1
|
Yamakawa A, Suganuma M, Mitsumori R, Niida S, Ozaki K, Shigemizu D. Alzheimer's disease may develop from changes in the immune system, cell cycle, and protein processing following alterations in ribosome function. Sci Rep 2025; 15:3838. [PMID: 39885278 PMCID: PMC11782650 DOI: 10.1038/s41598-025-88526-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/29/2025] [Indexed: 02/01/2025] Open
Abstract
The prevalence of Alzheimer's disease (AD) is increasing as society ages. The details of AD pathogenesis have not been fully elucidated, and a comprehensive gene expression analysis of the process leading up to the onset of AD would be helpful for understanding the mechanism. We performed an RNA sequencing analysis on a cohort of 1227 Japanese blood samples, representing 424 AD patients, 543 individuals with mild cognitive impairment (MCI), and 260 cognitively normal (CN) individuals. A total of 883 and 1169 statistically significant differentially expressed genes (DEGs) were identified between CN and MCI (CN-MCI) and between MCI and AD (MCI-AD), respectively. Pathway analyses using these DEGs, followed by protein-protein interaction network analysis, revealed key roles of ribosomal function in MCI progression, whereas immune responses, cell cycle, and protein processing in endoplasmic reticulum were involved in AD progression. Our findings indicate that the onset of AD might be associated with gene expression changes in the immune system, cell cycle, and protein processing following alterations in the expression of ribosomal protein genes during the MCI stage, although validation using brain tissue samples will be necessary in the future. Given the known effectiveness of delaying MCI progression in preventing AD, the genes related to ribosomal function might emerge as biomarkers for early diagnosis.
Collapse
Affiliation(s)
- Akiko Yamakawa
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu, 474-8511, Aichi, Japan
| | - Mutsumi Suganuma
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu, 474-8511, Aichi, Japan
| | - Risa Mitsumori
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu, 474-8511, Aichi, Japan
| | - Shumpei Niida
- Research Institute, National Center for Geriatrics and Gerontology, Obu, 474-8511, Aichi, Japan
| | - Kouichi Ozaki
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu, 474-8511, Aichi, Japan
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8551, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Kanagawa, Japan
| | - Daichi Shigemizu
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu, 474-8511, Aichi, Japan.
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8551, Japan.
| |
Collapse
|
2
|
Thapa R, Ahmad Bhat A, Shahwan M, Ali H, PadmaPriya G, Bansal P, Rajotiya S, Barwal A, Siva Prasad GV, Pramanik A, Khan A, Hing Goh B, Dureja H, Kumar Singh S, Dua K, Gupta G. Proteostasis disruption and senescence in Alzheimer's disease pathways to neurodegeneration. Brain Res 2024; 1845:149202. [PMID: 39216694 DOI: 10.1016/j.brainres.2024.149202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/29/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Alzheimer's Disease (AD) is a progressive neurological disease associated with behavioral abnormalities, memory loss, and cognitive impairment that cause major causes of dementia in the elderly. The pathogenetic processes cause complex effects on brain function and AD progression. The proper protein homeostasis, or proteostasis, is critical for cell health. AD causes the buildup of misfolded proteins, particularly tau and amyloid-beta, to break down proteostasis, such aggregates are toxic to neurons and play a critical role in AD pathogenesis. The rise of cellular senescence is accompanied by aging, marked by irreversible cell cycle arrest and the release of pro-inflammatory proteins. Senescent cell build-up in the brains of AD patients exacerbates neuroinflammation and neuronal degeneration. These cells senescence-associated secretory phenotype (SASP) also disturbs the brain environment. When proteostasis failure and cellular senescence coalesce, a cycle is generated that compounds each other. While senescent cells contribute to proteostasis breakdown through inflammatory and degradative processes, misfolded proteins induce cellular stress and senescence. The principal aspects of the neurodegenerative processes in AD are the interaction of cellular senescence and proteostasis failure. This review explores the interconnected roles of proteostasis disruption and cellular senescence in the pathways leading to neurodegeneration in AD.
Collapse
Affiliation(s)
- Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, UAE
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - G PadmaPriya
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Pooja Bansal
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan-303012, India
| | - Sumit Rajotiya
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Amit Barwal
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali - 140307, Punjab, India
| | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh-531162, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Abida Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Sunway, Malaysia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, Australia; Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, 47500, Malaysia
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Center in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Center in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Gaurav Gupta
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, UAE; Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| |
Collapse
|
3
|
Khan D, Vinayak AA, Sitron CS, Brandman O. Mechanochemical forces regulate the composition and fate of stalled nascent chains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606406. [PMID: 39131335 PMCID: PMC11312545 DOI: 10.1101/2024.08.02.606406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The ribosome-associated quality control (RQC) pathway resolves stalled ribosomes. As part of RQC, stalled nascent polypeptide chains (NCs) are appended with CArboxy-Terminal amino acids (CAT tails) in an mRNA-free, non-canonical elongation process. CAT tail composition includes Ala, Thr, and potentially other residues. The relationship between CAT tail composition and function has remained unknown. Using biochemical approaches in yeast, we discovered that mechanochemical forces on the NC regulate CAT tailing. We propose CAT tailing initially operates in an "extrusion mode" that increases NC lysine accessibility for on-ribosome ubiquitination. Thr in CAT tails enhances NC extrusion by preventing formation of polyalanine, which can form α-helices that lower extrusion efficiency and disrupt termination of CAT tailing. After NC ubiquitylation, pulling forces on the NC switch CAT tailing to an Ala-only "release mode" which facilitates nascent chain release from large ribosomal subunits and NC degradation. Failure to switch from extrusion to release mode leads to accumulation of NCs on large ribosomal subunits and proteotoxic aggregation of Thr-rich CAT tails.
Collapse
Affiliation(s)
- Danish Khan
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ananya A Vinayak
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cole S Sitron
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Onn Brandman
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
4
|
He R, Cheng J, Qiu Y, Hu Y, Liu J, Wang TH, Cao X. IGF1R and FLT1 in female endothelial cells and CHD2 in male microglia play important roles in Alzheimer's disease based on gender difference analysis. Exp Gerontol 2024; 194:112512. [PMID: 38971545 DOI: 10.1016/j.exger.2024.112512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
OBJECTIVE This study investigated sex-specific pathogenesis mechanisms in Alzheimer's disease (AD) using single-nucleus RNA sequencing (snRNA-seq) data. METHODS Data from the Gene Expression Omnibus (GEO) were searched using terms "Alzheimer's Disease", "single cell", and "Homo sapiens". Studies excluding APOE E4 and including comprehensive gender information with 10× sequencing methods were selected, resulting in GSE157827 and GSE174367 datasets from human prefrontal cortex samples. Sex-stratified analyses were conducted on these datasets, and the outcomes of the analysis for GSE157827 were compared with those of GSE174367. The findings were validated using expression profiling from the mouse dataset GSE85162. Furthermore, real-time PCR experiments in mice further confirmed these findings. The Seurat R package was used to identify cell types, and batch effects were mitigated using the Harmony R package. Cell proportions by sex were compared using the Mann-Whitney-Wilcoxon test, and gene expression variability was displayed with an empirical cumulative distribution plot. Differentially expressed genes were identified using the FindMarkers function with the MAST test. Transcription factors were analyzed using the RcisTarget R package. RESULTS Seven cell types were identified: astrocytes, endothelial cells, excitatory neurons, inhibitory neurons, microglia, oligodendrocytes, and oligodendrocyte progenitor cells. Additionally, five distinct subpopulations of both endothelial and microglial cells were also identified, respectively. Key findings included: (1) In endothelial cells, genes involved in synapse organization, such as Insulin Like Growth Factor 1 Receptor (IGF1R) and Fms Related Receptor Tyrosine Kinase 1(FLT1), showed higher expression in females with AD. (2) In microglial cells, genes in the ribosome pathway exhibited higher expression in males without AD compared to females (with or without AD) and males with AD. (3) Chromodomain Helicase DNA Binding Protein 2 (CHD2) negatively regulated gene expression in the ribosome pathway in male microglia, suppressing AD, this finding was further validated in mice. (4) Differences between Asians and Caucasians were observed based on sex and disease status stratification. CONCLUSIONS IGF1R and FLT1 in endothelial cells contribute to AD in females, while CHD2 negatively regulates ribosome pathway gene expression in male microglia, suppressing AD in humans and mice.
Collapse
Affiliation(s)
- Rong He
- Laboratory Animal Department, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Jishuai Cheng
- Laboratory Animal Department, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Yue Qiu
- Dermatology Department of Xiangya Hospital, Central South University, Changsha, China
| | - Yiwen Hu
- Laboratory Animal Department, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Jia Liu
- Laboratory Animal Department, Kunming Medical University, Kunming 650500, Yunnan, China.
| | - Ting-Hua Wang
- Laboratory Animal Department, Kunming Medical University, Kunming 650500, Yunnan, China.
| | - Xue Cao
- Laboratory Animal Department, Kunming Medical University, Kunming 650500, Yunnan, China.
| |
Collapse
|
5
|
Luo S, Alwattar B, Li Q, Bora K, Blomfield AK, Lin J, Fulton A, Chen J, Agrawal PB. HBS1L deficiency causes retinal dystrophy in a child and in a mouse model associated with defective development of photoreceptor cells. Dis Model Mech 2024; 17:dmm050557. [PMID: 38966981 DOI: 10.1242/dmm.050557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 06/21/2024] [Indexed: 07/06/2024] Open
Abstract
Inherited retinal diseases encompass a genetically diverse group of conditions caused by variants in genes critical to retinal function, including handful of ribosome-associated genes. This study focuses on the HBS1L gene, which encodes for the HBS1-like translational GTPase that is crucial for ribosomal rescue. We have reported a female child carrying biallelic HBS1L variants, manifesting with poor growth and neurodevelopmental delay. Here, we describe the ophthalmologic findings in the patient and in Hbs1ltm1a/tm1a hypomorph mice and describe the associated microscopic and molecular perturbations. The patient has impaired visual function, showing dampened amplitudes of a- and b-waves in both rod- and cone-mediated responses. Hbs1ltm1a/tm1a mice exhibited profound thinning of the entire retina, specifically of the outer photoreceptor layer, due to extensive photoreceptor cell apoptosis. Loss of Hbs1l resulted in comprehensive proteomic alterations by mass spectrometry analysis, with an increase in the levels of 169 proteins and a decrease in the levels of 480 proteins, including rhodopsin (Rho) and peripherin 2 (Prph2). Gene Ontology biological process and gene set enrichment analyses reveal that the downregulated proteins are primarily involved in phototransduction, cilium assembly and photoreceptor cell development. These findings underscore the importance of ribosomal rescue proteins in maintaining retinal health, particularly in photoreceptor cells.
Collapse
Affiliation(s)
- Shiyu Luo
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health System, Miami, FL 33136, USA
- Division of Genetics and Genomics and The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bilal Alwattar
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Qifei Li
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health System, Miami, FL 33136, USA
- Division of Genetics and Genomics and The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kiran Bora
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alexandra K Blomfield
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jasmine Lin
- Division of Genetics and Genomics and The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anne Fulton
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jing Chen
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Pankaj B Agrawal
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health System, Miami, FL 33136, USA
- Division of Genetics and Genomics and The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
6
|
Khaket TP, Rimal S, Wang X, Bhurtel S, Wu YC, Lu B. Ribosome stalling during c-myc translation presents actionable cancer cell vulnerability. PNAS NEXUS 2024; 3:pgae321. [PMID: 39161732 PMCID: PMC11330866 DOI: 10.1093/pnasnexus/pgae321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/14/2024] [Indexed: 08/21/2024]
Abstract
Myc is a major driver of tumor initiation, progression, and maintenance. Up-regulation of Myc protein level rather than acquisition of neomorphic properties appears to underlie most Myc-driven cancers. Cellular mechanisms governing Myc expression remain incompletely defined. In this study, we show that ribosome-associated quality control (RQC) plays a critical role in maintaining Myc protein level. Ribosomes stall during the synthesis of the N-terminal portion of cMyc, generating aberrant cMyc species and necessitating deployment of the early RQC factor ZNF598 to handle translational stress and restore cMyc translation. ZNF598 expression is up-regulated in human glioblastoma (GBM), and its expression positively correlates with that of cMyc. ZNF598 knockdown inhibits human GBM neurosphere formation in cell culture and Myc-dependent tumor growth in vivo in Drosophila. Intriguingly, the SARS-COV-2-encoded translational regulator Nsp1 impinges on ZNF598 to restrain cMyc translation and consequently cMyc-dependent cancer growth. Remarkably, Nsp1 exhibits synthetic toxicity with the translation and RQC-related factor ATP-binding cassette subfamily E member 1, which, despite its normally positive correlation with cMyc in cancer cells, is co-opted by Nsp1 to down-regulate cMyc and inhibit tumor growth. Ribosome stalling during c-myc translation thus offers actionable cancer cell vulnerability.
Collapse
Affiliation(s)
- Tejinder Pal Khaket
- Department of Pathology and Programs in Neuroscience and Cancer Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Suman Rimal
- Department of Pathology and Programs in Neuroscience and Cancer Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xingjun Wang
- Department of Pathology and Programs in Neuroscience and Cancer Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sunil Bhurtel
- Department of Pathology and Programs in Neuroscience and Cancer Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yen-Chi Wu
- Department of Pathology and Programs in Neuroscience and Cancer Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bingwei Lu
- Department of Pathology and Programs in Neuroscience and Cancer Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
7
|
McGirr T, Onar O, Jafarnejad SM. Dysregulated ribosome quality control in human diseases. FEBS J 2024. [PMID: 38949989 DOI: 10.1111/febs.17217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/31/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
Precise regulation of mRNA translation is of fundamental importance for maintaining homeostasis. Conversely, dysregulated general or transcript-specific translation, as well as abnormal translation events, have been linked to a multitude of diseases. However, driven by the misconception that the transient nature of mRNAs renders their abnormalities inconsequential, the importance of mechanisms that monitor the quality and fidelity of the translation process has been largely overlooked. In recent years, there has been a dramatic shift in this paradigm, evidenced by several seminal discoveries on the role of a key mechanism in monitoring the quality of mRNA translation - namely, Ribosome Quality Control (RQC) - in the maintenance of homeostasis and the prevention of diseases. Here, we will review recent advances in the field and emphasize the biological significance of the RQC mechanism, particularly its implications in human diseases.
Collapse
Affiliation(s)
- Tom McGirr
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, UK
| | - Okan Onar
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, UK
- Department of Biology, Faculty of Science, Ankara University, Turkey
| | | |
Collapse
|
8
|
Escalante LE, Hose J, Howe H, Paulsen N, Place M, Gasch AP. Premature aging in aneuploid yeast is caused in part by aneuploidy-induced defects in Ribosome Quality Control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.22.600216. [PMID: 38948718 PMCID: PMC11213126 DOI: 10.1101/2024.06.22.600216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Premature aging is a hallmark of Down syndrome, caused by trisomy of human chromosome 21, but the reason is unclear and difficult to study in humans. We used an aneuploid model in wild yeast to show that chromosome amplification disrupts nutrient-induced cell-cycle arrest, quiescence entry, and healthy aging, across genetic backgrounds and amplified chromosomes. We discovered that these defects are due in part to aneuploidy-induced dysfunction in Ribosome Quality Control (RQC). Compared to euploids, aneuploids entering quiescence display aberrant ribosome profiles, accumulate RQC intermediates, and harbor an increased load of protein aggregates. Although they have normal proteasome capacity, aneuploids show signs of ubiquitin dysregulation, which impacts cyclin abundance to disrupt arrest. Remarkably, inducing ribosome stalling in euploids produces similar aberrations, while up-regulating limiting RQC subunits or proteins in ubiquitin metabolism alleviates many of the aneuploid defects. Our results provide implications for other aneuploidy disorders including Down syndrome.
Collapse
Affiliation(s)
- Leah E. Escalante
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, 53706
| | - James Hose
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, 53706
| | - Hollis Howe
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, 53706
| | - Norah Paulsen
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, 53706
| | - Michael Place
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, 53706
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53706
| | - Audrey P. Gasch
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, 53706
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53706
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706
| |
Collapse
|
9
|
Tseng YJ, Krans A, Malik I, Deng X, Yildirim E, Ovunc S, Tank EH, Jansen-West K, Kaufhold R, Gomez N, Sher R, Petrucelli L, Barmada S, Todd P. Ribosomal quality control factors inhibit repeat-associated non-AUG translation from GC-rich repeats. Nucleic Acids Res 2024; 52:5928-5949. [PMID: 38412259 PMCID: PMC11162809 DOI: 10.1093/nar/gkae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 02/29/2024] Open
Abstract
A GGGGCC (G4C2) hexanucleotide repeat expansion in C9ORF72 causes amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD), while a CGG trinucleotide repeat expansion in FMR1 leads to the neurodegenerative disorder Fragile X-associated tremor/ataxia syndrome (FXTAS). These GC-rich repeats form RNA secondary structures that support repeat-associated non-AUG (RAN) translation of toxic proteins that contribute to disease pathogenesis. Here we assessed whether these same repeats might trigger stalling and interfere with translational elongation. We find that depletion of ribosome-associated quality control (RQC) factors NEMF, LTN1 and ANKZF1 markedly boost RAN translation product accumulation from both G4C2 and CGG repeats while overexpression of these factors reduces RAN production in both reporter assays and C9ALS/FTD patient iPSC-derived neurons. We also detected partially made products from both G4C2 and CGG repeats whose abundance increased with RQC factor depletion. Repeat RNA sequence, rather than amino acid content, is central to the impact of RQC factor depletion on RAN translation-suggesting a role for RNA secondary structure in these processes. Together, these findings suggest that ribosomal stalling and RQC pathway activation during RAN translation inhibits the generation of toxic RAN products. We propose augmenting RQC activity as a therapeutic strategy in GC-rich repeat expansion disorders.
Collapse
Affiliation(s)
- Yi-Ju Tseng
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amy Krans
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Ann Arbor Veterans Administration Healthcare, Ann Arbor, MI 48109, USA
| | - Indranil Malik
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284 Telangana, India
| | - Xiexiong Deng
- Department of Molecular, Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Evrim Yildirim
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sinem Ovunc
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Elizabeth M H Tank
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Karen Jansen-West
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ross Kaufhold
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nicolas B Gomez
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Roger Sher
- Department of Neurobiology and Behavior & Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY 11794, USA
| | | | - Sami J Barmada
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Ann Arbor Veterans Administration Healthcare, Ann Arbor, MI 48109, USA
| |
Collapse
|
10
|
Cai T, Zhang B, Reddy E, Wu Y, Tang Y, Mondal I, Wang J, Ho WS, Lu RO, Wu Z. The mitochondrial stress-induced protein carboxyl-terminal alanine and threonine tailing (msiCAT-tailing) promotes glioblastoma tumorigenesis by modulating mitochondrial functions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594447. [PMID: 38798583 PMCID: PMC11118334 DOI: 10.1101/2024.05.15.594447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The rapid and sustained proliferation in cancer cells requires accelerated protein synthesis. Accelerated protein synthesis and disordered cell metabolism in cancer cells greatly increase the risk of translation errors. ribosome-associated quality control (RQC) is a recently discovered mechanism for resolving ribosome collisions caused by frequent translation stalls. The role of the RQC pathway in cancer initiation and progression remains controversial and confusing. In this study, we investigated the pathogenic role of mitochondrial stress-induced protein carboxyl-terminal terminal alanine and threonine tailing (msiCAT-tailing) in glioblastoma (GBM), which is a specific RQC response to translational arrest on the outer mitochondrial membrane. We found that msiCAT-tailed mitochondrial proteins frequently exist in glioblastoma stem cells (GSCs). Ectopically expressed msiCAT-tailed mitochondrial ATP synthase F1 subunit alpha (ATP5α) protein increases the mitochondrial membrane potential and blocks mitochondrial permeability transition pore (MPTP) formation/opening. These changes in mitochondrial properties confer resistance to staurosporine (STS)-induced apoptosis in GBM cells. Therefore, msiCAT-tailing can promote cell survival and migration, while genetic and pharmacological inhibition of msiCAT-tailing can prevent the overgrowth of GBM cells. Highlights The RQC pathway is disturbed in glioblastoma (GBM) cellsmsiCAT-tailing on ATP5α elevates mitochondrial membrane potential and inhibits MPTP openingmsiCAT-tailing on ATP5α inhibits drug-induced apoptosis in GBM cellsInhibition of msiCAT-tailing impedes overall growth of GBM cells.
Collapse
|
11
|
Gao Y, Zhu Y, Sun Q, Chen D. Ribosome-associated protein quality control: Implications for neurodegenerative diseases and therapeutic potential. Sci Bull (Beijing) 2024; 69:1165-1169. [PMID: 38278708 DOI: 10.1016/j.scib.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Affiliation(s)
- Yajie Gao
- Institute of Biomedical Research, Yunnan University, Kunming 650500, China
| | - Yuanxiang Zhu
- Institute of Biomedical Research, Yunnan University, Kunming 650500, China
| | - Qinmiao Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| | - Dahua Chen
- Institute of Biomedical Research, Yunnan University, Kunming 650500, China; Southwest United Graduate School, Kunming 650500, China.
| |
Collapse
|
12
|
Lv L, Mo J, Qing Y, Wang S, Chen L, Mei A, Xu R, Huang H, Tan J, Li Y, Liu J. NEMF-mediated Listerin-independent mitochondrial translational surveillance by E3 ligase Pirh2 and mitochondrial protease ClpXP. Cell Rep 2024; 43:113860. [PMID: 38412092 DOI: 10.1016/j.celrep.2024.113860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/13/2023] [Accepted: 02/08/2024] [Indexed: 02/29/2024] Open
Abstract
The ribosome-associated protein quality control (RQC) pathway acts as a translational surveillance mechanism to maintain proteostasis. In mammalian cells, the cytoplasmic RQC pathway involves nuclear export mediator factor (NEMF)-dependent recruitment of the E3 ligase Listerin to ubiquitinate ribosome-stalled nascent polypeptides on the lysine residue for degradation. However, the quality control of ribosome-stalled nuclear-encoded mitochondrial nascent polypeptides remains elusive, as these peptides can be partially imported into mitochondria through translocons, restricting accessibility to the lysine by Listerin. Here, we identify a Listerin-independent organelle-specific mitochondrial RQC pathway that acts on NEMF-mediated carboxy-terminal poly-alanine modification. In the pathway, mitochondrial proteins carrying C-end poly-Ala tails are recognized by the cytosolic E3 ligase Pirh2 and the ClpXP protease in the mitochondria, which coordinately clear ribosome-stalled mitochondrial nascent polypeptides. Defects in this elimination pathway result in NEMF-mediated aggregates and mitochondrial integrity failure, thus providing a potential molecular mechanism of the RQC pathway in mitochondrial-associated human diseases.
Collapse
Affiliation(s)
- Liang Lv
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Jinyou Mo
- Center for Medical Research, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Yumin Qing
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Center for Medical Research, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Shuchao Wang
- Center for Medical Research, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Leijie Chen
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Center for Medical Research, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Anna Mei
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Ru Xu
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The Second Xiangya Hospital, Changsha, Hunan, China
| | - Hualin Huang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The Second Xiangya Hospital, Changsha, Hunan, China
| | - Jieqiong Tan
- Center for Medical Genetics, School of Life Science, Central South University, Changsha, Hunan 410078, China
| | - Yifu Li
- Center for Medical Research, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Jia Liu
- Center for Medical Research, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
13
|
Tatara Y, Kasai S, Kokubu D, Tsujita T, Mimura J, Itoh K. Emerging Role of GCN1 in Disease and Homeostasis. Int J Mol Sci 2024; 25:2998. [PMID: 38474243 PMCID: PMC10931611 DOI: 10.3390/ijms25052998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
GCN1 is recognized as a factor that is essential for the activation of GCN2, which is a sensor of amino acid starvation. This function is evolutionarily conserved from yeast to higher eukaryotes. However, recent studies have revealed non-canonical functions of GCN1 that are independent of GCN2, such as its participation in cell proliferation, apoptosis, and the immune response, beyond the borders of species. Although it is known that GCN1 and GCN2 interact with ribosomes to accomplish amino acid starvation sensing, recent studies have reported that GCN1 binds to disomes (i.e., ribosomes that collide each other), thereby regulating both the co-translational quality control and stress response. We propose that GCN1 regulates ribosome-mediated signaling by dynamically changing its partners among RWD domain-possessing proteins via unknown mechanisms. We recently demonstrated that GCN1 is essential for cell proliferation and whole-body energy regulation in mice. However, the manner in which ribosome-initiated signaling via GCN1 is related to various physiological functions warrants clarification. GCN1-mediated mechanisms and its interaction with other quality control and stress response signals should be important for proteostasis during aging and neurodegenerative diseases, and may be targeted for drug development.
Collapse
Affiliation(s)
- Yota Tatara
- Department of Stress Response Science, Biomedical Research Center, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Shuya Kasai
- Department of Stress Response Science, Biomedical Research Center, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Daichi Kokubu
- Diet and Well-Being Research Institute, KAGOME, Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan
- Department of Vegetable Life Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Tadayuki Tsujita
- Laboratory of Biochemistry, Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga City 840-8502, Saga, Japan;
| | - Junsei Mimura
- Department of Stress Response Science, Biomedical Research Center, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Ken Itoh
- Department of Stress Response Science, Biomedical Research Center, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
- Department of Vegetable Life Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| |
Collapse
|
14
|
Li Y, Liu D, Zhang X, Rimal S, Lu B, Li S. RACK1 and IRE1 participate in the translational quality control of amyloid precursor protein in Drosophila models of Alzheimer's disease. J Biol Chem 2024; 300:105719. [PMID: 38311171 PMCID: PMC10907166 DOI: 10.1016/j.jbc.2024.105719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by dysregulation of the expression and processing of the amyloid precursor protein (APP). Protein quality control systems are dedicated to remove faulty and deleterious proteins to maintain cellular protein homeostasis (proteostasis). Identidying mechanisms underlying APP protein regulation is crucial for understanding AD pathogenesis. However, the factors and associated molecular mechanisms regulating APP protein quality control remain poorly defined. In this study, we show that mutant APP with its mitochondrial-targeting sequence ablated exhibited predominant endoplasmic reticulum (ER) distribution and led to aberrant ER morphology, deficits in locomotor activity, and shortened lifespan. We searched for regulators that could counteract the toxicity caused by the ectopic expression of this mutant APP. Genetic removal of the ribosome-associated quality control (RQC) factor RACK1 resulted in reduced levels of ectopically expressed mutant APP. By contrast, gain of RACK1 function increased mutant APP level. Additionally, overexpression of the ER stress regulator (IRE1) resulted in reduced levels of ectopically expressed mutant APP. Mechanistically, the RQC related ATPase VCP/p97 and the E3 ubiquitin ligase Hrd1 were required for the reduction of mutant APP level by IRE1. These factors also regulated the expression and toxicity of ectopically expressed wild type APP, supporting their relevance to APP biology. Our results reveal functions of RACK1 and IRE1 in regulating the quality control of APP homeostasis and mitigating its pathogenic effects, with implications for the understanding and treatment of AD.
Collapse
Affiliation(s)
- Yu Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Dongyue Liu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xuejing Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Suman Rimal
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Bingwei Lu
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Shuangxi Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China.
| |
Collapse
|
15
|
Di Fraia D, Marino A, Lee JH, Kelmer Sacramento E, Baumgart M, Bagnoli S, Tomaz da Silva P, Kumar Sahu A, Siano G, Tiessen M, Terzibasi-Tozzini E, Gagneur J, Frydman J, Cellerino A, Ori A. Impaired biogenesis of basic proteins impacts multiple hallmarks of the aging brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.20.549210. [PMID: 38260253 PMCID: PMC10802395 DOI: 10.1101/2023.07.20.549210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Aging and neurodegeneration entail diverse cellular and molecular hallmarks. Here, we studied the effects of aging on the transcriptome, translatome, and multiple layers of the proteome in the brain of a short-lived killifish. We reveal that aging causes widespread reduction of proteins enriched in basic amino acids that is independent of mRNA regulation, and it is not due to impaired proteasome activity. Instead, we identify a cascade of events where aberrant translation pausing leads to reduced ribosome availability resulting in proteome remodeling independently of transcriptional regulation. Our research uncovers a vulnerable point in the aging brain's biology - the biogenesis of basic DNA/RNA binding proteins. This vulnerability may represent a unifying principle that connects various aging hallmarks, encompassing genome integrity and the biosynthesis of macromolecules.
Collapse
Affiliation(s)
- Domenico Di Fraia
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Antonio Marino
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Jae Ho Lee
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | - Mario Baumgart
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | | | - Pedro Tomaz da Silva
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Munich Center for Machine Learning, Munich, Germany
| | - Amit Kumar Sahu
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | | | - Max Tiessen
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | | | - Julien Gagneur
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Alessandro Cellerino
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
- BIO@SNS, Scuola Normale Superiore, Pisa, Italy
| | - Alessandro Ori
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| |
Collapse
|
16
|
Kwon HC, Bae Y, Lee SJV. The Role of mRNA Quality Control in the Aging of Caenorhabditis elegans. Mol Cells 2023; 46:664-671. [PMID: 37968980 PMCID: PMC10654458 DOI: 10.14348/molcells.2023.0103] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/17/2023] [Accepted: 09/02/2023] [Indexed: 11/17/2023] Open
Abstract
The proper maintenance of mRNA quality that is regulated by diverse surveillance pathways is essential for cellular homeostasis and is highly conserved among eukaryotes. Here, we review findings regarding the role of mRNA quality control in the aging and longevity of Caenorhabditis elegans, an outstanding model for aging research. We discuss the recently discovered functions of the proper regulation of nonsense-mediated mRNA decay, ribosome-associated quality control, and mRNA splicing in the aging of C. elegans. We describe how mRNA quality control contributes to longevity conferred by various regimens, including inhibition of insulin/insulin-like growth factor 1 (IGF-1) signaling, dietary restriction, and reduced mechanistic target of rapamycin signaling. This review provides valuable information regarding the relationship between the mRNA quality control and aging in C. elegans, which may lead to insights into healthy longevity in complex organisms, including humans.
Collapse
Affiliation(s)
- Hyunwoo C. Kwon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Yunkyu Bae
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Seung-Jae V. Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
17
|
Jiang Y, MacNeil LT. Simple model systems reveal conserved mechanisms of Alzheimer's disease and related tauopathies. Mol Neurodegener 2023; 18:82. [PMID: 37950311 PMCID: PMC10638731 DOI: 10.1186/s13024-023-00664-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 10/04/2023] [Indexed: 11/12/2023] Open
Abstract
The lack of effective therapies that slow the progression of Alzheimer's disease (AD) and related tauopathies highlights the need for a more comprehensive understanding of the fundamental cellular mechanisms underlying these diseases. Model organisms, including yeast, worms, and flies, provide simple systems with which to investigate the mechanisms of disease. The evolutionary conservation of cellular pathways regulating proteostasis and stress response in these organisms facilitates the study of genetic factors that contribute to, or protect against, neurodegeneration. Here, we review genetic modifiers of neurodegeneration and related cellular pathways identified in the budding yeast Saccharomyces cerevisiae, the nematode Caenorhabditis elegans, and the fruit fly Drosophila melanogaster, focusing on models of AD and related tauopathies. We further address the potential of simple model systems to better understand the fundamental mechanisms that lead to AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Yuwei Jiang
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Lesley T MacNeil
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada.
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada.
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
18
|
Meydan S, Guydosh NR. Is there a localized role for translational quality control? RNA (NEW YORK, N.Y.) 2023; 29:1623-1643. [PMID: 37582617 PMCID: PMC10578494 DOI: 10.1261/rna.079683.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023]
Abstract
It is known that mRNAs and the machinery that translates them are not uniformly distributed throughout the cytoplasm. As a result, the expression of some genes is localized to particular parts of the cell and this makes it possible to carry out important activities, such as growth and signaling, in three-dimensional space. However, the functions of localized gene expression are not fully understood, and the underlying mechanisms that enable localized expression have not been determined in many cases. One consideration that could help in addressing these challenges is the role of quality control (QC) mechanisms that monitor translating ribosomes. On a global level, QC pathways are critical for detecting aberrant translation events, such as a ribosome that stalls while translating, and responding by activating stress pathways and resolving problematic ribosomes and mRNAs at the molecular level. However, it is unclear how these pathways, even when uniformly active throughout the cell, affect local translation. Importantly, some QC pathways have themselves been reported to be enriched in the proximity of particular organelles, but the extent of such localized activity remains largely unknown. Here, we describe the major QC pathways and review studies that have begun to explore their roles in localized translation. Given the limited data in this area, we also pose broad questions about the possibilities and limitations for how QC pathways could facilitate localized gene expression in the cell with the goal of offering ideas for future experimentation.
Collapse
Affiliation(s)
- Sezen Meydan
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
- National Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Nicholas R Guydosh
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
19
|
Luo S, Alwattar B, Li Q, Bora K, Blomfield AK, Lin J, Fulton A, Chen J, Agrawal PB. Genetic deficiency of ribosomal rescue factor HBS1L causes retinal dystrophy associated with Pelota and EDF1 depletion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.562924. [PMID: 37905068 PMCID: PMC10614867 DOI: 10.1101/2023.10.18.562924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Inherited retinal diseases (IRDs) encompass a genetically diverse group of conditions in which mutations in genes critical to retinal function lead to progressive loss of photoreceptor cells and subsequent visual impairment. A handful of ribosome-associated genes have been implicated in retinal disorders alongside neurological phenotypes. This study focuses on the HBS1L gene, encoding HBS1 Like Translational GTPase which has been recognized as a critical ribosomal rescue factor. Previously, we have reported a female child carrying biallelic HBS1L mutations, manifesting growth restriction, developmental delay, and hypotonia. In this study, we describe her ophthalmologic findings, compare them with the Hbs1ltm1a/tm1a hypomorph mouse model, and evaluate the underlying microscopic and molecular perturbations. The patient was noted to have impaired visual function observed by electroretinogram (ERG), with dampened amplitudes of a- and b-waves in both rod- and cone-mediated responses. Hbs1ltm1a/tm1a mice exhibited profound retinal thinning of the entire retina, specifically of the outer retinal photoreceptor layer, detected using in vivo imaging of optical coherence tomography (OCT) and retinal cross sections. TUNEL assay revealed retinal degeneration due to extensive photoreceptor cell apoptosis. Loss of HBS1L resulted in comprehensive proteomic alterations in mass spectrometry analysis, with169 proteins increased and 480 proteins decreased including many critical IRD-related proteins. GO biological process and GSEA analyses reveal that these downregulated proteins are primarily involved in photoreceptor cell development, cilium assembly, phototransduction, and aerobic respiration. Furthermore, apart from the diminished level of PELO, a known partner protein, HBS1L depletion was accompanied by reduction in translation machinery associated 7 homolog (Tma7), and Endothelial differentiation-related factor 1(Edf1) proteins, the latter of which coordinates cellular responses to ribosome collisions. This novel connection between HBS1L and ribosome collision sensor (EDF1) further highlights the intricate mechanisms underpinning ribosomal rescue and quality control that are essential to maintain homeostasis of key proteins of retinal health, such as rhodopsin.
Collapse
Affiliation(s)
- Shiyu Luo
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children’s Hospital, Jackson Health System, Miami, FL 33136, USA
- Division of Genetics and Genomics and The Manton Center for Orphan Disease Research, Boston, MA 02115, USA
| | - Bilal Alwattar
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School; Boston, MA 02115, USA
| | - Qifei Li
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children’s Hospital, Jackson Health System, Miami, FL 33136, USA
- Division of Genetics and Genomics and The Manton Center for Orphan Disease Research, Boston, MA 02115, USA
| | - Kiran Bora
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School; Boston, MA 02115, USA
| | - Alexandra K. Blomfield
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School; Boston, MA 02115, USA
| | - Jasmine Lin
- Division of Genetics and Genomics and The Manton Center for Orphan Disease Research, Boston, MA 02115, USA
| | - Anne Fulton
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School; Boston, MA 02115, USA
| | - Jing Chen
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School; Boston, MA 02115, USA
| | - Pankaj B. Agrawal
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children’s Hospital, Jackson Health System, Miami, FL 33136, USA
- Division of Genetics and Genomics and The Manton Center for Orphan Disease Research, Boston, MA 02115, USA
| |
Collapse
|
20
|
Iyer KV, Müller M, Tittel LS, Winz ML. Molecular Highway Patrol for Ribosome Collisions. Chembiochem 2023; 24:e202300264. [PMID: 37382189 DOI: 10.1002/cbic.202300264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 06/30/2023]
Abstract
During translation, messenger RNAs (mRNAs) are decoded by ribosomes which can stall for various reasons. These include chemical damage, codon composition, starvation, or translation inhibition. Trailing ribosomes can collide with stalled ribosomes, potentially leading to dysfunctional or toxic proteins. Such aberrant proteins can form aggregates and favor diseases, especially neurodegeneration. To prevent this, both eukaryotes and bacteria have evolved different pathways to remove faulty nascent peptides, mRNAs and defective ribosomes from the collided complex. In eukaryotes, ubiquitin ligases play central roles in triggering downstream responses and several complexes have been characterized that split affected ribosomes and facilitate degradation of the various components. As collided ribosomes signal translation stress to affected cells, in eukaryotes additional stress response pathways are triggered when collisions are sensed. These pathways inhibit translation and modulate cell survival and immune responses. Here, we summarize the current state of knowledge about rescue and stress response pathways triggered by ribosome collisions.
Collapse
Affiliation(s)
- Kaushik Viswanathan Iyer
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Max Müller
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Lena Sophie Tittel
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Marie-Luise Winz
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| |
Collapse
|
21
|
Zuniga G, Frost B. Selective neuronal vulnerability to deficits in RNA processing. Prog Neurobiol 2023; 229:102500. [PMID: 37454791 DOI: 10.1016/j.pneurobio.2023.102500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Emerging evidence indicates that errors in RNA processing can causally drive neurodegeneration. Given that RNA produced from expressed genes of all cell types undergoes processing (splicing, polyadenylation, 5' capping, etc.), the particular vulnerability of neurons to deficits in RNA processing calls for careful consideration. The activity-dependent transcriptome remodeling associated with synaptic plasticity in neurons requires rapid, multilevel post-transcriptional RNA processing events that provide additional opportunities for dysregulation and consequent introduction or persistence of errors in RNA transcripts. Here we review the accumulating evidence that neurons have an enhanced propensity for errors in RNA processing alongside grossly insufficient defenses to clear misprocessed RNA compared to other cell types. Additionally, we explore how tau, a microtubule-associated protein implicated in Alzheimer's disease and related tauopathies, contributes to deficits in RNA processing and clearance.
Collapse
Affiliation(s)
- Gabrielle Zuniga
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, USA; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX, USA; Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Bess Frost
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, USA; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX, USA; Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
22
|
Orobets KS, Karamyshev AL. Amyloid Precursor Protein and Alzheimer's Disease. Int J Mol Sci 2023; 24:14794. [PMID: 37834241 PMCID: PMC10573485 DOI: 10.3390/ijms241914794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders associated with age or inherited mutations. It is characterized by severe dementia in the late stages that affect memory, cognitive functions, and daily life overall. AD progression is linked to the accumulation of cytotoxic amyloid beta (Aβ) and hyperphosphorylated tau protein combined with other pathological features such as synaptic loss, defective energy metabolism, imbalances in protein, and metal homeostasis. Several treatment options for AD are under investigation, including antibody-based therapy and stem cell transplantation. Amyloid precursor protein (APP) is a membrane protein considered to play a main role in AD pathology. It is known that APP in physiological conditions follows a non-amyloidogenic pathway; however, it can proceed to an amyloidogenic scenario, which leads to the generation of extracellular deleterious Aβ plaques. Not all steps of APP biogenesis are clear so far, and these questions should be addressed in future studies. AD is a complex chronic disease with many factors that contribute to disease progression.
Collapse
Affiliation(s)
| | - Andrey L. Karamyshev
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| |
Collapse
|
23
|
Zeng Y, Cao S, Li N, Tang J, Lin G. Identification of key lipid metabolism-related genes in Alzheimer's disease. Lipids Health Dis 2023; 22:155. [PMID: 37736681 PMCID: PMC10515010 DOI: 10.1186/s12944-023-01918-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/04/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) represents profound degenerative conditions of the brain that cause significant deterioration in memory and cognitive function. Despite extensive research on the significant contribution of lipid metabolism to AD progression, the precise mechanisms remain incompletely understood. Hence, this study aimed to identify key differentially expressed lipid metabolism-related genes (DELMRGs) in AD progression. METHODS Comprehensive analyses were performed to determine key DELMRGs in AD compared to controls in GSE122063 dataset from Gene Expression Omnibus. Additionally, the ssGSEA algorithm was utilized for estimating immune cell levels. Subsequently, correlations between key DELMRGs and each immune cell were calculated specifically in AD samples. The key DELMRGs expression levels were validated via two external datasets. Furthermore, gene set enrichment analysis (GSEA) was utilized for deriving associated pathways of key DELMRGs. Additionally, miRNA-TF regulatory networks of the key DELMRGs were constructed using the miRDB, NetworkAnalyst 3.0, and Cytoscape software. Finally, based on key DELMRGs, AD samples were further segmented into two subclusters via consensus clustering, and immune cell patterns and pathway differences between the two subclusters were examined. RESULTS Seventy up-regulated and 100 down-regulated DELMRGs were identified. Subsequently, three key DELMRGs (DLD, PLPP2, and PLAAT4) were determined utilizing three algorithms [(i) LASSO, (ii) SVM-RFE, and (iii) random forest]. Specifically, PLPP2 and PLAAT4 were up-regulated, while DLD exhibited downregulation in AD cerebral cortex tissue. This was validated in two separate external datasets (GSE132903 and GSE33000). The AD group exhibited significantly altered immune cell composition compared to controls. In addition, GSEA identified various pathways commonly associated with three key DELMRGs. Moreover, the regulatory network of miRNA-TF for key DELMRGs was established. Finally, significant differences in immune cell levels and several pathways were identified between the two subclusters. CONCLUSION This study identified DLD, PLPP2, and PLAAT4 as key DELMRGs in AD progression, providing novel insights for AD prevention/treatment.
Collapse
Affiliation(s)
- Youjie Zeng
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Si Cao
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Nannan Li
- Department of Nephrology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Juan Tang
- Department of Nephrology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Guoxin Lin
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
24
|
Sinclair P, Hakeem J, Kumar SG, Loser D, Dixit K, Leist M, Kraushaar U, Kabbani N. Proteomic responses in the human dopaminergic LUHMES cell line to imidacloprid and its metabolites imidacloprid-olefin and desnitro-imidacloprid. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105473. [PMID: 37532312 DOI: 10.1016/j.pestbp.2023.105473] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/08/2023] [Accepted: 05/18/2023] [Indexed: 08/04/2023]
Abstract
Neonicotinoids (neonics) are amongst the most commonly used class of pesticides globally. In the United States, imidacloprid (IMI) is extensively used for agriculture and in other common applications such as house-hold pest control. Regular exposure to IMI, and several of its known metabolites including IMI-olefin and desnitro-imidacloprid (DN-IMI), has been shown to be harmful to many organisms including mammals, birds, and fish. Studies show that neonics bind human nicotinicacetylcholine receptors (nAChRs) and cause cellular toxicity. In the dopaminergic Lund human mesencephalic (LUHMES) cell line, IMI and other neonics (10-100 μM) have been recently shown to activate intracellular calcium signaling through nAChRs. Thus, we examined proteomic responses of LUHMES cells to a 48-h treatment with 50 μM IMI, IMI-olefin, or DN-IMI. Our findings show differential effects of these neonics on cellular protein expression. Bioinformatic analysis of significantly altered proteins indicates an effect of IMI, IMI-olefin, and DN-IMI on protein synthesis and ribosomal function. These findings suggest a role for protein synthesis and transcriptional regulation in neonic-mediated dopaminergic neurotoxicity.
Collapse
Affiliation(s)
| | - Julia Hakeem
- Interdisciplinary Program in Neuroscience, George Mason University
| | - Sreehari G Kumar
- Interdisciplinary Program in Neuroscience, George Mason University
| | - Dominik Loser
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany
| | - Kushan Dixit
- Interdisciplinary Program in Neuroscience, George Mason University
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Universitaetsstr. 10, 78457 Constance, Germany
| | - Udo Kraushaar
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany
| | - Nadine Kabbani
- Interdisciplinary Program in Neuroscience, George Mason University; School of Systems Biology, George Mason University.
| |
Collapse
|
25
|
Viera Ortiz AP, Cajka G, Olatunji OA, Mikytuck B, Shalem O, Lee EB. Impaired ribosome-associated quality control of C9orf72 arginine-rich dipeptide-repeat proteins. Brain 2023; 146:2897-2912. [PMID: 36516294 PMCID: PMC10316761 DOI: 10.1093/brain/awac479] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 11/05/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Protein quality control pathways have evolved to ensure the fidelity of protein synthesis and efficiently clear potentially toxic protein species. Defects in ribosome-associated quality control and its associated factors have been implicated in the accumulation of aberrant proteins and neurodegeneration. C9orf72 repeat-associated non-AUG translation has been suggested to involve inefficient translation elongation, lead to ribosomal pausing and activation of ribosome-associated quality control pathways. However, the role of the ribosome-associated quality control complex in the processing of proteins generated through this non-canonical translation is not well understood. Here we use reporter constructs containing the C9orf72-associated hexanucleotide repeat, ribosome-associated quality control complex deficient cell models and stain for ribosome-associated quality control markers in C9orf72-expansion carrier human tissue to understand its role in dipeptide-repeat protein pathology. Our studies show that canonical ribosome-associated quality control substrates products are efficiently cleared by the ribosome-associated quality control complex in mammalian cells. Furthermore, using stalling reporter constructs, we show that repeats associated with the C9orf72-expansion induce ribosomal stalling when arginine (R)-rich dipeptide-repeat proteins are synthesized in a length-dependent manner. However, despite triggering this pathway, these arginine-rich dipeptide-repeat proteins are not efficiently processed by the core components of the ribosome-associated quality control complex (listerin, nuclear-export mediator factor and valosin containing protein) partly due to lack of lysine residues, which precludes ubiquitination. Deficient processing by this complex may be implicated in C9orf72-expansion associated disease as dipeptide-repeat protein inclusions were observed to be predominantly devoid of ubiquitin and co-localize with nuclear-export mediator factor in mutation carriers' frontal cortex and cerebellum tissue. These findings suggest that impaired processing of these arginine-rich dipeptide-repeat proteins derived from repeat-associated non-AUG translation by the ribosome-associated quality control complex may contribute to protein homeostasis dysregulation observed in C9orf72-expansion amyotrophic lateral sclerosis and frontotemporal degeneration neuropathogenesis.
Collapse
Affiliation(s)
- Ashley P Viera Ortiz
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gregory Cajka
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Olamide A Olatunji
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bailey Mikytuck
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ophir Shalem
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward B Lee
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
26
|
Tseng YJ, Malik I, Deng X, Krans A, Jansen-West K, Tank EM, Gomez NB, Sher R, Petrucelli L, Barmada SJ, Todd PK. Ribosomal quality control factors inhibit repeat-associated non-AUG translation from GC-rich repeats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544135. [PMID: 37333274 PMCID: PMC10274811 DOI: 10.1101/2023.06.07.544135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
A GGGGCC (G4C2) hexanucleotide repeat expansion in C9ORF72 causes amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD), while a CGG trinucleotide repeat expansion in FMR1 leads to the neurodegenerative disorder Fragile X-associated tremor/ataxia syndrome (FXTAS). These GC-rich repeats form RNA secondary structures that support repeat-associated non-AUG (RAN) translation of toxic proteins that contribute to disease pathogenesis. Here we assessed whether these same repeats might trigger stalling and interfere with translational elongation. We find that depletion of ribosome-associated quality control (RQC) factors NEMF, LTN1, and ANKZF1 markedly boost RAN translation product accumulation from both G4C2 and CGG repeats while overexpression of these factors reduces RAN production in both reporter cell lines and C9ALS/FTD patient iPSC-derived neurons. We also detected partially made products from both G4C2 and CGG repeats whose abundance increased with RQC factor depletion. Repeat RNA sequence, rather than amino acid content, is central to the impact of RQC factor depletion on RAN translation - suggesting a role for RNA secondary structure in these processes. Together, these findings suggest that ribosomal stalling and RQC pathway activation during RAN translation elongation inhibits the generation of toxic RAN products. We propose augmenting RQC activity as a therapeutic strategy in GC-rich repeat expansion disorders.
Collapse
Affiliation(s)
- Yi-Ju Tseng
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Indranil Malik
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xiexiong Deng
- Department of Molecular, Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Amy Krans
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- Ann Arbor Veterans Administration Healthcare, Ann Arbor, MI, 48109, USA
| | - Karen Jansen-West
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | | | - Nicolas B. Gomez
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Roger Sher
- Department of Neurobiology and Behavior & Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, 11794, USA
| | | | - Sami J. Barmada
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Peter K. Todd
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- Ann Arbor Veterans Administration Healthcare, Ann Arbor, MI, 48109, USA
| |
Collapse
|
27
|
Rimal S, Tantray I, Li Y, Pal Khaket T, Li Y, Bhurtel S, Li W, Zeng C, Lu B. Reverse electron transfer is activated during aging and contributes to aging and age-related disease. EMBO Rep 2023; 24:e55548. [PMID: 36794623 PMCID: PMC10074108 DOI: 10.15252/embr.202255548] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/18/2022] [Accepted: 01/23/2023] [Indexed: 02/17/2023] Open
Abstract
Mechanisms underlying the depletion of NAD+ and accumulation of reactive oxygen species (ROS) in aging and age-related disorders remain poorly defined. We show that reverse electron transfer (RET) at mitochondrial complex I, which causes increased ROS production and NAD+ to NADH conversion and thus lowered NAD+ /NADH ratio, is active during aging. Genetic or pharmacological inhibition of RET decreases ROS production and increases NAD+ /NADH ratio, extending the lifespan of normal flies. The lifespan-extending effect of RET inhibition is dependent on NAD+ -dependent Sirtuin, highlighting the importance of NAD+ /NADH rebalance, and on longevity-associated Foxo and autophagy pathways. RET and RET-induced ROS and NAD+ /NADH ratio changes are prominent in human induced pluripotent stem cell (iPSC) model and fly models of Alzheimer's disease (AD). Genetic or pharmacological inhibition of RET prevents the accumulation of faulty translation products resulting from inadequate ribosome-mediated quality control, rescues relevant disease phenotypes, and extends the lifespan of Drosophila and mouse AD models. Deregulated RET is therefore a conserved feature of aging, and inhibition of RET may open new therapeutic opportunities in the context of aging and age-related diseases including AD.
Collapse
Affiliation(s)
- Suman Rimal
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| | - Ishaq Tantray
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| | - Yu Li
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| | | | - Yanping Li
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| | - Sunil Bhurtel
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| | - Wen Li
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| | | | - Bingwei Lu
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| |
Collapse
|
28
|
Szewczyk B, Günther R, Japtok J, Frech MJ, Naumann M, Lee HO, Hermann A. FUS ALS neurons activate major stress pathways and reduce translation as an early protective mechanism against neurodegeneration. Cell Rep 2023; 42:112025. [PMID: 36696267 DOI: 10.1016/j.celrep.2023.112025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/02/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder causing progressive loss of motor neurons. Mutations in Fused in sarcoma (FUS) leading to its cytoplasmic mislocalization cause a subset of ALS. Under stress, mutant FUS localizes to stress granules (SGs)-cytoplasmic condensates composed of RNA and various proteins. Aberrant dynamics of SGs is linked to the pathology of ALS. Here, using motor neurons (MNs) derived from human induced pluripotent stem cells, we show that, in mutant FUS, MN dynamics of SGs is disturbed. Additionally, heat-shock response (HSR) and integrated stress response (ISR) involved in the regulation of SGs are upregulated in mutant MNs. HSR activation correlates with the amount of cytoplasmic FUS mislocalization. While inhibition of SG formation, translation, or ISR does not influence survival of FUS ALS neurons, proteotoxicity that cannot be compensated with the activation of stress pathways is the main driver of neurodegeneration in early FUS ALS.
Collapse
Affiliation(s)
- Barbara Szewczyk
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - René Günther
- Department of Neurology, Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Dresden, Dresden, Germany
| | - Julia Japtok
- Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Moritz J Frech
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - Marcel Naumann
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - Hyun O Lee
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Andreas Hermann
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, Rostock, Germany; Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, Rostock, Germany.
| |
Collapse
|
29
|
Li Y, Geng J, Rimal S, Wang H, Liu X, Lu B, Li S. The mTORC2/AKT/VCP axis is associated with quality control of the stalled translation of poly(GR) dipeptide repeats in C9-ALS/FTD. J Biol Chem 2023; 299:102995. [PMID: 36764521 PMCID: PMC10011831 DOI: 10.1016/j.jbc.2023.102995] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
Expansion of G4C2 hexanucleotide repeats in the chromosome 9 ORF 72 (C9ORF72) gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) with frontotemporal dementia (C9-ALS/FTD). Dipeptide repeats generated by unconventional translation, especially the R-containing poly(GR), have been implicated in C9-ALS/FTD pathogenesis. Mutations in other genes, including TAR DNA-binding protein 43 KD (TDP-43), fused in sarcoma (FUS), and valosin-containing protein, have also been linked to ALS/FTD, and upregulation of amyloid precursor protein (APP) is observed at the early stage of ALS and FTD. Fundamental questions remain as to the relationships between these ALS/FTD genes and whether they converge on similar cellular pathways. Here, using biochemical, cell biological, and genetic analyses in Drosophila disease models, patient-derived fibroblasts, and mammalian cell culture, we show that mechanistic target of rapamycin complex 2 (mTORC2)/AKT signaling is activated by APP, TDP-43, and FUS and that mTORC2/AKT and its downstream target valosin-containing protein mediate the effect of APP, TDP-43, and FUS on the quality control of C9-ALS/FTD-associated poly(GR) translation. We also find that poly(GR) expression results in reduction of global translation and that the coexpression of APP, TDP-43, and FUS results in further reduction of global translation, presumably through the GCN2/eIF2α-integrated stress response pathway. Together, our results implicate mTORC2/AKT signaling and GCN2/eIF2α-integrated stress response as common signaling pathways underlying ALS/FTD pathogenesis.
Collapse
Affiliation(s)
- Yu Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Ji Geng
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China; Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Suman Rimal
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Haochuan Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiangguo Liu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Bingwei Lu
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.
| | - Shuangxi Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China.
| |
Collapse
|
30
|
Lu B. Translation stalling and ribosome collision leading to proteostasis failure: implications for neurodegenerative diseases. Neural Regen Res 2023; 18:111-112. [PMID: 35799519 PMCID: PMC9241430 DOI: 10.4103/1673-5374.340404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
31
|
Wang X, Rimal S, Tantray I, Geng J, Bhurtel S, Khaket TP, Li W, Han Z, Lu B. Prevention of ribosome collision-induced neuromuscular degeneration by SARS CoV-2-encoded Nsp1. Proc Natl Acad Sci U S A 2022; 119:e2202322119. [PMID: 36170200 PMCID: PMC9586304 DOI: 10.1073/pnas.2202322119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/13/2022] [Indexed: 11/18/2022] Open
Abstract
An overarching goal of aging and age-related neurodegenerative disease research is to discover effective therapeutic strategies applicable to a broad spectrum of neurodegenerative diseases. Little is known about the extent to which targetable pathogenic mechanisms are shared among these seemingly diverse diseases. Translational control is critical for maintaining proteostasis during aging. Gaining control of the translation machinery is also crucial in the battle between viruses and their hosts. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing COVID-19 pandemic. Here, we show that overexpression of SARS-CoV-2-encoded nonstructural protein 1 (Nsp1) robustly rescued neuromuscular degeneration and behavioral phenotypes in Drosophila models of Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. These diseases share a common mechanism: the accumulation of aberrant protein species due to the stalling and collision of translating ribosomes, leading to proteostasis failure. Our genetic and biochemical analyses revealed that Nsp1 acted in a multipronged manner to resolve collided ribosomes, abort stalled translation, and remove faulty translation products causative of disease in these models, at least in part through the ribosome recycling factor ABCE1, ribosome-associated quality-control factors, autophagy, and AKT signaling. Nsp1 exhibited exquisite specificity in its action, as it did not modify other neurodegenerative conditions not known to be associated with ribosome stalling. These findings uncover a previously unrecognized mechanism of Nsp1 in manipulating host translation, which can be leveraged for combating age-related neurodegenerative diseases that are affecting millions of people worldwide and currently without effective treatment.
Collapse
Affiliation(s)
- Xingjun Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94350
| | - Suman Rimal
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94350
| | - Ishaq Tantray
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94350
| | - Ji Geng
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94350
| | - Sunil Bhurtel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94350
| | - Tejinder Pal Khaket
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94350
| | - Wen Li
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94350
| | - Zhe Han
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Bingwei Lu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94350
- Programs of Neuroscience and Cancer Biology, Stanford University School of Medicine, Stanford, CA 94350
| |
Collapse
|
32
|
Lu B. Translational regulation by ribosome-associated quality control in neurodegenerative disease, cancer, and viral infection. Front Cell Dev Biol 2022; 10:970654. [PMID: 36187485 PMCID: PMC9515510 DOI: 10.3389/fcell.2022.970654] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/30/2022] [Indexed: 11/22/2022] Open
Abstract
Translational control at the initiation, elongation, and termination steps exerts immediate effects on the rate as well as the spatiotemporal dynamics of new protein synthesis, shaping the composition of the proteome. Translational control is particularly important for cells under stress as during viral infection or in disease conditions such as cancer and neurodegenerative diseases. Much has been learned about the control mechanisms acting at the translational initiation step under normal or pathological conditions. However, problems during the elongation or termination steps of translation can lead to ribosome stalling and ribosome collision, which will trigger ribosome-associated quality control (RQC) mechanism. Inadequate RQC may lead to the accumulation of faulty translation products that perturb protein homeostasis (proteostasis). Proteostasis signifies a cellular state in which the synthesis, folding, and degradation of proteins are maintained at a homeostatic state such that an intact proteome is preserved. Cellular capacity to preserve proteostasis declines with age, which is thought to contribute to age-related diseases. Proteostasis failure manifested as formation of aberrant protein aggregates, epitomized by the amyloid plaques in Alzheimer’s disease (AD), is a defining feature of neurodegenerative diseases. The root cause of the proteostasis failure and protein aggregation is still enigmatic. Here I will review recent studies supporting that faulty translation products resulting from inadequate RQC of translational stalling and ribosome collision during the translation of problematic mRNAs can be the root cause of proteostasis failure and may represent novel therapeutic targets for neurodegenerative diseases. I will also review evidence that translation regulation by RQC is operative in cancer cells and during viral infection. Better understanding of RQC mechanism may lead to novel therapeutic strategies against neurodegenerative diseases, cancer, and viral infections, including the ongoing COVID-19 pandemic.
Collapse
|
33
|
Proteostasis Deregulation in Neurodegeneration and Its Link with Stress Granules: Focus on the Scaffold and Ribosomal Protein RACK1. Cells 2022; 11:cells11162590. [PMID: 36010666 PMCID: PMC9406587 DOI: 10.3390/cells11162590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 12/12/2022] Open
Abstract
The role of protein misfolding, deposition, and clearance has been the dominant topic in the last decades of investigation in the field of neurodegeneration. The impairment of protein synthesis, along with RNA metabolism and RNA granules, however, are significantly emerging as novel potential targets for the comprehension of the molecular events leading to neuronal deficits. Indeed, defects in ribosome activity, ribosome stalling, and PQC—all ribosome-related processes required for proteostasis regulation—can contribute to triggering stress conditions and promoting the formation of stress granules (SGs) that could evolve in the formation of pathological granules, usually occurring during neurodegenerating effects. In this review, the interplay between proteostasis, mRNA metabolism, and SGs has been explored in a neurodegenerative context with a focus on Alzheimer’s disease (AD), although some defects in these same mechanisms can also be found in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), which are discussed here. Finally, we highlight the role of the receptor for activated C kinase 1 (RACK1) in these pathologies and note that, besides its well characterized function as a scaffold protein, it has an important role in translation and can associate to stress granules (SGs) determining cell fate in response to diverse stress stimuli.
Collapse
|