1
|
Pavalakumar D, Undugoda LJS, Gunathunga CJ, Manage PM, Nugara RN, Kannangara S, Lankasena BNS, Patabendige CNK. Evaluating the Probiotic Profile, Antioxidant Properties, and Safety of Indigenous Lactobacillus spp. Inhabiting Fermented Green Tender Coconut Water. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10352-x. [PMID: 39300004 DOI: 10.1007/s12602-024-10352-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2024] [Indexed: 09/22/2024]
Abstract
This study isolated and characterized four indigenous lactic acid bacterial strains from naturally fermented green tender coconut water: Lactiplantibacillus plantarum CWJ3, Lacticaseibacillus casei CWM15, Lacticaseibacillus paracasei CWKu14, and Lacticaseibacillus rhamnosus CWKu-12. Notably, among the isolates, Lact. plantarum CWJ3 showed exceptional acid tolerance, with the highest survival rate of 37.34% at pH 2.0 after 1 h, indicating its higher resistance against acidic gastric conditions. However, all strains exhibited robust resistance to bile salts, phenols, and NaCl, with survival rates exceeding 80% at given concentrations. Their optimal growth at 37 °C and survival at 20 °C and 45 °C underscored adaptability to diverse environmental conditions. Additionally, all strains showed sustainable survival rates in artificial saliva and simulated gastrointestinal juices, with Lact. plantarum CWJ3 exhibiting significantly higher survival rate (70.66%) in simulated gastric juice compared to other strains. Adherence properties were particularly noteworthy, especially in Lact. rhamnosus CWKu-12, which demonstrated the highest hydrophobicity, coaggregation with pathogens and autoaggregation, among the strains. The production of exopolysaccharides, particularly by Lact. plantarum CWJ3, enhanced their potential for gut colonization and biofilm formation. Various in vitro antioxidative assays using spectrophotometric methods revealed the significant activity of Lact. plantarum CWJ3, while antimicrobial testing highlighted its efficacy against selected foodborne pathogens. Safety assessments confirmed the absence of biogenic amine production, hemolytic, DNase, and gelatinase activities, as well as the ability to hydrolase the bile salt. Furthermore, these non-dairy probiotics exhibited characteristics comparable to dairy derived probiotics, demonstrating their potential suitability in developing novel probiotic-rich foods and functional products.
Collapse
Affiliation(s)
- Dayani Pavalakumar
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama, 10200, Sri Lanka
- Faculty of Graduate Studies, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | | | - Chathuri Jayamalie Gunathunga
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama, 10200, Sri Lanka
- Faculty of Graduate Studies, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Pathmalal Marakkale Manage
- Centre for Water Quality and Algae Research, Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Ruwani Nilushi Nugara
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama, 10200, Sri Lanka
| | - Sagarika Kannangara
- Department of Plant and Molecular Biology, Faculty of Science, University of Kelaniya, Kelaniya, 11600, Sri Lanka
| | - Bentotage Nalaka Samantha Lankasena
- Department of Information and Communication Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama, 10200, Sri Lanka
| | | |
Collapse
|
2
|
Kang A, Kwak MJ, Choi HJ, Son SH, Lim SH, Eor JY, Song M, Kim MK, Kim JN, Yang J, Lee M, Kang M, Oh S, Kim Y. Integrative Analysis of Probiotic-Mediated Remodeling in Canine Gut Microbiota and Metabolites Using a Fermenter for an Intestinal Microbiota Model. Food Sci Anim Resour 2024; 44:1080-1095. [PMID: 39246539 PMCID: PMC11377207 DOI: 10.5851/kosfa.2024.e41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 09/10/2024] Open
Abstract
In contemporary society, the increasing number of pet-owning households has significantly heightened interest in companion animal health, expanding the probiotics market aimed at enhancing pet well-being. Consequently, research into the gut microbiota of companion animals has gained momentum, however, ethical and societal challenges associated with experiments on intelligent and pain-sensitive animals necessitate alternative research methodologies to reduce reliance on live animal testing. To address this need, the Fermenter for Intestinal Microbiota Model (FIMM) is being investigated as an in vitro tool designed to replicate gastrointestinal conditions of living animals, offering a means to study gut microbiota while minimizing animal experimentation. The FIMM system explored interactions between intestinal microbiota and probiotics within a simulated gut environment. Two strains of commercial probiotic bacteria, Enterococcus faecium IDCC 2102 and Bifidobacterium lactis IDCC 4301, along with a newly isolated strain from domestic dogs, Lactobacillus acidophilus SLAM AK001, were introduced into the FIMM system with gut microbiota from a beagle model. Findings highlight the system's capacity to mirror and modulate the gut environment, evidenced by an increase in beneficial bacteria like Lactobacillus and Faecalibacterium and a decrease in the pathogen Clostridium. The study also verified the system's ability to facilitate accurate interactions between probiotics and commensal bacteria, demonstrated by the production of short-chain fatty acids and bacterial metabolites, including amino acids and gamma-aminobutyric acid precursors. Thus, the results advocate for FIMM as an in vitro system that authentically simulates the intestinal environment, presenting a viable alternative for examining gut microbiota and metabolites in companion animals.
Collapse
Affiliation(s)
- Anna Kang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Min-Jin Kwak
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Hye Jin Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Seon-Hui Son
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Sei-Hyun Lim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Ju Young Eor
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Minho Song
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Min Kyu Kim
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Jong Nam Kim
- Department of Food Science & Nutrition, Dongseo University, Busan 47011, Korea
| | - Jungwoo Yang
- IBS R&D Center, Ildong Bioscience, Pyeongtaek 17957, Korea
| | - Minjee Lee
- IBS R&D Center, Ildong Bioscience, Pyeongtaek 17957, Korea
| | - Minkyoung Kang
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju 55069, Korea
| | - Sangnam Oh
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju 55069, Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
3
|
Cushnie TPT, Luang-In V, Sexton DW. Necrophages and necrophiles: a review of their antibacterial defenses and biotechnological potential. Crit Rev Biotechnol 2024:1-18. [PMID: 39198023 DOI: 10.1080/07388551.2024.2389175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/20/2024] [Accepted: 04/04/2024] [Indexed: 09/01/2024]
Abstract
With antibiotic resistance on the rise, there is an urgent need for new antibacterial drugs and products to treat or prevent infection. Many such products in current use, for example human and veterinary antibiotics and antimicrobial food preservatives, were discovered and developed from nature. Natural selection acts on all living organisms and the presence of bacterial competitors or pathogens in an environment can favor the evolution of antibacterial adaptations. In this review, we ask if vultures, blow flies and other carrion users might be a good starting point for antibacterial discovery based on the selection pressure they are under from bacterial disease. Dietary details are catalogued for over 600 of these species, bacterial pathogens associated with the diets are described, and an overview of the antibacterial defenses contributing to disease protection is given. Biotechnological applications for these defenses are then discussed, together with challenges facing developers and possible solutions. Examples include use of (a) the antimicrobial peptide (AMP) gene sarcotoxin IA to improve crop resistance to bacterial disease, (b) peptide antibiotics such as serrawettin W2 as antibacterial drug leads, (c) lectins for targeted drug delivery, (d) bioconversion-generated chitin as an antibacterial biomaterial, (e) bacteriocins as antibacterial food preservatives and (f) mutualistic microbiota bacteria as alternatives to antibiotics in animal feed. We show that carrion users encounter a diverse range of bacterial pathogens through their diets and interactions, have evolved many antibacterial defenses, and are a promising source of genes, molecules, and microbes for medical, agricultural, and food industry product development.
Collapse
Affiliation(s)
- T P Tim Cushnie
- Faculty of Medicine, Mahasarakham University, Mueang, Maha Sarakham, Thailand
| | - Vijitra Luang-In
- Department of Biotechnology, Faculty of Technology, Mahasarakham University, Khamriang, Maha Sarakham, Thailand
| | - Darren W Sexton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
4
|
Leistikow KR, May DS, Suh WS, Vargas Asensio G, Schaenzer AJ, Currie CR, Hristova KR. Bacillus subtilis-derived peptides disrupt quorum sensing and biofilm assembly in multidrug-resistant Staphylococcus aureus. mSystems 2024; 9:e0071224. [PMID: 38990088 PMCID: PMC11334493 DOI: 10.1128/msystems.00712-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/15/2024] [Indexed: 07/12/2024] Open
Abstract
Multidrug-resistant Staphylococcus aureus is one of the most clinically important pathogens in the world, with infections leading to high rates of morbidity and mortality in both humans and animals. The ability of S. aureus to form biofilms protects cells from antibiotics and promotes the transfer of antibiotic resistance genes; therefore, new strategies aimed at inhibiting biofilm growth are urgently needed. Probiotic species, including Bacillus subtilis, are gaining interest as potential therapies against S. aureus for their ability to reduce S. aureus colonization and virulence. Here, we search for strains and microbially derived compounds with strong antibiofilm activity against multidrug-resistant S. aureus by isolating and screening Bacillus strains from a variety of agricultural environments. From a total of 1,123 environmental isolates, we identify a single strain B. subtilis 6D1, with a potent ability to inhibit biofilm growth, disassemble mature biofilm, and improve antibiotic sensitivity of S. aureus biofilms through an Agr quorum sensing interference mechanism. Biochemical and molecular networking analysis of an active organic fraction revealed multiple surfactin isoforms, and an uncharacterized peptide was driving this antibiofilm activity. Compared with commercial high-performance liquid chromatography grade surfactin obtained from B. subtilis, we show these B. subtilis 6D1 peptides are significantly better at inhibiting biofilm formation in all four S. aureus Agr backgrounds and preventing S. aureus-induced cytotoxicity when applied to HT29 human intestinal cells. Our study illustrates the potential of exploring microbial strain diversity to discover novel antibiofilm agents that may help combat multidrug-resistant S. aureus infections and enhance antibiotic efficacy in clinical and veterinary settings. IMPORTANCE The formation of biofilms by multidrug-resistant bacterial pathogens, such as Staphylococcus aureus, increases these microorganisms' virulence and decreases the efficacy of common antibiotic regimens. Probiotics possess a variety of strain-specific strategies to reduce biofilm formation in competing organisms; however, the mechanisms and compounds responsible for these phenomena often go uncharacterized. In this study, we identified a mixture of small probiotic-derived peptides capable of Agr quorum sensing interference as one of the mechanisms driving antibiofilm activity against S. aureus. This collection of peptides also improved antibiotic killing and protected human gut epithelial cells from S. aureus-induced toxicity by stimulating an adaptive cytokine response. We conclude that purposeful strain screening and selection efforts can be used to identify unique probiotic strains that possess specially desired mechanisms of action. This information can be used to further improve our understanding of the ways in which probiotic and probiotic-derived compounds can be applied to prevent bacterial infections or improve bacterial sensitivity to antibiotics in clinical and agricultural settings.
Collapse
Affiliation(s)
- Kyle R. Leistikow
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Daniel S. May
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Chemistry, Washington College, Chestertown, Maryland, USA
| | - Won Se Suh
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | - Adam J. Schaenzer
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Cameron R. Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
5
|
Saini P, Ayyanna R, Kumar R, Bhowmick SK, Bhaskar V, Dey B. Restriction of growth and biofilm formation of ESKAPE pathogens by caprine gut-derived probiotic bacteria. Front Microbiol 2024; 15:1428808. [PMID: 39135871 PMCID: PMC11317286 DOI: 10.3389/fmicb.2024.1428808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/05/2024] [Indexed: 08/15/2024] Open
Abstract
The accelerated rise in antimicrobial resistance (AMR) poses a significant global health risk, necessitating the exploration of alternative strategies to combat pathogenic infections. Biofilm-related infections that are unresponsive to standard antibiotics often require the use of higher-order antimicrobials with toxic side effects and the potential to disrupt the microbiome. Probiotic therapy, with its diverse benefits and inherent safety, is emerging as a promising approach to prevent and treat various infections, and as an alternative to antibiotic therapy. In this study, we isolated novel probiotic bacteria from the gut of domestic goats (Capra hircus) and evaluated their antimicrobial and anti-biofilm activities against the 'ESKAPE' group of pathogens. We performed comprehensive microbiological, biochemical, and molecular characterizations, including analysis of the 16S-rRNA gene V1-V3 region and the 16S-23S ISR region, on 20 caprine gut-derived lactic acid bacteria (LAB). Among these, six selected Lactobacillus isolates demonstrated substantial biofilm formation under anaerobic conditions and exhibited robust cell surface hydrophobicity and autoaggregation, and epithelial cell adhesion properties highlighting their superior enteric colonization capability. Notably, these Lactobacillus isolates exhibited broad-spectrum growth inhibitory and anti-biofilm properties against 'ESKAPE' pathogens. Additionally, the Lactobacillus isolates were susceptible to antibiotics listed by the European Food Safety Authority (EFSA) within the prescribed Minimum Inhibitory Concentration limits, suggesting their safety as feed additives. The remarkable probiotic characteristics exhibited by the caprine gut-derived Lactobacillus isolates in this study strongly endorse their potential as compelling alternatives to antibiotics and direct-fed microbial (DFM) feed supplements in the livestock industry, addressing the escalating need for antibiotic-free animal products.
Collapse
Affiliation(s)
- Prerna Saini
- National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Repally Ayyanna
- National Institute of Animal Biotechnology, Hyderabad, India
| | - Rishi Kumar
- National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Sayan Kumar Bhowmick
- National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Vinay Bhaskar
- National Institute of Animal Biotechnology, Hyderabad, India
| | - Bappaditya Dey
- National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| |
Collapse
|
6
|
Thant EP, Surachat K, Chusri S, Romyasamit C, Pomwised R, Wonglapsuwan M, Yaikhan T, Suwannasin S, Singkhamanan K. Exploring Weissella confusa W1 and W2 Strains Isolated from Khao-Mahk as Probiotic Candidates: From Phenotypic Traits to Genomic Insights. Antibiotics (Basel) 2024; 13:604. [PMID: 39061286 PMCID: PMC11273482 DOI: 10.3390/antibiotics13070604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Growing interest in probiotics has spurred research into their health benefits for hosts. This study aimed to evaluate the probiotic properties, especially antibacterial activities and the safety of two Weissella confusa strains, W1 and W2, isolated from Khao-Mahk by describing their phenotypes and genotypes through phenotypic assays and whole genome sequencing. In vitro experiments demonstrated that both strains exhibited robust survival under gastric and intestinal conditions, such as in the presence of low pH, bile salt, pepsin, and pancreatin, indicating their favorable gut colonization traits. Additionally, both strains showed auto-aggregation and strong adherence to Caco2 cells, with adhesion rates of 86.86 ± 1.94% for W1 and 94.74 ± 2.29% for W2. These high adherence rates may be attributed to the significant exopolysaccharide (EPS) production observed in both strains. Moreover, they exerted remarkable antimicrobial activities against Stenotrophomonas maltophilia, Salmonella enterica serotype Typhi, Vibrio cholerae, and Acinetobacter baumannii, along with an absence of hemolytic activities and antibiotic resistance, underscoring their safety for probiotic application. Genomic analysis corroborated these findings, revealing genes related to probiotic traits, including EPS clusters, stress responses, adaptive immunity, and antimicrobial activity. Importantly, no transferable antibiotic-resistance genes or virulence genes were detected. This comprehensive characterization supports the candidacy of W1 and W2 as probiotics, offering substantial potential for promoting health and combating bacterial infections.
Collapse
Affiliation(s)
- Ei Phway Thant
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand (K.S.); (T.Y.); (S.S.)
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand (K.S.); (T.Y.); (S.S.)
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Sarunyou Chusri
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Chonticha Romyasamit
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhonsithammarat 80161, Thailand;
| | - Rattanaruji Pomwised
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand; (R.P.); (M.W.)
| | - Monwadee Wonglapsuwan
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand; (R.P.); (M.W.)
| | - Thunchanok Yaikhan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand (K.S.); (T.Y.); (S.S.)
| | - Sirikan Suwannasin
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand (K.S.); (T.Y.); (S.S.)
| | - Kamonnut Singkhamanan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand (K.S.); (T.Y.); (S.S.)
| |
Collapse
|
7
|
Srifani A, Mirnawati M, Marlida Y, Rizal Y, Nurmiati N, Lee KW. Identification of novel probiotic lactic acid bacteria from soymilk waste using the 16s rRNA gene for potential use in poultry. Vet World 2024; 17:1001-1011. [PMID: 38911076 PMCID: PMC11188893 DOI: 10.14202/vetworld.2024.1001-1011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/22/2024] [Indexed: 06/25/2024] Open
Abstract
Background and Aim In-feed antibiotics have been used as antibiotic growth promoters (AGPs) to enhance the genetic potential of poultry. However, the long-term use of AGPs is known to lead to bacterial resistance and antibiotic residues in poultry meat and eggs. To address these concerns, alternatives to AGPs are needed, one of which is probiotics, which can promote the health of livestock without having any negative effects. In vitro probiotic screening was performed to determine the ability of lactic acid bacteria (LAB) isolated from soymilk waste to be used as a probiotic for livestock. Materials and Methods Four LAB isolates (designated F4, F6, F9, and F11) isolated from soymilk waste were used in this study. In vitro testing was performed on LAB isolates to determine their resistance to temperatures of 42°C, acidic pH, bile salts, hydrophobicity to the intestine, and ability to inhibit pathogenic bacteria. A promising isolate was identified using the 16S rRNA gene. Result All LAB isolates used in this study have the potential to be used as probiotics. On the basis of the results of in vitro testing, all isolates showed resistance to temperatures of 42°C and low pH (2.5) for 3 h (79.87%-94.44%) and 6 h (76.29%-83.39%), respectively. The survival rate at a bile salt concentration of 0.3% ranged from 73.24% to 90.39%, whereas the survival rate at a bile salt concentration of 0.5% ranged from 56.28% to 81.96%. All isolates showed the ability to attach and colonize the digestive tract with a hydrophobicity of 87.58%-91.88%. Inhibitory zones of LAB against pathogens ranged from 4.80-15.15 mm against Staphylococcus aureus, 8.85-14.50 mm against Salmonella enteritidis, and 6.75-22.25 mm against Escherichia coli. Although all isolates showed good ability as probiotics, isolate F4 showed the best probiotic ability. This isolate was identified as Lactobacillus casei strain T22 (JQ412731.1) using the 16S rRNA gene. Conclusion All isolates in this study have the potential to be used as probiotics. However, isolate F4 has the best probiotic properties and is considered to be the most promising novel probiotic for poultry.
Collapse
Affiliation(s)
- Anifah Srifani
- PMDSU Program, Graduate Program of Animal Feed and Nutrition Department, Faculty of Animal Science, Universitas Andalas, Padang, West Sumatera, Indonesia
| | - Mirnawati Mirnawati
- Department of Animal Feed and Nutrition, Faculty of Animal Science, Universitas Andalas, Padang, West Sumatera, Indonesia
| | - Yetti Marlida
- Department of Animal Feed and Nutrition, Faculty of Animal Science, Universitas Andalas, Padang, West Sumatera, Indonesia
| | - Yose Rizal
- Department of Animal Feed and Nutrition, Faculty of Animal Science, Universitas Andalas, Padang, West Sumatera, Indonesia
| | - Nurmiati Nurmiati
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Padang, West Sumatera, Indonesia
| | - Kyung-Woo Lee
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul, South Korea
| |
Collapse
|
8
|
Zhang Z, Zhang HL, Yang DH, Hao Q, Yang HW, Meng DL, Meindert de Vos W, Guan LL, Liu SB, Teame T, Gao CC, Ran C, Yang YL, Yao YY, Ding QW, Zhou ZG. Lactobacillus rhamnosus GG triggers intestinal epithelium injury in zebrafish revealing host dependent beneficial effects. IMETA 2024; 3:e181. [PMID: 38882496 PMCID: PMC11170971 DOI: 10.1002/imt2.181] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 06/18/2024]
Abstract
Lactobacillus rhamnosus GG (LGG), the well-characterized human-derived probiotic strain, possesses excellent properties in the maintenance of intestinal homeostasis, immunoregulation and defense against gastrointestinal pathogens in mammals. Here, we demonstrate that the SpaC pilin of LGG causes intestinal epithelium injury by inducing cell pyroptosis and gut microbial dysbiosis in zebrafish. Dietary SpaC activates Caspase-3-GSDMEa pathways in the intestinal epithelium, promotes intestinal pyroptosis and increases lipopolysaccharide (LPS)-producing gut microbes in zebrafish. The increased LPS subsequently activates Gaspy2-GSDMEb pyroptosis pathway. Further analysis reveals the Caspase-3-GSDMEa pyroptosis is initiated by the species-specific recognition of SpaC by TLR4ba, which accounts for the species-specificity of the SpaC-inducing intestinal pyroptosis in zebrafish. The observed pyroptosis-driven gut injury and microbial dysbiosis by LGG in zebrafish suggest that host-specific beneficial/harmful mechanisms are critical safety issues when applying probiotics derived from other host species and need more attention.
Collapse
Affiliation(s)
- Zhen Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
- Faculty of Land and Food Systems The University of British Columbia Vancouver Canada
| | - Hong-Ling Zhang
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - Da-Hai Yang
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
| | - Qiang Hao
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - Hong-Wei Yang
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - De-Long Meng
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - Willem Meindert de Vos
- Laboratory of Microbiology Wageningen University and Research Wageningen Netherlands
- Human Microbiome Research Program, Faculty of Medicine University of Helsinki Helsinki Finland
| | - Le-Luo Guan
- Faculty of Land and Food Systems The University of British Columbia Vancouver Canada
| | - Shu-Bin Liu
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - Tsegay Teame
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
- Tigray Agricultural Research Institute Mekelle Ethiopia
| | - Chen-Chen Gao
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - Ya-Lin Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - Yuan-Yuan Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - Qian-Wen Ding
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - Zhi-Gang Zhou
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| |
Collapse
|
9
|
Dela Torre GLT, Villanueva SYAM. Initial culture media pH influences the antibacterial activity and metabolic footprint of Lactobacillus acidophilus BIOTECH 1900. Prep Biochem Biotechnol 2024; 54:535-544. [PMID: 37671992 DOI: 10.1080/10826068.2023.2253461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
This study investigated the impact of initial culture media pH on the antibacterial properties and metabolic profile of cell-free supernatants (CFSs) from Lactobacillus acidophilus BIOTECH 1900 (LAB1900). The CFSs harvested from LAB1900 grown in de Man, Rogosa, Sharpe broth with initial pH of 5.5 (CFS5.5) and 6.6 (CFS6.6) were tested. The two CFSs elicited varying degrees of activity against three gram-negative bacteria. In the agar-well diffusion against Pseudomonas aeruginosa, CFS5.5 and CFS6.6 recorded 14.36 ± 1.34 and 13.06 ± 1.29 mm inhibition, respectively. Interestingly, against Klebsiella pneumoniae, CFS5.5 showed 14.36 ± 1.56 mm inhibition which was significantly higher than the 12.22 ± 1.31 mm inhibition of CFS6.6 (p = 0.0464). While against Acinetobacter baumannii, significantly higher inhibition of 10.66 ± 0.51 mm was observed in CFS6.6 compared to the 7.58 ± 1.93 mm inhibition of CFS5.5 (p = 0.0087). Nonetheless, both CFSs were bactericidal, with a minimum inhibitory and bactericidal concentration range of 3.90625-7.8125 mg/mL. The varied antibacterial activities may be attributed to the metabolite compositions of CFSs. A total of 152 metabolites driving the separation between CFSs were noted, with the majority upregulated in CFS5.5. Furthermore, 15 were putatively identified belonging to acylcarnities, vitamins, gibberellins, glycerophospholipids, and peptides. In summary, initial culture media pH affects the production of microbial metabolites with antibacterial properties.
Collapse
Affiliation(s)
- Gerwin Louis T Dela Torre
- Department of Medical Microbiology, College of Public Health, University of the Philippines Manila, Manila, Philippines
- Institute of Pharmaceutical Sciences, National Institutes of Health, University of the Philippines Manila, Manila, Philippines
| | | |
Collapse
|
10
|
El Jeni R, Villot C, Koyun OY, Osorio-Doblado A, Baloyi JJ, Lourenco JM, Steele M, Callaway TR. Invited review: "Probiotic" approaches to improving dairy production: Reassessing "magic foo-foo dust". J Dairy Sci 2024; 107:1832-1856. [PMID: 37949397 DOI: 10.3168/jds.2023-23831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
The gastrointestinal microbial consortium in dairy cattle is critical to determining the energetic status of the dairy cow from birth through her final lactation. The ruminant's microbial community can degrade a wide variety of feedstuffs, which can affect growth, as well as production rate and efficiency on the farm, but can also affect food safety, animal health, and environmental impacts of dairy production. Gut microbial diversity and density are powerful tools that can be harnessed to benefit both producers and consumers. The incentives in the United States to develop Alternatives to Antibiotics for use in food-animal production have been largely driven by the Veterinary Feed Directive and have led to an increased use of probiotic approaches to alter the gastrointestinal microbial community composition, resulting in improved heifer growth, milk production and efficiency, and animal health. However, the efficacy of direct-fed microbials or probiotics in dairy cattle has been highly variable due to specific microbial ecological factors within the host gut and its native microflora. Interactions (both synergistic and antagonistic) between the microbial ecosystem and the host animal physiology (including epithelial cells, immune system, hormones, enzyme activities, and epigenetics) are critical to understanding why some probiotics work but others do not. Increasing availability of next-generation sequencing approaches provides novel insights into how probiotic approaches change the microbial community composition in the gut that can potentially affect animal health (e.g., diarrhea or scours, gut integrity, foodborne pathogens), as well as animal performance (e.g., growth, reproduction, productivity) and fermentation parameters (e.g., pH, short-chain fatty acids, methane production, and microbial profiles) of cattle. However, it remains clear that all direct-fed microbials are not created equal and their efficacy remains highly variable and dependent on stage of production and farm environment. Collectively, data have demonstrated that probiotic effects are not limited to the simple mechanisms that have been traditionally hypothesized, but instead are part of a complex cascade of microbial ecological and host animal physiological effects that ultimately impact dairy production and profitability.
Collapse
Affiliation(s)
- R El Jeni
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - C Villot
- Lallemand SAS, Blagnac, France, 31069
| | - O Y Koyun
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - A Osorio-Doblado
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - J J Baloyi
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - J M Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - M Steele
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - T R Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602.
| |
Collapse
|
11
|
Zhao Z, Li W, Tran TT, Loo SCJ. Bacillus subtilis SOM8 isolated from sesame oil meal for potential probiotic application in inhibiting human enteropathogens. BMC Microbiol 2024; 24:104. [PMID: 38539071 PMCID: PMC11312844 DOI: 10.1186/s12866-024-03263-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/17/2024] [Indexed: 08/11/2024] Open
Abstract
BACKGROUND While particular strains within the Bacillus species, such as Bacillus subtilis, have been commercially utilised as probiotics, it is critical to implement screening assays and evaluate the safety to identify potential Bacillus probiotic strains before clinical trials. This is because some Bacillus species, including B. cereus and B. anthracis, can produce toxins that are harmful to humans. RESULTS In this study, we implemented a funnel-shaped approach to isolate and evaluate prospective probiotics from homogenised food waste - sesame oil meal (SOM). Of nine isolated strains with antipathogenic properties, B. subtilis SOM8 displayed the most promising activities against five listed human enteropathogens and was selected for further comprehensive assessment. B. subtilis SOM8 exhibited good tolerance when exposed to adverse stressors including acidity, bile salts, simulated gastric fluid (SGF), simulated intestinal fluid (SIF), and heat treatment. Additionally, B. subtilis SOM8 possesses host-associated benefits such as antioxidant and bile salt hydrolase (BSH) activity. Furthermore, B. subtilis SOM8 contains only haemolysin toxin genes but has been proved to display partial haemolysis in the test and low cytotoxicity in Caco-2 cell models for in vitro evaluation. Moreover, B. subtilis SOM8 intrinsically resists only streptomycin and lacks plasmids or other mobile genetic elements. Bioinformatic analyses also predicted B. subtilis SOM8 encodes various bioactives compound like fengycin and lichendicin that could enable further biomedical applications. CONCLUSIONS Our comprehensive evaluation revealed the substantial potential of B. subtilis SOM8 as a probiotic for targeting human enteropathogens, attributable to its exceptional performance across selection assays. Furthermore, our safety assessment, encompassing both phenotypic and genotypic analyses, showed B. subtilis SOM8 has a favourable preclinical safety profile, without significant threats to human health. Collectively, these findings highlight the promising prospects of B. subtilis SOM8 as a potent probiotic candidate for additional clinical development.
Collapse
Affiliation(s)
- Zhongtian Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Wenrui Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - The Thien Tran
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Say Chye Joachim Loo
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
12
|
Kang A, Kwak MJ, Lee DJ, Lee JJ, Kim MK, Song M, Lee M, Yang J, Oh S, Kim Y. Dietary supplementation with probiotics promotes weight loss by reshaping the gut microbiome and energy metabolism in obese dogs. Microbiol Spectr 2024; 12:e0255223. [PMID: 38270436 PMCID: PMC10913549 DOI: 10.1128/spectrum.02552-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/08/2023] [Indexed: 01/26/2024] Open
Abstract
Obesity and overweight among companion animals are significant concerns, paralleling the issues observed in human populations. Recent research has highlighted the potential benefits of various probiotics in addressing weight-related changes, obesity, and associated pathologies. In this study, we delved into the beneficial probiotic mechanisms in high-fat-induced obese canines, revealing that Enterococcus faecium IDCC 2102 (IDCC 2102) and Bifidobacterium lactis IDCC 4301 (IDCC 4301) have the capacity to mitigate the increase in body weight and lipid accumulation in obese canines subjected to a high-fat diet and hyperlipidemic Caenorhabditis elegans (C. elegans) strain VS29. Both IDCC 2102 and IDCC 4301 demonstrated the ability to reduce systemic inflammation and hormonal disruptions induced by obesity. Notably, these probiotics induced modifications in the microbiota by promoting lactic acid bacteria, including Lactobacillaceae, Ruminococcaceae, and S24-7, with concomitant activation of pyruvate metabolism. IDCC 4301, through the generation of bacterial short-chain fatty acids and carboxylic acids, facilitated glycolysis and contributed to ATP synthesis. Meanwhile, IDCC 2102 produced bacterial metabolites such as acetic acid and butyric acid, exhibiting a particular ability to stimulate dopamine synthesis in a canine model. This stimulation led to the restoration of eating behavior and improvements in glucose and insulin tolerance. In summary, we propose novel probiotics for the treatment of obese animals based on the modifications induced by IDCC 2102 and IDCC 4301. These probiotics enhanced systemic energy utilization in response to high caloric intake, thereby preventing lipid accumulation and restoring stability to the fecal microbiota. Consequently, this intervention resulted in a reduction in systemic inflammation caused by the high-fat diet.IMPORTANCEProbiotic supplementation affected commensal bacterial proliferation, and administering probiotics increased glycolysis and activated pyruvate metabolism in the body, which is related to propanate metabolism as a result of pyruvate metabolism activation boosting bacterial fatty acid production via dopamine and carboxylic acid specialized pathways, hence contributing to increased ATP synthesis and energy metabolism activity.
Collapse
Affiliation(s)
- Anna Kang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - Min-Jin Kwak
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - Daniel Junpyo Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - Jeong Jae Lee
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu, South Korea
| | - Min Kyu Kim
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, South Korea
| | - Minho Song
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, South Korea
| | - Minjee Lee
- Ildong Bioscience, Pyeongtaek-si, Gyeonggi-do, South Korea
| | - Jungwoo Yang
- Ildong Bioscience, Pyeongtaek-si, Gyeonggi-do, South Korea
| | - Sangnam Oh
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju, South Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| |
Collapse
|
13
|
Mumtaz A, Ali A, Batool R, Mughal AF, Ahmad N, Batool Z, Abbas S, Khalid N, Ahmed I. Probing the microbial diversity and probiotic candidates from Pakistani foods: isolation, characterization, and functional profiling. 3 Biotech 2024; 14:60. [PMID: 38318162 PMCID: PMC10838259 DOI: 10.1007/s13205-023-03903-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/20/2023] [Indexed: 02/07/2024] Open
Abstract
Probiotics represent beneficial living microorganisms that confer physiological, nutritional, and functional advantages to human health, holding significant potential for development of functional foods. This research aimed to isolate, identify, and characterize potential probiotic bacterial strains sourced from fermented and non-fermented foods from Pakistan. A total of 341 bacterial strains were isolated from diverse food samples (81) collected from various regions of Pakistan. Strains were identified using 16S rRNA gene sequencing and phylogenetic analysis. The identified strains belonged to genera Bacillus, Staphylococcus, Microbacterium, Shigella, Micrococcus, Enterococcus, Sporosarcina, Paenibacillus, Limosilactobacillus, Kosakonia, Dietzia, Leclercia, Lacticaseibacillus, Levilactobacillus, Kluyvera, Providencia, Enterobacter, Neisseria, Streptococcus, Acinetobacter, Corynebacterium, Pantoea, Mammaliicoccus, Pseudomonas, Burkholderia, and Alkalihalobacillus. Selected strains were chosen for probiotic assessment, employing existing literature as a guideline. Among these selections, six strains exhibited hemolytic activity, and seven strains displayed resistance to multiple antibiotics, prompting their exclusion from subsequent evaluations. The remaining strains demonstrated auto-aggregation capacities spanning 3.39-79.7%, and displayed coaggregation capabilities with reported food-borne pathogens. Furthermore, nine strains exhibited antimicrobial properties against food-borne pathogens. The assessment encompassed diverse characteristics such as cell surface hydrophobicity, survival rates under varying conditions, cholesterol reduction ability, casein digestion capability, and antioxidant activity. Phylogenomic analysis, digital-DNA DNA hybridization (digi-DDH), and average nucleotide identity (ANI) calculations unveiled novel species potentially belonging to the genera Sporosarcina and Dietzia. Based on these findings, we advocate for the consideration of Staphylococcus cohnii subsp. cohnii NCCP-2414, Lacticaseibacillus rhamnosus NCCP-2569 and Levilactobacillus brevis NCCP-2574 as prime probiotic candidates with the potential for integration into formulation of functional foods. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03903-6.
Collapse
Affiliation(s)
- Amer Mumtaz
- Food Science Research Institute (FSRI), National Agricultural Research Centre, Islamabad, 45500 Pakistan
- National Microbial Culture Collection of Pakistan (NCCP), Land Resources Research Institute (LRRI), National Agricultural Research Centre (NARC), Islamabad, 45500 Pakistan
| | - Ahmad Ali
- National Agricultural Research Centre (NARC), Islamabad, 45500 Pakistan
| | - Rehana Batool
- Food Science Research Institute (FSRI), National Agricultural Research Centre, Islamabad, 45500 Pakistan
| | - Amina F. Mughal
- National Microbial Culture Collection of Pakistan (NCCP), Land Resources Research Institute (LRRI), National Agricultural Research Centre (NARC), Islamabad, 45500 Pakistan
| | - Nazir Ahmad
- Food Science Research Institute (FSRI), National Agricultural Research Centre, Islamabad, 45500 Pakistan
| | - Zainab Batool
- National Microbial Culture Collection of Pakistan (NCCP), Land Resources Research Institute (LRRI), National Agricultural Research Centre (NARC), Islamabad, 45500 Pakistan
| | - Saira Abbas
- Department of Zoology, University of Science and Technology, Bannu, Pakistan
| | - Nauman Khalid
- Department of Food Science and Technology, School of Food and Agricultural Sciences, University of Management and Technology, Lahore, 54000 Pakistan
- College of Health Sciences, Abu Dhabi University, Abu Dhabi, 59911 United Arab Emirates
| | - Iftikhar Ahmed
- National Microbial Culture Collection of Pakistan (NCCP), Land Resources Research Institute (LRRI), National Agricultural Research Centre (NARC), Islamabad, 45500 Pakistan
| |
Collapse
|
14
|
Falzone L, Lavoro A, Candido S, Salmeri M, Zanghì A, Libra M. Benefits and concerns of probiotics: an overview of the potential genotoxicity of the colibactin-producing Escherichia coli Nissle 1917 strain. Gut Microbes 2024; 16:2397874. [PMID: 39229962 PMCID: PMC11376418 DOI: 10.1080/19490976.2024.2397874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/24/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024] Open
Abstract
Recently, the mounting integration of probiotics into human health strategies has gathered considerable attention. Although the benefits of probiotics have been widely recognized in patients with gastrointestinal disorders, immune system modulation, and chronic-degenerative diseases, there is a growing need to evaluate their potential risks. In this context, new concerns have arisen regarding the safety of probiotics as some strains may have adverse effects in humans. Among these strains, Escherichia coli Nissle 1917 (EcN) exhibited traits of concern due to a pathogenic locus in its genome that produces potentially genotoxic metabolites. As the use of probiotics for therapeutic purposes is increasing, the effects of potentially harmful probiotics must be carefully evaluated. To this end, in this narrative review article, we reported the findings of the most relevant in vitro and in vivo studies investigating the expanding applications of probiotics and their impact on human well-being addressing concerns arising from the presence of antibiotic resistance and pathogenic elements, with a focus on the polyketide synthase (pks) pathogenic island of EcN. In this context, the literature data here discussed encourages a thorough profiling of probiotics to identify potential harmful elements as done for EcN where potential genotoxic effects of colibactin, a secondary metabolite, were observed. Specifically, while some studies suggest EcN is safe for gastrointestinal health, conflicting findings highlight the need for further research to clarify its safety and optimize its use in therapy. Overall, the data here presented suggest that a comprehensive assessment of the evolving landscape of probiotics is essential to make evidence-based decisions and ensure their correct use in humans.
Collapse
Affiliation(s)
- Luca Falzone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Alessandro Lavoro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, Catania, Italy
| | - Mario Salmeri
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Antonino Zanghì
- Department of Medical and Surgical Sciences and Advanced Technology 'G.F. Ingrassia', University of Catania, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, Catania, Italy
| |
Collapse
|
15
|
Choksket S, Sharma S, Harshvardhan, Pal V, Jain A, Patil PB, Korpole S, Grover V. Evaluation of Human Dental Plaque Lactic Acid Bacilli for Probiotic Potential and Functional Analysis in Relevance to Oral Health. Indian J Microbiol 2023; 63:520-532. [PMID: 38031619 PMCID: PMC10682319 DOI: 10.1007/s12088-023-01108-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 10/07/2023] [Indexed: 12/01/2023] Open
Abstract
Members of the lactic acid bacillus group are well-known probiotics and primarily isolated from fermented food, dairy products, intestinal and gut environment of human. Since probiotics from the human source are preferred, there exists a huge repertoire of lactobacilli in the human oral cavity which could prove a much better niche to be exploited for these beneficial microorganisms. Therefore, in this study, four lactobacilli strains, including strain DISK7, reported earlier, isolated from dental plaque samples of a healthy humans were evaluated for their probiotic potential. Strains displayed 99.9% of 16S rRNA gene sequence identity with species of the genera Lactobacillus and Limosilactobacillus. All strains showed lactic acid production, tolerance to low pH and antibiotic sensitivity. Variations were observed among strains in their aggregation ability, biofilm formation, bile salt resistance and cholesterol degradation. Further, we analyzed the interaction of strains with other oral commensals and opportunistic pathogens in co-culture experiments. Isolates DISK7 and DISK26 exhibited high co-aggregation (> 70%) with secondary colonizers, Streptococcus pyogenes and Veillonella parvula, respectively, but their aggregation ability was decreased with opportunistic pathogens. Furthermore, strains showed a substantial increase in biofilm in co-culture with other Lactobacillus isolates, indicating their ability to proliferate commensal bacteria in the oral environment. These microbes continually evolve in terms of niche adaptation as evidenced in genome analysis. The highlight of the investigation is the isolation and evaluation of the probiotic lactobacilli from the human oral cavity, which could prove a much better niche to be exploited for the effective commercialization of these beneficial microbes. Taken together, probiotic properties and interaction with commensal bacteria, these isolates exhibit the huge potential to be developed as alternative bioresource agents for maintenance of oral health. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-023-01108-2.
Collapse
Affiliation(s)
- Stanzin Choksket
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Shikha Sharma
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Harshvardhan
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Vijay Pal
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Ashish Jain
- Dr. Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, India
| | - Prabhu B. Patil
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Suresh Korpole
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Vishakha Grover
- Dr. Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, India
| |
Collapse
|
16
|
Selmi H, Rocchetti MT, Capozzi V, Semedo-Lemsaddek T, Fiocco D, Spano G, Abidi F. Lactiplantibacillus plantarum from Unexplored Tunisian Ecological Niches: Antimicrobial Potential, Probiotic and Food Applications. Microorganisms 2023; 11:2679. [PMID: 38004691 PMCID: PMC10673251 DOI: 10.3390/microorganisms11112679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
The continued exploration of the diversity of lactic acid bacteria in little-studied ecological niches represents a fundamental activity to understand the diffusion and biotechnological significance of this heterogeneous class of prokaryotes. In this study, Lactiplantibacillus plantarum (Lpb. plantarum) strains were isolated from Tunisian vegetable sources, including fermented olive and fermented pepper, and from dead locust intestines, which were subsequently evaluated for their antimicrobial activity against foodborne pathogenic bacteria, including Escherichia coli O157:H7 CECT 4267 and Listeria monocytogenes CECT 4031, as well as against some fungi, including Penicillium expansum, Aspergilus niger, and Botrytis cinerea. In addition, their resistance to oro-gastro-intestinal transit, aggregation capabilities, biofilm production capacity, adhesion to human enterocyte-like cells, and cytotoxicity to colorectal adenocarcinoma cell line were determined. Further, adhesion to tomatoes and the biocontrol potential of this model food matrix were analyzed. It was found that all the strains were able to inhibit the indicator growth, mostly through organic acid production. Furthermore, these strains showed promising probiotic traits, including in vitro tolerance to oro-gastrointestinal conditions, and adhesion to abiotic surfaces and Caco-2 cells. Moreover, all tested Lpb. plantarum strains were able to adhere to tomatoes with similar rates (4.0-6.0 LogCFU/g tomato). The co-culture of LAB strains with pathogens on tomatoes showed that Lpb. plantarum could be a good candidate to control pathogen growth. Nonetheless, further studies are needed to guarantee their use as probiotic strains for biocontrol on food matrices.
Collapse
Affiliation(s)
- Hiba Selmi
- Faculty of Sciences of Bizerte, University of Carthage, Zarzouna, Bizerte 7021, Tunisia
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), National Institute of Applied Sciences and Technology, University of Carthage, Carthage 1054, Tunisia;
| | - Maria Teresa Rocchetti
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.T.R.); (D.F.)
| | - Vittorio Capozzi
- Institute of Sciences of Food Production, National Research Council (CNR) of Italy, c/o CS-DAT, Via Michele Protano, 71122 Foggia, Italy;
| | - Teresa Semedo-Lemsaddek
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477 Lisbon, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.T.R.); (D.F.)
| | - Giuseppe Spano
- Department of Agriculture Food Natural Science Engineering (DAFNE), University of Foggia, 71122 Foggia, Italy
| | - Ferid Abidi
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), National Institute of Applied Sciences and Technology, University of Carthage, Carthage 1054, Tunisia;
| |
Collapse
|
17
|
Etebarian A, Sheshpari T, Kabir K, Sadeghi H, Moradi A, Hafedi A. Oral Lactobacillus species and their probiotic capabilities in patients with periodontitis and periodontally healthy individuals. Clin Exp Dent Res 2023; 9:746-756. [PMID: 37078410 PMCID: PMC10582226 DOI: 10.1002/cre2.740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/16/2023] [Accepted: 03/31/2023] [Indexed: 04/21/2023] Open
Abstract
OBJECTIVES This study aimed to identify oral Lactobacillus species and characterize their adhesion properties and antibacterial activity in patients with periodontitis compared with periodontally healthy individuals. MATERIALS AND METHODS Three hundred and fifty-four isolates from the saliva, subgingival, and tongue plaque of 59 periodontitis patients and 59 healthy individuals were analyzed. Oral Lactobacillus species were identified through the culture method in the modified MRS medium and confirmed by molecular testing. Moreover, the radial diffusion assay and cell culture methods were used to determine the antibacterial activities of oral strains against oral pathogens and their adhesion activity in vitro. RESULTS 67.7% of the cases and 75.7% of the control samples were positive for the Lactobacillus species. Lacticaseibacillus paracasei and Limosilactobacillus fermentum were the dominant species in the case group, whereas Lacticaseibacillus casei and Lactiplantibacillus plantarum were dominant in the control group. Lactobacillus crispatus and Lactobacillus gasseri had higher antibacterial effects against oral pathogens. Moreover, Ligilactobacillus salivarius and L. fermentum demonstrated the highest ability to adhere to oral mucosal cells and salivary-coated hydroxyapatite. CONCLUSION L. crispatus, L. gasseri, L. fermentum, and L. salivarius can be introduced as probiotic candidates since they demonstrated appropriate adherence to oral mucosal cells and salivary-coated hydroxyapatite and also antibacterial activities. However, further studies should be conducted to assess the safety of probiotic interventions using these strains in patients with periodontal disease.
Collapse
Affiliation(s)
- Arghavan Etebarian
- Oral and Maxillofacial Pathology Department, School of DentistryAlborz University of Medical SciencesKarajIran
| | - Tahere Sheshpari
- Microbiology Department, School of MedicineAlborz University of Medical SciencesKarajIran
| | - Kourosh Kabir
- Community Medicine Department, Dietary Supplements and Probiotic Research CenterAlborz University of Medical SciencesKarajIran
| | - Hanieh Sadeghi
- Student Research CommitteeAlborz University of Medical SciencesKarajIran
| | - Abouzar Moradi
- Periodontology Department, School of DentistryAlborz University of Medical SciencesKarajIran
| | - Avin Hafedi
- Student Research CommitteeAlborz University of Medical SciencesKarajIran
| |
Collapse
|
18
|
De Simone N, Rocchetti MT, la Gatta B, Spano G, Drider D, Capozzi V, Russo P, Fiocco D. Antimicrobial Properties, Functional Characterisation and Application of Fructobacillus fructosus and Lactiplantibacillus plantarum Isolated from Artisanal Honey. Probiotics Antimicrob Proteins 2023; 15:1406-1423. [PMID: 36173591 PMCID: PMC10491547 DOI: 10.1007/s12602-022-09988-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2022] [Indexed: 11/26/2022]
Abstract
Honey is a valuable reservoir of lactic acid bacteria (LAB) and, particularly, of fructophilic LAB (FLAB), a relatively novel subgroup of LAB whose functional potential for human and food application has yet to be explored. In this study, FLAB and LAB strains have been isolated from honeys of different floral origins and selected for their broad antimicrobial activity against typical foodborne pathogenic bacteria and spoilage filamentous fungi. The best candidates, two strains belonging to the species Lactiplantibacillus plantarum and Fructobacillus fructosus, were submitted to partial characterisation of their cell free supernatants (CFS) in order to identify the secreted metabolites with antimicrobial activity. Besides, these strains were examined to assess some major functional features, including in vitro tolerance to the oro-gastrointestinal conditions, potential cytotoxicity against HT-29 cells, adhesion to human enterocyte-like cells and capability to stimulate macrophages. Moreover, when the tested strains were applied on table grapes artificially contaminated with pathogenic bacteria or filamentous fungi, they showed a good ability to antagonise the growth of undesired microbes, as well as to survive on the fruit surface at a concentration that is recommended to develop a probiotic effect. In conclusion, both LAB and FLAB honey-isolated strains characterised in this work exhibit functional properties that validate their potential use as biocontrol agents and for the design of novel functional foods. We reported antimicrobial activity, cytotoxic evaluation, probiotic properties and direct food application of a F. fructosus strain, improving the knowledge of this species, in particular, and on FLAB, more generally.
Collapse
Affiliation(s)
- Nicola De Simone
- Department of Agriculture Food Natural Science Engineering (DAFNE), University of Foggia, via Napoli 25, 71122, Foggia, Italy
| | - Maria Teresa Rocchetti
- Department of Clinical and Experimental Medicine, University of Foggia, via Pinto 1, 71122, Foggia, Italy
| | - Barbara la Gatta
- Department of Agriculture Food Natural Science Engineering (DAFNE), University of Foggia, via Napoli 25, 71122, Foggia, Italy
| | - Giuseppe Spano
- Department of Agriculture Food Natural Science Engineering (DAFNE), University of Foggia, via Napoli 25, 71122, Foggia, Italy
| | - Djamel Drider
- UMR Transfrontalière BioEcoAgro N° 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d'Opale, ICV-Institut Charles Viollette, 59000, Lille, France
| | - Vittorio Capozzi
- Institute of Sciences of Food Production, National Research Council (CNR) of Italy, c/o CS-DAT, Via Michele Protano, 71122, Foggia, Italy
| | - Pasquale Russo
- Department of Agriculture Food Natural Science Engineering (DAFNE), University of Foggia, via Napoli 25, 71122, Foggia, Italy.
| | - Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, via Pinto 1, 71122, Foggia, Italy.
| |
Collapse
|
19
|
Collins JH, Kunyeit L, Weintraub S, Sharma N, White C, Haq N, Anu-Appaiah KA, Rao RP, Young EM. Genetic basis for probiotic yeast phenotypes revealed by nanopore sequencing. G3 (BETHESDA, MD.) 2023; 13:jkad093. [PMID: 37103477 PMCID: PMC10411601 DOI: 10.1093/g3journal/jkad093] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 01/31/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023]
Abstract
Probiotic yeasts are emerging as preventative and therapeutic solutions for disease. Often ingested via cultured foods and beverages, they can survive the harsh conditions of the gastrointestinal tract and adhere to it, where they provide nutrients and inhibit pathogens like Candida albicans. Yet, little is known of the genomic determinants of these beneficial traits. To this end, we have sequenced 2 food-derived probiotic yeast isolates that mitigate fungal infections. We find that the first strain, KTP, is a strain of Saccharomyces cerevisiae within a small clade that lacks any apparent ancestry from common European/wine S. cerevisiae strains. Significantly, we show that S. cerevisiae KTP genes involved in general stress, pH tolerance, and adherence are markedly different from S. cerevisiae S288C but are similar to the commercial probiotic yeast species S. boulardii. This suggests that even though S. cerevisiae KTP and S. boulardii are from different clades, they may achieve probiotic effect through similar genetic mechanisms. We find that the second strain, ApC, is a strain of Issatchenkia occidentalis, one of the few of this family of yeasts to be sequenced. Because of the dissimilarity of its genome structure and gene organization, we infer that I. occidentalis ApC likely achieves a probiotic effect through a different mechanism than the Saccharomyces strains. Therefore, this work establishes a strong genetic link among probiotic Saccharomycetes, advances the genomics of Issatchenkia yeasts, and indicates that probiotic activity is not monophyletic and complimentary mixtures of probiotics could enhance health benefits beyond a single species.
Collapse
Affiliation(s)
- Joseph H Collins
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Lohith Kunyeit
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
- Department of Microbiology and Fermentation Technology, CSIR—Central Food Technological Research Institute (CFTRI), Mysore, Karnataka 570020, India
| | - Sarah Weintraub
- Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Nilesh Sharma
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Charlotte White
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Nabeeha Haq
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - K A Anu-Appaiah
- Department of Microbiology and Fermentation Technology, CSIR—Central Food Technological Research Institute (CFTRI), Mysore, Karnataka 570020, India
| | - Reeta P Rao
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Eric M Young
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| |
Collapse
|
20
|
Sionek B, Szydłowska A, Zielińska D, Neffe-Skocińska K, Kołożyn-Krajewska D. Beneficial Bacteria Isolated from Food in Relation to the Next Generation of Probiotics. Microorganisms 2023; 11:1714. [PMID: 37512887 PMCID: PMC10385805 DOI: 10.3390/microorganisms11071714] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Recently, probiotics are increasingly being used for human health. So far, only lactic acid bacteria isolated from the human gastrointestinal tract were recommended for human use as probiotics. However, more authors suggest that probiotics can be also isolated from unconventional sources, such as fermented food products of animal and plant origin. Traditional fermented products are a rich source of microorganisms, some of which may have probiotic properties. A novel category of recently isolated microorganisms with great potential of health benefits are next-generation probiotics (NGPs). In this review, general information of some "beneficial microbes", including NGPs and acetic acid bacteria, were presented as well as essential mechanisms and microbe host interactions. Many reports showed that NGP selected strains and probiotics from unconventional sources exhibit positive properties when it comes to human health (i.e., they have a positive effect on metabolic, human gastrointestinal, neurological, cardiovascular, and immune system diseases). Here we also briefly present the current regulatory framework and requirements that should be followed to introduce new microorganisms for human use. The term "probiotic" as used herein is not limited to conventional probiotics. Innovation will undoubtedly result in the isolation of potential probiotics from new sources with fascinating new health advantages and hitherto unforeseen functionalities.
Collapse
Affiliation(s)
- Barbara Sionek
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159C, 02-776 Warszawa, Poland
| | - Aleksandra Szydłowska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159C, 02-776 Warszawa, Poland
| | - Dorota Zielińska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159C, 02-776 Warszawa, Poland
| | - Katarzyna Neffe-Skocińska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159C, 02-776 Warszawa, Poland
| | - Danuta Kołożyn-Krajewska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159C, 02-776 Warszawa, Poland
- Department of Dietetics and Food Studies, Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Al. Armii Krajowej 13/15, 42-200 Częstochowa, Poland
| |
Collapse
|
21
|
Pompa L, Montanari A, Tomassini A, Bianchi MM, Aureli W, Miccheli A, Uccelletti D, Schifano E. In Vitro Probiotic Properties and In Vivo Anti-Ageing Effects of Lactoplantibacillus plantarum PFA2018AU Strain Isolated from Carrots on Caenorhabditis elegans. Microorganisms 2023; 11:microorganisms11041087. [PMID: 37110510 PMCID: PMC10144472 DOI: 10.3390/microorganisms11041087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Lactic acid bacteria (LAB) share and provide several beneficial effects on human health, such as the release of bioactive metabolites, pathogen competition, and immune stimulation. The two major reservoirs of probiotic microorganisms are the human gastro-intestinal tract and fermented dairy products. However, other sources, such as plant-based foods, represent important alternatives thanks to their large distribution and nutritive value. Here, the probiotic potential of autochthonous Lactiplantibacillus plantarum PFA2018AU, isolated from carrots harvested in Fucino highland, Abruzzo (Italy), was investigated through in vitro and in vivo approaches. The strain was sent to the biobank of Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna in Italy for the purpose of patent procedures under the Budapest Treaty. The isolate showed high survival capability under in vitro simulated gastro-intestinal conditions, antibiotic susceptibility, hydrophobicity, aggregation, and the ability to inhibit the in vitro growth of Salmonella enterica serovar Typhimurium, Listeria monocytogenes, Pseudomonas aeruginosa, and Staphylococcus aureus pathogens. Caenorhabditis elegans was used as the in vivo model in order to analyse prolongevity and anti-ageing effects. L. plantarum PFA2018AU significantly colonised the gut of the worms, extended their lifespan, and stimulated their innate immunity. Overall, these results showed that autochthonous LAB from vegetables, such as carrots, have functional features that can be considered novel probiotic candidates.
Collapse
Affiliation(s)
- Laura Pompa
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Arianna Montanari
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Alberta Tomassini
- R&D, Aureli Mario S.S. Agricola, Via Mario Aureli 7, 67050 Ortucchio, Italy
| | - Michele Maria Bianchi
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Walter Aureli
- R&D, Aureli Mario S.S. Agricola, Via Mario Aureli 7, 67050 Ortucchio, Italy
| | - Alfredo Miccheli
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Daniela Uccelletti
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Emily Schifano
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
22
|
Sandoval-Mosqueda IL, Llorente-Bousquets A, Soto C, Márquez CM, Fadda S, Del Río García JC. Ligilactobacillus murinus Strains Isolated from Mice Intestinal Tract: Molecular Characterization and Antagonistic Activity against Food-Borne Pathogens. Microorganisms 2023; 11:microorganisms11040942. [PMID: 37110365 PMCID: PMC10141155 DOI: 10.3390/microorganisms11040942] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Considering the objectives of “One Health” and the Sustainable development Goals “Good health and well-being” for the development of effective strategies to apply against bacterial resistance, food safety dangers, and zoonosis risks, this project explored the isolation and identification of Lactobacillus strains from the intestinal tract of recently weaned mice; as well as the assessment of antibacterial activity against clinical and zoonotic pathogens. For molecular identification, 16S rRNA gene-specific primers were used and, via BLAST-NCBI, 16 Ligilactobacillus murinus, one Ligilactobacillus animalis, and one Streptococcus salivarius strains were identified and registered in GenBank after the confirmation of their identity percentage and the phylogenetic analysis of the 16 Ligilactobacillus murinus strains and their association with Ligilactobacillus animalis. The 18 isolated strains showed antibacterial activity during agar diffusion tests against Listeria monocytogenes ATCC 15313, enteropathogenic Escherichia coli O103, and Campylobacter jejuni ATCC 49943. Electrophoretic and zymographic techniques confirmed the presence of bacteriolytic bands with a relative molecular mass of 107 kDa and another of 24 kDa in Ligilactobacillus murinus strains. UPLC-MS analysis allowed the identification of a 107 kDa lytic protein as an N-acetylmuramoyl-L-amidase involved in cytolysis and considered a bacteriolytic enzyme with antimicrobial activity. The 24 kDa band displayed similarity with a portion of protein with aminopeptidase function. It is expected that these findings will impact the search for new strains and their metabolites with antibacterial activity as an alternative strategy to inhibit pathogens associated with major health risks that help your solution.
Collapse
Affiliation(s)
- Ivonne Lizeth Sandoval-Mosqueda
- Posgrado, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de Mexico, km 2.5 Carretera Cuautitlán-Teoloyucan, San Sebastian Xhala, Cuautitlán Izcalli 54714, Mexico
| | - Adriana Llorente-Bousquets
- Ingeniería y Tecnología, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, km 2.5 Carretera Cuautitlán-Teoloyucan, San Sebastian Xhala, Cuautitlán Izcalli 54714, Mexico
| | - Carlos Soto
- Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, km 2.5 Carretera Cuautitlán-Teoloyucan, San Sebastian Xhala, Cuautitlán Izcalli 54714, Mexico
| | - Crisóforo Mercado Márquez
- Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, km 2.5 Carretera Cuautitlán-Teoloyucan, San Sebastian Xhala, Cuautitlán Izcalli 54714, Mexico
| | - Silvina Fadda
- Centro de Referencia para Lactobacilos, Batalla de Chacabuco 145 sur, San Miguel de Tucumán T4000, Argentina
| | - Juan Carlos Del Río García
- Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, km 2.5 Carretera Cuautitlán-Teoloyucan, San Sebastian Xhala, Cuautitlán Izcalli 54714, Mexico
| |
Collapse
|
23
|
Łubkowska B, Jeżewska-Frąckowiak J, Sroczyński M, Dzitkowska-Zabielska M, Bojarczuk A, Skowron PM, Cięszczyk P. Analysis of Industrial Bacillus Species as Potential Probiotics for Dietary Supplements. Microorganisms 2023; 11:488. [PMID: 36838453 PMCID: PMC9962517 DOI: 10.3390/microorganisms11020488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/18/2023] Open
Abstract
So far, Bacillus species bacteria are being used as bacteria concentrates, supplementing cleaning preparations in order to reduce odor and expel pathogenic bacteria. Here, we discuss the potential of Bacillus species as 'natural' probiotics and evaluate their microbiological characteristics. An industrially used microbiological concentrates and their components of mixed Bacillus species cultures were tested, which may be a promising bacteria source for food probiotic preparation for supplementary diet. In this study, antagonistic activities and probiotic potential of Bacillus species, derived from an industrial microbiological concentrate, were demonstrated. The cell free supernatants (CFS) from Bacillus licheniformis mostly inhibited the growth of foodborne pathogenic bacteria, such as Escherichia coli O157:H7 ATCC 35150, Salmonella Enteritidis KCCM 12021, and Staphylococcus aureus KCCM 11335, while some of Bacillus strains showed synergistic effect with foodborne pathogenic bacteria. Moreover, Bacillus strains identified by the MALDI TOF-MS method were found sensitive to chloramphenicol, kanamycin, and rifampicin. B. licheniformis and B. cereus displayed the least sensitivity to the other tested antibiotics, such as ampicillin, ampicillin and sulfbactam, streptomycin, and oxacillin and bacitracin. Furthermore, some of the bacterial species detected extended their growth range from the mesophilic to moderately thermophilic range, up to 54 °C. Thus, their potential sensitivity to thermophilic TP-84 bacteriophage, infecting thermophilic Bacilli, was tested for the purpose of isolation a new bacterial host for engineered bionanoparticles construction. We reason that the natural environmental microflora of non-pathogenic Bacillus species, especially B. licheniformis, can become a present probiotic remedy for many contemporary issues related to gastrointestinal tract health, especially for individuals under metabolic strain or for the increasingly growing group of lactose-intolerant people.
Collapse
Affiliation(s)
- Beata Łubkowska
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, K. Gorskiego 1, 80-336 Gdansk, Poland; (M.D.-Z.); (A.B.); (P.C.)
| | - Joanna Jeżewska-Frąckowiak
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (J.J.-F.); (M.S.); (P.M.S.)
| | - Michał Sroczyński
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (J.J.-F.); (M.S.); (P.M.S.)
| | - Magdalena Dzitkowska-Zabielska
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, K. Gorskiego 1, 80-336 Gdansk, Poland; (M.D.-Z.); (A.B.); (P.C.)
| | - Aleksandra Bojarczuk
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, K. Gorskiego 1, 80-336 Gdansk, Poland; (M.D.-Z.); (A.B.); (P.C.)
| | - Piotr M. Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (J.J.-F.); (M.S.); (P.M.S.)
| | - Paweł Cięszczyk
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, K. Gorskiego 1, 80-336 Gdansk, Poland; (M.D.-Z.); (A.B.); (P.C.)
| |
Collapse
|
24
|
Abstract
Reportedly, Western-type diets may induce the loss of key microbial taxa within the gastrointestinal microbiota, promoting the onset of noncommunicable diseases. It was hypothesized that the consumption of raw vegetables could contribute to the maintenance of the intestinal microbial community structure. In this context, we explored bacteria associated with commercial rocket salads produced through different farming practices: traditional (conventional, organic, and integrated) and vertical farming. Viable counts of mesophilic bacteria and lactic acid bacteria (LAB) were performed on plate count agar (PCA) and de Man-Rogosa-Sharpe (MRS) agar at pH 5.7, whereas metataxonomics through 16S rRNA gene sequencing was used to profile total bacteria associated with rocket salads. We found that rocket salads from vertical farming had much fewer viable bacteria and had a bacterial community structure markedly different from that of rocket salads from traditional farming. Furthermore, although α- and β-diversity analyses did not differentiate rocket samples according to farming techniques, several bacterial taxa distinguished organic and integrated from conventional farming salads, suggesting that farming practices could affect the taxonomic composition of rocket bacterial communities. LAB were isolated from only traditional farming samples and belonged to different species, which were variably distributed among samples and could be partly associated with farming practices. Finally, the INFOGEST protocol for in vitro simulation of gastrointestinal digestion revealed that several taxonomically different rocket-associated bacteria (particularly LAB) could survive gastrointestinal transit. This study suggests that commercial ready-to-eat rocket salads harbor live bacteria that possess the ability to survive gastrointestinal transit, potentially contributing to the taxonomic structure of the human gut microbiota. IMPORTANCE Western-type diets are composed of foods with a reduced amount of naturally occurring microorganisms. It was hypothesized that a microbe-depleted diet can favor the alteration of the human intestinal microbial ecosystem, therefore contributing to the onset of chronic metabolic and immune diseases currently recognized as the most significant causes of death in the developed world. Here, we studied the microorganisms that are associated with commercial ready-to-eat rocket salads produced through different farming practices. We showed that rocket salad (a widely consumed vegetal food frequently eaten raw) may be a source of lactic acid bacteria and other microbes that can survive gastrointestinal transit, potentially increasing the biodiversity of the intestinal microbiota. This deduction may be valid for virtually all vegetal foods that are consumed raw.
Collapse
|
25
|
Kostelac D, Gerić M, Gajski G, Frece J. Probiotic bacteria isolated from fermented meat displays high antioxidant and anti-inflammatory potential. Mutagenesis 2023; 38:58-63. [PMID: 36318230 DOI: 10.1093/mutage/geac023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
One of the ways to impact emerging problems of unhealthy diet such as microbiota dysbiosis, inflammation, and oxidative stress is the application of probiotics and their incorporation into different food matrices. Discovery and selection of appropriate probiotic bacteria is challenging procedure especially for fermented meat products that have also been described as a potential source of resilient probiotic microorganisms. The aim of this study was to investigate probiotic bacteria Lactiplantibacillus plantarum 1K isolated from traditional fermented meat product for its potential beneficial properties. Furthermore, small probiotic metabolites were extracted, and their anti-inflammatory activity was tested in a lipopolysaccharide-stimulated inflammatory model on human peripheral blood mononuclear cells (PBMCs). Safety characteristics of metabolites including cytotoxicity and genotoxicity were also determined. Investigated probiotic strain exerted high antioxidant potential by viable cells but also by metabolite fraction. Viable cells retained the satisfactory antioxidant activity after gastrointestinal transit. Extracted probiotic metabolites significantly inhibited TNF-α production in LPS-stimulated PBMC thus exerting anti-inflammatory activity. Metabolites alone showed no cytotoxic or genotoxic activity toward isolated immune cells. Obtained results indicate the possibility to use fermented meat products as sources for specific probiotics that might provide antioxidant and anti-inflammatory benefits for the consumers.
Collapse
Affiliation(s)
- Deni Kostelac
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Marko Gerić
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, Ksaverska cesta 2, 10000 Zagreb, Croatia
| | - Goran Gajski
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, Ksaverska cesta 2, 10000 Zagreb, Croatia
| | - Jadranka Frece
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| |
Collapse
|
26
|
Rabaoui G, Sánchez-Juanes F, Tebini M, Naghmouchi K, Bellido JLM, Ben-Mahrez K, Réjiba S. Potential Probiotic Lactic Acid Bacteria with Anti-Penicillium expansum Activity from Different Species of Tunisian Edible Snails. Probiotics Antimicrob Proteins 2023; 15:82-106. [PMID: 35022998 DOI: 10.1007/s12602-021-09882-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 01/18/2023]
Abstract
This study aimed to isolate lactic acid bacteria (LAB) from the digestive tract, meat and slime of edible snails (Helix lucorum, Helix aspersa and Eobania vermiculata) and investigate their antagonistic activity against Penicillium expansum. They were then characterized for their probiotic potential. Among 900 bacterial isolates, 47 LAB exhibiting anti-P. expansum activity were identified through matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) as Levilactobacillus brevis (25), Lactococcus lactis (3), Enterococcus faecium (12), Enterococcus faecalis (4), Enterococcus casseliflavus (1), and Enterococcus mundtii (2). Sixty-two percent of the strains were tolerant to 100 mg/L of lysozyme. Seventy two percent of the isolates were able to survive at pH 3 and most of them tolerate 2.5% bile salt concentration. Moreover, 23% of the strains displayed bile salt hydrolase activity. Interestingly, all strains were biofilm strong producers. However, their auto- and co-aggregation properties were time and pH dependent with high aggregative potentiality at pH 4.5 after 24 h. Remarkably, 48.94% of the strains showed high affinity to chloroform. The safety assessment revealed that the 47 LAB had no hemolytic activity and 64% of them lacked mucin degradation activity. All isolated strains were susceptible to gentamycin, streptomycin, tetracycline, chloramphenicol, and trimethoprim-sulfamethoxazole. Overall, 43 LAB strains showed inhibitory activity against a broad spectrum of pathogenic Gram-positive and gram-negative bacteria, fungi, and yeast. Our findings suggest that L. brevis (EVM12 and EVM14) and Ent. faecium HAS34 strains could be potential candidates for probiotics with interesting antibacterial and anti-P. expansum activities.
Collapse
Affiliation(s)
- Ghada Rabaoui
- Biochemistry and Biotechnology Laboratory LR01ES05, Faculty of Sciences of Tunis, University Tunis El Manar, 2092, El Manar II, Tunisia
| | - Fernando Sánchez-Juanes
- Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Complejo Asistencial Universitario de Salamanca, Universidad de Salamanca, CSIC, Salamanca, Spain
| | - Mohamed Tebini
- Mixed Tunisian-Moroccan Laboratory of Plant Physiology and Biotechnology and Climate Change (LPBV2C. LR11ES09), Faculty of Sciences of Tunis, University Tunis El Manar, 2092, El Manar II, Tunisia.,Faculty of Sciences Semlalia of Marrakech, Cadi Ayyad University 46000, Marrakesh, Morocco
| | - Karim Naghmouchi
- Biochemistry and Biotechnology Laboratory LR01ES05, Faculty of Sciences of Tunis, University Tunis El Manar, 2092, El Manar II, Tunisia.,College of Clinical Pharmacy, Department of Pharmaceutical Chemistry, Al Baha University, Al Bahah, Saudi Arabia
| | | | - Kamel Ben-Mahrez
- Biochemistry and Biotechnology Laboratory LR01ES05, Faculty of Sciences of Tunis, University Tunis El Manar, 2092, El Manar II, Tunisia
| | - Samia Réjiba
- Biochemistry and Biotechnology Laboratory LR01ES05, Faculty of Sciences of Tunis, University Tunis El Manar, 2092, El Manar II, Tunisia. .,Higher Institute of Biotechnology, Biotechpole of Sidi Thabet, BP-66, 2020, Sidi Thabet, Ariana-Tunis, University of Manouba, Manouba 2010, Tunis, Tunisia.
| |
Collapse
|
27
|
Milanović V, Maoloni A, Belleggia L, Cardinali F, Garofalo C, Cesaro C, Aquilanti L, Osimani A. Tetracycline Resistance Genes in the Traditional Swedish Sour Herring surströmming as Revealed Using qPCR. Genes (Basel) 2022; 14:genes14010056. [PMID: 36672797 PMCID: PMC9858948 DOI: 10.3390/genes14010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Antibiotic resistance (AR) represents a global concern for human health. To the best of the authors' knowledge, no study addressing AR in surströmming, a traditional Swedish fermented herring, has been performed to date. The aim of the present research was to study the prevalence of tet(O), tet(S), tet(W), tet(K), and tet(M) genes encoding for resistance to tetracycline using quantitative PCR (qPCR) applied to ready-to-eat surströmming samples collected from three producers located in Sweden. The tet(M) gene was found in all the analyzed samples, and it was also the most abundant among the tested tet genes; moreover, tet(O) was the least frequently detected gene. As a general trend, all the analyzed samples showed a high occurrence of the target genes, with slight variations among the producers. A principal component analysis did not reveal any separation among the samples or producers. All the collected data allowed for a drawing of a first picture of the occurrence of tetracycline resistance genes in ready-to-eat surströmming samples. Since no differences among the samples manufactured by the different producers were observed, it is likely that the detected genes were homogeneously spread among the microbial species shared by the herrings used as raw materials. Moreover, it can be hypothesized that the presence of the detected genes was also the result of a selective pressure of the natural marine environment on the herrings' gut microbiota and, hence, on the pro-technological microorganisms responsible for the fermentation of surströmming. However, the contribution of the manufacturers to the contamination of the processed herrings cannot be excluded.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lucia Aquilanti
- Correspondence: ; Tel.: +39-071-22-04-959; Fax: +39-071-22-04-988
| | | |
Collapse
|
28
|
Poupet C, Rifa É, Theil S, Bonnet M, Veisseire P, Cardin G, Guéret É, Rialle S, Chassard C, Nivoliez A, Bornes S. In vivo investigation of Lcr35 ® anti-candidiasis properties in Caenorhabditis elegans reveals the involvement of highly conserved immune pathways. Front Microbiol 2022; 13:1062113. [PMID: 36620055 PMCID: PMC9816150 DOI: 10.3389/fmicb.2022.1062113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Lactic acid bacteria, including the microorganisms formerly designated as Lactobacillus, are the major representatives of Live Biotherapeutic Microorganisms (LBM) when used for therapeutic purposes. However, in most cases, the mechanisms of action remain unknown. The antifungal potential of LBM has already been demonstrated using preclinical models (cell cultures, laboratory animals). Understanding their mechanisms of action is strategic for the development of new therapeutics for humans. Here, Caenorhabditis elegans was used as an in vivo model to analyze pro-longevity, anti-aging and anti-candidiasis effects of the LBM Lacticaseibacillus rhamnosus (formerly Lactobacillus rhamnosus) Lcr35®. A high-throughput transcriptomic analysis revealed a specific response of C. elegans depending on whether it is in the presence of the LBM L. rhamnosus Lcr35® (structural response), the yeast Candida albicans (metabolic response) or both (structural and metabolic responses) in a preventive and a curative conditions. Studies on C. elegans mutants demonstrated that the p38 MAPK (sek-1, skn-1) and the insulin-like (daf-2, daf-16) signaling pathways were involved in the extended lifespan provided by L. rhamnosus Lcr35® strain whereas the JNK pathway was not involved (jnk-1). In addition, the anti C. albicans effect of the bacterium requires the daf-16 and sek-1 genes while it is independent of daf-2 and skn-1. Moreover, the anti-aging effect of Lcr35®, linked to the extension of longevity, is not due to protection against oxidative stress (H2O2). Taken together, these results formally show the involvement of the p38 MAP kinase and insulin-like signaling pathways for the longevity extension and anti-Candida albicans properties of Lcr35® with, however, differences in the genes involved. Overall, these findings provide new insight for understanding the mechanisms of action of a probiotic strain with antimicrobial potential.
Collapse
Affiliation(s)
- Cyril Poupet
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF, Aurillac, France,*Correspondence: Cyril Poupet,
| | - Étienne Rifa
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF, Aurillac, France
| | - Sébastien Theil
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF, Aurillac, France
| | - Muriel Bonnet
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF, Aurillac, France
| | - Philippe Veisseire
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF, Aurillac, France
| | - Guillaume Cardin
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF, Aurillac, France
| | - Élise Guéret
- MGX, Univ Montpellier, CNRS, INSERM, Montpellier, France
| | | | | | | | - Stéphanie Bornes
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF, Aurillac, France
| |
Collapse
|
29
|
Kang AN, Mun D, Ryu S, Jae Lee J, Oh S, Kyu Kim M, Song M, Oh S, Kim Y. Culturomic-, metagenomic-, and transcriptomic-based characterization of commensal lactic acid bacteria isolated from domestic dogs using Caenorhabditis elegans as a model for aging. J Anim Sci 2022; 100:skac323. [PMID: 36194530 PMCID: PMC9733531 DOI: 10.1093/jas/skac323] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/03/2022] [Indexed: 12/15/2022] Open
Abstract
In tandem with the fast expansion of the pet-economy industry, the present aging research has been noticing the function of probiotics in extending the healthy lifetime of domestic animals. In this study, we aimed to understand the bacterial compositions of canine feces and isolating lactic acid bacteria (LAB) as commensal LAB as novel potential probiotics for the use of antiaging using Caenorhabditis elegans surrogate animal model. Under an anaerobic, culturomic, and metagenomic analysis, a total of 305 commensal LAB were isolated from diverse domestic dogs, and four strains, Lactobacillus amylolyticus, L. salivarius, Enterococcus hirae, and E. faecium, made prominence as commensal LAB by enhancing C. elegans life span and restored neuronal degeneration induced by aging by upregulating skn-1, ser-7, and odr-3, 7, 10. Importantly, whole transcriptome results and integrative network analysis revealed extensive mRNA encoding protein domains and functional pathways of naturally aging C. elegans were examined and we built the gene informatics basis. Taken together, our findings proposed that a specific gene network corresponding to the pathways differentially expressed during the aging and selected commensal LAB as potential probiotic strains could be provided beneficial effects in the aging of domestic animals by modulating the dynamics of gut microbiota.
Collapse
Affiliation(s)
- An Na Kang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Daye Mun
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Sangdon Ryu
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Jeong Jae Lee
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Korea
| | - Sejong Oh
- Division of Animal Science, Chonnam National University, Gwangju 61186, Korea
| | - Min Kyu Kim
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Minho Song
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Sangnam Oh
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju 55069, Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
30
|
Banić M, Butorac K, Čuljak N, Leboš Pavunc A, Novak J, Bellich B, Kazazić S, Kazazić S, Cescutti P, Šušković J, Zucko J, Kos B. The Human Milk Microbiota Produces Potential Therapeutic Biomolecules and Shapes the Intestinal Microbiota of Infants. Int J Mol Sci 2022; 23:ijms232214382. [PMID: 36430861 PMCID: PMC9699365 DOI: 10.3390/ijms232214382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Human milk not only provides a perfect balance of nutrients to meet all the needs of the infant in the first months of life but also contains a variety of bacteria that play a key role in tailoring the neonatal faecal microbiome. Microbiome analysis of human milk and infant faeces from mother-breastfed infant pairs was performed by sequencing the V1-V3 region of the 16S rRNA gene using the Illumina MiSeq platform. According to the results, there is a connection in the composition of the microbiome in each mother-breastfed infant pair, supporting the hypothesis that the infant's gut is colonised with bacteria from human milk. MiSeq sequencing also revealed high biodiversity of the human milk microbiome and the infant faecal microbiome, whose composition changes during lactation and infant development, respectively. A total of 28 genetically distinct strains were selected by hierarchical cluster analysis of RAPD-PCR (Random Amplified Polymorphic DNA-Polymerase Chain Reaction) electrophoresis profiles of 100 strains isolated from human milk and identified by 16S RNA sequencing. Since certain cellular molecules may support their use as probiotics, the next focus was to detect (S)-layer proteins, bacteriocins and exopolysaccharides (EPSs) that have potential as therapeutic biomolecules. SDS-PAGE (Sodium Dodecyl-Sulfate Polyacrylamide Gel Electrophoresis) coupled with LC-MS (liquid chromatography-mass spectrometry) analysis revealed that four Levilactobacillus brevis strains expressed S-layer proteins, which were identified for the first time in strains isolated from human milk. The potential biosynthesis of plantaricin was detected in six Lactiplantibacillus plantarum strains by PCR analysis and in vitro antibacterial studies. 1H NMR (Proton Nuclear Magnetic Resonance) analysis confirmed EPS production in only one strain, Limosilactobacillus fermentum MC1. The overall microbiome analysis suggests that human milk contributes to the establishment of the intestinal microbiota of infants. In addition, it is a promising source of novel Lactobacillus strains expressing specific functional biomolecules.
Collapse
Affiliation(s)
- Martina Banić
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Katarina Butorac
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Nina Čuljak
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Andreja Leboš Pavunc
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Jasna Novak
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Barbara Bellich
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, Ed. C11, 34127 Trieste, Italy
| | - Saša Kazazić
- The Ruđer Bošković Institute, Laboratory for Mass Spectrometry, Bijenička 54, 10000 Zagreb, Croatia
| | - Snježana Kazazić
- The Ruđer Bošković Institute, Laboratory for Mass Spectrometry, Bijenička 54, 10000 Zagreb, Croatia
| | - Paola Cescutti
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, Ed. C11, 34127 Trieste, Italy
| | - Jagoda Šušković
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Jurica Zucko
- Laboratory for Bioinformatics, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Blaženka Kos
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
31
|
Wei LS, Goh KW, Abdul Hamid NK, Abdul Kari Z, Wee W, Van Doan H. A mini-review on co-supplementation of probiotics and medicinal herbs: Application in aquaculture. Front Vet Sci 2022; 9:869564. [PMID: 36406063 PMCID: PMC9666728 DOI: 10.3389/fvets.2022.869564] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 09/15/2022] [Indexed: 02/03/2024] Open
Abstract
The aquaculture industry is geared toward intensification and successfully meets half of the world's demand for fish protein. The intensive farming system exposes the animal to the risk of disease outbreaks, which has economic consequences. Antibiotics are commonly used for the health management of aquaculture species. However, this has several drawbacks, including the increase in antibiotic resistance in pathogenic bacteria and the entry of antibiotic residues into the human food chain, which is a public health and environmental concern. The potential of probiotics, prebiotics, synbiotics, and medicinal herbs as alternatives to antibiotics for the health management of aquaculture species has been investigated in numerous studies. This review discusses the potential use of combinations of probiotics and medicinal herbs as prophylactic agents in aquaculture, along with the definitions, sources, and modes of action. The positive aspects of combining probiotics and medicinal herbs on growth performance, the immune system, and disease resistance of aquaculture species are also highlighted. Overall, this review addresses the potential of combinations of probiotics and medicinal herbs as feed additives for aquaculture species and the key role of these feed additives in improving the welfare of aquaculture species.
Collapse
Affiliation(s)
- Lee Seong Wei
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | | | - Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
| | - Wendy Wee
- Center of Fundamental and Continuing Education, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
32
|
Du Y, Li H, Xu W, Hu X, Wu T, Chen J. Cell surface-associated elongation factor Tu interacts with fibronectin mediating the adhesion of Lactobacillus plantarum HC-2 to Penaeus vannamei intestinal cells and inhibiting the apoptosis induced by LPS and pathogen in Caco-2 cells. Int J Biol Macromol 2022; 224:32-47. [DOI: 10.1016/j.ijbiomac.2022.11.252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
|
33
|
Abd El-Hack ME, Alagawany M, El-Shall NA, Shehata AM, Abdel-Moneim AME, Naiel MAE. Probiotics in Poultry Nutrition as a Natural Alternative for Antibiotics. ANTIBIOTIC ALTERNATIVES IN POULTRY AND FISH FEED 2022:137-159. [DOI: 10.2174/9789815049015122010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Since the early 1950s, antibiotics have been used in poultry for improving
feed efficiency and growth performance. Nevertheless, various side effects have
appeared, such as antibiotic resistance, antibiotic residues in eggs and meat, and
imbalance of beneficial intestinal bacteria. Consequently, it is essential to find other
alternatives that include probiotics that improve poultry production. Probiotics are live
microorganisms administered in adequate doses and improve host health. Probiotics are
available to be used as feed additives, increasing the availability of the nutrients for
enhanced growth by digesting the feed properly. Immunity and meat and egg quality
can be improved by supplementation of probiotics in poultry feed. Furthermore, the
major reason for using probiotics as feed additives is that they can compete with
various infectious diseases causing pathogens in poultry's gastrointestinal tract. Hence,
this chapter focuses on the types and mechanisms of action of probiotics and their
benefits, by feed supplementation, for poultry health and production.
Collapse
Affiliation(s)
| | | | - Nahed A. El-Shall
- Alexandria University,Department of poultry and fish diseases,Elbehira,Egypt
| | | | | | | |
Collapse
|
34
|
Antioxidant and Antibacterial Effects of Potential Probiotics Isolated from Korean Fermented Foods. Int J Mol Sci 2022; 23:ijms231710062. [PMID: 36077456 PMCID: PMC9455991 DOI: 10.3390/ijms231710062] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/25/2022] Open
Abstract
A total of sixteen bacterial strains were isolated and identified from the fourteen types of Korean fermented foods that were evaluated for their in vitro probiotic potentials. The results showed the highest survivability for Bacillus sp. compared to Lactobacillus sp. in simulated gastric pH, and it was found to be maximum for B. inaquosorum KNUAS016 (8.25 ± 0.08 log10 CFU/mL) and minimum for L. sakei KNUAS019 (0.8 ± 0.02 log10 CFU/mL) at 3 h of incubation. Furthermore, B. inaquosorum KNUAS016 and L. brevis KNUAS017 also had the highest survival rates of 6.86 ± 0.02 and 5.37 ± 0.01 log10 CFU/mL, respectively, in a simulated intestinal fluid condition at 4 h of incubation. The percentage of autoaggregation at 6 h for L. sakei KNUAS019 (66.55 ± 0.33%), B. tequilensis KNUAS015 (64.56 ± 0.14%), and B. inaquosorum KNUAS016 (61.63 ± 0.19%) was >60%, whereas it was lower for L. brevis KNUAS017 (29.98 ± 0.09%). Additionally, B. subtilis KNUAS003 showed higher coaggregation at 63.84 ± 0.19% while B. proteolyticus KNUAS001 found at 30.02 ± 0.33%. Among them, Lactobacillus sp. showed the best non-hemolytic activity. The highest DPPH and ABTS radical scavenging activity was observed in L. sakei KNUAS019 (58.25% and 71.88%). The cell-free supernatant of Lactobacillus sp. considerably inhibited pathogenic growth, while the cell-free supernatant of Bacillus sp. was moderately inhibited when incubated for 24 h. However, the overall results found that B. subtilis KNUAS003, B. proteolyticus KNUAS012, L. brevis KNUAS017, L. graminis KNUAS018, and L. sakei KNUAS019 were recognized as potential probiotics through different functional and toxicity assessments.
Collapse
|
35
|
Investigation of the probiotic and metabolic potential of Fructobacillus tropaeoli and Apilactobacillus kunkeei from apiaries. Arch Microbiol 2022; 204:432. [PMID: 35759032 DOI: 10.1007/s00203-022-03000-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 12/28/2022]
Abstract
Honeybee products have been among important consumer products throughout history. Microbiota has attracted attention in recent years due to both their probiotic value and industrial potential. Fructophilic lactic acid bacteria (FLAB), whose field of study has been expanding rapidly in the last 20 years, are among the groups that can be isolated from the bee gut. This study aimed to isolate FLAB from the honeybees of two different geographic regions in Turkey and investigate their probiotic, metabolic and anti-quorum sensing (anti-QS) potential. Metabolic properties were investigated based on fructose toleration and acid and diacetyl production while the probiotic properties of the isolates were determined by examining pH, pepsin, pancreatin resistance, antimicrobial susceptibility, and antimicrobial activity. Anti-QS activities were also evaluated with the Chromobacterium violaceum biosensor strain. Two FLAB members were isolated and identified by the 16S rRNA analysis as Fructobacillus tropaeoli and Apilactobacillus kunkeei, which were found to be tolerant to high fructose, low pH, pepsin, pancreatin, and bile salt environments. Both isolates showed anti-QS activity against the C. violaceum biosensor strain and no diacetyl production. The daily supernatants of the isolates inhibited the growth of Enterococcus faecalis ATCC 29212 among the selected pathogens. The isolates were found resistant to kanamycin, streptomycin, erythromycin, and clindamycin. In the evaluation of the probiotic potential of these species, the negative effect of antibiotics and other chemicals to which honeybees are directly or indirectly exposed draws attention within the scope of the "One Health" approach.
Collapse
|
36
|
Wang P, Wu J, Wang T, Zhang Y, Yao X, Li J, Wang X, Lü X. Fermentation process optimization, chemical analysis, and storage stability evaluation of a probiotic barley malt kvass. Bioprocess Biosyst Eng 2022; 45:1175-1188. [PMID: 35616735 DOI: 10.1007/s00449-022-02734-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/02/2022] [Indexed: 11/26/2022]
Abstract
Kvass is a popular low-alcohol beverage produced by the natural fermentation of dark rye bread or malt with complex microbial flora. However, few pieces of research focus on the microflora of traditional bread kvass, and the industrial kvass based on malt concentrate has some disadvantages, including the lack of viable probiotics and containing multiple artificial additives. Therefore, in the present study, based on the different homemade traditional bread kvass, the predominant species including Lacticaseibacillus paracasei, Acetobacter pasteurianus, and Saccharomyces cerevisiae were screened and identified. In addition, barley malt was used instead of bread for kvass production, and the co-fermentation conditions with three different strains were optimized as wort concentration of 7.4°Brix, cell ratio of 2/2/1 (S. cerevisiae/L. paracasei/A. pasteurianus), inoculum amount of 8%, fermentation temperature of 29.5 °C and fermentation time of 24.6 h. Moreover, the physicochemical (pH, total soluble solids, color, and alcohol content) and probiotic (microorganisms counting and antioxidant activity) properties of the barley malt kvass prepared at optimal conditions were symmetrically evaluated. Besides, compared with the commercial kvass products, the produced barley malt kvass exhibited better taste and more desirable antioxidant activity, and also maintained around 6-7 log CFU/mL of viable probiotic microorganisms during a week of storage. The present study not only enriched the biological resource of the traditional kvass, but also promoted the development of the kvass as a live-bacteria beverage.
Collapse
Affiliation(s)
- Panpan Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China
| | - Jiaqi Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China
| | - Tao Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China
| | - Yunyong Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China
| | - Xinyue Yao
- College of Food Science and Engineering, Northwest A&F University, Yangling, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China
| | - Jiayao Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China.
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China.
| |
Collapse
|
37
|
Isolation and identification of lactic acid bacteria in fruit processing residues from the Brazilian Cerrado and its probiotic potential. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Li Y, Gao J, Xue L, Shang Y, Cai W, Xie X, Jiang T, Chen H, Zhang J, Wang J, Chen M, Ding Y, Wu Q. Determination of Antiviral Mechanism of Centenarian Gut-Derived Limosilactobacillus fermentum Against Norovirus. Front Nutr 2022; 9:812623. [PMID: 35419394 PMCID: PMC8997286 DOI: 10.3389/fnut.2022.812623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/11/2022] [Indexed: 01/03/2023] Open
Abstract
Although noroviruses are the causative agents of most non-bacterial foodborne disease outbreaks, effective antivirals are currently unavailable. Certain probiotic strains have been reported as active antivirals for norovirus infections, but their mechanisms have not been fully elucidated. Herein, we examined the antiviral potential of 122 lactic acid bacteria isolates against murine norovirus (MNV), a human norovirus surrogate. A centenarian gut-derived strain, Limosilactobacillus fermentum PV22, exhibited the strongest MNV antagonism and reduced the viral titer by 2.23 ± 0.38 (log-value) in 5 min with stable activity at 25°C (P < 0.01). Genome mining revealed that its antiviral activity can be attributed to the synthesis of γ-aminobutyric acid, and this finding was experimentally verified. Furthermore, we demonstrated the safety of the isolate and its high intestinal colonization ability. In conclusion, we discovered a centenarian gut-derived L. fermentum strain with strong anti-norovirus activity and identified its antiviral metabolite. Our results will offer new solutions for the prevention and treatment of food-related norovirus infections.
Collapse
Affiliation(s)
- Ying Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Junshan Gao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yanyan Shang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Weicheng Cai
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xinqiang Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Tong Jiang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Huizhen Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Ding
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
39
|
Pino A, Benkaddour B, Inturri R, Amico P, Vaccaro SC, Russo N, Vaccalluzzo A, Agolino G, Caggia C, Miloud H, Randazzo CL. Characterization of Bifidobacterium asteroides Isolates. Microorganisms 2022; 10:655. [PMID: 35336230 PMCID: PMC8950671 DOI: 10.3390/microorganisms10030655] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/04/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
Bifidobacteria have long been recognized as bacteria with probiotic and therapeutic features. The aim of this work is to characterize the Bifidobacterium asteroides BA15 and BA17 strains, isolated from honeybee gut, to evaluate its safety for human use. An in-depth assessment was carried out on safety properties (antibiotic resistance profiling, β-hemolytic, DNase and gelatinase activities and virulence factor presence) and other properties (antimicrobial activity, auto-aggregation, co-aggregation and hydrophobicity). Based on phenotypic and genotypic characterization, both strains satisfied all the safety requirements. More specifically, genome analysis showed the absence of genes encoding for glycopeptide (vanA, vanB, vanC-1, vanC-2, vanD, vanE, vanG), resistance to tetracycline (tetM, tetL and tetO) and virulence genes (asa1, gelE, cylA, esp, hyl).
Collapse
Affiliation(s)
- Alessandra Pino
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy; (A.P.); (N.R.); (A.V.); (G.A.); (C.C.)
- ProBioEtna S.r.l., Spin-Off of University of Catania, 95123 Catania, Italy
| | - Bachir Benkaddour
- Department of Biology, Faculty of Natural Sciences and Life, University of Oran1, Oran 31000, Algeria; (B.B.); (H.M.)
| | - Rosanna Inturri
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Department of R&D, Local Noto Unit, Fidia Farmaceutici S.p.A., 96017 Noto, Italy; (P.A.); (S.C.V.)
| | - Pietro Amico
- Department of R&D, Local Noto Unit, Fidia Farmaceutici S.p.A., 96017 Noto, Italy; (P.A.); (S.C.V.)
| | - Susanna C. Vaccaro
- Department of R&D, Local Noto Unit, Fidia Farmaceutici S.p.A., 96017 Noto, Italy; (P.A.); (S.C.V.)
| | - Nunziatina Russo
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy; (A.P.); (N.R.); (A.V.); (G.A.); (C.C.)
- ProBioEtna S.r.l., Spin-Off of University of Catania, 95123 Catania, Italy
| | - Amanda Vaccalluzzo
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy; (A.P.); (N.R.); (A.V.); (G.A.); (C.C.)
| | - Gianluigi Agolino
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy; (A.P.); (N.R.); (A.V.); (G.A.); (C.C.)
| | - Cinzia Caggia
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy; (A.P.); (N.R.); (A.V.); (G.A.); (C.C.)
- ProBioEtna S.r.l., Spin-Off of University of Catania, 95123 Catania, Italy
| | - Hadadji Miloud
- Department of Biology, Faculty of Natural Sciences and Life, University of Oran1, Oran 31000, Algeria; (B.B.); (H.M.)
| | - Cinzia L. Randazzo
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy; (A.P.); (N.R.); (A.V.); (G.A.); (C.C.)
- ProBioEtna S.r.l., Spin-Off of University of Catania, 95123 Catania, Italy
| |
Collapse
|
40
|
Elmansy EA, Elkady EM, Asker MS, Abdou AM, Abdallah NA, Amer SK. Exopolysaccharide produced by Lactiplantibacillus plantarum RO30 isolated from Romi cheese: characterization, antioxidant and burn healing activity. World J Microbiol Biotechnol 2022; 38:245. [PMID: 36287274 PMCID: PMC9605930 DOI: 10.1007/s11274-022-03439-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/10/2022] [Indexed: 11/26/2022]
Abstract
Microbial exopolysaccharides (EPSs) extracted from lactic acid bacteria (LAB) are generally recognized as safe. They have earned popularity in recent years because of their exceptional biological features. Therefore, the present study main focus was to study EPS-production from probiotic LAB and to investigate their antioxidant and burn wound healing efficacy. Seventeen LAB were isolated from different food samples. All of them showed EPS-producing abilities ranging from 1.75 ± 0.05 to 4.32 ± 0.12 g/l. RO30 isolate (from Romi cheese) was chosen, due to its ability to produce the highest EPS yield (4.23 ± 0.12 g/l). The 16S rDNA sequencing showed it belonged to the Lactiplantibacillus plantarum group and was further identified as L. plantarum RO30 with accession number OL757866. It displayed well in vitro probiotic properties. REPS was extracted and characterized. The existence of COO−, OH and amide groups corresponding to typical EPSs was confirmed via FTIR. It was constituted of glucuronic acid, mannose, glucose, and arabinose in a molar ratio of 2.2:0.1:0.5:0.1, respectively. The average molecular weight was 4.96 × 104 g/mol. In vitro antioxidant assays showed that the REPS possesses a DPPH radical scavenging ability of 43.60% at 5 mg/ml, reducing power of 1.108 at 10 mg/ml, and iron chelation activity of 72.49% and 89.78% at 5 mg/ml and 10 mg/ml, respectively. The healing efficacy of REPS on burn wound models in albino Wistar rats showed that REPS at 0.5% (w/w) concentration stimulated the process of healing in burn areas. The results suggested that REPS might be useful as a burn wound healing agent.
Collapse
Affiliation(s)
- Eman A. Elmansy
- Microbial Biotechnology Department, Institute of Biotechnology Research, National Research Centre, El-Tahreer Street, Dokki, Cairo, 12622, Egypt
| | - Ebtsam M. Elkady
- Microbial Biotechnology Department, Institute of Biotechnology Research, National Research Centre, El-Tahreer Street, Dokki, Cairo, 12622, Egypt
| | - Mohsen S. Asker
- Microbial Biotechnology Department, Institute of Biotechnology Research, National Research Centre, El-Tahreer Street, Dokki, Cairo, 12622, Egypt
| | - Amr M. Abdou
- Department of Microbiology and Immunology, National Research Centre, El-Tahreer Street, Dokki, Cairo, 12622 Egypt
| | - Nagwa A. Abdallah
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Shaimaa K. Amer
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
41
|
Wen Fang Wu Wu J, Redondo-Solano M, Uribe L, WingChing-Jones R, Usaga J, Barboza N. First characterization of the probiotic potential of lactic acid bacteria isolated from Costa Rican pineapple silages. PeerJ 2021; 9:e12437. [PMID: 34909269 PMCID: PMC8641478 DOI: 10.7717/peerj.12437] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/15/2021] [Indexed: 11/20/2022] Open
Abstract
Background Agro-industrial waste from tropical environments could be an important source of lactic acid bacteria (LAB) with probiotic potential. Methods Twelve LAB isolates were isolated from pineapple silages. The species identification was carried out considering 16S rRNA and pheS genes. Experiments to evaluate the probiotic potential of the isolates included survival under simulated gastrointestinal environment, in vitro antagonistic activity (against Salmonella spp. and Listeria monocytogenes), auto-aggregation assays, antibiotic susceptibility, presence of plasmids, adhesiveness to epithelial cells, and antagonistic activity against Salmonella in HeLa cells. Results Lacticaseibacillus paracasei, Lentilactobacillus parafarraginis, Limosilactobacillus fermentum, and Weissella ghanensis were identified. Survival of one of the isolates was 90% or higher after exposure to acidic conditions (pH: 2), six isolates showed at least 61% survival after exposure to bile salts. The three most promising isolates, based on survivability tests, showed a strong antagonistic effect against Salmonella. However, only L. paracasei_6714 showed a strong Listeria inhibition pattern; this isolate showed a good auto-aggregation ability, was resistant to some of the tested antibiotics but was not found to harbor plasmids; it also showed a high capacity for adhesion to epithelial cells and prevented the invasion of Salmonella in HeLa cells. After further in vivo evaluations, L. paracasei_6714 may be considered a probiotic candidate for food industry applications and may have promising performance in acidic products due to its origin.
Collapse
Affiliation(s)
| | - Mauricio Redondo-Solano
- Research Center for Tropical Diseases (CIET) and Food Microbiology Research and Training Laboratory (LIMA), College of Microbiology, University of Costa Rica (UCR), Universidad de Costa Rica, San Pedro, San José, Costa Rica
| | - Lidieth Uribe
- Agronomic Research Center (CIA), Universidad de Costa Rica, San Pedro, San José, Costa Rica
| | - Rodolfo WingChing-Jones
- Animal Science Department, Animal Nutrition Research Center (CINA), Universidad de Costa Rica, San Pedro, San José, Costa Rica
| | - Jessie Usaga
- National Center for Food Science and Technology (CITA), Universidad de Costa Rica, San Pedro, San José, Costa Rica
| | - Natalia Barboza
- Food Technology Department, National Center for Food Science and Technology (CITA), Center for Research in Cellular and Molecular Biology (CIBCM), Universidad de Costa Rica, San Pedro, San José, Costa Rica
| |
Collapse
|
42
|
Assessment on In Vitro Probiotic Attributes of Lactobacillus plantarum Isolated From Horse Feces. J Equine Vet Sci 2021; 107:103769. [PMID: 34802630 DOI: 10.1016/j.jevs.2021.103769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 01/26/2023]
Abstract
This study was designed to assess in vitro probiotic attributes of potent bacterium isolated from the feces of healthy horse. Initially, a total of eight bacteria were isolated from the feces and evaluated their antibacterial activities against indicator bacterial pathogens using agar well diffusion assay. Results showed significant (P < .05) antibacterial property of Lactobacillus plantarum strain LF4 against pathogens tested with maximum growth inhibitory activity of 320.16 ± 3.4 AU/mL against Staphylococcus aureus. Further, in vitro probiotic properties of strain LF4 were determined using standard methodologies. Strain LF4 maintained its viability towards acidic condition (pH 2.0) and simulated gastric juice (pH 2.0) with total cell counts of 1.6 ± 0.18 and 1.7 ± 0.18 log cfu/mL, respectively. Moreover, the strain was observed resistant to oxgall (0.5% w/v) up to 36 hours. The isolate showed significant (P < .05) hydrophobicity property (60.3 ± 1.6%), auto-aggregation trait (41.31 ± 1.5%), and moderate proteolytic activity. Strain LF4 revealed significant (P < .05) rate of DPPH scavenging (15.3 ± 1.3-69.7 ± 1.3%) and hydroxyl radical scavenging (11.3 ± 1.3 to 56.4 ± 1.3%) in a concentration dependent manner. Additionally, the isolate was observed susceptible to all the conventional antibiotics tested, thereby indicating its safer utilization. In conclusion, findings suggested the colossal applications of L. plantarum strain LF4 as an ideal probiotic bacterium in equine industries.
Collapse
|
43
|
In Silico and In Vitro Evaluation of the Antimicrobial Potential of Bacillus cereus Isolated from Apis dorsata Gut against Neisseria gonorrhoeae. Antibiotics (Basel) 2021; 10:antibiotics10111401. [PMID: 34827339 PMCID: PMC8614935 DOI: 10.3390/antibiotics10111401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/09/2021] [Accepted: 11/13/2021] [Indexed: 12/22/2022] Open
Abstract
Antimicrobial resistance is a major public health and development concern on a global scale. The increasing resistance of the pathogenic bacteria Neisseria gonorrhoeae to antibiotics necessitates efforts to identify potential alternative antibiotics from nature, including insects, which are already recognized as a source of natural antibiotics by the scientific community. This study aimed to determine the potential of components of gut-associated bacteria isolated from Apis dorsata, an Asian giant honeybee, as an antibacterial against N. gonorrhoeae by in vitro and in silico methods as an initial process in the stage of new drug discovery. The identified gut-associated bacteria of A. dorsata included Acinetobacter indicus and Bacillus cereus with 100% identity to referenced bacteria from GenBank. Cell-free culture supernatants (CFCS) of B. cereus had a very strong antibacterial activity against N. gonorrhoeae in an in vitro antibacterial testing. Meanwhile, molecular docking revealed that antimicrobial lipopeptides from B. cereus (surfactin, fengycin, and iturin A) had a comparable value of binding-free energy (BFE) with the target protein receptor for N. gonorrhoeae, namely penicillin-binding protein (PBP) 1 and PBP2 when compared with the ceftriaxone, cefixime, and doxycycline. The molecular dynamics simulation (MDS) study revealed that the surfactin remains stable at the active site of PBP2 despite the alteration of the H-bond and hydrophobic interactions. According to this finding, surfactin has the greatest antibacterial potential against PBP2 of N. gonorrhoeae.
Collapse
|
44
|
Leuconostoc mesenteroides Strains Isolated from Carrots Show Probiotic Features. Microorganisms 2021; 9:microorganisms9112290. [PMID: 34835416 PMCID: PMC8618143 DOI: 10.3390/microorganisms9112290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 11/17/2022] Open
Abstract
Lactic acid bacteria (LAB) share several beneficial effects on human organisms, such as bioactive metabolites’ release, pathogens’ competition and immune stimulation. This study aimed at determining the probiotic potential of autochthonous lactic acid bacteria isolated from carrots. In particular, the work reported the characterization at the species level of four LAB strains deriving from carrots harvested in Fucino highland, Abruzzo (Italy). Ribosomal 16S DNA analysis allowed identification of three strains belonging to Leuconostoc mesenteroides and a Weissella soli strain. In vitro and in vivo assays were performed to investigate the probiotic potential of the different isolates. Among them, L. mesenteroides C2 and L. mesenteroides C7 showed high survival percentages under in vitro simulated gastro-intestinal conditions, antibiotic susceptibly and the ability to inhibit in vitro growth against Salmonella enterica serovar Typhimurium, Listeria monocytogenes, Pseudomonas aeruginosa and Staphylococcus aureus pathogens. In parallel, the simple model Caenorhabditis elegans was used for in vivo screenings. L. mesenteroides C2 and L. mesenteroides C7 strains significantly induced pro-longevity effects, protection from pathogens’ infection and innate immunity stimulation. Overall, these results showed that some autochthonous LAB from vegetables such as carrots have functional features to be considered as novel probiotic candidates.
Collapse
|
45
|
Saliba L, Zoumpopoulou G, Anastasiou R, Hassoun G, Karayiannis Y, Sgouras D, Tsakalidou E, Deiana P, Montanari L, Mangia NP. Probiotic and safety assessment of Lactobacillus strains isolated from Lebanese Baladi goat milk. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
46
|
Ahmed ASI, El Moghazy GM, Elsayed TR, Goda HAL, Khalafalla GM. Molecular identification and in vitro evaluation of probiotic functional properties of some Egyptian lactic acid bacteria and yeasts. J Genet Eng Biotechnol 2021; 19:114. [PMID: 34351550 PMCID: PMC8342691 DOI: 10.1186/s43141-021-00212-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND The health-promoting effects along with global economic importance of consuming food products supplemented with probiotic microorganisms encouraged the researchers to discover new probiotics. RESULTS Fourteen lactic acid bacterial isolates were identified as Enterococcus mediterraneensis, Lactobacillus fermentum, and Streptococcus lutetiensis by 16S rRNA gene sequencing, and in vitro characterized for their actual probiotic potential. All E. mediterraneensis isolates were resistant to clindamycin, whereas Lb. fermentum isolates were resistant to ampicillin, clindamycin, and vancomycin. The E. mediterraneensis and Lb. fermentum isolates displayed high overall digestive survival, ranged from 1.35 ± 0.06 to 32.73 ± 0.84% and from 2.01 ± 0.01 to 23.9 ± 1.85%, respectively. All isolates displayed cell surface hydrophobicity, ranged between 15.44 ± 6.72 and 39.79 ± 2.87%. The strongest auto-aggregation capability, higher than 40%, was observed for most E. mediterraneensis and Lb. fermentum isolates. The E. mediterraneensis isolates (L2, L12, and L15), Lb. fermentum (L8, L9, and L10), and Strep. lutetiensis (L14) exhibited the greatest co-aggregation with Salmonella typhimurium, Escherichia coli O157:H7, Staphylococcus aureus, and Bacillus cereus. Fifty-seven and fourteen hundredth percent of E. mediterraneensis isolates could be considered bacteriocinogenic against E. coli O157:H7, B. cereus, and S. aureus. CONCLUSION This study is the first one to isolate Enterococcus mediterraneensis in Egypt and to characterize it as new species of probiotics globally. According to the results, E. mediterraneensis (L2, L12, and L15), Lb. fermentum (L8, L9, and L10), and Strep. lutetiensis (L14) are the most promising in vitro probiotic candidates.
Collapse
Affiliation(s)
| | | | - Tarek Ragab Elsayed
- Agricultural Microbiology Department, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Hanan Abdel Latif Goda
- Agricultural Microbiology Department, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt.
| | - Galal Mahmoud Khalafalla
- Agricultural Microbiology Department, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
47
|
Stefańska I, Kwiecień E, Jóźwiak-Piasecka K, Garbowska M, Binek M, Rzewuska M. Antimicrobial Susceptibility of Lactic Acid Bacteria Strains of Potential Use as Feed Additives - The Basic Safety and Usefulness Criterion. Front Vet Sci 2021; 8:687071. [PMID: 34277757 PMCID: PMC8281277 DOI: 10.3389/fvets.2021.687071] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/04/2021] [Indexed: 01/12/2023] Open
Abstract
The spread of resistance to antibiotics is a major health concern worldwide due to the increasing rate of isolation of multidrug resistant pathogens hampering the treatment of infections. The food chain has been recognized as one of the key routes of antibiotic resistant bacteria transmission between animals and humans. Considering that lactic acid bacteria (LAB) could act as a reservoir of transferable antibiotic resistance genes, LAB strains intended to be used as feed additives should be monitored for their safety. Sixty-five LAB strains which might be potentially used as probiotic feed additives or silage inoculants, were assessed for susceptibility to eight clinically relevant antimicrobials by a minimum inhibitory concentration determination. Among antimicrobial resistant strains, a prevalence of selected genes associated with the acquired resistance was investigated. Nineteen LAB strains displayed phenotypic resistance to one antibiotic, and 15 strains were resistant to more than one of the tested antibiotics. The resistance to aminoglycosides and tetracyclines were the most prevalent and were found in 37 and 26% of the studied strains, respectively. Phenotypic resistance to other antimicrobials was found in single strains. Determinants related to resistance phenotypes were detected in 15 strains as follows, the aph(3″)-IIIa gene in 9 strains, the lnu(A) gene in three strains, the str(A)-str(B), erm(B), msr(C), and tet(M) genes in two strains and the tet(K) gene in one strain. The nucleotide sequences of the detected genes revealed homology to the sequences of the transmissible resistance genes found in lactic acid bacteria as well as pathogenic bacteria. Our study highlights that LAB may be a reservoir of antimicrobial resistance determinants, thus, the first and key step in considering the usefulness of LAB strains as feed additives should be an assessment of their antibiotic resistance. This safety criterion should always precede more complex studies, such as an assessment of adaptability of a strain or its beneficial effect on a host. These results would help in the selection of the best LAB strains for use as feed additives. Importantly, presented data can be useful for revising the current microbiological cut-off values within the genus Lactobacillus and Pediococcus.
Collapse
Affiliation(s)
- Ilona Stefańska
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Ewelina Kwiecień
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Katarzyna Jóźwiak-Piasecka
- Department of Fermentation Technology, Prof. Waclaw Dabrowski Institute of Agriculture and Food Biotechnology – State Research Institute, Warsaw, Poland
| | - Monika Garbowska
- Division of Milk Biotechnology, Department of Biotechnology, Microbiology and Food Evaluation, Institute of Food Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Marian Binek
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Magdalena Rzewuska
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
48
|
Pammi N, Bhukya KK, Lunavath RK, Bhukya B. Bioprospecting of Palmyra Palm ( Borassus flabellifer) Nectar: Unveiling the Probiotic and Therapeutic Potential of the Traditional Rural Drink. Front Microbiol 2021; 12:683996. [PMID: 34262545 PMCID: PMC8274697 DOI: 10.3389/fmicb.2021.683996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/04/2021] [Indexed: 01/27/2023] Open
Abstract
The present study investigates the therapeutic and probiotic attributes of traditional Toddy Palm Nectar (TPN). Glucose was found to be the highest with 4.37 mg/ml and arabinose was the least with 2.85 mg/ml. The average ethanol concentration of fresh TPN was found to be 0.3 mg/ml. The nutritional profile of TPN revealed 18 volatile fatty acids, the major one being hexadecenoic acid (M/Z 74). Amino acid profiling showed 26 amino acids, with OH-lysine-2 the highest (12.86%). About 120 morphologically distinct lactic acid bacteria (LAB) were isolated from 26 TPN samples, based on differential growth and in vitro probiotic characteristics. After 16S rRNA sequencing, four indigenous LAB strains were identified as Lactobacillus plantarum group OUBN1, Enterococcus faecium OUBN3, Pediococcus acidilactici OUBN4, and Pediococcus pentosaceous OUBN5 and their sequences were deposited to NCBI. Microbiological safety evaluation studies showed the absence of hemolytic, gelatinolytic and proteolytic activity. The bacterial isolate OUBN3 showed a maximum survival rate of 6.91 ± 0.04 log cfu/ml at acidic pH 2.5 and isolate OUBN5 showed 6.94 ± 0.02 log cfu/ml at pH 3.0. Similarly, the isolate OUBN5 showed 7.92 ± 0.03 log cfu/ml to 0.3% ox-bile after 4 h and 8.94 ± 0.03 log cfu/ml to simulated gastric juice after 3 h of treatments. OUBN1 expressed the highest autoaggregation (81.76 ± 1.25%), cell surface hydrophobicity (79.71 ± 3.42%), and displayed the maximum coaggregation with E. coli MTCC452 (76.96%), K. pneumoniae MTCC109 (75.62%), and S. aureus MTCC902 (70.69%). All strains showed significant antibiotic and antimicrobial activity. Isolate OUBN1 displayed hydroxyl radical scavenging activity (68.71 ± 1.0%) with an IC50 value of 75.62 μg/ml and the highest anti-cancer activity (percentage inhibition of 88.55) against HT-29 cells. Based on the characteristics observed, L. plantarum group OUBN1 and P. pentosaceous OUBN5 were found to be potential isolates to employ as probiotic microbiota in food and forage preparations. These findings reinforce the fact that LAB isolated from TPN could be exploited as an alternative means toward potential therapeutic applications.
Collapse
Affiliation(s)
| | | | | | - Bhima Bhukya
- Centre for Microbial and Fermentation Technology, Department of Microbiology, University College of Science, Osmania University, Hyderabad, India
| |
Collapse
|
49
|
Effects of Lactobacillus reuteri and Streptomyces coelicolor on Growth Performance of Broiler Chickens. Microorganisms 2021; 9:microorganisms9061341. [PMID: 34205811 PMCID: PMC8233972 DOI: 10.3390/microorganisms9061341] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 11/29/2022] Open
Abstract
There are well documented complications associated with the continuous use of antibiotics in the poultry industry. Over the past few decades, probiotics have emerged as viable alternatives to antibiotics; however, most of these candidate probiotic microorganisms have not been fully evaluated for their effectiveness as potential probiotics for poultry. Recent evaluation of a metagenome of broiler chickens in our laboratory revealed a prevalence of Lactobacillus reuteri (L. reuteri) and Actinobacteria class of bacteria in their gastrointestinal tract. In this study Lactobacillus reuteri and Streptomyces coelicolor (S. coelicolor) were selected as probiotic bacteria, encapsulated, and added into broiler feed at a concentration of 100 mg/kg of feed. In an 8-week study, 240 one day-old chicks were randomly assigned to four dietary treatments. Three dietary treatments contained two probiotic bacteria in three different proportions (L. reuteri and S. coelicolor individually at 100 ppm, and mixture of L. reuteri and S. coelicolor at 50 ppm each). The fourth treatment had no probiotic bacteria and it functioned as the control diet. L. reuteri and S. coelicolor were added to the feed by using wheat middlings as a carrier at a concentration of 100 ppm (100 mg/kg). Chickens fed diets containing L. reuteri and S. coelicolor mixture showed 2% improvement in body weight gain, 7% decrease in feed consumption, and 6–7% decrease in feed conversion ratios. This research suggests that L. reuteri and S. coelicolor have the potential to constitute probiotics in chickens combined or separately, depending on the desired selection of performance index.
Collapse
|
50
|
Arya R, Gunashree BS. Screening of gluten hydrolyzing strains for food applications. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Raj Arya
- Department of Studies and Research in Microbiology Mangalore University Post Graduate Centre Kodagu India
| | - B. Shivanna Gunashree
- Department of Studies and Research in Microbiology Mangalore University Post Graduate Centre Kodagu India
| |
Collapse
|