1
|
Das A, Das M, Paul N, Chatterjee S, Sarkar K, Bank S, Sarkar J, Bankura B, Roy D, Acharya K, Ghosh S. Bifenthrin causes disturbance in mitochondrial dynamics and bioenergetic system in human embryonic kidney cells (HEK 293). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125707. [PMID: 39828206 DOI: 10.1016/j.envpol.2025.125707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/25/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Affiliation(s)
- Anwesha Das
- Department of Zoology, Ballygunge Science College, University of Calcutta, Kolkata, 700019, West Bengal, India.
| | - Madhusudan Das
- Department of Zoology, Ballygunge Science College, University of Calcutta, Kolkata, 700019, West Bengal, India.
| | - Nirvika Paul
- Department of Zoology, Ballygunge Science College, University of Calcutta, Kolkata, 700019, West Bengal, India.
| | - Srilagna Chatterjee
- Department of Zoology, Ballygunge Science College, University of Calcutta, Kolkata, 700019, West Bengal, India.
| | - Kunal Sarkar
- Department of Zoology, Ballygunge Science College, University of Calcutta, Kolkata, 700019, West Bengal, India.
| | - Sarbashri Bank
- Department of Zoology, Ballygunge Science College, University of Calcutta, Kolkata, 700019, West Bengal, India.
| | - Jit Sarkar
- Department of Botany, Centre of Advanced Study, University of Calcutta, Kolkata, 700019, West Bengal, India.
| | | | - Debraj Roy
- Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata, 700019, West Bengal, India.
| | - Krishnendu Acharya
- Department of Botany, Centre of Advanced Study, University of Calcutta, Kolkata, 700019, West Bengal, India.
| | - Sudakshina Ghosh
- Department of Zoology, Vidyasagar College for Women, Kolkata, 700006, West Bengal, India.
| |
Collapse
|
2
|
Tang X, Geng Y, Gao R, Chen Z, Mu X, Zhang Y, Yin X, Ma Y, Chen X, Li F, He J. Maternal exposure to beta-Cypermethrin disrupts placental development by dysfunction of trophoblast cells from oxidative stress. Toxicology 2024; 504:153796. [PMID: 38582279 DOI: 10.1016/j.tox.2024.153796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
As a broad-spectrum and efficient insecticide, beta-Cypermethrin (β-CYP) poses a health risk to pregnancy. It matters the mechanisms of maternal exposure to β-CYP for impacting reproductive health. The placenta, a transient organ pivotal for maternal-fetal communication during pregnancy, plays a crucial role in embryonic development. The effect of β-CYP exposure on the placenta and its underlying molecular mechanisms remain obscure. The objective of this study was to investigate the effect of β-CYP exposure on placental development and the function of trophoblast, as well as the underlying mechanisms through CD-1 mouse model (1, 10, 20 mg/kg.bw) and in vitro HTR-8/SVneo cell model (12.5, 25, 50, 100 μM). We found slower weight gain and reduced uterine wet weight in pregnant mice with maternal exposure to β-CYP during pregnancy, as well as adverse pregnancy outcomes such as uterine bleeding and embryo resorption. The abnormal placental development in response to β-CYP was noticed, including imbalanced placental structure and disrupted labyrinthine vascular development. Trophoblasts, pivotal in placental development and vascular remodeling, displayed abnormal differentiation under β-CYP exposure. This aberration was characterized by thickened trophoblast layers in the labyrinthine zone, accompanied by mitochondrial and endoplasmic reticulum swelling within trophoblasts. Further researches on human chorionic trophoblast cell lines revealed that β-CYP exposure induced apoptosis in HTR-8/SVneo cells. This induction resulted in a notable decrease in migration and invasion abilities, coupled with oxidative stress and the inhibition of the Notch signaling pathway. N-acetylcysteine (an antioxidant) partially restored the impaired Notch signaling pathway in HTR-8/SVneo cells, and mitigated cellular functional damage attributed to β-CYP exposure. Collectively, exposure to β-CYP induced oxidative stress and then led to inhibition of the Notch signaling pathway and dysfunction of trophoblast cells, ultimately resulted in abnormal placenta and pregnancy. These findings indicate Reactive Oxygen Species as potential intervention targets to mitigate β-CYP toxicity. The comprehensive elucidation contributes to our understanding of β-CYP biosafety and offers an experimental basis for preventing and managing its reproductive toxicity.
Collapse
Affiliation(s)
- Xiaoli Tang
- School of Public Health, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Yanqing Geng
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Rufei Gao
- School of Public Health, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Zhuxiu Chen
- School of Public Health, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Xinyi Mu
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Yan Zhang
- School of Public Health, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Xin Yin
- School of Public Health, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Yidan Ma
- School of Public Health, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Xuemei Chen
- School of Public Health, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Fangfang Li
- School of Public Health, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Junlin He
- School of Public Health, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Wu M, Tang X, Sun C, Miao J, Wang Q, Pan L. Kinetics of uptake and depuration of synthetic pyrethroid insecticides in manila clam (Ruditapes philippinarum). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-28064-0. [PMID: 37291340 DOI: 10.1007/s11356-023-28064-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
Synthetic pyrethroid insecticides (SPIs) are frequently detected in water bodies and sediments, and they show high toxicity to aquatic organisms, but their toxicity kinetics remain unknown. In this work, the kinetics of uptake and depuration of three SPIs, fenpropathrin (FP), cypermethrin (CM) and deltamethrin (DM) were evaluated in manila clams (Ruditapes philippinarum) for the first time through a bioconcentration-semi-static test. Clams were exposed to three SPIs of different concentrations (2 ng/mL and 20 ng/mL) for 4 days, followed by a 10-day depuration stage. The results indicated that adult manila clams could absorb SPIs rapidly, and the bioconcentration factor (BCF) values of SPIs were different at high and low concentrations of contaminants. The depuration rate constants (k2) of SPIs in adult manila clams ranged from 0.024 h-1 to 0.037 h-1. The bioaccumulation factors ranged from 319.41 to 574.38. And the half-lives (t1/2) were in the range of 18.49 to 29.22 h. These results showed that manila clams have a high bioconcentration capacity, and SPIs have a high cumulative risk for bivalves. Moreover, after 10 days of elimination, SPIs can still be detected in manila clams at all concentrations, indicating that the complete elimination of SPIs required a longer time.
Collapse
Affiliation(s)
- Manni Wu
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, People's Republic of China
| | - Xianming Tang
- Hainan Provincial Key Laboratory of Tropical Maricultural Technology, Hainan Academy of Ocean and Fisheries Sciences, Haikou, Hainan, 571126, People's Republic of China
| | - Ce Sun
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, People's Republic of China
| | - Jingjing Miao
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, People's Republic of China.
| | - Qiaoqiao Wang
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, People's Republic of China
| | - Luqing Pan
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, People's Republic of China
| |
Collapse
|
4
|
Martín-Carrasco I, Carbonero-Aguilar P, Dahiri B, Moreno IM, Hinojosa M. Comparison between pollutants found in breast milk and infant formula in the last decade: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162461. [PMID: 36868281 DOI: 10.1016/j.scitotenv.2023.162461] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/03/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Since ancient times, breastfeeding has been the fundamental way of nurturing the newborn. The benefits of breast milk are widely known, as it is a source of essential nutrients and provides immunological protection, as well as developmental benefits, among others. However, when breastfeeding is not possible, infant formula is the most appropriate alternative. Its composition meets the nutritional requirements of the infant, and its quality is subject to strict control by the authorities. Nonetheless, the presence of different pollutants has been detected in both matrices. Thus, the aim of the present review is to make a comparison between the findings in both breast milk and infant formula in terms of contaminants in the last decade, in order to choose the most convenient option depending on the environmental conditions. For that, the emerging pollutants including metals, chemical compounds derived from heat treatment, pharmaceutical drugs, mycotoxins, pesticides, packaging materials, and other contaminants were described. While in breast milk the most concerning contaminants found were metals and pesticides, in infant formula pollutants such as metals, mycotoxins, and packaging materials were the most outstanding. In conclusion, the convenience of using a feeding diet based on breast milk or either infant formula depends on the maternal environmental circumstances. However, it is important to take into account the immunological benefits of the breast milk compared to the infant formula, and the possibility of using breast milk in combination with infant formula when the nutritional requirements are not fulfilled only with the intake of breast milk. Therefore, more attention should be paid in terms of analyzing these conditions in each case to be able to make a proper decision, as it will vary depending on the maternal and newborn environment.
Collapse
Affiliation(s)
- I Martín-Carrasco
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/ Profesor García González 2, 41012 Seville, Spain
| | - P Carbonero-Aguilar
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/ Profesor García González 2, 41012 Seville, Spain
| | - B Dahiri
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/ Profesor García González 2, 41012 Seville, Spain
| | - I M Moreno
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/ Profesor García González 2, 41012 Seville, Spain.
| | - M Hinojosa
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/ Profesor García González 2, 41012 Seville, Spain; Department of Biochemistry and Biophysics, Stockholm University, Institutionen för biokemi och biofysik, 106 91 Stockholm, Sweden
| |
Collapse
|
5
|
Wei Y, Wang L, Liu J. The diabetogenic effects of pesticides: Evidence based on epidemiological and toxicological studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121927. [PMID: 37268216 DOI: 10.1016/j.envpol.2023.121927] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/04/2023]
Abstract
While the use of pesticides has improved grain productivity and controlled vector-borne diseases, the widespread use of pesticides has resulted in ubiquitous environmental residues that pose health risks to humans. A number of studies have linked pesticide exposure to diabetes and glucose dyshomeostasis. This article reviews the occurrence of pesticides in the environment and human exposure, the associations between pesticide exposures and diabetes based on epidemiological investigations, as well as the diabetogenic effects of pesticides based on the data from in vivo and in vitro studies. The potential mechanisms by which pesticides disrupt glucose homeostasis include induction of lipotoxicity, oxidative stress, inflammation, acetylcholine accumulation, and gut microbiota dysbiosis. The gaps between laboratory toxicology research and epidemiological studies lead to an urgent research need on the diabetogenic effects of herbicides and current-use insecticides, low-dose pesticide exposure research, the diabetogenic effects of pesticides in children, and assessment of toxicity and risks of combined exposure to multiple pesticides with other chemicals.
Collapse
Affiliation(s)
- Yile Wei
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Linping Wang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Tsakiridis EE, Morrow MR, Desjardins EM, Wang D, Llanos A, Wang B, Wade MG, Morrison KM, Holloway AC, Steinberg GR. Effects of the pesticide deltamethrin on high fat diet-induced obesity and insulin resistance in male mice. Food Chem Toxicol 2023; 176:113763. [PMID: 37030334 DOI: 10.1016/j.fct.2023.113763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/10/2023]
Abstract
Worldwide, rates of metabolic diseases are rapidly increasing and environmental exposure to pesticides, pollutants and/or other chemicals may play a role. Reductions in Brown Adipose Tissue (BAT) thermogenesis, mediated in part by uncoupling protein 1 (Ucp1), are associated with metabolic diseases. In the current study, we investigated whether the pesticide deltamethrin (0.01-1 mg/kg bw/day) incorporated into a high-fat diet and fed to mice housed at either room temperature (21 °C) or thermoneutrality (29 °C) would suppress BAT activity and accelerate the development of metabolic disease. Importantly, thermoneutrality allows for more accurate modeling of human metabolic disease. We found that, 0.01mg/kg bw/day of deltamethrin induced weight loss, improved insulin sensitivity and increased energy expenditure, effects that were associated with increases in physical activity. In contrast, exposure to 0.1 and 1 mg/kg bw/day deltamethrin had no effect on any of the parameters examined. Deltamethrin treatment in mice did not alter molecular markers of BAT thermogenesis, despite observing suppression of UCP1 expression in cultured brown adipocytes. These data indicate that while deltamethrin inhibits UCP1 expression in vitro, 16wks exposure does not alter BAT thermogenesis markers nor exacerbates the development of obesity and insulin resistance in mice.
Collapse
Affiliation(s)
- Evangelia E Tsakiridis
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada; Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Marisa R Morrow
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada; Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Eric M Desjardins
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada; Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Dongdong Wang
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada; Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Andrea Llanos
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada; Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Bo Wang
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada; Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada; State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| | - Michael G Wade
- Environmental Health Science & Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Katherine M Morrison
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada; Department of Pediatrics, McMaster University, Hamilton, ON, Canada
| | - Alison C Holloway
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada; Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada
| | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada; Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
7
|
Gu S, Zhang Q, Gu J, Wang C, Chu M, Li J, Mo X. The stereoselective metabolic disruption of cypermethrin on rats by a sub-acute study based on metabolomics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:31130-31140. [PMID: 36441315 DOI: 10.1007/s11356-022-24359-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Due to the massive application of cypermethrin (CYP) for pest control in China, the adverse effects on non-target organisms have aroused great attention. However, comparative studies between its different stereoisomers remain scarce, especially for metabolism perturbations. Herein, the rats were administered α-CYP, β-CYP, and θ-CYP by gavage at doses of 8.5, 29.2, and 25.0 mg/kg/day, respectively, for 28 consecutive days. By blood examination, significant changes in liver and renal function parameters were observed in rats exposed to all three CYPs. The stereoisomeric selectivity in metabolic disturbances was assessed based on a metabolomic strategy via multivariate analysis and pathway analysis. The results demonstrated that amino acid and glycolipid metabolism were disrupted in all CYP groups. Among them, the most significant changes in the metabolic phenotype were observed in the θ-CYP group, with 56 differential metabolites enriched in 9 differential metabolic pathways. At the same time, the endogenous metabolite trimethylamine oxide (TMAO), which is closely linked to the gut microbiota, was also significantly elevated in this group. Gender differences were found in α- and θ-CYP-exposed rats, with perturbations in amino acid and glucose metabolism of greater concern in females and lipid metabolism of greater concern in males. Overall, β-CYP exhibited a lower risk of metabolic perturbations than α-CYP or θ-CYP, which helps to screen suitable agrochemical products for green agricultural development.
Collapse
Affiliation(s)
- Sijia Gu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Quan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China.
| | - Jinping Gu
- College of Pharmaceutical Sciences, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Cui Wang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Mengjie Chu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Jing Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Xunjie Mo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| |
Collapse
|
8
|
Guimarães J, Bracchi I, Pinheiro C, Moreira NX, Coelho CM, Pestana D, Prucha MDC, Martins C, Domingues VF, Delerue-Matos C, Dias CC, Azevedo LFR, Calhau C, Leite JC, Ramalho C, Keating E, Fernandes VC. Association of 3-Phenoxybenzoic Acid Exposure during Pregnancy with Maternal Outcomes and Newborn Anthropometric Measures: Results from the IoMum Cohort Study. TOXICS 2023; 11:125. [PMID: 36851000 PMCID: PMC9958656 DOI: 10.3390/toxics11020125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
The aims of this study were to characterize the exposure of pregnant women living in Portugal to 3-phenoxybenzoic acid (3-PBA) and to evaluate the association of this exposure with maternal outcomes and newborn anthropometric measures. We also aimed to compare exposure in summer with exposure in winter. Pregnant women attending ultrasound scans from April 2018 to April 2019 at a central hospital in Porto, Portugal, were invited to participate. Inclusion criteria were: gestational week between 10 and 13, confirmed fetal vitality, and a signature of informed consent. 3-PBA was measured in spot urine samples by gas chromatography with mass spectrometry (GC-MS). The median 3-PBA concentration was 0.263 (0.167; 0.458) µg/g creatinine (n = 145). 3-PBA excretion was negatively associated with maternal pre-pregnancy body mass index (BMI) (p = 0.049), and it was higher during the summer when compared to winter (p < 0.001). The frequency of fish or yogurt consumption was associated positively with 3-PBA excretion, particularly during the winter (p = 0.002 and p = 0.015, respectively), when environmental exposure is low. Moreover, 3-PBA was associated with levothyroxine use (p = 0.01), a proxy for hypothyroidism, which could be due to a putative 3-PBA-thyroid hormone antagonistic effect. 3-PBA levels were not associated with the anthropometric measures of the newborn. In conclusion, pregnant women living in Portugal are exposed to 3-PBA, particularly during summer, and this exposure may be associated with maternal clinical features.
Collapse
Affiliation(s)
- Juliana Guimarães
- CINTESIS@RISE, Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Isabella Bracchi
- CINTESIS@RISE, Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Cátia Pinheiro
- CINTESIS@RISE, Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Nara Xavier Moreira
- CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Nutrition and Dietetics (MND), Faculty of Nutrition Emília de Jesus Ferreiro (FNEJF), Fluminense Federal University (UFF), Niterói 20010-010, RJ, Brazil
| | - Cláudia Matta Coelho
- CINTESIS@RISE, Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Diogo Pestana
- CINTESIS@RISE, Nutrition and Metabolism, NOVA Medical School│FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Maria do Carmo Prucha
- Department of Obstetrics, Centro Hospitalar Universitário S. João, 4200-319 Porto, Portugal
| | - Cristina Martins
- Department of Obstetrics, Centro Hospitalar Universitário S. João, 4200-319 Porto, Portugal
| | - Valentina F. Domingues
- REQUIMTE/LAQV, Instituto Superior de Engenharia, Politécnico do Porto, 4249-015 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia, Politécnico do Porto, 4249-015 Porto, Portugal
| | - Cláudia C. Dias
- CINTESIS@RISE, Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Luís Filipe R. Azevedo
- CINTESIS@RISE, Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Conceição Calhau
- CINTESIS@RISE, Nutrition and Metabolism, NOVA Medical School│FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - João Costa Leite
- CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Carla Ramalho
- Department of Obstetrics, Centro Hospitalar Universitário S. João, 4200-319 Porto, Portugal
- Department of Ginecology-Obstetrics and Pediatrics, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, i3S, Universidade do Porto, 4200-135 Porto, Portugal
| | - Elisa Keating
- CINTESIS@RISE, Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Virgínia Cruz Fernandes
- REQUIMTE/LAQV, Instituto Superior de Engenharia, Politécnico do Porto, 4249-015 Porto, Portugal
| |
Collapse
|
9
|
Sindhu ZUD, Naseer MU, Raza A, Aslam B, Ahmad J, Abbas RZ, Khan MK, Imran M, Zafar MA, Khattak B. Resistance to Cypermethrin Is Widespread in Cattle Ticks ( Rhipicephalus microplus) in the Province of Punjab, Pakistan: In Vitro Diagnosis of Acaricide Resistance. Pathogens 2022; 11:1293. [PMID: 36365044 PMCID: PMC9692746 DOI: 10.3390/pathogens11111293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 09/27/2023] Open
Abstract
Control of the cattle tick Rhipicephalus (R.) microplus mainly relies on chemical acaricides and cypermethrin is the most widely used acaricide in Pakistan. Farmers frequently complain about its low efficacy, thus, the present study was designed to quantify the frequency of cypermethrin resistance in cattle ticks. Engorged female R. microplus were collected and tested for the efficacy of cypermethrin using the FAO-recommended larval packet test. Resistance factors (RF) were estimated at both the lethal concentration for 50% (LC50) and 99% (LC99) of ticks. Thirty-three samples were tested, of which 8/33 (24.24%) were classified as resistant based on the RF50, and all 33 were classified as resistant based on the RF99. In District Sargodha, when only the RF50 was considered, 45.5% of samples were classified as resistant, but at RF99, all tested samples were identified as resistant. In District Okara, the variation in RF50 estimates was 2.2-8.3 and variation in RF99 estimates was 10.6-1139.8. Similar results were found in District Attock, where variations in RF50 were 0.8-8.5 and RF99 ranged from 9-237.3. The study showed that cypermethrin resistance is prevalent in these three districts of Pakistan and is likely to be overestimated by classification based on the RF99.
Collapse
Affiliation(s)
- Zia ud Din Sindhu
- Department of Parasitology, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Usman Naseer
- Department of Parasitology, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Ali Raza
- Queensland Alliance for Agriculture and Food Innovations, The University of Queensland, Brisbane 4072, Australia
| | - Bilal Aslam
- Institute of Physiology and Pharmacology, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Javed Ahmad
- Livestock Production Research Institute, Bahadurnagar, Okara 56300, Pakistan
| | - Rao Zahid Abbas
- Department of Parasitology, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Kasib Khan
- Department of Parasitology, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Imran
- Department of Parasitology, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Arif Zafar
- Department of Clinical Studies, PMAS Arid Agriculture University Rawalpindi, Rawalpindi 46300, Pakistan
| | - Baharullah Khattak
- Department of Microbiology, Kohat University of Science and Technology, Kohat 26000, Pakistan
| |
Collapse
|
10
|
Nguyen HD, Oh H, Kim MS. The effects of chemical mixtures on lipid profiles in the Korean adult population: threshold and molecular mechanisms for dyslipidemia involved. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:39182-39208. [PMID: 35099691 DOI: 10.1007/s11356-022-18871-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
A scarcity of research assesses the effects of exposure to a combination of chemicals on lipid profiles as well as molecular mechanisms related to dyslipidemia. A cross-sectional study of 3692 adults aims to identify the association between chemical mixtures, including blood and urine 26 chemicals, and lipid profiles among Korean adults (aged ≥ 18) using linear regression models, weighted quantile sum (WQS) regression, quantile g-computation (qgcomp), and Bayesian kernel machine regression (BKMR). In silico toxicogenomic data-mining, we assessed molecular mechanisms linked with dyslipidemia, including genes, miRNAs, pathways, biological processes, and diseases. In the linear regression models, heavy metals, volatile organic compound metabolites, and phthalate metabolites were found to be related to HDL-C, triglycerides, LDL-C, total lipids, and total cholesterol, and significant trends were observed for these chemical quartiles (p < 0.01). The WQS index was significantly linked with HDL-C, triglycerides, LDL-C, total cholesterol, and total lipids. The qgcomp index also found a significant association between chemicals and HDL-C, triglycerides, and total lipids. In BKMR analysis, the overall effect of the chemical mixture was significantly associated with HDL-C, triglycerides, total cholesterol, and total lipids. We found that mixed chemicals interacted with the PPARA gene and were linked with dyslipidemia. Several pathways ("SREBF and miR33 in cholesterol," "estrogen receptor pathway and lipid homeostasis," and "regulation of PGC-1α"), "negative regulation of hepatocyte apoptotic process," "negative regulation of sequestering of triglycerides," "regulation of hepatocyte apoptotic process," and "negative regulation of cholesterol storage," and "abdominal obesity metabolic syndrome" were identified as key molecular mechanisms that may be affected by mixed chemicals and implicated in the development of dyslipidemia. The highest interaction and expression of miRNAs involved in the process of dyslipidemia were also described. Especially, the cutoff levels for chemical exposure levels related to lipid profiles were also provided.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Jeonnam, Republic of Korea
| | - Hojin Oh
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Jeonnam, Republic of Korea
| | - Min-Sun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Jeonnam, Republic of Korea.
| |
Collapse
|
11
|
Qi Z, Song X, Xiao X, Loo KK, Wang MC, Xu Q, Wu J, Chen S, Chen Y, Xu L, Li Y. Effects of prenatal exposure to pyrethroid pesticides on neurodevelopment of 1-year- old children: A birth cohort study in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113384. [PMID: 35286956 DOI: 10.1016/j.ecoenv.2022.113384] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Pregnant women have been ubiquitously exposed to pyrethroid pesticides. Previous studies, mainly based on third trimester measurements of maternal urinary pyrethroid metabolites, have reported inconsistent findings in the effects of prenatal pyrethroid exposure on children's neurodevelopmental outcomes. The purpose of this study was to clarify if pyrethroid exposure during the entire three trimesters of pregnancy may be associated with deleterious effects on infant neurodevelopmental status, particularly at a high dosage of exposure. We measured maternal urinary concentrations of pyrethroid metabolites in all trimesters of pregnancy and assessed children's neurodevelopment at one year of age using the Bayley Scales of Infant and Toddler Development, Third Edition (BSID-III). Multiple linear regression models were used to estimate the effects of metabolites (3-PBA, 4 F-3-PBA, cis-DBCA) in each trimester on BSID-III composite scores. Logistic regression analyses were applied to predict developmental delay vs non-delayed status (cut-off composite score of below 80 for developmental delay) based on the maternal levels of pyrethroid metabolites. In the first, second and third trimesters of pregnancy, the detection rates of pyrethroid metabolites were 94.7%, 90.7%, and 89.0%; the 50th percentiles of exposure level were 0.24 μg/g, 0.24 μg/g and 0.21 μg/g for 3-PBA, 0.14 μg/g, 0.17 μg/g and 0.15 μg/g for 4 F-3PBA, 0.21 μg/g, 0.25 μg/g and 0.19 μg/g for cis-DBCA respectively. In the second trimester, 3-PBA was inversely associated with Cognition and Language scores [β = -3.34 (95% CI = -6.11, -0.57) and β = -2.90 (95% CI = -5.20, -0.61), respectively], and significantly increased the risk of Cognition and Language developmental delay [OR= 1.64 (95% CI = 1.03, 2.62) and OR = 1.52 (95% CI = 1.06, 2.19), respectively]; cis-DBCA was inversely associated with Adaptive Behavior scores [β = -0.73 (95% CI = -1.27, -0.19)], and significantly increased the risk of Adaptive Behavior developmental delay [OR= 1.11 (95% CI = 1.02, 1.21)]. When the maternal levels of pyrethroid metabolites were stratified into the regression models according to the 90th percentile of exposure, in the first trimester, Cognition and Motor scores were inversely associated with higher cis-DBCA [β = -7.19 (95% CI = -12.97, -1.41) and β = -8.20 (95% CI = -13.35, -3.05), respectively], Language scores were inversely associated with higher 3-PBA [β = -6.01 (95% CI = -10.96, -1.06)]; in the second trimester, Cognition scores were inversely associated with higher cis-DBCA [β = -6.64 (95% CI = -12.51, -0.76)], Language scores were inversely associated with higher 3-PBA [β = -5.17 (95% CI = -10.07, -0.27)] and cis-DBCA [β = -5.40 (95% CI = -10.28, -0.52)]. We concluded that pyrethroid exposure in the first and second trimesters was associated with poorer infants neurodevelopmental outcomes at one year of age, and these effects were particularly pronounced at high levels of pyrethroid exposure.
Collapse
Affiliation(s)
- Zhiye Qi
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China; Department of Pediatrics, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xiaoxiao Song
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Xia Xiao
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Kek Khee Loo
- Developmental-Behavioral Pediatrics, Department of Pediatrics, Kaiser Permanente Los Angeles Medical Center, Los Angeles, CA, United States
| | - May C Wang
- Department of Community Health Sciences, Fielding School of Public Health, University of California, Los Angeles, CA, United States
| | - Qinghua Xu
- Yunnan Institute of Pediatric Research, Kunming Children's Hospital, The Affiliated Children's Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jie Wu
- Department of Pediatrics, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Shuqi Chen
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Ying Chen
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Lingling Xu
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Yan Li
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
12
|
Zuo L, Chen L, Chen X, Liu M, Chen H, Hao G. Pyrethroids exposure induces obesity and cardiometabolic diseases in a sex-different manner. CHEMOSPHERE 2022; 291:132935. [PMID: 34798107 DOI: 10.1016/j.chemosphere.2021.132935] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/09/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
People in the United States and around the world are widely exposed to pyrethroid pesticides. However, little is known about the effect of pyrethroids exposure on obesity in adults. This study examined the association between pyrethroids exposure and obesity in males and females and the role of obesity in the association of pyrethroids exposure with diabetes and cardiovascular disease (CVD). We used data from the National Health and Nutrition Examination Survey 1999-2002 and 2007-2014. Multivariate linear regression and logistic regression models were fitted to assess the association between urinary 3-Phenoxybenzoic Acid (3-PBA, a validated biomarker for pyrethroids exposure used in the primary analysis) and obesity. Mediation analyses were performed to investigate the mediation role of obesity on the associations of 3-PBA with diabetes and CVD. In this analysis, 7896 participants aged 20 years and above were included, of which 1235 (32.2%) males and 1623 (39.9%) females were diagnosed as obese. There was a significant interaction between sex and 3-PBA (Pinteraction = 0.004) for the risk of obesity. Among females, participants in the highest tertile of urinary 3-PBA had higher odds of obesity (OR = 1.22, 95% CI: 1.00, 1.48) compared to those in the lowest tertile after adjusting for covariates. Among males, the association was not statistically significant. Similar trends were found in the associations of log-transformed urinary 3-PBA level with body mass index in males and females. Further, we found that, in males and females, obesity explained the effect of 3-PBA exposure on diabetes by 1.1% (P = 0.850) and 13.6% (P = 0.004), as well as cardiovascular diseases by 5.9% (P = 0.785) and 25.0% (P = 0.016), respectively. In conclusion, 3-PBA was significantly associated with a higher risk of obesity, especially in females. In addition, obesity partially mediated the associations of 3-PBA exposure with diabetes and CVD.
Collapse
Affiliation(s)
- Lei Zuo
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Li Chen
- Georgia Prevention Institute, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Xia Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Mingliang Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Haiyan Chen
- Department of Parasitic Disease and Endemic Disease Control and Prevention, Guangzhou Center for Disease Control and Prevention, Guangzhou, China.
| | - Guang Hao
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China; Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, China.
| |
Collapse
|
13
|
Lee KS, Lim YH, Lee YA, Shin CH, Kim BN, Hong YC, Kim JI. The association of prenatal and childhood pyrethroid pesticide exposure with school-age ADHD traits. ENVIRONMENT INTERNATIONAL 2022; 161:107124. [PMID: 35134717 DOI: 10.1016/j.envint.2022.107124] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Pyrethroid insecticides are commonly used in residential settings, and their use has increased rapidly. Although research has been scarce, they have been reported to be associated with impaired neurodevelopment. Moreover, susceptible exposure windows and the long-term effects of pyrethroids have not been investigated. We examined the association between pyrethroid exposure and attention-deficit/hyperactivity disorder (ADHD) symptoms over time, with exposure windows spanning from the prenatal period to school-age. METHODS Using 524 mother-child pairs, we measured urinary concentrations of 3-phenoxybenzoic acid (3-PBA), a major pyrethroid metabolite, and asked parents to fill-out the ADHD Rating Scale IV (ARS). We used Poisson regression to identify the susceptible periods of pyrethroid exposure, by correlating various 3-PBA exposure windows (prenatal, ages 2, 4, 6 and 8) with ADHD symptoms at ages 6 and 8. RESULTS Doubling of prenatal and age 2 3-PBA concentrations was associated with increased ADHD symptoms at age 6 (2.7% change, 95% confidence interval [CI]: 0.3, 5.2; 5.2% change [95% CI: 0.5, 10.2], respectively). The 3-PBA concentrations at age 4 and age 6 were linked with ADHD symptoms at age 8 (2.7% change [95% CI: 0.3, 5.3]; 3.3% change [95% CI: 0.2, 6.4], respectively). There were no clear sex-specific patterns in association. DISCUSSION Both prenatal and early-childhood exposure to 3-PBA were found to be associated with ADHD symptoms. Exposure during pregnancy, and at ages 2 to 6 were found to be susceptible periods for pyrethroid neurotoxicity at ages 6 and 8.
Collapse
Affiliation(s)
- Kyung-Shin Lee
- Research Institue for Public Health, National Medical Center, Seoul, Republic of Korea.
| | - Youn-Hee Lim
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea; Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| | - Young Ah Lee
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea.
| | - Choong Ho Shin
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea.
| | - Bung-Nyun Kim
- Division of Children and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea.
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea; Environmental Health Center, Seoul National University College of Medicine, Seoul, Korea; Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, South Korea.
| | - Johanna Inhyang Kim
- Department of Psychiatry, Hanyang University Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Nguyen HD, Oh H, Jo WH, Hoang NHM, Kim MS. Mixtures modeling identifies heavy metals and pyrethroid insecticide metabolites associated with obesity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:20379-20397. [PMID: 34738213 DOI: 10.1007/s11356-021-16936-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
We aim to examine the association between chemical mixtures and obesity. Blood and urinary levels of tween-six chemicals were measured in adults who participated in the KoNEHS. We identified the associations of chemicals with obesity using linear regression models. Weighted quantile sum (WQS) regression, quantile g-computation (qgcomp), and Bayesian kernel machine regression (BKMR) were conducted as secondary analyses. Of the 3,692 participants included in the analysis, 18.0% had obesity. In the logistic regression model, mercury (Hg), lead (Pb), and 3PBA levels were associated with obesity, and significant trends were observed for these chemical tertiles (p < 0.001). Hg, Pb, and 3PBA levels were also associated with BMI. The WQS index was significantly associated with both obesity (OR = 2.15, 95% CI: 2.11-2.20) and BMI (β = 0.39, 95% CI: 0.37-0.51). The qgcomp index also found a significant association between chemicals and both obesity (OR = 1.70, 95% CI: 1.56-1.85) and BMI (β = 0.40, 95% CI: 0.39-0.41). Hg, Pb, and 3PBA were the most heavily weighed chemicals in these models. In BKMR analysis, the overall effect of the mixture was significantly associated with obesity. Hg, Pb, and 3PBA showed positive trends and were observed as the most important factors associated with obesity. Given increasing exposure to chemicals, there is a need to investigate the associations between chemical exposures, either separately or together, and incident obesity risk factors in well-characterized cohorts of different populations, and to identify potential approaches to chemical exposure prevention.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Jeonnam, Republic of Korea
| | - Hojin Oh
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Jeonnam, Republic of Korea
| | - Won Hee Jo
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Jeonnam, Republic of Korea
| | - Ngoc Hong Minh Hoang
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Jeonnam, Republic of Korea
| | - Min-Sun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Jeonnam, Republic of Korea.
| |
Collapse
|
15
|
Research and Application of In Situ Sample-Processing Methods for Rapid Simultaneous Detection of Pyrethroid Pesticides in Vegetables. SEPARATIONS 2022. [DOI: 10.3390/separations9030059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A novel rapid and cost-effective pre-processing method for the simultaneous determination of pyrethroid pesticides in vegetables has been developed and validated. The process of pesticide extraction was carried out by the QuEChERS (quick, easy, cheap, effective, rugged and safe) method combined with filtration by filter paper, and cleanup was carried out by the multi-plug-filtration-cleanup (m-PFC) method with no centrifuge program during the whole process. The pre-processing method is optimized for gas chromatography (GC). The process is convenient and time saving, requiring just a few seconds per sample. The recovery rate (70–120%), limit of detection (0.0001–0.007 mg/kg), precision (0.2–9.3%) and accuracy for each analyte were determined in 10 representative vegetables with good results. Finally, the feasibility of the developed method was further confirmed by the successful determination of pyrethroid-pesticide residues in pyrethroid-containing practical samples within the processing method coupled with thin-layer chromatography and a colloidal-gold test strip.
Collapse
|
16
|
Han R, Wang F, Zhao C, Zhang M, Cui S, Yang J. Magnetic solid-phase extraction of pyrethroid and neonicotinoid insecticides separately in environmental water samples based on alkaline or acidic group-functionalized mesoporous silica. Analyst 2022; 147:1995-2007. [DOI: 10.1039/d2an00088a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, amino- or carboxyl-functionalized magnetic KIT-6 have been synthesized separately. The two nanocomposites were successfully used to enrich pyrethroids and neonicotinoids insecticides from environmental water samples, respectively.
Collapse
Affiliation(s)
- Rui Han
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Jiangsu Open Laboratory of Major Scientific Instrument and Equipment, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Fei Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Jiangsu Open Laboratory of Major Scientific Instrument and Equipment, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Chuanfeng Zhao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Jiangsu Open Laboratory of Major Scientific Instrument and Equipment, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Meixing Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Jiangsu Open Laboratory of Major Scientific Instrument and Equipment, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Shihai Cui
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Jiangsu Open Laboratory of Major Scientific Instrument and Equipment, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Jing Yang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Jiangsu Open Laboratory of Major Scientific Instrument and Equipment, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| |
Collapse
|
17
|
Kim JH, Kim S, Hong YC. Household insecticide use and urinary 3-phenoxybenzoic acid levels in an elder population: a repeated measures data. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2021; 31:1017-1031. [PMID: 33024227 PMCID: PMC8589668 DOI: 10.1038/s41370-020-00276-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 09/13/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Pyrethroids are associated with adverse health consequences, even at low-dose exposures. However, there is limited evidence on pyrethroids exposure levels among vulnerable elder population and on their exposure sources. OBJECTIVE We tried to determine pyrethroids exposure levels among Korean elders and their exposure sources. METHODS We measured levels of 3-phenoxybenzoic acid (3-PBA), a pyrethroids metabolite, in urines repeatedly collected from 1239 Korean rural and urban elders; we also explored exposure sources for pyrethroids using questionnaire data. RESULTS Our participants had high levels of 3-PBA with 446 (36.0%) of elders with 3-PBA level over 2 ng/mL of 95th percentile of the German representative populations. After adjustment for sex, age, smoking status, visit episode, and surveyed season using linear mixed effect models, household insecticide spray use was significantly associated with 3-PBA level (β = 0.03 and p = 0.02) and the association was apparent only for females (β = 0.03 and p = 0.03). In the analyses for nonlinear relationships using generalized additive mixed models, there was a J-shape change in 3-PBA level by insecticide spray use (p < 0.01 both in total population and in females). SIGNIFICANCE Household insecticide spray was a predominant exposure source for pyrethroids at community level among Korean elders, warning more stringent control for frequently exposed environmental factors for pyrethroids including insecticide spray.
Collapse
Affiliation(s)
- Jin Hee Kim
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, 05006, Republic of Korea.
| | - Sungroul Kim
- Department of Environmental Health Sciences, Soonchunhyang University, Asan, 336-745, Republic of Korea
| | - Yun-Chul Hong
- Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, 110-799, Republic of Korea
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea
| |
Collapse
|
18
|
Xue Q, Pan A, Wen Y, Huang Y, Chen D, Yang CX, Hy Wu J, Yang J, Pan J, Pan XF. Association between pyrethroid exposure and cardiovascular disease: A national population-based cross-sectional study in the US. ENVIRONMENT INTERNATIONAL 2021; 153:106545. [PMID: 33839550 DOI: 10.1016/j.envint.2021.106545] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/09/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE Pyrethroids-containing products are widely used as commercial and household insecticides. While animal studies and clinical case reports have shown acute cardiovascular outcomes of pyrethroids exposure, little has been known on the effect of chronic pyrethroid exposure on cardiovascular disease (CVD). We aimed to examine the associations between chronic pyrethroid exposure and CVD in the US adults. METHODS Cross-sectional data from the National Health and Nutrition Examination Survey 1999-2002 and 2007-2012 were analyzed. The exposure to pyrethroids was determined as the urinary level of 3-phenoxybenzoic acid (3-PBA), and CVD was ascertained based on self-reported physician diagnoses. Multivariable logistic regression models were fitted to evaluate associations of pyrethroid exposure with CVD, coronary heart disease (CHD), and stroke. RESULTS Included were 6,471 participants with a mean age of 44.77 years (standard error, 0.39) for final analyses. The weighted prevalence of CVD, CHD, and stroke was 6.85%, 4.57% and 2.27%, respectively. With adjustments for major confounders, participants in the highest tertile of urinary 3-PBA had higher odds of CVD (odds ratio, 1.58; 95% confidence interval: 1.12, 2.23) and CHD (OR, 1.75; 95% CI: 1.17, 2.61) compared to those in the lowest tertile. There were linear associations for CVD (P for trend = 0.04) and CHD (P for trend = 0.02). However, no significant association was noted for stroke (1.29; 0.78, 2.16) in the main analyses. CONCLUSIONS 3-PBA was adversely associated with CVD and CHD in the US adults. Our findings highlight potential cardiovascular risk of chronic exposure to pyrethroids, and should be validated in large prospective studies in different populations in future.
Collapse
Affiliation(s)
- Qingping Xue
- Department of Epidemiology and Biostatistics, School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China; HEOA Group, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - An Pan
- Department of Epidemiology and Biostatistics, Ministry of Education & Ministry of Environmental Protection Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ying Wen
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Yichao Huang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, China
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, China
| | - Chun-Xia Yang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jason Hy Wu
- The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Jie Yang
- International Clinical Research Center & Department of Neurology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jay Pan
- HEOA Group, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Institue for Healthy Cities, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China.
| | - Xiong-Fei Pan
- Department of Epidemiology and Biostatistics, Ministry of Education & Ministry of Environmental Protection Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia; Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
19
|
Vollans M, Bonsall MB. The concomitant effects of self-limiting insect releases and behavioural interference on patterns of coexistence and exclusion of competing mosquitoes. Proc Biol Sci 2021; 288:20210714. [PMID: 34004130 PMCID: PMC8131123 DOI: 10.1098/rspb.2021.0714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/22/2021] [Indexed: 11/26/2022] Open
Abstract
Aedes aegypti is the dominant vector of dengue, a potentially fatal virus whose incidence has increased eightfold in the last two decades. As dengue has no widely available vaccine, vector control is key to reducing the global public health burden. A promising method is the release of self-limiting Ae. aegypti, which mate with wild Ae. aegypti and produce non-viable offspring. The resultant decrease in Ae. aegypti population size may impact coexistence with Ae. albopictus, another vector of dengue. A behavioural mechanism influencing coexistence between these species is reproductive interference, where incomplete species recognition results in heterospecifics engaging in mating activities. We develop a theoretical framework to investigate the interaction between self-limiting Ae. aegypti releases and reproductive interference between Ae. aegypti and Ae. albopictus on patterns of coexistence. In the absence of self-limiting Ae. aegypti release, coexistence can occur when the strength of reproductive interference experienced by both species is low. Results show that substantial overflooding with self-limiting Ae. aegypti prevents coexistence. For lower release ratios, as the release ratio increases, coexistence can occur when the strength of reproductive interference is increasingly high for Ae. albopictus and increasingly low for Ae. aegypti. This emphasizes the importance of including behavioural ecological processes into population models to evaluate the efficacy of vector control.
Collapse
Affiliation(s)
- Maisie Vollans
- Mathematical Ecology Research Group, Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - Michael B. Bonsall
- Mathematical Ecology Research Group, Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| |
Collapse
|
20
|
Amusa C, Rothman J, Odongo S, Matovu H, Ssebugere P, Baranga D, Sillanpää M. The endangered African Great Ape: Pesticide residues in soil and plants consumed by Mountain Gorillas (Gorilla beringei) in Bwindi Impenetrable National Park, East Africa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143692. [PMID: 33272601 DOI: 10.1016/j.scitotenv.2020.143692] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/31/2020] [Accepted: 10/31/2020] [Indexed: 06/12/2023]
Abstract
Bwindi Impenetrable National Park situated southwest of Uganda is a biodiversity hotspot that is home to about half of the world's endangered mountain gorilla (Gorilla beringei). Given its ecological significance and mounting pressures from agricultural activities such as tea growing, continuous monitoring of the levels of chemical toxins like pesticides in the park and surrounding areas is needed for effective conservation strategies. Furthermore, persistent organochlorine pesticides (OCPs) like DDT were used in agricultural gardens and indoor spraying in Kanungu district between the 1950s and 80s. The focus of this study was to explore the possible exposure of mountain gorillas to OCPs and cypermethrin used by the farmers in the areas near the park. Data from our interviews revealed that glyphosate is the most widely used pesticide by the farmers in areas surrounding the park, followed by cypermethrin, and mancozeb. Samples of leaves from plants consumed by mountain gorillas along the forest edges of the park and surficial soils (15-20 cm depths) were collected from three sites (Ruhija, Nkuringo and Buhoma) and analysed for the presence of cypermethrin and OCPs residues. Concentrations of total (∑) DDTs and ∑endosulfans were up to 0.34 and 9.89 mg/kg dry weight (d.w), respectively in soil samples. Concentrations of ∑DDTs and ∑endosulfans in samples of leaves ranged from 0.67 to 1.38 mg/kg d.w (mean = 1.07 mg/kg d.w) and 0.9 to 2.71 mg/kg d.w (mean = 1.68 mg/kg d.w), respectively. Mean concentration of ∑DDTs in leaves exceeded the European pharmacopeia and United States pharmacopeia recommended maximum residue limit values for DDTs in medicinal plants (1.0 mg/kg). In addition, calculated hazard indices for silverbacks (36.35), females (57.54) and juveniles (77.04) suggested potential health risks to the mountain gorillas. o,p'-DDT/p,p'-DDT ratios (0.5-0.63) in samples of leaves confirmed recent input of dicofol-DDT type in Bwindi rainforest.
Collapse
Affiliation(s)
- Chemonges Amusa
- Department of Chemistry, Makerere University, P. O Box 7062, Kampala, Uganda; Uganda Wildlife Authority and Primate Conservation, Kampala, Uganda
| | - Jessica Rothman
- Department of Anthropology, and New York Consortium in Evolutionary Primatology, Hunter College of the City University of New York, New York, NY, USA
| | - Silver Odongo
- Department of Chemistry, Makerere University, P. O Box 7062, Kampala, Uganda
| | - Henry Matovu
- Department of Chemistry, Makerere University, P. O Box 7062, Kampala, Uganda; Department of Chemistry, Gulu University, P. O Box 166, Gulu, Uganda
| | - Patrick Ssebugere
- Department of Chemistry, Makerere University, P. O Box 7062, Kampala, Uganda.
| | - Deborah Baranga
- Department of Zoology, Makerere University, P. O Box 7062, Kampala, Uganda
| | - Mika Sillanpää
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang 550000, Viet Nam; Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa
| |
Collapse
|
21
|
Hu P, Su W, Vinturache A, Gu H, Cai C, Lu M, Ding G. Urinary 3-phenoxybenzoic acid (3-PBA) concentration and pulmonary function in children: A National Health and Nutrition Examination Survey (NHANES) 2007-2012 analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116178. [PMID: 33341554 DOI: 10.1016/j.envpol.2020.116178] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Epidemiological studies have reported association of urinary 3-phenoxybenzoic acid (3-PBA), a major metabolite of pyrethroid insecticides (PYRs), with respiratory disease. However, knowledge regarding its effect on pulmonary function in susceptible children is limited. This study aimed to assess the associations between environmental 3-PBA concentrations and pulmonary function in children aged 6-17 years. Using data on 1174 children aged 6-17 years from the U.S. National Health and Nutrition Examination Survey (NHANES) 2007-2012, the exposure to PYRs was assessed by measuring urinary 3-PBA concentrations and pulmonary function was assessed by spirometry. Multivariable linear regression and generalized linear models (GLMs) were used to examine the associations between 3-PBA concentrations and pulmonary function in children, controlling for confounders. We found that 3-PBA concentrations were inversely associated with forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), and peak expiratory flow (PEF) in the pediatric population (p-trends < 0.05). When stratified by age (6-10 and 11-17 years) and gender (boys and girls), the adverse effects of PYR exposures on pulmonary function were more pronounced among boys aged 11-17 years. Among this age group, 3-PBA concentrations were negatively associated with FEV1, FVC, forced expiratory flow between 25% and 75% of FVC (FEF25-75%), and PEF. However, among children aged 6-10 years, no associations were found between 3-PBA concentrations and any of the pulmonary function measures, in either boys or girls. Our findings suggest that environmental PYR exposures may adversely affect children's pulmonary function, with the strongest associations among 11-17 years old boys.
Collapse
Affiliation(s)
- Peipei Hu
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Weiwei Su
- Department of Respiratory Medicine, the Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, China.
| | - Angela Vinturache
- Department of Obstetrics & Gynecology, Queen Elizabeth II Hospital, Alberta, Canada.
| | - Haoxiang Gu
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Chen Cai
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Min Lu
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Guodong Ding
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
22
|
Lehmler HJ, Simonsen D, Liu B, Bao W. Environmental exposure to pyrethroid pesticides in a nationally representative sample of U.S. adults and children: The National Health and Nutrition Examination Survey 2007-2012. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115489. [PMID: 33254662 PMCID: PMC7708675 DOI: 10.1016/j.envpol.2020.115489] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 05/14/2023]
Abstract
Pyrethroids are an important class of insecticides, and thousands of tons of these compounds are used in the United States every year. This study characterized exposures to pyrethroids and assessed demographic, socioeconomic, and lifestyle factors that modulate pyrethroid exposure using data from the National Health and Nutrition Examination Survey (NHANES) 2007-2012, a nationally representative survey of the non-institutionalized population of the United States. Urinary levels of commonly used biomarkers of pyrethroid exposure, including 3-phenoxybenzoic acid (3-PBA), 4-fluoro-3-phenoxybenzoic acid (F-PBA), and cis-dibromovinyl-dimethylcyclopropane carboxylic acid (DBCA), were determined by liquid chromatography-tandem mass spectrometry. The detection rate of 3-PBA, a nonspecific metabolite of several pyrethroids, was 78.1% in adults (N = 5233) and 79.3% in children (N = 2295). The detection rates of all other pyrethroid metabolites were <10%. The median urinary level of 3-PBA in adults was 0.47 μg/L (interquartile range, 0.14-1.22 μg/L). For children, the median urinary level was 0.49 μg/L (interquartile range, 0.17-1.29 μg/L). Age, gender, family income-to-poverty ratio (PIR), levels of physical activity, alcohol intake, and body mass index were associated with 3-PBA levels in adults. In children, age, gender, race/ethnicity, and PIR were associated with 3-PBA levels. 3-PBA levels also differed significantly across NHANES cycles, with higher levels observed in NHANES 2011-2012. Geometric mean 3-PBA levels in U.S. adults were 0.41 μg/L in NHANES 2007-2008, 0.41 μg/L in NHANES 2009-2010, and 0.66 μg/L in NHANES 2011-2012. In U.S. children, geometric mean 3-PBA levels were 0.40 μg/L in NHANES 2007-2008, 0.46 μg/L in NHANES 2009-2010, and 0.70 μg/L in NHANES 2011-2012. These results demonstrate that pyrethroid exposures remain a current environmental health concern and lay the foundation for further preclinical and epidemiological studies assessing human health risks associated with pyrethroids.
Collapse
Affiliation(s)
- Hans-Joachim Lehmler
- Department of Occupational & Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, United States; Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, United States.
| | - Derek Simonsen
- Department of Occupational & Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, United States; Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, United States
| | - Buyun Liu
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, United States
| | - Wei Bao
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
23
|
Balalian AA, Liu X, Siegel EL, Herbstman JB, Rauh V, Wapner R, Factor-Litvak P, Whyatt R. Predictors of Urinary Pyrethroid and Organophosphate Compound Concentrations among Healthy Pregnant Women in New York. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17176164. [PMID: 32854291 PMCID: PMC7504694 DOI: 10.3390/ijerph17176164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 02/02/2023]
Abstract
Our study aimed to investigate dietary and non-dietary predictors of exposure to pyrethroids, organophosphates pesticides and 2,4-D herbicide in two cohorts of pregnant women in New York City: 153 women from the Thyroid Disruption and Infant Development (TDID) cohort and 121 from the Sibling/Hermanos Cohort(S/H). Baseline data on predictors were collected from the women at time of recruitment. We used three different modeling strategies to address missing data due to biomarker values below the limit of detection (<LOD): (1) logistic regression models with biomarkers categorized as (<median, ≥median); (2) linear regression models, imputing the <LOD values with (LOD/√2); (3) regression models, considering <LOD values as left-censored. Generally, all three models identified similar predictors of exposure. We found that ethnicity, higher income and education predicted higher concentrations of most of the biomarkers in both cohorts. Mothers who consumed processed meat in the TDID cohort, and broiled, barbequed food or burgers in the S/H cohort, tended to have lower concentrations of organophosphates and 2,4-D. The choice of modeling led to a few different predictors identified, and the selection of modeling strategy should be based on the study question.
Collapse
Affiliation(s)
- Arin A. Balalian
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032, USA; (A.A.B.); (E.L.S.)
| | - Xinhua Liu
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY 10032, USA;
| | - Eva Laura Siegel
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032, USA; (A.A.B.); (E.L.S.)
| | - Julie Beth Herbstman
- Columbia Center for Children’s Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA; (J.B.H.); (V.R.); (R.W.)
| | - Virginia Rauh
- Columbia Center for Children’s Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA; (J.B.H.); (V.R.); (R.W.)
- Heilbrunn Department of Population and Family Health, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Ronald Wapner
- Department of Obstetrics and Gynecology, Columbia University, New York, NY 10032, USA;
| | - Pam Factor-Litvak
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032, USA; (A.A.B.); (E.L.S.)
- Correspondence:
| | - Robin Whyatt
- Columbia Center for Children’s Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA; (J.B.H.); (V.R.); (R.W.)
| |
Collapse
|
24
|
Deng F, Sun J, Dou R, Yu X, Wei Z, Yang C, Zeng X, Zhu L. Contamination of pyrethroids in agricultural soils from the Yangtze River Delta, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:139181. [PMID: 32417481 DOI: 10.1016/j.scitotenv.2020.139181] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
This study focused on contamination levels and spatial distributions of four common pyrethroids found in agricultural soils of the Yangtze River Delta (YRD), China. Pyrethroids were detected in 241 soil samples (88.8% detection rate) with total concentrations ranging from <LOD to 53.5 ng/g dry weight. Mean concentrations of the four pyrethroids were measured in descending order as follows: fenpropathrin (4.92 ng/g) > cypermethrin (1.10 ng/g) > deltamethrin (0.89 ng/g) > cyhalothrin (0.20 ng/g). The highest concentration of fenpropathrin was recorded as 37.6 ng/g. The highest detection rate of 63.9% was found for cyhalothrin. A distinct pattern of spatial distribution was observed where high concentrations of pyrethroids were detected in sites around Taihu Lake. Potential sources of pyrethroids in agricultural soils from the YRD region include pyrethroids used for pest control and wastewater irrigation in the region. Redundancy and correlation analyses show that the soil TOC values have played a significant role in the behavior of pyrethroids in agricultural soils of the YRD region. Potential ecological risks of pyrethroids in agricultural soils of the YRD region are low. Cypermethrin and cyhalothrin showed potential toxic effects on the ecological conditions of agricultural soils in 4.6% and 2.9% of the sampling sites, respectively. Further studies should pay more attention to the potential human health risks posed by pyrethroids in agricultural soils for the protection of soil quality and food safety.
Collapse
Affiliation(s)
- Fucai Deng
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Rongni Dou
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Xiaolong Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Zi Wei
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Chunping Yang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Xiangfeng Zeng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
25
|
Impact of pesticide exposure on adipose tissue development and function. Biochem J 2020; 477:2639-2653. [DOI: 10.1042/bcj20200324] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022]
Abstract
Obesity is a leading cause of morbidity, mortality and health care expenditure whose incidence is rapidly rising across the globe. Although the cause of the obesity epidemic is typically viewed as a product of an increased availability of high calorie foods and/or a reduction in physical activity, there is mounting evidence that exposure to synthetic chemicals in our environment may play an important role. Pesticides, are a class of chemicals whose widespread use has coincided with the global rise of obesity over the past two decades. Importantly, given their lipophilic nature many pesticides have been shown to accumulate with adipose tissue depots, suggesting they may be disrupting the function of white adipose tissue (WAT), brown adipose tissue (BAT) and beige adipose tissue to promote obesity and metabolic diseases such as type 2 diabetes. In this review, we discuss epidemiological evidence linking pesticide exposure with body mass index (BMI) and the incidence of diabetes. We then review preclinical studies in rodent models which have directly evaluated the effects of different classes of insecticides and herbicides on obesity and metabolic dysfunction. Lastly, we review studies conducted in adipose tissue cells lines and the purported mechanisms by which pesticides may induce alterations in adipose tissue function. The review of the literature reveals major gaps in our knowledge regarding human exposure to pesticides and our understanding of whether physiologically relevant concentrations promote obesity and elicit alterations in key signaling pathways vital for maintaining adipose tissue metabolism.
Collapse
|
26
|
Ribeiro CM, Beserra BTS, Silva NG, Lima CL, Rocha PRS, Coelho MS, Neves FDAR, Amato AA. Exposure to endocrine-disrupting chemicals and anthropometric measures of obesity: a systematic review and meta-analysis. BMJ Open 2020; 10:e033509. [PMID: 32565448 PMCID: PMC7311014 DOI: 10.1136/bmjopen-2019-033509] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Endocrine-disrupting chemicals (EDCs) are viewed as a major potential link between the environment and obesity development. We did a systematic review and meta-analysis to examine the association between exposure to EDCs and obesity. DATA SOURCES, DESIGN AND ELIGIBILITY CRITERIA PubMed, Scopus and Web of Science were searched from inception to 6 June 2018 for studies primarily addressing the association between exposure to EDCs after the age of 2 years and anthropometric measures of obesity or body fat. The Newcastle-Ottawa scale was used to assess the risk of bias. DATA EXTRACTION AND SYNTHESIS Two independent reviewers screened and conducted data extraction and synthesis. A third reviewer resolved disagreements. RESULTS A total of 73 studies investigating bisphenol A (32 286 individuals), organochlorine compounds (34 567 individuals), phthalates (21 401 individuals), polybrominated biphenyls (2937 individuals), polycyclic aromatic hydrocarbons (5174 individuals), parabens (4097 individuals), benzoic acid (3671 individuals) and polyfluoroalkyl substances (349 individuals) met our inclusion criteria. Most had a cross-sectional design and low or medium risk of bias. In qualitative analysis, bisphenol A and phthalates were consistently associated with general and abdominal obesity, in children and adults, and some studies suggested this association was age-dependent and gender-dependent. Meta-analysis indicated a significant association between exposure to bisphenol A and overweight (OR 1.254, 95% CI 1.005 to 1.564), obesity (OR 1.503, 95% CI 1.273 to 1.774) and increased waist circumference (OR 1.503, 95% CI 1.267 to 1.783) in adults, and between exposure to 2,5-dichlorophenol and obesity in children (OR 1.8, 95% CI 1.1018 to 3.184). CONCLUSION Most observational studies supported a positive association between obesity and exposure to EDCs. Although causality cannot be determined from these data, they underscore the need to limit human exposure to EDCs in light of the evidence from animal and cell-based studies indicating the effects of these chemicals on adiposity. PROSPERO REGISTRATION NUMBER CRD42018074548.
Collapse
Affiliation(s)
- Carolina Martins Ribeiro
- Laboratory of Molecular Pharmacology, Department of Pharmaceutical Sciences, University of Brasilia, Brasilia, Brazil
| | - Bruna Teles Soares Beserra
- Laboratory of Molecular Pharmacology, Department of Pharmaceutical Sciences, University of Brasilia, Brasilia, Brazil
| | - Nadyellem Graciano Silva
- Laboratory of Molecular Pharmacology, Department of Pharmaceutical Sciences, University of Brasilia, Brasilia, Brazil
| | - Caroline Lourenço Lima
- Laboratory of Molecular Pharmacology, Department of Pharmaceutical Sciences, University of Brasilia, Brasilia, Brazil
| | - Priscilla Roberta Silva Rocha
- Laboratory of Molecular Pharmacology, Department of Pharmaceutical Sciences, University of Brasilia, Brasilia, Brazil
| | - Michella Soares Coelho
- Laboratory of Molecular Pharmacology, Department of Pharmaceutical Sciences, University of Brasilia, Brasilia, Brazil
| | | | - Angélica Amorim Amato
- Laboratory of Molecular Pharmacology, Department of Pharmaceutical Sciences, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
27
|
Wang Z, Chen L, Zhang L, Zhang W, Deng Y, Liu R, Qin Y, Zhou Z, Diao J. Thermal effects on tissue distribution, liver biotransformation, metabolism and toxic responses in Mongolia racerunner (Eremias argus) after oral administration of beta-cyfluthrin. ENVIRONMENTAL RESEARCH 2020; 185:109393. [PMID: 32203733 DOI: 10.1016/j.envres.2020.109393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/05/2020] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
Effects of temperature on metabolism/biotransformation and toxicokinetics to lizards are significant, but frequently ignored in toxicology studies. Beta-cyfluthrin (BC) is a pyrethroid insecticide and has been widely used globally. The study aimed to understand the diverse adverse effects of BC to the lizard (Eremias argus) at different temperature regimes. We carried out a single oral BC treatment (20 mg/kg bw) for toxicokinetic study and a 7-day BC (10 mg/kg bw) gavage to look at toxicology by monitoring changes in the biomarkers HSP70, SOD, MDA, CarE, UDPGT, GST, cyp genes, and other metabolic responses. Results showed that BC was lethal to lizards, showing oxidative damages in the liver at ambient temperature (25 °C). Heat stress (35 °C) could exacerbate the oxidative damage (MDA increased) caused by BC, due to the disorder of the antioxidant defense system. The result of tissue distribution and toxicokinetic study also showed that temperature affected the BC biotransformation in lizards. The biotransformation of BC maybe relates to the activation of CarE and UDGPT by heat stress. However, the cyp system and GST didn't increase under BC or/and heat treatments. 1H-NMR metabolomics analysis showed that BC or/and heat stress interfered with energy and amino acid metabolism of the liver. Unlike acute lethal toxicity, the occurrence of the BC and heat stresses has detrimental effects on lizard individuals and populations on sub-lethal levels. Our results indicate that pollution and global warming (or some other extremely weather) may generate significant and harmful effects on lizards.
Collapse
Affiliation(s)
- Zikang Wang
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Li Chen
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Luyao Zhang
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Wenjun Zhang
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Yue Deng
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Rui Liu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Yinan Qin
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Jinling Diao
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China.
| |
Collapse
|
28
|
Peng FJ, Hardy EM, Mezzache S, Bourokba N, Palazzi P, Stojiljkovic N, Bastien P, Li J, Soeur J, Appenzeller BMR. Exposure to multiclass pesticides among female adult population in two Chinese cities revealed by hair analysis. ENVIRONMENT INTERNATIONAL 2020; 138:105633. [PMID: 32179318 DOI: 10.1016/j.envint.2020.105633] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/24/2020] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
The high use of pesticides worldwide and the constant exposure of humans to these toxic-by-design chemicals have drawn the attention on the possible consequences on human health. However, information on the exposure of the general population to pesticides remain very limited in most countries, especially in urban areas. In the present work, hair analysis was conducted to investigate the exposure of 204 urban women living in two Chinese cities (Baoding and Dalian) to 110 pesticides and 30 metabolites of the following families: organochlorines, organophosphates, carbamates, pyrethroids, neonicotinoids, phenylpyrazoles, acid herbicides, urea herbicides and azoles. Results showed that 71 pesticides and 23 metabolites were found in the hair samples, with concentrations ranging up to 1070 pg/mg in hair. In each hair sample, the number of detected chemicals ranged from 25 to 50, demonstrating the cumulative exposure to pesticides among Chinese women in the studied regions. The concentrations of 38 chemicals (e.g., p-nitrophenol, diethyldithiophosphate, λ-cyhalothrin, permethrin, carbendazim and tebuconazole) were significantly different between women in Baoding and Dalian, indicating the regional differences in exposure to pesticide. Using a multiple regression analysis, we found that concentrations of a few dominant pesticides were associated with age, body mass index (BMI), cooking frequency and regions. These results can provide baseline information on exposure of female adult Chinese population to multiple pesticides and support future studies focused on the health effects associated with pesticide exposure.
Collapse
Affiliation(s)
- Feng-Jiao Peng
- Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, 1 A-B Rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Emilie M Hardy
- Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, 1 A-B Rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Sakina Mezzache
- L'Oréal Research and Innovation, 1 Avenue Eugène Schueller BP22, 93601 Aulnay Sous Bois, France
| | - Nasrine Bourokba
- L'Oréal Research and Innovation, Biopolis Drive, Synapse, 138623, Singapore
| | - Paul Palazzi
- Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, 1 A-B Rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Natali Stojiljkovic
- L'Oréal Research and Innovation, 1 Avenue Eugène Schueller BP22, 93601 Aulnay Sous Bois, France
| | - Philippe Bastien
- L'Oréal Research and Innovation, 1 Avenue Eugène Schueller BP22, 93601 Aulnay Sous Bois, France
| | - Jing Li
- L'Oréal Research and Innovation, No. 550 JinYu Rd., Pudong New Area, China
| | - Jeremie Soeur
- L'Oréal Research and Innovation, 1 Avenue Eugène Schueller BP22, 93601 Aulnay Sous Bois, France
| | - Brice M R Appenzeller
- Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, 1 A-B Rue Thomas Edison, 1445 Strassen, Luxembourg.
| |
Collapse
|
29
|
He B, Wang X, Jin X, Xue Z, Ni Y, Zhu J, Wang C, Jin Y, Fu Z. β‐Cypermethrin
Alleviated the Inhibitory Effect of Medium from
RAW
264.7 Cells on
3T3‐L1
Cell Maturation into Adipocytes. Lipids 2020; 55:251-260. [DOI: 10.1002/lipd.12234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/29/2020] [Accepted: 03/08/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Bingnan He
- College of Biotechnology and BioengineeringZhejiang University of Technology Hangzhou Zhejiang 310032 China
| | - Xia Wang
- College of Biotechnology and BioengineeringZhejiang University of Technology Hangzhou Zhejiang 310032 China
| | - Xini Jin
- College of Biotechnology and BioengineeringZhejiang University of Technology Hangzhou Zhejiang 310032 China
| | - Zimeng Xue
- College of Biotechnology and BioengineeringZhejiang University of Technology Hangzhou Zhejiang 310032 China
| | - Yinhua Ni
- College of Biotechnology and BioengineeringZhejiang University of Technology Hangzhou Zhejiang 310032 China
| | - Jianbo Zhu
- College of Biotechnology and BioengineeringZhejiang University of Technology Hangzhou Zhejiang 310032 China
| | - Caiyun Wang
- College of Biotechnology and BioengineeringZhejiang University of Technology Hangzhou Zhejiang 310032 China
| | - Yuanxiang Jin
- College of Biotechnology and BioengineeringZhejiang University of Technology Hangzhou Zhejiang 310032 China
| | - Zhengwei Fu
- College of Biotechnology and BioengineeringZhejiang University of Technology Hangzhou Zhejiang 310032 China
| |
Collapse
|
30
|
Rebuzzini P, Civello C, Nantia Akono E, Fassina L, Zuccotti M, Garagna S. Chronic cypermethrin exposure alters mouse embryonic stem cell growth kinetics, induces Phase II detoxification response and affects pluripotency and differentiation gene expression. Eur J Histochem 2020; 64. [PMID: 32214279 PMCID: PMC7036707 DOI: 10.4081/ejh.2020.3084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/05/2020] [Indexed: 12/21/2022] Open
Abstract
Worldwide uncontrolled use of synthetic pyrethroids contaminates water and soil leading to health hazards. Cypermethrin (CYP), the most used pyrethroid, induces detrimental effects on adults and embryos at different stages of development of several vertebrate species. In Mammals, CYP-induced alterations have been previously described in adult somatic cells and in post-implantation embryos. It remains unknown whether CYP has effects during pre-implantation development. Studies to access pre-implantation embryo toxicity are complicated by the restricted number of blastocysts that may be obtained, either in vivo or in vitro. Embryonic stem cells (ESCs) are an in vitro model study that overcomes these limitations, as millions of pluripotent cells are available to the analysis. Also, ESCs maintain the same pluripotency characteristics and differentiation capacity of the inner cell mass (ICM) present in the blastocyst, from which they derive. In this work, using mouse R1 ESCs, we studied CYP-induced cell death, ROS production, the activation of oxidative stress-related and detoxification responses and the population growth kinetics following 72 h exposure at the 0.3 mM LD50 dose. Also, the expression levels of pluripotency genes in exposed ESCs and of markers of the three germ layers after their differentiation into embryoid bodies (EBs) were determined. Two apoptotic waves were observed at 12-24 h and at 72 h. The increase of ROS production, at 24 h until the end of the culture period, was accompanied by the induction, at 48 h, of redox-related Cat, Sod1, Sod2, Gpx1 and Gpx4 genes. Up-regulation of Cyp1b1, but not of Cyp1a1, phase I gene was detected at 72 h and induction of Nqo1, Gsta1 and Ugt1a6 phase II genes began at 24 h exposure. The results show that exposed R1 ESCs activate oxidative stress-related and detoxification responses, although not sufficient, during the culture period tested, to warrant recovery of the growth rate observed in untreated cells. Also, CYP exposure altered the expression of Oct-4 and Nanog pluripotency genes in ESCs and, when differentiated into EBs, the expression of Fgf5, Brachyury and Foxa2, early markers of the ectoderm, mesoderm and endoderm germ layers, respectively. NIH/3T3 cells, a differentiated cell line of embryonic origin, were used for comparison.
Collapse
Affiliation(s)
- Paola Rebuzzini
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia.
| | | | | | | | | | | |
Collapse
|
31
|
Purification of pyrethrins from flowers of Chrysanthemum cineraraeflium by high-speed counter-current chromatography based on coordination reaction with silver nitrate. J Chromatogr A 2020; 1613:460660. [DOI: 10.1016/j.chroma.2019.460660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 01/31/2023]
|
32
|
Saillenfait AM, Malard S. Human Risk Associated with Long-Term Exposure to Pyrethroid Insecticides. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2020. [DOI: 10.1007/698_2019_427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
33
|
Zhao W, Jing X, Chang M, Meng J, Feng C. Vortex‐assisted Emulsification Microextraction for the Determination of Pyrethroids in Mushroom. B KOREAN CHEM SOC 2019. [DOI: 10.1002/bkcs.11850] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Wenfei Zhao
- College of Food Science and EngineeringShanxi Agricultural University Taigu 030801 China
| | - Xu Jing
- College of Food Science and EngineeringShanxi Agricultural University Taigu 030801 China
| | - Mingchang Chang
- College of Food Science and EngineeringShanxi Agricultural University Taigu 030801 China
| | - Junlong Meng
- College of Food Science and EngineeringShanxi Agricultural University Taigu 030801 China
| | - Cuiping Feng
- College of Food Science and EngineeringShanxi Agricultural University Taigu 030801 China
| |
Collapse
|
34
|
Lee KS, Lee YA, Lee YJ, Shin CH, Lim YH, Hong YC. The relationship of urinary 3-phenoxybenzoic acid concentrations in utero and during childhood with adiposity in 4-year-old children. ENVIRONMENTAL RESEARCH 2019; 172:446-453. [PMID: 30831434 DOI: 10.1016/j.envres.2019.02.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 02/10/2019] [Accepted: 02/24/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Pyrethroid pesticides are reported to be the most commonly used residential insecticides worldwide. We aimed to investigate the relationship between prenatal and postnatal 3-phenoxybenzoic acid (3-PBA) concentrations, and growth and adiposity parameters in 4-year-old children. METHOD We obtained data from 578 children who participated in the prospective Environment and Development of Children (EDC) study at around 4 years of age (45-55 months) between August 2008 and July 2011. Anthropometric measurements were obtained at age 4 years. Prenatal and postnatal urinary 3-PBA concentration was measured in maternal urine samples at around 20 weeks of gestation, and in the 4-year-old children, respectively. RESULT The detection frequency of urinary 3-PBA (geometric mean concentration) was 98-99% (0.98 μg/g Cr) in maternal urine, and almost 99-100% (1.34 μg/g Cr) in 4-year-old children. Prenatal urinary3-PBA concentration was not associated with height, weight, or body mass index (BMI) z-scores at 4 years of age, regardless of sex. Postnatal urinary3-PBA concentration was not related to height z-scores, but was positively associated with weight z-scores with marginal significance among only girls (p = 0.058). Analyzed by sex, there was a significant relationship between postnatal urinary 3-PBA concentration and BMI z-scores (p = 0.015) among girls, after adjusting for covariates. CONCLUSION Childhood urinary 3-PBA concentration measured at 4 years of age was positively associated with BMI z-scores in 4-year-old girls, but prenatal urinary 3-PBA concentration at midterm pregnancy exhibited no association.
Collapse
Affiliation(s)
- Kyung-Shin Lee
- Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea; Environmental Health Center, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
| | - Young Ah Lee
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul 03080, Republic of Korea.
| | - Yun Jeong Lee
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul 03080, Republic of Korea.
| | - Choong Ho Shin
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul 03080, Republic of Korea.
| | - Youn-Hee Lim
- Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea; Environmental Health Center, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
| | - Yun-Chul Hong
- Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea; Environmental Health Center, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
| |
Collapse
|
35
|
Maule AL, Scarpaci MM, Proctor SP. Urinary concentrations of permethrin metabolites in US Army personnel in comparison with the US adult population, occupationally exposed cohorts, and other general populations. Int J Hyg Environ Health 2019; 222:355-363. [DOI: 10.1016/j.ijheh.2019.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 02/02/2019] [Accepted: 02/12/2019] [Indexed: 01/16/2023]
|
36
|
Bragança I, Mucha AP, Tomasino MP, Santos F, Lemos PC, Delerue-Matos C, Domingues VF. Deltamethrin impact in a cabbage planted soil: Degradation and effect on microbial community structure. CHEMOSPHERE 2019; 220:1179-1186. [PMID: 33395804 DOI: 10.1016/j.chemosphere.2019.01.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/25/2018] [Accepted: 01/02/2019] [Indexed: 06/12/2023]
Abstract
Synthetic pyrethroids (SPs) are one of the most common pesticides used worldwide. Their use has greatly increased in the last decades and its' continuous application lead to added pesticides concentration in soil. Consequently, SPs may enter the food chain, affecting the environment and human health. The degradation over time of the pyrethroid pesticide deltamethrin applied to cabbages was monitored. The evolution was followed both on cabbages and the surrounding soils, and the soil microbial community characterized by next-generation sequencing of the 16S rRNA gene. The main shift in the microbial community structure was observed during the first 30 days after pesticides' application. The modification in the microbial community composition, where an increased abundance of Nocardioides sp. and Sphingomonas sp. were observed, was correlated respectively with the conversions of deltamethrin and its metabolite, 3-phenoxybenzoic acid (3-PBA). Although deltamethrin was not found in any of the tested samples (soil and cabbage) after 180 days, it caused an environmental impact much further than the 7 days security interval. These findings suggest that deltamethrin application can disturb soil microbial community and that natural biodegradation can have an important part in pesticides soil decontamination.
Collapse
Affiliation(s)
- Idalina Bragança
- REQUIMTE/LAQV-GRAQ, Instituto Superior de Engenharia do Porto, Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| | - Ana P Mucha
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Maria P Tomasino
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Filipa Santos
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Paulo C Lemos
- REQUIMTE/LAQV, Chemistry Dep., FCT/Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV-GRAQ, Instituto Superior de Engenharia do Porto, Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| | - Valentina F Domingues
- REQUIMTE/LAQV-GRAQ, Instituto Superior de Engenharia do Porto, Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal.
| |
Collapse
|
37
|
Parvez S, Gerona RR, Proctor C, Friesen M, Ashby JL, Reiter JL, Lui Z, Winchester PD. Glyphosate exposure in pregnancy and shortened gestational length: a prospective Indiana birth cohort study. Environ Health 2018; 17:23. [PMID: 29519238 PMCID: PMC5844093 DOI: 10.1186/s12940-018-0367-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 02/20/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Glyphosate (GLY) is the most heavily used herbicide worldwide but the extent of exposure in human pregnancy remains unknown. Its residues are found in the environment, major crops, and food items that humans, including pregnant women, consume daily. Since GLY exposure in pregnancy may also increase fetal exposure risk, we designed a birth-cohort study to determine exposure frequency, potential exposure pathways, and associations with fetal growth indicators and pregnancy length. METHOD Urine and residential drinking water samples were obtained from 71 women with singleton pregnancies living in Central Indiana while they received routine prenatal care. GLY measurements were performed using liquid chromatography-tandem mass spectrometry. Demographic and survey information relating to food and water consumption, stress, and residence were obtained by questionnaire. Maternal risk factors and neonatal outcomes were abstracted from medical records. Correlation analyses were used to assess relationships of urine GLY levels with fetal growth indicators and gestational length. RESULTS The mean age of participants was 29 years, and the majority were Caucasian. Ninety three percent of the pregnant women had GLY levels above the limit of detection (0.1 ng/mL). Mean urinary GLY was 3.40 ng/mL (range 0.5-7.20 ng/mL). Higher GLY levels were found in women who lived in rural areas (p = 0.02), and in those who consumed > 24 oz. of caffeinated beverages per day (p = 0.004). None of the drinking water samples had detectable GLY levels. We observed no correlations with fetal growth indicators such as birth weight percentile and head circumference. However, higher GLY urine levels were significantly correlated with shortened gestational lengths (r = - 0.28, p = 0.02). CONCLUSIONS This is the first study of GLY exposure in US pregnant women using urine specimens as a direct measure of exposure. We found that > 90% of pregnant women had detectable GLY levels and that these levels correlated significantly with shortened pregnancy lengths. Although our study cohort was small and regional and had limited racial/ethnic diversity, it provides direct evidence of maternal GLY exposure and a significant correlation with shortened pregnancy. Further investigations in a more geographically and racially diverse cohort would be necessary before these findings could be generalized.
Collapse
Affiliation(s)
- S. Parvez
- Department of Environmental Health Science, Indiana University Fairbanks School of Public Health, 1050 Wishard Boulevard, Indianapolis, IN 46202 USA
| | - R. R. Gerona
- Department of Gynecology, Obstetrics and Reproductive Sciences, University of California San Francisco, 505 Parnassus Ave Moffitt Hospital M879B, San Francisco, CA 94143 USA
| | - C. Proctor
- Franciscan Health, 8111 S Emerson Avenue, Indianapolis, IN 46237 USA
- Neonatal-Perinatal Medicine, Riley Children’s Hospital, Indiana University School of Medicine, 699 Riley Hospital Dr RR 208, Indianapolis, IN 46202 USA
| | - M. Friesen
- Department of Gynecology, Obstetrics and Reproductive Sciences, University of California San Francisco, 505 Parnassus Ave Moffitt Hospital M879B, San Francisco, CA 94143 USA
| | - J. L. Ashby
- Department of Environmental Health Science, Indiana University Fairbanks School of Public Health, 1050 Wishard Boulevard, Indianapolis, IN 46202 USA
| | - J. L. Reiter
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, 1044 W. Walnut, R4 035, Indianapolis, IN 46202 USA
| | - Z. Lui
- Department of Biostatistics, Indiana University Fairbanks School of Public Health, 410 W. Tenth St., Suite 3000, Indianapolis, IN 46202 USA
| | - P. D. Winchester
- Franciscan Health, 8111 S Emerson Avenue, Indianapolis, IN 46237 USA
- Neonatal-Perinatal Medicine, Riley Children’s Hospital, Indiana University School of Medicine, 699 Riley Hospital Dr RR 208, Indianapolis, IN 46202 USA
| |
Collapse
|
38
|
Tang W, Wang D, Wang J, Wu Z, Li L, Huang M, Xu S, Yan D. Pyrethroid pesticide residues in the global environment: An overview. CHEMOSPHERE 2018; 191:990-1007. [PMID: 29145144 DOI: 10.1016/j.chemosphere.2017.10.115] [Citation(s) in RCA: 346] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/17/2017] [Accepted: 10/20/2017] [Indexed: 05/07/2023]
Abstract
Pyrethroids are synthetic organic insecticides with low mammalian toxicity that are widely used in both rural and urban areas worldwide. After entering the natural environment, pyrethroids circulate among the three phases of solid, liquid, and gas and enter organisms through food chains, resulting in substantial health risks. This review summarized the available studies on pyrethroid residues since 1986 in different media at the global scale and indicated that pyrethroids have been widely detected in a range of environments (including soils, water, sediments, and indoors) and in organisms. The concentrations and detection rates of agricultural pyrethroids, which always contain α-cyanogroup (α-CN), such as cypermethrin and fenvalerate, decline in the order of crops > sediments > soils > water. Urban pyrethroids (not contain α-CN), such as permethrin, have been detected at high levels in the indoor environment, and 3-phenoxybenzoic acid, a common pyrethroid metabolite in human urine, is frequently detected in the human body. Pyrethroid pesticides accumulate in sediments, which are a source of pyrethroid residues in aquatic products.
Collapse
Affiliation(s)
- Wangxin Tang
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China
| | - Di Wang
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China
| | - Jiaqi Wang
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China
| | - Zhengwen Wu
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China
| | - Lingyu Li
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China
| | - Mingli Huang
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China
| | - Shaohui Xu
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China
| | - Dongyun Yan
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|