1
|
Yado S, Dassa B, Zoabi R, Reich-Zeliger S, Friedman N, Geiger B. Molecular mechanisms underlying the modulation of T-cell proliferation and cytotoxicity by immobilized CCL21 and ICAM1. J Immunother Cancer 2024; 12:e009011. [PMID: 38866588 PMCID: PMC11177851 DOI: 10.1136/jitc-2024-009011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Adoptive cancer immunotherapy, using engineered T-cells, expressing chimeric antigen receptor or autologous tumor infiltrating lymphocytes became, in recent years, a major therapeutic approach for diverse types of cancer. However, despite the transformative potential of adoptive cancer immunotherapy, this field still faces major challenges, manifested by the apparent decline of the cytotoxic capacity of effector CD8+ T cells upon their expansion. To address these challenges, we have developed an ex vivo "synthetic immune niche" (SIN), composed of immobilized CCL21 and ICAM1, which synergistically induce an efficient expansion of antigen-specific CD8+ T cells while retaining, and even enhancing their cytotoxic potency. METHODS To explore the molecular mechanisms through which a CCL21+ICAM1-based SIN modulates the interplay between the proliferation and cytotoxic potency of antigen-activated and CD3/CD28-activated effector CD8+ T cells, we performed integrated analysis of specific differentiation markers via flow cytometry, together with gene expression profiling. RESULTS On day 3, the transcriptomic effect induced by the SIN was largely similar for both dendritic cell (DC)/ovalbumin (OVA)-activated and anti-CD3/CD28-activated cells. Cell proliferation increased and the cells exhibited high killing capacity. On day 4 and on, the proliferation/cytotoxicity phenotypes became radically "activation-specific"; The DC/OVA-activated cells lost their cytotoxic activity, which, in turn, was rescued by the SIN treatment. On longer incubation, the cytotoxic activity further declined, and on day7, could not be rescued by the SIN. SIN stimulation following activation with anti-CD3/CD28 beads induced a major increase in the proliferative phenotype while transiently suppressing their cytotoxicity for 2-3 days and fully regaining their killing activity on day 7. Potential molecular regulatory pathways of the SIN effects were identified, based on transcriptomic and multispectral imaging profiling. CONCLUSIONS These data indicate that cell proliferation and cytotoxicity are negatively correlated, and the interplay between them is differentially regulated by the mode of initial activation. The SIN stimulation greatly enhances the cell expansion, following both activation modes, while displaying high survival and cytotoxic potency at specific time points following stimulation, suggesting that it could effectively reinforce adoptive cancer immunotherapy.
Collapse
Affiliation(s)
- Sofi Yado
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Bareket Dassa
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Rawan Zoabi
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Nir Friedman
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Benjamin Geiger
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
2
|
Pepple AL, Guy JL, McGinnis R, Felsted AE, Song B, Hubbard R, Worlikar T, Garavaglia H, Dib J, Chao H, Boyle N, Olszewski M, Xu Z, Ganguly A, Cho CS. Spatiotemporal local and abscopal cell death and immune responses to histotripsy focused ultrasound tumor ablation. Front Immunol 2023; 14:1012799. [PMID: 36756111 PMCID: PMC9900174 DOI: 10.3389/fimmu.2023.1012799] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/02/2023] [Indexed: 01/24/2023] Open
Abstract
Introduction Histotripsy is a novel focused ultrasound tumor ablation modality with potent immunostimulatory effects. Methods To measure the spatiotemporal kinetics of local andabscopal responses to histotripsy, C57BL/6 mice bearing bilateral flank B16 melanoma or Hepa1-6 hepatocellular carcinoma tumors were treated with unilateral sham or partial histotripsy. Treated and contralateral untreated (abscopal) tumors were analyzed using multicolor immunofluorescence, digital spatial profiling, RNA sequencing (RNASeq), and flow cytometry. Results Unilateral histotripsy triggered abscopal tumor growth inhibition. Within the ablation zone, early high mobility group box protein 1 (HMGB1) release and necroptosis were accompanied by immunogenic cell death transcriptional responses in tumor cells and innate immune activation transcriptional responses in infiltrating myeloid and natural killer (NK) cells. Delayed CD8+ T cell intratumoral infiltration was spatiotemporally aligned with cancer cell features of ferroptosis; this effect was enhanced by CTLA-4 blockade and recapitulated in vitro when tumor-draining lymph node CD8+ T cells were co-cultured with tumor cells. Inoculation with cell-free tumor fractions generated by histotripsy but not radiation or freeze/thaw conferred partial protection from tumor challenge. Discussion We propose that histotripsy may evoke local necroptotic immunogenic cell death, priming systemic adaptive immune responses and abscopal ferroptotic cancer cell death.
Collapse
Affiliation(s)
- Ashley L. Pepple
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Research Service, Ann Arbor VA Healthcare, Ann Arbor, MI, United States
| | - Joey L. Guy
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Research Service, Ann Arbor VA Healthcare, Ann Arbor, MI, United States
| | - Reliza McGinnis
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Amy E. Felsted
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Brian Song
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Research Service, Ann Arbor VA Healthcare, Ann Arbor, MI, United States
| | - Ryan Hubbard
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Tejaswi Worlikar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Hannah Garavaglia
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Joe Dib
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Hannah Chao
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Nicoleen Boyle
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Research Service, Ann Arbor VA Healthcare, Ann Arbor, MI, United States
| | - Michal Olszewski
- Research Service, Ann Arbor VA Healthcare, Ann Arbor, MI, United States
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Anutosh Ganguly
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Research Service, Ann Arbor VA Healthcare, Ann Arbor, MI, United States
| | - Clifford S. Cho
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Research Service, Ann Arbor VA Healthcare, Ann Arbor, MI, United States
| |
Collapse
|
3
|
Varricchio L, Hoffman R. Megakaryocytes Are Regulators of the Tumor Microenvironment and Malignant Hematopoietic Progenitor Cells in Myelofibrosis. Front Oncol 2022; 12:906698. [PMID: 35646681 PMCID: PMC9130548 DOI: 10.3389/fonc.2022.906698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/15/2022] [Indexed: 12/15/2022] Open
Abstract
Megakaryocytes (MKs) are multifunctional hematopoietic cells that produce platelets, serve as components of bone marrow (BM) niches that support the development of hematopoietic stem and progenitor cell (HSPC) and provide inflammatory signals. MKs can dynamically change their activities during homeostasis and following stress, thereby regulating hematopoietic stem cell (HSC) function. Myelofibrosis (MF) is a progressive chronic myeloproliferative neoplasm (MPN) characterized by hyperactivation of JAK/STAT signaling and MK hyperplasia, which is associated with an aberrant inflammatory signature. Since JAK1/2 inhibitor alone is incapable of depleting the malignant HSC clones or reversing BM fibrosis, the identification of mechanisms that cooperate with MF JAK/STAT signaling to promote disease progression might help in developing combination therapies to modify disease outcomes. Chronic inflammation and MK hyperplasia result in an abnormal release of TGFβ1, which plays a critical role in the pathobiology of MF by contributing to the development of BM fibrosis. Dysregulated TGFβ signaling can also alter the hematopoietic microenvironment supporting the predominance of MF-HSCs and enhance the quiescence of the reservoir of wild-type HSCs. Upregulation of TGFβ1 levels is a relatively late event in MF, while during the early pre-fibrotic stage of MF the alarmin S100A8/S100A9 heterocomplex promotes pro-inflammatory responses and sustains the progression of MF-HSCs. In this review, we will discuss the recent advances in our understanding of the roles of abnormal megakaryopoiesis, and the altered microenvironment in MF progression and the development of novel combined targeted therapies to disrupt the aberrant interplay between MKs, the BM microenvironment and malignant HSCs which would potentially limit the expansion of MF-HSC clones.
Collapse
Affiliation(s)
- Lilian Varricchio
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ronald Hoffman
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
4
|
Diaz-Cano I, Paz-Ares L, Otano I. Adoptive tumor infiltrating lymphocyte transfer as personalized immunotherapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 370:163-192. [PMID: 35798505 DOI: 10.1016/bs.ircmb.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cancer is a leading cause of death worldwide and, despite new targeted therapies and immunotherapies, a large group of patients fail to respond to therapy or progress after initial response, which brings the need for additional treatment options. Manipulating the immune system using a variety of approaches has been explored for the past years with successful results. Sustained progress has been made to understand the T cell-mediated anti-tumor responses counteracting the tumorigenesis process. The T-lymphocyte pool, especially its capacity for antigen-directed cytotoxicity, has become a central focus for engaging the immune system in defeating cancer. The adoptive cell transfer of autologous tumor-infiltrating lymphocytes has been used in humans for over 30 years to treat metastatic melanoma. In this review, we provide a brief history of ACT-TIL and discuss the current state of ACT-TIL clinical development in solid tumors. We also discuss how key advances in understanding genetic intratumor heterogeneity, to accurately identify neoantigens, and new strategies designed to overcome T-cell exhaustion and tumor immunosuppression have improved the efficacy of the TIL-therapy infusion. Characteristics of the TIL products will be discussed, as well as new strategies, including the selective expansion of specific fractions from the cell product or the genetic manipulation of T cells for improving the in-vivo survival and functionality. In summary, this review outlines the potential of ACT-TIL as a personalized approach for epithelial tumors and continued discoveries are making it increasingly more effective against other types of cancers.
Collapse
Affiliation(s)
- Ines Diaz-Cano
- H12O-CNIO Lung Cancer Clinical Research Unit, Health Research Institute Hospital 12 de Octubre/Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Luis Paz-Ares
- H12O-CNIO Lung Cancer Clinical Research Unit, Health Research Institute Hospital 12 de Octubre/Spanish National Cancer Research Center (CNIO), Madrid, Spain; Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain; Medicine and Physiology Department, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Itziar Otano
- H12O-CNIO Lung Cancer Clinical Research Unit, Health Research Institute Hospital 12 de Octubre/Spanish National Cancer Research Center (CNIO), Madrid, Spain; Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain.
| |
Collapse
|
5
|
Kim BG, Choi SH, Letterio JJ, Song JY, Huang AY. Overexpression of VEGF in the MOPC 315 Plasmacytoma Induces Tumor Immunity in Mice. Int J Mol Sci 2022; 23:5235. [PMID: 35563626 PMCID: PMC9104487 DOI: 10.3390/ijms23095235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 12/10/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) has important effects on hematopoietic and immune cells. A link between VEGF expression, tumor progression, and metastasis has been established in various solid tumors; however, the impact of VEGF expression by hematopoietic neoplasias remains unclear. Here, we investigated the role of VEGF in plasma cell neoplasia. Overexpression of VEGF in MOPC 315 tumor cells (MOPCSVm) had no effect on their growth in vitro. However, constitutive ectopic expression of VEGF dramatically reduced tumorigenicity of MOPC 315 when implanted subcutaneously into BALB/c mice. Mice implanted with MOPCSVm effectively rejected tumor grafts and showed strong cytotoxic T lymphocyte (CTL) activity against parental MOPC 315 cells. MOPCSVm implants were not rejected in nude mice, suggesting the process is T-cell-dependent. Adoptive transfer of splenocytes from recipients inoculated with MOPCSVm cells conferred immunity to naïve BALB/c mice, and mice surviving inoculation with MOPCSVm rejected the parental MOPC 315 tumor cells following a second inoculation. Immunohistochemical analysis showed that MOPCSVm induced a massive infiltration of CD3+ cells and MHC class II+ cells in vivo. In addition, exogenous VEGF induced the expression of CCR3 in T cells in vitro. Together, these data are the first to demonstrate that overexpression of VEGF in plasmacytoma inhibits tumor growth and enhances T-cell-mediated antitumor immune response.
Collapse
Affiliation(s)
- Byung-Gyu Kim
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (S.H.C.); (J.J.L.); (A.Y.H.)
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Sung Hee Choi
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (S.H.C.); (J.J.L.); (A.Y.H.)
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - John J. Letterio
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (S.H.C.); (J.J.L.); (A.Y.H.)
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Center for Pediatric Immunotherapy, Angie Fowler AYA Cancer Institute, UH Rainbow Babies & Children’s Hospital, Cleveland, OH 44106, USA
| | - Jie-Young Song
- Division of Applied Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea;
| | - Alex Y. Huang
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (S.H.C.); (J.J.L.); (A.Y.H.)
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Center for Pediatric Immunotherapy, Angie Fowler AYA Cancer Institute, UH Rainbow Babies & Children’s Hospital, Cleveland, OH 44106, USA
| |
Collapse
|
6
|
Elsherif SB, Anderson M, Chaudhry AA, Kumar SP, Gopireddy DR, Lall C, Bhosale PR. Response criteria for immunotherapy and the radiologic patterns of immune-related adverse events. Eur J Radiol 2021; 146:110062. [PMID: 34890935 DOI: 10.1016/j.ejrad.2021.110062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022]
Abstract
Immunotherapy has revolutionized clinical outcomes in both early-stage and advanced-stage malignancies. Immunotherapy has improved patient survival in both solid and hematologic disorders with the potential added benefit of less toxicity compared to conventional cytotoxic chemotherapy. Imaging plays a fundamental role in monitoring treatment response and assessment of immune-related adverse events, e.g. pneumonitis, colitis, etc. Familiarity with the current strategies of immune-related response evaluation and their limitations is essential for radiologists to guide clinicians with their treatment decisions. Radiologists should be aware of the wide spectrum of immune-related adverse events and their various radiological features as well as the patterns of treatment response associated with immunotherapies.
Collapse
Affiliation(s)
- Sherif B Elsherif
- The Department of Radiology, The University of Florida College of Medicine, Jacksonville, FL, USA.
| | - Marcus Anderson
- The Department of Abdominal Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ammar A Chaudhry
- The Department of Diagnostic Radiology, City of Hope National Cancer Center, Los Angeles, CA, USA
| | - Sindhu P Kumar
- The Department of Radiology, The University of Florida College of Medicine, Jacksonville, FL, USA
| | - Dheeraj R Gopireddy
- The Department of Radiology, The University of Florida College of Medicine, Jacksonville, FL, USA
| | - Chandana Lall
- The Department of Radiology, The University of Florida College of Medicine, Jacksonville, FL, USA
| | - Priya R Bhosale
- The Department of Abdominal Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
7
|
Impact of Immunotherapy on CD4 T Cell Phenotypes and Function in Cancer. Vaccines (Basel) 2021; 9:vaccines9050454. [PMID: 34064410 PMCID: PMC8147771 DOI: 10.3390/vaccines9050454] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 12/29/2022] Open
Abstract
Immunotherapy has become a standard treatment in many cancers and it is based on three main therapeutic axes: immune checkpoint blockade (ICB), vaccination and adoptive cell transfer (ACT). If originally these therapies mainly focused on exploiting CD8 T cells given their role in the direct elimination of tumor cells, increasing evidence highlights the crucial role CD4 T cells play in the antitumor immune response. Indeed, these cells can profoundly modulate the tumor microenvironment (TME) by secreting different types of cytokine or by directly eliminating cancer cells. In this review, we describe how different CD4 T cell subsets can contribute to tumor immune responses during immunotherapy and the novel high-throughput immune monitoring tools that are expected to facilitate the study of CD4 T cells, at antigen-specific and single cell level, thus accelerating bench-to-bed translational research in cancer.
Collapse
|
8
|
Qu S, Worlikar T, Felsted AE, Ganguly A, Beems MV, Hubbard R, Pepple AL, Kevelin AA, Garavaglia H, Dib J, Toma M, Huang H, Tsung A, Xu Z, Cho CS. Non-thermal histotripsy tumor ablation promotes abscopal immune responses that enhance cancer immunotherapy. J Immunother Cancer 2020; 8:jitc-2019-000200. [PMID: 31940590 PMCID: PMC7057529 DOI: 10.1136/jitc-2019-000200] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2019] [Indexed: 01/05/2023] Open
Abstract
Background Developing the ability to use tumor-directed therapies to trigger potentially therapeutic immune responses against cancer antigens remains a high priority for cancer immunotherapy. We hypothesized that histotripsy, a novel non-invasive, non-thermal ablation modality that uses ultrasound-generated acoustic cavitation to disrupt tissues, could engender adaptive immune responses to tumor antigens. Methods Immunocompetent C57BL/6 mice inoculated with flank melanoma or hepatocellular carcinoma tumors were treated with histotripsy, thermal ablation, radiation therapy, or cytotoxic T lymphocyte-associated protein-4 (CTLA-4) blockade checkpoint inhibition. Lymphocyte responses were measured using flow cytometric and immunohistochemical analyses. The impact of histotripsy on abscopal immune responses was assessed in mice bearing bilateral tumors, or unilateral tumors with pulmonary tumors established via tail vein injection. Results Histotripsy ablation of subcutaneous murine melanoma tumors stimulated potent local intratumoral infiltration of innate and adaptive immune cell populations. The magnitude of this immunostimulation was stronger than that seen with tumor irradiation or thermal ablation. Histotripsy also promoted abscopal immune responses at untreated tumor sites and inhibited growth of pulmonary metastases. Histotripsy was capable of releasing tumor antigens with retained immunogenicity, and this immunostimulatory effect was associated with calreticulin translocation to the cellular membrane and local and systemic release of high mobility group box protein 1. Histotripsy ablation potentiated the efficacy of checkpoint inhibition immunotherapy in murine models of melanoma and hepatocellular carcinoma. Conclusions These preclinical observations suggest that non-invasive histotripsy ablation can be used to stimulate tumor-specific immune responses capable of magnifying the impact of checkpoint inhibition immunotherapy.
Collapse
Affiliation(s)
- Shibin Qu
- Surgery, University of Michigan, Ann Arbor, Michigan, USA.,Department of Hepatobiliary Surgery, Xijing Hospital, Xian, Shaanxi, China
| | - Tejaswi Worlikar
- Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Amy E Felsted
- Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Anutosh Ganguly
- Surgery, University of Michigan, Ann Arbor, Michigan, USA.,Surgery, VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| | - Megan V Beems
- Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Ryan Hubbard
- Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | - Joe Dib
- Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Mariam Toma
- Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Hai Huang
- Surgery, Ohio State University Medical Center, Columbus, Ohio, USA
| | - Allan Tsung
- Surgery, Ohio State University Medical Center, Columbus, Ohio, USA
| | - Zhen Xu
- Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Clifford Suhyun Cho
- Surgery, University of Michigan, Ann Arbor, Michigan, USA .,Surgery, VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| |
Collapse
|
9
|
Sood AK, Nemeth M, Wang J, Wu Y, Gandhi S. Opportunities for Antigen Discovery in Metastatic Breast Cancer. Front Immunol 2020; 11:570049. [PMID: 33193348 PMCID: PMC7661635 DOI: 10.3389/fimmu.2020.570049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/06/2020] [Indexed: 11/13/2022] Open
Abstract
Immune checkpoint inhibitor-based immunotherapy (ICI) of breast cancer is currently efficacious in a fraction of triple negative breast cancers (TNBC) as these cancers generally carry high tumor mutation burden (TMB) and show increased tumor infiltration by CD8+ T cells. However, most estrogen receptor positive breast cancers (ERBC) have low TMB and/or are infiltrated with immunosuppressive regulatory T cells (Tregs) and thus fail to induce a significant anti-tumor immune response. Our understanding of the immune underpinning of the anti-tumor effects of CDK4/6 inhibitor (CDKi) treatment coupled with new knowledge about the mechanisms of tolerance to self-antigens suggests a way forward, specifically via characterizing and exploiting the repertoire of tumor antigens expressed by metastatic ERBC. These treatment-associated tumor antigens (TATA) may include the conventional tumor neoantigens (TNA) encoded by single nucleotide mutations, TNA encoded by tumor specific aberrant RNA transcription, splicing and DNA replication induced frameshift (FS) events as well as the shared tumor antigens. The latter may include the conventional tumor associated antigens (TAA), cancer-testis antigens (CTA) and antigens encoded by the endogenous retroviral (ERV) like sequences and repetitive DNA sequences induced by ET and CDKi treatment. An approach to identifying these antigens is outlined as this will support the development of a multi-antigen-based immunotherapy strategy for improved targeting of metastatic disease with potential for minimal autoimmune toxicity against normal tissues.
Collapse
Affiliation(s)
- Ashwani K. Sood
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Michael Nemeth
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Yun Wu
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Shipra Gandhi
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| |
Collapse
|
10
|
Sheppard AD, Lysaght J. Immunometabolism and Its Potential to Improve the Current Limitations of Immunotherapy. Methods Mol Biol 2020; 2184:233-263. [PMID: 32808230 DOI: 10.1007/978-1-0716-0802-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The last century of research in tumor immunology has culminated in the advent of immunotherapy, most notably immune checkpoint inhibitors. These drugs have shown encouraging results across a multitude of malignancies and have shifted the paradigm of cancer treatment. However, no more than 40% of patients treated with these immune checkpoint blockade inhibitors respond. Thus, resistance is a barrier to therapy that remains poorly understood. All cells require energy and biosynthetic precursors for survival, growth, and functioning, where multiple metabolic pathways allow for flexibility in how nutrients are utilized. A defining hallmark of many cancers is altered cellular metabolism, creating an imbalanced demand for nutrients within the tumor microenvironment. Immunometabolism is increasingly understood to be vital to the functions and phenotypes of a myriad of immune cell subsets. In tumors, the high demand for nutrients by the tumor drives competition between tumor cells and infiltrating immune cells, culminating in dysfunctional immune responses. This chapter discusses the recent successes in cancer immunotherapy and highlights challenges to therapy. We also outline the major metabolic processes involved in the generation of an immune response, how this can become dysregulated in the context of the tumor microenvironment, and how this contributes to resistance to immunotherapy. Finally, we explore the potential for targeting immunometabolic pathways to improve immunotherapy, and examine current trials targeting various aspects of metabolism in an attempt to improve the outcomes from immunotherapy.
Collapse
Affiliation(s)
- Andrew D Sheppard
- Cancer Immunology and Immunotherapy Group, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland
| | - Joanne Lysaght
- Cancer Immunology and Immunotherapy Group, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland.
| |
Collapse
|