1
|
Pose-Méndez S, Schramm P, Valishetti K, Köster RW. Development, circuitry, and function of the zebrafish cerebellum. Cell Mol Life Sci 2023; 80:227. [PMID: 37490159 PMCID: PMC10368569 DOI: 10.1007/s00018-023-04879-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/30/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
The cerebellum represents a brain compartment that first appeared in gnathostomes (jawed vertebrates). Besides the addition of cell numbers, its development, cytoarchitecture, circuitry, physiology, and function have been highly conserved throughout avian and mammalian species. While cerebellar research in avian and mammals is extensive, systematic investigations on this brain compartment in zebrafish as a teleostian model organism started only about two decades ago, but has provided considerable insight into cerebellar development, physiology, and function since then. Zebrafish are genetically tractable with nearly transparent small-sized embryos, in which cerebellar development occurs within a few days. Therefore, genetic investigations accompanied with non-invasive high-resolution in vivo time-lapse imaging represents a powerful combination for interrogating the behavior and function of cerebellar cells in their complex native environment.
Collapse
Affiliation(s)
- Sol Pose-Méndez
- Cellular and Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, 38106, Braunschweig, Germany.
| | - Paul Schramm
- Cellular and Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Komali Valishetti
- Cellular and Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Reinhard W Köster
- Cellular and Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, 38106, Braunschweig, Germany.
| |
Collapse
|
2
|
Kim M, Jun S, Park H, Tanaka-Yamamoto K, Yamamoto Y. Regulation of cerebellar network development by granule cells and their molecules. Front Mol Neurosci 2023; 16:1236015. [PMID: 37520428 PMCID: PMC10375027 DOI: 10.3389/fnmol.2023.1236015] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
The well-organized cerebellar structures and neuronal networks are likely crucial for their functions in motor coordination, motor learning, cognition, and emotion. Such cerebellar structures and neuronal networks are formed during developmental periods through orchestrated mechanisms, which include not only cell-autonomous programs but also interactions between the same or different types of neurons. Cerebellar granule cells (GCs) are the most numerous neurons in the brain and are generated through intensive cell division of GC precursors (GCPs) during postnatal developmental periods. While GCs go through their own developmental processes of proliferation, differentiation, migration, and maturation, they also play a crucial role in cerebellar development. One of the best-characterized contributions is the enlargement and foliation of the cerebellum through massive proliferation of GCPs. In addition to this contribution, studies have shown that immature GCs and GCPs regulate multiple factors in the developing cerebellum, such as the development of other types of cerebellar neurons or the establishment of afferent innervations. These studies have often found impairments of cerebellar development in animals lacking expression of certain molecules in GCs, suggesting that the regulations are mediated by molecules that are secreted from or present in GCs. Given the growing recognition of GCs as regulators of cerebellar development, this review will summarize our current understanding of cerebellar development regulated by GCs and molecules in GCs, based on accumulated studies and recent findings, and will discuss their potential further contributions.
Collapse
Affiliation(s)
- Muwoong Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, Republic of Korea
| | - Soyoung Jun
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, Republic of Korea
| | - Heeyoun Park
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Keiko Tanaka-Yamamoto
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, Republic of Korea
| | - Yukio Yamamoto
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| |
Collapse
|
3
|
Lowenstein ED, Cui K, Hernandez-Miranda LR. Regulation of early cerebellar development. FEBS J 2023; 290:2786-2804. [PMID: 35262281 DOI: 10.1111/febs.16426] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/13/2022] [Accepted: 03/07/2022] [Indexed: 12/27/2022]
Abstract
The study of cerebellar development has been at the forefront of neuroscience since the pioneering work of Wilhelm His Sr., Santiago Ramón y Cajal and many others since the 19th century. They laid the foundation to identify the circuitry of the cerebellum, already revealing its stereotypic three-layered cortex and discerning several of its neuronal components. Their work was fundamental in the acceptance of the neuron doctrine, which acknowledges the key role of individual neurons in forming the basic units of the nervous system. Increasing evidence shows that the cerebellum performs a variety of homeostatic and higher order neuronal functions beyond the mere control of motor behaviour. Over the last three decades, many studies have revealed the molecular machinery that regulates distinct aspects of cerebellar development, from the establishment of a cerebellar anlage in the posterior brain to the identification of cerebellar neuron diversity at the single cell level. In this review, we focus on summarizing our current knowledge on early cerebellar development with a particular emphasis on the molecular determinants that secure neuron specification and contribute to the diversity of cerebellar neurons.
Collapse
Affiliation(s)
| | - Ke Cui
- Institut für Zell- and Neurobiologie, Charité Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Luis Rodrigo Hernandez-Miranda
- Institut für Zell- and Neurobiologie, Charité Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| |
Collapse
|
4
|
Rahimi-Balaei M, Marzban H, Hawkes R. Early Cerebellar Development in Relation to the Trigeminal System. CEREBELLUM (LONDON, ENGLAND) 2022; 21:784-790. [PMID: 35237930 DOI: 10.1007/s12311-022-01388-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Despite the wealth of knowledge of adult cerebellar connectivity, little is known about the developmental mechanisms that underpin its development. Early connectivity is important because it is the foundation of the neural networks crucial for neuronal function and serves as a scaffold on which later tracts form. Conventionally, it is believed that afferents from the vestibular system are the first to invade the cerebellum, at embryonic days (E) 11-E12/13 in mice, where they target the new born Purkinje cells. However, we have demonstrated that pioneer axons that originate from the trigeminal ganglia are already present in the cerebellar primordium by E9, a stage at which afferents from the vestibular ganglia have not yet reached the brainstem, where they target neurons of the cerebellar nuclei. An early-born subset of cerebellar nuclei may be derived from the mesencephalon. These may be the target of the earliest pioneer axons. They form the early connectivity at the rostral end. This is consistent with the notion that the formation of the antero-posterior axis follows a rostro-caudal sequence. The finding that trigeminal ganglion-derived pioneer axons enter the cerebellar primordium before Purkinje cells are born and target the cerebellar nuclei, reveals a novel perspective on the development of early cerebellar connectivity.
Collapse
Affiliation(s)
- Maryam Rahimi-Balaei
- Department of Human Anatomy and Cell Science, The Children's Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Rm 129 BMSB, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
| | - Hassan Marzban
- Department of Human Anatomy and Cell Science, The Children's Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Rm 129 BMSB, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada.
| | - Richard Hawkes
- Department of Cell Biology & Anatomy and Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| |
Collapse
|
5
|
Refinement of Cerebellar Network Organization by Extracellular Signaling During Development. Neuroscience 2020; 462:44-55. [PMID: 32502568 DOI: 10.1016/j.neuroscience.2020.05.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/21/2022]
Abstract
The cerebellum forms regular neural network structures consisting of a few major types of neurons, such as Purkinje cells, granule cells, and molecular layer interneurons, and receives two major inputs from climbing fibers and mossy fibers. Its regular structures consist of three well-defined layers, with each type of neuron designated to a specific location and forming specific synaptic connections. During the first few weeks of postnatal development in rodents, the cerebellum goes through dynamic changes via proliferation, migration, differentiation, synaptogenesis, and maturation, to create such a network structure. The development of this organized network structure presumably relies on the communication between developing elements in the network, including not only individual neurons, but also their dendrites, axons, and synapses. Therefore, it is reasonable that extracellular signaling via synaptic transmission, secreted molecules, and cell adhesion molecules, plays important roles in cerebellar network development. Although it is not yet clear as to how overall cerebellar development is orchestrated, there is indeed accumulating lines of evidence that extracellular signaling acts toward the development of individual elements in the cerebellar networks. In this article, we introduce what we have learned from many studies regarding the extracellular signaling required for cerebellar network development, including our recent study suggesting the importance of unbiased synaptic inputs from parallel fibers.
Collapse
|
6
|
Mehdizadeh M, Ashtari N, Jiao X, Rahimi Balaei M, Marzban A, Qiyami-Hour F, Kong J, Ghavami S, Marzban H. Alteration of the Dopamine Receptors' Expression in the Cerebellum of the Lysosomal Acid Phosphatase 2 Mutant (Naked-Ataxia ( NAX)) Mouse. Int J Mol Sci 2020; 21:E2914. [PMID: 32326360 PMCID: PMC7215910 DOI: 10.3390/ijms21082914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 12/30/2022] Open
Abstract
A spontaneous mutation in the lysosomal acid phosphatase (Acp2) enzyme (nax: naked-ataxia) in experimental mice results in delayed hair appearance and severe cytoarchitectural impairments of the cerebellum, such as a Purkinje cell (PC) migration defect. In our previous investigation, our team showed that Acp2 expression plans a significant role in cerebellar development. On the other hand, the dopaminergic system is also a player in central nervous system (CNS) development, including cerebellar structure and function. In the current investigation, we have explored how Acp2 can be involved in the regulation of the dopaminergic pathway in the cerebellum via the regulation of dopamine receptor expression and patterning. We provided evidence about the distribution of different dopamine receptors in the developing cerebellum by comparing the expression of dopamine receptors on postnatal days (P) 5 and 17 between nax mice and wild-type (wt) littermates. To this aim, immunohistochemistry and Western blot analysis were conducted using five antibodies against dopamine receptors (DRD1, -2, -3, -4, and -5) accompanied by RNAseq data. Our results revealed that DRD1, -3, and -4 gene expressions significantly increased in nax cerebella but not in wt, while gene expressions of all 5 receptors were evident in PCs of both wt and nax cerebella. DRD3 was strongly expressed in the PCs' somata and cerebellar nuclei neurons at P17 in nax mice, which was comparable to the expression levels in the cerebella of wt littermates. In addition, DRD3 was expressed in scattered cells in a granular layer reminiscent of Golgi cells and was observed in the wt cerebella but not in nax mice. DRD4 was expressed in a subset of PCs and appeared to align with the unique parasagittal stripes pattern. This study contributes to our understanding of alterations in the expression pattern of DRDs in the cerebellum of nax mice in comparison to their wt littermates, and it highlights the role of Acp2 in regulating the dopaminergic system.
Collapse
Affiliation(s)
- Mehdi Mehdizadeh
- Cellular and Molecular Research Center, Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran; (M.M.); (F.Q.-H.); (J.K.); (S.G.)
| | - Niloufar Ashtari
- Department of Human Anatomy and Cell Science, The Children’s Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (N.A.); (X.J.); (M.R.B.)
| | - Xiaodan Jiao
- Department of Human Anatomy and Cell Science, The Children’s Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (N.A.); (X.J.); (M.R.B.)
| | - Maryam Rahimi Balaei
- Department of Human Anatomy and Cell Science, The Children’s Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (N.A.); (X.J.); (M.R.B.)
| | - Asghar Marzban
- Department of Pediatrics, School of Medicine, Zanjan University of Medical Sciences, Zanjan 4513956111, Iran;
| | - Farshid Qiyami-Hour
- Cellular and Molecular Research Center, Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran; (M.M.); (F.Q.-H.); (J.K.); (S.G.)
| | - Jiming Kong
- Cellular and Molecular Research Center, Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran; (M.M.); (F.Q.-H.); (J.K.); (S.G.)
| | - Saeid Ghavami
- Cellular and Molecular Research Center, Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran; (M.M.); (F.Q.-H.); (J.K.); (S.G.)
- Research Institute in Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Hassan Marzban
- Cellular and Molecular Research Center, Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran; (M.M.); (F.Q.-H.); (J.K.); (S.G.)
- Department of Human Anatomy and Cell Science, The Children’s Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (N.A.); (X.J.); (M.R.B.)
| |
Collapse
|
7
|
Marzban H, Rahimi-Balaei M, Hawkes R. Early trigeminal ganglion afferents enter the cerebellum before the Purkinje cells are born and target the nuclear transitory zone. Brain Struct Funct 2019; 224:2421-2436. [PMID: 31256239 DOI: 10.1007/s00429-019-01916-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 06/25/2019] [Indexed: 12/20/2022]
Abstract
In the standard model for the development of climbing and mossy fiber afferent pathways to the cerebellum, the ingrowing axons target the embryonic Purkinje cell somata (around embryonic ages (E13-E16 in mice). In this report, we describe a novel earlier stage in afferent development. Immunostaining for a neurofilament-associated antigen (NAA) reveals the early axon distributions with remarkable clarity. Using a combination of DiI axon tract tracing, analysis of neurogenin1 null mice, which do not develop trigeminal ganglia, and mouse embryos maintained in vitro, we show that the first axons to innervate the cerebellar primordium as early as E9 arise from the trigeminal ganglion. Therefore, early trigeminal axons are in situ before the Purkinje cells are born. Double immunostaining for NAA and markers of the different domains in the cerebellar primordium reveal that afferents first target the nuclear transitory zone (E9-E10), and only later (E10-E11) are the axons, either collaterals from the trigeminal ganglion or a new afferent source (e.g., vestibular ganglia), seen in the Purkinje cell plate. The finding that the earliest axons to the cerebellum derive from the trigeminal ganglion and enter the cerebellar primordium before the Purkinje cells are born, where they seem to target the cerebellar nuclei, reveals a novel stage in the development of the cerebellar afferents.
Collapse
Affiliation(s)
- Hassan Marzban
- Department of Human Anatomy and Cell Science, The Children's Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada. .,Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Rm 129 BMSB, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada.
| | - Maryam Rahimi-Balaei
- Department of Human Anatomy and Cell Science, The Children's Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Richard Hawkes
- Department of Cell Biology and Anatomy and Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| |
Collapse
|
8
|
Lawton AK, Engstrom T, Rohrbach D, Omura M, Turnbull DH, Mamou J, Zhang T, Schwarz JM, Joyner AL. Cerebellar folding is initiated by mechanical constraints on a fluid-like layer without a cellular pre-pattern. eLife 2019; 8:e45019. [PMID: 30990415 PMCID: PMC6467563 DOI: 10.7554/elife.45019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/30/2019] [Indexed: 12/28/2022] Open
Abstract
Models based in differential expansion of elastic material, axonal constraints, directed growth, or multi-phasic combinations have been proposed to explain brain folding. However, the cellular and physical processes present during folding have not been defined. We used the murine cerebellum to challenge folding models with in vivo data. We show that at folding initiation differential expansion is created by the outer layer of proliferating progenitors expanding faster than the core. However, the stiffness differential, compressive forces, and emergent thickness variations required by elastic material models are not present. We find that folding occurs without an obvious cellular pre-pattern, that the outer layer expansion is uniform and fluid-like, and that the cerebellum is under radial and circumferential constraints. Lastly, we find that a multi-phase model incorporating differential expansion of a fluid outer layer and radial and circumferential constraints approximates the in vivo shape evolution observed during initiation of cerebellar folding.
Collapse
Affiliation(s)
- Andrew K Lawton
- Developmental Biology ProgramSloan Kettering InstituteNew YorkUnited States
| | - Tyler Engstrom
- Department of PhysicsSyracuse UniversitySyracuseUnited States
| | - Daniel Rohrbach
- Lizzi Center for Biomedical EngineeringRiverside ResearchNew YorkUnited States
| | - Masaaki Omura
- Lizzi Center for Biomedical EngineeringRiverside ResearchNew YorkUnited States
- Department of Radiology, Skirball Institute of Biomolecular MedicineNYU School of MedicineNew YorkUnited States
- Graduate School of Science and EngineeringChiba UniversityChibaJapan
| | - Daniel H Turnbull
- Department of Radiology, Skirball Institute of Biomolecular MedicineNYU School of MedicineNew YorkUnited States
| | - Jonathan Mamou
- Lizzi Center for Biomedical EngineeringRiverside ResearchNew YorkUnited States
| | - Teng Zhang
- Department of Mechanical & Aerospace EngineeringSyracuse UniversitySyracuseUnited States
| | - J M Schwarz
- Department of PhysicsSyracuse UniversitySyracuseUnited States
| | - Alexandra L Joyner
- Developmental Biology ProgramSloan Kettering InstituteNew YorkUnited States
- Biochemistry, Cell and Molecular Biology Program, Weill Graduate School of Medical SciencesCornell UniversityNew YorkUnited States
| |
Collapse
|
9
|
Rahimi-Balaei M, Bergen H, Kong J, Marzban H. Neuronal Migration During Development of the Cerebellum. Front Cell Neurosci 2018; 12:484. [PMID: 30618631 PMCID: PMC6304365 DOI: 10.3389/fncel.2018.00484] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/27/2018] [Indexed: 01/19/2023] Open
Abstract
Neuronal migration is a fundamental process in central nervous system (CNS) development. The assembly of functioning neuronal circuits relies on neuronal migration occurring in the appropriate spatio-temporal pattern. A defect in the neuronal migration may result in a neurological disorder. The cerebellum, as a part of the CNS, plays a pivotal role in motor coordination and non-motor functions such as emotion, cognition and language. The excitatory and inhibitory neurons within the cerebellum originate from different distinct germinal zones and migrate through complex routes to assemble in a well-defined neuronal organization in the cerebellar cortex and nuclei. In this review article, the neuronal migration modes and pathways from germinal zones to the final position in the cerebellar cortex and nuclei will be described. The cellular and molecular mechanisms involved in cerebellar neuronal migration during development will also be reviewed. Finally, some diseases and animal models associated with defects in neuronal migration will be presented.
Collapse
Affiliation(s)
- Maryam Rahimi-Balaei
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,The Children's Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Hugo Bergen
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Hassan Marzban
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,The Children's Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
10
|
Daly DT, Ariel M. A novel cerebellar commissure and other myelinated axons in the Purkinje cell layer of a pond turtle (Trachemys scripta elegans). J Comp Neurol 2018; 526:2802-2823. [PMID: 30173417 DOI: 10.1002/cne.24528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/23/2018] [Accepted: 07/30/2018] [Indexed: 11/10/2022]
Abstract
Parallel fibers in the molecular layer of the vertebrate cerebellum mediate slow spike conduction in the transverse plane. In contrast, electrophysiological recordings have indicated that rapid spike conduction exists between the lateral regions of the cerebellar cortex of the red-ear pond turtle (Trachemys scripta). The anatomical basis for this commissure is now examined in that species using neuronal tracing techniques. Fluorescently tagged dextrans and lipophilic carbocyanine dyes placed in one lateral edge of this nonfoliated cortex are transported across the midline of living brains in vitro and along the axonal membranes of fixed tissues, respectively. Surprisingly, the labeled commissural axons traversed the cortex within the Purkinje cell layer, and not in the white matter of the molecular layer or the white matter below the granule cell layer. Unlike thin parallel fibers that exhibit characteristic varicosities, this commissure is composed of smooth axons of large diameter that also extend beyond the cerebellar cortex via the cerebellar peduncles. Double labeling with myelin basic protein antibody demonstrated that these commissural axons are ensheathed with myelin. In contrast to this transverse pathway, an orthogonal myelinated tract was observed along the cerebellar midline. The connections of this transverse commissure with the lateral cerebellum, the vestibular nuclear complex, and the cochlear vestibular ganglia indicate that this commissure plays a role in bilateral vestibular connectivity.
Collapse
Affiliation(s)
- Daniel T Daly
- Center for Anatomical Sciences and Education, Department of Surgery, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Michael Ariel
- Center for Anatomical Sciences and Education, Department of Surgery, Saint Louis University School of Medicine, St. Louis, Missouri.,Department of Pharmacology & Physiology, Saint Louis University School of Medicine, St. Louis, Missouri
| |
Collapse
|
11
|
Najac M, Raman IM. Synaptic excitation by climbing fibre collaterals in the cerebellar nuclei of juvenile and adult mice. J Physiol 2017; 595:6703-6718. [PMID: 28795396 PMCID: PMC5663862 DOI: 10.1113/jp274598] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/08/2017] [Indexed: 01/24/2023] Open
Abstract
KEY POINTS The inferior olive sends instructive motor signals to the cerebellum via the climbing fibre projection, which sends collaterals directly to large premotor neurons of the mouse cerebellar nuclei (CbN cells). Optogenetic activation of inferior olivary axons in vitro evokes EPSCs in CbN cells of several hundred pA to more than 1 nA. The inputs are three-fold larger at younger ages, 12 to 14 days old, than at 2 months old, suggesting a strong functional role for this pathway earlier in development. The EPSCs are multipeaked, owing to burst firing in several olivary afferents that fire asynchronously. The convergence of climbing fibre collaterals onto CbN cells decreases from ∼40 to ∼8, which is consistent with the formation of closed-loop circuits in which each CbN neuron receives input from 4-7 collaterals from inferior olivary neurons as well as from all 30-50 Purkinje cells that are innervated by those olivary neurons. ABSTRACT The inferior olive conveys instructive signals to the cerebellum that drive sensorimotor learning. Inferior olivary neurons transmit their signals via climbing fibres, which powerfully excite Purkinje cells, evoking complex spikes and depressing parallel fibre synapses. Additionally, however, these climbing fibres send collaterals to the cerebellar nuclei (CbN). In vivo and in vitro data suggest that climbing fibre collateral excitation is weak in adult mice, raising the question of whether the primary role of this pathway may be developmental. We therefore examined climbing fibre collateral input to large premotor CbN cells over development by virally expressing channelrhodopsin in the inferior olive. In acute cerebellar slices from postnatal day (P)12-14 mice, light-evoked EPSCs were large (> 1 nA at -70 mV). The amplitude of these EPSCs decreased over development, reaching a plateau of ∼350 pA at P20-60. Trains of EPSCs (5 Hz) depressed strongly throughout development, whereas convergence estimates indicated that the total number of functional afferents decreased with age. EPSC waveforms consisted of multiple peaks, probably resulting from action potential bursts in single collaterals and variable times to spike threshold in converging afferents. Activating climbing fibre collaterals evoked well-timed increases in firing probability in CbN neurons, especially in younger mice. The initially strong input, followed by the decrement in synaptic strength coinciding with the pruning of climbing fibres in the cerebellar cortex, implicates the climbing fibre collateral pathway in early postnatal development. Additionally, the persistence of substantial synaptic input at least to P60 suggests that this pathway may function in cerebellar processing into adulthood.
Collapse
Affiliation(s)
- Marion Najac
- Department of NeurobiologyNorthwestern UniversityEvanstonILUSA
| | - Indira M. Raman
- Department of NeurobiologyNorthwestern UniversityEvanstonILUSA
| |
Collapse
|
12
|
Kommata V, Dermon CR. Transient vimentin expression during the embryonic development of the chicken cerebellum. Int J Dev Neurosci 2017; 65:11-20. [PMID: 29030097 DOI: 10.1016/j.ijdevneu.2017.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 01/16/2023] Open
Abstract
Complex morphogenetic events, critical for the development of normal cerebellum foliation and layering, are known to involve type III intermediate filament protein such as vimentin expressed by Bergmann glia. The present study aimed to determine aspects of intermediate and late embryonic pattern of vimentin expression during the corticogenesis of chicken cerebellum at embryonic days 10-19 (E10-E19), using single and double immunohistochemistry/immunofluorescence. Vimentin expression showed partial co-localization with the glial markers GFAP and BLBP. Within cerebellar cortex, vimentin+ fibers were first found within lobules I and X (E10) and gradually extended to all folia (E15-E17), located within the external granule (EGL) the molecular cell layer, showing a radial orientation towards the inner granular layer and the cerebellar white matter oriented longitudinally. Interestingly, within the immature fissures base of most lobules, vimentin+ fibers radiate in a fan shape. Short-term BrdU experiments revealed that EGL cell proliferation was higher in the fissure base compared to folia apex. In addition, following 24-h survival, BrdU+ cells were found in close association to vimentin+ fibers in the EGL pre-migratory zone and within immature molecular layer. Paralleling cerebellum development, vimentin expression gradually extended to all folia sub-regions (base, wall, apex), but, at day E19, it was mainly confined to the folia apex and secondary fissure base. Taken together our data further support the possible role of vimentin+ fibers in the structural events of cerebellum corticogenesis, suggesting the participation of radial/Bergmann glia in chicken cerebellum foliation, similarly to that described for mammalian cerebellum morphogenesis.
Collapse
Affiliation(s)
- Vasiliki Kommata
- Lab Human & Animal Physiology, Dept. Biology, Univ. Patras, Patras, Greece
| | - Catherine R Dermon
- Lab Human & Animal Physiology, Dept. Biology, Univ. Patras, Patras, Greece.
| |
Collapse
|
13
|
Szmulewicz DJ. Combined Central and Peripheral Degenerative Vestibular Disorders: CANVAS, Idiopathic Cerebellar Ataxia with Bilateral Vestibulopathy (CABV) and Other Differential Diagnoses of the CABV Phenotype. CURRENT OTORHINOLARYNGOLOGY REPORTS 2017. [DOI: 10.1007/s40136-017-0161-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Matsui H. Dopamine system, cerebellum, and nucleus ruber in fish and mammals. Dev Growth Differ 2017; 59:219-227. [PMID: 28547762 DOI: 10.1111/dgd.12357] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 04/09/2017] [Accepted: 04/09/2017] [Indexed: 12/26/2022]
Abstract
Small teleost fish including zebrafish and medaka have been used as animal models for research because of their small body size, vast amounts of eggs produced, their rapid development, low husbandry costs, and transparency during embryogenesis. Although the body size and appearance seem different, fish and mammals including human still possess anatomical and functional similarities in their brains. This review summarizes the similarities of brain structures and functions between teleost fish and mammalian brains, focusing on the dopamine system, functional regionalization of the cerebellum, and presence of the nucleus ruber.
Collapse
Affiliation(s)
- Hideaki Matsui
- Department of Neuroscience of Disease, Center for Transdisciplinary Research, Niigata University, 757, Ichibancho, Asahimachidori, Chuo-ku, Niigata-shi, Niigata, 951-8585, Japan.,Brain Research Institute, Niigata University, 757, Ichibancho, Asahimachidori, Chuo-ku, Niigata-shi, Niigata, 951-8585, Japan
| |
Collapse
|
15
|
Sokoloff G, Plumeau AM, Mukherjee D, Blumberg MS. Twitch-related and rhythmic activation of the developing cerebellar cortex. J Neurophysiol 2015; 114:1746-56. [PMID: 26156383 PMCID: PMC4571769 DOI: 10.1152/jn.00284.2015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/03/2015] [Indexed: 02/08/2023] Open
Abstract
The cerebellum is a critical sensorimotor structure that exhibits protracted postnatal development in mammals. Many aspects of cerebellar circuit development are activity dependent, but little is known about the nature and sources of the activity. Based on previous findings in 6-day-old rats, we proposed that myoclonic twitches, the spontaneous movements that occur exclusively during active sleep (AS), provide generalized as well as topographically precise activity to the developing cerebellum. Taking advantage of known stages of cerebellar cortical development, we examined the relationship between Purkinje cell activity (including complex and simple spikes), nuchal and hindlimb EMG activity, and behavioral state in unanesthetized 4-, 8-, and 12-day-old rats. AS-dependent increases in complex and simple spike activity peaked at 8 days of age, with 60% of units exhibiting significantly more activity during AS than wakefulness. Also, at all three ages, approximately one-third of complex and simple spikes significantly increased their activity within 100 ms of twitches in one of the two muscles from which we recorded. Finally, we observed rhythmicity of complex and simple spikes that was especially prominent at 8 days of age and was greatly diminished by 12 days of age, likely due to developmental changes in climbing fiber and mossy fiber innervation patterns. All together, these results indicate that the neurophysiological activity of the developing cerebellum can be used to make inferences about changes in its microcircuitry. They also support the hypothesis that sleep-related twitches are a prominent source of discrete climbing and mossy fiber activity that could contribute to the activity-dependent development of this critical sensorimotor structure.
Collapse
Affiliation(s)
- Greta Sokoloff
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa; DeLTA Center, University of Iowa, Iowa City, Iowa;
| | - Alan M Plumeau
- Interdisciplinary Program in Neuroscience, University of Iowa, Iowa City, Iowa; and
| | - Didhiti Mukherjee
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa; DeLTA Center, University of Iowa, Iowa City, Iowa
| | - Mark S Blumberg
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa; DeLTA Center, University of Iowa, Iowa City, Iowa; Department of Biology, University of Iowa, Iowa City, Iowa
| |
Collapse
|