1
|
Liu Y, Huang W, Wen J, Xiong X, Xu T, Wang Q, Chen X, Zhao X, Li S, Li X, Yang W. Differential distribution of PINK1 and Parkin in the primate brain implies distinct roles. Neural Regen Res 2025; 20:1124-1134. [PMID: 38989951 PMCID: PMC11438320 DOI: 10.4103/nrr.nrr-d-23-01140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/09/2023] [Indexed: 07/12/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202504000-00028/figure1/v/2024-07-06T104127Z/r/image-tiff The vast majority of in vitro studies have demonstrated that PINK1 phosphorylates Parkin to work together in mitophagy to protect against neuronal degeneration. However, it remains largely unclear how PINK1 and Parkin are expressed in mammalian brains. This has been difficult to address because of the intrinsically low levels of PINK1 and undetectable levels of phosphorylated Parkin in small animals. Understanding this issue is critical for elucidating the in vivo roles of PINK1 and Parkin. Recently, we showed that the PINK1 kinase is selectively expressed as a truncated form (PINK1-55) in the primate brain. In the present study, we used multiple antibodies, including our recently developed monoclonal anti-PINK1, to validate the selective expression of PINK1 in the primate brain. We found that PINK1 was stably expressed in the monkey brain at postnatal and adulthood stages, which is consistent with the findings that depleting PINK1 can cause neuronal loss in developing and adult monkey brains. PINK1 was enriched in the membrane-bound fractionations, whereas Parkin was soluble with a distinguishable distribution. Immunofluorescent double staining experiments showed that PINK1 and Parkin did not colocalize under physiological conditions in cultured monkey astrocytes, though they did colocalize on mitochondria when the cells were exposed to mitochondrial stress. These findings suggest that PINK1 and Parkin may have distinct roles beyond their well-known function in mitophagy during mitochondrial damage.
Collapse
Affiliation(s)
- Yanting Liu
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Jinan University, Guangzhou, Guangdong Province, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Converse AK, Krasko MN, Rudisch DM, Lunaris CL, Nisbet AF, Slesarev MS, Szot JC, Hoerst AG, Leverson GE, Gallagher CL, Ciucci MR. Positron emission tomography neuroimaging of [ 18F]fluorodeoxyglucose uptake and related behavior in the Pink1-/- rat model of Parkinson disease. Front Neurosci 2024; 18:1451118. [PMID: 39474461 PMCID: PMC11520326 DOI: 10.3389/fnins.2024.1451118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/30/2024] [Indexed: 11/02/2024] Open
Abstract
Introduction Parkinson disease (PD) is a neurodegenerative condition affecting multiple sensorimotor and cognitive systems. The Pink1-/- rat model exhibits vocal, cognitive, and limb use deficits seen in idiopathic PD. We sought to measure glucose metabolism in brain regions in Pink1-/- and wild type (WT) rats, and to associate these to measures of ultrasonic vocalization, cognition, and limb use behavior. Methods Pink1-/- (n = 12) and WT (n = 14) rats were imaged by [18F]fluorodeoxyglucose (FDG) positron emission tomography (PET) in a repeated measures design at approximately 10 months of age and 6 weeks later. Relative regional glucose metabolism was indexed by whole brain normalized FDG uptake, which was calculated for 18 regions identified a priori for comparison. Behavioral measures included tests of communication via ultrasonic vocalization, cognition with 5-Choice Serial Reaction Time Test (5-CSRTT), and limb use with Cylinder Test and Challenge Beam. Results Relative glucose metabolism was significantly different in Pink1-/- rats in prelimbic area, striatum, nucleus ambiguus, globus pallidus, and posterior parietal association cortex compared to WT controls. For behavioral measures, Pink1-/- rats demonstrated quieter vocalizations with a restricted frequency range, and they showed increased number of foot-faults and hindlimb steps (shuffling) in limb motor tests. Significant behavior vs. brain correlations included associations of ultrasonic vocalization parameters with glucose metabolism indices in locus coeruleus and substantia nigra. Conclusion FDG PET reveals abnormalities in relative regional brain glucose metabolism in Pink1-/- rats in brain regions that are important to cognition, vocalization, and limb motor control that are also impacted by Parkinson disease. This method may be useful for mechanistic studies of behavioral deficits and therapeutic interventions in translational studies in the Pink1-/- PD model.
Collapse
Affiliation(s)
| | - Maryann N. Krasko
- Division of Otolaryngology, Department of Surgery, University of Wisconsin-Madison, Madison, WI, United States
- Department of Communication Science and Disorders, University of Wisconsin-Madison, Madison, WI, United States
| | - Denis Michael Rudisch
- Division of Otolaryngology, Department of Surgery, University of Wisconsin-Madison, Madison, WI, United States
- Department of Communication Science and Disorders, University of Wisconsin-Madison, Madison, WI, United States
- Institute for Clinical and Translational Research, University of Wisconsin-Madison, Madison, WI, United States
| | - Charlie Lenell Lunaris
- Division of Otolaryngology, Department of Surgery, University of Wisconsin-Madison, Madison, WI, United States
| | - Alex F. Nisbet
- Division of Otolaryngology, Department of Surgery, University of Wisconsin-Madison, Madison, WI, United States
| | - Maxim S. Slesarev
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - John C. Szot
- Division of Otolaryngology, Department of Surgery, University of Wisconsin-Madison, Madison, WI, United States
| | - Andrew G. Hoerst
- Division of Otolaryngology, Department of Surgery, University of Wisconsin-Madison, Madison, WI, United States
| | - Glen E. Leverson
- Division of Otolaryngology, Department of Surgery, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Michelle R. Ciucci
- Division of Otolaryngology, Department of Surgery, University of Wisconsin-Madison, Madison, WI, United States
- Department of Communication Science and Disorders, University of Wisconsin-Madison, Madison, WI, United States
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
3
|
Salis Torres A, Lee JE, Caporali A, Semple RK, Horrocks MH, MacRae VE. Mitochondrial Dysfunction as a Potential Mechanism Mediating Cardiac Comorbidities in Parkinson's Disease. Int J Mol Sci 2024; 25:10973. [PMID: 39456761 PMCID: PMC11507255 DOI: 10.3390/ijms252010973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Individuals diagnosed with Parkinson's disease (PD) often exhibit heightened susceptibility to cardiac dysfunction, reflecting a complex interaction between these conditions. The involvement of mitochondrial dysfunction in the development and progression of cardiac dysfunction and PD suggests a plausible commonality in some aspects of their molecular pathogenesis, potentially contributing to the prevalence of cardiac issues in PD. Mitochondria, crucial organelles responsible for energy production and cellular regulation, play important roles in tissues with high energetic demands, such as neurons and cardiac cells. Mitochondrial dysfunction can occur in different and non-mutually exclusive ways; however, some mechanisms include alterations in mitochondrial dynamics, compromised bioenergetics, biogenesis deficits, oxidative stress, impaired mitophagy, and disrupted calcium balance. It is plausible that these factors contribute to the increased prevalence of cardiac dysfunction in PD, suggesting mitochondrial health as a potential target for therapeutic intervention. This review provides an overview of the physiological mechanisms underlying mitochondrial quality control systems. It summarises the diverse roles of mitochondria in brain and heart function, highlighting shared pathways potentially exhibiting dysfunction and driving cardiac comorbidities in PD. By highlighting strategies to mitigate dysfunction associated with mitochondrial impairment in cardiac and neural tissues, our review aims to provide new perspectives on therapeutic approaches.
Collapse
Affiliation(s)
- Agustina Salis Torres
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RH, UK; (A.S.T.); (J.-E.L.)
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK;
| | - Ji-Eun Lee
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RH, UK; (A.S.T.); (J.-E.L.)
- IRR Chemistry Hub, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Andrea Caporali
- Centre for Cardiovascular Science, Queen’s Medical Research Institute (QMRI), The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; (A.C.); (R.K.S.)
| | - Robert K. Semple
- Centre for Cardiovascular Science, Queen’s Medical Research Institute (QMRI), The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; (A.C.); (R.K.S.)
| | - Mathew H. Horrocks
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK;
- MRC Human Genetics Unit, Institute for Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Vicky E. MacRae
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RH, UK; (A.S.T.); (J.-E.L.)
| |
Collapse
|
4
|
Liu F, Chao S, Yang L, Chen C, Huang W, Chen F, Xu Z. Molecular mechanism of mechanical pressure induced changes in the microenvironment of intervertebral disc degeneration. Inflamm Res 2024:10.1007/s00011-024-01954-w. [PMID: 39379638 DOI: 10.1007/s00011-024-01954-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Lower back pain, as a typical clinical symptom of spinal degenerative diseases, is emerging as a major social problem. According to recent researches, the primary cause of this problem is intervertebral disc degeneration (IVDD). IVDD is closely associated with factors such as age, genetics, mechanical stimulation (MS), and inadequate nutrition. In recent years, an increasing number of studies have further elucidated the relationship between MS and IVDD. However, the exact molecular mechanisms by which MS induces IVDD remain unclear, highlighting the need for in-depth exploration and study of the relationship between MS and IVDD. METHODS Search for relevant literature on IVDD and MS published from January 1, 2010, to the present in the PubMed database. RESULTS One of the main causes of IVDD is MS, and loading modalities have an impact on the creation of matrix metalloproteinase, the metabolism of the cellular matrix, and other biochemical processes in the intervertebral disc. Nucleus pulposus cell death induced by MS, cartilage end-plate destruction accompanied by pyroptosis, apoptosis, iron death, senescence, autophagy, oxidative stress, inflammatory response, and ECM degradation interact with one another to form a cooperative signaling network. CONCLUSION This review discusses the molecular mechanisms of the changes in the microenvironment of intervertebral discs caused by mechanical pressure, explores the interaction between mechanical pressure and IVDD, and provides new insights and approaches for the clinical prevention and treatment of IVDD.
Collapse
Affiliation(s)
- Fei Liu
- Department of Orthopedics, RuiKang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530001, China
- Department of Orthopedics, The Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Song Chao
- Department of Orthopedics, RuiKang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530001, China
- Department of Orthopedics, The Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Lei Yang
- Department of Orthopedics, RuiKang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530001, China
| | - Chaoqi Chen
- Department of Orthopedics, RuiKang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530001, China
| | - Wutao Huang
- Department of Orthopedics, RuiKang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530001, China
| | - Feng Chen
- Department of Orthopedics, RuiKang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530001, China.
| | - Zhiwei Xu
- Department of Orthopedics, RuiKang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530001, China.
- Department of National Medical Masters Hall, RuiKang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530001, China.
| |
Collapse
|
5
|
Wang A, Zhong G, Ying M, Fang Z, Chen Y, Wang H, Wang C, Liu C, Guo Y. Inhibition of NLRP3 inflammasome ameliorates LPS-induced neuroinflammatory injury in mice via PINK1/Parkin pathway. Neuropharmacology 2024; 257:110063. [PMID: 38972372 DOI: 10.1016/j.neuropharm.2024.110063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Parkinson's disease (PD) is characterized by the severe loss of dopaminergic neurons in the substantia nigra pars compacta, leading to motor dysfunction. The onset of PD is often accompanied by neuroinflammation and α-Synuclein aggregation, and extensive research has focused on the activation of microglial NLRP3 inflammasomes in PD, which promotes the death of dopaminergic neurons. In this study, a model of cerebral inflammatory response was constructed in wild-type and Parkin+/- mice through bilateral intraventricular injection of LPS. LPS-induced activation of the NLRP3 inflammasome in wild-type mice promotes the progression of PD. The use of MCC950 in wild mice injected with LPS induces activation of Parkin/PINK and improves autophagy, which in turn improves mitochondrial turnover. It also inhibits LPS-induced inflammatory responses, improves motor function, protects dopaminergic neurons, and inhibits microglia activation. Furthermore, Parkin+/- mice exhibited motor dysfunction, loss of dopaminergic neurons, activation of the NLRP3 inflammasome, and α-Synuclein aggregation beginning at an early age. Parkin ± mice exhibited more pronounced microglia activation, greater NLRP3 inflammasome activation, more severe autophagy dysfunction, and more pronounced motor dysfunction after LPS injection compared to wild-type mice. Notably, the use of MCC950 in Parkin ± mice did not ameliorate NLRP3 inflammasome activation, autophagy dysfunction, or α-synuclein aggregation. Thus, MCC950 can only exert its effects in the presence of Parkin/PINK1, and targeting Parkin-mediated NLRP3 inflammasome activation is expected to be a potential therapeutic strategy for Parkinson's disease.
Collapse
Affiliation(s)
- Ao Wang
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, 233000, China; School of Laboratory Medicine, Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Guangshang Zhong
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, 233000, China; School of Laboratory Medicine, Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Mengjiao Ying
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, 233000, China; School of Life Sciences, Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Zhuling Fang
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, 233000, China; School of Laboratory Medicine, Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Ying Chen
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, 233000, China; School of Life Sciences, Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Haojie Wang
- School of Clinical Medicine, Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Chunjing Wang
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, 233000, China; School of Life Sciences, Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Changqing Liu
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, 233000, China; School of Life Sciences, Bengbu Medical University, Bengbu, 233000, Anhui, China.
| | - Yu Guo
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, 233000, China; School of Laboratory Medicine, Bengbu Medical University, Bengbu, 233000, Anhui, China.
| |
Collapse
|
6
|
Guo Y, Chen S, Guan W, Xu N, Zhu L, Du W, Liu Z, Fong HKW, Huang L, Zhao M. Retinal G-protein-coupled receptor deletion exacerbates AMD-like changes via the PINK1-parkin pathway under oxidative stress. FASEB J 2024; 38:e70135. [PMID: 39467145 DOI: 10.1096/fj.202401160rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/18/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024]
Abstract
The intake of high dietary fat has been correlated with the progression of age-related macular degeneration (AMD), affecting the function of the retinal pigment epithelium through oxidative stress. A high-fat diet (HFD) can lead to lipid metabolism disorders, excessive production of circulating free fatty acids, and systemic inflammation by aggravating the degree of oxidative stress. Deletion of the retinal G-protein-coupled receptor (RGR-d) has been identified in drusen. In this study, we investigated how the RGR-d exacerbates AMD-like changes under oxidative stress, both in vivo and in vitro. Fundus atrophy became evident, at 12 months old, particularly in the RGR-d + HFD group, and fluorescence angiography revealed narrower retinal vessels and a reduced perfusion area in the peripheral retina. Although rod electroretinography revealed decreasing trends in the a- and b-wave amplitudes in the RGR-d + HFD group at 12 months, the changes were not statistically significant. Mice in the RGR-d + HFD group showed a significantly thinner and more fragile retinal morphology than those in the WT + HFD group, with disordered and discontinuous pigment distribution in the RGR-d + HFD mice. Transmission electron microscopy revealed a thickened Bruch's membrane along the choriocapillaris endothelial cell wall in the RGR-d + HFD mice, and the outer nuclear layer structure appeared disorganized, with reduced nuclear density. Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated significantly lower levels of 25(OH)-vitamin D3 metabolites in the RGR-d + HFD group. Under oxidative stress, RGR-d localized to the mitochondria and reduced the levels of the PINK1-parkin pathway. RGR-d mice fed an HFD were used as a new animal model of dry AMD. Under high-fat-induced oxidative stress, RGR-d accumulated in the mitochondria, disrupting normal mitophagy and causing cellular damage, thus exacerbating AMD-like changes both in vivo and in vitro.
Collapse
Affiliation(s)
- Yue Guo
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Eye Diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Sitong Chen
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Eye Diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Wenxue Guan
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Eye Diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Ningda Xu
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Eye Diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Li Zhu
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Eye Diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Wei Du
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Eye Diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Zhiming Liu
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Eye Diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Henry K W Fong
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California, USA
| | - Lvzhen Huang
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Eye Diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Mingwei Zhao
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Eye Diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| |
Collapse
|
7
|
Zhang Y. Parkin, a Parkinson's disease-associated protein, mediates the mitophagy that plays a vital role in the pathophysiology of major depressive disorder. Neurochem Int 2024; 179:105808. [PMID: 39047792 DOI: 10.1016/j.neuint.2024.105808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 06/22/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Depression is a complex mood disorder with multifactorial etiology and is also the most frequent non-motor symptom of Parkinson's disease. Emerging research suggests a potential link between mitochondrial dysfunction and the pathophysiology of major depressive disorder. By synthesizing current knowledge and research findings, this review sheds light on the intricate relationship between Parkin, a protein classically associated with Parkinson's disease, and mitochondrial quality control mechanisms (e.g., mitophagy, mitochondrial biogenesis, and mitochondrial dynamic), specifically focusing on their relevance in the context of depression. Additionally, the present review discusses therapeutic strategies targeting Parkin-medicated mitophagy and calls for further research in this field. These findings suggest promise for the development of novel depression treatments through modulating Parkin-mediated mitophagy.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
8
|
Li Y, Hu K, Li J, Yang X, Wu X, Liu Q, Chen Y, Ding Y, Liu L, Yang Q, Wang G. Tetrahydroxy Stilbene Glucoside Promotes Mitophagy and Ameliorates Neuronal Injury after Cerebral Ischemia Reperfusion via Promoting USP10-Mediated YBX1 Stability. eNeuro 2024; 11:ENEURO.0269-24.2024. [PMID: 39406480 PMCID: PMC11520850 DOI: 10.1523/eneuro.0269-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/13/2024] [Accepted: 10/03/2024] [Indexed: 10/27/2024] Open
Abstract
Tetrahydroxy stilbene glucoside (TSG) from Polygonum multiflorum exerts neuroprotective effects after ischemic stroke. We explored whether TSG improved ischemic stroke injury via PTEN-induced kinase 1 (PINK1)/Parkin-mediated mitophagy. Oxygen glucose deprivation/reoxygenation (OGD/R) in vitro model and middle cerebral artery occlusion (MCAO) rat model were established. Cerebral injury was assessed by neurological score, hematoxylin and eosin staining, 2,3,5-triphenyltetrazolium chloride staining, and brain water content. Apoptosis, cell viability, and mitochondrial membrane potential were assessed by flow cytometry, cell counting kit-8, and JC-1 staining, respectively. Colocalization of LC3-labeled autophagosomes with lysosome-associated membrane glycoprotein 2-labeled lysosomes or translocase of outer mitochondrial membrane 20-labeled mitochondria was observed with fluorescence microscopy. The ubiquitination level was determined using ubiquitination assay. The interaction between molecules was validated by coimmunoprecipitation and glutathione S-transferase pull-down. We found that TSG promoted mitophagy and improved cerebral ischemia/reperfusion damage in MCAO rats. In OGD/R-subjected neurons, TSG promoted mitophagy, repressed neuronal apoptosis, upregulated Y-box binding protein-1 (YBX1), and activated PINK1/Parkin signaling. TSG upregulated ubiquitin-specific peptidase 10 (USP10) to elevate YBX1 protein. Furthermore, USP10 inhibited ubiquitination-dependent YBX1 degradation. USP10 overexpression activated PINK1/Parkin signaling and promoted mitophagy, which were reversed by YBX1 knockdown. Moreover, TSG upregulated USP10 to promote mitophagy and inhibited neuronal apoptosis. Collectively, TSG facilitated PINK1/Parkin pathway-mediated mitophagy by upregulating USP10/YBX1 axis to ameliorate ischemic stroke.
Collapse
Affiliation(s)
- Yuxian Li
- Medical College, Hunan University of Medicine, Huaihua, Hunan Province 418000, China
| | - Ke Hu
- Medical College, Hunan University of Medicine, Huaihua, Hunan Province 418000, China
| | - Jie Li
- School of Basic Medical Sciences, Hunan University of Medicine, Huaihua, Hunan Province 418000, China
| | - Xirong Yang
- Department of Neurology, first affiliated hospital, Hunan University of Medicine, Huaihua, Hunan Province 418000, China
| | - Xiuyu Wu
- School of Basic Medical Sciences, Hunan University of Medicine, Huaihua, Hunan Province 418000, China
| | - Qian Liu
- Biomedical Research Center, Hunan University of Medicine, Huaihua, Hunan Province 418000, China
| | - Yuefu Chen
- Medical College, Hunan University of Medicine, Huaihua, Hunan Province 418000, China
| | - Yan Ding
- Medical College, Hunan University of Medicine, Huaihua, Hunan Province 418000, China
| | - Lingli Liu
- Medical College, Hunan University of Medicine, Huaihua, Hunan Province 418000, China
| | - Qiansheng Yang
- Medical College, Hunan University of Medicine, Huaihua, Hunan Province 418000, China
| | - Guangwei Wang
- Biomedical Research Center, Hunan University of Medicine, Huaihua, Hunan Province 418000, China
| |
Collapse
|
9
|
Deng J, Long J, Yang Y, Yang F, Wei Y. Gentiana decoction inhibits liver fibrosis and the activation of hepatic stellate cells via upregulating the expression of Parkin. Fitoterapia 2024; 178:106170. [PMID: 39122121 DOI: 10.1016/j.fitote.2024.106170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Liver fibrosis is a wound-healing process. It can be induced by various chronic liver diseases. Liver fibrosis is characterized by the activation of hepatic stellate cells (HSCs), a key event. However, no effective treatment strategies to cure or alleviate liver fibrosis-induced pathologic changes have yet been developed. Traditional Chinese medicine (TCM) exhibits a good anti-fibrosis action, with few side effects. Gentiana decoction, a TCM also called Longdan Xiegan Tang (LXT), is used for purging the liver in clinical settings. However, the role of LXT in preventing liver fibrosis and the underlying regulatory mechanism have not yet been investigated. This study demonstrates that LXT treatment can protect the liver from the injuries resulting from CCl4-induced liver fibrosis in mice and suppress the activation of HSCs. The mice in the LXT group exhibit litter collagen I and HSC activation marker α-smooth muscle actin (α-SMA) expression. Transcriptome sequencing of the mouse liver tissue reveals that the level of Parkin, a mitophagy marker, decreased in CCl4-induced liver fibrosis. Further study shows that the injection of Parkin-overexpression adeno-associated virus (Parkin-AAV) via the tail vein can reduce CCl4-induced liver fibrogenesis in mice. We conducted a mechanistic study also, which suggests that LXT treatment suppresses the activation of HSCs by upregulating the expression of Parkin. Hence, it can be suggested that LXT inhibits liver fibrosis by activating the Parkin signaling pathway.
Collapse
Affiliation(s)
- Jing Deng
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Hengzhi 78nd Road, Guangzhou 510095, China.
| | - Jun Long
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, PR China
| | - Yang Yang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Fengyu Yang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Yongjie Wei
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Hengzhi 78nd Road, Guangzhou 510095, China.
| |
Collapse
|
10
|
Famurewa AC, George MY, Ukwubile CA, Kumar S, Kamal MV, Belle VS, Othman EM, Pai SRK. Trace elements and metal nanoparticles: mechanistic approaches to mitigating chemotherapy-induced toxicity-a review of literature evidence. Biometals 2024:10.1007/s10534-024-00637-7. [PMID: 39347848 DOI: 10.1007/s10534-024-00637-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/30/2024] [Indexed: 10/01/2024]
Abstract
Anticancer chemotherapy (ACT) remains a cornerstone in cancer treatment, despite significant advances in pharmacology over recent decades. However, its associated side effect toxicity continues to pose a major concern for both oncology clinicians and patients, significantly impacting treatment protocols and patient quality of life. Current clinical strategies to mitigate ACT-induced toxicity have proven largely unsatisfactory, leaving a critical unmet need to block toxicity mechanisms without diminishing ACT's therapeutic efficacy. This review aims to document the molecular mechanisms underlying ACT toxicity and highlight research efforts exploring the protective effects of trace elements (TEs) and their nanoparticles (NPs) against these mechanisms. Our literature review reveals that the primary driver of ACT toxicity is redox imbalance, which triggers oxidative inflammation, apoptosis, endoplasmic reticulum stress, mitochondrial dysfunction, autophagy, and dysregulation of signaling pathways such as PI3K/mTOR/Akt. Studies suggest that TEs, including zinc, selenium, boron, manganese, and molybdenum, and their NPs, can potentially counteract ACT-induced toxicity by inhibiting oxidative stress-mediated pathways, including NF-κB/TLR4/MAPK/NLRP3, STAT-3/NLRP3, Bcl-2/Bid/p53/caspases, and LC3/Beclin-1/CHOP/ATG6, while also upregulating protective signaling pathways like Sirt1/PPAR-γ/PGC-1α/FOXO-3 and Nrf2/HO-1/ARE. However, evidence regarding the roles of lncRNA and the Wnt/β-catenin pathway in ACT toxicity remains inconsistent, and the impact of TEs and NPs on ACT efficacy is not fully understood. Further research is needed to confirm the protective effects of TEs and their NPs against ACT toxicity in cancer patients. In summary, TEs and their NPs present a promising avenue as adjuvant agents for preventing non-target organ toxicity induced by ACT.
Collapse
Affiliation(s)
- Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University Ndufu-Alike Ikwo, Abakaliki, Ebonyi, Nigeria.
- Centre for Natural Products Discovery, School of P harmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK.
- Department of Pharmacology, Manipal College of Pharmaceutical Science, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| | - Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Cletus A Ukwubile
- Department of Pharmacognosy, Faculty of Pharmacy, University of Maiduguri, Bama Road, Maiduguri, Borno, Nigeria
| | - Sachindra Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Science, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Mehta V Kamal
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Vijetha S Belle
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Eman M Othman
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
- Cancer Therapy Research Center, Department of Biochemistry-I, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
- Department of Bioinformatics, University of Würzburg, Am Hubland, 97074, BiocenterWürzburg, Germany
| | - Sreedhara Ranganath K Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Science, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| |
Collapse
|
11
|
Tian Z, Zhang Y, Xu J, Yang Q, Hu D, Feng J, Gai C. Primary cilia in Parkinson's disease: summative roles in signaling pathways, genes, defective mitochondrial function, and substantia nigra dopaminergic neurons. Front Aging Neurosci 2024; 16:1451655. [PMID: 39364348 PMCID: PMC11447156 DOI: 10.3389/fnagi.2024.1451655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Primary cilia (PC) are microtubules-based, independent antennal-like sensory organelles, that are seen in most vertebrate cells of different types, including astrocytes and neurons. They send signals to cells to control many physiological and cellular processes by detecting changes in the extracellular environment. Parkinson's disease (PD), a neurodegenerative disease that progresses over time, is primarily caused by a gradual degradation of the dopaminergic pathway in the striatum nigra, which results in a large loss of neurons in the substantia nigra compact (SNpc) and a depletion of dopamine (DA). PD samples have abnormalities in the structure and function of PC. The alterations contribute to the cause, development, and recovery of PD via influencing signaling pathways (SHH, Wnt, Notch-1, α-syn, and TGFβ), genes (MYH10 and LRRK2), defective mitochondrial function, and substantia nigra dopaminergic neurons. Thus, restoring the normal structure and physiological function of PC and neurons in the brain are effective treatment for PD. This review summarizes the function of PC in neurodegenerative diseases and explores the pathological mechanisms caused by PC alterations in PD, in order to provide references and ideas for future research.
Collapse
Affiliation(s)
- Zijiao Tian
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yixin Zhang
- College of Acupuncture and Massage, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Xu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qianwen Yang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Die Hu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Feng
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Cong Gai
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
12
|
Lacombe A, Scorrano L. The interplay between mitochondrial dynamics and autophagy: From a key homeostatic mechanism to a driver of pathology. Semin Cell Dev Biol 2024; 161-162:1-19. [PMID: 38430721 DOI: 10.1016/j.semcdb.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024]
Abstract
The complex relationship between mitochondrial dynamics and autophagy illustrates how two cellular housekeeping processes are intimately linked, illuminating fundamental principles of cellular homeostasis and shedding light on disparate pathological conditions including several neurodegenerative disorders. Here we review the basic tenets of mitochondrial dynamics i.e., the concerted balance between fusion and fission of the organelle, and its interplay with macroautophagy and selective mitochondrial autophagy, also dubbed mitophagy, in the maintenance of mitochondrial quality control and ultimately in cell viability. We illustrate how conditions of altered mitochondrial dynamics reverberate on autophagy and vice versa. Finally, we illustrate how altered interplay between these two key cellular processes participates in the pathogenesis of human disorders affecting multiple organs and systems.
Collapse
Affiliation(s)
- Alice Lacombe
- Dept. of Biology, University of Padova, Padova, Italy
| | - Luca Scorrano
- Dept. of Biology, University of Padova, Padova, Italy; Veneto Institute of Molecular Medicine, Padova, Italy.
| |
Collapse
|
13
|
Ma Z, Hao J, Yang Z, Zhang M, Xin J, Bi H, Guo D. Research Progress on the Role of Ubiquitination in Eye Diseases. Cell Biochem Biophys 2024; 82:1825-1836. [PMID: 38913283 DOI: 10.1007/s12013-024-01381-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2024] [Indexed: 06/25/2024]
Abstract
The occurrence and development of ophthalmic diseases are related to the dysfunction of eye tissues. Ubiquitin is an important form of protein post-translational modification, which plays an essential role in the occurrence and development of diseases through specific modification of target proteins. Ubiquitination governs a variety of intracellular signal transduction processes, including proteasome degradation, DNA damage repair, and cell cycle progression. Studies have found that ubiquitin can play a role in eye diseases such as cataracts, glaucoma, keratopathy, retinopathy, and eye tumors. In this paper, the role of protein ubiquitination in eye diseases was reviewed.
Collapse
Affiliation(s)
- Zhongyu Ma
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Jiawen Hao
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Zhaohui Yang
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Miao Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Jizhao Xin
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Hongsheng Bi
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China.
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Shandong Provincial Clinical Research Center of Ophthalmology and Children Visual Impairment Prevention and Control, Shandong Engineering Technology Research Center of Visual Intelligence, Shandong Academy of Health and Myopia Prevention and Control of Children and Adolescents, Jinan, 250002, China.
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, 250002, China.
| | - Dadong Guo
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China.
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Shandong Provincial Clinical Research Center of Ophthalmology and Children Visual Impairment Prevention and Control, Shandong Engineering Technology Research Center of Visual Intelligence, Shandong Academy of Health and Myopia Prevention and Control of Children and Adolescents, Jinan, 250002, China.
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, 250002, China.
| |
Collapse
|
14
|
Mohamed Yusoff AA, Mohd Khair SZN. Unraveling mitochondrial dysfunction: comprehensive perspectives on its impact on neurodegenerative diseases. Rev Neurosci 2024:revneuro-2024-0080. [PMID: 39174305 DOI: 10.1515/revneuro-2024-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/30/2024] [Indexed: 08/24/2024]
Abstract
Neurodegenerative diseases represent a significant challenge to modern medicine, with their complex etiology and progressive nature posing hurdles to effective treatment strategies. Among the various contributing factors, mitochondrial dysfunction has emerged as a pivotal player in the pathogenesis of several neurodegenerative disorders. This review paper provides a comprehensive overview of how mitochondrial impairment contributes to the development of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis, driven by bioenergetic defects, biogenesis impairment, alterations in mitochondrial dynamics (such as fusion or fission), disruptions in calcium buffering, lipid metabolism dysregulation and mitophagy dysfunction. It also covers current therapeutic interventions targeting mitochondrial dysfunction in these diseases.
Collapse
Affiliation(s)
- Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Siti Zulaikha Nashwa Mohd Khair
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
15
|
Wragg KM, Worley MJ, Deng JC, Salmon M, Goldstein DR. Deficiency in the mitophagy mediator Parkin accelerates murine skin allograft rejection. Am J Transplant 2024:S1600-6135(24)00491-X. [PMID: 39142471 DOI: 10.1016/j.ajt.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/21/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
Alterations in mitochondrial function and associated quality control programs, including mitochondrial-specific autophagy, termed mitophagy, are gaining increasing recognition in the context of disease. However, the role of mitophagy in organ transplant rejection remains poorly understood. Using mice deficient in Parkin, a ubiquitin ligase that tags damaged or dysfunctional mitochondria for autophagic clearance, we assessed the impact of Parkin-dependent mitophagy on skin-graft rejection. We observed accelerated graft loss in Parkin-deficient mice across multiple skin graft models. Immune cell distributions posttransplant were largely unperturbed compared to wild-type; however, the CD8+ T cells of Parkin-deficient mice expressed more T-bet, IFNγ, and Ki67, indicating greater priming toward effector function. This was accompanied by increased circulating levels of IL-12p70 in Parkin-deficient mice. Using a mixed leukocyte reaction, we demonstrated that naïve Parkin-deficient CD4+ and CD8+ T cells exhibit enhanced activation marker expression and proliferative responses to alloantigen, which were attenuated with administration of a pharmacological mitophagy inducer (p62-mediated mitophagy inducer), known to increase mitophagy in the absence of a functional PINK1-Parkin pathway. These findings indicate a role for Parkin-dependent mitophagy in curtailing skin-graft rejection.
Collapse
Affiliation(s)
- Kathleen M Wragg
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthew J Worley
- Pulmonary Division, University of Michigan, Ann Arbor, Michigan, USA
| | - Jane C Deng
- Pulmonary Division, University of Michigan, Ann Arbor, Michigan, USA; Veterans Affairs Ann Arbor, Ann Arbor, Michigan, USA
| | - Morgan Salmon
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, Michigan, USA; Frankel Cardiovascular Center, University of Michigan School of Medicine, Ann Arbor, Michigan, USA.
| | - Daniel R Goldstein
- Frankel Cardiovascular Center, University of Michigan School of Medicine, Ann Arbor, Michigan, USA; Department of Medicine, Cardiology Division, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
16
|
Piekarz J, Picheta N, Burdan O, Kurek M, Chrościńska-Krawczyk M. Phytotherapy in Alzheimer's Disease-A Narrative Review. Biomedicines 2024; 12:1812. [PMID: 39200276 PMCID: PMC11351709 DOI: 10.3390/biomedicines12081812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Alzheimer's disease (AD) affects 50-70% of patients with dementia, making it the leading cause of dementia. The condition is classified as a neurodegenerative, progressive and incurable disease. The disease is affecting more and more people around the world. AD has a multifactorial nature, spreading from beta-amyloid deposition to inflammation in patients' brains. Patients experience cognitive impairment and functional decline. Although it is a disease that occurs mainly in the elderly, it is increasingly being diagnosed in young people between the ages of 30 and 40. It not only affects the patient themself but also reduces the quality of life of their closest caregivers. According to the WHO, the treatment of AD consumes USD 1.3 trillion globally, but it is only symptomatic, as there are no drugs to prevent the onset of AD or treat the cause of its onset. Due to the numerous side effects of therapy and the lack of proactive drugs that act on the pathomechanism of AD, alternative therapies are being sought. One possible option that has many studies confirming its effect is phytotherapy. Many herbs have pharmacological properties, such as antioxidant, anti-inflammatory, or neuroprotective effects, making them the future of cognitive disorders and AD treatment. This review focuses on some of the most promising herbs that have potentially potent properties and effects in AD therapy. These include Curcuma longa, Panax ginseng, Berberis and Crocus sativus. These herbs may perhaps be key in the future to make functioning and life easier for patients struggling with AD.
Collapse
Affiliation(s)
- Julia Piekarz
- Students’ Scientific Association, Department of Paediatric Neurology, Medical University, 20-059 Lublin, Poland; (N.P.); (O.B.); (M.K.)
| | - Natalia Picheta
- Students’ Scientific Association, Department of Paediatric Neurology, Medical University, 20-059 Lublin, Poland; (N.P.); (O.B.); (M.K.)
| | - Oliwia Burdan
- Students’ Scientific Association, Department of Paediatric Neurology, Medical University, 20-059 Lublin, Poland; (N.P.); (O.B.); (M.K.)
| | - Marcelina Kurek
- Students’ Scientific Association, Department of Paediatric Neurology, Medical University, 20-059 Lublin, Poland; (N.P.); (O.B.); (M.K.)
| | | |
Collapse
|
17
|
Zhao WB, Sheng R. The correlation between mitochondria-associated endoplasmic reticulum membranes (MAMs) and Ca 2+ transport in the pathogenesis of diseases. Acta Pharmacol Sin 2024:10.1038/s41401-024-01359-9. [PMID: 39117969 DOI: 10.1038/s41401-024-01359-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024] Open
Abstract
Mitochondria and the endoplasmic reticulum (ER) are vital organelles that influence various cellular physiological and pathological processes. Recent evidence shows that about 5%-20% of the mitochondrial outer membrane is capable of forming a highly dynamic physical connection with the ER, maintained at a distance of 10-30 nm. These interconnections, known as MAMs, represent a relatively conserved structure in eukaryotic cells, acting as a critical platform for material exchange between mitochondria and the ER to maintain various aspects of cellular homeostasis. Particularly, ER-mediated Ca2+ release and recycling are intricately associated with the structure and functionality of MAMs. Thus, MAMs are integral in intracellular Ca2+ transport and the maintenance of Ca2+ homeostasis, playing an essential role in various cellular activities including metabolic regulation, signal transduction, autophagy, and apoptosis. The disruption of MAMs observed in certain pathologies such as cardiovascular and neurodegenerative diseases as well as cancers leads to a disturbance in Ca2+ homeostasis. This imbalance potentially aggravates pathological alterations and disease progression. Consequently, a thorough understanding of the link between MAM-mediated Ca2+ transport and these diseases could unveil new perspectives and therapeutic strategies. This review focuses on the changes in MAMs function during disease progression and their implications in relation to MAM-associated Ca2+ transport.
Collapse
Affiliation(s)
- Wen-Bin Zhao
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
18
|
Menon V, Slavinsky M, Hermine O, Ghaffari S. Mitochondrial regulation of erythropoiesis in homeostasis and disease. Br J Haematol 2024; 205:429-439. [PMID: 38946206 DOI: 10.1111/bjh.19600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/06/2024] [Indexed: 07/02/2024]
Abstract
Erythroid cells undergo a highly complex maturation process, resulting in dynamic changes that generate red blood cells (RBCs) highly rich in haemoglobin. The end stages of the erythroid cell maturation process primarily include chromatin condensation and nuclear polarization, followed by nuclear expulsion called enucleation and clearance of mitochondria and other organelles to finally generate mature RBCs. While healthy RBCs are devoid of mitochondria, recent evidence suggests that mitochondria are actively implicated in the processes of erythroid cell maturation, erythroblast enucleation and RBC production. However, the extent of mitochondrial participation that occurs during these ultimate steps is not completely understood. This is specifically important since abnormal RBC retention of mitochondria or mitochondrial DNA contributes to the pathophysiology of sickle cell and other disorders. Here we review some of the key findings so far that elucidate the importance of this process in various aspects of erythroid maturation and RBC production under homeostasis and disease conditions.
Collapse
Affiliation(s)
- Vijay Menon
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mary Slavinsky
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Olivier Hermine
- Department Hematology, Hôpital Necker, Assistance Publique Hôpitaux de Paris, University Paris Descartes, Paris, France
- INSERM U1163 and CNRS 8254, Imagine Institute, Université Sorbonne Paris Cité, Paris, France
| | - Saghi Ghaffari
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
19
|
Liu D, Qin H, Gao Y, Sun M, Wang M. Cardiovascular disease: Mitochondrial dynamics and mitophagy crosstalk mechanisms with novel programmed cell death and macrophage polarisation. Pharmacol Res 2024; 206:107258. [PMID: 38909638 DOI: 10.1016/j.phrs.2024.107258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/08/2024] [Accepted: 06/08/2024] [Indexed: 06/25/2024]
Abstract
Several cardiovascular illnesses are associated with aberrant activation of cellular pyroptosis, ferroptosis, necroptosis, cuproptosis, disulfidptosis, and macrophage polarisation as hallmarks contributing to vascular damage and abnormal cardiac function. Meanwhile, these three novel forms of cellular dysfunction are closely related to mitochondrial homeostasis. Mitochondria are the main organelles that supply energy and maintain cellular homeostasis. Mitochondrial stability is maintained through a series of regulatory pathways, such as mitochondrial fission, mitochondrial fusion and mitophagy. Studies have shown that mitochondrial dysfunction (e.g., impaired mitochondrial dynamics and mitophagy) promotes ROS production, leading to oxidative stress, which induces cellular pyroptosis, ferroptosis, necroptosis, cuproptosis, disulfidptosis and macrophage M1 phenotypic polarisation. Therefore, an in-depth knowledge of the dynamic regulation of mitochondria during cellular pyroptosis, ferroptosis, necroptosis, cuproptosis, disulfidptosis and macrophage polarisation is necessary to understand cardiovascular disease development. This paper systematically summarises the impact of changes in mitochondrial dynamics and mitophagy on regulating novel cellular dysfunctions and macrophage polarisation to promote an in-depth understanding of the pathogenesis of cardiovascular diseases and provide corresponding theoretical references for treating cardiovascular diseases.
Collapse
Affiliation(s)
- Dandan Liu
- School of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| | - Hewei Qin
- School of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China; Department of Rehabilitation Medicine, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450002, China.
| | - Yang Gao
- School of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| | - Mengyan Sun
- School of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| | - Mengnan Wang
- School of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| |
Collapse
|
20
|
Zhou X, Wang J, Yu L, Qiao G, Qin D, Yuen-Kwan Law B, Ren F, Wu J, Wu A. Mitophagy and cGAS-STING crosstalk in neuroinflammation. Acta Pharm Sin B 2024; 14:3327-3361. [PMID: 39220869 PMCID: PMC11365416 DOI: 10.1016/j.apsb.2024.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 09/04/2024] Open
Abstract
Mitophagy, essential for mitochondrial health, selectively degrades damaged mitochondria. It is intricately linked to the cGAS-STING pathway, which is crucial for innate immunity. This pathway responds to mitochondrial DNA and is associated with cellular stress response. Our review explores the molecular details and regulatory mechanisms of mitophagy and the cGAS-STING pathway. We critically evaluate the literature demonstrating how dysfunctional mitophagy leads to neuroinflammatory conditions, primarily through the accumulation of damaged mitochondria, which activates the cGAS-STING pathway. This activation prompts the production of pro-inflammatory cytokines, exacerbating neuroinflammation. This review emphasizes the interaction between mitophagy and the cGAS-STING pathways. Effective mitophagy may suppress the cGAS-STING pathway, offering protection against neuroinflammation. Conversely, impaired mitophagy may activate the cGAS-STING pathway, leading to chronic neuroinflammation. Additionally, we explored how this interaction influences neurodegenerative disorders, suggesting a common mechanism underlying these diseases. In conclusion, there is a need for additional targeted research to unravel the complexities of mitophagy-cGAS-STING interactions and their role in neurodegeneration. This review highlights potential therapies targeting these pathways, potentially leading to new treatments for neuroinflammatory and neurodegenerative conditions. This synthesis enhances our understanding of the cellular and molecular foundations of neuroinflammation and opens new therapeutic avenues for neurodegenerative disease research.
Collapse
Affiliation(s)
- Xiaogang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jing Wang
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Gan Qiao
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Dalian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR 999078, China
| | - Fang Ren
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China
| | - Jianming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
21
|
Lu YS, Hung WC, Hsieh YT, Tsai PY, Tsai TH, Fan HH, Chang YG, Cheng HK, Huang SY, Lin HC, Lee YH, Shen TH, Hung BY, Tsai JW, Dzhagalov I, Cheng IHJ, Lin CJ, Chern Y, Hsu CL. Equilibrative nucleoside transporter 3 supports microglial functions and protects against the progression of Huntington's disease in the mouse model. Brain Behav Immun 2024; 120:413-429. [PMID: 38925413 DOI: 10.1016/j.bbi.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/11/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024] Open
Abstract
Huntington's disease (HD) is a hereditary neurodegenerative disorder characterized by involuntary movements, cognitive deficits, and psychiatric symptoms. Currently, there is no cure, and only limited treatments are available to manage the symptoms and to slow down the disease's progression. The molecular and cellular mechanisms of HD's pathogenesis are complex, involving immune cell activation, altered protein turnover, and disturbance in brain energy homeostasis. Microglia have been known to play a dual role in HD, contributing to neurodegeneration through inflammation but also enacting neuroprotective effects by clearing mHTT aggregates. However, little is known about the contribution of microglial metabolism to HD progression. This study explores the impact of a microglial metabolite transporter, equilibrative nucleoside transporter 3 (ENT3), in HD. Known as a lysosomal membrane transporter protein, ENT3 is highly enriched in microglia, with its expression correlated with HD severity. Using the R6/2 ENT3-/- mouse model, we found that the deletion of ENT3 increases microglia numbers yet worsens HD progression, leading to mHTT accumulation, cell death, and disturbed energy metabolism. These results suggest that the delicate balance between microglial metabolism and function is crucial for maintaining brain homeostasis and that ENT3 has a protective role in ameliorating neurodegenerative processes.
Collapse
Affiliation(s)
- Ying-Sui Lu
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan; Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Wei-Chien Hung
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Ting Hsieh
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pei-Yuan Tsai
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tsai-Hsien Tsai
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiu-Han Fan
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ya-Gin Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Hui-Kuei Cheng
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shen-Yan Huang
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan; Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsin-Chuan Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yan-Hua Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Tzu-Hsiang Shen
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Bing-Yu Hung
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jin-Wu Tsai
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ivan Dzhagalov
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan; Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Irene Han-Juo Cheng
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Jung Lin
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yijuang Chern
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chia-Lin Hsu
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan; Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan; Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
22
|
Pradeepkiran JA, Baig J, Seman A, Reddy PH. Mitochondria in Aging and Alzheimer's Disease: Focus on Mitophagy. Neuroscientist 2024; 30:440-457. [PMID: 36597577 DOI: 10.1177/10738584221139761] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of amyloid β and phosphorylated τ protein aggregates in the brain, which leads to the loss of neurons. Under the microscope, the function of mitochondria is uniquely primed to play a pivotal role in neuronal cell survival, energy metabolism, and cell death. Research studies indicate that mitochondrial dysfunction, excessive oxidative damage, and defective mitophagy in neurons are early indicators of AD. This review article summarizes the latest development of mitochondria in AD: 1) disease mechanism pathways, 2) the importance of mitochondria in neuronal functions, 3) metabolic pathways and functions, 4) the link between mitochondrial dysfunction and mitophagy mechanisms in AD, and 5) the development of potential mitochondrial-targeted therapeutics and interventions to treat patients with AD.
Collapse
Affiliation(s)
| | - Javaria Baig
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ashley Seman
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX, USA
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
23
|
Yang J, Zhao H, Qu S. Phytochemicals targeting mitophagy: Therapeutic opportunities and prospects for treating Alzheimer's disease. Biomed Pharmacother 2024; 177:117144. [PMID: 39004063 DOI: 10.1016/j.biopha.2024.117144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder and the leading cause of age-related cognitive decline. Recent studies have established a close relationship between mitophagy and the pathogenesis of AD. Various phytochemicals have shown promising therapeutic effects in mitigating the onset and progression of AD. This review offers a comprehensive overview of the typical features of mitophagy and the underlying mechanisms leading to its occurrence in AD, highlighting its significance in the disease's pathogenesis and progression. Additionally, we examine the therapeutic mechanisms of synthetic drugs that induce mitophagy in AD. Finally, we summarize recent advances in research on phytochemicals that regulate mitophagy in the treatment of AD, potentially guiding the development of new anti-AD drugs.
Collapse
Affiliation(s)
- Jing Yang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China.
| | - He Zhao
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China.
| | - Shengtao Qu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China.
| |
Collapse
|
24
|
Wang K, He L, Liu X, Wu M. Sodium p-perfluorinated noneoxybenzen sulfonate (OBS) induced neurotoxicity in zebrafish through mitochondrial dysfunction. CHEMOSPHERE 2024; 362:142651. [PMID: 38901702 DOI: 10.1016/j.chemosphere.2024.142651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Sodium p-perfluorous nonenoxybenzene sulfonate (OBS)-one of the main alternatives to perfluorooctane sulfonate-has been increasingly detected in both aquatic environments and human bodies. Therefore, the pathogenic risks of OBS exposure warrant attention, especially its central nervous system toxicity mechanism under long-term exposure. In this study, the effects and mechanisms of OBS on the zebrafish brain at 40 days post exposure were examined. The results demonstrated that at 3.2 μg/L, OBS had no significant effect on the zebrafish brain, but 32 μg/L OBS caused depression or poor social behavior in zebrafish and reduced both their memory and survival ability. These changes were accompanied by histological damage and cell apoptosis. Furthermore, OBS caused the accumulation of excessive reactive oxygen species in the fish brain, leading to oxidative stress and subsequently cell apoptosis. Moreover, an imbalance of both inflammatory factors (IL-6, IL-1β, IL-10, TNF-α, and NF-κB) and neurotransmitters (GABA and Glu) led to neuroinflammation. Additionally, 32 μg/L OBS induced decreases in mitochondrial membrane potential and Na+-K+-ATPase activity, leading to both mitochondrial structural damage and the emergence of mitochondrial autophagosomes, partly explaining the neurotoxicity of OBS. These results help to analyze the target sites and molecular mechanisms of OBS neurotoxicity and provide a basis for the scientific evaluation of its health risks to humans.
Collapse
Affiliation(s)
- Kai Wang
- Plant Protection College, Shenyang Agricultural University, Shenyang, 100866, PR China.
| | - Lu He
- Plant Protection College, Shenyang Agricultural University, Shenyang, 100866, PR China
| | - Xiaoyu Liu
- Plant Protection College, Shenyang Agricultural University, Shenyang, 100866, PR China
| | - Mengfei Wu
- Plant Protection College, Shenyang Agricultural University, Shenyang, 100866, PR China
| |
Collapse
|
25
|
Liang JH, Yu H, Xia CP, Zheng YH, Zhang Z, Chen Y, Raza MA, Wu L, Yan H. Ginkgolide B effectively mitigates neuropathic pain by suppressing the activation of the NLRP3 inflammasome through the induction of mitophagy in rats. Biomed Pharmacother 2024; 177:117006. [PMID: 38908197 DOI: 10.1016/j.biopha.2024.117006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024] Open
Abstract
Neuropathic pain is a pathological state induced by the aberrant generation of pain signals within the nervous system. Ginkgolide B(GB), an active component found of Ginkgo. biloba leaves, has neuroprotective properties. This study aimed to explore the effects of GB on neuropathic pain and its underlying mechanisms. In the in vivo study, we adopted the rat chronic constriction injury model, and the results showed that GB(4 mg/kg) treatment effectively reduced pain sensation in rats and decreased the expressions of Iba-1 (a microglia marker), NLRP3 inflammasome, and inflammatory factors, such as interleukin (IL)-1β, in the spinal cord 7 days post-surgery. In the in vitro study, we induced microglial inflammation using lipopolysaccharide (500 ng/mL) / adenosine triphosphate (5 mM) and treated it with GB (10, 20, and 40 μM). GB upregulated the expression of mitophagy proteins, such as PINK1, Parkin, LC3 II/I, Tom20, and Beclin1, and decreased the cellular production of reactive oxygen species. Moreover, it lowered the expression of inflammation-related proteins, such as Caspase-1, IL-1β, and NLRP3 in microglia. However, this effect was reversed by Parkin shRNA/siRNA or the autophagy inhibitor 3-methyladenine (5 mM). These findings reveal that GB alleviates neuropathic pain by mitigating neuroinflammation through the activation of PINK1-Parkin-mediated mitophagy.
Collapse
Affiliation(s)
- Jing-Hao Liang
- Department of Orthopaedics (Hand microsurgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Heng Yu
- Department of Orthopaedics (Hand microsurgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Chuan-Peng Xia
- Department of Orthopaedics (Hand microsurgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yue-Hui Zheng
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Department of Geriatry, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhe Zhang
- Department of Orthopaedics (Hand microsurgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yu Chen
- Department of Orthopaedics (Hand microsurgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Mazhar Ali Raza
- Department of Orthopaedics (Hand microsurgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Long Wu
- Department of Orthopaedics (Hand microsurgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Hede Yan
- Department of Orthopaedics (Hand microsurgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
26
|
Wang L, Zhang Z, Zhang H, Zhou M, Huang C, Xia W, Li J, You H. The effects of cGAS-STING inhibition in liver disease, kidney disease, and cellular senescence. Front Immunol 2024; 15:1346446. [PMID: 39114669 PMCID: PMC11303230 DOI: 10.3389/fimmu.2024.1346446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/27/2024] [Indexed: 08/10/2024] Open
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway is one of the fundamental mechanisms of the body's defense, which responds to the abnormal presence of double-stranded DNA in the cytoplasm to establish an effective natural immune response. In addition to detecting microbial infections, the cGAS pathway may be triggered by any cytoplasmic DNA, which is absent from the normal cytoplasm, and only conditions such as senescence and mitochondrial stress can lead to its leakage and cause sterile inflammation. A growing body of research has shown that the cGAS-STING pathway is strongly associated with sterile inflammation. In this study, we reviewed the regulatory mechanisms and biological functions of the cGAS-STING pathway through its involvement in aseptic inflammation in liver disease, kidney disease, and cellular senescence.
Collapse
Affiliation(s)
- Ling Wang
- Department of Pharmacy, Shangyu People’s Hospital of Shaoxing, Shaoxing, China
| | - Zhengwei Zhang
- Department of Pharmacy, Shangyu People’s Hospital of Shaoxing, Shaoxing, China
| | - Haichao Zhang
- Department of Pharmacy, Shangyu People’s Hospital of Shaoxing, Shaoxing, China
| | - Minmin Zhou
- Department of Pharmacy, Shangyu People’s Hospital of Shaoxing, Shaoxing, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Wenjiang Xia
- Department of Pharmacy, Shangyu People’s Hospital of Shaoxing, Shaoxing, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hongmei You
- Department of Pharmacy, Hangzhou Women’s Hospital, Hangzhou, China
| |
Collapse
|
27
|
Jothi D, Kulka LAM. Strategies for modeling aging and age-related diseases. NPJ AGING 2024; 10:32. [PMID: 38987252 PMCID: PMC11237002 DOI: 10.1038/s41514-024-00161-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024]
Abstract
The ability to reprogram patient-derived-somatic cells to IPSCs (Induced Pluripotent Stem Cells) has led to a better understanding of aging and age-related diseases like Parkinson's, and Alzheimer's. The established patient-derived disease models mimic disease pathology and can be used to design drugs for aging and age-related diseases. However, the age and genetic mutations of the donor cells, the employed reprogramming, and the differentiation protocol might often pose challenges in establishing an appropriate disease model. In this review, we will focus on the various strategies for the successful reprogramming and differentiation of patient-derived cells to disease models for aging and age-related diseases, emphasizing the accuracy in the recapitulation of disease pathology and ways to overcome the limitations of its potential application in cell replacement therapy and drug development.
Collapse
Affiliation(s)
- D Jothi
- Department of Biochemistry II, Friedrich Schiller University, Jena, Germany.
| | | |
Collapse
|
28
|
Lee IH, Kim DK. Head and Neck Cancer: A Potential Risk Factor for Parkinson's Disease? Cancers (Basel) 2024; 16:2486. [PMID: 39001548 PMCID: PMC11240437 DOI: 10.3390/cancers16132486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/30/2024] [Accepted: 07/06/2024] [Indexed: 07/16/2024] Open
Abstract
Head and neck cancers (HNC) are frequently associated with neurodegeneration. However, the association between HNC and Parkinson's disease (PD) remains unclear. This study aimed to clarify the relationship between HNC and subsequent PD. This retrospective study used data from a nationally representative cohort. Patients with HNC were identified based on the presence of corresponding diagnostic codes. Participants without cancer were selected using 4:1 propensity score matching based on sociodemographic factors and year of enrollment; 2296 individuals without HNC and 574 individuals with HNC were included in the study. Hazard ratios (HR) for the incidence of PD in patients with HNC were calculated using 95% confidence intervals (CI). The incidence of PD was 4.17 and 2.18 per 1000 person-years in the HNC and control groups, respectively (adjusted HR = 1.89, 95% CI = 1.08-3.33). The HNC group also showed an increased risk of subsequent PD development. The risk of PD was higher in middle-aged (55-69 years) patients with HNC and oral cavity cancer. Our findings suggest that middle-aged patients with HNC have an increased incidence of PD, specifically those with oral cavity cancer. Therefore, our findings provide new insights into the development of PD in patients with HNC.
Collapse
Affiliation(s)
- Il Hwan Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Dong-Kyu Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
- Institute of New Frontier Research, Division of Big Data and Artificial Intelligence, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| |
Collapse
|
29
|
Thapa R, Moglad E, Afzal M, Gupta G, Bhat AA, Almalki WH, Kazmi I, Alzarea SI, Pant K, Ali H, Paudel KR, Dureja H, Singh TG, Singh SK, Dua K. ncRNAs and their impact on dopaminergic neurons: Autophagy pathways in Parkinson's disease. Ageing Res Rev 2024; 98:102327. [PMID: 38734148 DOI: 10.1016/j.arr.2024.102327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Parkinson's Disease (PD) is a complex neurological illness that causes severe motor and non-motor symptoms due to a gradual loss of dopaminergic neurons in the substantia nigra. The aetiology of PD is influenced by a variety of genetic, environmental, and cellular variables. One important aspect of this pathophysiology is autophagy, a crucial cellular homeostasis process that breaks down and recycles cytoplasmic components. Recent advances in genomic technologies have unravelled a significant impact of ncRNAs on the regulation of autophagy pathways, thereby implicating their roles in PD onset and progression. They are members of a family of RNAs that include miRNAs, circRNA and lncRNAs that have been shown to play novel pleiotropic functions in the pathogenesis of PD by modulating the expression of genes linked to autophagic activities and dopaminergic neuron survival. This review aims to integrate the current genetic paradigms with the therapeutic prospect of autophagy-associated ncRNAs in PD. By synthesizing the findings of recent genetic studies, we underscore the importance of ncRNAs in the regulation of autophagy, how they are dysregulated in PD, and how they represent novel dimensions for therapeutic intervention. The therapeutic promise of targeting ncRNAs in PD is discussed, including the barriers that need to be overcome and future directions that must be embraced to funnel these ncRNA molecules for the treatment and management of PD.
Collapse
Affiliation(s)
- Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Gaurav Gupta
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates; Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| | - Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Kumud Pant
- Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India; Graphic Era Hill University, Clement Town, Dehradun 248002, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Keshav Raj Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; School of Medical and Life Sciences, Sunway University, 47500 Sunway City, Malaysia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
30
|
Low ZY, Yip AJW, Chan AML, Choo WS. 14-3-3 Family of Proteins: Biological Implications, Molecular Interactions, and Potential Intervention in Cancer, Virus and Neurodegeneration Disorders. J Cell Biochem 2024; 125:e30624. [PMID: 38946063 DOI: 10.1002/jcb.30624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
The 14-3-3 family of proteins are highly conserved acidic eukaryotic proteins (25-32 kDa) abundantly present in the body. Through numerous binding partners, the 14-3-3 is responsible for many essential cellular pathways, such as cell cycle regulation and gene transcription control. Hence, its dysregulation has been linked to the onset of critical illnesses such as cancers, neurodegenerative diseases and viral infections. Interestingly, explorative studies have revealed an inverse correlation of 14-3-3 protein in cancer and neurodegenerative diseases, and the direct manipulation of 14-3-3 by virus to enhance infection capacity has dramatically extended its significance. Of these, COVID-19 has been linked to the 14-3-3 proteins by the interference of the SARS-CoV-2 nucleocapsid (N) protein during virion assembly. Given its predisposition towards multiple essential host signalling pathways, it is vital to understand the holistic interactions between the 14-3-3 protein to unravel its potential therapeutic unit in the future. As such, the general structure and properties of the 14-3-3 family of proteins, as well as their known biological functions and implications in cancer, neurodegeneration, and viruses, were covered in this review. Furthermore, the potential therapeutic target of 14-3-3 proteins in the associated diseases was discussed.
Collapse
Affiliation(s)
- Zheng Yao Low
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Ashley Jia Wen Yip
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Alvin Man Lung Chan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Wee Sim Choo
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
31
|
Wang Z, Wu T, Hu H, Alabed AAA, Cui G, Sun L, Sun Z, Wang Y, Li P. Plasma exosomes carrying mmu-miR-146a-5p and Notch signalling pathway-mediated synaptic activity in schizophrenia. J Psychiatry Neurosci 2024; 49:E265-E281. [PMID: 39209459 PMCID: PMC11374447 DOI: 10.1503/jpn.230118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 03/13/2024] [Accepted: 05/25/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Schizophrenia is characterized by a complex interplay of genetic and environmental factors, leading to alterations in various molecular pathways that may contribute to its pathogenesis. Recent studies have shown that exosomal microRNAs could play essential roles in various brain disorders; thus, we sought to explore the potential molecular mechanisms through which microRNAs in plasma exosomes are involved in schizophrenia. METHODS We obtained sequencing data sets (SUB12404730, SUB12422862, and SUB12421357) and transcriptome sequencing data sets (GSE111708, GSE108925, and GSE18981) from mouse models of schizophrenia using the Sequence Read Archive and the Gene Expression Omnibus databases, respectively. We performed differential expression analysis on mRNA to identify differentially expressed genes. We conducted Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses to determine differentially expressed genes. Subsequently, we determined the intersection of differentially expressed microRNAs in plasma exosomes and in prefrontal cortex tissue. We retrieved downstream target genes of mmu-miR-146a-5p from TargetScan and used Cytoscape to visualize and map the microRNA-target gene regulatory network. We conducted in vivo experiments using MK-801-induced mouse schizophrenia models and in vitro experiments using cultured mouse neurons. The role of plasma exosomal miR-146a-5p in schizophrenia was validated using a cell counting kit, detection of lactate dehydrogenase, dual-luciferase assay, quantitative reverse transcription polymerase chain reaction, and Western blot analysis. RESULTS Differential genes were mainly enriched in synaptic regulation-related functions and pathways and were associated with neuronal degeneration. We found that mmu-miR-146a-5p was highly expressed in both prefrontal cortical tissue and plasma exosomes, which may be transferred to lobe cortical vertebral neurons, leading to the synergistic dysregulation of gene network functions and, therefore, promoting schizophrenia development. We found that mmu-miR-146a-5p may inhibit the Notch signalling pathway-mediated synaptic activity of mouse pyramidal neurons in the lobe cortex by targeting NOTCH1, which in turn could promote the onset and development of schizophrenia in mice. LIMITATIONS The study's findings are based on animal models and in vitro experiments, which may not fully replicate the complexity of human schizophrenia. CONCLUSION Our findings suggest that mmu-miR-146a-5p in plasma-derived exosomes may play an important role in the pathogenesis of schizophrenia. Our results provide new insights into the underlying molecular mechanisms of the disease.
Collapse
Affiliation(s)
- Zhichao Wang
- From the Departments of Academic Research, Qiqihar Medical University, Qiqihar, PR China (Z. Wang); the School of Basic Medical Sciences, Nanchang University, Nanchang, PR China (Hu); the Community Medicine Department, Faculty of Medicine, Lincoln University College, Malaysia (Alabed); the Department of Psychology, Qiqihar Medical University, Qiqihar, PR China (Wu, Cui, L. Sun, Z. Sun)
| | - Tong Wu
- From the Departments of Academic Research, Qiqihar Medical University, Qiqihar, PR China (Z. Wang); the School of Basic Medical Sciences, Nanchang University, Nanchang, PR China (Hu); the Community Medicine Department, Faculty of Medicine, Lincoln University College, Malaysia (Alabed); the Department of Psychology, Qiqihar Medical University, Qiqihar, PR China (Wu, Cui, L. Sun, Z. Sun)
| | - Houjia Hu
- From the Departments of Academic Research, Qiqihar Medical University, Qiqihar, PR China (Z. Wang); the School of Basic Medical Sciences, Nanchang University, Nanchang, PR China (Hu); the Community Medicine Department, Faculty of Medicine, Lincoln University College, Malaysia (Alabed); the Department of Psychology, Qiqihar Medical University, Qiqihar, PR China (Wu, Cui, L. Sun, Z. Sun)
| | - Alabed Ali A Alabed
- From the Departments of Academic Research, Qiqihar Medical University, Qiqihar, PR China (Z. Wang); the School of Basic Medical Sciences, Nanchang University, Nanchang, PR China (Hu); the Community Medicine Department, Faculty of Medicine, Lincoln University College, Malaysia (Alabed); the Department of Psychology, Qiqihar Medical University, Qiqihar, PR China (Wu, Cui, L. Sun, Z. Sun)
| | - Guangcheng Cui
- From the Departments of Academic Research, Qiqihar Medical University, Qiqihar, PR China (Z. Wang); the School of Basic Medical Sciences, Nanchang University, Nanchang, PR China (Hu); the Community Medicine Department, Faculty of Medicine, Lincoln University College, Malaysia (Alabed); the Department of Psychology, Qiqihar Medical University, Qiqihar, PR China (Wu, Cui, L. Sun, Z. Sun)
| | - Lei Sun
- From the Departments of Academic Research, Qiqihar Medical University, Qiqihar, PR China (Z. Wang); the School of Basic Medical Sciences, Nanchang University, Nanchang, PR China (Hu); the Community Medicine Department, Faculty of Medicine, Lincoln University College, Malaysia (Alabed); the Department of Psychology, Qiqihar Medical University, Qiqihar, PR China (Wu, Cui, L. Sun, Z. Sun)
| | - Zhenghai Sun
- From the Departments of Academic Research, Qiqihar Medical University, Qiqihar, PR China (Z. Wang); the School of Basic Medical Sciences, Nanchang University, Nanchang, PR China (Hu); the Community Medicine Department, Faculty of Medicine, Lincoln University College, Malaysia (Alabed); the Department of Psychology, Qiqihar Medical University, Qiqihar, PR China (Wu, Cui, L. Sun, Z. Sun)
| | - Yuchen Wang
- From the Departments of Academic Research, Qiqihar Medical University, Qiqihar, PR China (Z. Wang); the School of Basic Medical Sciences, Nanchang University, Nanchang, PR China (Hu); the Community Medicine Department, Faculty of Medicine, Lincoln University College, Malaysia (Alabed); the Department of Psychology, Qiqihar Medical University, Qiqihar, PR China (Wu, Cui, L. Sun, Z. Sun)
| | - Ping Li
- From the Departments of Academic Research, Qiqihar Medical University, Qiqihar, PR China (Z. Wang); the School of Basic Medical Sciences, Nanchang University, Nanchang, PR China (Hu); the Community Medicine Department, Faculty of Medicine, Lincoln University College, Malaysia (Alabed); the Department of Psychology, Qiqihar Medical University, Qiqihar, PR China (Wu, Cui, L. Sun, Z. Sun)
| |
Collapse
|
32
|
Muleiro Alvarez M, Cano-Herrera G, Osorio Martínez MF, Vega Gonzales-Portillo J, Monroy GR, Murguiondo Pérez R, Torres-Ríos JA, van Tienhoven XA, Garibaldi Bernot EM, Esparza Salazar F, Ibarra A. A Comprehensive Approach to Parkinson's Disease: Addressing Its Molecular, Clinical, and Therapeutic Aspects. Int J Mol Sci 2024; 25:7183. [PMID: 39000288 PMCID: PMC11241043 DOI: 10.3390/ijms25137183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Parkinson's disease (PD) is a gradually worsening neurodegenerative disorder affecting the nervous system, marked by a slow progression and varied symptoms. It is the second most common neurodegenerative disease, affecting over six million people in the world. Its multifactorial etiology includes environmental, genomic, and epigenetic factors. Clinical symptoms consist of non-motor and motor symptoms, with motor symptoms being the classic presentation. Therapeutic approaches encompass pharmacological, non-pharmacological, and surgical interventions. Traditional pharmacological treatment consists of administering drugs (MAOIs, DA, and levodopa), while emerging evidence explores the potential of antidiabetic agents for neuroprotection and gene therapy for attenuating parkinsonian symptoms. Non-pharmacological treatments, such as exercise, a calcium-rich diet, and adequate vitamin D supplementation, aim to slow disease progression and prevent complications. For those patients who have medically induced side effects and/or refractory symptoms, surgery is a therapeutic option. Deep brain stimulation is the primary surgical option, associated with motor symptom improvement. Levodopa/carbidopa intestinal gel infusion through percutaneous endoscopic gastrojejunostomy and a portable infusion pump succeeded in reducing "off" time, where non-motor and motor symptoms occur, and increasing "on" time. This article aims to address the general aspects of PD and to provide a comparative comprehensive review of the conventional and the latest therapeutic advancements and emerging treatments for PD. Nevertheless, further studies are required to optimize treatment and provide suitable alternatives.
Collapse
Affiliation(s)
- Mauricio Muleiro Alvarez
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
| | - Gabriela Cano-Herrera
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
| | - María Fernanda Osorio Martínez
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
| | | | - Germán Rivera Monroy
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
| | - Renata Murguiondo Pérez
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
| | - Jorge Alejandro Torres-Ríos
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
| | - Ximena A. van Tienhoven
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
| | - Ernesto Marcelo Garibaldi Bernot
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
| | - Felipe Esparza Salazar
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
| | - Antonio Ibarra
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
- Secretaria de la Defensa Nacional, Escuela Militar de Graduados en Sanidad, Ciudad de México 11200, Mexico
| |
Collapse
|
33
|
Meng L, Ouyang Z, Chen Y, Huang C, Yu Y, Fan R. Low-dose BPA-induced neuronal energy metabolism dysfunction and apoptosis mediated by PINK1/parkin mitophagy pathway in juvenile rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172655. [PMID: 38653419 DOI: 10.1016/j.scitotenv.2024.172655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Bisphenol A (BPA) is related to neurological disorders involving mitochondrial dysfunction, while the mechanism remains elusive. Therefore, we explored it through in vitro and in vivo experiments. In vitro, hippocampal neurons derived from neonatal rats of different genders were exposed to 1-100 nM and 100 μM BPA, autophagy activator Rapa and inhibitor 3-MA for 7 d. The results suggested that even nanomolar BPA (1-100 nM) disturbed Ca2+ homeostasis and damaged the integrity of mitochondrial cristae in neurons (p < 0.05). Furthermore, BPA increased the number of autophagic lysosomes, LC3II/LC3I ratio, and p62 expression, and decreased parkin expression (p < 0.05), suggesting that the entry of damaged mitochondria into autophagic pathway was prompted, while the autophagic degradation pathway was blocked. This further disrupts neuronal energy metabolism and promotes neuronal apoptosis. However, Rapa attenuated the adverse effects caused by BPA, while 3-MA exacerbated these reactions. In vivo, exposure of juvenile rats to 0.5, 50, 5000 μg/kg‧bw/day BPA during PND 7-21 markedly impaired the structure of hippocampal mitochondria, increased the number of autophagosomes, the rate of neuronal apoptosis, and the expression levels of pro-apoptotic proteins Cyt C, Bax, Bak1, and Caspase3, and decreased the expression of anti-apoptotic protein Bcl2 (p < 0.05). Particularly, male rats are more sensitive to low-dose BPA than females. Overall, environmental-doses BPA can induce the imbalance of energy metabolism in hippocampal neurons via PINK1/parkin mitophagy, thereby inducing their apoptosis. Importantly, this study provides a theoretical basis for attenuating BPA-related neurological diseases.
Collapse
Affiliation(s)
- Lingxue Meng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Zedong Ouyang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yuxin Chen
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Chengmeng Huang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Ruifang Fan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
34
|
Hu Y, Zhang L, Tian C, Chen F, Li P, Zhang A, Wang W. Molecular crosstalk and putative mechanisms underlying mitochondrial quality control: The hidden link with methylmercury-induced cognitive impairment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116360. [PMID: 38678690 DOI: 10.1016/j.ecoenv.2024.116360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/04/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
Methylmercury (MeHg) is a neurotoxin associated with foetal neurodevelopmental and adult cognitive deficits. Neurons are highly dependent on the tricarboxylic acid cycle and oxidative phosphorylation to produce ATP and meet their high energy demands. Therefore, mitochondrial quality control (MQC) is critical for neuronal homeostasis. While existing studies have generated a wealth of data on the toxicity of MeHg, the complex cascades and molecular pathways governing the mitochondrial network remain to be elucidated. Here, 0.6, 1.2 and 2.4 mg/kg body weight of MeHg were administered intragastrically to pregnant Sprague Dawley rats to model maternal MeHg exposure. The results of the in vivo study revealed that MeHg-treated rats tended to perform more directionless repetitive strategies in the Morris Water Maze and fewer target-orientation strategies than control offspring. Moreover, pathological injury and synaptic toxicity were observed in the hippocampus. Transmission electron microscopy (TEM) demonstrated that the autophagosomes encapsulated damaged mitochondria, while showing a typical mitochondrial fission phenotype, which was supported by the activation of PINK1-dependent key regulators of mitophagy. Moreover, there was upregulation of DRP1 and FIS1. Additionally, MeHg compensation promoted mitochondrial biogenesis, as evidenced by the activation of the mitochondrial PGC1-α-NRF1-TFAM signalling pathway. Notably, SIRT3/AMPK was activated by MeHg, and the expression and activity of p-AMPK, p-LKB1 and SIRT3 were consistently coordinated. Collectively, these findings provide new insights into the potential molecular mechanisms regulating MeHg-induced cognitive deficits through SIRT3/AMPK MQC network coordination.
Collapse
Affiliation(s)
- Yi Hu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Li Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Changsong Tian
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Fang Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Ping Li
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China; Collaborative Innovation Centre for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang 550025, China.
| | - Wenjuan Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China; Collaborative Innovation Centre for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang 550025, China.
| |
Collapse
|
35
|
Zhao Y, Lin M, Zhai F, Chen J, Jin X. Exploring the Role of Ubiquitin-Proteasome System in the Pathogenesis of Parkinson's Disease. Pharmaceuticals (Basel) 2024; 17:782. [PMID: 38931449 PMCID: PMC11207014 DOI: 10.3390/ph17060782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/23/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder among the elderly population. The pathogenesis of PD encompasses genetic alterations, environmental factors, and age-related neurodegenerative processes. Numerous studies have demonstrated that aberrant functioning of the ubiquitin-proteasome system (UPS) plays a crucial role in the initiation and progression of PD. Notably, E3 ubiquitin ligases serve as pivotal components determining substrate specificity within UPS and are intimately associated with the regulation of various proteins implicated in PD pathology. This review comprehensively summarizes the mechanisms by which E3 ubiquitin ligases and deubiquitinating enzymes modulate PD-associated proteins and signaling pathways, while exploring the intricate relationship between UPS dysfunctions and PD etiology. Furthermore, this article discusses recent research advancements regarding inhibitors targeting PD-related E3 ubiquitin ligases.
Collapse
Affiliation(s)
- Yiting Zhao
- Department of Chemoradiotherapy, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China; (Y.Z.); (M.L.)
- Department of Ultrasound Medicine, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo 315211, China;
| | - Man Lin
- Department of Chemoradiotherapy, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China; (Y.Z.); (M.L.)
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo 315211, China;
| | - Fengguang Zhai
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo 315211, China;
| | - Jun Chen
- Department of Chemoradiotherapy, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China; (Y.Z.); (M.L.)
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo 315211, China;
| | - Xiaofeng Jin
- Department of Chemoradiotherapy, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China; (Y.Z.); (M.L.)
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo 315211, China;
| |
Collapse
|
36
|
Cucinotta L, Mannino D, Filippone A, Romano A, Esposito E, Paterniti I. The role of autophagy in Parkinson's disease: a gender difference overview. Front Pharmacol 2024; 15:1408152. [PMID: 38933683 PMCID: PMC11199695 DOI: 10.3389/fphar.2024.1408152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Recent studies have demonstrated dysregulation of the autophagy pathway in patients with Parkinson's disease (PD) and in animal models of PD, highlighting its emerging role in disease. In particular, several studies indicate that autophagy, which is an essential degradative process for the damaged protein homeostasis and the management of cell balance, can manifest significant variations according to gender. While some evidence suggests increased autophagic activation in men with PD, women may have distinct regulatory patterns. In this review, we examined the existing literature on gender differences in PD-associated autophagic processes, focusing on the autophagy related proteins (ATGs) and leucine rich repeat kinase 2 (LRRK2) genes. Also, this review would suggest that an in-depth understanding of these gender differences in autophagic processes could open new perspectives for personalized therapeutic strategies, promoting more effective and targeted management of PD.
Collapse
Affiliation(s)
- Laura Cucinotta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Deborah Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Adele Romano
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
37
|
Trease AJ, Totusek S, Lichter EZ, Stauch KL, Fox HS. Mitochondrial DNA Instability Supersedes Parkin Mutations in Driving Mitochondrial Proteomic Alterations and Functional Deficits in Polg Mutator Mice. Int J Mol Sci 2024; 25:6441. [PMID: 38928146 PMCID: PMC11203920 DOI: 10.3390/ijms25126441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Mitochondrial quality control is essential in mitochondrial function. To examine the importance of Parkin-dependent mechanisms in mitochondrial quality control, we assessed the impact of modulating Parkin on proteome flux and mitochondrial function in a context of reduced mtDNA fidelity. To accomplish this, we crossed either the Parkin knockout mouse or ParkinW402A knock-in mouse lines to the Polg mitochondrial mutator line to generate homozygous double mutants. In vivo longitudinal isotopic metabolic labeling was followed by isolation of liver mitochondria and synaptic terminals from the brain, which are rich in mitochondria. Mass spectrometry and bioenergetics analysis were assessed. We demonstrate that slower mitochondrial protein turnover is associated with loss of mtDNA fidelity in liver mitochondria but not synaptic terminals, and bioenergetic function in both tissues is impaired. Pathway analysis revealed loss of mtDNA fidelity is associated with disturbances of key metabolic pathways, consistent with its association with metabolic disorders and neurodegeneration. Furthermore, we find that loss of Parkin leads to exacerbation of Polg-driven proteomic consequences, though it may be bioenergetically protective in tissues exhibiting rapid mitochondrial turnover. Finally, we provide evidence that, surprisingly, dis-autoinhibition of Parkin (ParkinW402A) functionally resembles Parkin knockout and fails to rescue deleterious Polg-driven effects. Our study accomplishes three main outcomes: (1) it supports recent studies suggesting that Parkin dependence is low in response to an increased mtDNA mutational load, (2) it provides evidence of a potential protective role of Parkin insufficiency, and (3) it draws into question the therapeutic attractiveness of enhancing Parkin function.
Collapse
Affiliation(s)
- Andrew J. Trease
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.J.T.); (S.T.); (K.L.S.)
| | - Steven Totusek
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.J.T.); (S.T.); (K.L.S.)
| | - Eliezer Z. Lichter
- Computational Biomedicine Section, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Kelly L. Stauch
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.J.T.); (S.T.); (K.L.S.)
| | - Howard S. Fox
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.J.T.); (S.T.); (K.L.S.)
| |
Collapse
|
38
|
Zhao Y, Xu K, Shu F, Zhang F. Neurotropic virus infection and neurodegenerative diseases: Potential roles of autophagy pathway. CNS Neurosci Ther 2024; 30:e14548. [PMID: 38082503 PMCID: PMC11163195 DOI: 10.1111/cns.14548] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 06/11/2024] Open
Abstract
Neurodegenerative diseases (NDs) constitute a group of disorders characterized by the progressive deterioration of nervous system functionality. Currently, the precise etiological factors responsible for NDs remain incompletely elucidated, although it is probable that a combination of aging, genetic predisposition, and environmental stressors participate in this process. Accumulating evidence indicates that viral infections, especially neurotropic viruses, can contribute to the onset and progression of NDs. In this review, emerging evidence supporting the association between viral infection and NDs is summarized, and how the autophagy pathway mediated by viral infection can cause pathological aggregation of cellular proteins associated with various NDs is discussed. Furthermore, autophagy-related genes (ARGs) involved in Herpes simplex virus (HSV-1) infection and NDs are analyzed, and whether these genes could link HSV-1 infection to NDs is discussed. Elucidating the mechanisms underlying NDs is critical for developing targeted therapeutic approaches that prevent the onset and slow the progression of NDs.
Collapse
Affiliation(s)
- Yu‐jia Zhao
- Laboratory Animal CentreZunyi Medical UniversityZunyiGuizhouChina
| | - Kai‐fei Xu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou ProvinceZunyi Medical UniversityZunyiGuizhouChina
| | - Fu‐xing Shu
- Bioresource Institute for Healthy UtilizationZunyi Medical UniversityZunyiGuizhouChina
| | - Feng Zhang
- Laboratory Animal CentreZunyi Medical UniversityZunyiGuizhouChina
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou ProvinceZunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
39
|
Shadab A, Abbasi-Kolli M, Saharkhiz M, Ahadi SH, Shokouhi B, Nahand JS. The interplay between mitochondrial dysfunction and NLRP3 inflammasome in multiple sclerosis: Therapeutic implications and animal model studies. Biomed Pharmacother 2024; 175:116673. [PMID: 38713947 DOI: 10.1016/j.biopha.2024.116673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/09/2024] Open
Abstract
Multiple sclerosis (MS) is a complex autoimmune disorder that impacts the central nervous system (CNS), resulting in inflammation, demyelination, and neurodegeneration. The NOD-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome, a multiprotein complex of the innate immune system, serves an essential role in the pathogenesis of MS by regulating the production of pro-inflammatory cytokines (IL-1β & IL-18) and the induction of pyroptotic cell death. Mitochondrial dysfunction is one of the main potential factors that can trigger NLRP3 inflammasome activation and lead to inflammation and axonal damage in MS. This highlights the importance of understanding how mitochondrial dynamics modulate NLRP3 inflammasome activity and contribute to the inflammatory and neurodegenerative features of MS. The lack of a comprehensive understanding of the pathogenesis of MS and the urge for the introduction of new therapeutic strategies led us to review the therapeutic potential of targeting the interplay between mitochondrial dysfunction and the NLRP3 inflammasome in MS. This paper also evaluates the natural and synthetic compounds that can improve mitochondrial function and/or inhibit the NLRP3 inflammasome, thereby providing neuroprotection. Moreover, it summarizes the evidence from animal models of MS that demonstrate the beneficial effects of these compounds on reducing inflammation, demyelination, and neurodegeneration. Finally, this review advocates for a deeper investigation into the molecular crosstalk between mitochondrial dynamics and the NLRP3 inflammasome as a means to refine therapeutic targets for MS.
Collapse
Affiliation(s)
- Alireza Shadab
- Deputy of Health, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohammad Abbasi-Kolli
- Deputy of Health, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mansoore Saharkhiz
- Department of immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran; Cellular and molecular research center, Birjand University of medical sciences, Birjand, Iran
| | | | - Behrooz Shokouhi
- Pathology Department, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
40
|
Abou-Hany HO, El-Sherbiny M, Elshaer S, Said E, Moustafa T. Neuro-modulatory impact of felodipine against experimentally-induced Parkinson's disease: Possible contribution of PINK1-Parkin mitophagy pathway. Neuropharmacology 2024; 250:109909. [PMID: 38494124 DOI: 10.1016/j.neuropharm.2024.109909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder, characterized by motor and psychological dysfunction. Palliative treatment and dopamine replenishment therapy are the only available therapeutic options. Calcium channel blockers (CCBs) have been reported to protect against several neurodegenerative disorders. The current study was designed to evaluate the neuroprotective impact of Felodipine (10 mg/kg, orally) as a CCB on motor and biochemical dysfunction associated with experimentally induced PD using rotenone (2.5 mg/kg, IP) and to investigate the underlying mechanisms. Rotenone induced deleterious neuromotor outcomes, typical of those associated with PD. The striatum revealed increased oxidative burden and NO levels with decreased antioxidant capacity. Nrf2 content significantly decreased with the accumulation of α-synuclein and tau proteins in both the substantia nigra and striatum. These observations significantly improved with felodipine treatment. Of note, felodipine increased dopamine levels in the substantia nigra and striatum as confirmed by the suppression of inflammation and the significant reduction in striatal NF-κB and TNF-α contents. Moreover, felodipine enhanced mitophagy, as confirmed by a significant increase in mitochondrial Parkin and suppression of LC3a/b and SQSTM1/p62. In conclusion, felodipine restored dopamine synthesis, attenuated oxidative stress, inflammation, and mitochondrial dysfunction, and improved the mitophagy process resulting in improved PD-associated motor impairment.
Collapse
Affiliation(s)
- Hadeer O Abou-Hany
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Sciences and Technology, Gamasa, 7730103, Egypt.
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh, 11597, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Sally Elshaer
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt; St. Jude Children's Research Hospital, Oncology Department, Memphis, TN, USA, 38105
| | - Eman Said
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, New Mansoura University, New Manoura, Egypt
| | - Tarek Moustafa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
41
|
Kciuk M, Garg N, Dhankhar S, Saini M, Mujwar S, Devi S, Chauhan S, Singh TG, Singh R, Marciniak B, Gielecińska A, Kontek R. Exploring the Comprehensive Neuroprotective and Anticancer Potential of Afzelin. Pharmaceuticals (Basel) 2024; 17:701. [PMID: 38931368 PMCID: PMC11206995 DOI: 10.3390/ph17060701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, Huntington's disease, and others) and cancer, seemingly disparate in their etiology and manifestation, exhibit intriguing associations in certain cellular and molecular processes. Both cancer and neurodegenerative diseases involve the deregulation of cellular processes such as apoptosis, proliferation, and DNA repair and pose a significant global health challenge. Afzelin (kaempferol 3-O-rhamnoside) is a flavonoid compound abundant in various plant sources. Afzelin exhibits a diverse range of biological activities, offering promising prospects for the treatment of diseases hallmarked by oxidative stress and deregulation of cell death pathways. Its protective potential against oxidative stress is also promising for alleviating the side effects of chemotherapy. This review explores the potential therapeutic implications of afzelin, including its capacity to mitigate oxidative stress, modulate inflammation, and promote cellular regeneration in neurodegenerative and cancer diseases.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (M.K.); (B.M.); (A.G.); (R.K.)
| | - Nitika Garg
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (N.G.); (S.D.); (S.D.); (T.G.S.)
| | - Sanchit Dhankhar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (N.G.); (S.D.); (S.D.); (T.G.S.)
| | - Monika Saini
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala 133207, Haryana, India;
- Swami Vivekanand College of Pharmacy, Ramnagar, Banur 140601, Punjab, India
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (N.G.); (S.D.); (S.D.); (T.G.S.)
| | - Sushma Devi
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (N.G.); (S.D.); (S.D.); (T.G.S.)
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (N.G.); (S.D.); (S.D.); (T.G.S.)
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (N.G.); (S.D.); (S.D.); (T.G.S.)
| | - Randhir Singh
- Department of Pharmacology, Central University of Punjab, Bathinda 151401, Punjab, India;
| | - Beata Marciniak
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (M.K.); (B.M.); (A.G.); (R.K.)
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (M.K.); (B.M.); (A.G.); (R.K.)
- Doctoral School of Exact and Natural Sciences, University of Lodz, 90-237 Lodz, Poland
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (M.K.); (B.M.); (A.G.); (R.K.)
| |
Collapse
|
42
|
Jiao K, Lai Z, Cheng Q, Yang Z, Liao W, Liao Y, Long H, Sun R, Lang T, Shao L, Deng C, She Y. Glycosides of Buyang Huanwu decoction inhibits inflammation associated with cerebral ischemia-reperfusion via the PINK1/Parkin mitophagy pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117766. [PMID: 38266949 DOI: 10.1016/j.jep.2024.117766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A classic stroke formula is Buyang Huanwu Decoction (BYHWD), Glycosides are the pharmacological components found in BYHWD, which are utilized for the prevention and management of cerebral ischemia-reperfusion (CIR), as demonstrated in a previous study. Its neuroprotective properties are closely related to its ability to modulate inflammation, but its mechanism is as yet unclear. AIM OF THE STUDY A research was undertaken to investigate the impact of glycosides on the inflammation of CIR through the PTEN-induced putative kinase-1 (PINK1)/Parkin mitophagy pathway. MATERIALS AND METHODS Analyzing glycosides containing serum components was performed with ultra-performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS). Glycosides were applied to rat of Middle cerebral artery occlusion/reperfusion (MCAO/R) model and primary neural cell of Oxygen glucose deprivation/reperfusion (OGD/R) model. The neuroprotective effect and the regulation of mitophagy of glycosides were evaluated through neural damage and PINK1/Parkin mitophagy activation. Moreover, the assessment of the relationship between glycosides regulation of mitophagy and its anti-inflammatory effects subsequent to mitophagy blockade was conducted by examining neural damage, PINK1/Parkin mitophagy activation, and levels of pyroptosis. RESULTS (1) It was observed that the administration of glycosides resulted in a decrease in neurological function scores, a reduction in cerebral infarction volume, an increase in mitochondrial autophagosome, and the maintenance of a high expression status of light chain 3 (LC3) II/LC3Ⅰ protein. Additionally, there was a significant inhibition of p62 protein expression and an enhancement of PINK1 and Parkin protein expression. Furthermore, it was found that the effect of glycosides at a dosage of 0.128 g · kg-1 was significantly superior to that of glycosides at a dosage of 0.064 g · kg-1. Notably, the neuroprotective effect and inhibition of pyroptosis protein of glycosides at a dosage of 0.128 g · kg-1 were attenuated when mitochondrial autophagy was blocked. (2) Glycosides repaired cellular morphological damage, enhanced cell survival, and reduced Lactate dehydrogenase (LDH) leakage, with glycosides (2.36 μg·mL-1 and 4.72 μg·mL-1) neuronal protection being the strongest. Glycosides (4.72 μg·mL-1) maintained LC3II/LC3Ⅰ protein high expression state, inhibited p62 protein expression, and promoted PINK1 and Parkin protein expression, which was stronger than glycosides (2.36 μg·mL-1). The blockade of mitophagy resulted in a reduction of neuroprotection and inhibition of pyroptosis protein exerted by glycosides. CONCLUSION Glycosides demonstrate the ability to hinder inflammation through the activation of the PINK1/Parkin mitophagy pathway, thereby leading to subsequent neuroprotective effects on CIR.
Collapse
Affiliation(s)
- Keyan Jiao
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Zili Lai
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Qiaochu Cheng
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Zhengyu Yang
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Wenxin Liao
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yanhao Liao
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Hongping Long
- The First Hospital of Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ruiting Sun
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ting Lang
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Le Shao
- The First Hospital of Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Changqing Deng
- Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Yan She
- Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
43
|
Jabbehdari S, Oganov AC, Rezagholi F, Mohammadi S, Harandi H, Yazdanpanah G, Arevalo JF. Age-related macular degeneration and neurodegenerative disorders: Shared pathways in complex interactions. Surv Ophthalmol 2024; 69:303-310. [PMID: 38000700 DOI: 10.1016/j.survophthal.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
Age-related macular degeneration (AMD) is a leading cause of irreversible blindness in the elderly, and neurodegenerative disorders such as Alzheimer disease and Parkinson disease are debilitating conditions that affect millions worldwide. Despite the different clinical manifestations of these diseases, growing evidence suggests that they share common pathways in their pathogenesis including inflammation, oxidative stress, and impaired autophagy. In this review, we explore the complex interactions between AMD and neurodegenerative disorders, focusing on their shared mechanisms and potential therapeutic targets. We also discuss the current opportunities and challenges for developing effective treatments that can target these pathways to prevent or slow down disease progression in AMD. Some of the promising strategies that we explore include modulating the immune response, reducing oxidative stress, enhancing autophagy and lysosomal function, and targeting specific protein aggregates or pathways. Ultimately, a better understanding of the shared pathways between AMD and neurodegenerative disorders may pave the way for novel and more efficacious treatments.
Collapse
Affiliation(s)
- Sayena Jabbehdari
- Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Anthony C Oganov
- Department of Ophthalmology, Renaissance School of Medicine, Stony Brook, NY, USA
| | - Fateme Rezagholi
- School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Soheil Mohammadi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Harandi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - J Fernando Arevalo
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
44
|
Panaitescu PȘ, Răzniceanu V, Mocrei-Rebrean ȘM, Neculicioiu VS, Dragoș HM, Costache C, Filip GA. The Effect of Gut Microbiota-Targeted Interventions on Neuroinflammation and Motor Function in Parkinson's Disease Animal Models-A Systematic Review. Curr Issues Mol Biol 2024; 46:3946-3974. [PMID: 38785512 PMCID: PMC11120577 DOI: 10.3390/cimb46050244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Gut microbiome-targeted interventions such as fecal transplant, prebiotics, probiotics, synbiotics, and antibiotic gut depletion are speculated to be of potential use in delaying the onset and progression of Parkinson's disease by rebalancing the gut microbiome in the context of the gut-brain axis. Our study aims to organize recent findings regarding these interventions in Parkinson's disease animal models to identify how they affect neuroinflammation and motor outcomes. A systematic literature search was applied in PubMed, Web of Science, Embase, and SCOPUS for gut microbiome-targeted non-dietary interventions. Studies that investigated gut-targeted interventions by using in vivo murine PD models to follow dopaminergic cell loss, motor tests, and neuroinflammatory markers as outcomes were considered to be eligible. A total of 1335 studies were identified in the databases, out of which 29 were found to be eligible. A narrative systematization of the resulting data was performed, and the effect direction for the outcomes was represented. Quality assessment using the SYRCLE risk of bias tool was also performed. Out of the 29 eligible studies, we found that a significant majority report that the intervention reduced the dopaminergic cell loss (82.76%, 95% CI [64.23%, 94.15%]) produced by the induction of the disease model. Also, most studies reported a reduction in microglial (87.5%, 95% CI [61.65%, 98.45%]) and astrocytic activation (84,62%, 95% CI [54.55%, 98.08%]) caused by the induction of the disease model. These results were also mirrored in the majority (96.4% 95% CI [81.65%, 99.91%]) of the studies reporting an increase in performance in behavioral motor tests. A significant limitation of the study was that insufficient information was found in the studies to assess specific causes of the risk of bias. These results show that non-dietary gut microbiome-targeted interventions can improve neuroinflammatory and motor outcomes in acute Parkinson's disease animal models. Further studies are needed to clarify if these benefits transfer to the long-term pathogenesis of the disease, which is not yet fully understood. The study had no funding source, and the protocol was registered in the PROSPERO database with the ID number CRD42023461495.
Collapse
Affiliation(s)
- Paul-Ștefan Panaitescu
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (P.-Ș.P.); (Ș.-M.M.-R.)
- Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (V.S.N.)
| | - Vlad Răzniceanu
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (P.-Ș.P.); (Ș.-M.M.-R.)
- Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (V.S.N.)
| | - Ștefania-Maria Mocrei-Rebrean
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (P.-Ș.P.); (Ș.-M.M.-R.)
- Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (V.S.N.)
| | - Vlad Sever Neculicioiu
- Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (V.S.N.)
| | - Hanna-Maria Dragoș
- Department of Neurology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Carmen Costache
- Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (V.S.N.)
| | - Gabriela Adriana Filip
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (P.-Ș.P.); (Ș.-M.M.-R.)
| |
Collapse
|
45
|
Zhai W, Zhao M, Wei C, Zhang G, Qi Y, Zhao A, Sun L. Biomarker profiling to determine clinical impact of microRNAs in cognitive disorders. Sci Rep 2024; 14:8270. [PMID: 38594359 PMCID: PMC11004146 DOI: 10.1038/s41598-024-58882-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/04/2024] [Indexed: 04/11/2024] Open
Abstract
Alzheimer's disease (AD) and post-stroke cognitive impairment (PSCI) are the leading causes of progressive dementia related to neurodegenerative and cerebrovascular injuries in elderly populations. Despite decades of research, patients with these conditions still lack minimally invasive, low-cost, and effective diagnostic and treatment methods. MicroRNAs (miRNAs) play a vital role in AD and PSCI pathology. As they are easily obtained from patients, miRNAs are promising candidates for the diagnosis and treatment of these two disorders. In this study, we performed complete sequencing analysis of miRNAs from 24 participants, split evenly into the PSCI, post-stroke non-cognitive impairment (PSNCI), AD, and normal control (NC) groups. To screen for differentially expressed miRNAs (DE-miRNAs) in patients, we predicted their target genes using bioinformatics analysis. Our analyses identified miRNAs that can distinguish between the investigated disorders; several of them were novel and never previously reported. Their target genes play key roles in multiple signaling pathways that have potential to be modified as a clinical treatment. In conclusion, our study demonstrates the potential of miRNAs and their key target genes in disease management. Further in-depth investigations with larger sample sizes will contribute to the development of precise treatments for AD and PSCI.
Collapse
Affiliation(s)
- Weijie Zhai
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Xinmin Street 1#, Changchun, 130021, China
- Department of Neurology, Cognitive Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Meng Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Xinmin Street 1#, Changchun, 130021, China
- Department of Neurology, Cognitive Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Chunxiao Wei
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Xinmin Street 1#, Changchun, 130021, China
- Department of Neurology, Cognitive Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Guimei Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Xinmin Street 1#, Changchun, 130021, China
- Department of Neurology, Cognitive Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Yiming Qi
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Xinmin Street 1#, Changchun, 130021, China
- Department of Neurology, Cognitive Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Anguo Zhao
- Department of Urology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, 215000, China
| | - Li Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Xinmin Street 1#, Changchun, 130021, China.
- Department of Neurology, Cognitive Center, The First Hospital of Jilin University, Jilin University, Changchun, China.
| |
Collapse
|
46
|
Yang Y, Chen W, Lin Z, Wu Y, Li Y, Xia X. Panax notoginseng saponins prevent dementia and oxidative stress in brains of SAMP8 mice by enhancing mitophagy. BMC Complement Med Ther 2024; 24:144. [PMID: 38575939 PMCID: PMC10993618 DOI: 10.1186/s12906-024-04403-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 02/14/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Mitochondrial dysfunction is one of the distinctive features of neurons in patients with Alzheimer's disease (AD). Intraneuronal autophagosomes selectively phagocytose and degrade the damaged mitochondria, mitigating neuronal damage in AD. Panax notoginseng saponins (PNS) can effectively reduce oxidative stress and mitochondrial damage in the brain of animals with AD, but their exact mechanism of action is unknown. METHODS Senescence-accelerated mouse prone 8 (SAMP8) mice with age-related AD were treated with PNS for 8 weeks. The effects of PNS on learning and memory abilities, cerebral oxidative stress status, and hippocampus ultrastructure of mice were observed. Moreover, changes of the PTEN-induced putative kinase 1 (PINK1)-Parkin, which regulates ubiquitin-dependent mitophagy, and the recruit of downstream autophagy receptors were investigated. RESULTS PNS attenuated cognitive dysfunction in SAMP8 mice in the Morris water maze test. PNS also enhanced glutathione peroxidase and superoxide dismutase activities, and increased glutathione levels by 25.92% and 45.55% while inhibiting 8-hydroxydeoxyguanosine by 27.74% and the malondialdehyde production by 34.02% in the brains of SAMP8 mice. Our observation revealed the promotion of mitophagy, which was accompanied by an increase in microtubule-associated protein 1 light chain 3 (LC3) mRNA and 70.00% increase of LC3-II/I protein ratio in the brain tissues of PNS-treated mice. PNS treatment increased Parkin mRNA and protein expression by 62.80% and 43.80%, while increasing the mRNA transcription and protein expression of mitophagic receptors such as optineurin, and nuclear dot protein 52. CONCLUSION PNS enhanced the PINK1/Parkin pathway and facilitated mitophagy in the hippocampus, thereby preventing cerebral oxidative stress in SAMP8 mice. This may be a mechanism contributing to the cognition-improvement effect of PNS.
Collapse
Affiliation(s)
- Yingying Yang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Wenya Chen
- Key Laboratory of TCM Neuro-metabolism and Immunopharmacology of Guangxi Education Department, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Zhenmei Lin
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Yijing Wu
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Yuqing Li
- School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, 530200, China.
| | - Xing Xia
- Key Laboratory of TCM Neuro-metabolism and Immunopharmacology of Guangxi Education Department, Guangxi University of Chinese Medicine, Nanning, 530200, China.
| |
Collapse
|
47
|
Vongthip W, Nilkhet S, Boonruang K, Sukprasansap M, Tencomnao T, Baek SJ. Neuroprotective mechanisms of luteolin in glutamate-induced oxidative stress and autophagy-mediated neuronal cell death. Sci Rep 2024; 14:7707. [PMID: 38565590 PMCID: PMC10987666 DOI: 10.1038/s41598-024-57824-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
Neurodegenerative diseases, characterized by progressive neuronal dysfunction and loss, pose significant health challenges. Glutamate accumulation contributes to neuronal cell death in diseases such as Alzheimer's disease. This study investigates the neuroprotective potential of Albizia lebbeck leaf extract and its major constituent, luteolin, against glutamate-induced hippocampal neuronal cell death. Glutamate-treated HT-22 cells exhibited reduced viability, altered morphology, increased ROS, and apoptosis, which were attenuated by pre-treatment with A. lebbeck extract and luteolin. Luteolin also restored mitochondrial function, decreased mitochondrial superoxide, and preserved mitochondrial morphology. Notably, we first found that luteolin inhibited the excessive process of mitophagy via the inactivation of BNIP3L/NIX and inhibited lysosomal activity. Our study suggests that glutamate-induced autophagy-mediated cell death is attenuated by luteolin via activation of mTORC1. These findings highlight the potential of A. lebbeck as a neuroprotective agent, with luteolin inhibiting glutamate-induced neurotoxicity by regulating autophagy and mitochondrial dynamics.
Collapse
Affiliation(s)
- Wudtipong Vongthip
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Program in Clinical Biochemistry and Molecular Medicine, Chulalongkorn University, 10330, Bangkok, Thailand
- Laboratory of Signal Transduction, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Sunita Nilkhet
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Program in Clinical Biochemistry and Molecular Medicine, Chulalongkorn University, 10330, Bangkok, Thailand
- Laboratory of Signal Transduction, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Kanokkan Boonruang
- Laboratory of Signal Transduction, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Monruedee Sukprasansap
- Food Toxicology Unit, Institute of Nutrition, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Seung Joon Baek
- Laboratory of Signal Transduction, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.
| |
Collapse
|
48
|
Jeon SJ, Chung KC. The SCF-FBW7β E3 ligase mediates ubiquitination and degradation of the serine/threonine protein kinase PINK1. J Biol Chem 2024; 300:107198. [PMID: 38508312 PMCID: PMC11026729 DOI: 10.1016/j.jbc.2024.107198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/20/2024] [Accepted: 03/05/2024] [Indexed: 03/22/2024] Open
Abstract
Understanding the mechanisms that govern the stability of functionally crucial proteins is essential for various cellular processes, development, and overall cell viability. Disturbances in protein homeostasis are linked to the pathogenesis of neurodegenerative diseases. PTEN-induced kinase 1 (PINK1), a protein kinase, plays a significant role in mitochondrial quality control and cellular stress response, and its mutated forms lead to early-onset Parkinson's disease. Despite its importance, the specific mechanisms regulating PINK1 protein stability have remained unclear. This study reveals a cytoplasmic interaction between PINK1 and F-box and WD repeat domain-containing 7β (FBW7β) in mammalian cells. FBW7β, a component of the Skp1-Cullin-1-F-box protein complex-type ubiquitin ligase, is instrumental in recognizing substrates. Our findings demonstrate that FBW7β regulates PINK1 stability through the Skp1-Cullin-1-F-box protein complex and the proteasome pathway. It facilitates the K48-linked polyubiquitination of PINK1, marking it for degradation. When FBW7 is absent, PINK1 accumulates, leading to heightened mitophagy triggered by carbonyl cyanide 3-chlorophenylhydrazone treatment. Moreover, exposure to the toxic compound staurosporine accelerates PINK1 degradation via FBW7β, correlating with increased cell death. This study unravels the intricate mechanisms controlling PINK1 protein stability and sheds light on the novel role of FBW7β. These findings deepen our understanding of PINK1-related pathologies and potentially pave the way for therapeutic interventions.
Collapse
Affiliation(s)
- Seo Jeong Jeon
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Kwang Chul Chung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.
| |
Collapse
|
49
|
Papagiannakis N, Liu H, Koros C, Simitsi AM, Stamelou M, Maniati M, Buena-Atienza E, Kartanou C, Karadima G, Makrythanasis P, Vatsellas G, Valente EM, Gasser T, Stefanis L. Parkin mRNA Expression Levels in Peripheral Blood Mononuclear Cells in Parkin-Related Parkinson's Disease. Mov Disord 2024; 39:715-722. [PMID: 38357851 DOI: 10.1002/mds.29739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
INTRODUCTION Pathogenic variants in parkin (PRKN gene) are the second most prevalent known monogenic cause of Parkinson's disease (PD). How monoallelic or biallelic pathogenic variants in the PRKN gene may affect its transcription in patient-derived biological material has not been systematically studied. METHODS PRKN mRNA expression levels were measured with real-time polymerase chain reaction (RT-PCR) in peripheral blood mononuclear cells (PBMCs). PBMCs were derived from PRKN-mutated PD patients (PRKN-PD) (n = 12), sporadic PD (sPD) (n = 21) and healthy controls (n = 21). Six of the PRKN-PD patients were heterozygous, four were compound heterozygous, and two were homozygous for PRKN variants. RESULTS A statistically significant decrease in PRKN expression levels was present, compared to healthy controls and sPD, in heterozygous (P = 0.019 and 0.031 respectively) and biallelic (P < 0.001 for both) PRKN-PD. PRKN expression levels in biallelic PD patients were uniformly very low and were reduced, albeit not significantly, compared to heterozygotes. Based on receiver operating characteristic analysis, low PRKN expression levels were a sensitive and extremely specific indicator for the presence of PRKN pathogenic variants. CONCLUSIONS Assessment of PRKN mRNA levels in PBMCs may be a useful way to screen for biallelic pathogenic variants in the PRKN gene. Suspicion for certain variants in a heterozygous state may also be raised based on low PRKN mRNA levels. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Nikolaos Papagiannakis
- Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- 1st Department of Neurology, Eginitio Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Hui Liu
- Department of Neurodegenerative Diseases, Hertie Center for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Christos Koros
- 1st Department of Neurology, Eginitio Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athina-Maria Simitsi
- 1st Department of Neurology, Eginitio Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Stamelou
- 1st Department of Neurology, Eginitio Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Matina Maniati
- Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Elena Buena-Atienza
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen, Tübingen, Germany
| | - Chrysoula Kartanou
- 1st Department of Neurology, Eginitio Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgia Karadima
- 1st Department of Neurology, Eginitio Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Periklis Makrythanasis
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Department of Genetic Medicine and Development, Medical School, University of Geneva, Geneva, Switzerland
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Giannis Vatsellas
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Enza Maria Valente
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Thomas Gasser
- Department of Neurodegenerative Diseases, Hertie Center for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Leonidas Stefanis
- Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- 1st Department of Neurology, Eginitio Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
50
|
Zhang Y, Huang S, Xie B, Zhong Y. Aging, Cellular Senescence, and Glaucoma. Aging Dis 2024; 15:546-564. [PMID: 37725658 PMCID: PMC10917531 DOI: 10.14336/ad.2023.0630-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/30/2023] [Indexed: 09/21/2023] Open
Abstract
Aging is one of the most serious risk factors for glaucoma, and according to age-standardized prevalence, glaucoma is the second leading cause of legal blindness worldwide. Cellular senescence is a hallmark of aging that is defined by a stable exit from the cell cycle in response to cellular damage and stress. The potential mechanisms underlying glaucomatous cellular senescence include oxidative stress, DNA damage, mitochondrial dysfunction, defective autophagy/mitophagy, and epigenetic modifications. These phenotypes interact and generate a sufficiently stable network to maintain the cell senescent state. Senescent trabecular meshwork (TM) cells, retinal ganglion cells (RGCs) and vascular endothelial cells reportedly accumulate with age and stress and may contribute to glaucoma pathologies. Therapies targeting the suppression or elimination of senescent cells have been found to ameliorate RGC death and improve vision in glaucoma models, suggesting the pivotal role of cellular senescence in the pathophysiology of glaucoma. In this review, we explore the biological links between aging and glaucoma, specifically delving into cellular senescence. Moreover, we summarize the current data on cellular senescence in key target cells associated with the development and clinical phenotypes of glaucoma. Finally, we discuss the therapeutic potential of targeting cellular senescence for the management of glaucoma.
Collapse
Affiliation(s)
- Yumeng Zhang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai 200025, China
| | - Shouyue Huang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai 200025, China
| | - Bing Xie
- Correspondence should be addressed to: Dr. Yisheng Zhong () and Bing Xie (), Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai 200025, China
| | - Yisheng Zhong
- Correspondence should be addressed to: Dr. Yisheng Zhong () and Bing Xie (), Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai 200025, China
| |
Collapse
|