1
|
Culiat C, Soni D, Malkes W, Wienhold M, Zhang LH, Henry E, Dragan M, Kar S, Angeles DM, Eaker S, Biswas R. NELL1 variant protein (NV1) modulates hyper-inflammation, Th-1 mediated immune response, and the HIF-1α hypoxia pathway to promote healing in viral-induced lung injury. Biochem Biophys Res Commun 2025; 744:151198. [PMID: 39706056 DOI: 10.1016/j.bbrc.2024.151198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Research underscores the urgent need for technological innovations to treat lung tissue damage from viral infections and the lasting impact of COVID-19. Our study demonstrates the effectiveness of recombinant human NV1 protein in promoting a pro-healing extracellular matrix that regulates homeostasis in response to excessive tissue reactions caused by infection and injury. NV1 achieves this by calibrating multiple biological mechanisms, including reducing hyperinflammatory cytokine levels (e.g., IFN-γ, TNF-α, IL-10, and IP-10), enhancing the production of proteins involved in viral inactivation and clearance through endocytosis and phagocytosis (e.g., IL-9, IL-1α), regulating pro-clotting and thrombolytic pathways (e.g., downregulates SERPINE 1 and I-TAC during Th1-mediated inflammation), maintaining cell survival under hypoxic conditions via HIF-1α regulation through the M3K5-JNK-AP-1 and TSC2-mTOR pathways, and promoting blood vessel formation. Our findings reveal NV1 as a potential therapeutic candidate for treating severe lung injuries caused by inflammatory and hypoxic conditions from viral infections and related diseases.
Collapse
Affiliation(s)
| | - Dharmendra Soni
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | | | - Mark Wienhold
- NellOne Therapeutics Inc., Knoxville, TN, 37931, USA
| | | | | | | | | | | | - Shannon Eaker
- NellOne Therapeutics Inc., Knoxville, TN, 37931, USA
| | - Roopa Biswas
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| |
Collapse
|
2
|
Gibson PG, McDonald VM. Integrating hot topics and implementation of treatable traits in asthma. Eur Respir J 2024; 64:2400861. [PMID: 39255992 PMCID: PMC11618818 DOI: 10.1183/13993003.00861-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024]
Abstract
People with asthma experience many different problems related to their illness. The number and type of problems differ between patients. This results in asthma being a complex and heterogeneous disorder which mandates a personalised approach to management. These features pose very significant challenges for the effective implementation of evidence-based management. "Treatable traits" is a model of care that has been specifically designed to address these issues. Traits are identified in the pulmonary, extrapulmonary (comorbidity) and behavioural/risk factor domains. Traits are clinically relevant, recognisable with validated trait identification markers and treatable using evidence-based therapies. The clinician and patient agree on a personalised management plan that addresses the relevant traits, and trials show superiority of this approach with significant improvements in asthma control and quality of life. A number of tools have now been developed to assist the clinician in the implementation of this approach. The success of the treatable traits model of care is now being realised in other disease areas.
Collapse
Affiliation(s)
- Peter G Gibson
- Centre of Excellence in Treatable Traits, College of Health, Medicine and Wellbeing, The University of Newcastle, New Lambton Heights, Australia
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, New Lambton Heights, Australia
- Asthma and Breathing Research Program, The Hunter Medical Research Institute, New Lambton Heights, Australia
| | - Vanessa M McDonald
- Centre of Excellence in Treatable Traits, College of Health, Medicine and Wellbeing, The University of Newcastle, New Lambton Heights, Australia
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, New Lambton Heights, Australia
- Asthma and Breathing Research Program, The Hunter Medical Research Institute, New Lambton Heights, Australia
| |
Collapse
|
3
|
Millar JE, Reddy K, Bos LDJ. Future Directions in Therapies for Acute Respiratory Distress Syndrome. Clin Chest Med 2024; 45:943-951. [PMID: 39443010 DOI: 10.1016/j.ccm.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Acute respiratory distress syndrome (ARDS) is caused by a complex interplay among hyperinflammation, endothelial dysfunction, and alveolar epithelial injury. Targeted treatments toward the underlying pathways have been unsuccessful in unselected patient populations. The first reliable biological subphenotypes reflective of these biological disease states have been identified in the past decade. Subphenotype targeted intervention studies are needed to advance the pharmacologic treatment of ARDS.
Collapse
Affiliation(s)
- Jonathan E Millar
- Baillie-Gifford Pandemic Science Hub, Centre for Inflammation Research, Institute for Repair and Regeneration, University of Edinburgh, The Roslin Institute, Easter Bush Campus, Midlothian, Edinburgh EH25 9RG, UK; Department of Critical Care, Queen Elizabeth University Hospital, Glasgow, UK
| | - Kiran Reddy
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, University Road, Belfast BT7 1NN, UK
| | - Lieuwe D J Bos
- Intensive Care Department, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands.
| |
Collapse
|
4
|
Bianquis C, De Leo G, Morana G, Duarte-Silva M, Nolasco S, Vilde R, Tripipitsiriwat A, Viegas P, Purenkovs M, Duiverman M, Karagiannids C, Fisser C. Highlights from the Respiratory Failure and Mechanical Ventilation Conference 2024. Breathe (Sheff) 2024; 20:240105. [PMID: 39534488 PMCID: PMC11555592 DOI: 10.1183/20734735.0105-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/19/2024] [Indexed: 11/16/2024] Open
Abstract
The Respiratory Intensive Care Assembly of the European Respiratory Society gathered in Berlin to organise the third Respiratory Failure and Mechanical Ventilation Conference in February 2024. The conference covered key points of acute and chronic respiratory failure in adults. During the 3-day conference ventilatory strategies, patient selection, diagnostic approaches, treatment and health-related quality of life topics were addressed by a panel of international experts. In this article, lectures delivered during the event have been summarised by early career members of the Assembly and take-home messages highlighted.
Collapse
Affiliation(s)
- Clara Bianquis
- Sorbonne Université-APHP, URMS 1158, Department R3S, Hôpital Pitié-Salpétriêre, Paris, France
| | - Giancarlo De Leo
- Pulmonology Department, Regional General Hospital ‘F. Miulli’, Acquaviva delle Fonti, Italy
| | - Giorgio Morana
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Marta Duarte-Silva
- Pulmonology Department, Hospital Santa Marta, Unidade Local de Saúde São José, Lisboa, Portugal
| | - Santi Nolasco
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Respiratory Medicine Unit, Policlinico ‘G. Rodolico-San Marco’ University Hospital, Catania, Italy
| | - Rūdolfs Vilde
- Centre of Lung disease and Thoracic surgery, Pauls Stradins clinical university hospital, Riga, Latvia
- Department of internal medicine, Riga Stradins University, Riga, Latvia
| | - Athiwat Tripipitsiriwat
- Division of Respiratory Disease and Tuberculosis, Department of Medicine, Faculty of Medicine, Siriraj Hospital, Bangkok, Thailand
| | - Pedro Viegas
- Departamento de Pneumonologia, Centro Hospitalar de Vila Nova de Gaia/Espinho, Porto, Portugal
| | - Martins Purenkovs
- Centre of Pulmonology and Thoracic surgery, Pauls Stradiņš Clinical university hospital, Riga, Latvia
- Riga Stradiņš University, Riga, Latvia
| | - Marieke Duiverman
- Department of Pulmonary Diseases/Home Mechanical Ventilation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Institute of Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands
| | - Christian Karagiannids
- Department of Pneumology and Critical Care Medicine, ARDS and ECMO Centre, Cologne-Merheim Hospital, Kliniken der Stadt Köln gGmbH, Witten/Herdecke University Hospital, Cologne, Germany
| | - Christoph Fisser
- Department of Internal Medicine II University Medical Center Regensburg, Regensburg, Germany
| |
Collapse
|
5
|
Nielsen FM, Klitgaard TL, Bruun NH, Møller MH, Schjørring OL, Rasmussen BS. Lower or higher oxygenation targets in the intensive care unit: an individual patient data meta-analysis. Intensive Care Med 2024; 50:1275-1286. [PMID: 38990335 PMCID: PMC11306534 DOI: 10.1007/s00134-024-07523-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024]
Abstract
PURPOSE Optimal oxygenation targets for patients with acute hypoxemic respiratory failure in the intensive care unit (ICU) are not clearly defined due to substantial variability in design of previous trials. This study aimed to perform a pre-specified individual patient data meta-analysis of the Handling Oxygenation Targets in the ICU (HOT-ICU) and the Handling Oxygenation Targets in coronavirus disease 2019 (COVID-19) (HOT-COVID) trials to compare targeting a partial pressure of arterial oxygen (PaO2) of 8-12 kPa in adult ICU patients, assessing both benefits and harms. METHODS We assessed 90-day all-cause mortality and days alive without life support in 90 days using a generalised mixed model. Heterogeneity of treatment effects (HTE) was evaluated in 14 subgroups, and results graded using the Instrument to assess the Credibility of Effect Modification Analyses (ICEMAN). RESULTS At 90 days, mortality was 40.4% (724/1792) in the 8 kPa group and 40.9% (733/1793) in the 12 kPa group (risk ratio, 0.99; 95% confidence interval [CI] 0.92-1.07; P = 0.80). No difference was observed in number of days alive without life support. Subgroup analyses indicated more days alive without life support in COVID-19 patients targeting 8 kPa (P = 0.04) (moderate credibility), and lower mortality (P = 0.03) and more days alive without life support (P = 0.02) in cancer-patients targeting 12 kPa (low credibility). CONCLUSION This study reported no overall differences comparing a PaO2 target of 8-12 kPa on mortality or days alive without life support in 90 days. Subgroup analyses suggested HTE in patients with COVID-19 (moderate credibility) and cancer (low credibility).
Collapse
Affiliation(s)
- Frederik Mølgaard Nielsen
- Department of Anaesthesia and Intensive Care, Aalborg University Hospital, Hobrovej 18-21, 9000, Aalborg, Denmark.
| | - Thomas L Klitgaard
- Department of Anaesthesia and Intensive Care, Aalborg University Hospital, Hobrovej 18-21, 9000, Aalborg, Denmark
| | - Niels Henrik Bruun
- Unit of Clinical Biostatistics, Aalborg University Hospital, Aalborg, Denmark
| | - Morten H Møller
- Department of Intensive Care, Rigshospitalet, Copenhagen, Denmark
| | - Olav L Schjørring
- Department of Anaesthesia and Intensive Care, Aalborg University Hospital, Hobrovej 18-21, 9000, Aalborg, Denmark
| | - Bodil S Rasmussen
- Department of Anaesthesia and Intensive Care, Aalborg University Hospital, Hobrovej 18-21, 9000, Aalborg, Denmark
| |
Collapse
|
6
|
Alladina JW, Giacona FL, Haring AM, Hibbert KA, Medoff BD, Schmidt EP, Thompson T, Maron BA, Alba GA. Circulating Biomarkers of Endothelial Dysfunction Associated With Ventilatory Ratio and Mortality in ARDS Resulting From SARS-CoV-2 Infection Treated With Antiinflammatory Therapies. CHEST CRITICAL CARE 2024; 2:100054. [PMID: 39035722 PMCID: PMC11259037 DOI: 10.1016/j.chstcc.2024.100054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
BACKGROUND The association of plasma biomarkers and clinical outcomes in ARDS resulting from SARS-CoV-2 infection predate the evidence-based use of immunomodulators. RESEARCH QUESTION Which plasma biomarkers are associated with clinical outcomes in patients with ARDS resulting from SARS-CoV-2 infection treated routinely with immunomodulators? STUDY DESIGN AND METHODS We collected plasma from patients with ARDS resulting from SARS-CoV-2 infection within 24 h of admission to the ICU between December 2020 and March 2021 (N = 69). We associated 16 total biomarkers of inflammation (eg, IL-6), coagulation (eg, D-dimer), epithelial injury (eg, surfactant protein D), and endothelial injury (eg, angiopoietin-2) with the primary outcome of in-hospital mortality and secondary outcome of ventilatory ratio (at baseline and day 3). RESULTS Thirty patients (43.5%) died within 60 days. All patients received corticosteroids and 6% also received tocilizumab. Compared with survivors, nonsurvivors demonstrated a higher baseline modified Sequential Organ Failure Assessment score (median, 8.5 [interquartile range (IQR), 7-9] vs 7 [IQR, 5-8]); P = .004), lower Pao2 to Fio2 ratio (median, 153 [IQR, 118-182] vs 184 [IQR, 142-247]; P = .04), and higher ventilatory ratio (median, 2.0 [IQR, 1.9-2.3] vs 1.5 [IQR, 1.4-1.9]; P < .001). No difference was found in inflammatory, coagulation, or epithelial biomarkers between groups. Nonsurvivors showed higher median neural precursor cell expressed, developmentally down-regulated 9 (NEDD9) levels (median, 8.4 ng/mL [IQR, 7.0-11.2 ng/mL] vs 6.9 ng/mL [IQR, 5.5-8.0 ng/mL]; P = .0025), von Willebrand factor domain A2 levels (8.7 ng/mL [IQR, 7.9-9.7 ng/mL] vs 6.5 ng/mL [IQR, 5.7-8.7 ng/mL]; P = .007), angiopoietin-2 levels (9.0 ng/mL [IQR, 7.9-14.1 ng/mL] vs 7.0 ng/mL [IQR, 5.6-10.6 ng/mL]; P = .01), and syndecan-1 levels (15.9 ng/mL [IQR, 14.5-17.5 ng/mL] vs 12.6 ng/mL [IQR, 10.5-16.1 ng/mL]; P = .01). Only NEDD9 level met the adjusted threshold for significance (P < .003). Plasma NEDD9 level was associated with 60-day mortality (adjusted OR, 9.7; 95% CI, 1.6-60.4; P = .015). Syndecan-1 level correlated with both baseline (ρ = 0.4; P = .001) and day 3 ventilatory ratio (ρ = 0.5; P < .001). INTERPRETATION Biomarkers of inflammation, coagulation, and epithelial injury were not associated with clinical outcomes in a small cohort of patients with ARDS uniformly treated with immunomodulators. However, endothelial biomarkers, including plasma NEDD9, were associated with 60-day mortality.
Collapse
Affiliation(s)
- Jehan W Alladina
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Francesca L Giacona
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Alexis M Haring
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Kathryn A Hibbert
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Benjamin D Medoff
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Eric P Schmidt
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Taylor Thompson
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Bradley A Maron
- Department of Medicine; University of Maryland School of Medicine, Baltimore, University of Maryland-Institute for Health Computing, Bethesda, MD
| | - George A Alba
- Division of Pulmonary and Critical Care Medicine, Bethesda, MD, Department of Medicine, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
7
|
de Souza Xavier Costa N, da Costa Sigrist G, Schalch AS, Belotti L, Dolhnikoff M, da Silva LFF. Lung tissue expression of epithelial injury markers is associated with acute lung injury severity but does not discriminate sepsis from ARDS. Respir Res 2024; 25:129. [PMID: 38500106 PMCID: PMC10949726 DOI: 10.1186/s12931-024-02761-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/08/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is a common cause of respiratory failure in critically ill patients, and diffuse alveolar damage (DAD) is considered its histological hallmark. Sepsis is one of the most common aetiology of ARDS with the highest case-fatality rate. Identifying ARDS patients and differentiate them from other causes of acute respiratory failure remains a challenge. To address this, many studies have focused on identifying biomarkers that can help assess lung epithelial injury. However, there is scarce information available regarding the tissue expression of these markers. Evaluating the expression of elafin, RAGE, and SP-D in lung tissue offers a potential bridge between serological markers and the underlying histopathological changes. Therefore, we hypothesize that the expression of epithelial injury markers varies between sepsis and ARDS as well as according to its severity. METHODS We compared the post-mortem lung tissue expression of the epithelial injury markers RAGE, SP-D, and elafin of patients that died of sepsis, ARDS, and controls that died from non-pulmonary causes. Lung tissue was collected during routine autopsy and protein expression was assessed by immunohistochemistry. We also assessed the lung injury by a semi-quantitative analysis. RESULTS We observed that all features of DAD were milder in septic group compared to ARDS group. Elafin tissue expression was increased and SP-D was decreased in the sepsis and ARDS groups. Severe ARDS expressed higher levels of elafin and RAGE, and they were negatively correlated with PaO2/FiO2 ratio, and positively correlated with bronchopneumonia percentage and hyaline membrane score. RAGE tissue expression was negatively correlated with mechanical ventilation duration in both ARDS and septic groups. In septic patients, elafin was positively correlated with ICU admission length, SP-D was positively correlated with serum lactate and RAGE was correlated with C-reactive protein. CONCLUSIONS Lung tissue expression of elafin and RAGE, but not SP-D, is associated with ARDS severity, but does not discriminate sepsis patients from ARDS patients.
Collapse
Affiliation(s)
| | - Giovana da Costa Sigrist
- Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, LIM-05, Brazil
| | - Alexandre Santos Schalch
- Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, LIM-05, Brazil
| | - Luciano Belotti
- Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, LIM-05, Brazil
| | - Marisa Dolhnikoff
- Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, LIM-05, Brazil
| | - Luiz Fernando Ferraz da Silva
- Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, LIM-05, Brazil
- Serviço de Verificação de Óbitos da Capital, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Adigbli D, Liu R, Meyer J, Cohen J, Di Tanna GL, Gianacas C, Bhattacharya A, Hammond N, Walsham J, Venkatesh B, Hotchkiss R, Finfer S. EARLY PERSISTENT LYMPHOPENIA AND RISK OF DEATH IN CRITICALLY ILL PATIENTS WITH AND WITHOUT SEPSIS. Shock 2024; 61:197-203. [PMID: 38151771 DOI: 10.1097/shk.0000000000002284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
ABSTRACT Purpose: To examine the relationship of early persistent lymphopenia with hospital survival in critically ill patients with and without sepsis to assess whether it can be considered a treatable trait. Methods: Retrospective database analysis of patients with nonelective admission to intensive care units (ICUs) during January 2015 to December 2018. Patients were classified as having sepsis if the Acute Physiology and Chronic Health Evaluation III admission diagnostic code included sepsis or coded for an infection combined with a Sequential Organ Failure Assessment score of ≥2. We defined early persistent lymphopenia at two thresholds (absolute lymphocyte count [ALC] <1.0 and <0.75 × 10 9 /L) based on two qualifying values recorded during the first 4 days in ICU. The main outcome measure was time to in-hospital death. Results: Of 8,507 eligible patients, 7,605 (89.4%) had two ALCs recorded during their first 4 days in ICU; of these, 1,482 (19.5%) had sepsis. Persistent lymphopenia (ALC <1.0) was present in 728 of 1,482 (49.1%) and 2,302 of 6,123 (37.6%) patients with and without sepsis, respectively. For ALC <0.75, the results were 487 of 1,482 (32.9%) and 1,125 of 6,123 (18.4%), respectively. Of 3,030 patients with persistent lymphopenia (ALC <1.0), 562 (18.5%) died compared with 439 of 4,575 (9.6%) without persistent lymphopenia. Persistent lymphopenia was an independent risk factor for in-hospital death in all patients. The hazard ratios for death at ALC <1.0 were 1.89 (95% confidence interval, 1.32-2.71; P = 0.0005) and 1.17 (95% confidence interval, 1.02-1.35; P = 0.0246) in patients with and without sepsis respectively. Conclusions: Early persistent lymphopenia is common in critically ill patients and associated with increased risk of death in patients with and without sepsis. Although the association is stronger in patients with sepsis, lymphopenia is a candidate to be considered a treatable trait; drugs that reverse lymphopenia should be trialed in critically ill patients.
Collapse
Affiliation(s)
| | - Rebecca Liu
- Department of Anaesthesiology, Washington University School of Medicine, St Louis, Missouri
| | - Jason Meyer
- Intensive Care Unit, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | | | | | - Christopher Gianacas
- Biostatistics and Data Science Division, The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Amritendu Bhattacharya
- Biostatistics and Data Science Division, The George Institute for Global Health, New Delhi, India
| | - Naomi Hammond
- Critical Care Division, The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia
| | | | | | - Richard Hotchkiss
- Department of Anaesthesiology, Washington University School of Medicine, St Louis, Missouri
| | | |
Collapse
|
9
|
Ding W, Zhang W, Chen J, Wang M, Ren Y, Feng J, Han X, Ji X, Nie S, Sun Z. Protective mechanism of quercetin in alleviating sepsis-related acute respiratory distress syndrome based on network pharmacology and in vitro experiments. World J Emerg Med 2024; 15:111-120. [PMID: 38476533 PMCID: PMC10925531 DOI: 10.5847/wjem.j.1920-8642.2024.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/08/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Sepsis-related acute respiratory distress syndrome (ARDS) has a high mortality rate, and no effective treatment is available currently. Quercetin is a natural plant product with many pharmacological activities, such as antioxidative, anti-apoptotic, and anti-inflammatory effects. This study aimed to elucidate the protective mechanism of quercetin against sepsis-related ARDS. METHODS In this study, network pharmacology and in vitro experiments were used to investigate the underlying mechanisms of quercetin against sepsis-related ARDS. Core targets and signaling pathways of quercetin against sepsis-related ARDS were screened and were verified by in vitro experiments. RESULTS A total of 4,230 targets of quercetin, 360 disease targets of sepsis-related ARDS, and 211 intersection targets were obtained via database screening. Among the 211 intersection targets, interleukin-6 (IL-6), tumor necrosis factor (TNF), albumin (ALB), AKT serine/threonine kinase 1 (AKT1), and interleukin-1β (IL-1β) were identified as the core targets. A Gene Ontology (GO) enrichment analysis revealed 894 genes involved in the inflammatory response, apoptosis regulation, and response to hypoxia. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis identified 106 pathways. After eliminating and generalizing, the hypoxia-inducible factor-1 (HIF-1), TNF, nuclear factor-κB (NF-κB), and nucleotide-binding and oligomerization domain (NOD)-like receptor signaling pathways were identified. Molecular docking revealed that quercetin had good binding activity with the core targets. Moreover, quercetin blocked the HIF-1, TNF, NF-κB, and NOD-like receptor signaling pathways in lipopolysaccharide (LPS)-induced murine alveolar macrophage (MH-S) cells. It also suppressed the inflammatory response, oxidative reactions, and cell apoptosis. CONCLUSION Quercetin ameliorates sepsis-related ARDS by binding to its core targets and blocking the HIF-1, TNF, NF-κB, and NOD-like receptor signaling pathways to reduce inflammation, cell apoptosis, and oxidative stress.
Collapse
Affiliation(s)
- Weichao Ding
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
- Department of Emergency Medicine, Jinling Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing 210002, China
- Department of Emergency Medicine, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Wei Zhang
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Juan Chen
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
- Department of Emergency Medicine, Jinling Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing 210002, China
- Department of Emergency Medicine, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou 221000, China
| | - Mengmeng Wang
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Yi Ren
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Jing Feng
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Xiaoqin Han
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Xiaohang Ji
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Shinan Nie
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
- Department of Emergency Medicine, Jinling Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing 210002, China
| | - Zhaorui Sun
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
- Department of Emergency Medicine, Jinling Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing 210002, China
| |
Collapse
|
10
|
Levine AR, Calfee CS. Subphenotypes of Acute Respiratory Distress Syndrome: Advancing Towards Precision Medicine. Tuberc Respir Dis (Seoul) 2024; 87:1-11. [PMID: 37675452 PMCID: PMC10758309 DOI: 10.4046/trd.2023.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/25/2023] [Accepted: 09/06/2023] [Indexed: 09/08/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a common cause of severe hypoxemia defined by the acute onset of bilateral non-cardiogenic pulmonary edema. The diagnosis is made by defined consensus criteria. Supportive care, including prevention of further injury to the lungs, is the only treatment that conclusively improves outcomes. The inability to find more advanced therapies is due, in part, to the highly sensitive but relatively non-specific current syndromic consensus criteria, combining a heterogenous population of patients under the umbrella of ARDS. With few effective therapies, the morality rate remains 30% to 40%. Many subphenotypes of ARDS have been proposed to cluster patients with shared combinations of observable or measurable traits. Subphenotyping patients is a strategy to overcome heterogeneity to advance clinical research and eventually identify treatable traits. Subphenotypes of ARDS have been proposed based on radiographic patterns, protein biomarkers, transcriptomics, and/or machine-based clustering of clinical and biological variables. Some of these strategies have been reproducible across patient cohorts, but at present all have practical limitations to their implementation. Furthermore, there is no agreement on which strategy is the most appropriate. This review will discuss the current strategies for subphenotyping patients with ARDS, including the strengths and limitations, and the future directions of ARDS subphenotyping.
Collapse
Affiliation(s)
- Andrea R. Levine
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carolyn S. Calfee
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
11
|
Cummings MJ, Fan E. Globalize the Definition, Localize the Treatment: Increasing Equity and Embracing Heterogeneity on the Road to Precision Medicine for Acute Respiratory Distress Syndrome. Crit Care Med 2024; 52:156-160. [PMID: 38095525 DOI: 10.1097/ccm.0000000000006079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Affiliation(s)
- Matthew J Cummings
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY
| | - Eddy Fan
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Grunwell JR. So, You Say You Want a Revolution? You Tell Me That It's Evolution: Associating Temporal Changes in Pediatric Acute Respiratory Distress Syndrome Plasma Biomarkers With Lung Injury Severity. Pediatr Crit Care Med 2024; 25:80-83. [PMID: 38169340 PMCID: PMC10783528 DOI: 10.1097/pcc.0000000000003328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Affiliation(s)
- Jocelyn R Grunwell
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Division of Pediatric Critical Care Medicine, Children's Healthcare of Atlanta, Atlanta, GA
| |
Collapse
|
13
|
Leligdowicz A. Are We Ready for Biomarker-Guided Immune Modulation in Critical Care? Crit Care Med 2023; 51:1827-1829. [PMID: 37971339 DOI: 10.1097/ccm.0000000000006004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Affiliation(s)
- Aleksandra Leligdowicz
- Division of Critical Care Medicine, Department of Medicine, Western University, London, ON, Canada
- Department of Microbiology and Immunology, Robarts Research Institute, Western University, London, ON, Canada
| |
Collapse
|
14
|
Wösten-van Asperen RM, la Roi-Teeuw HM, van Amstel RBE, Bos LDJ, Tissing WJE, Jordan I, Dohna-Schwake C, Bottari G, Pappachan J, Crazzolara R, Comoretto RI, Mizia-Malarz A, Moscatelli A, Sánchez-Martín M, Willems J, Rogerson CM, Bennett TD, Luo Y, Atreya MR, Faustino ES, Geva A, Weiss SL, Schlapbach LJ, Sanchez-Pinto LN. Distinct clinical phenotypes in paediatric cancer patients with sepsis are associated with different outcomes-an international multicentre retrospective study. EClinicalMedicine 2023; 65:102252. [PMID: 37842550 PMCID: PMC10570699 DOI: 10.1016/j.eclinm.2023.102252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
Background Identifying phenotypes in sepsis patients may enable precision medicine approaches. However, the generalisability of these phenotypes to specific patient populations is unclear. Given that paediatric cancer patients with sepsis have different host response and pathogen profiles and higher mortality rates when compared to non-cancer patients, we determined whether unique, reproducible, and clinically-relevant sepsis phenotypes exist in this specific patient population. Methods We studied patients with underlying malignancies admitted with sepsis to one of 25 paediatric intensive care units (PICUs) participating in two large, multi-centre, observational cohorts from the European SCOTER study (n = 383 patients; study period between January 1, 2018 and January 1, 2020) and the U.S. Novel Data-Driven Sepsis Phenotypes in Children study (n = 1898 patients; study period between January 1, 2012 and January 1, 2018). We independently used latent class analysis (LCA) in both cohorts to identify phenotypes using demographic, clinical, and laboratory data from the first 24 h of PICU admission. We then tested the association of the phenotypes with clinical outcomes in both cohorts. Findings LCA identified two distinct phenotypes that were comparable across both cohorts. Phenotype 1 was characterised by lower serum bicarbonate and albumin, markedly increased lactate and hepatic, renal, and coagulation abnormalities when compared to phenotype 2. Patients with phenotype 1 had a higher 90-day mortality (European cohort 29.2% versus 13.4%, U.S. cohort 27.3% versus 11.4%, p < 0.001) and received more vasopressor and renal replacement therapy than patients with phenotype 2. After adjusting for severity of organ dysfunction, haematological cancer, prior stem cell transplantation and age, phenotype 1 was associated with an adjusted OR of death at 90-day of 1.9 (1.04-3.34) in the European cohort and 1.6 (1.2-2.2) in the U.S. cohort. Interpretation We identified two clinically-relevant sepsis phenotypes in paediatric cancer patients that are reproducible across two international, multicentre cohorts with prognostic implications. These results may guide further research regarding therapeutic approaches for these specific phenotypes. Funding Part of this study is funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development.
Collapse
Affiliation(s)
- Roelie M. Wösten-van Asperen
- Department of Paediatric Intensive Care, University Medical Centre Utrecht/Wilhelmina Children’s Hospital, Utrecht, the Netherlands
| | - Hannah M. la Roi-Teeuw
- Department of Paediatric Intensive Care, University Medical Centre Utrecht/Wilhelmina Children’s Hospital, Utrecht, the Netherlands
| | - Rombout BE. van Amstel
- Intensive Care, Amsterdam UMC—location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Lieuwe DJ. Bos
- Intensive Care, Amsterdam UMC—location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Wim JE. Tissing
- Princess Máxima Centre for Pediatric Oncology, Utrecht, the Netherlands
- Department of Paediatric Oncology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Iolanda Jordan
- Department of Paediatric Intensive Care and Institut de Recerca, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública, Madrid, Spain
| | - Christian Dohna-Schwake
- Department of Paediatrics I, Paediatric Intensive Care, Children’s Hospital Essen, Germany
- West German Centre for Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Gabriella Bottari
- Paediatric Intensive Care Unit, Children’s Hospital Bambino Gesù, IRCSS, Rome, Italy
| | - John Pappachan
- Department of Paediatric Intensive Care, Southampton Children’s Hospital, UK
| | - Roman Crazzolara
- Department of Paediatrics, Paediatric Intensive Care Unit, Medical University of Innsbruck, Innsbruck, Austria
| | - Rosanna I. Comoretto
- Department of Paediatric Intensive Care, Department of Woman's and Child's Health, Padua University Hospital, Padua, Italy
| | - Agniezka Mizia-Malarz
- Department of Paediatric Oncology, Haematology and Chemotherapy Unit, Medical University of Silesia, Katowice, Poland
| | - Andrea Moscatelli
- Neonatal and Paediatric Intensive Care Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - María Sánchez-Martín
- Department of Paediatric Intensive Care, Hospital Universitario La Paz, Madrid, Spain
| | - Jef Willems
- Department of Paediatric Intensive Care, Ghent University Hospital, Ghent, Belgium
| | - Colin M. Rogerson
- Department of Paediatrics, Division of Critical Care, Indianapolis University School of Medicine, Indianapolis, IN, USA
| | - Tellen D. Bennett
- Departments of Biomedical Informatics and Paediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Yuan Luo
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mihir R. Atreya
- Department of Paediatrics (Critical Care), University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Centre, Cincinnati, OH, USA
| | | | - Alon Geva
- Department of Anaesthesiology, Critical Care, and Pain Medicine and Computational Health Informatics Program, Boston Children's Hospital, USA
- Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| | - Scott L. Weiss
- Division of Critical Care, Department of Paediatrics, Nemours Children’s Health, Delaware, USA
| | - Luregn J. Schlapbach
- Department of Intensive Care and Neonatology and Children’s Research Centre, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Child Health Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - L Nelson Sanchez-Pinto
- Department of Paediatrics (Critical Care) and Preventive Medicine (Health & Biomedical Informatics), Northwestern University Feinberg School of Medicine and Ann & Robert H Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| |
Collapse
|
15
|
Wildi K, Livingstone S, Ainola C, Colombo SM, Heinsar S, Sato N, Sato K, Bouquet M, Wilson E, Abbate G, Passmore M, Hyslop K, Liu K, Wang X, Palmieri C, See Hoe LE, Jung JS, Ki K, Mueller C, Laffey J, Pelosi P, Li Bassi G, Suen J, Fraser J. Application of anti-inflammatory treatment in two different ovine Acute Respiratory Distress Syndrome injury models: a preclinical randomized intervention study. Sci Rep 2023; 13:17986. [PMID: 37863994 PMCID: PMC10589361 DOI: 10.1038/s41598-023-45081-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023] Open
Abstract
Whilst the presence of 2 subphenotypes among the heterogenous Acute Respiratory Distress Syndrome (ARDS) population is becoming clinically accepted, subphenotype-specific treatment efficacy has yet to be prospectively tested. We investigated anti-inflammatory treatment in different ARDS models in sheep, previously shown similarities to human ARDS subphenotypes, in a preclinical, randomized, blinded study. Thirty anesthetized sheep were studied up to 48 h and randomized into: (a) OA: oleic acid (n = 15) and (b) OA-LPS: oleic acid and subsequent lipopolysaccharide (n = 15) to achieve a PaO2/FiO2 ratio of < 150 mmHg. Then, animals were randomly allocated to receive treatment with methylprednisolone or erythromycin or none. Assessed outcomes were oxygenation, pulmonary mechanics, hemodynamics and survival. All animals reached ARDS. Treatment with methylprednisolone, but not erythromycin, provided the highest therapeutic benefit in Ph2 animals, leading to a significant increase in PaO2/FiO2 ratio by reducing pulmonary edema, dead space ventilation and shunt fraction. Animals treated with methylprednisolone displayed a higher survival up to 48 h than all others. In animals treated with erythromycin, there was no treatment benefit regarding assessed physiological parameters and survival in both phenotypes. Treatment with methylprednisolone improves oxygenation and survival, more so in ovine phenotype 2 which resembles the human hyperinflammatory subphenotype.
Collapse
Affiliation(s)
- Karin Wildi
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia.
- The University of Queensland, Brisbane, Australia.
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Basel, Switzerland.
| | - Samantha Livingstone
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
- The University of Queensland, Brisbane, Australia
| | - Carmen Ainola
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
- The University of Queensland, Brisbane, Australia
| | - Sebastiano Maria Colombo
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
- Department of Anaesthesia and Intensive Care Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Silver Heinsar
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
- The University of Queensland, Brisbane, Australia
| | - Noriko Sato
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
| | - Kei Sato
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
- The University of Queensland, Brisbane, Australia
| | - Mahé Bouquet
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
- The University of Queensland, Brisbane, Australia
| | - Emily Wilson
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
- The University of Queensland, Brisbane, Australia
| | - Gabriella Abbate
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
- The University of Queensland, Brisbane, Australia
| | - Margaret Passmore
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
- The University of Queensland, Brisbane, Australia
| | - Kieran Hyslop
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
- The University of Queensland, Brisbane, Australia
| | - Keibun Liu
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
| | - Xiaomeng Wang
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Chiara Palmieri
- The University of Queensland, School of Veterinary Science, Gatton, Australia
| | - Louise E See Hoe
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
- The University of Queensland, Brisbane, Australia
| | - Jae-Seung Jung
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Katrina Ki
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
- The University of Queensland, Brisbane, Australia
| | - Christian Mueller
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Basel, Switzerland
| | - John Laffey
- Galway University Hospitals, University of Galway, Galway, Ireland
| | - Paolo Pelosi
- Anesthesiology and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Gianluigi Li Bassi
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
- The University of Queensland, Brisbane, Australia
- Queensland University of Technology, Brisbane, Australia
- Uniting Care Hospitals, St Andrews War Memorial and The Wesley Intensive Care Units, Brisbane, Australia
| | - Jacky Suen
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
- The University of Queensland, Brisbane, Australia
| | - John Fraser
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
- The University of Queensland, Brisbane, Australia
- Uniting Care Hospitals, St Andrews War Memorial and The Wesley Intensive Care Units, Brisbane, Australia
| |
Collapse
|
16
|
Hammond NE, Finfer S. Can we design better ARDS trials? Thorax 2023; 78:955-956. [PMID: 37495366 DOI: 10.1136/thorax-2023-220446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2023] [Indexed: 07/28/2023]
Affiliation(s)
- Naomi E Hammond
- Critical Care, The George Institute for Global Health, Newtown, New South Wales, Australia
- Malcolm Fisher Department of Intensive Care, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Simon Finfer
- Critical Care, The George Institute for Global Health, Newtown, New South Wales, Australia
- Faculty of Health, University of New South Wales, Sydney, NSW, Australia
- School of Public Health, Imperial College London, London, England
| |
Collapse
|
17
|
Agarwal A, Marion J, Nagy P, Robinson M, Walkey A, Sevransky J. How Electronic Medical Record Integration Can Support More Efficient Critical Care Clinical Trials. Crit Care Clin 2023; 39:733-749. [PMID: 37704337 DOI: 10.1016/j.ccc.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Large volumes of data are collected on critically ill patients, and using data science to extract information from the electronic medical record (EMR) and to inform the design of clinical trials represents a new opportunity in critical care research. Using improved methods of phenotyping critical illnesses, subject identification and enrollment, and targeted treatment group assignment alongside newer trial designs such as adaptive platform trials can increase efficiency while lowering costs. Some tools such as the EMR to automate data collection are already in use. Refinement of data science approaches in critical illness research will allow for better clinical trials and, ultimately, improved patient outcomes.
Collapse
Affiliation(s)
- Ankita Agarwal
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Emory Critical Care Center, Emory Healthcare, Atlanta, GA, USA
| | | | - Paul Nagy
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew Robinson
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Allan Walkey
- Department of Medicine - Section of Pulmonary, Allergy, Critical Care and Sleep Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Jonathan Sevransky
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Emory Critical Care Center, Emory Healthcare, Atlanta, GA, USA.
| |
Collapse
|
18
|
Motes A, Singh T, Vinan Vega N, Nugent K. A Focused Review of the Initial Management of Patients with Acute Respiratory Distress Syndrome. J Clin Med 2023; 12:4650. [PMID: 37510765 PMCID: PMC10380732 DOI: 10.3390/jcm12144650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/24/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
At present, the management of patients with acute respiratory distress syndrome (ARDS) largely focuses on ventilator settings to limit intrathoracic pressures by using low tidal volumes and on FiO2/PEEP relationships to maintain optimal gas exchange. Acute respiratory distress syndrome is a complex medical disorder that can develop in several primary acute disorders, has a rapid time course, and has several classifications that can reflect either the degree of hypoxemia, the extent of radiographic involvement, or the underlying pathogenesis. The identification of subtypes of patients with ARDS would potentially make precision medicine possible in these patients. This is a very difficult challenge given the heterogeneity in the clinical presentation, pathogenesis, and treatment responses in these patients. The analysis of large databases of patients with acute respiratory failure using statistical methods such as cluster analysis could identify phenotypes that have different outcomes or treatment strategies. However, clinical information available on presentation is unlikely to separate patients into groups that allow for secure treatment decisions or outcome predictions. In some patients, non-invasive positive pressure ventilation provides adequate support through episodes of acute respiratory failure, and the development of specialized units to manage patients with this support might lead to the better use of hospital resources. Patients with ARDS have capillary leak, which results in interstitial and alveolar edema. Early attention to fluid balance in these patients might improve gas exchange and alter the pathophysiology underlying the development of severe ARDS. Finally, more attention to the interaction of patients with ventilators through complex monitoring systems has the potential to identify ventilator dyssynchrony, leading to ventilator adjustments and potentially better outcomes. Recent studies with COVID-19 patients provide tentative answers to some of these questions. In addition, expert clinical investigators have analyzed the promise and difficulties associated with the development of precision medicine in patients with ARDS.
Collapse
Affiliation(s)
- Arunee Motes
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Tushi Singh
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Noella Vinan Vega
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Kenneth Nugent
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
19
|
Jones TW, Almuntashiri S, Chase A, Alhumaid A, Somanath PR, Sikora A, Zhang D. Plasma matrix metalloproteinase-3 predicts mortality in acute respiratory distress syndrome: a biomarker analysis of a randomized controlled trial. Respir Res 2023; 24:166. [PMID: 37349704 PMCID: PMC10286483 DOI: 10.1186/s12931-023-02476-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Matrix metalloproteinase-3 (MMP-3) is a proteolytic enzyme involved in acute respiratory distress syndrome (ARDS) pathophysiology that may serve as a lung-specific biomarker in ARDS. METHODS This study was a secondary biomarker analysis of a subset of Albuterol for the Treatment of Acute Lung Injury (ALTA) trial patients to determine the prognostic value of MMP-3. Plasma sample MMP-3 was measured by enzyme-linked immunosorbent assay. The primary outcome was the area under the receiver operating characteristic (AUROC) of MMP-3 at day 3 for the prediction of 90-day mortality. RESULTS A total of 100 unique patient samples were evaluated and the AUROC analysis of day three MMP-3 showed an AUROC of 0.77 for the prediction of 90-day mortality (95% confidence interval: 0.67-0.87), corresponding to a sensitivity of 92% and specificity of 63% and an optimal cutoff value of 18.4 ng/mL. Patients in the high MMP-3 group (≥ 18.4 ng/mL) showed higher mortality compared to the non-elevated MMP-3 group (< 18.4 ng/mL) (47% vs. 4%, p < 0.001). A positive difference in day zero and day three MMP-3 concentration was predictive of mortality with an AUROC of 0.74 correlating to 73% sensitivity, 81% specificity, and an optimal cutoff value of + 9.5 ng/mL. CONCLUSIONS Day three MMP-3 concentration and difference in day zero and three MMP-3 concentrations demonstrated acceptable AUROCs for predicting 90-day mortality with a cut-point of 18.4 ng/mL and + 9.5 ng/mL, respectively. These results suggest a prognostic role of MMP-3 in ARDS.
Collapse
Affiliation(s)
- Timothy W. Jones
- Department of Pharmacy, Augusta University Medical Center, 1120 15th St., Augusta, GA 30912 USA
- Department of Clinical and Administrative Pharmacy, University of Georgia College of Pharmacy, 120 15th Street, HM-117, Augusta, GA 30912 USA
| | - Sultan Almuntashiri
- Department of Clinical and Administrative Pharmacy, University of Georgia College of Pharmacy, 120 15th Street, HM-117, Augusta, GA 30912 USA
| | - Aaron Chase
- Department of Pharmacy, Augusta University Medical Center, 1120 15th St., Augusta, GA 30912 USA
- Department of Clinical and Administrative Pharmacy, University of Georgia College of Pharmacy, 120 15th Street, HM-117, Augusta, GA 30912 USA
| | - Abdullah Alhumaid
- Department of Clinical and Administrative Pharmacy, University of Georgia College of Pharmacy, 120 15th Street, HM-117, Augusta, GA 30912 USA
| | - Payaningal R. Somanath
- Department of Clinical and Administrative Pharmacy, University of Georgia College of Pharmacy, 120 15th Street, HM-117, Augusta, GA 30912 USA
| | - Andrea Sikora
- Department of Clinical and Administrative Pharmacy, University of Georgia College of Pharmacy, 120 15th Street, HM-117, Augusta, GA 30912 USA
| | - Duo Zhang
- Department of Clinical and Administrative Pharmacy, University of Georgia College of Pharmacy, 120 15th Street, HM-117, Augusta, GA 30912 USA
| |
Collapse
|
20
|
Zhai R, Lenga Ma Bonda W, Leclaire C, Saint-Béat C, Theilliere C, Belville C, Coupet R, Blondonnet R, Bouvier D, Blanchon L, Sapin V, Jabaudon M. Effects of sevoflurane on lung epithelial permeability in experimental models of acute respiratory distress syndrome. J Transl Med 2023; 21:397. [PMID: 37331963 DOI: 10.1186/s12967-023-04253-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/08/2023] [Indexed: 06/20/2023] Open
Abstract
BACKGROUND Preclinical studies in acute respiratory distress syndrome (ARDS) have suggested that inhaled sevoflurane may have lung-protective effects and clinical trials are ongoing to assess its impact on major clinical outcomes in patients with ARDS. However, the underlying mechanisms of these potential benefits are largely unknown. This investigation focused on the effects of sevoflurane on lung permeability changes after sterile injury and the possible associated mechanisms. METHODS To investigate whether sevoflurane could decrease lung alveolar epithelial permeability through the Ras homolog family member A (RhoA)/phospho-Myosin Light Chain 2 (Ser19) (pMLC)/filamentous (F)-actin pathway and whether the receptor for advanced glycation end-products (RAGE) may mediate these effects. Lung permeability was assessed in RAGE-/- and littermate wild-type C57BL/6JRj mice on days 0, 1, 2, and 4 after acid injury, alone or followed by exposure at 1% sevoflurane. Cell permeability of mouse lung epithelial cells was assessed after treatment with cytomix (a mixture of TNFɑ, IL-1β, and IFNγ) and/or RAGE antagonist peptide (RAP), alone or followed by exposure at 1% sevoflurane. Levels of zonula occludens-1, E-cadherin, and pMLC were quantified, along with F-actin immunostaining, in both models. RhoA activity was assessed in vitro. RESULTS In mice after acid injury, sevoflurane was associated with better arterial oxygenation, decreased alveolar inflammation and histological damage, and non-significantly attenuated the increase in lung permeability. Preserved protein expression of zonula occludens-1 and less increase of pMLC and actin cytoskeletal rearrangement were observed in injured mice treated with sevoflurane. In vitro, sevoflurane markedly decreased electrical resistance and cytokine release of MLE-12 cells, which was associated with higher protein expression of zonula occludens-1. Improved oxygenation levels and attenuated increase in lung permeability and inflammatory response were observed in RAGE-/- mice compared to wild-type mice, but RAGE deletion did not influence the effects of sevoflurane on permeability indices after injury. However, the beneficial effect of sevoflurane previously observed in wild-type mice on day 1 after injury in terms of higher PaO2/FiO2 and decreased alveolar levels of cytokines was not found in RAGE-/- mice. In vitro, RAP alleviated some of the beneficial effects of sevoflurane on electrical resistance and cytoskeletal rearrangement, which was associated with decreased cytomix-induced RhoA activity. CONCLUSIONS Sevoflurane decreased injury and restored epithelial barrier function in two in vivo and in vitro models of sterile lung injury, which was associated with increased expression of junction proteins and decreased actin cytoskeletal rearrangement. In vitro findings suggest that sevoflurane may decrease lung epithelial permeability through the RhoA/pMLC/F-actin pathway.
Collapse
Affiliation(s)
- Ruoyang Zhai
- iGReD, UFR de Médecine et des Professions Paramédicales, Place Henri Dunant, CNRS, INSERM, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Woodys Lenga Ma Bonda
- iGReD, UFR de Médecine et des Professions Paramédicales, Place Henri Dunant, CNRS, INSERM, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Charlotte Leclaire
- iGReD, UFR de Médecine et des Professions Paramédicales, Place Henri Dunant, CNRS, INSERM, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Cécile Saint-Béat
- iGReD, UFR de Médecine et des Professions Paramédicales, Place Henri Dunant, CNRS, INSERM, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Camille Theilliere
- iGReD, UFR de Médecine et des Professions Paramédicales, Place Henri Dunant, CNRS, INSERM, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Corinne Belville
- iGReD, UFR de Médecine et des Professions Paramédicales, Place Henri Dunant, CNRS, INSERM, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Randy Coupet
- iGReD, UFR de Médecine et des Professions Paramédicales, Place Henri Dunant, CNRS, INSERM, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
- Department of Perioperative Medicine, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Raiko Blondonnet
- iGReD, UFR de Médecine et des Professions Paramédicales, Place Henri Dunant, CNRS, INSERM, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
- Department of Perioperative Medicine, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Damien Bouvier
- iGReD, UFR de Médecine et des Professions Paramédicales, Place Henri Dunant, CNRS, INSERM, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
- Department of Medical Biochemistry and Molecular Genetics, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Loic Blanchon
- iGReD, UFR de Médecine et des Professions Paramédicales, Place Henri Dunant, CNRS, INSERM, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Vincent Sapin
- iGReD, UFR de Médecine et des Professions Paramédicales, Place Henri Dunant, CNRS, INSERM, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
- Department of Medical Biochemistry and Molecular Genetics, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Matthieu Jabaudon
- iGReD, UFR de Médecine et des Professions Paramédicales, Place Henri Dunant, CNRS, INSERM, Université Clermont Auvergne, 63000, Clermont-Ferrand, France.
- Department of Perioperative Medicine, CHU Clermont-Ferrand, Clermont-Ferrand, France.
| |
Collapse
|
21
|
Cusack R, Bos LD, Povoa P, Martin-Loeches I. Endothelial dysfunction triggers acute respiratory distress syndrome in patients with sepsis: a narrative review. Front Med (Lausanne) 2023; 10:1203827. [PMID: 37332755 PMCID: PMC10272540 DOI: 10.3389/fmed.2023.1203827] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a severe organ failure occurring mainly in critically ill patients as a result of different types of insults such as sepsis, trauma or aspiration. Sepsis is the main cause of ARDS, and it contributes to a high mortality and resources consumption both in hospital setting and in the community. ARDS develops mainly an acute respiratory failure with severe and often refractory hypoxemia. ARDS also has long term implications and sequelae. Endothelial damage plays an important role in the pathogenesis of ARDS. Understanding the mechanisms of ARDS presents opportunities for novel diagnostic and therapeutic targets. Biochemical signals can be used in concert to identify and classify patients into ARDS phenotypes allowing earlier effective treatment with personalised therapies. This is a narrative review where we aimed to flesh out the pathogenetic mechanisms and heterogeneity of ARDS. We examine the links between endothelium damage and its contribution to organ failure. We have also investigated future strategies for treatment with a special emphasis in endothelial damage.
Collapse
Affiliation(s)
- Rachael Cusack
- Department of Intensive Care, St. James’s Hospital, Dublin, Ireland
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Lieuwe D. Bos
- Intensive Care, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Pedro Povoa
- NOVA Medical School, CHRC, New University of Lisbon, Lisbon, Portugal
- Center for Clinical Epidemiology and Research Unit of Clinical Epidemiology, OUH Odense University Hospital, Odense, Denmark
- Department of Intensive Care, Hospital de São Francisco Xavier, CHLO, Lisbon, Portugal
| | - Ignacio Martin-Loeches
- Department of Intensive Care, St. James’s Hospital, Dublin, Ireland
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
22
|
Miserocchi G. Early Endothelial Signaling Transduction in Developing Lung Edema. Life (Basel) 2023; 13:1240. [PMID: 37374024 DOI: 10.3390/life13061240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
The lung promptly responds to edemagenic conditions through functional adaptations that contrast the increase in microvascular filtration. This review presents evidence for early signaling transduction by endothelial lung cells in two experimental animal models of edema, hypoxia exposure, and fluid overload (hydraulic edema). The potential role of specialized sites of the plasma membranes considered mobile signaling platforms, referred to as membrane rafts, that include caveolae and lipid rafts, is presented. The hypothesis is put forward that early changes in the lipid composition of the bilayer of the plasma membrane might trigger the signal transduction process when facing changes in the pericellular microenvironment caused by edema. Evidence is provided that for an increase in the extravascular lung water volume not exceeding 10%, changes in the composition of the plasma membrane of endothelial cells are evoked in response to mechanical stimuli from the interstitial compartment as well as chemical stimuli relating with changes in the concentration of the disassembled portions of structural macromolecules. In hypoxia, thinning of endothelial cells, a decrease in caveolae and AQP-1, and an increase in lipid rafts are observed. The interpretation of this response is that it favors oxygen diffusion and hinder trans-cellular water fluxes. In hydraulic edema, which generates greater capillary water leakages, an increase in cell volume and opposite changes in membrane rafts were observed; further, the remarkable increase in caveolae suggests a potential abluminal-luminal vesicular-dependent fluid reabsorption.
Collapse
Affiliation(s)
- Giuseppe Miserocchi
- Department of Medicine and Surgery, Università di Milano Bicocca, 20900 Monza, Italy
| |
Collapse
|
23
|
Sadjadi M, Meersch-Dini M. [Individualized treatment in anesthesiology and intensive care medicine]. DIE ANAESTHESIOLOGIE 2023; 72:309-316. [PMID: 36877231 DOI: 10.1007/s00101-023-01271-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/08/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND Individualized medicine uses data on biological characteristics of individual patients in order to tailor treatment planning to their unique constitution. With respect to the practice of anesthesiology and intensive care medicine, it bears the potential to systematize the often complex medical care of critically ill patients and to improve outcomes. OBJECTIVE The aim of this narrative review is to provide an overview of the possible applications of the principles of individualized medicine in anesthesiology and intensive care medicine. MATERIAL AND METHODS Based on a search in MEDLINE, CENTRAL and Google Scholar, the results of previous studies and systematic reviews are narratively synthesized and the implications for the scientific and clinical practice are presented. RESULTS AND DISCUSSION There are possibilities for individualization and an increase in precision of patient care in most if not all problems in anesthesiology and symptoms in intensive medical care. Even now, all practicing physicians can initiate measures to individualize treatment at different timepoints throughout the course of treatment. Individualized medicine can supplement and be integrated into protocols. Plans for future applications of individualized medicine interventions should consider the feasibility in a real-world setting. Clinical studies should contain process evaluations in order to create ideal preconditions for a successful implementation. Quality management, audits and feedback should become a standard procedure to ensure sustainability. In the long run, individualization of care, especially in the critically ill, should be enshrined in guidelines and become an integral part of clinical practice.
Collapse
Affiliation(s)
- Mahan Sadjadi
- Klinik für Anästhesiologie, operative Intensivmedizin und Schmerztherapie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Geb. A1, 48149, Münster, Deutschland
| | - Melanie Meersch-Dini
- Klinik für Anästhesiologie, operative Intensivmedizin und Schmerztherapie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Geb. A1, 48149, Münster, Deutschland.
| |
Collapse
|
24
|
Juffermans NP. ICM experimental is growing, from bench via bedside to big data-and back! Intensive Care Med Exp 2023; 11:24. [PMID: 37040033 PMCID: PMC10090241 DOI: 10.1186/s40635-023-00507-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 04/12/2023] Open
Affiliation(s)
- Nicole P Juffermans
- Department of Intensive Care, OLVG Hospital, Amsterdam, The Netherlands.
- Laboratory of Translational Intensive Care, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
25
|
Kosutova P, Mikolka P, Mokra D, Calkovska A. Anti-inflammatory activity of non-selective PDE inhibitor aminophylline on the lung tissue and respiratory parameters in animal model of ARDS. J Inflamm (Lond) 2023; 20:10. [PMID: 36927675 PMCID: PMC10018984 DOI: 10.1186/s12950-023-00337-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a common complication of critical illness characterized by lung inflammation, epithelial and endothelial dysfunction, alveolar-capillary leakage, and worsening respiratory failure. The present study aimed to investigate the anti-inflammatory effects of non-selective phosphodiesterase (PDE) inhibitor aminophylline. New Zealand white rabbits were randomly divided into 3 groups: animals with respiratory failure defined as PaO2/FiO2 ratio (P/F) below < 26.7 kPa, and induced by saline lung lavage (ARDS), animals with ARDS treated with intravenous aminophylline (1 mg/kg; ARDS/AMINO), and healthy ventilated controls (Control). All animals were oxygen ventilated for an additional 4 h and respiratory parameters were recorded regularly. Post mortem, the lung tissue was evaluated for oedema formation, markers of inflammation (tumor necrosis factor, TNFα, interleukin (IL)-1β, -6, -8, -10, -13, -18), markers of epithelial damage (receptor for advanced glycation end products, RAGE) and endothelial injury (sphingosine 1-phosphate, S1P), oxidative damage (thiobarbituric acid reactive substances, TBARS, 3-nitrotyrosine, 3NT, total antioxidant capacity, TAC). Aminophylline therapy decreased the levels of pro-inflammatory cytokines, markers of epithelial and endothelial injury, oxidative modifications in lung tissue, reduced lung oedema, and improved lung function parameters compared to untreated ARDS animals. In conclusion, non-selective PDE inhibitor aminophylline showed a significant anti-inflammatory activity suggesting a potential of this drug to be a valuable component of ARDS therapy.
Collapse
Affiliation(s)
- Petra Kosutova
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4C, SK-03601, Martin, Slovakia. .,Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4C, SK-03601, Martin, Slovakia.
| | - Pavol Mikolka
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4C, SK-03601, Martin, Slovakia.,Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4C, SK-03601, Martin, Slovakia
| | - Daniela Mokra
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4C, SK-03601, Martin, Slovakia
| | - Andrea Calkovska
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4C, SK-03601, Martin, Slovakia
| |
Collapse
|
26
|
Rizzo AN, Aggarwal NR, Thompson BT, Schmidt EP. Advancing Precision Medicine for the Diagnosis and Treatment of Acute Respiratory Distress Syndrome. J Clin Med 2023; 12:1563. [PMID: 36836098 PMCID: PMC9966442 DOI: 10.3390/jcm12041563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a common and life-threatening cause of respiratory failure. Despite decades of research, there are no effective pharmacologic therapies to treat this disease process and mortality remains high. The shortcomings of prior translational research efforts have been increasingly attributed to the heterogeneity of this complex syndrome, which has led to an increased focus on elucidating the mechanisms underlying the interpersonal heterogeneity of ARDS. This shift in focus aims to move the field towards personalized medicine by defining subgroups of ARDS patients with distinct biology, termed endotypes, to quickly identify patients that are most likely to benefit from mechanism targeted treatments. In this review, we first provide a historical perspective and review the key clinical trials that have advanced ARDS treatment. We then review the key challenges that exist with regards to the identification of treatable traits and the implementation of personalized medicine approaches in ARDS. Lastly, we discuss potential strategies and recommendations for future research that we believe will aid in both understanding the molecular pathogenesis of ARDS and the development of personalized treatment approaches.
Collapse
Affiliation(s)
- Alicia N. Rizzo
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02144, USA
| | - Neil R. Aggarwal
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - B. Taylor Thompson
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02144, USA
| | - Eric P. Schmidt
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02144, USA
| |
Collapse
|
27
|
Vélez-Páez JL, Pelosi P, Battaglini D, Best I. Biological Markers to Predict Outcome in Mechanically Ventilated Patients with Severe COVID-19 Living at High Altitude. J Clin Med 2023; 12:jcm12020644. [PMID: 36675573 PMCID: PMC9860769 DOI: 10.3390/jcm12020644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/24/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND There is not much evidence on the prognostic utility of different biological markers in patients with severe COVID-19 living at high altitude. The objective of this study was to determine the predictive value of inflammatory and hematological markers for the risk of mortality at 28 days in patients with severe COVID-19 under invasive mechanical ventilation, living at high altitude and in a low-resource setting. METHODS We performed a retrospective observational study including patients with severe COVID-19, under mechanical ventilation and admitted to the intensive care unit (ICU) located at 2850 m above sea level, between 1 April 2020 and 1 August 2021. Inflammatory (interleukin-6 (IL-6), ferritin, D-dimer, lactate dehydrogenase (LDH)) and hematologic (mean platelet volume (MPV), neutrophil/lymphocyte ratio (NLR), MPV/platelet ratio) markers were evaluated at 24 h and in subsequent controls, and when available at 48 h and 72 h after admission to the ICU. The primary outcome was the association of inflammatory and hematological markers with the risk of mortality at 28 days. RESULTS We analyzed 223 patients (median age (1st quartile [Q1]-3rd quartile [Q3]) 51 (26-75) years and 70.4% male). Patients with severe COVID-19 and with IL-6 values at 24 h ≥ 11, NLR values at 24 h ≥ 22, and NLR values at 72 h ≥ 14 were 8.3, 3.8, and 3.8 times more likely to die at 28 days, respectively. The SOFA and APACHE-II scores were not able to independently predict mortality. CONCLUSIONS In mechanically ventilated patients with severe COVID-19 and living at high altitude, low-cost and immediately available blood markers such as IL-6 and NLR may predict the severity of the disease in low-resource settings.
Collapse
Affiliation(s)
- Jorge Luis Vélez-Páez
- Facultad de Ciencias Médicas, Universidad Central de Ecuador, Quito 170129, Ecuador
- Laboratorio de Inmunología, Facultad de Ciencias y Filosofía, Departamento de Ciencias Celulares y Moleculares, Universidad Peruana Cayetano Heredia, Lima 15074, Peru
- Unidad de Terapia Intensiva, Hospital Pablo Arturo Suárez, Centro de Investigación Clínica, Quito 170129, Ecuador
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, 16132 Genoa, Italy
- Anesthesiology and Critical Care, San Martino Policlinico Hospital, 16132 Genoa, Italy
| | - Denise Battaglini
- Anesthesiology and Critical Care, San Martino Policlinico Hospital, 16132 Genoa, Italy
- Correspondence:
| | - Ivan Best
- Carrera de Medicina Humana, Facultad de Ciencias de la Salud, Universidad San Ignacio de Loyola, Lima 15024, Peru
| |
Collapse
|
28
|
Barnett CR, Segal LN. Untangling Lower Airway Dysbiosis in Critically Ill Patients with COVID-19. Am J Respir Crit Care Med 2022; 206:806-808. [PMID: 35696343 PMCID: PMC9799272 DOI: 10.1164/rccm.202206-1074ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Clea R Barnett
- Division of Pulmonary and Critical Care Medicine New York University Grossman School of Medicine New York, New York
| | - Leopoldo N Segal
- Division of Pulmonary and Critical Care Medicine New York University Grossman School of Medicine New York, New York
| |
Collapse
|
29
|
Gorman EA, O'Kane CM, McAuley DF. Acute respiratory distress syndrome in adults: diagnosis, outcomes, long-term sequelae, and management. Lancet 2022; 400:1157-1170. [PMID: 36070788 DOI: 10.1016/s0140-6736(22)01439-8] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 12/16/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is characterised by acute hypoxaemic respiratory failure with bilateral infiltrates on chest imaging, which is not fully explained by cardiac failure or fluid overload. ARDS is defined by the Berlin criteria. In this Series paper the diagnosis, management, outcomes, and long-term sequelae of ARDS are reviewed. Potential limitations of the ARDS definition and evidence that could inform future revisions are considered. Guideline recommendations, evidence, and uncertainties in relation to ARDS management are discussed. The future of ARDS strives towards a precision medicine approach, and the framework of treatable traits in ARDS diagnosis and management is explored.
Collapse
Affiliation(s)
- Ellen A Gorman
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Cecilia M O'Kane
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Daniel F McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
30
|
Receptor for Advanced Glycation End-Products Promotes Activation of Alveolar Macrophages through the NLRP3 Inflammasome/TXNIP Axis in Acute Lung Injury. Int J Mol Sci 2022; 23:ijms231911659. [PMID: 36232959 PMCID: PMC9569658 DOI: 10.3390/ijms231911659] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
The roles of thioredoxin-interacting protein (TXNIP) and receptor for advanced glycation end-products (RAGE)-dependent mechanisms of NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome-driven macrophage activation during acute lung injury are underinvestigated. Cultured THP-1 macrophages were treated with a RAGE agonist (S100A12), with or without a RAGE antagonist; cytokine release and intracytoplasmic production of reactive oxygen species (ROS) were assessed in response to small interfering RNA knockdowns of TXNIP and NLRP3. Lung expressions of TXNIP and NLRP3 and alveolar levels of IL-1β and S100A12 were measured in mice after acid-induced lung injury, with or without administration of RAGE inhibitors. Alveolar macrophages from patients with acute respiratory distress syndrome and from mechanically ventilated controls were analyzed using fluorescence-activated cell sorting. In vitro, RAGE promoted cytokine release and ROS production in macrophages and upregulated NLRP3 and TXNIP mRNA expression in response to S100A12. TXNIP inhibition downregulated NLRP3 gene expression and RAGE-mediated release of IL-1β by macrophages in vitro. In vivo, RAGE, NLRP3 and TXNIP lung expressions were upregulated during experimental acute lung injury, a phenomenon being reversed by RAGE inhibition. The numbers of cells expressing RAGE, NLRP3 and TXNIP among a specific subpopulation of CD16+CD14+CD206- (“pro-inflammatory”) alveolar macrophages were higher in patients with lung injury. This study provides a novel proof-of-concept of complex RAGE–TXNIP–NLRP3 interactions during macrophage activation in acute lung injury.
Collapse
|
31
|
Bos LDJ, Ware LB. Acute respiratory distress syndrome: causes, pathophysiology, and phenotypes. Lancet 2022; 400:1145-1156. [PMID: 36070787 DOI: 10.1016/s0140-6736(22)01485-4] [Citation(s) in RCA: 230] [Impact Index Per Article: 76.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/14/2022] [Accepted: 07/27/2022] [Indexed: 12/15/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a common clinical syndrome of acute respiratory failure as a result of diffuse lung inflammation and oedema. ARDS can be precipitated by a variety of causes. The pathophysiology of ARDS is complex and involves the activation and dysregulation of multiple overlapping and interacting pathways of injury, inflammation, and coagulation, both in the lung and systemically. Mechanical ventilation can contribute to a cycle of lung injury and inflammation. Resolution of inflammation is a coordinated process that requires downregulation of proinflammatory pathways and upregulation of anti-inflammatory pathways. The heterogeneity of the clinical syndrome, along with its biology, physiology, and radiology, has increasingly been recognised and incorporated into identification of phenotypes. A precision-medicine approach that improves the identification of more homogeneous ARDS phenotypes should lead to an improved understanding of its pathophysiological mechanisms and how they differ from patient to patient.
Collapse
Affiliation(s)
- Lieuwe D J Bos
- Intensive Care, Amsterdam UMC-location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Lorraine B Ware
- Vanderbilt University School of Medicine, Medical Center North, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
32
|
Wildi K, Bouquet M, Ainola C, Livingstone S, Colombo SM, Heinsar S, Sato N, Sato K, Wilson E, Abbate G, Passmore MR, Hyslop K, Liu K, Li Bassi G, Suen JY, Fraser JF. Differential Protein Expression among Two Different Ovine ARDS Phenotypes-A Preclinical Randomized Study. Metabolites 2022; 12:metabo12070655. [PMID: 35888779 PMCID: PMC9319228 DOI: 10.3390/metabo12070655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 01/25/2023] Open
Abstract
Despite decades of comprehensive research, Acute Respiratory Distress Syndrome (ARDS) remains a disease with high mortality and morbidity worldwide. The discovery of inflammatory subphenotypes in human ARDS provides a new approach to study the disease. In two different ovine ARDS lung injury models, one induced by additional endotoxin infusion (phenotype 2), mimicking some key features as described in the human hyperinflammatory group, we aim to describe protein expression among the two different ovine models. Nine animals on mechanical ventilation were included in this study and were randomized into (a) phenotype 1, n = 5 (Ph1) and (b) phenotype 2, n = 4 (Ph2). Plasma was collected at baseline, 2, 6, 12, and 24 h. After protein extraction, data-independent SWATH-MS was applied to inspect protein abundance at baseline, 2, 6, 12, and 24 h. Cluster analysis revealed protein patterns emerging over the study observation time, more pronounced by the factor of time than different injury models of ARDS. A protein signature consisting of 33 proteins differentiated among Ph1/2 with high diagnostic accuracy. Applying network analysis, proteins involved in the inflammatory and defense response, complement and coagulation cascade, oxygen binding, and regulation of lipid metabolism were activated over time. Five proteins, namely LUM, CA2, KNG1, AGT, and IGJ, were more expressed in Ph2.
Collapse
Affiliation(s)
- Karin Wildi
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Australia; (M.B.); (C.A.); (S.L.); (S.M.C.); (S.H.); (N.S.); (K.S.); (E.W.); (G.A.); (M.R.P.); (K.H.); (K.L.); (G.L.B.); (J.Y.S.); (J.F.F.)
- Medical Faculty, The University of Queensland, St. Lucia, Brisbane 4067, Australia
- Department of Cardiology, Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
- Correspondence:
| | - Mahe Bouquet
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Australia; (M.B.); (C.A.); (S.L.); (S.M.C.); (S.H.); (N.S.); (K.S.); (E.W.); (G.A.); (M.R.P.); (K.H.); (K.L.); (G.L.B.); (J.Y.S.); (J.F.F.)
- Medical Faculty, The University of Queensland, St. Lucia, Brisbane 4067, Australia
| | - Carmen Ainola
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Australia; (M.B.); (C.A.); (S.L.); (S.M.C.); (S.H.); (N.S.); (K.S.); (E.W.); (G.A.); (M.R.P.); (K.H.); (K.L.); (G.L.B.); (J.Y.S.); (J.F.F.)
- Medical Faculty, The University of Queensland, St. Lucia, Brisbane 4067, Australia
| | - Samantha Livingstone
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Australia; (M.B.); (C.A.); (S.L.); (S.M.C.); (S.H.); (N.S.); (K.S.); (E.W.); (G.A.); (M.R.P.); (K.H.); (K.L.); (G.L.B.); (J.Y.S.); (J.F.F.)
- Medical Faculty, The University of Queensland, St. Lucia, Brisbane 4067, Australia
| | - Sebastiano Maria Colombo
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Australia; (M.B.); (C.A.); (S.L.); (S.M.C.); (S.H.); (N.S.); (K.S.); (E.W.); (G.A.); (M.R.P.); (K.H.); (K.L.); (G.L.B.); (J.Y.S.); (J.F.F.)
- Department of Anaesthesia and Intensive Care Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Silver Heinsar
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Australia; (M.B.); (C.A.); (S.L.); (S.M.C.); (S.H.); (N.S.); (K.S.); (E.W.); (G.A.); (M.R.P.); (K.H.); (K.L.); (G.L.B.); (J.Y.S.); (J.F.F.)
- Medical Faculty, The University of Queensland, St. Lucia, Brisbane 4067, Australia
| | - Noriko Sato
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Australia; (M.B.); (C.A.); (S.L.); (S.M.C.); (S.H.); (N.S.); (K.S.); (E.W.); (G.A.); (M.R.P.); (K.H.); (K.L.); (G.L.B.); (J.Y.S.); (J.F.F.)
| | - Kei Sato
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Australia; (M.B.); (C.A.); (S.L.); (S.M.C.); (S.H.); (N.S.); (K.S.); (E.W.); (G.A.); (M.R.P.); (K.H.); (K.L.); (G.L.B.); (J.Y.S.); (J.F.F.)
- Medical Faculty, The University of Queensland, St. Lucia, Brisbane 4067, Australia
| | - Emily Wilson
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Australia; (M.B.); (C.A.); (S.L.); (S.M.C.); (S.H.); (N.S.); (K.S.); (E.W.); (G.A.); (M.R.P.); (K.H.); (K.L.); (G.L.B.); (J.Y.S.); (J.F.F.)
- Medical Faculty, The University of Queensland, St. Lucia, Brisbane 4067, Australia
| | - Gabriella Abbate
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Australia; (M.B.); (C.A.); (S.L.); (S.M.C.); (S.H.); (N.S.); (K.S.); (E.W.); (G.A.); (M.R.P.); (K.H.); (K.L.); (G.L.B.); (J.Y.S.); (J.F.F.)
- Medical Faculty, The University of Queensland, St. Lucia, Brisbane 4067, Australia
| | - Margaret R. Passmore
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Australia; (M.B.); (C.A.); (S.L.); (S.M.C.); (S.H.); (N.S.); (K.S.); (E.W.); (G.A.); (M.R.P.); (K.H.); (K.L.); (G.L.B.); (J.Y.S.); (J.F.F.)
- Medical Faculty, The University of Queensland, St. Lucia, Brisbane 4067, Australia
| | - Kieran Hyslop
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Australia; (M.B.); (C.A.); (S.L.); (S.M.C.); (S.H.); (N.S.); (K.S.); (E.W.); (G.A.); (M.R.P.); (K.H.); (K.L.); (G.L.B.); (J.Y.S.); (J.F.F.)
- Medical Faculty, The University of Queensland, St. Lucia, Brisbane 4067, Australia
| | - Keibun Liu
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Australia; (M.B.); (C.A.); (S.L.); (S.M.C.); (S.H.); (N.S.); (K.S.); (E.W.); (G.A.); (M.R.P.); (K.H.); (K.L.); (G.L.B.); (J.Y.S.); (J.F.F.)
| | - Gianluigi Li Bassi
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Australia; (M.B.); (C.A.); (S.L.); (S.M.C.); (S.H.); (N.S.); (K.S.); (E.W.); (G.A.); (M.R.P.); (K.H.); (K.L.); (G.L.B.); (J.Y.S.); (J.F.F.)
- Medical Faculty, The University of Queensland, St. Lucia, Brisbane 4067, Australia
- Medical Faculty, Queensland University of Technology, Brisbane 4059, Australia
- Uniting Care Hospitals, St Andrews War Memorial and The Wesley Intensive Care Units, Brisbane 4001, Australia
| | - Jacky Y. Suen
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Australia; (M.B.); (C.A.); (S.L.); (S.M.C.); (S.H.); (N.S.); (K.S.); (E.W.); (G.A.); (M.R.P.); (K.H.); (K.L.); (G.L.B.); (J.Y.S.); (J.F.F.)
- Medical Faculty, The University of Queensland, St. Lucia, Brisbane 4067, Australia
| | - John F. Fraser
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Australia; (M.B.); (C.A.); (S.L.); (S.M.C.); (S.H.); (N.S.); (K.S.); (E.W.); (G.A.); (M.R.P.); (K.H.); (K.L.); (G.L.B.); (J.Y.S.); (J.F.F.)
- Medical Faculty, The University of Queensland, St. Lucia, Brisbane 4067, Australia
- Uniting Care Hospitals, St Andrews War Memorial and The Wesley Intensive Care Units, Brisbane 4001, Australia
| |
Collapse
|
33
|
Abstract
Endothelial barrier dysfunction is associated with sepsis and lung injury, both direct and indirect. We discuss the involvement of unfolded protein response in the protective effects of heat shock protein 90 inhibitors and growth hormone releasing hormone antagonists in the vascular barrier, to reveal new possibilities in acute respiratory distress syndrome treatment.
Collapse
Affiliation(s)
- Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| |
Collapse
|