1
|
Hérnández-Elizárraga VH, Vega-Tamayo JE, Olguín-López N, Ibarra-Alvarado C, Rojas-Molina A. Transcriptomic and proteomic analyses reveal the first occurrence of diverse toxin groups in Millepora alcicornis. J Proteomics 2023; 288:104984. [PMID: 37536522 DOI: 10.1016/j.jprot.2023.104984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/22/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023]
Abstract
Millepora alcicornis is a reef-forming cnidarian widely distributed in the Mexican Caribbean. Millepora species or "fire corals" inflict a painful stinging reaction in humans when touched. Even though hundreds of organic and polypeptide toxins have been characterized from sea anemones and jellyfish, there are few reports regarding the diversity of toxins synthesized by fire corals. Here, based on transcriptomic analysis of M. alcicornis, several predicted proteins that show amino acid sequence similarity to toxins were identified, including neurotoxins, metalloproteases, hemostasis-impairing toxins, serin proteases, cysteine-rich venom proteins, phospholipases, complement system-impairing toxins, phosphodiesterases, pore-forming toxins, and L-aminoacid oxidases. The soluble nematocyst proteome of this organism was shown to induce hemolytic, proteolytic, and phospholipase A2 effects by gel zymography. Protein bands or spots on 1D- and 2D-PAGE gels corresponding to zones of hemolytic and enzymatic activities were excised, subjected to in-gel digestion with trypsin, and analyzed by mass spectrometry. These proteins exhibited sequence homology to PLA2s, metalloproteinases, pore-forming toxins, and neurotoxins, such as actitoxins and CrTX-A. The complex array of venom-related transcripts that were identified in M. alcicornis, some of which are first reported in "fire corals", provide novel insight into the structural richness of Cnidarian toxins and their distribution among species. SIGNIFICANCE: Marine organisms are a promising source of bioactive compounds with valuable contributions in diverse fields such as human health, pharmaceuticals, and industrial application. Currently, not much attention has been paid to the study of fire corals, which possess a variety of molecules that exhibit diverse toxic effects and therefore have great pharmaceutical and biotechnological potential. The isolation and identification of novel marine-derived toxins by classical approaches are time-consuming and have low yields. Thus, next-generation strategies, like base-'omics technologies, are essential for the high-throughput characterization of venom compounds such as those synthesized by fire corals. This study moves the field forward because it provides new insights regarding the first occurrence of diverse toxin groups in Millepora alcicornis. The findings presented here will contribute to the current understanding of the mechanisms of action of Millepora toxins. This research also reveals important information related to the potential role of toxins in the defense and capture of prey mechanisms and for designing appropriate treatments for fire coral envenomation. Moreover, due to the lack of information on the taxonomic identification of Millepora, the insights presented here can advise the taxonomic classification of the species of this genus.
Collapse
Affiliation(s)
- Víctor Hugo Hérnández-Elizárraga
- Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Qro, Mexico; University of Minnesota Genomics Center, 2231 6th Street SE, Minneapolis, MN 55455, USA
| | | | - Norma Olguín-López
- Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Qro, Mexico; División Química y Energías Renovables, Universidad Tecnológica de San Juan del Río. Av La Palma No 125 Vista Hermosa, 76800 San Juan del Río, Qro, Mexico.
| | - César Ibarra-Alvarado
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Qro, Mexico
| | - Alejandra Rojas-Molina
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Qro, Mexico.
| |
Collapse
|
2
|
Yap F, Høeg JT, Chan BKK. Living on fire: Deactivating fire coral polyps for larval settlement and symbiosis in the fire coral-associated barnacle Wanella milleporae (Thoracicalcarea: Wanellinae). Ecol Evol 2022; 12:e9057. [PMID: 35813926 PMCID: PMC9254672 DOI: 10.1002/ece3.9057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 12/02/2022] Open
Abstract
Symbiosis is increasingly recognized as being an important component in marine systems, and many such relationships are initiated when free-swimming larvae of one partner settle and become sedentary on a host partner. Therefore, several crucial questions emerge such as the larva's mechanism of locating a host, selection of substratum and finally settlement on the surface of its future partner. Here, we investigated these mechanisms by studying how larvae of the fire coral-associated barnacle Wanella milleporae move, settle and establish symbiosis with their host, Millepora tenera. Cyprids of W. milleporae possess a pair of specialized antennules with bell-shaped attachment discs that enable them to explore and settle superficially on the hostile surface of the fire coral. Intriguingly, the stinging polyps of the fire coral remain in their respective pores when the cyprids explore the fire coral surface. Even when cyprids come into contact with the nematocysts on the extended stinging polyps during the exploratory phase, no immobilization effects against the cyprids were observed. The exploratory phase of Wanella cyprids can be divided into a sequence of wide searching (large step length and high walking speed), close searching (small step length and low speed) and inspection behavior, eventually resulting in permanent settlement and metamorphosis. After settlement, xenogeneic interactions occur between the fire coral and the newly metamorphosed juvenile barnacle. This involved tissue necrosis and regeneration in the fire coral host, leading to a callus ring structure around the juvenile barnacle, enhancing survival rate after settlement. The complex exploratory and settlement patterns and interactions documented here represent a breakthrough in coral reef symbiosis studies to show how invertebrates start symbiosis with fire corals.
Collapse
Affiliation(s)
- Fook‐Choy Yap
- Biodiversity Research CenterAcademia SinicaNangangTaiwan
- Present address:
Department of Biological Science, Faculty of ScienceUniversiti Tunku Abdul Rahman, Jalan Universiti, Bandar BaratPerakMalaysia
| | - Jens T. Høeg
- Department of Biology, Marine Biological SectionUniversity of CopenhagenCopenhagenDenmark
| | | |
Collapse
|
3
|
Biochemical and Toxinological Characterization of Venom from Macrorhynchia philippina (Cnidaria, Hydrozoa). BIOMED RESEARCH INTERNATIONAL 2022; 2022:8170252. [PMID: 35620224 PMCID: PMC9129954 DOI: 10.1155/2022/8170252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/21/2022] [Indexed: 11/21/2022]
Abstract
Macrorhynchia philippina is a colonial benthic hydroid from the Class Hydrozoa (Phylum Cnidaria) distributed in the tropical and subtropical marine waters from Atlantic Ocean, Indo-Pacific, and Mozambique. Its colonies somewhat resemble plants, causing confusion in the bathers who accidentally touch the animal. Acute burning/local pain, edema, erythema, and pruritus were symptoms already described, but its venom composition is unknown, as well as the participation of toxins for the symptom's development. Thus, herein, we show the biochemical composition and toxic effects of M. philippina venom. Colonies were collected and processed for histological analysis; alternatively, they were immersed into methanol containing 0.1% acetic acid for venom attainment, which was analyzed by mass spectrometry and submitted to edema and nociception evaluation in mice, hemolysis and antimicrobial assays in vitro. Before the molecule's extraction, it was possible to see the inoculation structures (hydrocladiums and hydrotheca) containing venom, which was released after the immersion of the animal in the solvents. The venom was composed mainly by low molecular mass compounds, able to cause significant reduction of the paw withdrawal latency from the hot plate test, 30 minutes after the injection. Moreover, significant edema was observed 10 and 30 minutes after the injection, indicating the activity of at least two inflammatory mediators. The venom caused no hemolytic activity but reduced the growth of A. baumannii and K. pneumoniae strains. This study is the first biochemical description of M. philippina venom, with molecules that cause fast inflammatory and painful effects, characteristic of the envenomation.
Collapse
|
4
|
New Insights into the Toxin Diversity and Antimicrobial Activity of the “Fire Coral” Millepora complanata. Toxins (Basel) 2022; 14:toxins14030206. [PMID: 35324703 PMCID: PMC8954376 DOI: 10.3390/toxins14030206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/06/2023] Open
Abstract
To date, few studies have been carried out aimed at characterizing the toxins synthesized by hydrocorals of the genus Millepora. The purpose of this study was to explore the toxin diversity and antibacterial activity of the “fire coral” M. complanata using a transcriptomic data mining approach. In addition, the cytolytic and antibacterial activities of the M. complanata nematocyst proteome were experimentally confirmed. Cytolysins were predicted from the transcriptome by comparing against the Animal Toxin Annotation Project database, resulting in 190 putative toxins, including metalloproteases, hemostasis-impairing toxins, phospholipases, among others. The M. complanata nematocyst proteome was analyzed by 1D and 2D electrophoresis and zymography. The zymograms showed different zones of cytolytic activity: two zones of hemolysis at ~25 and ~205 kDa, two regions corresponding to phospholipase A2 (PLA2) activity around 6 and 25 kDa, and a proteolytic zone was observed between 50 and 205 kDa. The hemolytic activity of the proteome was inhibited in the presence of PLA2 and proteases inhibitors, suggesting that PLA2s, trypsin, chymotrypsin, serine-proteases, and matrix metalloproteases are responsible for the hemolysis. On the other hand, antimicrobial peptide sequences were retrieved from their transcripts with the amPEPpy software. This analysis revealed the presence of homologs to SK84, cgUbiquitin, Ubiquicidin, TroTbeta4, SPINK9-v1, and Histone-related antimicrobials in the transcriptome of this cnidarian. Finally, by employing disk diffusion and microdilution assays, we found that the nematocyst peptidome of M. complanata showed inhibitory activity against both Gram-positive and Gram-negative bacteria including S. enteritidis, P. perfectomarina, E. coli, and C. xerosis, among others. This is the first transcriptomic data mining analysis to explore the diversity of the toxins synthesized by an organism of the genus Millepora. Undoubtedly, this work provides information that will broaden our general understanding of the structural richness of cnidarian toxins.
Collapse
|
5
|
Okumu MO, Mbaria JM, Gikunju JK, Mbuthia PG, Madadi VO, Ochola FO, Jepkorir MS. Artemia salina as an animal model for the preliminary evaluation of snake venom-induced toxicity. Toxicon X 2021; 12:100082. [PMID: 34471870 PMCID: PMC8390515 DOI: 10.1016/j.toxcx.2021.100082] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/02/2022] Open
Abstract
Lethality and cytotoxicity assays of snake venoms and their neutralization by antivenom require many mice for the experiments. Recent developments have prompted researchers to seek alternative strategies that minimize the use of mice in line with Russel and Burch's 3Rs philosophy (Replacement, Reduction, and Refinement). Artemia salina is an animal model widely used for toxicity screening. However, its use in snake venom toxinology is limited by a lack of data. The present study compared the toxicity of venoms from Bitis arietans, Naja ashei, and Naja subfulva using mice and Artemia salina. In the Artemia salina test at 24 h and the dermonecrotic test in mice, the toxicity of the venoms was in the order Naja ashei ~ Naja subfulva > Bitis arietans. In the lethality test in mice, the toxicity of the venoms was in the order Naja subfulva > Naja ashei > Bitis arietans. These findings suggest that the toxicity of the venoms in Artemia salina and the dermonecrotic bioassay in mice have a similar trend but differ from the lethality test in mice. Therefore, it may be relevant to further explore the Artemia salina bioassay as a potential surrogate test of dermonecrosis in mice. Studies with more venoms may be needed to establish the correlation between the Artemia salina bioassay and the dermonecrotic assay in mice.
Collapse
Affiliation(s)
- Mitchel Otieno Okumu
- Department of Public Health, Pharmacology, and Toxicology, University of Nairobi, Kenya
| | - James Mucunu Mbaria
- Department of Public Health, Pharmacology, and Toxicology, University of Nairobi, Kenya
| | - Joseph Kangangi Gikunju
- Department of Medical Laboratory Science, Jomo Kenyatta University of Agriculture and Technology, Kenya
| | - Paul Gichohi Mbuthia
- Department of Veterinary Pathology, Microbiology, and Parasitology, University of Nairobi, Kenya
| | | | | | - Mercy Seroney Jepkorir
- Centre for Traditional Medicine and Drug Research, Kenya Medical Research Institute, Kenya
| |
Collapse
|
6
|
Dodou Lima HV, Sidrim de Paula Cavalcante C, Rádis-Baptista G. Antimicrobial activity of synthetic Dq-3162, a 28-residue ponericin G-like dinoponeratoxin from the giant ant Dinoponera quadriceps venom, against carbapenem-resistant bacteria. Toxicon 2020; 187:19-28. [DOI: 10.1016/j.toxicon.2020.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023]
|
7
|
Pech-Puch D, Pérez-Povedano M, Lenis-Rojas OA, Rodríguez J, Jiménez C. Marine Natural Products from the Yucatan Peninsula. Mar Drugs 2020; 18:E59. [PMID: 31963310 PMCID: PMC7024426 DOI: 10.3390/md18010059] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/09/2020] [Accepted: 01/11/2020] [Indexed: 01/08/2023] Open
Abstract
Mexico is one of the three areas of the world with the greatest terrestrial and cultural biological diversity. The diversity of Mexican medicinal flora has been studied for a long time and several bioactive compounds have been isolated. The investigation of marine resources, and particularly the potential of Mexican marine resources, has not been intensively investigated, even though the Yucatan Peninsula occupies 17.4% of the total of the Mexican coast, with great biological diversity in its coasts and the ocean. There are very few studies on the chemistry of natural products from marine organisms that were collected along the coasts of the Yucatan Peninsula and most of them are limited to the evaluation of the biological activity of their organic extracts. The investigations carried out on marine species from the Yucatan Peninsula resulted in the identification of a wide structural variety of natural products that include polyketides, terpenoids, nitrogen compounds, and biopolymers with cytotoxic, antibacterial, antifouling, and neurotoxic activities. This review describes the literature of bioprospecting and the exploration of the natural product diversity of marine organisms from the coasts of the Yucatan Peninsula up to mid-2019.
Collapse
Affiliation(s)
| | | | | | - Jaime Rodríguez
- Centro de Investigacións Científicas Avanzadas (CICA) e Departmento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain; (D.P.-P.); (M.P.-P.); (O.A.L.-R.)
| | - Carlos Jiménez
- Centro de Investigacións Científicas Avanzadas (CICA) e Departmento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain; (D.P.-P.); (M.P.-P.); (O.A.L.-R.)
| |
Collapse
|
8
|
Díaz-Marrero AR, Rodríguez González MC, Hernández Creus A, Rodríguez Hernández A, Fernández JJ. Damages at the nanoscale on red blood cells promoted by fire corals. Sci Rep 2019; 9:14298. [PMID: 31586105 PMCID: PMC6778144 DOI: 10.1038/s41598-019-50744-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/13/2019] [Indexed: 02/08/2023] Open
Abstract
The hydrocoral Millepora alcicornis, known as fire coral, biosynthesize protein toxins with phospholipase A2 (PLA2) activity as a main defense mechanism; proteins that rapidly catalyse the hydrolysis at the sn-2 position of phosphatidylcholine-type phospholipids of cellular membranes. This hydrolysis mechanism triggers a structural damage in the outer leaflet of the red blood cells (RBC) membrane, by generating pores in the lipid bilayer that leads to a depletion of the cellular content of the damaged cell. A secondary mechanism, tentatively caused by pore-forming proteins toxins (PFTs), has been observed. The use of atomic force microscopy (AFM) has allowed to visualize the evolution of damages produced on the surface of the cells at the nanoscale level along the time.
Collapse
Affiliation(s)
- Ana R Díaz-Marrero
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna (ULL), Avda, Astrofísico Francisco Sánchez 2, 38206, La Laguna, Tenerife, Spain
| | - Miriam C Rodríguez González
- Departamento de Química, Área de Química Física, Instituto de Materiales y Nanotecnología (IMN), Universidad de La Laguna (ULL), Avda. Astrofísico Francisco Sánchez s.n., 38206, La Laguna, Tenerife, Spain
| | - Alberto Hernández Creus
- Departamento de Química, Área de Química Física, Instituto de Materiales y Nanotecnología (IMN), Universidad de La Laguna (ULL), Avda. Astrofísico Francisco Sánchez s.n., 38206, La Laguna, Tenerife, Spain
| | - Adriana Rodríguez Hernández
- Departamento de Biología Animal, Edafología y Geología. UD Ciencias Marinas. Facultad de Ciencias (Sección Biología), Universidad de La Laguna (ULL), Avda. Astrofísico Francisco Sánchez s.n., 38206, La Laguna, Tenerife, Spain
| | - José J Fernández
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna (ULL), Avda, Astrofísico Francisco Sánchez 2, 38206, La Laguna, Tenerife, Spain. .,Departamento de Química Orgánica, Universidad de La Laguna (ULL), Avda. Astrofísico Francisco Sánchez s.n., 38206, La Laguna, Tenerife, Spain.
| |
Collapse
|
9
|
Hernández-Elizárraga VH, Olguín-López N, Hernández-Matehuala R, Ocharán-Mercado A, Cruz-Hernández A, Guevara-González RG, Caballero-Pérez J, Ibarra-Alvarado C, Sánchez-Rodríguez J, Rojas-Molina A. Comparative Analysis of the Soluble Proteome and the Cytolytic Activity of Unbleached and Bleached Millepora complanata ("Fire Coral") from the Mexican Caribbean. Mar Drugs 2019; 17:E393. [PMID: 31277227 PMCID: PMC6669453 DOI: 10.3390/md17070393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 01/24/2023] Open
Abstract
Coral bleaching caused by global warming has resulted in massive damage to coral reefs worldwide. Studies addressing the consequences of elevated temperature have focused on organisms of the class Anthozoa, and up to now, there is little information regarding the mechanisms by which reef forming Hydrozoans face thermal stress. In this study, we carried out a comparative analysis of the soluble proteome and the cytolytic activity of unbleached and bleached Millepora complanata ("fire coral") that inhabited reef colonies exposed to the 2015-2016 El Niño-Southern Oscillation in the Mexican Caribbean. A differential proteomic response involving proteins implicated in key cellular processes, such as glycolysis, DNA repair, stress response, calcium homeostasis, exocytosis, and cytoskeleton organization was found in bleached hydrocorals. Four of the proteins, whose levels increased in bleached specimens, displayed sequence similarity to a phospholipase A2, an astacin-like metalloprotease, and two pore forming toxins. However, a protein, which displayed sequence similarity to a calcium-independent phospholipase A2, showed lower levels in bleached cnidarians. Accordingly, the hemolytic effect of the soluble proteome of bleached hydrocorals was significantly higher, whereas the phospholipase A2 activity was significantly reduced. Our results suggest that bleached M. complanata is capable of increasing its toxins production in order to balance the lack of nutrients supplied by its symbionts.
Collapse
Affiliation(s)
- Víctor Hugo Hernández-Elizárraga
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Querétaro, México
| | - Norma Olguín-López
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Querétaro, México
| | - Rosalina Hernández-Matehuala
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Querétaro, México
| | - Andrea Ocharán-Mercado
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Querétaro, México
| | - Andrés Cruz-Hernández
- Laboratorio de Biología Molecular. Escuela de Agronomía, Universidad de La Salle Bajío, Av. Universidad 15 602, Colonia Lomas del Campestre, C.P. 37150 León, Guanajuato, México
| | - Ramón Gerardo Guevara-González
- C.A Ingeniería de Biosistemas, Facultad de Ingeniería-Campus Amazcala, Universidad Autónoma de Querétaro, Carr. Chichimequillas-Amazcala Km. 1, S/N, C.P. 76265 Amazcala, El Marqués, Querétaro, México
| | - Juan Caballero-Pérez
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Querétaro, México
| | - César Ibarra-Alvarado
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Querétaro, México
| | - Judith Sánchez-Rodríguez
- Unidad Académica de Sistemas Arrecifales Puerto Morelos, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Prolongación Niños Héroes S/N, Puerto Morelos, C.P. 77580 Quintana Roo, México
| | - Alejandra Rojas-Molina
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Querétaro, México.
| |
Collapse
|
10
|
Olguín-López N, Hérnandez-Elizárraga VH, Hernández-Matehuala R, Cruz-Hernández A, Guevara-González R, Caballero-Pérez J, Ibarra-Alvarado C, Rojas-Molina A. Impact of El Niño-Southern Oscillation 2015-2016 on the soluble proteomic profile and cytolytic activity of Millepora alcicornis ("fire coral") from the Mexican Caribbean. PeerJ 2019; 7:e6593. [PMID: 30918755 PMCID: PMC6428038 DOI: 10.7717/peerj.6593] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/09/2019] [Indexed: 12/24/2022] Open
Abstract
Reef-forming cnidarians are extremely susceptible to the “bleaching” phenomenon caused by global warming. The effect of elevated seawater temperature has been extensively studied on Anthozoans; however, to date the impact of thermal stress on the expression of genes and proteins in Hydrozoan species has not been investigated. The present study aimed to determine the differential proteomic profile of Millepora alcicornis, which inhabits the Mexican Caribbean, in response to the El Niño-Southern Oscillation 2015–2016. Additionally, the cytolytic activity of the soluble proteomes obtained from normal and bleached M. alcicornis was assessed. Bleached specimens showed decreased symbiont’s density and chlorophyll a and c2 levels. After bleaching, we observed a differential expression of 17 key proteins, tentatively identified as related to exocytosis, calcium homeostasis, cytoskeletal organization, and potential toxins, including a metalloprotease, a phospholipase A2 (PLA2), and an actitoxin. Although, some of the differentially expressed proteins included potential toxins, the hemolytic, PLA2, and proteolytic activities elicited by the soluble proteomes from bleached and normal specimens were not significantly different. The present study provides heretofore-unknown evidence that thermal stress produces a differential expression of proteins involved in essential cellular processes of Hydrozoan species. Even though our results showed an over-expression of some potential toxin-related proteins, the cytolytic effect (as assessed by hemolytic, PLA2, and caseinolytic activities) was not increased in bleached M. alcicornis, which suggests that the cytolysis is mainly produced by toxins whose expression was not affected by temperature stress. These findings allow hypothesizing that this hydrocoral is able to prey heterotrophically when suffering from moderate bleaching, giving it a better chance to withstand the effects of high temperature.
Collapse
Affiliation(s)
- Norma Olguín-López
- Posgrado en Ciencias Químico Biológicas-Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Querétaro, Mexico.,Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Querétaro, Mexico
| | - Víctor Hugo Hérnandez-Elizárraga
- Posgrado en Ciencias Químico Biológicas-Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Querétaro, Mexico.,Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Querétaro, Mexico
| | - Rosalina Hernández-Matehuala
- Posgrado en Ciencias Químico Biológicas-Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Querétaro, Mexico.,Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Querétaro, Mexico
| | - Andrés Cruz-Hernández
- Laboratorio de Biología Molecular-Escuela de Agronomía, Universidad De la Salle Bajío, León, Guanajuato, México
| | - Ramón Guevara-González
- C.A Ingeniería de Biosistemas-Facultad de Ingeniería-Campus Amazcala, Universidad Autónoma de Querétaro, Querétaro, Querétaro, Mexico
| | - Juan Caballero-Pérez
- Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Querétaro, Mexico
| | - César Ibarra-Alvarado
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Querétaro, Mexico
| | - Alejandra Rojas-Molina
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Querétaro, Mexico
| |
Collapse
|
11
|
Oliveira CS, Caldeira CAS, Diniz-Sousa R, Romero DL, Marcussi S, Moura LA, Fuly AL, de Carvalho C, Cavalcante WLG, Gallacci M, Pai MD, Zuliani JP, Calderon LA, Soares AM. Pharmacological characterization of cnidarian extracts from the Caribbean Sea: evaluation of anti-snake venom and antitumor properties. J Venom Anim Toxins Incl Trop Dis 2018; 24:22. [PMID: 30181737 PMCID: PMC6114500 DOI: 10.1186/s40409-018-0161-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 08/07/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Cnidarians produce toxins, which are composed of different polypeptides that induce pharmacological effects of biotechnological interest, such as antitumor, antiophidic and anti-clotting activities. This study aimed to evaluate toxicological activities and potential as antitumor and antiophidic agents contained in total extracts from five cnidarians: Millepora alcicornis, Stichodactyla helianthus, Plexaura homomalla, Bartholomea annulata and Condylactis gigantea (total and body wall). METHODS The cnidarian extracts were evaluated by electrophoresis and for their phospholipase, proteolytic, hemorrhagic, coagulant, fibrinogenolytic, neuromuscular blocking, muscle-damaging, edema-inducing and cytotoxic activities. RESULTS All cnidarian extracts showed indirect hemolytic activity, but only S. helianthus induced direct hemolysis and neurotoxic effect. However, the hydrolysis of NBD-PC, a PLA2 substrate, was presented only by the C. gigantea (body wall) and S. helianthus. The extracts from P. homomalla and S. helianthus induced edema, while only C. gigantea and S. helianthus showed intensified myotoxic activity. The proteolytic activity upon casein and fibrinogen was presented mainly by B. annulata extract and all were unable to induce hemorrhage or fibrinogen coagulation. Cnidarian extracts were able to neutralize clotting induced by Bothrops jararacussu snake venom, except M. alcicornis. All cnidarian extracts were able to inhibit hemorrhagic activity induced by Bothrops moojeni venom. Only the C. gigantea (body wall) inhibited thrombin-induced coagulation. All cnidarian extracts showed antitumor effect against Jurkat cells, of which C. gigantea (body wall) and S. helianthus were the most active; however, only C. gigantea (body wall) and M. alcicornis were active against B16F10 cells. CONCLUSION The cnidarian extracts analyzed showed relevant in vitro inhibitory potential over the activities induced by Bothrops venoms; these results may contribute to elucidate the possible mechanisms of interaction between cnidarian extracts and snake venoms.
Collapse
Affiliation(s)
- Cláudia S. Oliveira
- Centro de Estudos de Biomoléculas Aplicadas a Saúde (CEBio), Fundação Oswaldo Cruz de Rondônia (Fiocruz Rondônia), Porto Velho, RO Brazil
- Brazilian Marine Biotechnology Network (BioTecMar Network), Porto Velho, Brazil
- Departamento de Medicina, Universidade Federal de Rondônia (UNIR), Porto Velho, RO Brazil
| | - Cleópatra A. S. Caldeira
- Centro de Estudos de Biomoléculas Aplicadas a Saúde (CEBio), Fundação Oswaldo Cruz de Rondônia (Fiocruz Rondônia), Porto Velho, RO Brazil
- Brazilian Marine Biotechnology Network (BioTecMar Network), Porto Velho, Brazil
- Departamento de Medicina, Universidade Federal de Rondônia (UNIR), Porto Velho, RO Brazil
| | - Rafaela Diniz-Sousa
- Centro de Estudos de Biomoléculas Aplicadas a Saúde (CEBio), Fundação Oswaldo Cruz de Rondônia (Fiocruz Rondônia), Porto Velho, RO Brazil
- Brazilian Marine Biotechnology Network (BioTecMar Network), Porto Velho, Brazil
- Departamento de Medicina, Universidade Federal de Rondônia (UNIR), Porto Velho, RO Brazil
| | - Dolores L. Romero
- Centro de Estudios de Proteínas, Facultad de Biología, Universidad de La Habana, Havana, Cuba
| | - Silvana Marcussi
- Departamento de Química, Universidade Federal de Lavras (UFLA), Lavras, MG Brazil
| | - Laura A. Moura
- Departamento de Biologia Celular e Molecular (GCM), Instituto de Biologia, Universidade Federal Fluminense (UFF), Niterói, RJ Brazil
| | - André L. Fuly
- Departamento de Biologia Celular e Molecular (GCM), Instituto de Biologia, Universidade Federal Fluminense (UFF), Niterói, RJ Brazil
| | - Cicília de Carvalho
- Departamento de Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP Brazil
| | - Walter L. G. Cavalcante
- Departamento de Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP Brazil
- Instituto de Ciências Biológicas, Departamento de Farmacologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG Brazil
| | - Márcia Gallacci
- Departamento de Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP Brazil
| | - Maeli Dal Pai
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP Brazil
| | - Juliana P. Zuliani
- Centro de Estudos de Biomoléculas Aplicadas a Saúde (CEBio), Fundação Oswaldo Cruz de Rondônia (Fiocruz Rondônia), Porto Velho, RO Brazil
- Brazilian Marine Biotechnology Network (BioTecMar Network), Porto Velho, Brazil
- Departamento de Medicina, Universidade Federal de Rondônia (UNIR), Porto Velho, RO Brazil
| | - Leonardo A. Calderon
- Centro de Estudos de Biomoléculas Aplicadas a Saúde (CEBio), Fundação Oswaldo Cruz de Rondônia (Fiocruz Rondônia), Porto Velho, RO Brazil
- Brazilian Marine Biotechnology Network (BioTecMar Network), Porto Velho, Brazil
- Departamento de Medicina, Universidade Federal de Rondônia (UNIR), Porto Velho, RO Brazil
| | - Andreimar M. Soares
- Centro de Estudos de Biomoléculas Aplicadas a Saúde (CEBio), Fundação Oswaldo Cruz de Rondônia (Fiocruz Rondônia), Porto Velho, RO Brazil
- Brazilian Marine Biotechnology Network (BioTecMar Network), Porto Velho, Brazil
- Departamento de Medicina, Universidade Federal de Rondônia (UNIR), Porto Velho, RO Brazil
- Centro Universitário São Lucas (UniSL), Porto Velho, RO Brazil
| |
Collapse
|
12
|
Pore-forming toxins in Cnidaria. Semin Cell Dev Biol 2017; 72:133-141. [DOI: 10.1016/j.semcdb.2017.07.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/14/2017] [Accepted: 07/20/2017] [Indexed: 01/05/2023]
|
13
|
Doyle TK, Headlam JL, Wilcox CL, MacLoughlin E, Yanagihara AA. Evaluation of Cyanea capillata Sting Management Protocols Using Ex Vivo and In Vitro Envenomation Models. Toxins (Basel) 2017; 9:E215. [PMID: 28686221 PMCID: PMC5535162 DOI: 10.3390/toxins9070215] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 06/27/2017] [Accepted: 07/03/2017] [Indexed: 01/19/2023] Open
Abstract
Lion's mane jellyfish (Cyanea capillata) stings cause severe pain and can lead to dangerous systemic effects, including Irukandji-like syndrome. As is the case for most cnidarian stings, recommended medical protocols in response to such stings lack rigorous scientific support. In this study, we sought to evaluate potential first aid care protocols using previously described envenomation models that allow for direct measurements of venom activity. We found that seawater rinsing, the most commonly recommended method of tentacle removal for this species, induced significant increases in venom delivery, while rinsing with vinegar or Sting No More® Spray did not. Post-sting temperature treatments affected sting severity, with 40 min of hot-pack treatment reducing lysis of sheep's blood (in agar plates), a direct representation of venom load, by over 90%. Ice pack treatment had no effect on sting severity. These results indicate that sting management protocols for Cyanea need to be revised immediately to discontinue rinsing with seawater and include the use of heat treatment.
Collapse
Affiliation(s)
- Thomas K Doyle
- Discipline of Zoology, School of Natural Sciences, Ryan Institute, National University of Ireland Galway, Galway H91 W5P7, Ireland.
| | - Jasmine L Headlam
- Discipline of Zoology, School of Natural Sciences, Ryan Institute, National University of Ireland Galway, Galway H91 W5P7, Ireland.
| | - Christie L Wilcox
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Mānoa, Honolulu, HI 96813, USA.
| | - Eoin MacLoughlin
- Discipline of Zoology, School of Natural Sciences, Ryan Institute, National University of Ireland Galway, Galway H91 W5P7, Ireland.
| | - Angel A Yanagihara
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Mānoa, Honolulu, HI 96813, USA.
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Mānoa, Honolulu, HI 96822, USA.
| |
Collapse
|
14
|
Bioactivity of Ag Nanoclusters Capped with Crude Protein Extracts from the Sea Anemone Heteractis magnifica. BIONANOSCIENCE 2017. [DOI: 10.1007/s12668-017-0414-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Functional Elucidation of Nemopilema nomurai and Cyanea nozakii Nematocyst Venoms' Lytic Activity Using Mass Spectrometry and Zymography. Toxins (Basel) 2017; 9:toxins9020047. [PMID: 28134758 PMCID: PMC5331427 DOI: 10.3390/toxins9020047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 01/22/2023] Open
Abstract
Background: Medusozoans utilize explosively discharging penetrant nematocysts to inject venom into prey. These venoms are composed of highly complex proteins and peptides with extensive bioactivities, as observed in vitro. Diverse enzymatic toxins have been putatively identified in the venom of jellyfish, Nemopilema nomurai and Cyanea nozakii, through examination of their proteomes and transcriptomes. However, functional examination of putative enzymatic components identified in proteomic approaches to elucidate potential bioactivities is critically needed. Methods: In this study, enzymatic toxins were functionally identified using a combined approach consisting of in gel zymography and liquid chromatography tandem mass spectrometry (LC-MS/MS). The potential roles of metalloproteinases and lipases in hemolytic activity were explored using specific inhibitors. Results: Zymography indicated that nematocyst venom possessed protease-, lipase- and hyaluronidase-class activities. Further, proteomic approaches using LC-MS/MS indicated sequence homology of proteolytic bands observed in zymography to extant zinc metalloproteinase-disintegrins and astacin metalloproteinases. Moreover, pre-incubation of the metalloproteinase inhibitor batimastat with N. nomurai nematocyst venom resulted in an approximate 62% reduction of hemolysis compared to venom exposed sheep erythrocytes, suggesting that metalloproteinases contribute to hemolytic activity. Additionally, species within the molecular mass range of 14–18 kDa exhibited both egg yolk and erythrocyte lytic activities in gel overlay assays. Conclusion: For the first time, our findings demonstrate the contribution of jellyfish venom metalloproteinase and suggest the involvement of lipase species to hemolytic activity. Investigations of this relationship will facilitate a better understanding of the constituents and toxicity of jellyfish venom.
Collapse
|
16
|
Wilcox CL, Yanagihara AA. Heated Debates: Hot-Water Immersion or Ice Packs as First Aid for Cnidarian Envenomations? Toxins (Basel) 2016; 8:97. [PMID: 27043628 PMCID: PMC4848624 DOI: 10.3390/toxins8040097] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 03/26/2016] [Accepted: 03/29/2016] [Indexed: 01/22/2023] Open
Abstract
Cnidarian envenomations are an important public health problem, responsible for more deaths than shark attacks annually. For this reason, optimization of first-aid care is essential. According to the published literature, cnidarian venoms and toxins are heat labile at temperatures safe for human application, which supports the use of hot-water immersion of the sting area(s). However, ice packs are often recommended and used by emergency personnel. After conducting a systematic review of the evidence for the use of heat or ice in the treatment of cnidarian envenomations, we conclude that the majority of studies to date support the use of hot-water immersion for pain relief and improved health outcomes.
Collapse
Affiliation(s)
- Christie L Wilcox
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA.
| | - Angel A Yanagihara
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA.
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA.
| |
Collapse
|