1
|
Shagufta, Ali G, Khan A, Rasheed A, Deeba F, Ullah R, Shahid M, Ali H, Khan R, Shamezai N, Sharif N. Evaluation of the Ameliorative Potential of 3,5- bis(2-hydroxyethyl)-1,3,5-thiadiazinane-2-thione against Scopolamine-Induced Alzheimer's Disease. Int J Mol Sci 2024; 25:9104. [PMID: 39201791 PMCID: PMC11354520 DOI: 10.3390/ijms25169104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 09/03/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, marked by cognitive impairment. Currently, the available treatment provides only symptomatic relief and there is a great need to design and formulate new drugs to stabilize AD. In the search for a new anti-Alzheimer's drug, 3,5-bis(2-hydroxyethyl)-1,3,5-thiadiazinane-2-thione (THTT), a tetrahydro-2H-1,3,5-thiadiazine-2-thione derivative, was investigated against a scopolamine-induced Alzheimer's model. The selected test compound was administered intraperitoneally in three doses (15 mg/kg, 30 mg/kg, and 45 mg/kg). The test compound exhibited an IC50 value of 69.41 µg/mL, indicating its ability to inhibit the acetylcholinesterase enzyme. An antioxidant DPPH assay revealed that the IC50 value of the test compound was 97.75 µg/mL, which shows that the test compound possesses antioxidant activity. The results of behavior tests including the Y-maze and elevated plus maze (EPM) show that the test compound improved short-term memory and spatial memory, respectively. Furthermore, in the Morris water maze (MWM) and light/dark model, the test compound shows improvements in learning and memory. Moreover, the results of histological studies show that the test compound can protect the brain against the harmful effects of scopolamine. Overall, the findings of our investigation suggest that our chosen test compound has disease-modifying and neuroprotective activities against the scopolamine-induced Alzheimer's model. The test compound may be beneficial, subject to further elaborate investigation for anti-amyloid disease-modifying properties in AD.
Collapse
Affiliation(s)
- Shagufta
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan; (S.); (A.R.); (F.D.); (N.S.)
| | - Gowhar Ali
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan; (S.); (A.R.); (F.D.); (N.S.)
| | - Adnan Khan
- DHQ Teaching Hospital Timergara, Lower Dir, Khyber Pakhtunkhwa (KPK), Timergara 18300, Pakistan
| | - Abdur Rasheed
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan; (S.); (A.R.); (F.D.); (N.S.)
| | - Farah Deeba
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan; (S.); (A.R.); (F.D.); (N.S.)
| | - Rahim Ullah
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar 25000, Pakistan;
| | - Muhammad Shahid
- Department of Pharmacy, CECOS University of IT and Emerging Sciences, Peshawar 25000, Pakistan;
| | - Haleema Ali
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan; (H.A.); (R.K.)
| | - Rasool Khan
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan; (H.A.); (R.K.)
| | - Najeebullah Shamezai
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan; (S.); (A.R.); (F.D.); (N.S.)
| | - Naveed Sharif
- Institute of Pathology and Diagnostic Medicine, Khyber Medical University Peshawar, Khyber Pakhtunkhwa (KPK), Peshawar 25100, Pakistan;
| |
Collapse
|
2
|
Sutthibutpong T, Posansee K, Liangruksa M, Termsaithong T, Piyayotai S, Phitsuwan P, Saparpakorn P, Hannongbua S, Laomettachit T. Combining Deep Learning and Structural Modeling to Identify Potential Acetylcholinesterase Inhibitors from Hericium erinaceus. ACS OMEGA 2024; 9:16311-16321. [PMID: 38617639 PMCID: PMC11007777 DOI: 10.1021/acsomega.3c10459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/16/2024] [Accepted: 03/13/2024] [Indexed: 04/16/2024]
Abstract
Alzheimer's disease (AD) is the most common type of dementia, affecting over 50 million people worldwide. Currently, most approved medications for AD inhibit the activity of acetylcholinesterase (AChE), but these treatments often come with harmful side effects. There is growing interest in the use of natural compounds for disease prevention, alleviation, and treatment. This trend is driven by the anticipation that these substances may incur fewer side effects than existing medications. This research presents a computational approach combining machine learning with structural modeling to discover compounds from medicinal mushrooms with a high potential to inhibit the activity of AChE. First, we developed a deep neural network capable of rapidly screening a vast number of compounds to indicate their potential to inhibit AChE activity. Subsequently, we applied deep learning models to screen the compounds in the BACMUSHBASE database, which catalogs the bioactive compounds from cultivated and wild mushroom varieties local to Thailand, resulting in the identification of five promising compounds. Next, the five identified compounds underwent molecular docking techniques to calculate the binding energy between the compounds and AChE. This allowed us to refine the selection to two compounds, erinacerin A and hericenone B. Further analysis of the binding energy patterns between these compounds and the target protein revealed that both compounds displayed binding energy profiles similar to the combined characteristics of donepezil and galanthamine, the prescription drugs for AD. We propose that these two compounds, derived from Hericium erinaceus (also known as lion's mane mushroom), are suitable candidates for further research and development into symptom-alleviating AD medications.
Collapse
Affiliation(s)
- Thana Sutthibutpong
- Center
of Excellence in Theoretical and Computational Science (TaCS-CoE),
Faculty of Science, King Mongkut’s
University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand
- Theoretical
and Computational Physics Group, Department of Physics, King Mongkut’s University of Technology Thonburi
(KMUTT), Bangkok 10140, Thailand
| | - Kewalin Posansee
- Theoretical
and Computational Physics Group, Department of Physics, King Mongkut’s University of Technology Thonburi
(KMUTT), Bangkok 10140, Thailand
| | - Monrudee Liangruksa
- National
Nanotechnology Center (NANOTEC), National
Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Teerasit Termsaithong
- Center
of Excellence in Theoretical and Computational Science (TaCS-CoE),
Faculty of Science, King Mongkut’s
University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand
- Theoretical
and Computational Physics Group, Department of Physics, King Mongkut’s University of Technology Thonburi
(KMUTT), Bangkok 10140, Thailand
- Learning
Institute, King Mongkut’s University
of Technology Thonburi (KMUTT), Bangkok 10140, Thailand
| | - Supanida Piyayotai
- Learning
Institute, King Mongkut’s University
of Technology Thonburi (KMUTT), Bangkok 10140, Thailand
| | - Paripok Phitsuwan
- Division
of Biochemical Technology, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
| | | | - Supa Hannongbua
- Department
of Chemistry, Faculty of Science, Kasetsart
University, Bangkok 10900, Thailand
| | - Teeraphan Laomettachit
- Center
of Excellence in Theoretical and Computational Science (TaCS-CoE),
Faculty of Science, King Mongkut’s
University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand
- Theoretical
and Computational Physics Group, Department of Physics, King Mongkut’s University of Technology Thonburi
(KMUTT), Bangkok 10140, Thailand
- Bioinformatics
and Systems Biology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
| |
Collapse
|
3
|
Sher A, Khalil AT, Dogan N, Ayaz M, Ahmad K. Valorization and Repurposing of Citrus limetta Fruit Waste for Fabrication of Multifunctional AgNPs and Their Diverse Nanomedicinal Applications. Appl Biochem Biotechnol 2024; 196:2067-2085. [PMID: 37466887 DOI: 10.1007/s12010-023-04646-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2023] [Indexed: 07/20/2023]
Abstract
Herein we propose an ecofriendly process for the biofabrication of AgNPs by applying fruit waste of Citrus limetta. The aqueous extracts from the peels of the fruit were used as green chelating and stabilizing agents. Structural, optical, vibrational, morphological, and magnetic properties were established using UV-Vis (ultraviolet visible spectroscopy), XRD (X-rays diffraction), FTIR (Fourier transformed infrared spectroscopy), EDS (energy dispersive spectroscopy), SEM (scanning electron microscopy), ESR (electron spin resonance), and PPMS (physical property management system), while the thermal properties were established using TGA/DTG (thermal gravimetric analysis/derivative thermogravimetry). XRD pattern revealed intense peaks with single-phase purity, while the Debye-Scherrer approximation revealed an average crystallite size of 33.18 nm. The W-H plot revealed the size of 55.2 nm and strain 2.68 × 10-4. FTIR spectra revealed the involvement of different functional groups and major IR vibrations were observed at 2329 cm-1, 2092 cm-1, 1794 cm-1, 1268 cm-1, and 754 cm-1. TGA/DTG revealed major weight loss events at 240 °C and 360 °C. SEM revealed spherical or quasi-spherical morphology, while EDS confirmed the presence of elemental silver. The M-H behavior for all measurement temperature shows diamagnetic behavior. Electron spin resonance (ESR) revealed a high proportion of free electrons. Furthermore, the pharmacognostic and nanomedicinal potential CL-AgNPs was established using multiple in vitro and in vivo bioassays. The in vivo wound healing assays in mice revealed excellent healing potential which were similar to positive control. The percent wound healing is reported to be 93% on the 14th day of incision after application of CL-AgNPs. Bioassays were performed to assess enzyme inhibition potential of the CL-AgNPs for Alzheimer disease and antidiabetic applications. The AChE and BChE potential of the CL-AgNPs was highest at 1000 µg mL-1, i.e., 92% and 56%, respectively. The α-glucosidase inhibition potential for the CL-AgNPs was higher as compared to the α-glucosidase, while the DPPH free radical scavenging was reported to be 70% to 11% at varying concentrations between 1000 and 62.5 µg mL-1. Overall, our results indicate that the waste fruit peels can be a sustainable and eco-friendly resource of synthesis of the multifunctional nanoparticles.
Collapse
Affiliation(s)
- Ali Sher
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, KP, Pakistan
| | - Ali Talha Khalil
- Department of Pathology, Lady Reading Hospital Medical Teaching Institution, Peshawar, KP, Pakistan.
| | - Nurcan Dogan
- Department of Physics, Gebze Technical University, Gebze, Turkey
- Department of Electronics and communication Engineering Department, Istanbul Technical University, Istanbul, Turkey
| | - Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Chakdara, KP, Pakistan
| | - Kafeel Ahmad
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, KP, Pakistan
| |
Collapse
|
4
|
Ayaz M, Mosa OF, Nawaz A, Hamdoon AAE, Elkhalifa MEM, Sadiq A, Ullah F, Ahmed A, Kabra A, Khan H, Murthy HCA. Neuroprotective potentials of Lead phytochemicals against Alzheimer's disease with focus on oxidative stress-mediated signaling pathways: Pharmacokinetic challenges, target specificity, clinical trials and future perspectives. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 124:155272. [PMID: 38181530 DOI: 10.1016/j.phymed.2023.155272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 11/05/2023] [Accepted: 12/10/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Alzheimer's diseases (AD) and dementia are among the highly prevalent neurological disorders characterized by deposition of beta amyloid (Aβ) plaques, dense deposits of highly phosphorylated tau proteins, insufficiency of acetylcholine (ACh) and imbalance in glutamatergic system. Patients typically experience cognitive, behavioral alterations and are unable to perform their routine activities. Evidence also suggests that inflammatory processes including excessive microglia activation, high expression of inflammatory cytokines and release of free radicals. Thus, targeting inflammatory pathways beside other targets might be the key factors to control- disease symptoms and progression. PURPOSE This review is aimed to highlight the mechanisms and pathways involved in the neuroprotective potentials of lead phytochemicals. Further to provide updates regarding challenges associated with their use and their progress into clinical trials as potential lead compounds. METHODS Most recent scientific literature on pre-clinical and clinical data published in quality journals especially on the lead phytochemicals including curcumin, catechins, quercetin, resveratrol, genistein and apigenin was collected using SciFinder, PubMed, Google Scholar, Web of Science, JSTOR, EBSCO, Scopus and other related web sources. RESULTS Literature review indicated that the drug discovery against AD is insufficient and only few drugs are clinically approved which have limited efficacy. Among the therapeutic options, natural products have got tremendous attraction owing to their molecular diversity, their safety and efficacy. Research suggest that natural products can delay the disease onset, reduce its progression and regenerate the damage via their anti-amyloid, anti-inflammatory and antioxidant potentials. These agents regulate the pathways involved in the release of neurotrophins which are implicated in neuronal survival and function. Highly potential lead phytochemicals including curcumin, catechins, quercetin, resveratrol, genistein and apigenin regulate neuroprotective signaling pathways implicated in neurotrophins-mediated activation of tropomyosin receptor kinase (Trk) and p75 neurotrophins receptor (p75NTR) family receptors. CONCLUSIONS Phytochemicals especially phenolic compounds were identified as highly potential molecules which ameliorate oxidative stress induced neurodegeneration, reduce Aβ load and inhibit vital enzymes. Yet their clinical efficacy and bioavailability are the major challenges which need further interventions for more effective therapeutic outcomes.
Collapse
Affiliation(s)
- Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000 Dir (L), KP, Pakistan.
| | - Osama F Mosa
- Public health Department, Health Sciences College at Lieth, Umm Al Qura University, Makkah, KSA
| | - Asif Nawaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000 Dir (L), KP, Pakistan
| | - Alashary Adam Eisa Hamdoon
- Public health Department, Health Sciences College at Lieth, Umm Al Qura University, Makkah, KSA; University of Khartoum, Faculty of Public and Environmental Health, Sudan
| | - Modawy Elnour Modawy Elkhalifa
- Public health Department, Health Sciences College at Lieth, Umm Al Qura University, Makkah, KSA; University of Khartoum, Faculty of Public and Environmental Health, Sudan
| | - Abdul Sadiq
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000 Dir (L), KP, Pakistan
| | - Farhat Ullah
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000 Dir (L), KP, Pakistan
| | - Alshebli Ahmed
- Public health Department, Health Sciences College at Lieth, Umm Al Qura University, Makkah, KSA; University of Khartoum, Faculty of Public and Environmental Health, Sudan
| | - Atul Kabra
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Pakistan
| | - H C Ananda Murthy
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, P O Box 1888, Adama, Ethiopia; Department of Prosthodontics, Saveetha Dental College & Hospital, Saveetha Institute of Medical and technical science (SIMATS), Saveetha University, Chennai-600077, Tamil Nadu, India
| |
Collapse
|
5
|
Tavan M, Hanachi P, de la Luz Cádiz-Gurrea M, Segura Carretero A, Mirjalili MH. Natural Phenolic Compounds with Neuroprotective Effects. Neurochem Res 2024; 49:306-326. [PMID: 37940760 DOI: 10.1007/s11064-023-04046-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/09/2023] [Accepted: 10/14/2023] [Indexed: 11/10/2023]
Abstract
Neurodegenerative disorders are characterized by mitochondrial dysfunction and subsequently oxidative stress, inflammation, and apoptosis that contribute to neuronal cytotoxicity and degeneration. Huntington's (HD), Alzheimer's (AD), and Parkinson's (PD) diseases are three of the major neurodegenerative diseases. To date, researchers have found various natural phytochemicals that could potentially be used to treat neurodegenerative diseases. Particularly, the application of natural phenolic compounds has gained significant traction in recent years, driven by their various biological activities and therapeutic efficacy in human health. Polyphenols, by modulating different cellular functions, play an important role in neuroprotection and can neutralize the effects of oxidative stress, inflammation, and apoptosis in animal models. This review focuses on the current state of knowledge on phenolic compounds, including phenolic acids, flavonoids, stilbenes, and coumarins, as well as their beneficial effects on human health. We further provide an overview of the therapeutic potential and mechanisms of action of natural dietary phenolics in curing neurodegenerative diseases in animal models.
Collapse
Affiliation(s)
- Mansoureh Tavan
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran.
- Department of Biotechnology, Faculty of Biological Science, Alzahra University, Tehran, Iran.
| | - Parichehr Hanachi
- Department of Biotechnology, Faculty of Biological Science, Alzahra University, Tehran, Iran
| | | | | | - Mohammad Hossein Mirjalili
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran
| |
Collapse
|
6
|
Ahmed HS, Mohamed EIA, Amin E, Moawad AS, Sadek Abdel-Bakky M, Almahmoud SA, Afifi N. Phytochemical investigation and anti-inflammatory potential of Atriplex leucoclada Boiss. BMC Complement Med Ther 2023; 23:464. [PMID: 38104070 PMCID: PMC10725009 DOI: 10.1186/s12906-023-04281-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND The plant kingdom has long been considered a valuable source for therapeutic agents, however, some plant species still untapped and need to be phytochemically and biologically explored. Although several Atriplex species have been investigated in depth, A. leucoclada, a halophytic plant native to Saudi Arabian desert, remains to be explored for its phytochemical content and biological potentials. Herein, the current study investigated the metabolic content and the anti-inflammatory potential of A. leucoclada. METHODS Powdered aerial parts of the plant were defatted with n-hexane then the defatted powder was extracted with 80% methanol. n-Hexane extract (ATH) was analyzed using GC-MS, while the defatted extract (ATD) was subjected to different chromatographic methods to isolate the major phytoconstituents. The structures of the purified compounds were elucidated using different spectroscopic methods including advanced NMR techniques. Anti-inflammatory activity of both extracts against COX-1 and COX-2 enzymes were examined in vitro. Molecular docking of the identified compounds into the active sites of COX-1 and COX-2 enzymes was conducted using pdb entries 6Y3C and 5IKV, respectively. RESULTS Phytochemical investigation of ATD extract led to purification and identification of nine compounds. Interestingly, all the compounds, except for 20-hydroxy ecdysone (1), are reported for the first time from A. leucoclada, also luteolin (6) and pallidol (8) are isolated for the first time from genus Atriplex. Inhibitory activity of ATD and ATH extracts against COX-1 and COX-2 enzymes revealed concentration dependent activity of both fractions with IC50 41.22, 14.40 μg/ml for ATD and 16.74 and 5.96 μg/ml for ATH against COX-1 and COX-2, respectively. Both extracts displayed selectivity indices of 2.86 and 2.80, respectively as compared to 2.56 for Ibuprofen indicating a promising selectivity towards COX-2. Molecular docking study supported in vitro testing results, where purified metabolites showed binding affinity scores ranged from -9 to -6.4 and -8.5 to -6.6 kcal/mol for COX-1 and 2, respectively, in addition the binding energies of GC-MS detected compounds ranged from -8.9 to -5.5 and -8.3 to -5.1 kcal/mol for COX-1 and 2, respectively as compared to Ibuprofen (-6.9 and -7.5 kcal/mol, respectively), indicating high binding affinities of most of the compounds. Analysis of the binding orientations revealed variable binding patterns depending on the nature of the compounds. Our study suggested A. leucoclada as a generous source for anti-inflammatory agents.
Collapse
Affiliation(s)
- Hayam S Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| | - Enas I A Mohamed
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Elham Amin
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Abeer S Moawad
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Mohamed Sadek Abdel-Bakky
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, 51452, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt
| | - Suliman A Almahmoud
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Naglaa Afifi
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| |
Collapse
|
7
|
Bavarsad NH, Bagheri S, Kourosh-Arami M, Komaki A. Aromatherapy for the brain: Lavender's healing effect on epilepsy, depression, anxiety, migraine, and Alzheimer's disease: A review article. Heliyon 2023; 9:e18492. [PMID: 37554839 PMCID: PMC10404968 DOI: 10.1016/j.heliyon.2023.e18492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/10/2023] Open
Abstract
Neurological diseases affect the nervous system, including the brain, spinal cord, cranial nerves, nerve roots, autonomic nervous system, neuromuscular junctions, and muscles. Herbal medicine has long been used to cure these diseases. One of these plants is lavender, which is composed of various compounds, including terpenes, such as linalool, limonene, triterpenes, linalyl acetate, alcohols, ketones, polyphenols, coumarins, cineole, and flavonoids. In this review, the literature was searched using scientific search engines and databases (Google Scholar, Science Direct, Scopus, and PubMed) for papers published between 1982 and 2020 via keywords, including review, lavender, and neurological disorders. This plant exerts its healing effect on many diseases, such as anxiety and depression through an inhibitory effect on GABA. The anti-inflammatory effects of this plant have also been documented. It improves depression by regulating glutamate receptors and inhibiting calcium channels and serotonergic factors, such as SERT. Its antiepileptic mechanism is due to an increase in the inhibitory effect of GABA and potassium current and a decrease in sodium current. Therefore, many vegetable oils are also used in herbal medicine. In this review, the healing effect of lavender on several neurological disorders, including epilepsy, depression, anxiety, migraine, and Alzheimer's disease was investigated. All findings strongly support the traditional uses of lavender. More clinical studies are needed to investigate the effect of the plants' pharmacological active constituents on the treatment of life-threatening diseases in humans. The limitations of this study are the low quality and the limited number of clinical studies. Different administration methods of lavender are one of the limitations of this review.
Collapse
Affiliation(s)
- Nazanin Hatami Bavarsad
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shokufeh Bagheri
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoumeh Kourosh-Arami
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Komaki
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
8
|
Mohamed HEA, Khalil AT, Hkiri K, Ayaz M, Abbasi JA, Sadiq A, Ullah F, Nawaz A, Ullah I, Maaza M. Physicochemical and nanomedicine applications of phyto-reduced erbium oxide (Er 2O 3) nanoparticles. AMB Express 2023; 13:24. [PMID: 36840788 PMCID: PMC9968365 DOI: 10.1186/s13568-023-01527-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/13/2023] [Indexed: 02/26/2023] Open
Abstract
Hyphaene thebaica fruits were used for the fabrication of spherical erbium oxide nanoparticles (HT-Er2O3 NPS) using a one-step simple bioreduction process. XRD pattern revealed a highly crystalline and pure phase with crystallite size of ~ 7.5 nm, whereas, the W-H plot revealed crystallite size of 11 nm. FTIR spectra revealed characteristic Er-O atomic vibrations in the fingerprint region. Bandgap was obtained as 5.25 eV using K-M function. The physicochemical and morphological nature was established using Raman spectroscopy, reflectance spectroscopy, SAED and HR-TEM. HT-Er2O3 NPS were further evaluated for antidiabetic potential in mice using in-vivo and in-vitro bioassays. The synthesized HT-Er2O3 NPS were screened for in vitro anti-diabetic potentials against α-glucosidase enzyme and α-amylase enzyme and their antioxidant potential was evaluated using DPPH free radical assay. A dose dependent inhibition was obtained against α-glucosidase (IC50 12 μg/mL) and α-amylase (IC50 78 μg/mL) while good DPPH free radical scavenging potential (IC50 78 μg mL-1) is reported. At 1000 μg/mL, the HT-Er2O3 NPS revealed 90.30% and 92.30% inhibition of α-amylase and α-glucosidase enzymes. HT-Er2O3 NPs treated groups were observed to have better glycemic control in diabetic animals (503.66 ± 5.92*** on day 0 and 185.66 ± 2.60*** on day 21) when compared with positive control glibenclamide treated group. Further, HT-Er2O3 NPS therapy for 21 days caused a considerable effect on serum total lipids, cholesterol, triglycerides, HDL and LDL as compared to untreated diabetic group. In conclusion, our preliminary findings on HT-Er2O3 NPS revealed considerable antidiabetic potential and thus can be an effective candidate for controlling the post-prandial hyperglycemia. However, further studies are encouraged especially taking into consideration the toxicity aspects of the nanomaterial.
Collapse
Affiliation(s)
- Hamza Elsayed Ahmad Mohamed
- grid.412801.e0000 0004 0610 3238UNESCO UNISA Africa Chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria, South Africa ,grid.462638.d0000 0001 0696 719XNanoscience African Network (NANOAFNET), Materials Research Department, iThemba LABS, Cape Town, South Africa
| | - Ali Talha Khalil
- Department of Pathology, Lady Reading Hospital Medical Teaching Institution, Peshawar, 25000 KP, Pakistan.
| | - Khaoula Hkiri
- grid.412801.e0000 0004 0610 3238UNESCO UNISA Africa Chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria, South Africa ,grid.462638.d0000 0001 0696 719XNanoscience African Network (NANOAFNET), Materials Research Department, iThemba LABS, Cape Town, South Africa
| | - Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Dir (L), KPK, Chakdara, 18000, Pakistan.
| | - Jamil Anwar Abbasi
- grid.440567.40000 0004 0607 0608Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Dir (L), KPK, Chakdara, 18000 Pakistan
| | - Abdul Sadiq
- grid.440567.40000 0004 0607 0608Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Dir (L), KPK, Chakdara, 18000 Pakistan
| | - Farhat Ullah
- grid.440567.40000 0004 0607 0608Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Dir (L), KPK, Chakdara, 18000 Pakistan
| | - Asif Nawaz
- grid.440567.40000 0004 0607 0608Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Dir (L), KPK, Chakdara, 18000 Pakistan
| | - Ikram Ullah
- grid.440530.60000 0004 0609 1900Department of Biotechnology & Genetic Engineering, Hazara University Mansehra, Mansehra, KP Pakistan
| | - Malik Maaza
- grid.412801.e0000 0004 0610 3238UNESCO UNISA Africa Chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria, South Africa ,grid.462638.d0000 0001 0696 719XNanoscience African Network (NANOAFNET), Materials Research Department, iThemba LABS, Cape Town, South Africa
| |
Collapse
|
9
|
Antihyaluronidase and Antioxidant Potential of Atriplex sagittata Borkh. in Relation to Phenolic Compounds and Triterpene Saponins. Molecules 2023; 28:molecules28030982. [PMID: 36770647 PMCID: PMC9921161 DOI: 10.3390/molecules28030982] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
The genus Atriplex provides species that are used as food and natural remedies. In this work, the levels of soluble phenolic acids (free and conjugated) and flavonoids in extracts from roots, stems, leaves and flowers of the unexplored Atriplex sagittata Borkh were investigated by LC-ESI-MS/MS, together with their antioxidant and antihyaluronidase activity. Phenolic acids were present in all parts of A. sagittata; and were most abundant in the leaves (225.24 μg/g dw.), whereas the highest content of flavonoids were found in the flowers (242.71 μg/g dw.). The most common phenolics were 4-hydroxybenzoic and salicylic acids, kaempferol-3-glucoside-7-rhamnoside, kaempferol-3-rutinoside and the rare narcissoside, which was present in almost all morphotic parts. The stem extract had the highest antioxidant activity and total phenolic content (611.86 mg/100 g dw.), whereas flower extract exerted the most potent antihyaluronidase effect (IC50 = 84.67 µg/mL; control-quercetin: IC50 = 514.28 μg/mL). Phytochemical analysis of the flower extract led to the isolation of two triterpene saponins that were shown to be strong hyaluronidase inhibitors (IC50 = 33.77 and 168.15 µg/mL; control-escin: IC50 = 307.38 µg/mL). This is the first report on the presence of phenolics and saponins in A. sagittata. The results suggest that both groups of metabolites may contribute to the overall activity of this plant species.
Collapse
|
10
|
Effects of Phoenix dactylifera against Streptozotocin-Aluminium Chloride Induced Alzheimer's Rats and Their In Silico Study. BIOMED RESEARCH INTERNATIONAL 2023; 2023:1725638. [PMID: 36654869 PMCID: PMC9842421 DOI: 10.1155/2023/1725638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/20/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023]
Abstract
Phoenix dactylifera is known for medicinal importance due to its antioxidant, antidiabetic, antidepressant, and anti-inflammatory properties. This study is aimed at evaluating the effect of P. dactylifera seeds to cure Alzheimer's disease (AD). AD was induced in the rats with streptozotocin + aluminium chloride followed by treatment of methanolic extract of P. dactylifera seeds. The blood glucose levels were determined at regular intervals, which showed a prominent decrease in the extracts treated group. Behavior tests, including the Elevated Plus Maze (EPM) test and Morris Water Maze (MWM) test, were used to evaluate memory patterns in rats. The results indicated that extract-treated rats significantly improved memory behavior compared to the diseased group. After dissection, the serum electrolytes, antioxidant enzymes, and choline esterase enzymes were measured in different organs. The serum parameters creatinine, urea, and bilirubin increased after extract treatment. Similarly, the level of antioxidant enzymes like peroxidases (POD), glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), and thiobarbituric acid reactive substance (TBARS) in the extract-treated group showed improved results that were close to the normal control group. The enzyme (lipase, insulin, amylase, and acetylcholine) levels were found enhanced in extract groups as compared to diseased rats. High-performance liquid chromatography (HPLC) was used to determine the level of dopamine and serotonin neurotransmitters, which were increased significantly for P. dactylifera seeds with values of 0.18 μg/mg tissue and 0.56 μg/mg tissue, respectively. Overall, results showed that P. dactylifera seeds proved to be quite efficient in improving the memory and behavior of treated rats. The antioxidants and enzymes were also increased; therefore, it may be a potential candidate for treating AD.
Collapse
|
11
|
Zaghloul E, Handousa H, Singab ANB, Elmazar MM, Ayoub IM, Swilam N. Phytoecdysteroids and Anabolic Effect of Atriplex dimorphostegia: UPLC-PDA-MS/MS Profiling, In Silico and In Vivo Models. PLANTS (BASEL, SWITZERLAND) 2023; 12:206. [PMID: 36616335 PMCID: PMC9824417 DOI: 10.3390/plants12010206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Atriplex dimorphostegia (Saltbush) is an annual halophytic shrub that is widely distributed across various parts of Asia. The current study is the first to report the metabolites profile of the total ethanol extract of the aerial parts of A. dimorphostegia (TEAD), and its anabolic activity together with the isolated 20-hydroxyecdysone (20-HE) in orchidectomized male rats. TEAD was analyzed and standardized utilizing UPLC-PDA-ESI−MS/MS and UPLC-PDA-UV techniques, resulting in tentative identification of fifty compounds including polyphenols, steroids and triterpenoids. In addition, 20-HE was quantified, representing 26.79 μg/mg of the extract. Phytochemical investigation of TEAD resulted in the isolation of 20-HE from the ethyl acetate fraction (EFAD) and was identified by conventional spectroscopic methods of analysis. Furthermore, the anabolic effect of the isolated 20-HE and TEAD was then evaluated using in silico and in vivo models. Molecular docking experiments revealed in vitro selectivity of 20-HE towards estrogen receptors (ERs), specifically ERβ over ERα and androgenic receptor (AR). The anabolic efficacy of TEAD and 20-HE was studied in orchidectomized immature male Wistar rats using the weight of gastrocnemius and soleus muscles. The weights of ventral prostate and seminal vesicles were used as indicators for androgenic activity. Rats administered 20-HE and TEAD showed a significant increase (p = 0.0006 and p < 0.0001) in the net muscle mass compared to the negative control, while the group receiving TEAD showed the highest percentage among all groups at p < 0.0001. Histopathological investigation of skeletal muscle fibers showed normal morphological structures, and the group administered 20-HE showed an increase in cross sectional area of muscle fibers comparable to methandienone and testosterone groups at p > 0.99. A. dimorphostegia exhibited promising anabolic activity with minimal androgenic side effects.
Collapse
Affiliation(s)
- Eman Zaghloul
- Department of Pharmacognosy, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo 11837, Egypt
| | - Heba Handousa
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11435, Egypt
| | - Abdel Nasser B. Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
- Center for Drug Discovery Research and Development, Ain Shams University, Cairo 11566, Egypt
| | - Mohey M. Elmazar
- Department of Pharmacology, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo 11837, Egypt
| | - Iriny M. Ayoub
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Noha Swilam
- Department of Pharmacognosy, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo 11837, Egypt
| |
Collapse
|
12
|
Kipkemoi DJ, Ireri AM, Ngugi MP. Cognition Enhancing Potential of Aqueous Leaf Extract of Amaranthus dubius in Mice. J Evid Based Integr Med 2023; 28:2515690X231211661. [PMID: 37960857 PMCID: PMC10644747 DOI: 10.1177/2515690x231211661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/08/2023] [Accepted: 10/15/2023] [Indexed: 11/15/2023] Open
Abstract
Amaranthus dubius is a vegetable consumed for its nutritional content in Kenya. In herbal medicine, A. dubius is utilized to relief fever, anemia and hemorrhage. Additionally, it is utilized to manage cognitive dysfunction and is considered to augment brain function, but there is no empirical evidence to support this claim. The contemporary study investigated cognitive enhancing potential of A. dubius in mice model of Alzheimer's disease (AD)-like dementia induced with ketamine. Cognitively damaged mice were treated with aqueous extract of A. dubius leaf upon which passive avoidance task (PAT) was used to assess the cognitive performance. At the end of passive avoidance test, brains of the mice were dissected to evaluate the possibility of the extract to inhibit hallmarks that propagate AD namely oxidative stress and acetylcholinesterase activity. Additionally, characterization of secondary metabolites was done using liquid chromatograph- mass spectrometry analysis. During PAT test, extract-treated mice showed significantly increased step-through latencies than AD mice, depicting ability of A. dubius to reverse ketamine-induced cognitive decline. Further, the extract remarkably lowered malondialdehyde levels to normal levels and effectively inhibited acetylcholinesterase enzyme. The study showed that A. dubius extract is endowed with phytoconstituents that possess anti-oxidant and anticholinesterase activities. Thus, this study confirmed promising therapeutic effects of 200, 300 and 400 mg/kg bw of A. dubius extract with potential to alleviate cognitive disarray observed in AD.
Collapse
Affiliation(s)
- Daisy Jepkosgei Kipkemoi
- Department of Biochemistry, Microbiology and Biotechnology, School of Pure and Applied Sciences, Kenyatta University, Nairobi, Kenya
| | - Anthony Murithi Ireri
- Department of Educational Psychology, School of Education, Kenyatta University, Nairobi, Kenya
| | - Mathew Piero Ngugi
- Department of Biochemistry, Microbiology and Biotechnology, School of Pure and Applied Sciences, Kenyatta University, Nairobi, Kenya
| |
Collapse
|
13
|
Calderaro A, Patanè GT, Tellone E, Barreca D, Ficarra S, Misiti F, Laganà G. The Neuroprotective Potentiality of Flavonoids on Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms232314835. [PMID: 36499159 PMCID: PMC9736131 DOI: 10.3390/ijms232314835] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Alzheimer's disease (AD), due to its spread, has become a global health priority, and is characterized by senile dementia and progressive disability. The main cause of AD and other neurodegenerations (Huntington, Parkinson, Amyotrophic Lateral Sclerosis) are aggregated protein accumulation and oxidative damage. Recent research on secondary metabolites of plants such as polyphenols demonstrated that they may slow the progression of AD. The flavonoids' mechanism of action in AD involved the inhibition of acetylcholinesterase, butyrylcholinesterase, Tau protein aggregation, β-secretase, oxidative stress, inflammation, and apoptosis through modulation of signaling pathways which are implicated in cognitive and neuroprotective functions, such as ERK, PI3-kinase/Akt, NFKB, MAPKs, and endogenous antioxidant enzymatic systems. This review focuses on flavonoids and their role in AD, in terms of therapeutic potentiality for human health, antioxidant potential, and specific AD molecular targets.
Collapse
Affiliation(s)
- Antonella Calderaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Giuseppe Tancredi Patanè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Ester Tellone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
- Correspondence: (E.T.); (D.B.)
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
- Correspondence: (E.T.); (D.B.)
| | - Silvana Ficarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Francesco Misiti
- Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, V. S. Angelo, Loc. Folcara, 3043 Cassino, Italy
| | - Giuseppina Laganà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
14
|
Multi-Target Mechanisms of Phytochemicals in Alzheimer’s Disease: Effects on Oxidative Stress, Neuroinflammation and Protein Aggregation. J Pers Med 2022; 12:jpm12091515. [PMID: 36143299 PMCID: PMC9500804 DOI: 10.3390/jpm12091515] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease characterized by a tangle-shaped accumulation of beta-amyloid peptide fragments and Tau protein in brain neurons. The pathophysiological mechanism involves the presence of Aβ-amyloid peptide, Tau protein, oxidative stress, and an exacerbated neuro-inflammatory response. This review aims to offer an updated compendium of the most recent and promising advances in AD treatment through the administration of phytochemicals. The literature survey was carried out by electronic search in the following specialized databases PubMed/Medline, Embase, TRIP database, Google Scholar, Wiley, and Web of Science regarding published works that included molecular mechanisms and signaling pathways targeted by phytochemicals in various experimental models of Alzheimer’s disease in vitro and in vivo. The results of the studies showed that the use of phytochemicals against AD has gained relevance due to their antioxidant, anti-neuroinflammatory, anti-amyloid, and anti-hyperphosphorylation properties of Tau protein. Some bioactive compounds from plants have been shown to have the ability to prevent and stop the progression of Alzheimer’s.
Collapse
|
15
|
Synthesis, molecular docking and enzyme inhibitory approaches of some new chalcones engrafted pyrazole as potential antialzheimer, antidiabetic and antioxidant agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133843] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
16
|
Panahishokouh M, Noroozian M, Mohammadian F, Khanavi M, Mirimoghaddam M, Savar SM, Nikoosokhan M, Honarmand H, Mohebbi N. Evaluation of the Effectiveness of an Herbal Formulation of Boswellia sacra Flueck. In Improving Cognitive and Behavioral Symptoms in Patients with Cognitive Impairment and Alzheimer's Disease. J Res Pharm Pract 2022; 11:91-98. [PMID: 37304222 PMCID: PMC10252576 DOI: 10.4103/jrpp.jrpp_73_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/12/2022] [Indexed: 06/13/2023] Open
Abstract
Objective This study aimed to assess the efficacy of an herbal formulation based on Boswellia sacra in improving cognitive and behavioral symptoms in patients with mild cognitive impairment (MCI) and mild-to-moderate stages of Alzheimer's disease (AD). Methods A 3-month, parallel-group, placebo-controlled trial was implemented from October 2021 to April 2022. Patients with MCI and mild-to-moderate stages of AD aged above 50 years (n = 60; 40 women, 20 men) enrolled in the study using clinical diagnosis and a score of 10-30 on the mini-mental state examination (MMSE) test. They were assigned into two groups; one receiving a herbal formulation) include B. sacra, Melissa officinalis, Piper longum, Cinnamomum verum, and Physalis alkekengi) three times a day and the other receiving a placebo for 3 months. The main efficacy measures were the changes in cognitive domains based on the MMSE and changes in behavioral and psychiatric symptoms based on neuropsychiatric inventory (NPI) scores compared with baseline. Side effects were also recorded. Findings Results of this study showed significant differences between the two groups after 3 months in terms of all the assessed variables, including the overall result of the mean score of MMSE and NPI tests (P ≤ 0.001). The herbal formulation had the most considerable effects on the domains of orientation, attention, working memory, delay recall, and language of the MMSE test. Conclusion Herbal formulation based on B. sacra was significantly effective compared to a placebo in improving cognitive and behavioral symptoms in patients with MCI and mild-to-moderate AD.
Collapse
Affiliation(s)
- Mahsa Panahishokouh
- Department of Clinical Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Noroozian
- Department of Psychiatry, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mohammadian
- Department of Psychiatry, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Khanavi
- Department of Pharmacognosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Mirimoghaddam
- Department of Pharmacognosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mehrdad Savar
- Research Center for Rational Use of Drugs, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Nikoosokhan
- Bahar Sepinood Company, Tehran University Science and Technology Park, College of Agriculture, Alborz, Iran
| | - Hooshyar Honarmand
- Department of Clinical Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Niayesh Mohebbi
- Department of Clinical Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Extraction, antioxidant, and anticancer activity of saponins extracted from Curcuma angustifolia. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-021-02096-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Mahnashi MH, Alqahtani YS, Alyami BA, Alqarni AO, Alqahl SA, Ullah F, Sadiq A, Zeb A, Ghufran M, Kuraev A, Nawaz A, Ayaz M. HPLC-DAD phenolics analysis, α-glucosidase, α-amylase inhibitory, molecular docking and nutritional profiles of Persicaria hydropiper L. BMC Complement Med Ther 2022; 22:26. [PMID: 35086537 PMCID: PMC8793238 DOI: 10.1186/s12906-022-03510-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Natural phenolic compounds and Phenolics-rich medicinal plants are also of great interest in the management of diabetes. The current study was aimed to analyze phenolics in P. hydropiepr L extracts via HPLC-DAD analysis and assess their anti-diabetic potentials using in-vitro and in-silico approaches. METHODS Plant crude methanolic extract (Ph.Cme) was evaluated for the presence of phenolic compounds using HPLC-DAD analysis. Subsequently, samples including crude (Ph.Cr), hexane (Ph.Hex), chloroform (Ph.Chf), ethyl acetate (Ph.EtAc), butanol (Ph.Bt), aqueous (Ph.Aq) and saponins (Ph.Sp) were tested for α-glucsidase and α-amylase inhibitory potentials and identified compounds were docked against these target enzymes using Molecular Operating Environment (MOE) software. Fractions were also analyzed for the nutritional contents and acute toxicity was performed in animals. RESULTS In HPLC-DAD analysis of Ph.Cme, 24 compounds were indentfied and quantified. Among these, Kaemferol-3-(p-coumaroyl-diglucoside)-7-glucoside (275.4 mg g- 1), p-Coumaroylhexose-4-hexoside (96.5 mg g- 1), Quercetin-3-glucoronide (76.0 mg g- 1), 4-Caffeoylquinic acid (58.1 mg g- 1), Quercetin (57.9 mg g- 1), 5,7,3'-Trihydroxy-3,6,4',5'-tetramethoxyflavone (55.5 mg g- 1), 5-Feruloylquinic acid (45.8 mg g- 1), Cyanidin-3-glucoside (26.8 mg g- 1), Delphinidin-3-glucoside (24 mg g- 1), Quercetin-3-hexoside (20.7 mg g- 1) were highly abundant compounds. In α-glucosidase inhibition assay, Ph.Sp were most effective with IC50 value of 100 μg mL-1. Likewise in α-amylase inhibition assay, Ph.Chf, Ph.Sp and Ph.Cme were most potent fractions displayed IC50 values of 90, 100 and 200 μg mL-1 respectively. Docking with the α-glucosidase enzyme revealed top ranked conformations for majority of the compounds with Kaemferol-3-(p-coumaroyl-diglucoside)-7-glucoside as the most active compound with docking score of - 19.80899, forming 14 hydrogen bonds, two pi-H and two pi-pi linkages with the Tyr 71, Phe 158, Phe 177, Gln 181, Arg 212, Asp 214, Glu 276, Phe 300, Val 303, Tyr 344, Asp 349, Gln 350, Arg 439, and Asp 408 residues of the enzyme. Likewise, docking with α-amylase revealed that most of the compounds are well accommodated in the active site residues (Trp 59, Tyr 62, Thr 163, Leu 165, Arg 195, Asp 197, Glu 240, Asp 300, His 305, Asp 356) of the enzyme and Cyanidin-3-rutinoside displayed most active compound with docking score of - 15.03757. CONCLUSIONS Phytochemical studies revealed the presence of highly valuable phenolic compounds, which might be responsible for the anti-diabetic potentials of the plant samples.
Collapse
Affiliation(s)
- Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Yahya S. Alqahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Bandar A. Alyami
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Ali O. Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | | | - Farhat Ullah
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, Dir (L), KP 18000 Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, Dir (L), KP 18000 Pakistan
| | - Alam Zeb
- Department of Biochemistry, University of Malakand, Chakdara, Dir (L), KP 18000 Pakistan
| | - Mehreen Ghufran
- Department of Pathology, MTI Bacha Khan Medical College, Mardan, Pakistan
| | - Alexey Kuraev
- K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 73, Zemlyanoy Val St, Moscow, Russian Federation 109004
| | - Asif Nawaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, Dir (L), KP 18000 Pakistan
| | - Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, Dir (L), KP 18000 Pakistan
| |
Collapse
|
19
|
Zhao J, Yu J, Zhi Q, Yuan T, Lei X, Zeng K, Ming J. Anti-aging effects of the fermented anthocyanin extracts of purple sweet potato on Caenorhabditis elegans. Food Funct 2021; 12:12647-12658. [PMID: 34821891 DOI: 10.1039/d1fo02671b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Anthocyanins have anti-inflammatory, anticarcinogenic and antioxidant properties and anti-aging effects as well as potential application as pigments. The metabolism of anthocyanins in fermented food has attracted increasing attention. However, the effect of lactic acid bacteria (LAB) fermentation on its anti-aging activity remains mostly unknown. The current study aimed to investigate the compositions, antioxidant activities and anti-aging effect of fermented purple sweet potato anthocyanins (FSPA) on aging Caenorhabditis elegans compared to raw purple sweet potato anthocyanins (PSPA). Results showed that anthocyanins were degraded into more bioavailable phenolic acids by Weissella confusa fermentation. PSPA and FSPA can extend the lifespan of C. elegans by 26.7% and 37.5%, respectively, through improving the activity of antioxidant enzymes as well as decreasing MDA content, ROS levels and lipofuscin accumulation. Pretreatment of the worms with PSPA and FSPA induced their potential to resist to thermal tolerance and oxidative stress, and FSPA exerted a higher anti-stress effect than PSPA. Moreover, FSPA supplementation upregulated the mRNA expressions of genes daf-16, hsp-16.2, sir-2.1, skn-1 and sod-3 and downregulated the expression of daf-2 in the nematodes, whereas PSPA only induced the increase in the expressions of sir-2.1, skn-1 and sod-3. Overall, FSPA can improve stress resistance and extend the lifespan of C. elegans by both insulin/IGF-1 signaling pathway and dietary restriction pathway, providing a theoretical basis for the application of PSPA in fermented food as functional pigments.
Collapse
Affiliation(s)
- Jichun Zhao
- College of Food Science, Southwest University, Chongqing, 400715, People's Republic of China. .,Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg 1958, Denmark
| | - Jie Yu
- College of Food Science, Southwest University, Chongqing, 400715, People's Republic of China.
| | - Qi Zhi
- College of Food Science, Southwest University, Chongqing, 400715, People's Republic of China.
| | - Tingting Yuan
- College of Food Science, Southwest University, Chongqing, 400715, People's Republic of China.
| | - Xiaojuan Lei
- College of Food Science, Southwest University, Chongqing, 400715, People's Republic of China.
| | - Kaifang Zeng
- College of Food Science, Southwest University, Chongqing, 400715, People's Republic of China. .,Research Center of Food Storage & Logistics, Southwest University, Chongqing 400715, People's Republic of China
| | - Jian Ming
- College of Food Science, Southwest University, Chongqing, 400715, People's Republic of China. .,Research Center of Food Storage & Logistics, Southwest University, Chongqing 400715, People's Republic of China
| |
Collapse
|
20
|
Fatty acid composition, enzyme inhibitory effect, antioxidant and anticancer activity of extract from Saponaria prostrata WILLD. subsp. anatolica HEDGE. Bioorg Chem 2021; 113:105032. [PMID: 34089947 DOI: 10.1016/j.bioorg.2021.105032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/22/2021] [Accepted: 05/24/2021] [Indexed: 12/24/2022]
Abstract
This study attempts to evaluate the antioxidant, enzyme inhibitory, and anticancer properties as well as fatty acid compositions of endemic Saponaria prostrata WILLD. subsp. anatolica HEDGE. The gas chromatography-mass spectrometry (GC-MS) was used to determine the fatty acid content of methanol: dichloromethane extract from S. prostrata subsp. anatolica (SPA). Enzymatic activity was measured against acetylcholinesterase, butyrylcholinesterase and α-glucosidase. DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging activity and Ferric reducing antioxidant power assay (FRAP) were conducted to antioxidant properties. The anticancer effect of SPA on human MCF-7 breast cancer and human HCT116 colorectal cancer cell line was evaluated by WST-1 cell viability assay, colony formation assay and wound healing assay. In addition, human VEGF Elisa method was used to determine the anti-angiogenic effect, and the quantitative real-time PCR (qRT-PCR) method on p53, Bax and Bcl-2 mRNA levels were used to evaluate apoptosis. While high amounts of palmitic acid (40.8%), linoleic acid (17.75%) and α-linolenic acid (16.84%) were detected in the SPA, the total amount of unsaturated fatty acid (51.34%) was higher than the total amount of saturated fatty acid (48.66%). SPA displayed the most promising acetylcholinesterase (AChE), butyrylcholinesterase (BuChE) and α-glycosidase (AG) inhibitory activities (AChE: IC50: 18.03 µg/mL, BuChE: IC50: 44.24 µg/mL and AG: IC50: 210.85 µg/mL). The half maximum inhibitory concentration (IC50) of SPA in MCF-7 and HCT116 cells was determined as 259.79 µg/mL and 97.24 µg/mL, respectively. In addition, it was determined that SPA suppresses colony formation and wound closure, and suppresses angiogenesis as well as triggering apoptosis at a significant level. It is true that endemic S. prostrata subsp. anatolica is a potential source of functional food ingredients, but more analytical and in vivo experiments are needed to explore further secondary metabolite diversity and pharmacological properties.
Collapse
|
21
|
Potential therapeutic natural products against Alzheimer's disease with Reference of Acetylcholinesterase. Biomed Pharmacother 2021; 139:111609. [PMID: 33915501 DOI: 10.1016/j.biopha.2021.111609] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/04/2021] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD), is the most common type of dementia primarily affecting the later years of life. Its prevalence is likely to increase in any aging population and will be a major burden on healthcare system by the mid of the century. Despite scientific and technological breakthroughs in the last 50 years, that have expanded our understanding of the disease on a system, cellular and molecular level, therapies that could stop or slow the progression of the disease are still unavailable. The Food and Drug Administration (FDA), has approved acetylcholinesterase (AChE) inhibitors (donepezil, galantamine, tacrine and rivastigmine) and glutamate receptor antagonist (memantine) for the treatment of AD. In this review we summarize the studies reporting phytocompounds and extracts from medicinal plants that show AChE inhibitory activities and could be of potential benefit in AD. Future research directions are suggested and recommendations made to expand the use of medicinal plants and their formulations to prevent, mitigate and treat AD.
Collapse
|
22
|
Ahmad SI, Ali G, Muhammad T, Ullah R, Umar MN, Hashmi AN. Synthetic β-hydroxy ketone derivative inhibits cholinesterases, rescues oxidative stress and ameliorates cognitive deficits in 5XFAD mice model of AD. Mol Biol Rep 2020; 47:9553-9566. [PMID: 33211296 DOI: 10.1007/s11033-020-05997-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/11/2020] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a progressive, chronic and age-related neurodegenerative disorder that affects millions of people across the world. In pursuit of new anti-AD remedies, 2-[Hydroxy-(4-nitrophenyl)methyl]-cyclopentanone (NMC), a β hydroxyl ketone derivative was studied to explore its neuroprotective potentials against AD. The in-vitro AChE and BuChE enzymes inhibition were evaluated by Ellman protocol and antioxidant potentials of NMC by DPPH free radical scavenging assay. In-vivo behavioral studies were performed in the transgenic 5xFAD mice model of AD using shallow water maze (SWM), Paddling Y-Maze (PYM), elevated plus maze (EPM) and balance beam (BB) tests. Also, the ex-vivo cholinesterase inhibitory effects of NMC and histopathological analysis of amyloid-β plaques were determined in the frontal cortex and hippocampal regions of the mice brain. NMC exhibited significant in vitro anti-cholinesterase enzyme potentials with an IC50 value of 67 μg/ml against AChE and 96 μg/ml against BuChE respectively. Interestingly, the activities of AChE and BuChE enzymes were also significantly lower in the cortex and hippocampus of NMC-treated groups. Also, in the DPPH assessment, NMC displayed substantial antioxidant properties with an IC50 value observed as 171 μg/ml. Moreover, histopathological analysis via thioflavin-s staining displayed significantly lower plaques depositions in the cortex and hippocampus region of NMC-treated mice groups. Furthermore, SWM, PYM, EPM, and BB behavioral analysis indicated that NMC enhanced spatial learning, memory consolidation and improved balance performance. Altogether, to the best of our knowledge, we believe that NMC may serve as a potential and promising anti-cholinesterase, antioxidant and neuroprotective agent against AD.
Collapse
Affiliation(s)
- Syed Ilyas Ahmad
- Department of Pharmacy, University of Peshawar, Peshawar, 25120, Pakistan
| | - Gowhar Ali
- Department of Pharmacy, University of Peshawar, Peshawar, 25120, Pakistan.
| | - Tahir Muhammad
- Department of Pharmacy, University of Peshawar, Peshawar, 25120, Pakistan.
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 620 University Ave, Toronto, ON, M5G 2C1, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
| | - Rahim Ullah
- Department of Pharmacy, University of Peshawar, Peshawar, 25120, Pakistan
| | | | - Aisha Nasir Hashmi
- Translational Genomics Laboratory, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad, 45600, Pakistan
| |
Collapse
|
23
|
Borges BT, de Brum Vieira P, Leal AP, Karnopp E, Ogata BAB, Rosa ME, Barreto YC, Oliveira RS, Belo CAD, Vinadé L. Modulation of octopaminergic and cholinergic pathways induced by Caatinga tree Manilkara rufula chemical compounds in Nauphoeta cinerea cockroaches. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 169:104651. [PMID: 32828369 DOI: 10.1016/j.pestbp.2020.104651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/02/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
The entomotoxic potential of Manilkara rufula crude extract (CEMR) and its aqueous (AFMR) and methanolic (MFMR) fractions were evaluated against Nauphoeta cinerea cockroaches. The results point out to a direct modulation of octopaminergic and cholinergic pathways in insect nervous system. CEMR induced an anti-acetylcholinesterase (AChE) effect in cockroach brain homogenates. CEMR significantly decreased the cockroach heart rate in semi-isolated heart preparations. CEMR also caused a broad disturbance in the insect behavior by reducing the exploratory activity. The decreased antennae and leg grooming activities, by different doses of CEMR, mimicked those of phentolamine activity, a selective octopaminergic receptor antagonist. The lethargy induced by CEMR was accompanied by neuromuscular failure and by a decrease of sensilla spontaneous neural compound action potentials (SNCAP) firing in in vivo and ex vivo cockroach muscle-nerve preparations, respectively. AFMR was more effective in promoting neuromuscular paralysis than its methanolic counterpart, in the same dose. These data validate the entomotoxic activity of M. rufula. The phentolamine-like modulation induced in cockroaches is the result of a potential direct inhibition of octopaminergic receptors, combined to an anti-AChE activity. In addition, the modulation of CEMR on octopaminergic and cholinergic pathways is probably the result of a synergism between AFMR and MFMR chemical compounds. Further phytochemical investigation followed by a bio-guiding protocol will improve the molecular aspects of M. rufula pharmacology and toxicology to insects.
Collapse
Affiliation(s)
- Bruna Trindade Borges
- Laboratório de Neurobiologia e Toxinologia, Universidade Federal do Pampa, 97300-000 São Gabriel, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal do Pampa, 97300-000 São Gabriel, RS, Brazil
| | - Patrícia de Brum Vieira
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal do Pampa, 97300-000 São Gabriel, RS, Brazil
| | - Allan P Leal
- Laboratório de Neurobiologia e Toxinologia, Universidade Federal do Pampa, 97300-000 São Gabriel, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas e Bioquímica Toxicológica, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - Etiely Karnopp
- Laboratório de Neurobiologia e Toxinologia, Universidade Federal do Pampa, 97300-000 São Gabriel, RS, Brazil
| | - Bárbara A B Ogata
- Laboratório de Neurobiologia e Toxinologia, Universidade Federal do Pampa, 97300-000 São Gabriel, RS, Brazil
| | - Maria Eduarda Rosa
- Laboratório de Neurobiologia e Toxinologia, Universidade Federal do Pampa, 97300-000 São Gabriel, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal do Pampa, 97300-000 São Gabriel, RS, Brazil
| | - Yuri Correia Barreto
- Laboratório de Neurobiologia e Toxinologia, Universidade Federal do Pampa, 97300-000 São Gabriel, RS, Brazil
| | - Raquel Soares Oliveira
- Laboratório de Neurobiologia e Toxinologia, Universidade Federal do Pampa, 97300-000 São Gabriel, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal do Pampa, 97300-000 São Gabriel, RS, Brazil
| | - Cháriston André Dal Belo
- Laboratório de Neurobiologia e Toxinologia, Universidade Federal do Pampa, 97300-000 São Gabriel, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal do Pampa, 97300-000 São Gabriel, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas e Bioquímica Toxicológica, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - Lúcia Vinadé
- Laboratório de Neurobiologia e Toxinologia, Universidade Federal do Pampa, 97300-000 São Gabriel, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal do Pampa, 97300-000 São Gabriel, RS, Brazil.
| |
Collapse
|
24
|
Nazir N, Nisar M, Ahmad S, Wadood SF, Jan T, Zahoor M, Ahmad M, Ullah A. Characterization of phenolic compounds in two novel lines of Pisum sativum L. along with their in vitro antioxidant potential. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:7639-7646. [PMID: 31889276 DOI: 10.1007/s11356-019-07065-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
Like other vegetables, Pisum sativum L. also faces storage and degradation problems. To enhance their resistance and make them enable to cope with the deterioration problems during storage, the current study was designed to develop two resistant lines of P. sativum in terms of phenolic contents and genotypes. The phenolic compounds generally have antioxidant properties and deterioration during storage which are usually due to oxidation caused by free radicals. Thus, if a variety has high phenolic contents these problems will be coped in a better way. The genotype of a plant is also important in this regard, and the best adopted species would survive in unfavorable conditions. First, the phenolic and flavonoid contents were determined in the crude extract using the Folin-Ciocalteu method. Then, the identification and quantification of phenolic compounds were carried out in the developed lines of selected plants PL-04 and PL-05, as well as in the parental varieties [Climax (female) and Falan (male)] via HPLC. DPPH assay was used to determine the free radical scavenging capabilities of the extracts of the developed verities. The genotypic differences were confirmed by DNA fingerprinting using advanced simple sequence repeat (SSR) markers. The HPLC analysis of PL-04 confirmed the presence of three phenolic compounds in an appreciable amount which exhibited a higher antioxidant activity against DPPH radicals, while in the parental varieties, two phenolic compounds were identified and exhibited lower antioxidant activities. PL-04 was found rich in phenolic compounds and affectively scavenge-free radicals which would therefore be resistant to oxidation and degradation caused by free radicals. Comparing the present findings with our previous one, P-04 was found to be resistant to powdery mildew; it was concluded that the most probable reason of the resistance was the high phenolic contents and thus long shelf life.
Collapse
Affiliation(s)
- Nausheen Nazir
- Department of Botany, University of Malakand, Chakdara, Dir (L), Khyber Pakhtunkhwa, 18000, Pakistan
- Department of Biochemistry, University of Malakand, Chakdara, Dir (L), Khyber Pakhtunkhwa, 18000, Pakistan
| | - Mohammad Nisar
- Department of Botany, University of Malakand, Chakdara, Dir (L), Khyber Pakhtunkhwa, 18000, Pakistan.
| | - Sajjad Ahmad
- Department of Pharmacy, University of Malakand, Chakdara, Dir (L), Khyber Pakhtunkhwa, 18000, Pakistan
- Department of Phamacy, Sarhad University of Science and Technology, Peshawar, Pakistan
| | - Syed Fazal Wadood
- Department of Botany, University of Malakand, Chakdara, Dir (L), Khyber Pakhtunkhwa, 18000, Pakistan
| | - Tour Jan
- Department of Botany, University of Malakand, Chakdara, Dir (L), Khyber Pakhtunkhwa, 18000, Pakistan
| | - Muhammad Zahoor
- Department of Biochemistry, University of Malakand, Chakdara, Dir (L), Khyber Pakhtunkhwa, 18000, Pakistan
| | - Manzoor Ahmad
- Department of Biochemistry, University of Malakand, Chakdara, Dir (L), Khyber Pakhtunkhwa, 18000, Pakistan
| | - Abid Ullah
- Department of Botany, University of Malakand, Chakdara, Dir (L), Khyber Pakhtunkhwa, 18000, Pakistan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| |
Collapse
|
25
|
Sulaimon L, Adisa R, Obuotor E, Lawal M, Moshood A, Muhammad N. Chemical composition, antioxidant, and anticholine esterase activities of essential oil of xylopia aethiopica seeds. Pharmacognosy Res 2020. [DOI: 10.4103/pr.pr_47_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
26
|
Ayaz M, Ullah F, Sadiq A, Kim MO, Ali T. Editorial: Natural Products-Based Drugs: Potential Therapeutics Against Alzheimer's Disease and Other Neurological Disorders. Front Pharmacol 2019; 10:1417. [PMID: 31849668 PMCID: PMC6889855 DOI: 10.3389/fphar.2019.01417] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022] Open
Affiliation(s)
- Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Farhat Ullah
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Myeong Ok Kim
- Division of Applied Life Science (BK 21), College of Natural Science, Gyeongsang National University, Jinju, South Korea
| | - Tahir Ali
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Alberta, Canada
| |
Collapse
|
27
|
Zafar R, Ullah H, Zahoor M, Sadiq A. Isolation of bioactive compounds from Bergenia ciliata (haw.) Sternb rhizome and their antioxidant and anticholinesterase activities. Altern Ther Health Med 2019; 19:296. [PMID: 31694704 PMCID: PMC6833214 DOI: 10.1186/s12906-019-2679-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/09/2019] [Indexed: 11/24/2022]
Abstract
Background Bergenia ciliata is a medicinal plant used for the treatment of diarrhea, vomiting, fever, cough, diabetes, cancer, pulmonary disorders and wound healing. Methods In this study, Bergenia ciliata crude extract, subfractions, and isolated compounds were evaluated for their antioxidant and anticholinesterase potential. The free radical scavenging capacities of the extracts determined using DPPH and ABTS assays. The anticholinesterase potentials were determined using acetylcholine esterase and butyryl choline esterase enzymes. To determine the phytochemical composition, the extracts were subjected to HPLC analysis and silica gel column isolation. Based on HPLC fingerprinting results, the ethyl acetate fraction was found to have more bioactive compounds and was therefore subjected to silica gel column isolation. As a result, three compounds; pyrogallol, rutin, and morin were isolated in the pure state. The structures of the isolated compounds were elucidated using spectroscopic techniques like 1H-NMR, IR and UV-Visible. Results The crude extract showed maximum anticholinesterase (acetylcholinesterase = 90.22 ± 1.15% and butyrylcholinesterase = 88.22 ± 0.71%) and free radical scavenging (87.37 ± 2.45 and 83.50 ± 0.70% respectively against DPPH and ABTS radicals) potentials. The total phenolic contents (expressed as equivalent of gallic acid; mgGAE/g) were higher in ethyl acetate fraction (80.96 ± 1.74) followed by crude extract (70.65 ± 0.86) while the flavonoid contents (expressed as quercetin equivalent; mgQE/g) and were higher in crude extract (88.40 ± 1.12) followed by n-butanol fraction (60.10 ± 1.86). The isolated bioactive compounds pyrogallol, rutin, and morin were found active against ABTS and DPPH free radicals. Amongst them, pyrogallol was more active against both free radicals. Reasonable anticholinesterase activities were recorded for pyrogallol against selected enzymes. Conclusion The extracts and isolated compounds showed antioxidant and acetylcholinesterase inhibitory potentials. It was concluded that this plant could be helpful in the treatment of oxidative stress and neurological disorders if used in the form of extracts.
Collapse
|
28
|
Ahmad S, Ullah F, Ayaz M, Ahmad A, Sadiq A, Mohani SNUH. Nutritional and medicinal aspects of Rumex hastatus D. Don along with in vitro anti-diabetic activity. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2019. [DOI: 10.1080/10942912.2019.1666868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sajjad Ahmad
- Department of Pharmacy, Sarhad University of Science & Technology, Peshawar, KPK, Pakistan
| | - Farhat Ullah
- Department of Pharmacy, University of Malakand, Chakdara, KPK, Pakistan
| | - Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Chakdara, KPK, Pakistan
| | - Ashfaq Ahmad
- Department of Pharmacy, Sarhad University of Science & Technology, Peshawar, KPK, Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara, KPK, Pakistan
| | | |
Collapse
|
29
|
Kitisin T, Suphamungmee W, Meemon K. Saponin-rich extracts from Holothuria leucospilota mediate lifespan extension and stress resistance in Caenorhabditis elegans via daf-16. J Food Biochem 2019; 43:e13075. [PMID: 31612532 DOI: 10.1111/jfbc.13075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/07/2019] [Accepted: 09/25/2019] [Indexed: 01/10/2023]
Abstract
Saponins are secondary metabolite compounds that can be found in sea cucumbers (Holothuroidea spp.). However, little is known about how saponin-rich extracts from Holothuria leucospilota can delay and prolong the lifespan of the whole organism. In this study, anti-aging effects of H. leucospilota extracts were studied on Caenorhabditis elegans. NMR analysis revealed that body wall n-butanol-extract of H. leucospilota (BW-BU) is saponin-rich. BW-BU extracts exhibited antioxidant activities by 2,2'-diphenyl-2-picrylhydrazyl assay (EC50 = 10.23 ± 0.12 mg/ml) and 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid assay (EC50 = 3.91 ± 0.04 mg/ml). BW-BU extracts increased lifespan of L4 and L1 C. elegans (5.92% and 15.76%, respectively), which also increased worm growth, stress resistance, and reduced biomarkers for aging. BW-BU extracts activated DAF-16 nuclear localization and upregulated daf-16 and DAF-16 target genes expression. Taken together, this study revealed the evidences on anti-aging activities of saponin-rich extracts from H. leucospilota, which can extend lifespan of C. elegans via daf-16. PRACTICAL APPLICATIONS: In recent years, age-associated chronic diseases have had a significant impact on quality of life. Many natural compounds exhibit anti-aging activities, especially in sea cucumber, H. leucospilota. Our results indicated that H. leucospilota is good for health. Extracts from H. leucospilota contain a bioactive compound that can be potentially used to promote longevity and disease prevention in aging.
Collapse
Affiliation(s)
- Thitinan Kitisin
- Faculty of Science, Department of Anatomy, Mahidol University, Bangkok, Thailand
| | - Worawit Suphamungmee
- Faculty of Science, Department of Anatomy, Mahidol University, Bangkok, Thailand
| | - Krai Meemon
- Faculty of Science, Department of Anatomy, Mahidol University, Bangkok, Thailand
| |
Collapse
|
30
|
Ayaz M, Sadiq A, Junaid M, Ullah F, Ovais M, Ullah I, Ahmed J, Shahid M. Flavonoids as Prospective Neuroprotectants and Their Therapeutic Propensity in Aging Associated Neurological Disorders. Front Aging Neurosci 2019; 11:155. [PMID: 31293414 PMCID: PMC6606780 DOI: 10.3389/fnagi.2019.00155] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 06/11/2019] [Indexed: 01/13/2023] Open
Abstract
Modern research has revealed that dietary consumption of flavonoids and flavonoids-rich foods significantly improve cognitive capabilities, inhibit or delay the senescence process and related neurodegenerative disorders including Alzheimer’s disease (AD). The flavonoids rich foods such as green tea, cocoa, blue berry and other foods improve the various states of cognitive dysfunction, AD and dementia-like pathological alterations in different animal models. The mechanisms of flavonoids have been shown to be mediated through the inhibition of cholinesterases including acetylcholinesterase (AChE), and butyrylcholinesterase (BChE), β-secretase (BACE1), free radicals and modulation of signaling pathways, that are implicated in cognitive and neuroprotective functions. Flavonoids interact with various signaling protein pathways like ERK and PI3-kinase/Akt and modulate their actions, thereby leading to beneficial neuroprotective effects. Moreover, they enhance vascular blood flow and instigate neurogenesis particularly in the hippocampus. Flavonoids also hamper the progression of pathological symptoms of neurodegenerative diseases by inhibiting neuronal apoptosis induced by neurotoxic substances including free radicals and β-amyloid proteins (Aβ). All these protective mechanisms contribute to the maintenance of number, quality of neurons and their synaptic connectivity in the brain. Thus flavonoids can thwart the progression of age-related disorders and can be a potential source for the design and development of new drugs effective in cognitive disorders.
Collapse
Affiliation(s)
- Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Muhammad Junaid
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan.,Department of Pharmacy, University of Swabi, Swabi, Pakistan
| | - Farhat Ullah
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Muhammad Ovais
- University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Ikram Ullah
- Suliman Bin Abdullah Aba-Alkhail Centre for Interdisciplinary Research in Basic Sciences, International Islamic University Islamabad, Islamabad, Pakistan
| | - Jawad Ahmed
- Institute of Basic Medical Sciences (IBMS), Khyber Medical University, Peshawar, Pakistan
| | - Muhammad Shahid
- Department of Pharmacy, Sarhad University of Science and Information Technology (SUIT), Peshawar, Pakistan
| |
Collapse
|
31
|
Adebayo IA, Gagman HA, Balogun WG, Adam MAA, Abas R, Hakeem KR, Nik Him NAIIB, Samian MRB, Arsad H. Detarium microcarpum, Guiera senegalensis, and Cassia siamea Induce Apoptosis and Cell Cycle Arrest and Inhibit Metastasis on MCF7 Breast Cancer Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:6104574. [PMID: 31239861 PMCID: PMC6556270 DOI: 10.1155/2019/6104574] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/25/2019] [Accepted: 05/05/2019] [Indexed: 12/21/2022]
Abstract
Despite the availability of anticancer drugs, breast cancer remains the most death-causing tumor-related disease in women. Hence, there is a need for discovery and development of efficient alternative drugs, and sources such as plants need to be explored. In this study, antioxidant capacities and inhibitory effects against MCF7 cells of the extracts of stem bark of three Nigerian medicinal plants (Detarium microcarpum, Guiera senegalensis, and Cassia siamea) were investigated. The D. microcarpum extracts had the highest antioxidant and antiproliferative effects, followed by that of G. senegalensis, and the C. siamea extracts had minimal effects. The IC50 values of the methanol and aqueous extracts from the three plants that inhibited the proliferation of MCF7 cells ranged from 78-> 500 μg/ml. Moreover, all the plant extracts but the aqueous extract of Cassia siamea exhibited antimetastatic action and induced apoptosis and cell cycle arrest in MCF7 cells. Liquid chromatography/time-of-flight/mass spectrometry profiling revealed that the five potent extracts contain many phenols and omega-6 fatty acids, and some of the identified compounds (isorhamnetin, eupatorin, alpinumisoflavone, procyanidin B3, syringin, and gallic acid) have been reported to have antiproliferative effects on cancer cells. Hence, the stem bark of these plants could be potential sources of antibreast cancer agents.
Collapse
Affiliation(s)
- Ismail Abiola Adebayo
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Haladu Ali Gagman
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
- Department of Biological Sciences, Faculty of Sciences, Bauchi State University Gadau, 751 Itas Gadau, Nigeria
| | - Wasiu Gbolahan Balogun
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Mowaffaq Adam Ahmed Adam
- Infectomics Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Rafedah Abas
- Centralized Research Labs (CRL), Advanced Medical and Dental Institute USM, Bertam, 13200 Kepala Batas, Penang, Malaysia
| | - Khalid Rehman Hakeem
- Department of Biological Science, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia
| | | | | | - Hasni Arsad
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Pulau Pinang, Malaysia
| |
Collapse
|
32
|
Zohra T, Ovais M, Khalil AT, Qasim M, Ayaz M, Shinwari ZK, Ahmad S, Zahoor M. Bio-guided profiling and HPLC-DAD finger printing of Atriplex lasiantha Boiss. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:4. [PMID: 30606171 PMCID: PMC6318930 DOI: 10.1186/s12906-018-2416-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 12/19/2018] [Indexed: 01/21/2023]
Abstract
BACKGROUND Plants represent an intricate and innovative source for the discovery of novel therapeutic remedies for the management of various ailments. The current study has been aimed to validate the therapeutic potential of ethnomedicinally significant plant Atriplex lasiantha Boiss. METHODS The polarity based extraction process was carried out using fourteen solvents to figure out best extraction solvent and bioactive fractions. Total phenolic-flavonoids contents were quantified colorimetrically and polyphenolics were measured using HPLC-DAD analysis. Moreover, the test samples were tested against several diseases targets following various assays including free radicals scavenging, antibacterial, antifungal, cytotoxic and antileishmanial assay. RESULTS Among the solvent fractions, maximum yield was obtained with methanol-water extract i.e., 11 ± 0.49%. Maximum quantity of gallic acid equivalent phenolic content and quercetin equivalent flavonoid content were quantified in methanol-ethyl acetate extract of A. lasiantha. Significant quantity of rutin i.e., 0.3 μg/mg was quantified by HPLC analysis. The methanol-ethyl acetate extract of A. lasiantha exhibited maximum total antioxidant and total reducing power with 64.8 ± 1.16 AAE/mg extract respectively, while showing 59.8 ± 1.07% free radical scavenging potential. A significant antibacterial potential was exhibited by acetone-distilled water extract of A. lasiantha with 11 ± 0.65 mm zone of inhibition against B. subtilis. Considerable antifungal activity was exhibited by ethyl acetate-n-hexane extract of aerial part of A. lasiantha with 14 ± 1.94 mm zone of inhibition against A. fumigatus. Highest percentage of α-amylase inhibition (41.8 ± 1.09%) was observed in ethyl acetate-n-hexane extract. Methanol-acetone extract of A. lasiantha demonstrated significant inhibition of hyphae formation with 11 ± 0.49 mm bald zone of inhibition. Significant in-vitro cytotoxicity against Hep G2 cell line has been exhibited by methanol-chloroforms extract of A. lasiantha. CONCLUSION The current study reveals the prospective potential of Atriplex lasiantha Boiss. for the discovery of biologically active compounds through bioassay guided isolation against various diseases.
Collapse
Affiliation(s)
- Tanzeel Zohra
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 44000 Pakistan
- Department of Virology, National Institute of Health, Islamabad, Pakistan
| | - Muhammad Ovais
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Ali Talha Khalil
- Department of Eastern Medicine and Surgery, Qarshi University, Lahore, Punjab -56000 Pakistan
| | - Muhammad Qasim
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 44000 Pakistan
| | - Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Khyber Pakhtunkhwa, 18000 Pakistan
| | - Zabta Khan Shinwari
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 44000 Pakistan
- Department of Biotechnology, Pakistan Academy of Sciences, Islamabad, 44000 Pakistan
| | - Sajjad Ahmad
- Department of Pharmacy, Abasyn University Islamabad Campus, Islamabad, 44000 Pakistan
| | - Mohammad Zahoor
- Department of Chemistry, University of Malakand, Khyber Pakhtunkhwa, 18000 Pakistan
| |
Collapse
|
33
|
Neuroprotective and Antiaging Essential Oils and Lipids in Plants. BIOACTIVE MOLECULES IN FOOD 2019. [DOI: 10.1007/978-3-319-78030-6_89] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
34
|
Dos Santos TC, Gomes TM, Pinto BAS, Camara AL, Paes AMDA. Naturally Occurring Acetylcholinesterase Inhibitors and Their Potential Use for Alzheimer's Disease Therapy. Front Pharmacol 2018; 9:1192. [PMID: 30405413 PMCID: PMC6201143 DOI: 10.3389/fphar.2018.01192] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 09/28/2018] [Indexed: 01/25/2023] Open
Abstract
Alzheimer's disease (AD) is a main cause of dementia, accounting for up to 75% of all dementia cases. Pathophysiological processes described for AD progression involve neurons and synapses degeneration, mainly characterized by cholinergic impairment. This feature makes acetylcholinesterase inhibitors (AChEi) the main class of drugs currently used for the treatment of AD dementia phase, among which galantamine is the only naturally occurring substance. However, several plant species producing diverse classes of alkaloids, coumarins, terpenes, and polyphenols have been assessed for their anti-AChE activity, becoming potential candidates for new anti-AD drugs. Therefore, this mini-review aimed to recapitulate last decade studies on the anti-AChE activity of plant species, their respective extracts, as well as isolated compounds. The anti-AChE activity of extracts prepared from 54 plant species pertaining 29 families, as well as 36 isolated compounds were classified and discussed according to their anti-AChE pharmacological potency to highlight the most prominent ones. Besides, relevant limitations, such as proper antioxidant assessment, and scarcity of toxicological and clinical studies were also discussed in order to help researchers out with the bioprospection of potentially new AChEi.
Collapse
Affiliation(s)
- Thaiane Coelho Dos Santos
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Biological and Health Sciences Centre, Federal University of Maranhão, São Luís, Brazil.,Health Sciences Graduate Program, Biological and Health Sciences Centre, Federal University of Maranhão, São Luís, Brazil
| | - Thaís Mota Gomes
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Biological and Health Sciences Centre, Federal University of Maranhão, São Luís, Brazil
| | - Bruno Araújo Serra Pinto
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Biological and Health Sciences Centre, Federal University of Maranhão, São Luís, Brazil.,Health Sciences Graduate Program, Biological and Health Sciences Centre, Federal University of Maranhão, São Luís, Brazil
| | - Adriana Leandro Camara
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Biological and Health Sciences Centre, Federal University of Maranhão, São Luís, Brazil
| | - Antonio Marcus de Andrade Paes
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Biological and Health Sciences Centre, Federal University of Maranhão, São Luís, Brazil.,Health Sciences Graduate Program, Biological and Health Sciences Centre, Federal University of Maranhão, São Luís, Brazil
| |
Collapse
|
35
|
Altay A, Degirmenci S, Korkmaz M, Cankaya M, Koksal E. In vitro evaluation of antioxidant and anti-proliferative activities of Gypsophila sphaerocephala (Caryophyllaceae) extracts together with their phenolic profiles. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2018. [DOI: 10.1007/s11694-018-9909-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
36
|
Atriplex mollis Desf. Aerial Parts: Extraction Procedures, Secondary Metabolites and Color Analysis. Molecules 2018; 23:molecules23081962. [PMID: 30082629 PMCID: PMC6222348 DOI: 10.3390/molecules23081962] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/02/2018] [Accepted: 08/05/2018] [Indexed: 11/22/2022] Open
Abstract
A method using high-performance liquid chromatography coupled with a photodiode array detector was proposed for the rapid characterization of different phenolic constituents from the extracts of Atriplex mollis aerial parts. Atriplex species are known for their multiple biological activities, but no information is available in the literature about A. mollis. With the aim to firstly characterize the main secondary metabolites of this plant, so as to orient better the biological evaluation, we applied three different extraction procedures and compared the chromatographic results. Microwave-assisted extraction gave the best yield and recovery of important compounds such as gallic acid, catechin, chlorogenic acid, p-OH benzoic acid, rutin, sinapinic acid, t-ferulic acid, naringenin and benzoic acid. These constituents belong to three important chemical classes: phenolic acids, flavonoids and monoterpenes. Color evaluation and analysis of chlorophylls (a and b) and carotenoids complete the preliminary profile of this plant. From these analyses, Atriplex mollis is a source of bioactive compounds (especially rutin, t-ferulic acid and gallic acid) and could be recommended as a plant of phyto-pharmaceutical relevance, opening new perspectives on this salt-tolerant plant.
Collapse
|
37
|
Nwidu LL, Oboma YI, Elmorsy E, Carter WG. Hepatoprotective effect of hydromethanolic leaf extract of Musanga cecropioides (Urticaceae) on carbon tetrachloride-induced liver injury and oxidative stress. J Taibah Univ Med Sci 2018; 13:344-354. [PMID: 31435346 PMCID: PMC6694957 DOI: 10.1016/j.jtumed.2018.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/05/2018] [Accepted: 04/12/2018] [Indexed: 01/31/2023] Open
Abstract
Objective Natural antioxidant products are gaining popularity as treatments for various pathological liver injuries. Musanga cecropioides (Urticaceae) leaf extract is used in ethnomedicine for the management of jaundice and other hepatic ailments in Ibibio, Nigeria. This study evaluated the hepatoprotective and antioxidant effects of M. cecropioides hydromethanolic leaf (MCHL) extract against carbon tetrachloride (CCl4)-induced hepatotoxicity in rats. Methods Liver damage was induced by administering CCl4 dissolved in liquid paraffin (2 mL/kg bw 1:1 intraperitoneally) after pretreatment with MCHL extract for 7 days. Thereafter, acute hepatotoxicity was evaluated in 36 Wistar rats divided into six groups (A–F) of six animals each. Group A served as the negative control; B received CCl4 1 mL/kg only; C–E received 70.7, 141.4, and 282.8 mg/kg MCHL extract, respectively; and F received silymarin 100 mg/kg daily for 7 days by oral gavage. After 48 h, the rats were sacrificed, and samples obtained from them were assayed for histological and biochemical biomarkers of hepatotoxicity. Results The MCHL extracts significantly (p < 0.001–0.05) reduced the increase in aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), conjugated bilirubin (CBIL), and total bilirubin (TBIL) levels induced by CCl4 intoxication. There was no significant alteration in haematological indices or weight following administration of the MCHL extracts. Histopathological examinations revealed mitotic bodies in the 141.4 mg/kg MCHL extract-treated rats, an indication of tissue repair processes. Conclusion The MCHL extract has a dose-specific hepatoprotective effect; hence, the utilisation of this extract for the management of hepatitis requires caution.
Collapse
Affiliation(s)
- Lucky L Nwidu
- Department of Experimental Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of Port Harcourt, Choba, Nigeria
| | - Yibala I Oboma
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Egypt
| | - Ekramy Elmorsy
- Department of Medical Laboratory Science, Faculty of Basic Medical Sciences, College Health Sciences, Niger Delta University, Wilberforce Island, Bayelsa State, Nigeria
| | - Wayne G Carter
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| |
Collapse
|
38
|
Khan H, Marya, Amin S, Kamal MA, Patel S. Flavonoids as acetylcholinesterase inhibitors: Current therapeutic standing and future prospects. Biomed Pharmacother 2018; 101:860-870. [PMID: 29635895 DOI: 10.1016/j.biopha.2018.03.007] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/04/2018] [Accepted: 03/05/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Acetylcholinesterase (AChE), a serine hydrolase, is primarily responsible for the termination of signal transmission in the cholinergic system, owing to its outstanding hydrolyzing potential. Its substrate acetylcholine (ACh), is a neurotransmitter of the cholinergic system, with a predominant effect on motor neurons involved in memory formation. So, by decreasing the activity of this enzyme by employment of specific inhibitors, a number of motor neuron disorders such as myasthenia gravis, glaucoma, Lewy body dementia, and Alzheimer's disease, among others, can be treated. However, the current-available AChE inhibitors have several limitations in terms of efficacy, therapeutic range, and safety. SCOPE AND APPROACH Primarily due to the non-compliance of current therapies, new, effective and safe inhibitors are being searched for, especially those which act through multiple receptor sites, but do not elicit undesirable effects. In this regard, the evaluation of phytochemicals such as flavonoids, can be a rational approach. The therapeutic potential of flavonoids has already been recognized agaisnt several ailments. This review deals with various plant-derived flavonoids, their preclinical potential as AChE inhibitors, in established assays, possible mechanisms of action, and structural activity relationship (SAR). RESULTS AND CONCLUSIONS Subsequently, a number of plant-derived flavonoids with outstanding efficacy and potency as AChE inhibitors, the mechanistic, their safety profiles, and pharmacokinetic attributes have been discussed. Through derivatization of these reported flavonoids, some limitation in efficacy or pharmacokinetic parameters can be addressed. The selected flavonoids ought to be tested in clinical studies to discover new neuro-therapeutic candidates.
Collapse
Affiliation(s)
- Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan.
| | - Marya
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Surriya Amin
- Department of Botany, Islamia College Peshawar, Pakistan
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW, 2770, Australia; Novel Global Community Educational Foundation, Australia
| | - Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, San Diego, CA, 92182, USA.
| |
Collapse
|
39
|
Parvez MK, Arbab AH, Al-Dosari MS, Al-Rehaily AJ, Alam P, Ibrahim KE, Alsaid MS, Rafatullah S. Protective effect of Atriplex suberecta extract against oxidative and apoptotic hepatotoxicity. Exp Ther Med 2018; 15:3883-3891. [PMID: 29581744 PMCID: PMC5863606 DOI: 10.3892/etm.2018.5919] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 01/03/2018] [Indexed: 12/19/2022] Open
Abstract
Atriplex suberecta I. Verd is a known phytomedicinal species of Atriplex; however, studies into its bioactivity remain inconclusive. The in vitro and in vivo antioxidative and hepatoprotective potential of A. suberecta ethanol-extract (ASEE) was assessed in the present study. 1,1-diphenyl-2-picrylhydrazyl radical scavenging and β-carotene bleaching assays revealed that ASEE possesses free radical scavenging and anti-lipid peroxidative activities. These results were supported by the in vitro protection of HepG2 hepatoblastoma cells via abating 2,7-dichlorofluorescein-activated oxidative and apoptotic molecules (caspase-3/-7). In carbon tetrachloride-treated rats, the oral administration of ASEE significantly normalized serum biomarkers of liver function (serum glutamate oxaloacetate, serum pyruvate transaminase, alkaline phosphatase, γ-glutamyl transferase and bilirubin) and the lipid profile (total cholesterol, high-density lipoprotein, low-density lipoprotein, triglycerides and malondialdehyde), including tissue non-protein sulfhydryl and total protein levels. These results were also supported by liver histopathology, which demonstrated that the therapeutic effect of ASEE was comparable to silymarin. Furthermore, phytochemical analysis of ASEE revealed the presence of flavonoids, alkaloids, tannins and saponins. Rutin, an antioxidant flavonoid, was identified using the validated high-performance thin-layer chromatography method. In conclusion, this is the first report on the therapeutic potential of A. suberecta against chemical-induced oxidative stress and liver damage.
Collapse
Affiliation(s)
- Mohammad K Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmad H Arbab
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed S Al-Dosari
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Adnan J Al-Rehaily
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Perwez Alam
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid E Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mansour S Alsaid
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.,Medicinal, Aromatic and Poisonous Plants Research Center, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Syed Rafatullah
- Medicinal, Aromatic and Poisonous Plants Research Center, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
40
|
Rashid N, Gbedomon RC, Ahmad M, Salako VK, Zafar M, Malik K. Traditional knowledge on herbal drinks among indigenous communities in Azad Jammu and Kashmir, Pakistan. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2018; 14:16. [PMID: 29467005 PMCID: PMC5822664 DOI: 10.1186/s13002-018-0217-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 02/12/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND Traditional knowledge about the use of medicinal plants for herbal drinks (HDs) is not well documented in the Azad Kashmir region despite their widespread use. This study highlights the taxonomic diversity and traditional knowledge on medicinal plants used for HDs while examining the diversity of diseases treated with HDs in the study area. METHODS Individual discussions were conducted with 255 informants (84 women and 171 men). Data gathered included (i) informant age and gender, (ii) HD species and respective plant parts used, (iii) health disorders treated, and (iv) mode of preparation and utilizations. Quantitative ethnobotanical indices including relative frequency of citation (RFC), informant consensus factor (ICF), and use value (UV) were used for data analyses. RESULTS Altogether, 73 medicinal plants belonging to 40 families and 66 genera were reported to be used in HD preparations, with Asteraceae being the richest family. The average number of HD species cited was 9.09 ± 0.17 per informant and did not vary either by age or gender. In addition, men and women, and adults and the young used the same pool of species (dissimilarity nearly zero). The most used plant parts were leaves (20.00%), roots (17.25%), and fruits (16.47%). Based on UV, the top five most used species were Valeriana jatamansi, Isodon rugosus, Onopordum acanthium, Acacia nilotica, and Viola canescens; and the UV was similar among gender and age categories too. The most utilized herbal preparation forms included decoctions, infusions, and tea. One hundred and eleven diseases grouped into 13 ailment categories were reported to be cured using HDs. The main category of disease treated with HDs was gastrointestinal (GIT) disorders (RFC = 17.43%). Relatively few species were used by a large proportion of informants for each category of ailment (ICF ≥ 0.60). Only one species was used for "glandular disorders" and "eye diseases" (ICF = 1). A novelty of about 22% (16 species) was recorded for HD species in the present work. CONCLUSION The diversity of medicinal plant species used as HDs and the associated traditional knowledge are of considerable value to the indigenous communities of the Azad Kashmir region. Therefore, there is a need for conservation and preservation of medicinal HD species as well as the wealth of indigenous knowledge. The conservation effort should be high for species in the ailments categories glandular disorders and eye diseases. The therapeutic uses of HDs have provided basic data for further research focused on phytochemical and pharmacological studies and conservation of the most important species.
Collapse
Affiliation(s)
- Neelam Rashid
- Department of Botany, Mirpur University of Science and Technology, Mirpur, Azad Kashmir Pakistan
- Department of Plant Sciences, Quaid- I-Azam University, Islamabad, Pakistan
| | - Rodrigue Castro Gbedomon
- Laboratoire de Biomathématiques et d’Estimations Forestières, Faculty of Agronomic Sciences, University of Abomey-Calavi, 04, BP 1525 Cotonou, Benin
| | - Mushtaq Ahmad
- Department of Plant Sciences, Quaid- I-Azam University, Islamabad, Pakistan
| | - Valère Kolawolé Salako
- Laboratoire de Biomathématiques et d’Estimations Forestières, Faculty of Agronomic Sciences, University of Abomey-Calavi, 04, BP 1525 Cotonou, Benin
| | - Muhammad Zafar
- Department of Plant Sciences, Quaid- I-Azam University, Islamabad, Pakistan
| | - Khafsa Malik
- Department of Plant Sciences, Quaid- I-Azam University, Islamabad, Pakistan
| |
Collapse
|
41
|
Das M, Pandima Devi K. Neuroprotective and Antiaging Essential Oils and Lipids in Plants. REFERENCE SERIES IN PHYTOCHEMISTRY 2018. [DOI: 10.1007/978-3-319-54528-8_89-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
42
|
Mahmood F, Jan MS, Ahmad S, Rashid U, Ayaz M, Ullah F, Hussain F, Ahmad A, Khan AU, Aasim M, Sadiq A. Ethyl 3-oxo-2-(2,5-dioxopyrrolidin-3-yl)butanoate Derivatives: Anthelmintic and Cytotoxic Potentials, Antimicrobial, and Docking Studies. Front Chem 2017; 5:119. [PMID: 29312926 PMCID: PMC5733081 DOI: 10.3389/fchem.2017.00119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/30/2017] [Indexed: 11/24/2022] Open
Abstract
Development of multidrug resistance (MDR) to antimicrobial, antiparasitic and chemotherapeutic agents is a global challenge for the scientific community. Despite of the emergence of MDR pathogens, the development of novel and more effective drugs is slow and scientist even speculate that we are going back the pre-antibiotic era. This work aims to study and evaluate the preliminary antibacterial, anthelmintic and cytotoxic potentials of ethyl 3-oxo-2-(2,5-dioxopyrrolidin-3-yl)butanoates. Among all of the four compounds, compound 2 has displayed remarkable potency with MIC values of 0.125, 0.083, 0.073, and 0.109 mg/ml against E. sakazakii, E. coli. S. aureus, and K. pneumonia, respectively. Compared to etoposide (LC50 9.8 μg/ml), the compounds demonstrated LC50 values from 280 to 765 μg/ml. For anthelmintic assay, three concentrations of each compound and standard drug were studied in determination of time of death of the two species. Excellent anthelmintic activity was observed by all four compounds against P. posthuma and A. galli better than standard albendazole. High GOLD fitness score data from docking analysis toward the targets represent better protein-ligand binding affinity and thus indicate a high propensity for all the active compounds to bind to the active site. The promising in-vitro antimicrobial, anthelmintic activity, and cytotoxicity data conclusively revealed that these compounds may serve as viable lead compounds for the treatment of bacterial and parasitic infections, and therefore, could help the medicinal chemists to design future chemotherapeutic agents to avoid rapid drug resistance.
Collapse
Affiliation(s)
- Fawad Mahmood
- Department of Pharmacy, Sarhad University of Science & Technology, Peshawar, Pakistan
| | - Muhammad S. Jan
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Sajjad Ahmad
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Umer Rashid
- Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Farhat Ullah
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Fida Hussain
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
- Department of Pharmacy, University of Swabi, Swabi, Pakistan
| | - Ashfaq Ahmad
- Department of Pharmacy, Sarhad University of Science & Technology, Peshawar, Pakistan
| | - Arif-ullah Khan
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Muhammad Aasim
- Department of Biotechnology, University of Malakand, Chakdara, Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| |
Collapse
|
43
|
Imran M, Ullah F, Ayaz M, Sadiq A, Shah MR, Jan MS, Ullah F. Anticholinesterase and antioxidant potentials of Nonea micrantha Bioss. & Reut along with GC-MS analysis. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:499. [PMID: 29169349 PMCID: PMC5701353 DOI: 10.1186/s12906-017-2004-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/14/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Nonea micrantha Boiss. & Reut . being an unexplored member of Boraginaceae was investigated for GC/MS analysis, acetylcholinesterase (AChE), butyrylcholinesterase (BChE) inhibitory and antioxidant activities in an attempt to find its effectiveness in neurological disorders. METHODS The AChE and BChE inhibitory activities of crude methanolic extract (Nm.Cr), subsequent fractions; n-hexane (Nm.Hex), chloroform (Nm.Cf), ethyl acetate (Nm.EtAc), aqueous (Nm.Aq) and crude saponins (Nm.Sp) from N. micrantha were conducted using Ellman's assay. The antioxidant activity of the plant samples using DPPH and ABTS free radical scavenging potential following quantitative spectrophotometric and qualitative TLC method were also studied. Moreover the total reducing power (TRP) of all the samples was also figured out. RESULTS The GC/Ms analysis confirmed that the plant is rich in bioactive molecules. Among different fractions, Nm.Hex, Nm.EtAc and Nm.Cf exhibited highest AChE inhibitory activities causing 75.51 ± 0.73, 68.54 ± 0.59 and 63.48 ± 0.59% enzyme inhibition respectively and IC50 of 44, 100 and 144 μg/mL respectively. In BChE inhibiton assay, Nm.Aq, Nm.Sp and Nm.Cr showed highest activity causing 83.49 ± 0.27, 81.49 ± 0.89 and 75.31 ± 0.56% enzyme inhibition with IC50 of 90, 110 and 44 μg/mL respectively. In DPPH assay, Nm.Aq, Nm.Cf, Nm.Hex and Nm.Cr were most potent exhibiting IC50 values of 3, 5, 93 and 120 μg/ml respectively. In ABTS assay Nm.EtAc, Nm.Aq, Nm.Sp and Nm.Cr showed IC50 values of 60, 95, 100 and 150 μg/mL respectively. Likewise ABTS inhibition was most prominent for Nm.Sp, Nm.EtAc and Nm.Aq causing 78.26 ± 0.49, 67.67 ± 0.73 and 63.58 ± 0.45% inhibition respectively at 1 mg/mL. These results were further confirmed by qualitative screening using DPPH and ABTS staining. CONCLUSIONS Our anticholinesterase and antioxidant results signify the N. micrantha as a potential source of natural bioactive compounds. Moreover isolation of natural bioactive compounds from this plant may lead to novel drug candidates against neurodegenerative disorders.
Collapse
Affiliation(s)
- Muhammad Imran
- Department of Pharmacy, University of Malakand, Chakdara, Dir Pakistan
| | - Farhat Ullah
- Department of Pharmacy, University of Malakand, Chakdara, Dir Pakistan
| | - Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Chakdara, Dir Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara, Dir Pakistan
| | - Muhammad Raza Shah
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, Karachi University, Karachi, 74200 Pakistan
| | | | - Farman Ullah
- Kohat University of Science and Technology, Kohat, Pakistan
| |
Collapse
|
44
|
Ayaz M, Junaid M, Ullah F, Subhan F, Sadiq A, Ali G, Ovais M, Shahid M, Ahmad A, Wadood A, El-Shazly M, Ahmad N, Ahmad S. Anti-Alzheimer's Studies on β-Sitosterol Isolated from Polygonum hydropiper L. Front Pharmacol 2017; 8:697. [PMID: 29056913 PMCID: PMC5635809 DOI: 10.3389/fphar.2017.00697] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 09/19/2017] [Indexed: 12/22/2022] Open
Abstract
The family Polygonaceae is known for its traditional use in the management of various neurological disorders including Alzheimer's disease (AD). In search of new anti-AD drugs, β-sitosterol isolated from Polygonum hydropiper was subjected to in vitro, in vivo, behavioral and molecular docking studies to confirm its possibility as a potential anti-Alzheimer's agent. The in vitro AChE, BChE inhibitory potentials of β-sitosterol were investigated following Ellman's assay. The antioxidant activity was tested using DPPH, ABTS and H2O2 assays. Behavioral studies were performed on a sub-strain of transgenic mice using shallow water maze (SWM), Y-maze and balance beam tests. β-sitosterol was tested for in vivo inhibitory potentials against cholinesterase's and free radicals in the frontal cortex (FC) and hippocampus (HC). The molecular docking study was performed to predict the binding mode of β-sitosterol in the active sites of AChE and BChE as inhibitor. Considerable in vitro and in vivo cholinesterase inhibitory effects were observed in the β-sitosterol treated groups. β-sitosterol exhibited an IC50 value of 55 and 50 μg/ml against AChE and BChE respectively. Whereas, the activity of these enzymes were significantly low in FC and HC homogenates of transgenic animals. Molecular docking studies also support the binding of β-sitosterol with the target enzyme and further support the in vitro and in vivo results. In the antioxidant assays, the IC50 values were observed as 140, 120, and 280 μg/ml in the DPPH, ABTS and H2O2 assays respectively. The free radicals load in the brain tissues was significantly declined in the β-sitosterol treated animals as compared to the transgenic-saline treated groups. In the memory assessment and coordination tasks including SWM, Y-maze and balance beam tests, β-sitosterol treated transgenic animals showed gradual improvement in working memory, spontaneous alternation behavior and motor coordination. These results conclude that β-sitosterol is a potential compound for the management of memory deficit disorders like AD.
Collapse
Affiliation(s)
- Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Muhammad Junaid
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Farhat Ullah
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Fazal Subhan
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Gowhar Ali
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Muhammad Ovais
- Cancer Biology Lab, Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Shahid
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Pakistan
| | - Ashfaq Ahmad
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Mohamed El-Shazly
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Nisar Ahmad
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Sajjad Ahmad
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| |
Collapse
|
45
|
Kamal Z, Ullah F, Ahmad S, Ayaz M, Sadiq A, Imran M, Ahmad S, Rahman FU, Zeb A. Saponins and solvent extracts from Atriplex laciniata L. exhibited high anthelmintic and Insecticidal activities. J TRADIT CHIN MED 2017. [DOI: 10.1016/s0254-6272(17)30312-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
Ali M, Muhammad S, Shah MR, Khan A, Rashid U, Farooq U, Ullah F, Sadiq A, Ayaz M, Ali M, Ahmad M, Latif A. Neurologically Potent Molecules from Crataegus oxyacantha; Isolation, Anticholinesterase Inhibition, and Molecular Docking. Front Pharmacol 2017. [PMID: 28638340 PMCID: PMC5461367 DOI: 10.3389/fphar.2017.00327] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Crataegus oxyacantha is an important herbal supplement and famous for its antioxidant potential. The antioxidant in combination with anticholinesterase activity can be considered as an important target in the management of Alzheimer’s disease. The compounds isolated from C. oxyacantha were evaluated for cholinesterases inhibitory activity using Ellman’s assay with Galantamine as standard drug. Total of nine (1–9) compounds were isolated. Compounds 1 and 2 were isolated for the first time from natural source. Important natural products like β-Sitosterol-3-O-β-D-Glucopyranoside (3), lupeol (4), β-sitosterol (5), betulin (6), betulinic acid (7), oleanolic acid (8), and chrysin (9) have also been isolated from C. oxyacantha. Overall, all the compounds exhibited an overwhelming acetylcholinesterase (AChE) inhibition potential in the range 5.22–44.47 μM. The compound 3 was prominent AChE inhibitor with IC50 value of 5.22 μM. Likewise, all the compounds were also potent in butyrylcholinesterase (BChE) inhibitions with IC50s of up to 0.55–15.36 μM. All the compounds, except 3, were selective toward BChE. Mechanism of the inhibition of both the enzymes were further studied by docking procedures using Genetic Optimization for Ligand Docking suit v5.4.1. Furthermore, computational blood brain barrier prediction of the isolated compounds suggest that these are BBB+.
Collapse
Affiliation(s)
- Mumtaz Ali
- Department of Chemistry, University of MalakandChakdara, Pakistan
| | - Sultan Muhammad
- Department of Chemistry, University of MalakandChakdara, Pakistan
| | - Muhammad R Shah
- International Center for Chemical and Biological Sciences, University of KarachiKarachi, Pakistan
| | - Ajmal Khan
- COMSATS Institute of Information TechnologyAbbottabad, Pakistan.,UoN Chair of Oman Medicinal Plants and Marine Products, University of NizwaNizwa, Oman
| | - Umer Rashid
- COMSATS Institute of Information TechnologyAbbottabad, Pakistan
| | - Umar Farooq
- COMSATS Institute of Information TechnologyAbbottabad, Pakistan
| | - Farhat Ullah
- Department of Pharmacy, University of MalakandChakdara, Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, University of MalakandChakdara, Pakistan
| | - Muhammad Ayaz
- Department of Pharmacy, University of MalakandChakdara, Pakistan
| | - Majid Ali
- COMSATS Institute of Information TechnologyAbbottabad, Pakistan
| | - Manzoor Ahmad
- Department of Chemistry, University of MalakandChakdara, Pakistan
| | - Abdul Latif
- Department of Chemistry, University of MalakandChakdara, Pakistan
| |
Collapse
|
47
|
Ayaz M, Sadiq A, Junaid M, Ullah F, Subhan F, Ahmed J. Neuroprotective and Anti-Aging Potentials of Essential Oils from Aromatic and Medicinal Plants. Front Aging Neurosci 2017; 9:168. [PMID: 28611658 PMCID: PMC5447774 DOI: 10.3389/fnagi.2017.00168] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/12/2017] [Indexed: 11/13/2022] Open
Abstract
The use of essential oils (EOs) and their components is known since long in traditional medicine and aromatherapy for the management of various diseases, and is further increased in the recent times. The neuroprotective and anti-aging potentials of EOs and their possible mechanism of actions were evaluated by numerous researchers around the globe. Several clinically important EOs and their components from Nigella sativa, Acorus gramineus, Lavandula angustifolia, Eucalyptus globulus, Mentha piperita, Rosmarinus officinalis, Jasminum sambac, Piper nigrum and so many other plants are reported for neuroprotective effects. This review article was aimed to summarize the current finding on EOs tested against neurodegenerative disorders like Alzheimer disease (AD) and dementia. The effects of EOs on pathological targets of AD and dementia including amyloid deposition (Aβ), neurofibrillary tangles (NFTs), cholinergic hypofunction, oxidative stress and glutamatergic abnormalities were focused. Furthermore, effects of EOs on other neurological disorders including anxiety, depression, cognitive hypofunction epilepsy and convulsions were also evaluated in detail. In conclusion, EOs were effective on several pathological targets and have improved cognitive performance in animal models and human subjects. Thus, EOs can be developed as multi-potent agents against neurological disorders with better efficacy, safety and cost effectiveness.
Collapse
Affiliation(s)
- Muhammad Ayaz
- Department of Pharmacy, University of MalakandChakdara, Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, University of MalakandChakdara, Pakistan
| | - Muhammad Junaid
- Department of Pharmacy, University of MalakandChakdara, Pakistan
| | - Farhat Ullah
- Department of Pharmacy, University of MalakandChakdara, Pakistan
| | - Fazal Subhan
- Department of Pharmacy, University of PeshawarPeshawar, Pakistan
| | - Jawad Ahmed
- Institute of Basic Medical Sciences (IBMS), Khyber Medical University (KMU)Peshawar, Pakistan
| |
Collapse
|
48
|
Ben Nejma A, Znati M, Nguir A, Daich A, Othman M, Lawson AM, Ben Jannet H. Phytochemical and biological studies of Atriplex inflata f. Muell.: isolation of secondary bioactive metabolites. J Pharm Pharmacol 2017; 69:1064-1074. [DOI: 10.1111/jphp.12735] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 03/26/2017] [Indexed: 11/28/2022]
Abstract
Abstract
Objectives
This work describes the phytochemical and biological investigation of the Tunisian Atriplex inflata F. Muell (Chenopodiaceae).
Methods
Their chemical structures were elucidated on the basis of extensive spectroscopic methods, including 1D NMR and 2D NMR, ESI-HRMS and comparison with available literature data. The isolates were evaluated for their antioxidant activity by the DPPH•, ABTS+•, Fe3+ and catalase assays and also for their antibacterial and anticholinesterase activity.
Key findings
The chemical study of Atriplex inflata F. Muell led to the isolation of two fatty acids (9E)-methyl-8,11,12-trihydroxyoctadec-9-enoate 1 and (9E)-8,11,12-trihydroxyoctadecenoic acid 2 together with (Z)-litchiol B 3 and 20-hydroxyecdysone 4. Three of which are reported here for the first time in Atriplex genus. Based on the biosynthesis of hydroxylated arachidonic acid and derivatives, a plausible biogenesis pathway of the two fatty acids (1 and 2) was proposed. (Z)-litchiol B (3) was found to be the most active against Staphylococcus aureus. According to the literature, this is the first time that compounds 1, 2 and 3 were tested for their eventual biological activity.
Conclusions
In the results of the present work, we have proposed the biogenesis pathway of unsaturated fatty acid and described the structure–activity relationship.
Collapse
Affiliation(s)
- Aymen Ben Nejma
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Faculty of Science of Monastir, University of Monastir, Monastir, Tunisia
| | - Mansour Znati
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Faculty of Science of Monastir, University of Monastir, Monastir, Tunisia
| | - Asma Nguir
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Faculty of Science of Monastir, University of Monastir, Monastir, Tunisia
| | - Adam Daich
- Normandie Univ, France, UNILEHAVRE, URCOM, EA 3221, FR 3038 CNRS, F-76600, Le Havre, France
| | - Mohamed Othman
- Normandie Univ, France, UNILEHAVRE, URCOM, EA 3221, FR 3038 CNRS, F-76600, Le Havre, France
| | - Ata Martin Lawson
- Normandie Univ, France, UNILEHAVRE, URCOM, EA 3221, FR 3038 CNRS, F-76600, Le Havre, France
| | - Hichem Ben Jannet
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Faculty of Science of Monastir, University of Monastir, Monastir, Tunisia
| |
Collapse
|
49
|
Ayaz M, Junaid M, Ullah F, Sadiq A, Ovais M, Ahmad W, ahmad S, Zeb A. Chemical profiling, antimicrobial and insecticidal evaluations of Polygonum hydropiper L. Altern Ther Health Med 2016; 16:502. [PMID: 27919287 PMCID: PMC5139080 DOI: 10.1186/s12906-016-1491-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 11/30/2016] [Indexed: 11/25/2022]
Abstract
Background The emergence of multidrug resistant (MDR) pathogens is of great concern to the global health community. Our ability to effectively treat diseases is based on the discovery of potent drugs for the treatment of these challenging diseases. Traditional medicines are one of the major sources for the discovery of safe, effective and economical drug candidates. In order to validate its antibacterial, antifungal and insecticidal potentials with respect to traditional uses, we have screened for the first time Polygonum hydropiper against pathogenic bacterial, fungal strains and a variety of insects. Methods Polygonum hydropiper samples including crude extract (Ph.Cr), subsequent fractions; n-hexane (Ph.Hex), chloroform (Ph.Chf), ethyl acetate (Ph.EtAc), n-Butanol (Ph.Bt), aqueous (Ph.Aq) and crude saponins (Ph.Sp) were tested against pathogenic bacterial and fungal strains. Insecticidal activities were performed against Tribolium castaneum and Rhyzopertha dominica and Monomorium pharaonis. Ph.Cr was analyzed by gas chromatography–mass spectrometry (GC-MS) for preliminary identification of chemical constituents. Results In disc diffusion assay, Ph.Chf, Ph.Hex, Ph.EtAc and Ph.Sp exhibited highest activity against Enterococcus faecalis. MICs of Ph.Chf against Enterococcus faecalis, Klebsiella pneumoniae, Escherichia coli, P. mirabilis, Staphylococcus aureus, Salmonella typhi and Pseudomonas aeruginosa were 32.00, 13.33, 10.66, 5.33, 64.00, 8.66 and 10.66 μg/ml respectively. MFC’s of Ph.Chf against Aspergillus fumigatus, Aspergillus flavus, Aspergillus niger and Fusarium oxysporum were 16.66, 23.33, 125.00 and 46.66 μg/ml respectively. Ph.EtAc, Ph.Sp, Ph.Chf and Ph.Bt were most active fractions against T. castaneum and R. dominica. Ph.Sp being most active against A. punctatum exhibited LC50 of < 0.01 mg/ml. In GC-MS analysis of Ph.Cr, 124 compounds were identified among which several bioactive antibacterial, antifungal and insecticidal compounds were found. Conclusions P. hydropiper samples exhibited broad spectrum of activity against bacterial and fungal strains. Our results support previously reported insecticidal properties of saponins and may provide scientific justification for the ethno-medicinal uses of the plant. Electronic supplementary material The online version of this article (doi:10.1186/s12906-016-1491-4) contains supplementary material, which is available to authorized users.
Collapse
|
50
|
Sadiq A, Ahmad S, Ali R, Ahmad F, Ahmad S, Zeb A, Ayaz M, Ullah F, Siddique AN. Antibacterial and antifungal potentials of the solvents extracts from Eryngium caeruleum, Notholirion thomsonianum and Allium consanguineum. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:478. [PMID: 27881119 PMCID: PMC5122145 DOI: 10.1186/s12906-016-1465-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 11/17/2016] [Indexed: 01/19/2023]
Abstract
BACKGROUND Herbal medicines have long been used for various ailments in various societies and natural bioactive compounds are gaining more and more importance due to various factors. In this context, three plant species i.e., Eryngium caeruleum, Notholirion thomsonianum and Allium consanguineum have been aimed for the scientific verification of their purported traditional uses against various infectious diseases. METHODS In this study, three plants were assayed for antibacterial and antifungal potentials. The antibacterial investigations were performed via well diffusion method and nutrient broth dilution method. The bacterial strains used in the study were Enterococcus faecalis, Proteus mirabilis, Escherichia coli, Salmonella typhi, Klebsiella pneumonia and Pseudomonas aeruginosa. The antifungal potential was investigated by dilution method of Muller-Hinton agar media of the plants' samples. The fungal strains used were Aspergillis fumigatus, Aspergillis flavus and Aspergillis niger. Ceftriaxone and nystatin were used as standard drugs in antibacterial and antifungal assays respectively. RESULTS Different fractions from N. thomsonianum were tested against five bacterial strains while the samples from A. consanguineum and E. caeruleum were tested against six bacterial strains. All the samples exhibited prominent antibacterial activity against the tested strains. Overall, chloroform and ethyl acetate fractions were found most potent among the three plants' samples. N. thomsonianum excelled among the three plants in antibacterial activity. Similarly, in antifungal assay, N. thomsonianum exhibited strong antifungal activity against the fungal strains. The chloroform fraction displayed MFCs of 175.67 ± 5.20***, 29.33 ± 5.48*** and 63.00 ± 4.93*** μg/ml against Aspergillus fumigatus, Aspergillus flavus and Aspergillus niger respectively. The whole study demonstrates that all the three plant species were active against tested bacterial and fungal strains. CONCLUSION It can be concluded from our findings that N. thomsonianum, A. consanguineum and E. caeruleum have broad antibacterial and antifungal potentials. In all of the plants' samples, chloroform and ethyl acetate fractions were more active. Furthermore, being the potent samples, the chloroform and ethyl acetate fractions of these plants can be subjected to column chromatography for the isolation of more effective antimicrobial drugs.
Collapse
Affiliation(s)
- Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara, 18000 Dir (L), KPK Pakistan
| | - Sadiq Ahmad
- Department of Pharmacy, University of Malakand, Chakdara, 18000 Dir (L), KPK Pakistan
| | - Rahmat Ali
- Department of Pharmacy, University of Malakand, Chakdara, 18000 Dir (L), KPK Pakistan
| | - Fawad Ahmad
- Department of Pharmacy, University of Malakand, Chakdara, 18000 Dir (L), KPK Pakistan
| | - Sajjad Ahmad
- Department of Pharmacy, University of Malakand, Chakdara, 18000 Dir (L), KPK Pakistan
| | - Anwar Zeb
- Department of Pharmacy, University of Malakand, Chakdara, 18000 Dir (L), KPK Pakistan
| | - Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Chakdara, 18000 Dir (L), KPK Pakistan
| | - Farhat Ullah
- Department of Pharmacy, University of Malakand, Chakdara, 18000 Dir (L), KPK Pakistan
| | - Abu Nasar Siddique
- Department of Biotechnology, Bacha Khan University, Charsadda, 24420 KPK Pakistan
| |
Collapse
|