1
|
Whitefoot-Keliin KM, Benaske CC, Allen ER, Guerrero MT, Grapentine JW, Schiff BD, Mahon AR, Greenlee-Wacker MC. In response to bacteria, neutrophils release extracellular vesicles capable of initiating thrombin generation through DNA-dependent and independent pathways. J Leukoc Biol 2024; 116:1223-1236. [PMID: 38809773 PMCID: PMC11599124 DOI: 10.1093/jleuko/qiae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
Neutrophils release extracellular vesicles, and some subsets of neutrophil-derived extracellular vesicles are procoagulant. In response to Staphylococcus aureus, neutrophils produce extracellular vesicles that associate electrostatically with neutrophil extracellular traps. DNA in neutrophil extracellular traps is procoagulant, but whether neutrophil extracellular vesicles produced during bacterial challenge have similar activity is unknown. Given that extracellular vesicle activity is agonist and cell-type dependent and coagulation contributes to sepsis, we hypothesized that sepsis-causing bacteria increase production of neutrophil-derived extracellular vesicles, as well as extracellular vesicle-associated DNA, and intact extracellular vesicles and DNA cause coagulation. We recovered extracellular vesicles from neutrophils challenged with S. aureus, Staphylococcus epidermidis, Escherichia coli, and Pseudomonas aeruginosa and measured associated DNA and procoagulant activity. Extracellular vesicles from S. aureus-challenged neutrophils, which were previously characterized, displayed dose-dependent procoagulant activity as measured by thrombin generation in platelet-poor plasma. Extracellular vesicle lysis and DNase treatment reduced thrombin generation by 90% and 37%, respectively. S. epidermidis, E. coli, and P. aeruginosa also increased extracellular vesicle production and extracellular vesicle-associated extracellular DNA, and these extracellular vesicles were also procoagulant. Compared to spontaneously released extracellular vesicles, which demonstrated some ability to amplify factor XII-dependent coagulation in the presence of an activator, only extracellular vesicles produced in response to bacteria could initiate the pathway. S. aureus and S. epidermidis extracellular vesicles had more surface-associated DNA than E. coli and P. aeruginosa extracellular vesicles, and S. aureus and S. epidermidis extracellular vesicles contributed to initiation and amplification of thrombin generation in a DNA-dependent manner. However, DNA on E. coli or P. aeruginosa extracellular vesicles played no role, suggesting that neutrophils release procoagulant extracellular vesicles, which can activate the coagulation cascade through both DNA-dependent and independent mechanisms.
Collapse
Affiliation(s)
- Kaitlyn M Whitefoot-Keliin
- Deparment of Biology, Central Michigan University, 1200 S Franklin St., Mt. Pleasant, MI 48859, United States
| | - Chase C Benaske
- Deparment of Biology, Central Michigan University, 1200 S Franklin St., Mt. Pleasant, MI 48859, United States
| | - Edwina R Allen
- Deparment of Biology, Central Michigan University, 1200 S Franklin St., Mt. Pleasant, MI 48859, United States
| | - Mariana T Guerrero
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, 1 Grand Avenue, San Luis Obispo, CA 93407, United States
| | - Justin W Grapentine
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, 1 Grand Avenue, San Luis Obispo, CA 93407, United States
| | - Benjamin D Schiff
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, 1 Grand Avenue, San Luis Obispo, CA 93407, United States
| | - Andrew R Mahon
- Deparment of Biology, Central Michigan University, 1200 S Franklin St., Mt. Pleasant, MI 48859, United States
| | - Mallary C Greenlee-Wacker
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, 1 Grand Avenue, San Luis Obispo, CA 93407, United States
| |
Collapse
|
2
|
Park C, Lei Z, Li Y, Ren B, He J, Huang H, Chen F, Li H, Brunner K, Zhu J, Jay SM, Williams B, Chao W, Wu J, Zou L. Extracellular vesicles in sepsis plasma mediate neuronal inflammation in the brain through miRNAs and innate immune signaling. J Neuroinflammation 2024; 21:252. [PMID: 39375720 PMCID: PMC11460013 DOI: 10.1186/s12974-024-03250-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Neuroinflammation reportedly plays a critical role in the pathogenesis of sepsis-associated encephalopathy (SAE). We previously reported that circulating plasma extracellular vesicles (EVs) from septic mice are proinflammatory. In the current study, we tested the role of sepsis plasma EVs in neuroinflammation. METHODS To track EVs in cells and tissues, HEK293T cell-derived EVs were labeled with the fluorescent dye PKH26. Cecal ligation and puncture (CLP) was conducted to model polymicrobial sepsis in mice. Plasma EVs were isolated by ultracentrifugation and their role in promoting neuronal inflammation was tested following intracerebroventricular (ICV) injection. miRNA inhibitors (anti-miR-146a, -122, -34a, and -145a) were applied to determine the effects of EV cargo miRNAs in the brain. A cytokine array was performed to profile microglia-released protein mediators. TLR7- or MyD88-knockout (KO) mice were utilized to determine the underlying mechanism of EVs-mediated neuroinflammation. RESULTS We observed the uptake of fluorescent PKH26-EVs inside the cell bodies of both microglia and neurons. Sepsis plasma EVs led to a dose-dependent cytokine release in cultured microglia, which was partially attenuated by miRNA inhibitors against the target miRNAs and in TLR7-KO cells. When administered via the ICV, sepsis plasma EVs resulted in a marked increase in the accumulation of innate immune cells, including monocyte and neutrophil and cytokine gene expression, in the brain. Although sepsis plasma EVs had no direct effect on cytokine production or neuronal injury in vitro, the conditioned media (CM) of microglia treated with sepsis plasma EVs induced neuronal cell death as evidenced by increased caspase-3 cleavage and Annexin-V staining. Cytokine arrays and bioinformatics analysis of the microglial CM revealed multiple cytokines/chemokines and other factors functionally linked to leukocyte chemotaxis and migration, TLR signaling, and neuronal death. Moreover, sepsis plasma EV-induced brain inflammation in vivo was significantly dependent on MyD88. CONCLUSIONS Circulating plasma EVs in septic mice cause a microglial proinflammatory response in vitro and a brain innate immune response in vivo, some of which are in part mediated by TLR7 in vitro and MyD88 signaling in vivo. These findings highlight the importance of circulating EVs in brain inflammation during sepsis.
Collapse
Affiliation(s)
- Chanhee Park
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Zhuofan Lei
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Yun Li
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Boyang Ren
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Junyun He
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Huang Huang
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Fengqian Chen
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Hui Li
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Kavitha Brunner
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jing Zhu
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Steven M Jay
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20740, USA
| | - Brittney Williams
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Wei Chao
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Junfang Wu
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Center to Advanced Chronic Pain Research, University of Maryland, Baltimore, MD, 21201, USA.
| | - Lin Zou
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
3
|
Iba T, Helms J, Levy JH. Sepsis-induced coagulopathy (SIC) in the management of sepsis. Ann Intensive Care 2024; 14:148. [PMID: 39302568 DOI: 10.1186/s13613-024-01380-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024] Open
Abstract
The mortality rate of sepsis remains high and further increases when complicated by disseminated intravascular coagulation (DIC). Consequently, early detection and appropriate management of DIC will be helpful for the management of sepsis. Although overt DIC criteria are often used for diagnosing definitive DIC, it was not designed to detect early-phase DIC. The criteria and scoring system for sepsis-induced coagulopathy (SIC) were developed and introduced in 2017 to detect early-stage DIC, and they were subsequently adopted by the International Society on Thrombosis and Haemostasis in 2019. The objective of detecting SIC was not to miss the patients at high risk of developing overt DIC at an earlier time. Although anticoagulant therapies are potential options for the treatment of sepsis-associated DIC, their effectiveness has not been established, and further research is warranted. For that purpose, an international collaborative platform is required for future clinical trials, and SIC criteria have been suggested for such studies. Calculating the SIC score is straightforward and suitable for use in clinical settings. This review aims to introduce SIC criteria and its scoring system for better management of sepsis-associated DIC. We also intended to update the current knowledge regarding this novel diagnostic criterion.
Collapse
Affiliation(s)
- Toshiaki Iba
- Department of Emergency and Disaster Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Julie Helms
- Medical Intensive Care Unit - NHC, Strasbourg University (UNISTRA), Strasbourg University Hospital, INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Strasbourg, France
| | - Jerrold H Levy
- Department of Anesthesiology, Critical Care, and Surgery, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
4
|
Drury SK, Wallet SM, Maile R, Efron PA, Mohr AM, Bible L. Current updates in precision and personalized medicine in sepsis and trauma. Surgery 2024; 176:541-543. [PMID: 38760231 DOI: 10.1016/j.surg.2024.03.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/26/2024] [Accepted: 03/25/2024] [Indexed: 05/19/2024]
Abstract
Precision and personalized medicine remain an elusive but illustrious goal in the realm of critical care, particularly in the areas of trauma and sepsis. These aims specifically refer to data gathering, interpretation, and treatment application on an individualized basis in the clinical care of patients. Until now, personalized medicine has mainly remained focused on genetics and epigenetic phenomena and has propelled clinical care forward, especially in the field of oncology. Advances in technology and methodology continue to proliferate in early-phase research, and some of these advancements are well poised to break into the clinical sphere of critical care. Here, we describe 2 topics at the forefront of investigation with potent and imminent potential for clinical application.
Collapse
Affiliation(s)
- Stacey K Drury
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - Shannon M Wallet
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL
| | - Robert Maile
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - Philip A Efron
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - Alicia M Mohr
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - Letitia Bible
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL.
| |
Collapse
|
5
|
Li Y, Zhang L, Wang Y, Gao M, Zhang C, Zhang Y, Zhang D. Development and Validation of a Nomogram for Predicting Sepsis-Induced Coagulopathy in Septic Patients: Mixed Retrospective and Prospective Cohort Study. Thromb Haemost 2024. [PMID: 38959956 DOI: 10.1055/a-2359-2563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
BACKGROUND Sepsis-induced coagulopathy (SIC) is a common cause of poor prognosis in critically ill patients in the intensive care unit (ICU). However, currently there are no tools specifically designed for predicting the occurrence of SIC in septic patients earlier. This study aimed to develop a predictive nomogram incorporating clinical markers and scoring systems to individually predict the probability of SIC in septic patients. METHODS Patients consecutively recruited in the stage between January 2022 and April 2023 constituted the development cohort for retrospective analysis to internally test the nomogram, and patients in the stage between May 2023 to November 2023 constituted the validation cohort for prospective analysis to externally validate the nomogram. Univariate logistic regression analysis of the development cohort was performed firstly, and then multivariate logistic regression analysis was performed using backward stepwise method to determine the best-fitting model and obtain the nomogram from it. The nomogram was validated in an independent external validation cohort, involving discrimination and calibration. A decision curve analysis was also performed to evaluate the net benefit of the insertion decision with this nomogram. RESULTS A total of 548 and 245 patients, 55.1 and 49.4% with SIC occurrence, were included in the development and validation cohorts, respectively. Predictors contained in the prediction nomogram included shock, platelets, and international normalized ratio (INR). Patients with shock (odds ratio [OR]: 4.499; 95% confidence interval [CI]: 2.730-7.414; p < 0.001), higher INR (OR: 349.384; 95% CI: 62.337-1958.221; p < 0.001), and lower platelet (OR: 0.985; 95% CI: 0.982-0.988; p < 0.001) had higher probabilities of SIC. The development model showed good discrimination, with an area under the receiver operating characteristic curve (AUROC) of 0.879 (95% CI: 0.850-0.908) and good calibration. Application of the nomogram in the validation cohort also gave good discrimination with an AUROC of 0.872 (95% CI: 0.826-0.917) and good calibration. The decision curve analysis of the nomogram provided better net benefit than the alternate options (intervention or no intervention). CONCLUSION By incorporating shock, platelets, and INR in the model, this useful nomogram could be accessibly utilized to predict SIC occurrence in septic patients. However, external validation is still required for further generalizability improvement of this nomogram.
Collapse
Affiliation(s)
- Yuting Li
- Department of Critical Care Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Liying Zhang
- Department of Critical Care Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Youquan Wang
- Department of Critical Care Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Meng Gao
- Department of Critical Care Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Chaoyang Zhang
- Department of Critical Care Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yuhan Zhang
- Department of Critical Care Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Dong Zhang
- Department of Critical Care Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
6
|
Iba T, Helms J, Maier CL, Levi M, Scarlatescu E, Levy JH. The role of thromboinflammation in acute kidney injury among patients with septic coagulopathy. J Thromb Haemost 2024; 22:1530-1540. [PMID: 38382739 DOI: 10.1016/j.jtha.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/22/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
Inflammation and coagulation are critical self-defense mechanisms for mitigating infection that can nonetheless induce tissue injury and organ dysfunction. In severe cases, like sepsis, a dysregulated thromboinflammatory response may result in multiorgan dysfunction. Sepsis-associated acute kidney injury (AKI) is a significant contributor to patient morbidity and mortality. The connection between AKI and thromboinflammation is largely due to unique aspects of the renal vasculature. Specifically, the interaction between blood cells with the endothelial, glomerular, and peritubular capillary systems during thromboinflammation reduces oxygen supply to tubular epithelial cells. Previous studies have focused on tubular epithelial cell damage due to hypoxia, oxidative stress, and nephrotoxins. Although these factors are pivotal in acute tubular injury or necrosis, recent studies have demonstrated that AKI in sepsis encompasses a mixture of tubular and glomerular damage subtypes. In cases of sepsis-induced coagulopathy, thromboinflammation within the glomerulus and peritubular capillaries is an important pathogenic mechanism for AKI. Unfortunately, and despite the use of renal replacement therapy, the development of AKI in sepsis continues to be associated with high morbidity, mortality, and clinical challenges requiring alternative approaches. This review introduces the important role of thromboinflammation in AKI pathogenesis and details innovative vascular-targeting therapeutic strategies.
Collapse
Affiliation(s)
- Toshiaki Iba
- Department of Emergency and Disaster Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Julie Helms
- French National Institute of Health and Medical Research, United Medical Resources 1260, Regenerative Nanomedicine, Federation de Medicine Translationnelle de Strasbourg, Strasbourg University Hospital, Medical Intensive Care Unit - NHC, Strasbourg University, Strasbourg, France
| | - Cheryl L Maier
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Marcel Levi
- Department of Vascular Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands; Department of Medicine, University College London Hospitals National Health Service Foundation Trust, Cardio-metabolic Programme-National Institute for Health and Care Research University College London Hospitals/University College London Biomedical Research Centre, London, United Kingdom
| | - Ecaterina Scarlatescu
- University of Medicine and Pharmacy "Carol Davila," Bucharest, Romania; Department of Anaesthesia and Intensive Care, Fundeni Clinical Institute, Bucharest, Romania
| | - Jerrold H Levy
- Department of Anesthesiology, Critical Care, and Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
7
|
Wei X, Tu Y, Bu S, Guo G, Wang H, Wang Z. Unraveling the Intricate Web: Complement Activation Shapes the Pathogenesis of Sepsis-Induced Coagulopathy. J Innate Immun 2024; 16:337-353. [PMID: 38815564 PMCID: PMC11249610 DOI: 10.1159/000539502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Sepsis-associated coagulopathy specifically refers to widespread systemic coagulation activation accompanied by a high risk of hemorrhage and organ damage, which in severe cases manifests as disseminated intravascular coagulation (DIC), or even develops into multiple organ dysfunction syndrome (MODS). The complement system and the coagulation system as the main columns of innate immunity and hemostasis, respectively, undergo substantial activation after sepsis. SUMMARY Dysfunction of the complement, coagulation/fibrinolytic cascades caused by sepsis leads to "thromboinflammation," which ultimately amplifies the systemic inflammatory response and accelerates the development of MODS. Recent studies have revealed that massive activation of the complement system exacerbates sepsis-induced coagulation and even results in DIC, which suggests that inhibition of complement activation may have therapeutic potential in the treatment of septic coagulopathy. KEY MESSAGES Sepsis-associated thrombosis involves the upregulation or activation of procoagulant factors, down-regulation or inactivation of anticoagulant factors, and impairment of the fibrinolytic mechanism. This review aims to summarize the latest literature and analyze the underlying molecular mechanisms of the activation of the complement system on the abnormal coagulation cascades in sepsis.
Collapse
Affiliation(s)
- Xin Wei
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ye Tu
- Department of Pharmacy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shuhong Bu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guimei Guo
- Department of Pediatric Nephrology and Rheumatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hongbin Wang
- Master Program of Pharmaceutical Scieneces College of Graduate Studies, Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, Department of Basic Science College of Medicine, California Northstate University, Elk Grove, CA, USA
| | - Zhibin Wang
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai, China
| |
Collapse
|
8
|
Gebeyehu GM, Rashidiani S, Farkas B, Szabadi A, Brandt B, Pap M, Rauch TA. Unveiling the Role of Exosomes in the Pathophysiology of Sepsis: Insights into Organ Dysfunction and Potential Biomarkers. Int J Mol Sci 2024; 25:4898. [PMID: 38732114 PMCID: PMC11084308 DOI: 10.3390/ijms25094898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Extracellular vesicles (EVs) are tools for intercellular communication, mediating molecular transport processes. Emerging studies have revealed that EVs are significantly involved in immune processes, including sepsis. Sepsis, a dysregulated immune response to infection, triggers systemic inflammation and multi-organ dysfunction, posing a life-threatening condition. Although extensive research has been conducted on animals, the complex inflammatory mechanisms that cause sepsis-induced organ failure in humans are still not fully understood. Recent studies have focused on secreted exosomes, which are small extracellular vesicles from various body cells, and have shed light on their involvement in the pathophysiology of sepsis. During sepsis, exosomes undergo changes in content, concentration, and function, which significantly affect the metabolism of endothelia, cardiovascular functions, and coagulation. Investigating the role of exosome content in the pathogenesis of sepsis shows promise for understanding the molecular basis of human sepsis. This review explores the contributions of activated immune cells and diverse body cells' secreted exosomes to vital organ dysfunction in sepsis, providing insights into potential molecular biomarkers for predicting organ failure in septic shock.
Collapse
Affiliation(s)
- Gizaw Mamo Gebeyehu
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary; (G.M.G.); (S.R.); (B.F.)
| | - Shima Rashidiani
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary; (G.M.G.); (S.R.); (B.F.)
| | - Benjámin Farkas
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary; (G.M.G.); (S.R.); (B.F.)
| | - András Szabadi
- Department of Dentistry, Oral and Maxillofacial Surgery, Medical School, University of Pécs, 7623 Pécs, Hungary;
| | - Barbara Brandt
- Hungary Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, University of Pécs, 7624 Pécs, Hungary; (B.B.); (M.P.)
| | - Marianna Pap
- Hungary Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, University of Pécs, 7624 Pécs, Hungary; (B.B.); (M.P.)
| | - Tibor A. Rauch
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary; (G.M.G.); (S.R.); (B.F.)
| |
Collapse
|
9
|
Liu D, Langston JC, Prabhakarpandian B, Kiani MF, Kilpatrick LE. The critical role of neutrophil-endothelial cell interactions in sepsis: new synergistic approaches employing organ-on-chip, omics, immune cell phenotyping and in silico modeling to identify new therapeutics. Front Cell Infect Microbiol 2024; 13:1274842. [PMID: 38259971 PMCID: PMC10800980 DOI: 10.3389/fcimb.2023.1274842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Sepsis is a global health concern accounting for more than 1 in 5 deaths worldwide. Sepsis is now defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Sepsis can develop from bacterial (gram negative or gram positive), fungal or viral (such as COVID) infections. However, therapeutics developed in animal models and traditional in vitro sepsis models have had little success in clinical trials, as these models have failed to fully replicate the underlying pathophysiology and heterogeneity of the disease. The current understanding is that the host response to sepsis is highly diverse among patients, and this heterogeneity impacts immune function and response to infection. Phenotyping immune function and classifying sepsis patients into specific endotypes is needed to develop a personalized treatment approach. Neutrophil-endothelium interactions play a critical role in sepsis progression, and increased neutrophil influx and endothelial barrier disruption have important roles in the early course of organ damage. Understanding the mechanism of neutrophil-endothelium interactions and how immune function impacts this interaction can help us better manage the disease and lead to the discovery of new diagnostic and prognosis tools for effective treatments. In this review, we will discuss the latest research exploring how in silico modeling of a synergistic combination of new organ-on-chip models incorporating human cells/tissue, omics analysis and clinical data from sepsis patients will allow us to identify relevant signaling pathways and characterize specific immune phenotypes in patients. Emerging technologies such as machine learning can then be leveraged to identify druggable therapeutic targets and relate them to immune phenotypes and underlying infectious agents. This synergistic approach can lead to the development of new therapeutics and the identification of FDA approved drugs that can be repurposed for the treatment of sepsis.
Collapse
Affiliation(s)
- Dan Liu
- Department of Bioengineering, Temple University, Philadelphia, PA, United States
| | - Jordan C. Langston
- Department of Bioengineering, Temple University, Philadelphia, PA, United States
| | | | - Mohammad F. Kiani
- Department of Bioengineering, Temple University, Philadelphia, PA, United States
- Department of Mechanical Engineering, Temple University, Philadelphia, PA, United States
- Department of Radiation Oncology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Laurie E. Kilpatrick
- Center for Inflammation and Lung Research, Department of Microbiology, Immunology and Inflammation, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
10
|
Jaimes-Dueñez JE, Álvarez K, Eduardo-Echeverria L, Cáceres-Rivera DI, Rojas LZ, Gómez-Ochoa SA, Daniela-Muñoz L, Cantillo-Reines M, Tique-Oviedo M, Eresbey-Granada Y, Triana-Chávez Biol O. Assessment of Plasma Exovesicles and Prothrombotic Biomarkers Suggest Prethrombotic Conditions in Chagas Cardiomyopathy in Colombia. Clin Appl Thromb Hemost 2024; 30:10760296241295742. [PMID: 39491827 PMCID: PMC11536625 DOI: 10.1177/10760296241295742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024] Open
Abstract
Chagas cardiomyopathy (CCC) is associated with coagulation disorders that frequently culminate in thrombotic events, contributing to increased mortality rates in this clinical condition. Considering the demonstrated effect that extracellular vesicles (EVs) have on regulating inflammatory processes, coagulation, and angiogenesis, the present study aims to characterize plasma EVs and their relationship with coagulation disorders in patients with CCC. A total of 78 patients were assessed with 46.1% (36/78) representing the CCC group, 8.9% (7/78) with cardiomyopathy unrelated to Chagas disease (CM group), and 44.8% (35/78) comprising the control group, which included individuals without cardiomyopathy and negative for T. cruzi infection. Plasma EVs concentration (EVs/mL) for each individual was evaluated by flow cytometry, along with the proportion of EVs expressing PSGL-1 (PSGL-1+ EVs), Tissue Factor (TF + EVs), and CD41a (CD41a + EVs). The ability of EVs to induce platelet aggregation was evaluated by spectrophotometry. We also evaluated other prothrombotic biomarkers, including platelet count, activated partial thromboplastin time (PTT), prothrombin time (PT), and D-dimer levels. The results revealed elevated D-dimer levels in the CCC group, accompanied by a decrease in the count of EVs per mL of plasma and a significant increase in the proportion of PSGL-1+ EVs (P < .05) compared to the control group. Other parameters did not exhibit significant differences between groups. The elevated levels of PSGL-1+ EVs in the CCC group may be attributed to myocardial inflammatory processes, which, upon interaction with platelet-derived P-selectin, could promote thrombus formation, as indicated by the increased D-dimer levels in this group.
Collapse
Affiliation(s)
- Jeiczon Elim Jaimes-Dueñez
- Grupo de Investigación en Ciencias Animales - GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia (UCC), Bucaramanga, Colombia
| | - Karen Álvarez
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Facultad de Medicina, Universidad de Antioquia (UDEA), Medellín, Colombia
| | - Luis Eduardo-Echeverria
- Grupo de Investigación en Ciencias Cardiovasculares de la Fundación Cardiovascular de Colombia, Fundación Cardiovascular de Colombia (FCV), Floridablanca, Colombia
| | - Diana Isabel Cáceres-Rivera
- Grupo de Investigación para el Fortalecimiento de la Salud y el Bienestar GIFOSABI, Facultad de Enfermería, Universidad Cooperativa de Colombia (UCC), Bucaramanga, Colombia
| | - Lyda Z. Rojas
- Grupo de Investigación y Desarrollo de Conocimiento en Enfermería (GIDCEN), Fundación Cardiovascular de Colombia (FCV), Floridablanca, Colombia
| | - Sergio Alejandro Gómez-Ochoa
- Grupo de Investigación en Ciencias Cardiovasculares de la Fundación Cardiovascular de Colombia, Fundación Cardiovascular de Colombia (FCV), Floridablanca, Colombia
| | - Laura Daniela-Muñoz
- Grupo de Investigación en Ciencias Cardiovasculares de la Fundación Cardiovascular de Colombia, Fundación Cardiovascular de Colombia (FCV), Floridablanca, Colombia
| | - María Cantillo-Reines
- Grupo de Investigación en Ciencias Cardiovasculares de la Fundación Cardiovascular de Colombia, Fundación Cardiovascular de Colombia (FCV), Floridablanca, Colombia
| | - Marisol Tique-Oviedo
- Grupo de Investigación en Ciencias Animales - GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia (UCC), Bucaramanga, Colombia
| | - Yurany Eresbey-Granada
- Grupo de Biología y Control de Enfermedades Infecciosas - BCEI, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Antioquia (UDEA), Medellín, Colombia
| | - Omar Triana-Chávez Biol
- Grupo de Biología y Control de Enfermedades Infecciosas - BCEI, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Antioquia (UDEA), Medellín, Colombia
| |
Collapse
|
11
|
Iba T, Helms J, Neal MD, Levy JH. Mechanisms and management of the coagulopathy of trauma and sepsis: trauma-induced coagulopathy, sepsis-induced coagulopathy, and disseminated intravascular coagulation. J Thromb Haemost 2023; 21:3360-3370. [PMID: 37722532 PMCID: PMC10873124 DOI: 10.1016/j.jtha.2023.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/18/2023] [Accepted: 05/12/2023] [Indexed: 09/20/2023]
Abstract
Disseminated intravascular coagulation can occur due to different causes but commonly following sepsis. Trauma-induced coagulopathy (TIC) occurs on hospital arrival in approximately 25% of seriously injured patients who initially presents with impaired hemostasis and a bleeding phenotype that can later progress to a prothrombotic phase. Following traumatic injury, ineffective hemostasis is driven by massive blood loss, tissue damage, and hyperfibrinolysis. This initial impaired hemostasis continues until surgical or other management strategies not only to stop the causes of hemorrhage but also progresses to a prothrombotic and hypofibrinolytic state, also termed fibrinolytic shutdown. Prothrombotic progression is also promoted by inflammatory mediator release, endothelial injury, and platelet dysregulation, which is commonly seen in sepsis with increased mortality. Unlike TIC, the early phase of sepsis is frequently complicated by multiorgan dysfunction described as sepsis-induced coagulopathy (SIC) that lacks a hemorrhagic phase. The phenotypes of SIC and TIC are different, especially in their initial presentations; however, patients who survive TIC may also develop subsequent infections and potentially sepsis and SIC. Although the pathophysiology of SIC and TIC are different, endothelial injury, dysregulated fibrinolysis, and coagulation abnormalities are common. Management includes treatment of the underlying cause, tissue injury vs infection is critical, and supportive therapies, such as hemostatic resuscitation and circulatory support are essential, and adjunct therapies are recommended in guidelines. Based on clinical studies and certain guidelines, additional therapies include tranexamic acid in the limited timing of initial traumatic injury and anticoagulants, such as antithrombin and recombinant thrombomodulin in disseminated intravascular coagulation.
Collapse
Affiliation(s)
- Toshiaki Iba
- Department of Emergency and Disaster Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Julie Helms
- Strasbourg University (UNISTRA); Strasbourg University Hospital, Medical Intensive Care Unit - NHC; INSERM (French National Institute of Health and Medical Research), Strasbourg, France
| | - Matthew D Neal
- Trauma and Transfusion Medicine Research Center, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jerrold H Levy
- Department of Anesthesiology, Critical Care, and Surgery, Duke University School of Medicine, Durham, North Carolina, USA. https://twitter.com/JerroldLevy
| |
Collapse
|
12
|
Das K, Keshava S, Mukherjee T, Wang J, Magisetty J, Kolesnick R, Pendurthi UR, Rao LVM. Factor VIIa releases phosphatidylserine-enriched extracellular vesicles from endothelial cells by activating acid sphingomyelinase. J Thromb Haemost 2023; 21:3414-3431. [PMID: 37875382 DOI: 10.1016/j.jtha.2023.08.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/05/2023] [Accepted: 08/23/2023] [Indexed: 10/26/2023]
Abstract
BACKGROUND Our recent studies showed that activated factor (F) VII (FVIIa) releases extracellular vesicles (EVs) from the endothelium. FVIIa-released EVs were found to be enriched with phosphatidylserine (PS) and contribute to the hemostatic effect of FVIIa in thrombocytopenia and hemophilia. OBJECTIVE To investigate mechanisms by which FVIIa induces EV biogenesis and enriches EVs with PS. METHODS FVIIa activation of acid sphingomyelinase (aSMase) was evaluated by its translocation to the cell surface. The role of aSMase in the biogenesis of FVIIa-induced EVs and their enrichment with PS was investigated using specific siRNAs and inhibitors of aSMase and its downstream metabolites. Wild-type and aSMase-/- mice were injected with a control vehicle or FVIIa. EVs released into circulation were quantified by nanoparticle tracking analysis. EVs hemostatic potential was assessed in a murine thrombocytopenia model. RESULTS FVIIa activation of aSMase is responsible for both the externalization of PS and the release of EVs in endothelial cells. FVIIa-induced aSMase activation led to ceramide generation and de novo expression of transmembrane protein 16F. Inhibitors of ceramidases, sphingosine kinase, or sphingosine-1-phosphate receptor modulator blocked FVIIa-induced expression of transmembrane protein 16F and PS externalization without interfering with FVIIa release of EVs. In vivo, FVIIa release of EVs was markedly impaired in aSMase-/- mice compared with wild-type mice. Administration of a low dose of FVIIa, sufficient to induce EVs release, corrected bleeding associated with thrombocytopenia in wild-type mice but not in aSMase-/- mice. CONCLUSION Our study identifies a novel mechanism by which FVIIa induces PS externalization and releases PS-enriched EVs.
Collapse
Affiliation(s)
- Kaushik Das
- Department of Cellular and Molecular Biology, UT Tyler School of Medicine, The University of Texas Health Science Center at Tyler, Tyler, TX, USA.
| | - Shiva Keshava
- Department of Cellular and Molecular Biology, UT Tyler School of Medicine, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Tanmoy Mukherjee
- Department of Cellular and Molecular Biology, UT Tyler School of Medicine, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Jue Wang
- Department of Cellular and Molecular Biology, UT Tyler School of Medicine, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Jhansi Magisetty
- Department of Cellular and Molecular Biology, UT Tyler School of Medicine, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | | | - Usha R Pendurthi
- Department of Cellular and Molecular Biology, UT Tyler School of Medicine, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - L Vijaya Mohan Rao
- Department of Cellular and Molecular Biology, UT Tyler School of Medicine, The University of Texas Health Science Center at Tyler, Tyler, TX, USA.
| |
Collapse
|
13
|
An N, Chen Z, Zhao P, Yin W. Extracellular Vesicles in Sepsis: Pathogenic Roles, Organ Damage, and Therapeutic Implications. Int J Med Sci 2023; 20:1722-1731. [PMID: 37928875 PMCID: PMC10620861 DOI: 10.7150/ijms.86832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
Despite significant advances in anti-infective treatment and organ function support technology in recent years, the mortality rate of sepsis remains high. In addition to the high costs of sepsis treatment, the increasing consumption of medical resources also aggravates economic pressure and social burden. Extracellular vesicles (EVs) are membrane vesicles released from different types of activated or apoptotic cells to mediate intercellular communication, which can be detected in both human and animal body fluids. A growing body of researches suggest that EVs play an important role in the pathogenesis of sepsis. In this review, we summarize the predominant roles of EVs in various pathological processes during sepsis and its related organ dysfunction.
Collapse
Affiliation(s)
- Ni An
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Zhe Chen
- University College London, London, UK
| | - Peng Zhao
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Wen Yin
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
14
|
Su X, Brassard A, Bartolomucci A, Dhoparee‐Doomah I, Qiu Q, Tsering T, Rohanizadeh R, Koufos O, Giannias B, Bourdeau F, Feng L, Messina‐Pacheco J, Leo S, Sangwan V, Quail D, Tankel J, Spicer J, Burnier JV, Bailey SD, Ferri L, Cools‐Lartigue J. Tumour extracellular vesicles induce neutrophil extracellular traps to promote lymph node metastasis. J Extracell Vesicles 2023; 12:e12341. [PMID: 37563798 PMCID: PMC10415595 DOI: 10.1002/jev2.12341] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/15/2023] [Indexed: 08/12/2023] Open
Abstract
Lymph nodes (LNs) are frequently the first sites of metastasis. Currently, the only prognostic LN assessment is determining metastatic status. However, there is evidence suggesting that LN metastasis is facilitated by the formation of a pre-metastatic niche induced by tumour derived extracellular vehicles (EVs). Therefore, it is important to detect and modify the LN environmental changes. Earlier work has demonstrated that neutrophil extracellular traps (NETs) can sequester and promote distant metastasis. Here, we first confirmed that LN NETs are associated with reduced patient survival. Next, we demonstrated that NETs deposition precedes LN metastasis and NETs inhibition diminishes LN metastases in animal models. Furthermore, we discovered that EVs are essential to the formation of LN NETs. Finally, we showed that lymphatic endothelial cells secrete CXCL8/2 in response to EVs inducing NETs formation and the promotion of LN metastasis. Our findings reveal the role of EV-induced NETs in LN metastasis and provide potential immunotherapeutic vulnerabilities that may occur early in the metastatic cascade.
Collapse
Affiliation(s)
- Xin Su
- Department of Experimental SurgeryMcGill UniversityMontrealQuebecCanada
- Cancer Research ProgramResearch Institute of McGill University Health CenterMontrealQuebecCanada
- Department of PathologyMcGill UniversityMontrealQuebecCanada
| | - Ariane Brassard
- Cancer Research ProgramResearch Institute of McGill University Health CenterMontrealQuebecCanada
- Department of Microbiology and ImmunologyMcGill UniversityMontrealQuebecCanada
| | - Alexandra Bartolomucci
- Cancer Research ProgramResearch Institute of McGill University Health CenterMontrealQuebecCanada
- Department of PathologyMcGill UniversityMontrealQuebecCanada
| | - Iqraa Dhoparee‐Doomah
- Department of Experimental SurgeryMcGill UniversityMontrealQuebecCanada
- Cancer Research ProgramResearch Institute of McGill University Health CenterMontrealQuebecCanada
| | - Qian Qiu
- Cancer Research ProgramResearch Institute of McGill University Health CenterMontrealQuebecCanada
| | - Thupten Tsering
- Cancer Research ProgramResearch Institute of McGill University Health CenterMontrealQuebecCanada
- Department of PathologyMcGill UniversityMontrealQuebecCanada
| | - Ramin Rohanizadeh
- Cancer Research ProgramResearch Institute of McGill University Health CenterMontrealQuebecCanada
| | - Olivia Koufos
- Cancer Research ProgramResearch Institute of McGill University Health CenterMontrealQuebecCanada
| | - Betty Giannias
- Cancer Research ProgramResearch Institute of McGill University Health CenterMontrealQuebecCanada
| | - France Bourdeau
- Cancer Research ProgramResearch Institute of McGill University Health CenterMontrealQuebecCanada
| | - Lixuan Feng
- Cancer Research ProgramResearch Institute of McGill University Health CenterMontrealQuebecCanada
- Department of Microbiology and ImmunologyMcGill UniversityMontrealQuebecCanada
| | - Julia Messina‐Pacheco
- Cancer Research ProgramResearch Institute of McGill University Health CenterMontrealQuebecCanada
- Department of PathologyMcGill UniversityMontrealQuebecCanada
| | - Sabrina Leo
- Department of Experimental SurgeryMcGill UniversityMontrealQuebecCanada
- Cancer Research ProgramResearch Institute of McGill University Health CenterMontrealQuebecCanada
| | - Veena Sangwan
- Cancer Research ProgramResearch Institute of McGill University Health CenterMontrealQuebecCanada
| | - Daniela Quail
- The Rosalind and Morris Goodman Cancer InstituteMcGill UniversityMontrealQuebecCanada
| | - James Tankel
- Division of Thoracic and Upper Gastrointestinal SurgeryMcGill UniversityMontrealQuebecCanada
| | - Jonathan Spicer
- Cancer Research ProgramResearch Institute of McGill University Health CenterMontrealQuebecCanada
- Division of Thoracic and Upper Gastrointestinal SurgeryMcGill UniversityMontrealQuebecCanada
| | - Julia Valdemarin Burnier
- Cancer Research ProgramResearch Institute of McGill University Health CenterMontrealQuebecCanada
- Department of PathologyMcGill UniversityMontrealQuebecCanada
| | - Swneke Donovan Bailey
- Cancer Research ProgramResearch Institute of McGill University Health CenterMontrealQuebecCanada
| | - Lorenzo Ferri
- Cancer Research ProgramResearch Institute of McGill University Health CenterMontrealQuebecCanada
- Division of Thoracic and Upper Gastrointestinal SurgeryMcGill UniversityMontrealQuebecCanada
| | - Jonathan Cools‐Lartigue
- Cancer Research ProgramResearch Institute of McGill University Health CenterMontrealQuebecCanada
- Division of Thoracic and Upper Gastrointestinal SurgeryMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
15
|
Deng Y, Zou Y, Song X, Jiang A, Wang M, Qin Q, Song Y, Yue C, Yang D, Yu B, Lu H, Zheng Y. Potential of extracellular vesicles for early prediction of severity and potential risk stratification in critical inflammatory diseases. J Cell Commun Signal 2023:10.1007/s12079-023-00763-w. [PMID: 37195382 DOI: 10.1007/s12079-023-00763-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 05/02/2023] [Indexed: 05/18/2023] Open
Abstract
Some acute inflammatory diseases are often exacerbated during or after hospitalization, leading to some severe manifestations like systemic inflammatory response syndrome, multiple organ failure, and high mortality. Early clinical predictors of disease severity are urgently needed to optimize patient management for better prognosis. The existing clinical scoring system and laboratory tests cannot circumvent the problems of low sensitivity and limited specificity. Extracellular vesicles (EVs) are heterogeneous nanosecretory vesicles containing various biomolecules related to immune regulation, inflammation activation, and inflammation-related complications. This review provides an overview of EVs as inflammatory mediators, inflammatory signaling pathway regulators, promoters of inflammatory exacerbation, and markers of severity and prognosis. Currently, although relevant biomarkers are clinically available or are in the preclinical research stage, searching for new markers and detection methods is still warranted, as the problems of low sensitivity/specificity, cumbersome laboratory operation and high cost still plague clinicians. In-depth study of EVs might open a door in the search for novel predictors.
Collapse
Affiliation(s)
- Yuchuan Deng
- Department of Biotherapy,Cancer Center and State Key Laboratory of Biotherapy,West China Hospital, Sichuan University, Chengdu, 6110041, Sichuan, China
| | - Yu Zou
- Department of Biotherapy,Cancer Center and State Key Laboratory of Biotherapy,West China Hospital, Sichuan University, Chengdu, 6110041, Sichuan, China
| | - Xiaoshuang Song
- Department of Biotherapy,Cancer Center and State Key Laboratory of Biotherapy,West China Hospital, Sichuan University, Chengdu, 6110041, Sichuan, China
| | - Ailing Jiang
- Department of Biotherapy,Cancer Center and State Key Laboratory of Biotherapy,West China Hospital, Sichuan University, Chengdu, 6110041, Sichuan, China
| | - Mao Wang
- Department of Biotherapy,Cancer Center and State Key Laboratory of Biotherapy,West China Hospital, Sichuan University, Chengdu, 6110041, Sichuan, China
| | - Qin Qin
- Department of Biotherapy,Cancer Center and State Key Laboratory of Biotherapy,West China Hospital, Sichuan University, Chengdu, 6110041, Sichuan, China
| | - Yiran Song
- Department of Biotherapy,Cancer Center and State Key Laboratory of Biotherapy,West China Hospital, Sichuan University, Chengdu, 6110041, Sichuan, China
| | - Chao Yue
- Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Dujiang Yang
- Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Bo Yu
- Zhejiang Pushkang Biotechnology Co., Ltd, Shaoxing, Zhejiang Province, China
| | - Huimin Lu
- Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China.
| | - Yu Zheng
- Department of Biotherapy,Cancer Center and State Key Laboratory of Biotherapy,West China Hospital, Sichuan University, Chengdu, 6110041, Sichuan, China.
| |
Collapse
|
16
|
Alehossein P, Taheri M, Tayefeh Ghahremani P, Dakhlallah D, Brown CM, Ishrat T, Nasoohi S. Transplantation of Exercise-Induced Extracellular Vesicles as a Promising Therapeutic Approach in Ischemic Stroke. Transl Stroke Res 2023; 14:211-237. [PMID: 35596116 DOI: 10.1007/s12975-022-01025-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/06/2022] [Accepted: 04/15/2022] [Indexed: 11/24/2022]
Abstract
Clinical evidence affirms physical exercise is effective in preventive and rehabilitation approaches for ischemic stroke. This sustainable efficacy is independent of cardiovascular risk factors and associates substantial reprogramming in circulating extracellular vesicles (EVs). The intricate journey of pluripotent exercise-induced EVs from parental cells to the whole-body and infiltration to cerebrovascular entity offers several mechanisms to reduce stroke incidence and injury or accelerate the subsequent recovery. This review delineates the potential roles of EVs as prospective effectors of exercise. The candidate miRNA and peptide cargo of exercise-induced EVs with both atheroprotective and neuroprotective characteristics are discussed, along with their presumed targets and pathway interactions. The existing literature provides solid ground to hypothesize that the rich vesicles link exercise to stroke prevention and rehabilitation. However, there are several open questions about the exercise stressors which may optimally regulate EVs kinetic and boost brain mitochondrial adaptations. This review represents a novel perspective on achieving brain fitness against stroke through transplantation of multi-potential EVs generated by multi-parental cells, which is exceptionally reachable in an exercising body.
Collapse
Affiliation(s)
- Parsa Alehossein
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Daneshjoo Blvd., Chamran Hwy., PO: 19615-1178, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Taheri
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Daneshjoo Blvd., Chamran Hwy., PO: 19615-1178, Tehran, Iran
- Faculty of Sport Sciences and Health, Shahid Beheshti University, Tehran, Iran
| | - Pargol Tayefeh Ghahremani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Daneshjoo Blvd., Chamran Hwy., PO: 19615-1178, Tehran, Iran
| | - Duaa Dakhlallah
- Institute of Global Health and Human Ecology, School of Sciences & Engineering, The American University of Cairo, Cairo, Egypt
| | - Candice M Brown
- Department of Neuroscience, School of Medicine, and Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, School of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sanaz Nasoohi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Daneshjoo Blvd., Chamran Hwy., PO: 19615-1178, Tehran, Iran.
| |
Collapse
|
17
|
Areny-Balagueró A, Solé-Porta A, Camprubí-Rimblas M, Campaña-Duel E, Ceccato A, Roig A, Closa D, Artigas A. Bioengineered extracellular vesicles: future of precision medicine for sepsis. Intensive Care Med Exp 2023; 11:11. [PMID: 36894763 PMCID: PMC9998145 DOI: 10.1186/s40635-023-00491-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/01/2023] [Indexed: 03/11/2023] Open
Abstract
Sepsis is a syndromic response to infection and is frequently a final common pathway to death from many infectious diseases worldwide. The complexity and high heterogeneity of sepsis hinder the possibility to treat all patients with the same protocol, requiring personalized management. The versatility of extracellular vesicles (EVs) and their contribution to sepsis progression bring along promises for one-to-one tailoring sepsis treatment and diagnosis. In this article, we critically review the endogenous role of EVs in sepsis progression and how current advancements have improved EVs-based therapies toward their translational future clinical application, with innovative strategies to enhance EVs effect. More complex approaches, including hybrid and fully synthetic nanocarriers that mimic EVs, are also discussed. Several pre-clinical and clinical studies are examined through the review to offer a general outlook of the current and future perspectives of EV-based sepsis diagnosis and treatment.
Collapse
Affiliation(s)
- Aina Areny-Balagueró
- Institut d’Investigació i Innovació Parc Taulí (I3PT), Parc Taulí Hospital Universitari, 08208 Sabadell, Spain
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Anna Solé-Porta
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Marta Camprubí-Rimblas
- Institut d’Investigació i Innovació Parc Taulí (I3PT), Parc Taulí Hospital Universitari, 08208 Sabadell, Spain
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Present Address: Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias, CIBERES-Instituto De Salud Carlos III, 28029 Madrid, Spain
| | - Elena Campaña-Duel
- Institut d’Investigació i Innovació Parc Taulí (I3PT), Parc Taulí Hospital Universitari, 08208 Sabadell, Spain
| | - Adrián Ceccato
- Institut d’Investigació i Innovació Parc Taulí (I3PT), Parc Taulí Hospital Universitari, 08208 Sabadell, Spain
- Present Address: Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias, CIBERES-Instituto De Salud Carlos III, 28029 Madrid, Spain
| | - Anna Roig
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Daniel Closa
- Institut d’Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain
| | - Antonio Artigas
- Institut d’Investigació i Innovació Parc Taulí (I3PT), Parc Taulí Hospital Universitari, 08208 Sabadell, Spain
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Present Address: Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias, CIBERES-Instituto De Salud Carlos III, 28029 Madrid, Spain
- Servei de Medicina Intensiva, Corporació Sanitària i Universitària Parc Taulí, 08208 Sabadell, Spain
| |
Collapse
|
18
|
Iba T, Levy JH, Thachil J, Susen S, Levi M, Scarlatescu E. Communication from the Scientific Standardization Committees of the International Society on Thrombosis and Haemostasis on vascular endothelium-related biomarkers in disseminated intravascular coagulation. J Thromb Haemost 2023; 21:691-699. [PMID: 36696178 DOI: 10.1016/j.jtha.2022.11.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/21/2022] [Accepted: 11/06/2022] [Indexed: 01/26/2023]
Abstract
Disseminated intravascular coagulation (DIC) is not a disease criterion but a pathomechanistic process that accompanies various underlying diseases. According to the International Society on Thrombosis and Haemostasis definition, endothelial injury is an essential component in addition to systemic coagulation activation. Despite this definition, current diagnostic criteria for DIC do not include biomarkers for vascular endothelial injury. Endothelial cells are critical for hemostatic regulation because they produce various antithrombotic substances and express anticoagulant factors at the same time as facilitating coagulation, inflammatory reactions, platelet aggregation, and fibrinolysis with acute injury. Endothelial cells also exhibit various receptors, adhesion molecules, and the critical role of glycocalyx that regulates cellular interactions in thromboinflammation. For clinicians, biomarkers suitable for assessing endothelial injury are not readily available. Although we still do not have ideal biomarkers, antithrombin activity and von Willebrand factor can be candidates for the endothelium-related markers because those reflect the severity and are available in most clinical settings. Further, the dysfunction of endothelial cell in DIC arising from various underlying diseases is likely highly variable. For example, the involvement of endothelial dysfunction is significant in sepsis-induced coagulopathy, while moderate in trauma-induced coagulopathy, and variable in hematologic malignancy-associated coagulopathy. Because of the complexity of disease status associated with DIC, further research searching clinically available endothelium-related biomarkers is expected to establish individualized diagnostic criteria and potential therapeutic approaches.
Collapse
Affiliation(s)
- Toshiaki Iba
- Department of Emergency and Disaster Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Jerrold H Levy
- Department of Anesthesiology, Critical Care, and Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jecko Thachil
- Department of Haematology, Manchester Royal Infirmary, Manchester, UK
| | - Sophie Susen
- Department of Hematology and Transfusion, Lille University Hospital, Lille, France
| | - Marcel Levi
- Department of Vascular Medicine, Amsterdam University Medical Center, the Netherlands and Department of Medicine, University College London Hospitals NHS Foundation Trust, and Cardio-metabolic Programme-NIHR UCLH/UCL BRC London, UK
| | - Ecaterina Scarlatescu
- University of Medicine and Pharmacy "Carol Davila," Bucharest and Department of Anaesthesia and Intensive Care, Fundeni Clinical Institute, Bucharest, Romania
| |
Collapse
|
19
|
Gao Y, Li X, Qin Y, Men J, Ren J, Li X, Xu C, Li Q, Li Y, Cui W, Zhang S, Li L, Li Y, Zhang J, Liu L. MPs-ACT, an Assay to Evaluate the Procoagulant Activity of Microparticles. Clin Appl Thromb Hemost 2023; 29:10760296231159374. [PMID: 36843474 PMCID: PMC9972054 DOI: 10.1177/10760296231159374] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023] Open
Abstract
The procoagulant effect of microparticles (MPs) contributes to hypercoagulability-induced thrombosis. We provide preliminary findings of the MPs-Activated Clotting Time (MPs-ACT) assay to determine the procoagulant activity of MPs. MPs-rich plasma was obtained and recalcified. Changes in plasma viscoelasticity were evaluated and the time to the peak viscoelastic changes was defined as the MPs-ACT. MPs concentration was measured by flow cytometry. Coagulation products produced during plasma clotting were identified by fibrin and fibrinopeptide A. MPs were prepared in vitro and added to standard plasma to simulate pathological samples. In addition, reproducibility and sensitivity were evaluated. We confirmed the linear relationship between MPs-ACT and MP concentrations. Dynamic changes in fibrin production were depicted. We simulated the correlation between MPs-ACT and standard plasma containing MPs prepared in vitro. The reproducibility of high-value and low-value samples was 6.0% and 10.8%, respectively. MPs-ACT sensitively detected hypercoagulable samples from patients with pre-eclampsia, hip fractures, and lung tumors. MPs-ACT largely reflects the procoagulant effect of MPs. MPs-ACT sensitively and rapidly detects hypercoagulability with MPs-rich plasma. It may be promising for the diagnosis of hypercoagulable states induced by MPs.
Collapse
Affiliation(s)
- Yalong Gao
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in
Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General
Hospital, Tianjin, China
| | - Xiaotian Li
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in
Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General
Hospital, Tianjin, China
| | - Yafei Qin
- Department of General Surgery, Tianjin Medical University General
Hospital, Tianjin, China
| | - Jianlong Men
- Precision Medicine Center, Tianjin Medical University General
Hospital, Tianjin, China
| | - Jing Ren
- Precision Medicine Center, Tianjin Medical University General
Hospital, Tianjin, China
| | - Xiaochun Li
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in
Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General
Hospital, Tianjin, China
| | - Chunlei Xu
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in
Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General
Hospital, Tianjin, China
| | - Qifeng Li
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in
Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General
Hospital, Tianjin, China
| | - Ying Li
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in
Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General
Hospital, Tianjin, China
| | - Weiyun Cui
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in
Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General
Hospital, Tianjin, China
| | - Shu Zhang
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in
Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General
Hospital, Tianjin, China
| | - Lei Li
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in
Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General
Hospital, Tianjin, China
| | - Yaohua Li
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in
Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General
Hospital, Tianjin, China
| | - Jianning Zhang
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in
Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General
Hospital, Tianjin, China
| | - Li Liu
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in
Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General
Hospital, Tianjin, China
- Jianning Zhang, Tianjin Neurological
Institute, Tianjin Medical University General Hospital, #154 Anshan Road,
Tianjin, 30052, China. Li Liu,
Tianjin Neurological Institute, Tianjin Medical University General Hospital,
#154 Anshan Road, Tianjin, 30052, China.
| |
Collapse
|
20
|
Fang Y, Lin S, Dou Q, Gui J, Li W, Tan H, Wang Y, Zeng J, Khan A, Wei DQ. Network pharmacology- and molecular simulation-based exploration of therapeutic targets and mechanisms of heparin for the treatment of sepsis/COVID-19. J Biomol Struct Dyn 2023; 41:12586-12598. [PMID: 36661370 DOI: 10.1080/07391102.2023.2167114] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/05/2023] [Indexed: 01/21/2023]
Abstract
Critically infected patients with COVID-19 (coronavirus disease 2019) are prone to develop sepsis-related coagulopathy as a result of a robust immune response. The mechanism underlying the relationship between sepsis and COVID-19 is largely unknown. LMWH (low molecular weight heparin) exhibits both anti-inflammatory and anti-coagulating properties that result in a better prognosis of severely ill patients with COVID-19 co-associated with sepsis-induced coagulopathy or with a higher D-dimer value. Heparin-associated molecular targets and their mechanism of action in sepsis/COVID-19 are not well understood. In this work, we characterize the pharmacological targets, biological functions and therapeutic actions of heparin in sepsis/COVID-19 from the perspective of network pharmacology. A total of 38 potential targets for heparin action against sepsis/COVID-19 and 8 core pharmacological targets were identified, including IL6, KNG1, CXCL8, ALB, VEGFA, F2, IL10 and TNF. Moreover, enrichment analysis showed that heparin could help in treating sepsis/COVID-19 through immunomodulation, inhibition of the inflammatory response, regulation of angiogenesis and antiviral activity. The pharmacological effects of heparin against these targets were further confirmed by molecular docking and simulation analysis, suggesting that heparin exerts effective binding capacity by targeting the essential residues in sepsis/COVID-19. Prospective clinical practice evaluations may consider the use of these key prognostic indicators for the treatment of sepsis/COVID-19.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yitian Fang
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Peng Cheng Laboratory, Shenzhen, Guangdong, China
| | - Shenggeng Lin
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qingli Dou
- Department of Emergency Medicine, Affiliated Baoan Hospital of Shenzhen, Southern Medical University, Shenzhen, Guangdong, China
| | - Jianjun Gui
- Department of Emergency Medicine, Affiliated Baoan Hospital of Shenzhen, Southern Medical University, Shenzhen, Guangdong, China
| | - Weimin Li
- National Tuberculosis Clinical Lab of China, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Hongsheng Tan
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanjing Wang
- Engineering Research Center of Cell and Therapeutics Antibody, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Jumei Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Abbas Khan
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Peng Cheng Laboratory, Shenzhen, Guangdong, China
| |
Collapse
|
21
|
Schiavello M, Vizio B, Bosco O, Pivetta E, Mariano F, Montrucchio G, Lupia E. Extracellular Vesicles: New Players in the Mechanisms of Sepsis- and COVID-19-Related Thromboinflammation. Int J Mol Sci 2023; 24:ijms24031920. [PMID: 36768242 PMCID: PMC9916541 DOI: 10.3390/ijms24031920] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
Sepsis and COVID-19 patients often manifest an imbalance in inflammation and coagulation, a complex pathological mechanism also named thromboinflammation, which strongly affects patient prognosis. Extracellular vesicles (EVs) are nanoparticles released by cells into extracellular space that have a relevant role in cell-to-cell communication. Recently, EVs have been shown to act as important players in a variety of pathologies, including cancer and cardiovascular disease. The biological properties of EVs in the mechanisms of thromboinflammation during sepsis and COVID-19 are still only partially known. Herein, we summarize the current experimental evidence on the role of EVs in thromboinflammation, both in bacterial sepsis and in COVID-19. A better understanding of EV involvement in these processes could be useful in describing novel diagnostic and therapeutic applications of EVs in these diseases.
Collapse
|
22
|
Bunch CM, Chang E, Moore EE, Moore HB, Kwaan HC, Miller JB, Al-Fadhl MD, Thomas AV, Zackariya N, Patel SS, Zackariya S, Haidar S, Patel B, McCurdy MT, Thomas SG, Zimmer D, Fulkerson D, Kim PY, Walsh MR, Hake D, Kedar A, Aboukhaled M, Walsh MM. SHock-INduced Endotheliopathy (SHINE): A mechanistic justification for viscoelastography-guided resuscitation of traumatic and non-traumatic shock. Front Physiol 2023; 14:1094845. [PMID: 36923287 PMCID: PMC10009294 DOI: 10.3389/fphys.2023.1094845] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/07/2023] [Indexed: 03/03/2023] Open
Abstract
Irrespective of the reason for hypoperfusion, hypocoagulable and/or hyperfibrinolytic hemostatic aberrancies afflict up to one-quarter of critically ill patients in shock. Intensivists and traumatologists have embraced the concept of SHock-INduced Endotheliopathy (SHINE) as a foundational derangement in progressive shock wherein sympatho-adrenal activation may cause systemic endothelial injury. The pro-thrombotic endothelium lends to micro-thrombosis, enacting a cycle of worsening perfusion and increasing catecholamines, endothelial injury, de-endothelialization, and multiple organ failure. The hypocoagulable/hyperfibrinolytic hemostatic phenotype is thought to be driven by endothelial release of anti-thrombogenic mediators to the bloodstream and perivascular sympathetic nerve release of tissue plasminogen activator directly into the microvasculature. In the shock state, this hemostatic phenotype may be a counterbalancing, yet maladaptive, attempt to restore blood flow against a systemically pro-thrombotic endothelium and increased blood viscosity. We therefore review endothelial physiology with emphasis on glycocalyx function, unique biomarkers, and coagulofibrinolytic mediators, setting the stage for understanding the pathophysiology and hemostatic phenotypes of SHINE in various etiologies of shock. We propose that the hyperfibrinolytic phenotype is exemplified in progressive shock whether related to trauma-induced coagulopathy, sepsis-induced coagulopathy, or post-cardiac arrest syndrome-associated coagulopathy. Regardless of the initial insult, SHINE appears to be a catecholamine-driven entity which early in the disease course may manifest as hyper- or hypocoagulopathic and hyper- or hypofibrinolytic hemostatic imbalance. Moreover, these hemostatic derangements may rapidly evolve along the thrombohemorrhagic spectrum depending on the etiology, timing, and methods of resuscitation. Given the intricate hemochemical makeup and changes during these shock states, macroscopic whole blood tests of coagulative kinetics and clot strength serve as clinically useful and simple means for hemostasis phenotyping. We suggest that viscoelastic hemostatic assays such as thromboelastography (TEG) and rotational thromboelastometry (ROTEM) are currently the most applicable clinical tools for assaying global hemostatic function-including fibrinolysis-to enable dynamic resuscitation with blood products and hemostatic adjuncts for those patients with thrombotic and/or hemorrhagic complications in shock states.
Collapse
Affiliation(s)
- Connor M Bunch
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, United States.,Department of Internal Medicine, Henry Ford Hospital, Detroit, MI, United States
| | - Eric Chang
- Department of Medical Education, Indiana University School of Medicine, Notre Dame Campus, South Bend, IN, United States
| | - Ernest E Moore
- Department of Surgery, Ernest E. Moore Shock Trauma Center at Denver Health, University of Colorado, Denver, CO, United States
| | - Hunter B Moore
- Department of Surgery, Ernest E. Moore Shock Trauma Center at Denver Health, University of Colorado, Denver, CO, United States.,Department of Transplant Surgery, Denver Health and University of Colorado Health Sciences Center, Denver, CO, United States
| | - Hau C Kwaan
- Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Joseph B Miller
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, United States.,Department of Internal Medicine, Henry Ford Hospital, Detroit, MI, United States
| | - Mahmoud D Al-Fadhl
- Department of Medical Education, Indiana University School of Medicine, Notre Dame Campus, South Bend, IN, United States
| | - Anthony V Thomas
- Department of Medical Education, Indiana University School of Medicine, Notre Dame Campus, South Bend, IN, United States
| | - Nuha Zackariya
- Department of Medical Education, Indiana University School of Medicine, Notre Dame Campus, South Bend, IN, United States
| | - Shivani S Patel
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, United States
| | - Sufyan Zackariya
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, United States
| | - Saadeddine Haidar
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, United States
| | - Bhavesh Patel
- Division of Critical Care, Department of Medicine, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Michael T McCurdy
- Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Scott G Thomas
- Department of Trauma Surgery, Memorial Leighton Trauma Center, South Bend, IN, United States
| | - Donald Zimmer
- Department of Trauma Surgery, Memorial Leighton Trauma Center, South Bend, IN, United States
| | - Daniel Fulkerson
- Department of Trauma Surgery, Memorial Leighton Trauma Center, South Bend, IN, United States
| | - Paul Y Kim
- Department of Medicine, McMaster University, Hamilton, ON, Canada.,Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
| | | | - Daniel Hake
- Departments of Emergency Medicine and Internal Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Archana Kedar
- Departments of Emergency Medicine and Internal Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Michael Aboukhaled
- Departments of Emergency Medicine and Internal Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Mark M Walsh
- Department of Medical Education, Indiana University School of Medicine, Notre Dame Campus, South Bend, IN, United States.,Departments of Emergency Medicine and Internal Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| |
Collapse
|
23
|
Iba T, Levi M, Levy JH. Intracellular communication and immunothrombosis in sepsis. J Thromb Haemost 2022; 20:2475-2484. [PMID: 35979601 PMCID: PMC9804233 DOI: 10.1111/jth.15852] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/22/2022] [Accepted: 08/10/2022] [Indexed: 01/05/2023]
Abstract
Inflammation and coagulation are the critical responses to infection that include leukocytes, platelets, and vascular endothelial cells responding in concert to eradicate the invading pathogen. In sepsis, a variety of cell surface receptors, including toll-like receptors, Fcγ-receptors, G-protein-coupled receptors, and adhesion receptors, detect the pathogens and elicit thromboinflammatory responses. Concurrently, the molecular patterns released from host damaged cells accelerate the immune responses through binding to the same pattern recognition receptors. Cytokines, chemokines, and extracellular vesicles are important mediators for amplifying the responses to distant cells as part of the systemic response to infections. At the same time, cells communicate with each other via direct contact, adhesion molecules, paracrine mediators, and tunneling nanotubes, which are important for regulating inflammation and thrombus formation. Despite increasing attention to immunothrombosis in sepsis, these close communication systems are less understood but play a critical role in host defense mechanisms. In this review, cellular activation and direct intercellular communication systems in sepsis with a focus on the coagulation response will be considered.
Collapse
Affiliation(s)
- Toshiaki Iba
- Department of Emergency and Disaster MedicineJuntendo University Graduate School of MedicineTokyoJapan
| | - Marcel Levi
- Department of Vascular Medicine, Amsterdam University Medical Center, the Netherlands and Department of MedicineUniversity College London Hospitals NHS Foundation Trust, and Cardio‐metabolic Programme‐NIHR UCLH/UCL BRC LondonLondonUK
| | - Jerrold H. Levy
- Department of Anesthesiology, Critical Care, and SurgeryDuke University School of MedicineDurhamNorth CarolinaUSA
| |
Collapse
|
24
|
Quaglia M, Fanelli V, Merlotti G, Costamagna A, Deregibus MC, Marengo M, Balzani E, Brazzi L, Camussi G, Cantaluppi V. Dual Role of Extracellular Vesicles in Sepsis-Associated Kidney and Lung Injury. Biomedicines 2022; 10:biomedicines10102448. [PMID: 36289710 PMCID: PMC9598620 DOI: 10.3390/biomedicines10102448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles form a complex intercellular communication network, shuttling a variety of proteins, lipids, and nucleic acids, including regulatory RNAs, such as microRNAs. Transfer of these molecules to target cells allows for the modulation of sets of genes and mediates multiple paracrine and endocrine actions. EVs exert broad pro-inflammatory, pro-oxidant, and pro-apoptotic effects in sepsis, mediating microvascular dysfunction and multiple organ damage. This deleterious role is well documented in sepsis-associated acute kidney injury and acute respiratory distress syndrome. On the other hand, protective effects of stem cell-derived extracellular vesicles have been reported in experimental models of sepsis. Stem cell-derived extracellular vesicles recapitulate beneficial cytoprotective, regenerative, and immunomodulatory properties of parental cells and have shown therapeutic effects in experimental models of sepsis with kidney and lung involvement. Extracellular vesicles are also likely to play a role in deranged kidney-lung crosstalk, a hallmark of sepsis, and may be key to a better understanding of shared mechanisms underlying multiple organ dysfunction. In this review, we analyze the state-of-the-art knowledge on the dual role of EVs in sepsis-associated kidney/lung injury and repair. PubMed library was searched from inception to July 2022, using a combination of medical subject headings (MeSH) and keywords related to EVs, sepsis, acute kidney injury (AKI), acute lung injury (ALI), and acute respiratory distress syndrome (ARDS). Key findings are summarized into two sections on detrimental and beneficial mechanisms of actions of EVs in kidney and lung injury, respectively. The role of EVs in kidney-lung crosstalk is then outlined. Efforts to expand knowledge on EVs may pave the way to employ them as prognostic biomarkers or therapeutic targets to prevent or reduce organ damage in sepsis.
Collapse
Affiliation(s)
- Marco Quaglia
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy
| | - Vito Fanelli
- Department of Anaesthesia, Critical Care and Emergency, Città della Salute e della Scienza Hospital, University of Torino, 10126 Torino, Italy
| | - Guido Merlotti
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy
| | - Andrea Costamagna
- Department of Anaesthesia, Critical Care and Emergency, Città della Salute e della Scienza Hospital, University of Torino, 10126 Torino, Italy
| | | | - Marita Marengo
- Nephrology and Dialysis Unit, ASL CN1, 12038 Savigliano, Italy
| | - Eleonora Balzani
- Department of Anaesthesia, Critical Care and Emergency, Città della Salute e della Scienza Hospital, University of Torino, 10126 Torino, Italy
| | - Luca Brazzi
- Department of Anaesthesia, Critical Care and Emergency, Città della Salute e della Scienza Hospital, University of Torino, 10126 Torino, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy
- Correspondence: (G.C.); (V.C.)
| | - Vincenzo Cantaluppi
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy
- Correspondence: (G.C.); (V.C.)
| |
Collapse
|
25
|
Al-Koussa H, AlZaim I, El-Sabban ME. Pathophysiology of Coagulation and Emerging Roles for Extracellular Vesicles in Coagulation Cascades and Disorders. J Clin Med 2022; 11:jcm11164932. [PMID: 36013171 PMCID: PMC9410115 DOI: 10.3390/jcm11164932] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
The notion of blood coagulation dates back to the ancient Greek civilization. However, the emergence of innovative scientific discoveries that started in the seventeenth century formulated the fundamentals of blood coagulation. Our understanding of key coagulation processes continues to evolve, as novel homeostatic and pathophysiological aspects of hemostasis are revealed. Hemostasis is a dynamic physiological process, which stops bleeding at the site of injury while maintaining normal blood flow within the body. Intrinsic and extrinsic coagulation pathways culminate in the homeostatic cessation of blood loss, through the sequential activation of the coagulation factors. Recently, the cell-based theory, which combines these two pathways, along with newly discovered mechanisms, emerged to holistically describe intricate in vivo coagulation mechanisms. The complexity of these mechanisms becomes evident in coagulation diseases such as hemophilia, Von Willebrand disease, thrombophilia, and vitamin K deficiency, in which excessive bleeding, thrombosis, or unnecessary clotting, drive the development and progression of diseases. Accumulating evidence implicates cell-derived and platelet-derived extracellular vesicles (EVs), which comprise microvesicles (MVs), exosomes, and apoptotic bodies, in the modulation of the coagulation cascade in hemostasis and thrombosis. As these EVs are associated with intercellular communication, molecular recycling, and metastatic niche creation, emerging evidence explores EVs as valuable diagnostic and therapeutic approaches in thrombotic and prothrombotic diseases.
Collapse
Affiliation(s)
- Houssam Al-Koussa
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
| | - Ibrahim AlZaim
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, The American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
| | - Marwan E. El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, The American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
- Correspondence: ; Tel.: +961-01-350-000 (ext. 4765)
| |
Collapse
|
26
|
Zeineddin A, Wu F, Dong JF, Huang H, Zou L, Chao W, Dorman B, Kozar RA. TRAUMA-DERIVED EXTRACELLULAR VESICLES ARE SUFFICIENT TO INDUCE ENDOTHELIAL DYSFUNCTION AND COAGULOPATHY. Shock 2022; 58:38-44. [PMID: 35984759 PMCID: PMC9750939 DOI: 10.1097/shk.0000000000001950] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACTINTRODUCTION Although a number of studies have demonstrated increased release of extracellular vesicles (EVs) and changes in their origin differentials after trauma, the biologic significance of EVs is not well understood. We hypothesized that EVs released after trauma/hemorrhagic shock (HS) contribute to endotheliopathy and coagulopathy. To test this hypothesis, adoptive transfer experiments were performed to determine whether EVs derived from severely injured patients in shock were sufficient to induce endothelial dysfunction and coagulopathy. Methods: Total EVs were enriched from plasma of severely injured trauma/HS patients or minimally injured patients by ultracentrifugation and characterized for size and numbers. Under isoflurane anesthesia, noninjured naive C57BL/6J mice were administered EVs at varying concentrations and compared with mice receiving equal volume vehicle (phosphate-buffered saline (PBS)) or to mice receiving EVs from minimally injured patients. Thirty minutes after injection, mice were sacrificed, and blood was collected for thrombin generation (thrombin-antithrombin, thrombin-antithrombin complex [TAT] assay) and syndecan-1 by enzyme-linked immunoabsorbent assay (ELISA). Lungs were harvested for examination of histopathologic injury and costained with von Willebrand factor and fibrin to identify intravascular coagulation. Bronchial alveolar lavage fluid was aspirated from lungs for protein measurement as an indicator of the endothelial permeability. Data are presented as mean ± SD, P < 0.05 was considered significant, and t test was used. Results: An initial proof-of-concept experiment was performed in naive mice receiving EVs purified from severely injured trauma/HS patients (Injury Severity Score [ISS], 34 ± 7) at different concentrations (5 × 106 to 3.1 × 109/100 μL/mouse) and compared with PBS (control) mice. Neither TAT nor syndecan-1 levels were significantly different between groups at 30 minutes after EV infusion. However, lung vascular permeability and histopathologic injury were significantly higher in the EV group, and lung tissues demonstrated intravascular fibrin deposition. Based on these data, EVs from severely injured trauma/HS patients (ISS, 32 ± 6) or EVs from minimally injured patients (ISS, 8 ± 3) were administered to naive mice at higher concentrations (1 × 109 to 1 × 1010 EV/100 μL/mouse). Compared with mice receiving EVs from minimally injured patients, plasma TAT and syndecan-1 levels were significantly higher in the trauma/HS EV group. Similarly, bronchial alveolar lavage protein and lung histopathologic injury were higher in the trauma/HS EV group, and lung tissues demonstrated enhanced intravascular fibrin deposition. Conclusion: These data demonstrate that trauma/HS results in the systemic release of EVs, which are capable of inducing endotheliopathy as demonstrated by elevated syndecan-1 and increased permeability and coagulopathy as demonstrated by increased TAT and intravascular fibrin deposition. Targeting trauma-induced EVs may represent a novel therapeutic strategy.
Collapse
Affiliation(s)
- Ahmad Zeineddin
- Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD US
| | - Feng Wu
- Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD US
| | - Jing-Fei Dong
- Bloodworks Research Institute, Seattle, WA, US
- Hematology Division, Department of Medicine, University of Washington School of Medicine, Seattle, WA, US
| | - Huang Huang
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, US
| | - Lin Zou
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, US
| | - Wei Chao
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, US
| | - Brooke Dorman
- Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD US
| | - Rosemary A Kozar
- Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD US
| |
Collapse
|
27
|
Popescu NI, Lupu C, Lupu F. Disseminated intravascular coagulation and its immune mechanisms. Blood 2022; 139:1973-1986. [PMID: 34428280 PMCID: PMC8972096 DOI: 10.1182/blood.2020007208] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/02/2021] [Indexed: 11/26/2022] Open
Abstract
Disseminated intravascular coagulation (DIC) is a syndrome triggered by infectious and noninfectious pathologies characterized by excessive generation of thrombin within the vasculature and widespread proteolytic conversion of fibrinogen. Despite diverse clinical manifestations ranging from thrombo-occlusive damage to bleeding diathesis, DIC etiology commonly involves excessive activation of blood coagulation and overlapping dysregulation of anticoagulants and fibrinolysis. Initiation of blood coagulation follows intravascular expression of tissue factor or activation of the contact pathway in response to pathogen-associated or host-derived, damage-associated molecular patterns. The process is further amplified through inflammatory and immunothrombotic mechanisms. Consumption of anticoagulants and disruption of endothelial homeostasis lower the regulatory control and disseminate microvascular thrombosis. Clinical DIC development in patients is associated with worsening morbidities and increased mortality, regardless of the underlying pathology; therefore, timely recognition of DIC is critical for reducing the pathologic burden. Due to the diversity of triggers and pathogenic mechanisms leading to DIC, diagnosis is based on algorithms that quantify hemostatic imbalance, thrombocytopenia, and fibrinogen conversion. Because current diagnosis primarily assesses overt consumptive coagulopathies, there is a critical need for better recognition of nonovert DIC and/or pre-DIC states. Therapeutic strategies for patients with DIC involve resolution of the eliciting triggers and supportive care for the hemostatic imbalance. Despite medical care, mortality in patients with DIC remains high, and new strategies, tailored to the underlying pathologic mechanisms, are needed.
Collapse
Affiliation(s)
| | - Cristina Lupu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK; and
| | - Florea Lupu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK; and
- Department of Cell Biology
- Department of Pathology, and
- Department of Internal Medicine, Oklahoma University Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
28
|
Ebeyer-Masotta M, Eichhorn T, Weiss R, Semak V, Lauková L, Fischer MB, Weber V. Heparin-Functionalized Adsorbents Eliminate Central Effectors of Immunothrombosis, including Platelet Factor 4, High-Mobility Group Box 1 Protein and Histones. Int J Mol Sci 2022; 23:ijms23031823. [PMID: 35163743 PMCID: PMC8836755 DOI: 10.3390/ijms23031823] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/20/2022] Open
Abstract
Inflammation and thrombosis are closely intertwined in numerous disorders, including ischemic events and sepsis, as well as coronavirus disease 2019 (COVID-19). Thrombotic complications are markers of disease severity in both sepsis and COVID-19 and are associated with multiorgan failure and increased mortality. Immunothrombosis is driven by the complement/tissue factor/neutrophil axis, as well as by activated platelets, which can trigger the release of neutrophil extracellular traps (NETs) and release further effectors of immunothrombosis, including platelet factor 4 (PF4/CXCL4) and high-mobility box 1 protein (HMGB1). Many of the central effectors of deregulated immunothrombosis, including activated platelets and platelet-derived extracellular vesicles (pEVs) expressing PF4, soluble PF4, HMGB1, histones, as well as histone-decorated NETs, are positively charged and thus bind to heparin. Here, we provide evidence that adsorbents functionalized with endpoint-attached heparin efficiently deplete activated platelets, pEVs, PF4, HMGB1 and histones/nucleosomes. We propose that this elimination of central effectors of immunothrombosis, rather than direct binding of pathogens, could be of clinical relevance for mitigating thrombotic complications in sepsis or COVID-19 using heparin-functionalized adsorbents.
Collapse
Affiliation(s)
- Marie Ebeyer-Masotta
- Center for Biomedical Technology, Department for Biomedical Research, Danube University Krems, 3500 Krems, Austria; (M.E.-M.); (T.E.); (R.W.); (V.S.); (L.L.); (M.B.F.)
| | - Tanja Eichhorn
- Center for Biomedical Technology, Department for Biomedical Research, Danube University Krems, 3500 Krems, Austria; (M.E.-M.); (T.E.); (R.W.); (V.S.); (L.L.); (M.B.F.)
| | - René Weiss
- Center for Biomedical Technology, Department for Biomedical Research, Danube University Krems, 3500 Krems, Austria; (M.E.-M.); (T.E.); (R.W.); (V.S.); (L.L.); (M.B.F.)
| | - Vladislav Semak
- Center for Biomedical Technology, Department for Biomedical Research, Danube University Krems, 3500 Krems, Austria; (M.E.-M.); (T.E.); (R.W.); (V.S.); (L.L.); (M.B.F.)
| | - Lucia Lauková
- Center for Biomedical Technology, Department for Biomedical Research, Danube University Krems, 3500 Krems, Austria; (M.E.-M.); (T.E.); (R.W.); (V.S.); (L.L.); (M.B.F.)
| | - Michael B. Fischer
- Center for Biomedical Technology, Department for Biomedical Research, Danube University Krems, 3500 Krems, Austria; (M.E.-M.); (T.E.); (R.W.); (V.S.); (L.L.); (M.B.F.)
- Clinic for Blood Group Serology and Transfusion Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Viktoria Weber
- Center for Biomedical Technology, Department for Biomedical Research, Danube University Krems, 3500 Krems, Austria; (M.E.-M.); (T.E.); (R.W.); (V.S.); (L.L.); (M.B.F.)
- Correspondence: ; Tel.: +43-2732-893-2601
| |
Collapse
|
29
|
Neonatal Sepsis and Hemostasis. Diagnostics (Basel) 2022; 12:diagnostics12020261. [PMID: 35204352 PMCID: PMC8871162 DOI: 10.3390/diagnostics12020261] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 11/17/2022] Open
Abstract
Neonatal sepsis is considered critical for a significant increase in neonatal morbidity and mortality among hospitalized neonates. Neonatal sepsis, in most cases, coexists with coagulopathy, which can prove to be life-threatening. Complex molecular and cellular systems are involved in the cross-talk between inflammation and hemostasis during sepsis. Disturbances in the regulating systems of the vascular endothelium, and platelet–endothelial and platelet–neutrophil interactions play a pivotal role in both inflammation and coagulation. This complex process is poorly understood in neonates. In addition to the developmental maturation of hemostasis and the immune response in neonatal sepsis, a cellular model of hemostasis during sepsis should be taken into account. This review focused on the molecular and cellular mechanisms underlying inflammation and hemostasis during neonatal sepsis, taking the developmental immune response and developmental hemostasis into account in order to provide future diagnostic approaches to be applied in everyday clinical settings. Regarding the diagnostic modalities, we briefly provide the limitations of the currently used conventional coagulation assays, focusing on viscoelastic tests and platelet flow cytometry.
Collapse
|
30
|
O’Reilly D, Murphy CA, Drew R, El-Khuffash A, Maguire PB, Ainle FN, Mc Callion N. Platelets in pediatric and neonatal sepsis: novel mediators of the inflammatory cascade. Pediatr Res 2022; 91:359-367. [PMID: 34711945 PMCID: PMC8816726 DOI: 10.1038/s41390-021-01715-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/14/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023]
Abstract
Sepsis, a dysregulated host response to infection, has been difficult to accurately define in children. Despite a higher incidence, especially in neonates, a non-specific clinical presentation alongside a lack of verified biomarkers has prevented a common understanding of this condition. Platelets, traditionally regarded as mediators of haemostasis and thrombosis, are increasingly associated with functions in the immune system with involvement across the spectrum of innate and adaptive immunity. The large number of circulating platelets (approx. 150,000 cells per microlitre) mean they outnumber traditional immune cells and are often the first to encounter a pathogen at a site of injury. There are also well-described physiological differences between platelets in children and adults. The purpose of this review is to place into context the platelet and its role in immunology and examine the evidence where available for its role as an immune cell in childhood sepsis. It will examine how the platelet interacts with both humoral and cellular components of the immune system and finally discuss the role the platelet proteome, releasate and extracellular vesicles may play in childhood sepsis. This review also examines how platelet transfusions may interfere with the complex relationships between immune cells in infection. IMPACT: Platelets are increasingly being recognised as important "first responders" to immune threats. Differences in adult and paediatric platelets may contribute to differing immune response to infections. Adult platelet transfusions may affect infant immune responses to inflammatory/infectious stimuli.
Collapse
Affiliation(s)
- Daniel O’Reilly
- grid.416068.d0000 0004 0617 7587Department of Neonatology, Rotunda Hospital, Dublin, Ireland ,grid.7886.10000 0001 0768 2743Conway-SPHERE Research Group, Conway Institute, University College Dublin, Dublin, Ireland
| | - Claire A. Murphy
- grid.416068.d0000 0004 0617 7587Department of Neonatology, Rotunda Hospital, Dublin, Ireland ,grid.7886.10000 0001 0768 2743Conway-SPHERE Research Group, Conway Institute, University College Dublin, Dublin, Ireland ,grid.4912.e0000 0004 0488 7120Department of Paediatrics, Royal College of Surgeons in Ireland, Dubin, Ireland
| | - Richard Drew
- grid.416068.d0000 0004 0617 7587Clinical Innovation Unit, Rotunda Hospital, Dublin, Ireland ,Irish Meningitis and Sepsis Reference Laboratory, Children’s Health Ireland at Temple Street, Dublin, Ireland ,grid.4912.e0000 0004 0488 7120Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Afif El-Khuffash
- grid.416068.d0000 0004 0617 7587Department of Neonatology, Rotunda Hospital, Dublin, Ireland ,grid.4912.e0000 0004 0488 7120Department of Paediatrics, Royal College of Surgeons in Ireland, Dubin, Ireland
| | - Patricia B. Maguire
- grid.7886.10000 0001 0768 2743Conway-SPHERE Research Group, Conway Institute, University College Dublin, Dublin, Ireland ,grid.7886.10000 0001 0768 2743School of Biomolecular & Biomedical Science, University College Dublin, Dublin, Ireland
| | - Fionnuala Ni Ainle
- grid.7886.10000 0001 0768 2743Conway-SPHERE Research Group, Conway Institute, University College Dublin, Dublin, Ireland ,grid.7886.10000 0001 0768 2743School of Biomolecular & Biomedical Science, University College Dublin, Dublin, Ireland ,grid.411596.e0000 0004 0488 8430Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland ,grid.416068.d0000 0004 0617 7587Department of Haematology, Rotunda Hospital, Dublin, Ireland ,grid.7886.10000 0001 0768 2743School of Medicine, University College Dublin, Dublin, Ireland
| | - Naomi Mc Callion
- grid.416068.d0000 0004 0617 7587Department of Neonatology, Rotunda Hospital, Dublin, Ireland ,grid.4912.e0000 0004 0488 7120Department of Paediatrics, Royal College of Surgeons in Ireland, Dubin, Ireland
| |
Collapse
|
31
|
Esquivel-Ruiz S, González-Rodríguez P, Lorente JA, Pérez-Vizcaíno F, Herrero R, Moreno L. Extracellular Vesicles and Alveolar Epithelial-Capillary Barrier Disruption in Acute Respiratory Distress Syndrome: Pathophysiological Role and Therapeutic Potential. Front Physiol 2021; 12:752287. [PMID: 34887773 PMCID: PMC8650589 DOI: 10.3389/fphys.2021.752287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) mediate intercellular communication by transferring genetic material, proteins and organelles between different cells types in both health and disease. Recent evidence suggests that these vesicles, more than simply diagnostic markers, are key mediators of the pathophysiology of acute respiratory distress syndrome (ARDS) and other lung diseases. In this review, we will discuss the contribution of EVs released by pulmonary structural cells (alveolar epithelial and endothelial cells) and immune cells in these diseases, with particular attention to their ability to modulate inflammation and alveolar-capillary barrier disruption, a hallmark of ARDS. EVs also offer a unique opportunity to develop new therapeutics for the treatment of ARDS. Evidences supporting the ability of stem cell-derived EVs to attenuate the lung injury and ongoing strategies to improve their therapeutic potential are also discussed.
Collapse
Affiliation(s)
- Sergio Esquivel-Ruiz
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Paloma González-Rodríguez
- Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Department of Critical Care, Hospital Universitario de Getafe, Madrid, Spain
| | - José A Lorente
- Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Department of Critical Care, Hospital Universitario de Getafe, Madrid, Spain.,Clinical Section, School of Medicine, European University of Madrid, Madrid, Spain
| | - Francisco Pérez-Vizcaíno
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Raquel Herrero
- Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Department of Critical Care, Hospital Universitario de Getafe, Madrid, Spain
| | - Laura Moreno
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
32
|
Eroglu FK, Yazar V, Guler U, Yıldırım M, Yildirim T, Gungor T, Celikkaya E, Karakaya D, Turay N, Ciftci Dede E, Korkusuz P, Salih B, Bulbul M, Gursel I. Circulating extracellular vesicles of patients with steroid-sensitive nephrotic syndrome have higher RAC1 and induce recapitulation of nephrotic syndrome phenotype in podocytes. Am J Physiol Renal Physiol 2021; 321:F659-F673. [PMID: 34569252 DOI: 10.1152/ajprenal.00097.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Since previous research suggests a role of a circulating factor in the pathogenesis of steroid-sensitive nephrotic syndrome (NS), we speculated that circulating plasma extracellular vesicles (EVs) are a candidate source of such a soluble mediator. Here, we aimed to characterize and try to delineate the effects of these EVs in vitro. Plasma EVs from 20 children with steroid-sensitive NS in relapse and remission, 10 healthy controls, and 6 disease controls were obtained by serial ultracentrifugation. Characterization of these EVs was performed by electron microscopy, flow cytometry, and Western blot analysis. Major proteins from plasma EVs were identified via mass spectrometry. Gene Ontology classification analysis and Ingenuity Pathway Analysis were performed on selectively expressed EV proteins during relapse. Immortalized human podocyte culture was used to detect the effects of EVs on podocytes. The protein content and particle number of plasma EVs were significantly increased during NS relapse. Relapse NS EVs selectively expressed proteins that involved actin cytoskeleton rearrangement. Among these, the level of RAC-GTP was significantly increased in relapse EVs compared with remission and disease control EVs. Relapse EVs were efficiently internalized by podocytes and induced significantly enhanced motility and albumin permeability. Moreover, relapse EVs induced significantly higher levels of RAC-GTP and phospho-p38 and decreased the levels of synaptopodin in podocytes. Circulating relapse EVs are biologically active molecules that carry active RAC1 as cargo and induce recapitulation of the NS phenotype in podocytes in vitro.NEW & NOTEWORTHY Up to now, the role of extracellular vesicles (EVs) in the pathogenesis of steroid-sensitive nephrotic syndrome (NS) has not been studied. Here, we found that relapse NS EVs contain significantly increased active RAC1, induce enhanced podocyte motility, and increase expression of RAC-GTP and phospho-p38 expression in vitro. These results suggest that plasma EVs are biologically active molecules in the pathogenesis of NS.
Collapse
Affiliation(s)
- Fehime K Eroglu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.,SBU Dr Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Volkan Yazar
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Ulku Guler
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Muzaffer Yıldırım
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Tugce Yildirim
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Tulin Gungor
- SBU Dr Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Evra Celikkaya
- SBU Dr Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Deniz Karakaya
- SBU Dr Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Nilsu Turay
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Eda Ciftci Dede
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Petek Korkusuz
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Bekir Salih
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Mehmet Bulbul
- SBU Dr Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Ihsan Gursel
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| |
Collapse
|
33
|
Lin H, Chen H, Qi B, Jiang Y, Lian N, Zhuang X, Yu Y. Brain-derived extracellular vesicles mediated coagulopathy, inflammation and apoptosis after sepsis. Thromb Res 2021; 207:85-95. [PMID: 34583153 DOI: 10.1016/j.thromres.2021.09.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The activation of coagulation, inflammation and other pathways is the basic response of the host to infection in sepsis, but this response also causes damage to the host. Brain-derived extracellular vesicles (BDEVs) have been reported to cause a hypercoagulable state that can rapidly develop into consumptive coagulopathy, which is consistent with the pathophysiological process of sepsis-induced coagulopathy. However, the role of BDEVs in sepsis-induced coagulopathy remains unclear. MATERIALS AND METHODS Male Sprague-Dawley (SD) rats were used for sepsis modeling using cecal ligation puncture (CLP). Flow cytometry was used to measure the levels of circulating BDEVs. Enzyme-linked immunosorbent assay (ELISA) was used to measure the serum levels of plasminogen activator inhibitor type 1 (PAI-1), thrombin-antithrombin (TAT), D-dimer, fibrinogen(Fib), tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β and IL-6. Nanoparticle tracking analysis (NTA) and Transmission electron microscopy (TEM) were used to identify BDEVs. Western blot (WB) was used to determine the expression of glial fibrillary acidic protein (GFAP), neuron-specific enolase (NSE), bax, bcl-2 and cleaved caspase-3. Hematoxylin-eosin (HE) and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining were performed to detect tissue injury. Survival was monitored over the course of 168 h. RESULTS We found that a large number of BDEVs were released into the circulating blood in septic rats. Moreover, we observed that BDEVs injection activated the systemic coagulation reaction and induced lung, liver and kidney inflammation and apoptosis(P < .05). Compared with BDEVs from sham-operated rats, BDEVs from septic rats exacerbated this process(P < .05). CONCLUSIONS This finding suggests that inhibiting BDEVs may yield therapeutic benefits in the treatment of sepsis-induced coagulopathy.
Collapse
Affiliation(s)
- Huaying Lin
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hongguang Chen
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Bo Qi
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yi Jiang
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Naqi Lian
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xiaoli Zhuang
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yonghao Yu
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
34
|
Takahashi T, Schleimer RP. Epithelial-Cell-Derived Extracellular Vesicles in Pathophysiology of Epithelial Injury and Repair in Chronic Rhinosinusitis: Connecting Immunology in Research Lab to Biomarkers in Clinics. Int J Mol Sci 2021; 22:11709. [PMID: 34769139 PMCID: PMC8583779 DOI: 10.3390/ijms222111709] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022] Open
Abstract
Epithelial barrier disruption and failure of epithelial repair by aberrant epithelial-mesenchymal transition (EMT)-induced basal cells observed in nasal mucosa of chronic rhinosinusitis (CRS) are speculated to play important roles in disease pathophysiology. Microparticles (MPs) are a type of extracellular vesicle (EV) released by budding or shedding from the plasma membrane of activated or apoptotic cells. MPs are detected in nasal lavage fluids (NLFs) and are now receiving attention as potential biomarkers to evaluate the degree of activation of immune cells and injury of structural cells in nasal mucosa of subjects with sinus disease. There are three types of epithelial-cell-derived MPs, which are defined by the expression of different epithelial specific markers on their surface: EpCAM, E-cadherin, and integrin β6 (ITGB6). When these markers are on MPs that are also carrying canonical EMT/mesenchymal markers (Snail (SNAI1); Slug (SNAI2); alpha-smooth muscle actin (αSMA, ACTA2)) or pro- and anti-coagulant molecules (tissue factor (TF); tissue plasminogen activator (tPA); plasminogen activator inhibitor-1 (PAI-1)), they provide insight as to the roles of epithelial activation for EMT or regulation of coagulation in the underlying disease. In this review, we discuss the potential of epithelial MPs as research tools to evaluate status of nasal mucosae of CRS patients in the lab, as well as biomarkers for management and treatment of CRS in the clinic.
Collapse
Affiliation(s)
- Toru Takahashi
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA;
| | - Robert P Schleimer
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA;
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
35
|
Vincent JL, Ince C, Pickkers P. Endothelial dysfunction: a therapeutic target in bacterial sepsis? Expert Opin Ther Targets 2021; 25:733-748. [PMID: 34602020 DOI: 10.1080/14728222.2021.1988928] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Endothelial cells maintain vascular integrity, tone, and patency and have important roles in hemostasis and inflammatory responses. Although some degree of endothelial dysfunction with increased vascular permeability may be necessary to control local infection, excessive dysfunction plays a central role in the pathogenesis of sepsis-related organ dysfunction and failure as it results in dysregulated inflammation, vascular leakage, and abnormal coagulation. The vascular endothelium has thus been proposed as a potential target for therapeutic intervention in patients with sepsis. AREAS COVERED Different mechanisms underlying sepsis-related dysfunction of the vascular endothelium are discussed, including glycocalyx shedding, nitrosative stress, and coagulation factors. Potential therapeutic implications of each mechanism are mentioned. EXPERT OPINION Multiple targets to protect or restore endothelial function have been suggested, but endothelium-driven treatments remain a future potential at present. As some endothelial dysfunction and permeability may be necessary to remove infection and repair damaged tissue, targeting the endothelium may be a particular challenge. Ideally, therapies should be guided by biomarkers related to that specific pathway to ensure they are given only to patients most likely to respond. This enrichment based on biological plausibility and theragnostics will increase the likelihood of a beneficial response in individual patients and enable more personalized treatment.
Collapse
Affiliation(s)
- Jean-Louis Vincent
- Dept of Intensive Care, Erasme Hospital, Université Libre De Bruxelles, Brussels, Belgium
| | - Can Ince
- Department of Intensive Care, Laboratory of Translational Intensive Care, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Peter Pickkers
- Dept of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
36
|
Monnamorn L, Seree-Aphinan C, Molika P, Vichitkunakorn P, Pattanapanyasat K, Khwannimit B, Navakanitworakul R. The Concentration of Large Extracellular Vesicles Differentiates Early Septic Shock From Infection. Front Med (Lausanne) 2021; 8:724371. [PMID: 34604260 PMCID: PMC8481381 DOI: 10.3389/fmed.2021.724371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/24/2021] [Indexed: 11/13/2022] Open
Abstract
Septic shock represents a subset of sepsis with severe physiological aberrations and a higher mortality rate than sepsis alone. Currently, the laboratory tools which can be used to identify the state of septic shock are limited. In pre-clinical studies, extracellular vesicles (EVs), especially large EVs (lEVs), have been demonstrated a role as functional inflammatory mediators of sepsis. However, its longitudinal trend during the disease course has not been explored. In this study, the quantities and subtypes of plasma-derived lEVs were longitudinally compared between patients with septic shock (n = 21) and non-sepsis infection (n = 9), who presented within 48 h of their symptom onset. Blood specimens were collected for seven consecutive days after hospital admission. lEVs quantification and subtyping were performed using an imaging flow cytometer. The experiments revealed a higher lEVs concentration in septic shock patients than infected patients at the onset of the disease. In septic shock patients, lEVs concentration decreased over time as opposed to infected patients whose lEVs concentration is relatively static throughout the study period. The major contributors of lEVs in both septic shock and infected patients were of non-leukocyte origins; platelets, erythrocytes, and endothelial cells released approximately 40, 25, and 15% of lEVs, respectively. Among lEVs of leukocyte origins, neutrophils produced the highest number of EVs. Nevertheless, the proportion of each subtype of lEVs among the given amount of lEVs produced was similar between septic shock and infected patients. These findings raise the possibility of employing lEVs enumeration as a septic shock identifying tool, although larger studies with a more diverse group of participants are warranted to extrapolate the findings to a general population.
Collapse
Affiliation(s)
- Latthawan Monnamorn
- Faculty of Medicine, Department of Biomedical Sciences and Biomedical Engineering, Prince of Songkla University, Songkhla, Thailand
| | - Chutima Seree-Aphinan
- Faculty of Medicine, Department of Internal Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Piyatida Molika
- Faculty of Medicine, Department of Biomedical Sciences and Biomedical Engineering, Prince of Songkla University, Songkhla, Thailand
| | - Polathep Vichitkunakorn
- Faculty of Medicine, Department of Family and Preventive Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Kovit Pattanapanyasat
- Faculty of Medicine Siriraj Hospital, Department of Research and Development, Mahidol University, Bangkok, Thailand
| | - Bodin Khwannimit
- Faculty of Medicine, Department of Internal Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Raphatphorn Navakanitworakul
- Faculty of Medicine, Department of Biomedical Sciences and Biomedical Engineering, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
37
|
Angelica sinensis Polysaccharide Alleviates Myocardial Fibrosis and Oxidative Stress in the Heart of Hypertensive Rats. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:6710006. [PMID: 34527077 PMCID: PMC8437656 DOI: 10.1155/2021/6710006] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/03/2022]
Abstract
This research is aimed at studying the effect of Angelica sinensis polysaccharide (ASP) extracted from the Lixinshui prescription on cardiac disease induced by hypertension in rats. Rat models of cardiovascular disease were established, and the associated factors were measured. The data showed that ASP treatment increased the ejection fraction and short axis shortening rate, while decreasing the LV end-diastolic diameter, LV end-systolic diameter, LV end-diastolic volume, and LV end-systolic volume in HHD rats. ASP downregulated the expression level of TGF-β1, alpha-smooth muscle actin (α-SMA), collagen I, fibronectin, vimentin, Bax, cleaved caspase-9, and cleaved caspase-3 and upregulated the expression level of Bcl-2 in LV of HHD rats. Meanwhile, ASP increased the activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and decreased the level of malondialdehyde (MDA), tissue endogenous hydrogen peroxide (H2O2), and reactive oxygen species (ROS). Our findings indicated that ASP could prevent hypertensive heart disease by inhibiting myocardial fibrosis, suppressing the myocardial apoptosis, and alleviating oxidative stress.
Collapse
|
38
|
Neutrophil extracellular traps and organ dysfunction in sepsis. Clin Chim Acta 2021; 523:152-162. [PMID: 34537216 DOI: 10.1016/j.cca.2021.09.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022]
Abstract
Sepsis is a clinical syndrome resulting from infection followed by inflammation and is one of the significant causes of mortality worldwide. The underlying reason is the host's uncontrolled inflammatory response due to an infection led to multiple organ dysfunction/failure. Neutrophils, an innate immune cell, are forerunners to reach the site of infection/inflammation for clearing the infection and resolute the inflammation during sepsis. A relatively new neutrophil effector function, neutrophil extracellular traps (NETs), have been demonstrated to kill the pathogens by releasing DNA decorated with histone and granular proteins. A growing number of pieces of shreds of evidence suggest that unregulated incidence of NETs have a significant influence on the pathogenesis of sepsis-induced multiple organ damage, including arterial hypotension, hypoxemia, coagulopathy, renal, neurological, and hepatic dysfunction. Thus, excessive production and improper resolution of NETs are of significant therapeutic value in combating sepsis-induced multiple organ failure. The purpose of this review is intended to highlight the role of NETs in sepsis-induced organ failure. Furthermore, the current status of therapeutic strategies to intersect the harmful effects of NETs to restore organ functions is discussed.
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Preeclampsia is a common complication of pregnancy and contributes significantly to maternal and fetal morbidity and mortality. A protective hypercoagulable state is often developed during late pregnancy and can evolve into a prothrombotic state in patients with preeclampsia. The underlying mechanism of this prothrombotic transition remains poorly understood. We discuss recent progress in understanding the pathophysiology of preeclampsia and associated prothrombotic state. RECENT FINDINGS The hypercoagulable state developed during pregnancy is initiated by placental factors and progresses into the prothrombotic state in preeclampsia when the placenta is subjected ischemic and oxidative injuries. The cause of the preeclampsia-induced prothrombotic state is multifactorial, involving not only placental factors but also maternal conditions, which include genetic predisposition, preexisting medical conditions, and conditions acquired during pregnancy. Endotheliopathy is the primary pathology of preeclampsia and contributes to the prothrombotic state by inducing the dysregulation of coagulation, platelets, and adhesive ligands. SUMMARY Patients with preeclampsia often develop a severe prothrombotic state that predisposes them to life-threatening thrombosis and thromboembolism during and after pregnancy. Early recognition and treatment of this prothrombotic state can improve maternal and infant outcomes of preeclampsia patients.
Collapse
Affiliation(s)
- Chan Han
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuan-Yuan Chen
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing-fei Dong
- Bloodworks Research Institute, Seattle, WA, USA
- Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
40
|
Karpman D, Tontanahal A. Extracellular vesicles in renal inflammatory and infectious diseases. Free Radic Biol Med 2021; 171:42-54. [PMID: 33933600 DOI: 10.1016/j.freeradbiomed.2021.04.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 11/29/2022]
Abstract
Extracellular vesicles can mediate cell-to-cell communication, or relieve the parent cell of harmful substances, in order to maintain cellular integrity. The content of extracellular vesicles includes miRNAs, mRNAs, growth factors, complement factors, cytokines, chemokines and receptors. These may contribute to inflammatory and infectious diseases by the exposure or transfer of potent effectors that induce vascular inflammation by leukocyte recruitment and thrombosis. Furthermore, vesicles release cytokines and induce their release from cells. Extracellular vesicles possess immune modulatory and anti-microbial properties, and induce receptor signaling in the recipient cell, not least by the transfer of pro-inflammatory receptors. Additionally, the vesicles may carry virulence factors systemically. Extracellular vesicles in blood and urine can contribute to the development of kidney diseases or exhibit protective effects. In this review we will describe the role of EVs in inflammation, thrombosis, immune modulation, angiogenesis, oxidative stress, renal tubular regeneration and infection. Furthermore, we will delineate their contribution to renal ischemia/reperfusion, vasculitis, glomerulonephritis, lupus nephritis, thrombotic microangiopathies, IgA nephropathy, acute kidney injury, urinary tract infections and renal transplantation. Due to their content of miRNAs and growth factors, or when loaded with nephroprotective modulators, extracellular vesicles have the potential to be used as therapeutics for renal regeneration.
Collapse
Affiliation(s)
- Diana Karpman
- Department of Pediatrics, Clinical Sciences Lund, Lund University, 22185, Lund, Sweden.
| | - Ashmita Tontanahal
- Department of Pediatrics, Clinical Sciences Lund, Lund University, 22185, Lund, Sweden
| |
Collapse
|
41
|
Iba T, Umemura Y, Wada H, Levy H. The Roles of Coagulation Disorder and Microthrombosis in Sepsis: Pathophysiology, Diagnosis, and Treatment. Arch Med Res 2021; 52:788-797. [PMID: 34344558 DOI: 10.1016/j.arcmed.2021.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 06/28/2021] [Accepted: 07/02/2021] [Indexed: 12/23/2022]
Abstract
The diagnostic criteria of overt disseminated intravascular coagulation (DIC) were established by the International Society on Thrombosis and Haemostasis (ISTH) in 2001. Since then, DIC has long been associated with adverse outcomes. However, recent advances in sepsis shed light on the role of coagulation disorders in the progression of sepsis. Currently, inflammation and coagulation are recognized as the two drivers that promote organ dysfunction in sepsis and septic shock. The ISTH has published new diagnostic criteria for improved management, namely sepsis-induced coagulopathy (SIC), in 2017. SIC is a pragmatic scoring system composed of platelet count, prothrombin time, and organ dysfunction score to detect the early-stage of sepsis-associated DIC. Since overt DIC represents an uncompensated coagulation disorder, a two-step approach using SIC and overt DIC criteria is a novel strategy to evaluate the severity and manage this challenging complication. Although there is no globally agreed on anticoagulant therapy for DIC, the Japanese Surviving Sepsis Campaign Guidelines 2020 recommend using antithrombin and recombinant thrombomodulin for sepsis associated DIC. Since research in this area has been previously reported, an international collaborative study is necessary to develop future diagnostic tools and treatment strategies.
Collapse
Affiliation(s)
- Toshiaki Iba
- Department of Emergency and Disaster Medicine, Juntendo University Graduate, School of Medicine, Tokyo, Japan.
| | - Yutaka Umemura
- Division of Trauma and Surgical Critical Care, Osaka General Medical Center, Osaka, Japan; Department of Traumatology and Acute Critical Medicine, Osaka, University Graduate School of Medicine, Osaka, Japan
| | - Hideo Wada
- Department of General Medicine, Mie Prefectural General Medical Center, Mie, Japan
| | - H Levy
- Department of Anesthesiology, Critical Care, and Surgery, Duke University, School of Medicine, Durham, NC, USA
| |
Collapse
|
42
|
Brown RB. Sodium Toxicity in the Nutritional Epidemiology and Nutritional Immunology of COVID-19. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:739. [PMID: 34440945 PMCID: PMC8399536 DOI: 10.3390/medicina57080739] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 02/06/2023]
Abstract
Dietary factors in the etiology of COVID-19 are understudied. High dietary sodium intake leading to sodium toxicity is associated with comorbid conditions of COVID-19 such as hypertension, kidney disease, stroke, pneumonia, obesity, diabetes, hepatic disease, cardiac arrhythmias, thrombosis, migraine, tinnitus, Bell's palsy, multiple sclerosis, systemic sclerosis, and polycystic ovary syndrome. This article synthesizes evidence from epidemiology, pathophysiology, immunology, and virology literature linking sodium toxicological mechanisms to COVID-19 and SARS-CoV-2 infection. Sodium toxicity is a modifiable disease determinant that impairs the mucociliary clearance of virion aggregates in nasal sinuses of the mucosal immune system, which may lead to SARS-CoV-2 infection and viral sepsis. In addition, sodium toxicity causes pulmonary edema associated with severe acute respiratory syndrome, as well as inflammatory immune responses and other symptoms of COVID-19 such as fever and nasal sinus congestion. Consequently, sodium toxicity potentially mediates the association of COVID-19 pathophysiology with SARS-CoV-2 infection. Sodium dietary intake also increases in the winter, when sodium losses through sweating are reduced, correlating with influenza-like illness outbreaks. Increased SARS-CoV-2 infections in lower socioeconomic classes and among people in government institutions are linked to the consumption of foods highly processed with sodium. Interventions to reduce COVID-19 morbidity and mortality through reduced-sodium diets should be explored further.
Collapse
Affiliation(s)
- Ronald B Brown
- School of Public Health Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
43
|
Kronstadt SM, Pottash AE, Levy D, Wang S, Chao W, Jay SM. Therapeutic Potential of Extracellular Vesicles for Sepsis Treatment. ADVANCED THERAPEUTICS 2021; 4:2000259. [PMID: 34423113 PMCID: PMC8378673 DOI: 10.1002/adtp.202000259] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Indexed: 12/14/2022]
Abstract
Sepsis is a deadly condition lacking a specific treatment despite decades of research. This has prompted the exploration of new approaches, with extracellular vesicles (EVs) emerging as a focal area. EVs are nanosized, cell-derived particles that transport bioactive components (i.e., proteins, DNA, and RNA) between cells, enabling both normal physiological functions and disease progression depending on context. In particular, EVs have been identified as critical mediators of sepsis pathophysiology. However, EVs are also thought to constitute the biologically active component of cell-based therapies and have demonstrated anti-inflammatory, anti-apoptotic, and immunomodulatory effects in sepsis models. The dual nature of EVs in sepsis is explored here, discussing their endogenous roles and highlighting their therapeutic properties and potential. Related to the latter component, prior studies involving EVs from mesenchymal stem/stromal cells (MSCs) and other sources are discussed and emerging producer cells that could play important roles in future EV-based sepsis therapies are identified. Further, how methodologies could impact therapeutic development toward sepsis treatment to enhance and control EV potency is described.
Collapse
Affiliation(s)
- Stephanie M Kronstadt
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| | - Alex E Pottash
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| | - Daniel Levy
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| | - Sheng Wang
- Translational Research Program, Department of Anesthesiology and Center for Shock Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Wei Chao
- Translational Research Program, Department of Anesthesiology and Center for Shock Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Steven M Jay
- Fischell Department of Bioengineering and Program in Molecular and, Cell Biology, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| |
Collapse
|
44
|
Fang XZ, Wang YX, Xu JQ, He YJ, Peng ZK, Shang Y. Immunothrombosis in Acute Respiratory Dysfunction of COVID-19. Front Immunol 2021; 12:651545. [PMID: 34149692 PMCID: PMC8207198 DOI: 10.3389/fimmu.2021.651545] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 05/12/2021] [Indexed: 01/10/2023] Open
Abstract
COVID-19 is an acute, complex disorder that was caused by a new β-coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Based on current reports, it was surprising that the characteristics of many patients with COVID-19, who fulfil the Berlin criteria for acute respiratory distress syndrome (ARDS), are not always like those of patients with typical ARDS and can change over time. While the mechanisms of COVID-19–related respiratory dysfunction in COVID-19 have not yet been fully elucidated, pulmonary microvascular thrombosis is speculated to be involved. Considering that thrombosis is highly related to other inflammatory lung diseases, immunothrombosis, a two-way process that links coagulation and inflammation, seems to be involved in the pathophysiology of COVID-19, including respiratory dysfunction. Thus, the current manuscript will describe the proinflammatory milieu in COVID-19, summarize current evidence of thrombosis in COVID-19, and discuss possible interactions between these two.
Collapse
Affiliation(s)
- Xiang-Zhi Fang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Xin Wang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ji-Qain Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Jun He
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe-Kang Peng
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
45
|
Validation of sepsis-induced coagulopathy score in critically ill patients with septic shock: post hoc analysis of a nationwide multicenter observational study in Japan. Int J Hematol 2021; 114:164-171. [PMID: 33895968 PMCID: PMC8067778 DOI: 10.1007/s12185-021-03152-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 11/25/2022]
Abstract
Coagulation disorder is a major cause of death in sepsis patients. Recently, sepsis-induced coagulopathy (SIC) scoring was developed as a new criterion for coagulopathy-associated sepsis. We aimed to evaluate the accuracy of the SIC score for predicting the prognosis of septic shock. We analyzed data from a multicenter observational study conducted from 2011 to 2013. We grouped the participants into those who did and did not use vasopressors, and compared the in-hospital mortality rates of SIC and non-SIC patients. Patients who needed vasopressors were considered to have septic shock. We performed survival analysis adjusted by factors independently associated with mortality. SIC developed in 66.4% of patients who used vasopressors and 42.2% of patients who did not. The in-hospital mortality difference between the SIC and non-SIC groups was statistically significant in those who needed vasopressors (35.8% vs 27.9%, p < 0.01). Cox regression analysis indicated that SIC was significantly correlated with mortality risk in patients who used vasopressors (hazard ratio [HR] 1.39; 95% confidence interval [CI] 1.13–1.70; p < 0.01), but not in those who did not (HR 1.38; 95% CI 0.81–2.34; p = 0.23). In conclusion, the SIC score might be a good diagnostic indicator of fatal coagulopathy among sepsis patients who need vasopressors.
Collapse
|
46
|
Extracellular vesicles are associated with C-reactive protein in sepsis. Sci Rep 2021; 11:6996. [PMID: 33772103 PMCID: PMC7997920 DOI: 10.1038/s41598-021-86489-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 02/22/2021] [Indexed: 01/08/2023] Open
Abstract
There is increasing evidence that C-reactive protein (CRP) can mediate inflammatory reactions following the transformation of functionally inert pentameric CRP (pCRP) into its structural isoform pCRP* and into monomeric CRP (mCRP). This conversion can occur on the membranes of apoptotic or activated cells or on extracellular vesicles (EVs) shed from the cell surface. Here, we characterized the association of CRP with EVs in plasma from sepsis patients using flow cytometry, and found highly elevated levels of total EV counts and CRP+ EVs as compared to healthy individuals. We further assessed the ability of PentraSorb CRP, an extracorporeal device for the adsorption of CRP, to deplete free CRP and CRP+ EVs. Treatment of septic plasma with the adsorbent in vitro resulted in almost complete removal of both, free CRP and CRP+ EVs, while total EV counts remained largely unaffected, indicating the detachment of CRP from the EV surface. EVs from septic plasma elicited a release of interleukin-8 from cultured human monocytes, which was significantly reduced by adsorbent treatment prior to EV isolation. Our findings provide evidence that CRP+ EVs exhibit pro-inflammatory characteristics and can contribute to the spreading of inflammation throughout the circulation on top of their pro-coagulant activity.
Collapse
|
47
|
Dissemination of extreme levels of extracellular vesicles: tissue factor activity in patients with severe COVID-19. Blood Adv 2021; 5:628-634. [PMID: 33560376 PMCID: PMC7846479 DOI: 10.1182/bloodadvances.2020003308] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/13/2020] [Indexed: 01/08/2023] Open
Abstract
EV-TF activity is dramatically increased in patients with severe COVID-19 and is associated with an increased thrombotic risk. Compared with patients with septic shock, those with severe COVID-19 display a distinct EV profile with higher procoagulant activity.
Coronavirus disease 2019 (COVID-19) has become one of the biggest public health challenges of this century. Severe forms of the disease are associated with a thrombo-inflammatory state that can turn into thrombosis. Because tissue factor (TF) conveyed by extracellular vesicles (EVs) has been implicated in thrombosis, we quantified the EV-TF activity in a cohort of hospitalized patients with COVID-19 (n = 111) and evaluated its link with inflammation, disease severity, and thrombotic events. Patients with severe disease were compared with those who had moderate disease and with patients who had septic shock not related to COVID-19 (n = 218). The EV-TF activity was notably increased in patients with severe COVID-19 compared with that observed in patients with moderate COVID-19 (median, 231 [25th to 75th percentile, 39-761] vs median, 25 [25th to 75th percentile, 12-59] fM; P < .0001); EV-TF was correlated with leukocytes, D-dimer, and inflammation parameters. High EV-TF values were associated with an increased thrombotic risk in multivariable models. Compared with patients who had septic shock, those with COVID-19 were characterized by a distinct coagulopathy profile with significantly higher EV-TF and EV-fibrinolytic activities that were not counterbalanced by an increase in plasminogen activator inhibitor-1 (PAI-1). Thus, this article is the first to describe the dissemination of extreme levels of EV-TF in patients with severe COVID-19, which supports the international recommendations of systematic preventive anticoagulation in hospitalized patients and potential intensification of anticoagulation in patients with severe disease.
Collapse
|
48
|
Extracellular vesicles (EVs): What we know of the mesmerizing roles of these tiny vesicles in hematological malignancies? Life Sci 2021; 271:119177. [PMID: 33577843 DOI: 10.1016/j.lfs.2021.119177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Cancer is a complex disease in which a bidirectional collaboration between malignant cells and surrounding microenvironment creates an appropriate platform which ultimately facilitates the progression of the disease. The discovery of extracellular vesicles (EVs) was a turning point in the modern era of cancer biology, as their importance in human malignancies has set the stage to widen research interest in the field of cell-to-cell communication. The implication in short- and long-distance interaction via horizontally transfer of cellular components, ranging from non-coding RNAs to functional proteins, as well as stimulating target cells receptors by the means of ligands anchored on their membrane endows these "tiny vesicles with giant impacts" with incredible potential to re-educate normal tissues, and thus, to re-shape the surrounding niche. In this review, we highlight the pathogenic roles of EVs in human cancers, with an extensive focus on the recent advances in hematological malignancies.
Collapse
|
49
|
Iba T, Warkentin TE, Thachil J, Levi M, Levy JH. Proposal of the Definition for COVID-19-Associated Coagulopathy. J Clin Med 2021; 10:jcm10020191. [PMID: 33430431 PMCID: PMC7827226 DOI: 10.3390/jcm10020191] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 01/08/2023] Open
Abstract
Thrombotic events are common complications in COVID-19 patients that include both thrombus formation in large vessels and the microvasculature of the lung and other organs. COVID-19-associated coagulopathy (CAC) and disseminated intravascular coagulation (DIC) have similarities and differences, and whether CAC is a form of DIC is the subject of debate. Reported mechanisms of CAC include activated coagulation, endotheliopathy, up-regulated innate and adaptive immunity, and activated complement system. Although the clinical features and laboratory findings of CAC and DIC seem different, there are fundamental similarities that should be considered. Basically, the pathological findings of COVID-19 fall within the scope of the definition of DIC, i.e., systemic activation of coagulation caused by or resulting from the microvascular damage. Therefore, we suggest that although CAC differs from usual infection-associated DIC, its various features indicate that it can be considered a thrombotic phenotype DIC. This review summarizes the current knowledge about CAC including differences and similarities with sepsis-associated DIC.
Collapse
Affiliation(s)
- Toshiaki Iba
- Department of Emergency and Disaster Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Correspondence: ; Tel.: +81-3-3813-3111
| | - Theodore E. Warkentin
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada;
- Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Jecko Thachil
- Department of Haematology, Manchester Royal Infirmary, Manchester M13 9WL, UK;
| | - Marcel Levi
- Department of Medicine, University College London Hospitals NHS Foundation Trust, and Cardio-Metabolic Programme-NIHR UCLH/UCL BRC, London NW1 2BU, UK;
| | - Jerrold H. Levy
- Department of Anesthesiology, Critical Care, and Surgery, Duke University School of Medicine, Durham, NC 27710, USA;
| |
Collapse
|
50
|
Rosas M, Slatter DA, Obaji SG, Webber JP, Alvarez-Jarreta J, Thomas CP, Aldrovandi M, Tyrrell VJ, Jenkins PV, O’Donnell VB, Collins PW. The procoagulant activity of tissue factor expressed on fibroblasts is increased by tissue factor-negative extracellular vesicles. PLoS One 2020; 15:e0240189. [PMID: 33031441 PMCID: PMC7544082 DOI: 10.1371/journal.pone.0240189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Tissue factor (TF) is critical for the activation of blood coagulation. TF function is regulated by the amount of externalised phosphatidylserine (PS) and phosphatidylethanolamine (PE) on the surface of the cell in which it is expressed. We investigated the role PS and PE in fibroblast TF function. Fibroblasts expressed 6-9 x 104 TF molecules/cell but had low specific activity for FXa generation. We confirmed that this was associated with minimal externalized PS and PE and characterised for the first time the molecular species of PS/PE demonstrating that these differed from those found in platelets. Mechanical damage of fibroblasts, used to simulate vascular injury, increased externalized PS/PE and led to a 7-fold increase in FXa generation that was inhibited by annexin V and an anti-TF antibody. Platelet-derived extracellular vesicles (EVs), that did not express TF, supported minimal FVIIa-dependent FXa generation but substantially increased fibroblast TF activity. This enhancement in fibroblast TF activity could also be achieved using synthetic liposomes comprising 10% PS without TF. In conclusion, despite high levels of surface TF expression, healthy fibroblasts express low levels of external-facing PS and PE limiting their ability to generate FXa. Addition of platelet-derived TF-negative EVs or artificial liposomes enhanced fibroblast TF activity in a PS dependent manner. These findings contribute information about the mechanisms that control TF function in the fibroblast membrane.
Collapse
Affiliation(s)
- Marcela Rosas
- Institute of Infection and Immunity, and Systems Immunity Research Institute, School of Medicine Cardiff University, Cardiff, United Kingdom
| | - David A. Slatter
- Institute of Infection and Immunity, and Systems Immunity Research Institute, School of Medicine Cardiff University, Cardiff, United Kingdom
| | - Samya G. Obaji
- Institute of Infection and Immunity, and Systems Immunity Research Institute, School of Medicine Cardiff University, Cardiff, United Kingdom
| | - Jason P. Webber
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Jorge Alvarez-Jarreta
- Institute of Infection and Immunity, and Systems Immunity Research Institute, School of Medicine Cardiff University, Cardiff, United Kingdom
| | - Christopher P. Thomas
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | - Maceler Aldrovandi
- Institute of Infection and Immunity, and Systems Immunity Research Institute, School of Medicine Cardiff University, Cardiff, United Kingdom
| | - Victoria J. Tyrrell
- Institute of Infection and Immunity, and Systems Immunity Research Institute, School of Medicine Cardiff University, Cardiff, United Kingdom
| | - Peter V. Jenkins
- Institute of Infection and Immunity, and Systems Immunity Research Institute, School of Medicine Cardiff University, Cardiff, United Kingdom
| | - Valerie B. O’Donnell
- Institute of Infection and Immunity, and Systems Immunity Research Institute, School of Medicine Cardiff University, Cardiff, United Kingdom
| | - Peter W. Collins
- Institute of Infection and Immunity, and Systems Immunity Research Institute, School of Medicine Cardiff University, Cardiff, United Kingdom
| |
Collapse
|