 12/12/2022]
Abstract
The blood-brain barrier (BBB) plays a crucial role in maintaining brain homeostasis and transport of drugs to the brain. The conventional animal and Transwell BBB models along with emerging microfluidic-based BBB-on-chip systems have provided fundamental functionalities of the BBB and facilitated the testing of drug delivery to the brain tissue. However, developing biomimetic and predictive BBB models capable of reasonably mimicking essential characteristics of the BBB functions is still a challenge. In addition, detailed analysis of the dynamics of drug delivery to the healthy or diseased brain requires not only biomimetic BBB tissue models but also new systems capable of monitoring the BBB microenvironment and dynamics of barrier function and delivery mechanisms. This review provides a comprehensive overview of recent advances in microengineering of BBB models with different functional complexity and mimicking capability of healthy and diseased states. It also discusses new technologies that can make the next generation of biomimetic human BBBs containing integrated biosensors for real-time monitoring the tissue microenvironment and barrier function and correlating it with the dynamics of drug delivery. Such integrated system addresses important brain drug delivery questions related to the treatment of brain diseases. We further discuss how the combination of in vitro BBB systems, computational models and nanotechnology supports for characterization of the dynamics of drug delivery to the brain.
Collapse
Affiliation(s)
- Hassan Pezeshgi Modarres
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Canada; Center for BioEngineering Research and Education, University of Calgary, Calgary, Canada
| | - Mohsen Janmaleki
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Canada; Center for BioEngineering Research and Education, University of Calgary, Calgary, Canada
| | - Mana Novin
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Canada; Center for BioEngineering Research and Education, University of Calgary, Calgary, Canada
| | - John Saliba
- Biomedical Engineering, Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Fatima El-Hajj
- Biomedical Engineering, Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Mahdi RezayatiCharan
- Breast Cancer Research Center (BCRC), ACECR, Tehran, Iran; School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Amir Seyfoori
- Breast Cancer Research Center (BCRC), ACECR, Tehran, Iran; School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Hamid Sadabadi
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Canada; Center for BioEngineering Research and Education, University of Calgary, Calgary, Canada
| | - Milène Vandal
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - Minh Dang Nguyen
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - Anwarul Hasan
- Biomedical Engineering, Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon; Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, 2713, Qatar
| | - Amir Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Canada; Center for BioEngineering Research and Education, University of Calgary, Calgary, Canada.
| |
Collapse
|
38
|
Boissenot T, Bordat A, Larrat B, Varna M, Chacun H, Paci A, Poinsignon V, Fattal E, Tsapis N. Ultrasound-induced mild hyperthermia improves the anticancer efficacy of both Taxol® and paclitaxel-loaded nanocapsules. J Control Release 2017; 264:219-227. [PMID: 28867377 DOI: 10.1016/j.jconrel.2017.08.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 08/22/2017] [Accepted: 08/30/2017] [Indexed: 11/26/2022]
Abstract
We study the influence of ultrasound on paclitaxel-loaded nanocapsules in vitro and in vivo. These nanocapsules possess a shell of poly(dl-lactide-co-glycolide)-poly(ethylene glycol) (PLGA-PEG) and a liquid core of perfluorooctyl bromide (PFOB). In vitro experiments show that mechanical effects such as cavitation are negligible for nanocapsules due to their small size and thick and rigid shell. As the mechanical effects were unable to increase paclitaxel delivery, we focused on the thermal effects of ultrasound in the in vivo studies. A focused ultrasound sequence was therefore optimized in vivo under magnetic resonance imaging guidance to obtain localized mild hyperthermia with high acoustic pressure. Ultrasound-induced mild hyperthermia (41-43°C) was then tested in vivo in a subcutaneous CT-26 colon cancer murine model. As hyperthermia is applied, an inhibition of tumor growth for both paclitaxel-loaded nanocapsules and the commercial formulation of paclitaxel, namely Taxol® have been observed (p<0.05). Ultrasound-induced mild hyperthermia at high acoustic pressure appears as an interesting strategy to enhance cytotoxic efficacy locally.
Collapse
Affiliation(s)
- Tanguy Boissenot
- Institut Galien Paris-Sud, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Alexandre Bordat
- Institut Galien Paris-Sud, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Benoît Larrat
- Commissariat à l'Energie Atomique (CEA), Institut d'Imagerie Biomédicale (I(2)BM), Neurospin, Saclay, France
| | - Mariana Varna
- Institut Galien Paris-Sud, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Hélène Chacun
- Institut Galien Paris-Sud, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Angelo Paci
- Gustave Roussy Cancer Campus, Service interdépartemental de Pharmacologie et d'Analyse du Médicament (SIPAM), 94800 Villejuif, France
| | - Vianney Poinsignon
- Gustave Roussy Cancer Campus, Service interdépartemental de Pharmacologie et d'Analyse du Médicament (SIPAM), 94800 Villejuif, France
| | - Elias Fattal
- Institut Galien Paris-Sud, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Nicolas Tsapis
- Institut Galien Paris-Sud, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France.
| |
Collapse
|
39
|
Ellens NPK, Partanen A. Preclinical MRI-Guided Focused Ultrasound: A Review of Systems and Current Practices. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:291-305. [PMID: 27662675 DOI: 10.1109/tuffc.2016.2609238] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Effective preclinical research is a vital component in the development of MRI-guided focused ultrasound (MRgFUS) and its translation to clinic. In this review, we seek to outline the challenges at hand for effective preclinical research, survey different solutions, and underline best practices. Furthermore, we summarize efforts to build and characterize dedicated preclinical MRgFUS equipment, including lab prototypes and available commercial products. Finally, we discuss constraints and considerations specific to using clinical MRgFUS equipment in preclinical research. Specifically, we examine additional hardware that has been used to adapt clinical MRgFUS equipment to better position, constrain, and image preclinical subjects, as well as software solutions that have been used to extend the potential and capabilities of clinical devices.
Collapse
|
40
|
Boissenot T, Bordat A, Fattal E, Tsapis N. Ultrasound-triggered drug delivery for cancer treatment using drug delivery systems: From theoretical considerations to practical applications. J Control Release 2016; 241:144-163. [DOI: 10.1016/j.jconrel.2016.09.026] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/19/2016] [Accepted: 09/21/2016] [Indexed: 12/21/2022]
|
41
|
Opacic T, Paefgen V, Lammers T, Kiessling F. Status and trends in the development of clinical diagnostic agents. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [DOI: 10.1002/wnan.1441] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/02/2016] [Accepted: 09/15/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Tatjana Opacic
- Department of Experimental Molecular Imaging; RWTH Aachen University; Aachen Germany
| | - Vera Paefgen
- Department of Experimental Molecular Imaging; RWTH Aachen University; Aachen Germany
| | - Twan Lammers
- Department of Experimental Molecular Imaging; RWTH Aachen University; Aachen Germany
- Department of Pharmaceutics; Utrecht University; Utrecht The Netherlands
- Department of Targeted Therapeutics; University of Twente; Enschede The Netherlands
| | - Fabian Kiessling
- Department of Experimental Molecular Imaging; RWTH Aachen University; Aachen Germany
| |
Collapse
|
42
|
Poorman ME, Chaplin VL, Wilkens K, Dockery MD, Giorgio TD, Grissom WA, Caskey CF. Open-source, small-animal magnetic resonance-guided focused ultrasound system. J Ther Ultrasound 2016; 4:22. [PMID: 27597889 PMCID: PMC5011339 DOI: 10.1186/s40349-016-0066-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/16/2016] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND MR-guided focused ultrasound or high-intensity focused ultrasound (MRgFUS/MRgHIFU) is a non-invasive therapeutic modality with many potential applications in areas such as cancer therapy, drug delivery, and blood-brain barrier opening. However, the large financial costs involved in developing preclinical MRgFUS systems represent a barrier to research groups interested in developing new techniques and applications. We aim to mitigate these challenges by detailing a validated, open-source preclinical MRgFUS system capable of delivering thermal and mechanical FUS in a quantifiable and repeatable manner under real-time MRI guidance. METHODS A hardware and software package was developed that includes closed-loop feedback controlled thermometry code and CAD drawings for a therapy table designed for a preclinical MRI scanner. For thermal treatments, the modular software uses a proportional integral derivative controller to maintain a precise focal temperature rise in the target given input from MR phase images obtained concurrently. The software computes the required voltage output and transmits it to a FUS transducer that is embedded in the delivery table within the magnet bore. The delivery table holds the FUS transducer, a small animal and its monitoring equipment, and a transmit/receive RF coil. The transducer is coupled to the animal via a water bath and is translatable in two dimensions from outside the magnet. The transducer is driven by a waveform generator and amplifier controlled by real-time software in Matlab. MR acoustic radiation force imaging is also implemented to confirm the position of the focus for mechanical and thermal treatments. RESULTS The system was validated in tissue-mimicking phantoms and in vivo during murine tumor hyperthermia treatments. Sonications were successfully controlled over a range of temperatures and thermal doses for up to 20 min with minimal temperature overshoot. MR thermometry was validated with an optical temperature probe, and focus visualization was achieved with acoustic radiation force imaging. CONCLUSIONS We developed an MRgFUS platform for small-animal treatments that robustly delivers accurate, precise, and controllable sonications over extended time periods. This system is an open source and could increase the availability of low-cost small-animal systems to interdisciplinary researchers seeking to develop new MRgFUS applications and technology.
Collapse
Affiliation(s)
- Megan E. Poorman
- Department of Biomedical Engineering, Vanderbilt University, PMB 351631 2301 Vanderbilt Place, Nashville, 37235 TN USA
| | - Vandiver L. Chaplin
- Department of Biomedical Engineering, Vanderbilt University, PMB 351631 2301 Vanderbilt Place, Nashville, 37235 TN USA
- Chemical and Physical Biology Program, Vanderbilt University, 1161 21st Avenue South, Nashville, 37232 TN USA
| | - Ken Wilkens
- Institute of Imaging Science, Vanderbilt University, 1161 21st Avenue South, Nashville, 37232 TN USA
| | - Mary D. Dockery
- Department of Biomedical Engineering, Vanderbilt University, PMB 351631 2301 Vanderbilt Place, Nashville, 37235 TN USA
| | - Todd D. Giorgio
- Department of Biomedical Engineering, Vanderbilt University, PMB 351631 2301 Vanderbilt Place, Nashville, 37235 TN USA
| | - William A. Grissom
- Department of Biomedical Engineering, Vanderbilt University, PMB 351631 2301 Vanderbilt Place, Nashville, 37235 TN USA
- Institute of Imaging Science, Vanderbilt University, 1161 21st Avenue South, Nashville, 37232 TN USA
| | - Charles F. Caskey
- Institute of Imaging Science, Vanderbilt University, 1161 21st Avenue South, Nashville, 37232 TN USA
- Department of Radiology, Vanderbilt University, 1161 21st Avenue South, Nashville, 37232 TN USA
| |
Collapse
|
43
|
Kealy J, Campbell M. The Blood-Brain Barrier in Glioblastoma: Pathology and Therapeutic Implications. RESISTANCE TO TARGETED ANTI-CANCER THERAPEUTICS 2016. [DOI: 10.1007/978-3-319-46505-0_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|