1
|
Liang S, Qian Y, Liu Y, Wang Y, Su L, Yan S. Ligustrazine nanoparticles inhibits epithelial-mesenchymal transition and alleviates postoperative abdominal adhesion. Biochem Biophys Res Commun 2024; 739:150994. [PMID: 39547120 DOI: 10.1016/j.bbrc.2024.150994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Following abdominal surgery, the occurrence of postoperative abdominal adhesion (PAA) is highly prevalent and stands out as one of the most frequently encountered complications. The effect and molecular mechanisms of Ligustrazine nanoparticles (LN) underlying epithelial-mesenchymal transition (EMT) in PAA still remain elusive. Adhesions were induced in Male Sprague-Dawley rats by injuring the cecum (cecal abrasion model), followed by administration of LN and hyaluronate acid (HA). The mechanism was further verified by enzyme-linked immunosorbent assay, wound healing assay, si-RNA and Western blot. Animal experiments revealed that LN effectively ameliorated adhesions, notably decreased tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-8, and fibrosis, and reduced the expression of TGF-β1 and EMT related markers (Fibronectin and E-cadherin). Furthermore, in vitro experiments demonstrated that LN might inhibit the TGF-β1 FOXC2 pathway through suppressing the expression of Fibronectin, P120, and E-cadherin and ameliorating peritoneal adhesion. Collectively, our findings indicate that LN inhibits PAA formation by reducing inflammation, decreasing EMT and promoting peritoneal mesothelial cell repair. Therefore, LN might be considered a potential candidate for the treatment of PPA. However, further clinical studies are required to approve the effectiveness of LN.
Collapse
Affiliation(s)
- Shasha Liang
- Teaching and Research Office of Obstetrics and Gynecology, Medical College of Zhengzhou University of Industrial Technology, Xinzheng, 451100, Henan, China
| | - Yifei Qian
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ying Liu
- Department of Gynaecology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, Jiangsu, China
| | - Yahui Wang
- Department of Anorectal Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, Jiangsu, China
| | - Lianlin Su
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Shuai Yan
- Department of Anorectal Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, Jiangsu, China.
| |
Collapse
|
2
|
Mayibenye M, Buga GAB, Mdaka ML, Nanjoh MK. Transabdominal sonographic sliding signs for preoperative prediction of dense intra-abdominal adhesions in women undergoing repeat Cesarean delivery. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2024; 64:792-798. [PMID: 39533845 DOI: 10.1002/uog.29133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVES To assess the accuracy and utility of transabdominal sonographic paraumbilical and suprapubic sliding signs in predicting intra-abdominal adhesions in women undergoing repeat Cesarean section (CS), and to investigate the association of repeat CS with short-term maternal and neonatal outcomes. METHODS This was a prospective observational study of pregnant women with a history of CS who were scheduled for third-trimester elective or emergency CS at a tertiary referral and teaching hospital between July 2021 and June 2022. In order to evaluate the role of transabdominal sonographic paraumbilical and suprapubic sliding signs in the prediction of intra-abdominal adhesions, participants underwent a high-resolution transabdominal ultrasound scan prior to repeat CS. Free cephalad and caudad gliding of the uterus under the abdominal wall during deep inhalation and exhalation in each area was considered a positive sliding sign, suggesting a low risk of intra-abdominal adhesions. The absence of such movement was considered a negative sliding sign, suggesting a high risk of intra-abdominal adhesions. The presence or absence of intra-abdominal adhesions was then confirmed during surgery by physicians who were blinded to the sonographic sliding-sign findings. The type of adhesion, structures involved, method of adhesiolysis, incision-to-delivery time, 1-min and 5-min Apgar scores, maternal and neonatal injury and other short-term complications were also reported. RESULTS Of 419 women with a history of at least one previous CS who underwent repeat CS, the preoperative sonographic paraumbilical and suprapubic sliding signs were negative in 173 (41.3%) and 178 (42.5%) women, respectively. On repeat CS, 224 (53.5%) women had intra-abdominal adhesions, of which 165 (39.4%) had dense adhesions and 59 (14.1%) had only filmy adhesions. The sensitivity and specificity of a negative preoperative paraumbilical sliding sign in predicting the presence of dense intra-abdominal adhesions in women undergoing repeat CS were 94.6% (95% CI, 92.4-96.7%) and 93.3% (95% CI, 90.9-95.7%), respectively. A negative suprapubic sliding sign also showed high sensitivity (95.2% (95% CI, 93.1-97.2%)) and specificity (91.7% (95% CI, 89.1-94.4%)). Additionally, a negative sliding sign at both locations in the same patient had robust sensitivity (90.2% (95% CI, 87.3-93.0%)) and specificity (96.3% (95% CI, 94.5-98.1%)). We found that the risk of dense intra-abdominal adhesions increased with parity and the number of previous CS. Dense intra-abdominal adhesions were associated with increased incision-to-delivery time, higher risk of maternal bladder injury, intraoperative bleeding and postpartum hemorrhage. CONCLUSIONS Dense intra-abdominal adhesions are common in women with a history of CS and are associated with delayed delivery of the neonate and increased risk of adverse maternal outcomes. The transabdominal sonographic paraumbilical and suprapubic sliding signs are robust methods for the accurate preoperative prediction of dense intra-abdominal adhesions in patients with a history of CS. As the techniques are easy to learn and perform, the sliding sign should be used more widely for triaging patients at high risk of dense intra-abdominal adhesions for appropriate preoperative planning. © 2024 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- M Mayibenye
- Department of Obstetrics and Gynaecology, Faculty of Medicine and Health Sciences, Walter Sisulu University, Mthatha, South Africa
| | - G A B Buga
- Department of Obstetrics and Gynaecology, Faculty of Medicine and Health Sciences, Walter Sisulu University, Mthatha, South Africa
| | - M L Mdaka
- Department of Obstetrics and Gynaecology, Faculty of Medicine and Health Sciences, Walter Sisulu University, Mthatha, South Africa
| | - M K Nanjoh
- Department of Public Health, Faculty of Medicine and Health Sciences, Walter Sisulu University, Mthatha, South Africa
| |
Collapse
|
3
|
Ahsan F, Santoso B, Rahmawati NY, Alditia FN, Mufid AF, Sa'adi A, Dwiningsih SR, Tunjungseto A, Widyanugraha MYA. Differential Expression of Granulysin, MHC Class I-Related Chain A, and Perforin in Serum and Peritoneal Fluid: Immune Dysregulation in Endometriosis-Related Infertility. Immunol Invest 2024:1-16. [PMID: 39589023 DOI: 10.1080/08820139.2024.2431847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
INTRODUCTION Endometriosis is a chronic inflammatory disease characterized by endometrial-like tissue outside the uterus. Molecules linked to natural killer (NK) and cytotoxic T cells, including granulysin (GNLY), MHC class I-related chain A (MICA), and perforin (PRF1) support immune surveillance, though their roles in endometriosis remain unclear. This study investigates the association of these molecules with clinical parameters in infertile women with endometriosis. METHODS Eighty-seven infertile women undergoing diagnostic laparoscopy were included: 44 with endometriosis and 43 with benign gynecologic disorders. Serum and peritoneal molecules were measured using ELISA. Statistical analyses compared groups and correlated immune markers with clinical parameters. RESULTS Endometriosis patients displayed significantly higher PRF1 levels in serum (p = .038) and peritoneal fluid (p = .002), particularly in late-stage disease. Serum and peritoneal PRF1 levels correlated positively with the rASRM adhesion scores. Elevated serum PRF1 was observed in ovarian endometrioma (p = .021). Peritoneal MICA was higher in late-stage endometriosis (p = .013). Serum MICA was elevated in the follicular phase compared to the luteal phase (p = .008). CONCLUSION Elevated PRF1 and MICA levels were associated with endometriosis severity, indicating their potential as biomarkers. Future studies should validate this finding and explore its therapeutic role in endometriosis.
Collapse
Affiliation(s)
- Fadhil Ahsan
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Budi Santoso
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Nanda Yuli Rahmawati
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | - Alfin Firasy Mufid
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ashon Sa'adi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Sri Ratna Dwiningsih
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Arif Tunjungseto
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - M Y Ardianta Widyanugraha
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
4
|
Suzuki T, Konishi H, Suzuki A, Katsumata T, Fukuda Y, Miyamoto K, Ise T, Tanaka Y, Yamamoto A, Wen P, Shiomoto S, Tanaka M, Nemoto S. Role of intermediate water in alleviating postsurgical intrapericardial adhesion. Surg Today 2024:10.1007/s00595-024-02953-4. [PMID: 39516403 DOI: 10.1007/s00595-024-02953-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE Various polymers have been used as postsurgical antiadhesive materials; however, the mechanisms underlying their efficacy remain unclear. Intermediate water has been found to prevent the adhesion between polymer molecules and proteins or cells. The present study investigated the role of intermediate water retained in the polymer in alleviating postsurgical pericardial adhesion. METHODS Hydrophobic fabrics were prepared using biodegradable polyglycolic acid. To add intermediate water, the fabric fibers were coated with poly(oxyethylene)oleyl ethers. Intermediate water in the hydrated state was detected by a thermal analysis for each material, and cell attachment to the fibers with or without coating was observed in vitro. Using a canine model of postsurgical pericardial adhesion, the severity of adhesion was examined along with a histological assessment during treatment, with or without fabric coating. RESULTS Intermediate water was detected in the coating materials but not in polyglycolic acid. Coating significantly reduced the cell attachment to the fibers. Coating also alleviated adhesion by reducing inflammation in the fibrous layer and replacing the fabric and granulomas that develop around the surgical sutures in the pericardial space. CONCLUSIONS Intermediate water in the hydrated polymer of anti-adhesives may play an important role in alleviating postoperative pericardial adhesion.
Collapse
Affiliation(s)
| | | | | | | | - Yasuhiro Fukuda
- Research and Development Center, The Japan Wool Textile Co., Ltd, Kakogawa, 440 Funamoto, Yoneda-cho, Hyogo, 675-0053, Japan
| | - Koki Miyamoto
- Research and Development Center, The Japan Wool Textile Co., Ltd, Kakogawa, 440 Funamoto, Yoneda-cho, Hyogo, 675-0053, Japan
| | - Tomokazu Ise
- Research and Development Center, The Japan Wool Textile Co., Ltd, Kakogawa, 440 Funamoto, Yoneda-cho, Hyogo, 675-0053, Japan
| | - Yukiko Tanaka
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Aki Yamamoto
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Panyue Wen
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Shohei Shiomoto
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Masaru Tanaka
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Shintaro Nemoto
- Department of Thoracic and Cardiovascular Surgery, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki, Osaka, 569-0801, Japan.
| |
Collapse
|
5
|
Oliveira Souza Lima SR, Kanemitsu K, Rashid M, Patel VK, Ali M. Long-Term Efficacy and Safety of Adhesion Prevention Agents in Abdominal and Pelvic Surgeries: A Systematic Review. Cureus 2024; 16:e71280. [PMID: 39534835 PMCID: PMC11554435 DOI: 10.7759/cureus.71280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
This systematic review evaluates the long-term efficacy and safety of adhesion prevention agents in abdominal and pelvic surgeries, synthesizing data from randomized controlled trials and meta-analyses. Adhesions, common postoperative complications, can lead to significant morbidity, including chronic pain, infertility, and bowel obstruction. Various agents, including hyaluronic acid-carboxymethylcellulose films and icodextrin solutions, have been developed to mitigate these risks. Our review highlights that agents like bioresorbable membranes (Seprafilm) and icodextrin significantly reduce the incidence and severity of adhesions, particularly in high-risk surgeries. However, certain complications such as anastomotic leaks and infections are associated with some agents, emphasizing the need for careful consideration in clinical decision-making. Additionally, while these agents reduce postoperative morbidity and enhance recovery, further research is needed to assess their long-term impact, particularly regarding fertility outcomes and chronic pain. This review underscores the importance of integrating adhesion prevention agents into surgical protocols, which has the potential to reduce healthcare costs, improve patient outcomes, and optimize postoperative care pathways. Standardization of adhesion prevention practices could further enhance surgical efficiency and patient recovery, particularly in high-risk patient populations and complex surgeries.
Collapse
Affiliation(s)
| | | | | | | | - Muhammad Ali
- General Surgery, Nishtar Medical University, Multan, PAK
| |
Collapse
|
6
|
Wang Z, Xia L, Cheng J, Liu J, Zhu Q, Cui C, Li J, Huang Y, Shen J, Xia Y. Combination Therapy of Bone Marrow Mesenchymal Stem Cell Transplantation and Electroacupuncture for the Repair of Intrauterine Adhesions in Rats: Mechanisms and Functional Recovery. Reprod Sci 2024; 31:2318-2330. [PMID: 38499950 DOI: 10.1007/s43032-024-01465-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/12/2024] [Indexed: 03/20/2024]
Abstract
Transplantation of bone marrow mesenchymal stem cells (BMSCs) has demonstrated promising clinical utility in the treatment of endometrial injury and the restoration of fertility. However, since the efficacy of BMSCs after transplantation is not stable, it is very important to find effective ways to enhance the utilisation of BMSCs. Electroacupuncture (EA) has some positive effects on the chemotaxis of stem cells and diseases related to uterine injury. In this study, we established the intrauterine adhesion (IUA) model of the Sprague-Dawley rat using lipopolysaccharide infection and mechanical scratching. Phosphate-buffered saline, BMSCs alone, and BMSCs combined with EA were randomly administered to the rats. Fluorescent cell labelling showed the migration of transplanted BMSCs. H&E staining, Masson staining, Western blot, immunohistochemistry, ELISA, and qRT-PCR were utilised to detect changes in endometrial morphology and expressions of endometrial receptivity-related factors, endometrial pro-inflammatory factors, and fibrosis factors. Finally, we conducted a fertility test to measure the recovery of uterine function. The results showed that EA promoted transplanted BMSCs to migrate into the injured uterus by activating the SDF-1/CXCR4 axis. Endometrial morphology showed the most significant improvement in the BMSC + EA group. The expressions of endometrial pro-inflammatory factors and fibrosis indexes in the BMSC + EA group were lower than those in the model and BMSC groups. Further studies revealed that the expression of endometrial receptivity-related factors and the number of embryos implanted on day 8 of gestation increased in the BMSC + EA group compared with the model group and the BMSC group.
Collapse
Affiliation(s)
- Zhaoxian Wang
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Liangjun Xia
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jie Cheng
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jingyu Liu
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qian Zhu
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chuting Cui
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Junwei Li
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yueying Huang
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jie Shen
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Youbing Xia
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
7
|
Yoon JP, Park SJ, Kim DH, Lee HJ, Park EJJ, Shim BJ, Chung SH, Kim JS, Chung SW. Tranexamic Acid Can Reduce Early Tendon Adhesions After Rotator Cuff Repair and Is Not Detrimental to Tendon-Bone Healing: A Comparative Animal Model Study. Arthroscopy 2024; 40:2174-2183. [PMID: 38311267 DOI: 10.1016/j.arthro.2024.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 02/10/2024]
Abstract
PURPOSE To determine the effects of topical tranexamic acid (TXA) administration on tendon adhesions, shoulder range of motion (ROM), and tendon healing in an acute rotator cuff repair rat model. METHODS A total of 20 Sprague Dawley rats were used. Tendon adhesion, ROM, and biomechanical and histological analysis of tendon-bone healing was conducted at 3 and 6 weeks after surgery. The rats underwent rotator cuff repair surgery on both shoulders and were administered TXA via subacromial injections. The tendon adhesion was evaluated macroscopically and histologically. Biomechanical tendon healing was measured using a universal testing machine, and histological analysis was quantified by H&E, Masson's trichrome, and picrosirius red staining. RESULTS At 3 weeks after surgery, the adhesion score was significantly lower in the TXA group (2.10 ± 0.32) than in the control group (2.70 ± 0.48) (P = .005), but there was no significant difference between the 2 groups at 6 weeks. Regarding ROM, compared with the control group, the TXA group showed significantly higher external rotation (36.35° ± 4.52° vs 28.42° ± 4.66°, P < .001) and internal rotation (45.35° ± 9.36° vs 38.94° ± 5.23°, P = .013) 3 weeks after surgery. However, at 6 weeks, there were no significant differences in external and internal rotation between the 2 groups. In the biomechanical analysis, no significant differences in gross examination (3 weeks, P = .175, 6 weeks, P = .295), load to failure (3 weeks, P = .117, 6 weeks, P = .295), or ultimate stress (3 weeks, P = .602, 6 weeks, P = .917) were noted between the 2 groups 3 and 6 weeks after surgery. In the histological analysis of tendon healing, no significant differences in the total score (3 weeks, P = .323, 6 weeks, P = .572) were found between the 2 groups 3 and 6 weeks after surgery. CONCLUSIONS Topical TXA administration showed a beneficial effect in reducing tendon adhesions and improving ROM 3 weeks postoperatively and had no effect at 6 weeks. This suggests that additional intervention with TXA may be useful in achieving long-term improvement in shoulder stiffness. Additionally, TXA may increase tissue ground substance accumulation in the late postoperative period but does not adversely affect tendon-bone interface healing. CLINICAL RELEVANCE The use of TXA after rotator cuff repair has no effect on tendon-bone interface healing in clinical practice and can improve shoulder stiffness in the early postoperative period. Additional research on the long-term effects is needed.
Collapse
Affiliation(s)
- Jong Pil Yoon
- Department of Orthopaedic Surgery, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Sung-Jin Park
- Department of Orthopaedic Surgery, Kyungpook National University Hospital, Daegu, Republic of Korea.
| | - Dong-Hyun Kim
- Department of Orthopaedic Surgery, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Hyun Joo Lee
- Department of Orthopaedic Surgery, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Eugene Jae Jin Park
- Department of Orthopaedic Surgery, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Bum-Jin Shim
- Department of Orthopaedic Surgery, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Seung Ho Chung
- Department of Orthopaedic Surgery, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Jun Sung Kim
- Department of Orthopaedic Surgery, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Seok Won Chung
- Department of Orthopaedic Surgery, Konkuk University Medical Center, Seoul, Republic of Korea
| |
Collapse
|
8
|
Sideri AI, Pappa EI, Skampardonis V, Barbagianni M, Georgiou SG, Psalla D, Marouda C, Prassinos NN, Galatos AD, Gouletsou PG. Prevention of Adhesions after Bone Fracture Using a Carboxymethylcellulose and Polyethylene Oxide Composite Gel in Dogs. Vet Sci 2024; 11:343. [PMID: 39195798 PMCID: PMC11360353 DOI: 10.3390/vetsci11080343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/08/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
The formation of adhesions is a common complication following traumatic injuries and surgical procedures, often resulting in pain, stiffness, and loss of function. This study aimed to evaluate the feasibility and safety of using a composite material comprising of carboxymethylcellulose (CMC), polyethylene oxide (PEO), and calcium chloride, for preventing adhesions between muscle and bone during the healing stage, as well as its effect on the bone healing process. Ten healthy purpose-bred laboratory Beagle dogs were randomly subjected to two consecutive operations with a 6-month interval, alternating between left and right forelimbs. On the left forelimb an osteotomy at the ulna was performed, while on the right forelimb the same procedure was supplemented by the application of the anti-adhesion agent in the osteotomy site prior to closure. Clinical, diagnostic imaging, macroscopic, and histological evaluations were performed at various time points. The results showed no significant differences in surgical site perimeter (p = 0.558), lameness (p = 0.227), and radiographic bone healing (p = 0.379) between the two groups. However, the macroscopic (p = 0.006) and histological assessments revealed significantly lower adhesion scores (p = 0.0049) and better healing (p = 0.0102) in the group that received the anti-adhesion agent. These findings suggest that the CMC/PEO composite material is a safe and potentially effective intervention for preventing post-traumatic and post-surgical adhesions in canine patients without compromising bone healing. Further research is warranted to fully characterize the clinical benefits of this approach.
Collapse
Affiliation(s)
- Aikaterini I. Sideri
- Clinic of Surgery, School of Health Sciences, Faculty of Veterinary Science, University of Thessaly, Trikalon 224, GR 43100 Karditsa, Greece; (A.I.S.); (E.I.P.); (M.B.); (S.G.G.); (A.D.G.)
| | - Elena I. Pappa
- Clinic of Surgery, School of Health Sciences, Faculty of Veterinary Science, University of Thessaly, Trikalon 224, GR 43100 Karditsa, Greece; (A.I.S.); (E.I.P.); (M.B.); (S.G.G.); (A.D.G.)
| | - Vassilis Skampardonis
- Laboratory of Epidemiology, Biostatistics and Animal Health Economics, School of Health Sciences, University of Thessaly, Trikalon 224, GR 43100 Karditsa, Greece;
| | - Mariana Barbagianni
- Clinic of Surgery, School of Health Sciences, Faculty of Veterinary Science, University of Thessaly, Trikalon 224, GR 43100 Karditsa, Greece; (A.I.S.); (E.I.P.); (M.B.); (S.G.G.); (A.D.G.)
| | - Stefanos G. Georgiou
- Clinic of Surgery, School of Health Sciences, Faculty of Veterinary Science, University of Thessaly, Trikalon 224, GR 43100 Karditsa, Greece; (A.I.S.); (E.I.P.); (M.B.); (S.G.G.); (A.D.G.)
| | - Dimitra Psalla
- School of Veterinary Medicine, Aristotle University of Thessaloniki, Stavrou Voutira 11, GR 54124 Thessaloniki, Greece; (D.P.); (C.M.); (N.N.P.)
| | - Christina Marouda
- School of Veterinary Medicine, Aristotle University of Thessaloniki, Stavrou Voutira 11, GR 54124 Thessaloniki, Greece; (D.P.); (C.M.); (N.N.P.)
| | - Nikitas N. Prassinos
- School of Veterinary Medicine, Aristotle University of Thessaloniki, Stavrou Voutira 11, GR 54124 Thessaloniki, Greece; (D.P.); (C.M.); (N.N.P.)
| | - Apostolos D. Galatos
- Clinic of Surgery, School of Health Sciences, Faculty of Veterinary Science, University of Thessaly, Trikalon 224, GR 43100 Karditsa, Greece; (A.I.S.); (E.I.P.); (M.B.); (S.G.G.); (A.D.G.)
| | - Pagona G. Gouletsou
- Clinic of Obstetrics and Reproduction, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Trikalon 224, GR 43100 Karditsa, Greece
| |
Collapse
|
9
|
Luo Y, Sun Y, Huang B, Chen J, Xu B, Li H. Effects and safety of hyaluronic acid gel on intrauterine adhesion and fertility after intrauterine surgery: a systematic review and meta-analysis with trial sequential analysis of randomized controlled trials. Am J Obstet Gynecol 2024; 231:36-50.35. [PMID: 38191020 DOI: 10.1016/j.ajog.2023.12.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/10/2024]
Abstract
OBJECTIVE This study aimed to determine the efficacy and safety of hyaluronic acid gel for the prevention of intrauterine adhesions and improved fertility after intrauterine surgery. DATA SOURCES PubMed, EMBASE, Cochrane Library, Web of science, and ClinicalTrials.gov were searched up to November 1, 2023. STUDY ELIGIBILITY CRITERIA Randomized controlled trials that reported intrauterine adhesion and fertility outcomes among women who used hyaluronic acid after intrauterine surgery. METHODS The risk of bias was assessed using criteria of the Cochrane Handbook, and the quality of the evidence was evaluated using the Grades of Recommendation, Assessment, Development, and Evaluation system. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed. A trial sequential analysis was conducted to assess the outcomes, and Stata 14 was used for sensitivity analyses and publication bias analyses. RESULTS Data from 16 randomized controlled trials involving 2359 patients were extracted and analyzed. The analysis revealed that hyaluronic acid reduced the incidence of intrauterine adhesion (risk ratio, 0.53; 95% confidence interval, 0.42-0.67; I2=48%) and improve pregnancy rates (risk ratio, 1.24; 95% confidence interval, 1.02-1.50; I2=0%). A subgroup analysis was conducted to evaluate factors that influence the effect of hyaluronic acid on the incidence of intrauterine adhesion. It was found that a small volume of hyaluronic acid reduced the incidence of intrauterine adhesions. Hyaluronic acid exhibited a protective effect among patients who underwent various intrauterine surgeries and who had different gynecologic medical histories. The protective effect was statistically significant after a follow-up of 6 to 12 weeks. The results of the trial sequential analysis indicated that the effect of hyaluronic acid on the incidence of mild intrauterine adhesions, pregnancy rates, live birth rates, and miscarriage rates after intrauterine surgery may be inconclusive and thus further evaluation is required in the form of additional clinical trials. However, the remaining effects were found to be verifiable and did not require more clinical trials for confirmation. CONCLUSION Hyaluronic acid can safely and effectively reduce the incidence of intrauterine adhesions and may improve fertility outcomes.
Collapse
Affiliation(s)
- Yan Luo
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha, China; Clinical Medicine Eight-Year Program, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanyuan Sun
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, China
| | - Bixia Huang
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, China
| | - Jingjing Chen
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, China
| | - Bin Xu
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, China.
| | - Hui Li
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, China; Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
10
|
Okur S, Yanmaz LE, Bolat İ, Golgeli A, Tarık OÖ, Okur DT, Kiliçlioglu M, Baykal B. Application of infrared thermography in assessing presence and severity of intra-abdominal adhesions. J Therm Biol 2024; 123:103920. [PMID: 39003832 DOI: 10.1016/j.jtherbio.2024.103920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/14/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
Abdominal surgeries can sometimes lead to the formation of intra-abdominal adhesions, which may result in severe complications. Despite the availability of several diagnostic procedures, thermography has not been used for identifying intra-abdominal adhesions. Therefore, the objective of the current study was to assess abdominal temperature changes in rats with experimentally induced intra-abdominal adhesions. A total of 48 female rats were randomly divided into 4 groups (n = 12 each): Control (Group C), Laparotomy (Group Lap), Peritoneal Button Creation (Group PBC), and Uterus horn (Group UH). Skin temperature of abdominal region was measured before the procedure (T0) and daily thereafter until day 7 (T7). On day 7, all rats were euthanized for macroscopic evaluation, adhesion scoring, histopathological, immunohistochemical and immunofluorescence analyses. Significant differences were observed between Group C and Group PBC and Group UH at T5, while at T6 and T7, there was a difference between Group C and Group Lap, Group PBC, and Group UH in abdominal skin temperature (P < 0.05). The highest level of inflammation, angiogenesis, IL-1β, and VEGF were observed in Group PBC followed by Group UH, Group Lap, and Group C (P < 0.05). There was a significant difference in adhesion formation between Group C and Groups Lap, PBC, and UH (P = 0.02). However, no significant difference was found in adhesion scores between Groups Lap, PBC, and UH (P = 0.25). A significant difference was found in mean abdominal skin temperature between adhesion scores 4 and 0, 1, and 2 (P < 0.05), while no significant difference was observed between adhesion scores 3 and 4 (P > 0.05). In conclusion, the current study suggests that the presence of intra-abdominal adhesions is associated with an increase in abdominal temperature, and this increase is correlates with the severity of adhesion.
Collapse
Affiliation(s)
- Sitkican Okur
- Department of Veterinary Surgery, Atatürk University, Erzurum, 25000, Turkey.
| | - Latif Emrah Yanmaz
- Department of Veterinary Surgery, Burdur Mehmet Akif Ersoy University, Burdur, 15030, Turkey
| | - İsmail Bolat
- Department of Veterinary Pathology, Atatürk University, Erzurum, 25000, Turkey
| | - Ayse Golgeli
- Department of Veterinary Surgery, Atatürk University, Erzurum, 25000, Turkey
| | - Orhun Ömer Tarık
- Department of Veterinary Surgery, Atatürk University, Erzurum, 25000, Turkey
| | - Damla Tugce Okur
- Department of Veterinary Obstetrics and Gynecology, Atatürk University, Erzurum, 25000, Turkey
| | - Metin Kiliçlioglu
- Department of Veterinary Pathology, Atatürk University, Erzurum, 25000, Turkey
| | - Büsra Baykal
- Department of Veterinary Surgery, Atatürk University, Erzurum, 25000, Turkey
| |
Collapse
|
11
|
Lu Y, Elrod J, Herrmann M, Knopf J, Boettcher M. Neutrophil Extracellular Traps: A Crucial Factor in Post-Surgical Abdominal Adhesion Formation. Cells 2024; 13:991. [PMID: 38891123 PMCID: PMC11171752 DOI: 10.3390/cells13110991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
Post-surgical abdominal adhesions, although poorly understood, are highly prevalent. The molecular processes underlying their formation remain elusive. This review aims to assess the relationship between neutrophil extracellular traps (NETs) and the generation of postoperative peritoneal adhesions and to discuss methods for mitigating peritoneal adhesions. A keyword or medical subject heading (MeSH) search for all original articles and reviews was performed in PubMed and Google Scholar. It included studies assessing peritoneal adhesion reformation after abdominal surgery from 2003 to 2023. After assessing for eligibility, the selected articles were evaluated using the Critical Appraisal Skills Programme checklist for qualitative research. The search yielded 127 full-text articles for assessment of eligibility, of which 7 studies met our criteria and were subjected to a detailed quality review using the Critical Appraisal Skills Programme (CASP) checklist. The selected studies offer a comprehensive analysis of adhesion pathogenesis with a special focus on the role of neutrophil extracellular traps (NETs) in the development of peritoneal adhesions. Current interventional strategies are examined, including the use of mechanical barriers, advances in regenerative medicine, and targeted molecular therapies. In particular, this review emphasizes the potential of NET-targeted interventions as promising strategies to mitigate postoperative adhesion development. Evidence suggests that in addition to their role in innate defense against infections and autoimmune diseases, NETs also play a crucial role in the formation of peritoneal adhesions after surgery. Therefore, therapeutic strategies that target NETs are emerging as significant considerations for researchers. Continued research is vital to fully elucidate the relationship between NETs and post-surgical adhesion formation to develop effective treatments.
Collapse
Affiliation(s)
- Yuqing Lu
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Julia Elrod
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Martin Herrmann
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Jasmin Knopf
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Michael Boettcher
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
12
|
Vakilian S, Al-Hashmi S, Al-Kindi J, Al-Fahdi F, Al-Wahaibi N, Shalaby A, Al-Riyami H, Al-Harrasi A, Jamshidi-Adegani F. Avastin-Loaded 3D-Printed Alginate Scaffold as an Effective Antiadhesive Barrier to Prevent Postsurgical Adhesion Bands Formation. Macromol Biosci 2024; 24:e2300530. [PMID: 38319279 DOI: 10.1002/mabi.202300530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/18/2024] [Indexed: 02/07/2024]
Abstract
Postoperative adhesion can cause complications, such as pain and organ blockage, in the abdominal regions. To address this issue, surgical techniques and antiadhesive treatments are applied. Given the significant role of vascularization in adhesion band formation, Avastin (Ava) that targets vascular endothelial growth factor (VEGF) can be applied to prevent peritoneal adhesion bands. Moreover, Alginate (Alg), a natural polysaccharide, is a promising physical barrier to prevent adhesion bands. Incorporating Ava into Alg hydrogel in a form of 3D-printed scaffold (Alg/Ava) has potential to suppress inflammation and angiogenesis, leading to reduce peritoneal adhesion bands. Following physical, morphological, and biocompatibility evaluations, the efficacy of Alg and Ava alone and their combination in Alg/Ava on the formation of postsurgical adhesions is evaluated. Upon confirming physical stability and sustained release of Ava, the Alg/Ava scaffold effectively diminishes both the extent and strength of adhesion bands. Histopathological examination shows that the reduction in fibrosis and inflammation is responsible for preventing adhesion bands by the Alg/Ava scaffold. Additionally, the cytokine assessment reveals that this is due to the inhibition in the secretion of VEGF and Interleukin 6 suppressing vascularization and inflammatory pathways. This study suggests that a 3D-printed Alg/Ava scaffold has great potential to prevent the postsurgical adhesion bands.
Collapse
Affiliation(s)
- Saeid Vakilian
- Laboratory for Stem Cell & Regenerative Medicine, Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, PC 616, Oman
| | - Sulaiman Al-Hashmi
- Laboratory for Stem Cell & Regenerative Medicine, Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, PC 616, Oman
| | - Juhaina Al-Kindi
- Laboratory for Stem Cell & Regenerative Medicine, Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, PC 616, Oman
| | - Fahad Al-Fahdi
- Laboratory for Stem Cell & Regenerative Medicine, Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, PC 616, Oman
| | - Nasar Al-Wahaibi
- Department of Biomedical Science, College of Medicine & Health Sciences, Sultan Qaboos University, Alkoudh, 123, Oman
- Department of Pathology, College of Medicine & Health Sciences, Sultan Qaboos University, P. O. Box: 35, Alkoudh, 123, Oman
| | - Asem Shalaby
- Department of Pathology, College of Medicine & Health Sciences, Sultan Qaboos University, P. O. Box: 35, Alkoudh, 123, Oman
- Pathology Department, College of Medicine, Mansoura University, Mansoura, Dakahlia, 35516, Egypt
| | - Hamad Al-Riyami
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Alkoudh, PC 123, Oman
| | - Ahmed Al-Harrasi
- Laboratory for Stem Cell & Regenerative Medicine, Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, PC 616, Oman
| | - Fatemeh Jamshidi-Adegani
- Laboratory for Stem Cell & Regenerative Medicine, Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, PC 616, Oman
| |
Collapse
|
13
|
Razazi A, Kakanezhadi A, Raisi A, Pedram B, Dezfoulian O, Davoodi F. D-limonene inhibits peritoneal adhesion formation in rats via anti-inflammatory, anti-angiogenic, and antioxidative effects. Inflammopharmacology 2024; 32:1077-1089. [PMID: 38308792 DOI: 10.1007/s10787-023-01417-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/21/2023] [Indexed: 02/05/2024]
Abstract
The aim of this research was to investigate the effects of D-limonene on decreasing post-operative adhesion in rats and to understand the mechanisms involved. Peritoneal adhesions were induced by creating different incisions and excising a 1 × 1 cm section of the peritoneum. The experimental groups included a sham group, a control group in which peritoneal adhesions were induced without any treatment, and two treatment groups in which animals received D-limonene with dosages of 25 and 50 mg/kg after inducing peritoneal adhesions. Macroscopic examination of adhesions showed that both treatment groups had reduced adhesion bands in comparison to the control group. Immunohistochemical assessment of TGF-β1, TNF-α, and VEGF on day 14 revealed a significant increment in the level of immunopositive cells for the mentioned markers in the control group, whereas administration of limonene in both doses significantly reduced levels of TGF-β1, TNF-α, and VEGF (P < 0.05). Induction of peritoneal adhesions in the control group significantly increased TGF-β1, TNF-α, and VEGF on days 3 and 14 in western blot evaluation, while treatment with limonene significantly reduced TNF-α level on day 14 (P < 0.05). Moreover, VEGF levels in both treatment groups significantly reduced on days 3 and 14. In the control group, a significant increment in the levels of MDA and NO and a notable decline in the levels of GPX, CAT was observed (P < 0.05). Limonene 50 group significantly reduced MDA level and increased GPx and CAT levels on day 14 (P < 0.05). In summary, D-limonene reduced adhesion bands, inflammatory cytokines, angiogenesis, and oxidative stress.
Collapse
Affiliation(s)
- Ali Razazi
- Department of Veterinary, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Ali Kakanezhadi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Abbas Raisi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran.
| | - Behnam Pedram
- Department of Veterinary, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Omid Dezfoulian
- Department of Pathobiology, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran.
| | - Farshid Davoodi
- Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
14
|
Say S, Suzuki M, Hashimoto Y, Kimura T, Kishida A. Investigation of anti-adhesion ability of 8-arm PEGNHS-modified porcine pericardium. Biomed Mater 2024; 19:035012. [PMID: 38422523 DOI: 10.1088/1748-605x/ad2ed3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/29/2024] [Indexed: 03/02/2024]
Abstract
In post-adhesion surgery, there is a clinical need for anti-adhesion membranes specifically designed for the liver, given the limited efficacy of current commercial products. To address this demand, we present a membrane suitable for liver surgery applications, fabricated through the modification of decellularized porcine pericardium with 20 KDa hexaglycerol octa (succinimidyloxyglutaryl) polyoxyethylene (8-arm PEGNHS). We also developed an optimized modification procedure to produce a high-performance anti-adhesion barrier. The modified membrane significantly inhibited fibroblast cell adherence while maintaining minimal levels of inflammation. By optimizing the modification ratio, we successfully controlled post-adhesion formation. Notably, the 8-arm PEG-modified pericardium with a molar ratio of 5 exhibited the ability to effectively prevent post-adhesion formation on the liver compared to both the control and Seprafilm®, with a low adhesion score of 0.5 out of 3.0. Histological analysis further confirmed its potential for easy separation. Furthermore, the membrane demonstrated regenerative capabilities, as evidenced by the proliferation of mesothelial cells on its surface, endowing anti-adhesion properties between the abdominal wall and liver. These findings highlight the membrane's potential as a reliable barrier for repeated liver resection procedures that require the removal of the membrane multiple times.
Collapse
Affiliation(s)
- Sreypich Say
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-0062, Japan
| | - Mika Suzuki
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-0062, Japan
| | - Yoshihide Hashimoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-0062, Japan
| | - Tsuyoshi Kimura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-0062, Japan
| | - Akio Kishida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-0062, Japan
| |
Collapse
|
15
|
Zhou M, An X, Liu Z, Chen J. Biosafe Polydopamine-Decorated MnO 2 Nanoparticles with Hemostasis and Antioxidative Properties for Postoperative Adhesion Prevention. ACS Biomater Sci Eng 2024; 10:1031-1039. [PMID: 38215215 DOI: 10.1021/acsbiomaterials.3c01413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Surgical bleeding and cumulative oxidative stress are significant factors in the development of postoperative adhesions, which are always associated with adverse patient outcomes. However, effective strategies for adhesion prevention are currently lacking in clinical practice. In this study, we propose a solution using polydopamine-decorated manganese dioxide nanoparticles (MnO2@PDA) with rapid hemostasis and remarkable antioxidant properties to prevent postsurgical adhesion. The PDA modification provides MnO2@PDA with enhanced tissue adhesiveness and hemocompatibility with negligible hemolysis. Furthermore, MnO2@PDA exhibits impressive antioxidant and free radical scavenging properties, protecting cells from the negative effects of oxidative stress. The hemostatic activity of MnO2@PDA is evaluated in a mouse truncated tail model and a liver injury model, with results demonstrating reduced bleeding time and volume. The in vivo test on a mouse cecal abrasion model shows that MnO2@PDA exhibits excellent antiadhesion properties coupled with alleviated inflammation around the damaged tissue. Therefore, MnO2@PDA, which exhibits high biosafety, rapid hemostasis, and beneficial antioxidant capacity, displays exceptional antiadhesion performance, holding great potential for clinical applications to prevent postoperative adhesion.
Collapse
Affiliation(s)
- Mengqin Zhou
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, P. R. China
- Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research, Medical College, Yangzhou University, Yangzhou 225009, P. R. China
| | - Xueying An
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, P. R. China
| | - Zongguang Liu
- College of Physics Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China
- Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225009, P. R. China
| | - Jianmei Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, P. R. China
- Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research, Medical College, Yangzhou University, Yangzhou 225009, P. R. China
| |
Collapse
|
16
|
Say S, Suzuki M, Hashimoto Y, Kimura T, Kishida A. Effect of multi arm-PEG-NHS (polyethylene glycol n-hydroxysuccinimide) branching on cell adhesion to modified decellularized bovine and porcine pericardium. J Mater Chem B 2024; 12:1244-1256. [PMID: 38168715 DOI: 10.1039/d3tb01661g] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Implanting physical barrier materials to separate wounds from their surroundings is a promising strategy for preventing postoperative adhesions. Herein, we develop a material that switches from an anti-adhesive surface to an adhesive surface, preventing adhesion in the early stage of transplantation and then promoting recellularization. In this study, 2-arm, 4-arm, and 8-arm poly(ethylene glycol) succinimidyl glutarate (2-, 4-, 8-arm PEG-NHS) were used to modify the surface of decellularized porcine and bovine pericardium. The number of free amines on the surface of each material significantly decreased following modification regardless of the reaction molar ratio of NH2 and NHS, the number of PEG molecule branches, and the animal species of the decellularized tissue. The structure and mechanical properties of the pericardium were maintained after modification with PEG molecules. The time taken for the PEG molecules to detach through hydrolysis of the ester bonds differed between the samples, which resulted in different cell repulsion periods. By adjusting the reaction molar ratio, the number of PEG molecule branches, and the animal species of the decellularized pericardium, the duration of cell repulsion can be controlled and is expected to provide an anti-adhesion material for a variety of surgical procedures.
Collapse
Affiliation(s)
- Sreypich Say
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-0062, Japan.
| | - Mika Suzuki
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-0062, Japan.
| | - Yoshihide Hashimoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-0062, Japan.
| | - Tsuyoshi Kimura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-0062, Japan.
| | - Akio Kishida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-0062, Japan.
| |
Collapse
|
17
|
Naimi H, Khazaei M, Sharifnia F, Sayyed-Hosseinian SH. Repurposing of Angiotensin-converting-enzyme Inhibitor on Prevention of Post-surgical Tendon Adhesion. Curr Pharm Des 2024; 30:859-867. [PMID: 38468533 DOI: 10.2174/0113816128284671240214080516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/20/2023] [Accepted: 01/05/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND Formation of adhesion bands is a frequent clinical complication after tendon injury or surgery with limited treatment options. This study investigates the repurposing of Angiotensin-Converting-Enzyme Inhibitor (ACEI) in attenuating post-operative tendon-sheath adhesion bands in an Achilles tendon rat model. METHODS Structural, mechanical, histological, and biochemical characteristics of the Achilles tendons were compared in the presence and absence of oral ACEI (enalapril) using the Achilles tendon adhesion (TA) model in rats. Inflammation and total fibrosis of tendon tissues were compared between groups using molecular investigations along with macroscopic and histological scoring methods. RESULTS ACEI significantly alleviated the severity, length, and density of Achilles TAs. Moreover, histopathological changes, recruitment of inflammatory cells, and inflammation were significantly decreased in post-operative tissue samples as quantified with the Moran scoring model. We showed that ACEI treatment elicits a potent anti-fibrotic effect on tendon tissue samples, as illustrated by decreasing the severity and extent of the formed fibrotic tissue and collagen accumulation at the site of surgery when scored either by Tang or Ishiyama grading systems. The H&E staining showed no histopathological changes or damage to the principal organs. CONCLUSION Our results showed that ACEI is a safe and effective therapeutic candidate with potent immunomodulatory and anti-fibrotic features to alleviate surgery-induced development of fibrotic adhesive tissue. However, its efficacy needs to be further validated in clinical studies.
Collapse
Affiliation(s)
- Hamideh Naimi
- Department of Cellular and Molecular Biology, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fariba Sharifnia
- Department of Biology, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | | |
Collapse
|
18
|
Kargozar S, Gorgani S, Nazarnezhad S, Wang AZ. Biocompatible Nanocomposites for Postoperative Adhesion: A State-of-the-Art Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:4. [PMID: 38202459 PMCID: PMC10780749 DOI: 10.3390/nano14010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024]
Abstract
To reduce and prevent postsurgical adhesions, a variety of scientific approaches have been suggested and applied. This includes the use of advanced therapies like tissue-engineered (TE) biomaterials and scaffolds. Currently, biocompatible antiadhesive constructs play a pivotal role in managing postoperative adhesions and several biopolymer-based products, namely hyaluronic acid (HA) and polyethylene glycol (PEG), are available on the market in different forms (e.g., sprays, hydrogels). TE polymeric constructs are usually associated with critical limitations like poor biocompatibility and mechanical properties. Hence, biocompatible nanocomposites have emerged as an advanced therapy for postoperative adhesion treatment, with hydrogels and electrospun nanofibers among the most utilized antiadhesive nanocomposites for in vitro and in vivo experiments. Recent studies have revealed that nanocomposites can be engineered to generate smart three-dimensional (3D) scaffolds that can respond to different stimuli, such as pH changes. Additionally, nanocomposites can act as multifunctional materials for the prevention of adhesions and bacterial infections, as well as tissue healing acceleration. Still, more research is needed to reveal the clinical potential of nanocomposite constructs and the possible success of nanocomposite-based products in the biomedical market.
Collapse
Affiliation(s)
- Saeid Kargozar
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Sara Gorgani
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran; (S.G.); (S.N.)
| | - Simin Nazarnezhad
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran; (S.G.); (S.N.)
| | - Andrew Z. Wang
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| |
Collapse
|
19
|
Hu X, Wu H, Yong X, Wang Y, Yang S, Fan D, Xiao Y, Che L, Shi K, Li K, Xiong C, Zhu H, Qian Z. Cyclical endometrial repair and regeneration: Molecular mechanisms, diseases, and therapeutic interventions. MedComm (Beijing) 2023; 4:e425. [PMID: 38045828 PMCID: PMC10691302 DOI: 10.1002/mco2.425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/21/2023] [Accepted: 10/27/2023] [Indexed: 12/05/2023] Open
Abstract
The endometrium is a unique human tissue with an extraordinary ability to undergo a hormone-regulated cycle encompassing shedding, bleeding, scarless repair, and regeneration throughout the female reproductive cycle. The cyclical repair and regeneration of the endometrium manifest as changes in endometrial epithelialization, glandular regeneration, and vascularization. The mechanisms encompass inflammation, coagulation, and fibrinolytic system balance. However, specific conditions such as endometriosis or TCRA treatment can disrupt the process of cyclical endometrial repair and regeneration. There is uncertainty about traditional clinical treatments' efficacy and side effects, and finding new therapeutic interventions is essential. Researchers have made substantial progress in the perspective of regenerative medicine toward maintaining cyclical endometrial repair and regeneration in recent years. Such progress encompasses the integration of biomaterials, tissue-engineered scaffolds, stem cell therapies, and 3D printing. This review analyzes the mechanisms, diseases, and interventions associated with cyclical endometrial repair and regeneration. The review discusses the advantages and disadvantages of the regenerative interventions currently employed in clinical practice. Additionally, it highlights the significant advantages of regenerative medicine in this domain. Finally, we review stem cells and biologics among the available interventions in regenerative medicine, providing insights into future therapeutic strategies.
Collapse
Affiliation(s)
- Xulin Hu
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduSichuanChina
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Haoming Wu
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduSichuanChina
| | - Xin Yong
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of BiotherapySichuan UniversityChengduSichuanChina
| | - Yao Wang
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduSichuanChina
| | - Shuhao Yang
- Department of OrthopedicsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Diyi Fan
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduSichuanChina
| | - Yibo Xiao
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduSichuanChina
| | - Lanyu Che
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduSichuanChina
| | - Kun Shi
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Kainan Li
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduSichuanChina
| | | | - Huili Zhu
- Department of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of EducationWest China Second University Hospital of Sichuan UniversityChengduSichuanChina
| | - Zhiyong Qian
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
20
|
Torres-de la Roche LA, Catena U, Clark TJ, Devassy R, Leyland N, De Wilde RL. Perspectives in adhesion prevention in gynaecological surgery. Facts Views Vis Obgyn 2023; 15:291-296. [PMID: 38128088 PMCID: PMC10832654 DOI: 10.52054/fvvo.15.4.108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Adhesions are a frequent, clinically relevant, and often costly complication of surgery that can develop in any body location regardless of the type of surgical procedure. Adhesions result from surgical trauma inducing inflammatory and coagulation processes and to date cannot be entirely prevented. However, the extent of adhesion formation can be reduced by using good surgical technique and the use of anti-inflammatory drugs, haemostats, and barrier agents. Strategies are needed in the short-, medium- and longer-term to improve the prevention of adhesions. In the short-term, efforts are needed to increase the awareness amongst surgeons and patients about the potential risks and burden of surgically induced adhesions. To aid this in the medium- term, a risk score to identify patients at high risk of adhesion formation is being developed and validated. Furthermore, available potentially preventive measures need to be highlighted. Both clinical and health economic evaluations need to be undertaken to support the broad adoption of such measures. In the longer- term, a greater understanding of the pathogenic processes leading to the formation of adhesions is needed to help identify effective, future treatments to reliably prevent adhesions from forming and lyse existing ones.
Collapse
|
21
|
Sun X, Chen Q, Guan AA, Yuan S, Li Z. Multifunctional Fluorinated Lubricant-Infused Poly(4-Hydroxybutyrate) (P4HB) Membranes for Full-Thickness Abdominal Wall Defect Repair. Macromol Biosci 2023; 23:e2300146. [PMID: 37243394 DOI: 10.1002/mabi.202300146] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/23/2023] [Indexed: 05/28/2023]
Abstract
Abdominal wall defect caused by surgical trauma, congenital rupture, or tumor resection may result in hernia formation or even death. Tension-free abdominal wall defect repair by using patches is the gold standard to solve such problems. However, adhesions following patch implantation remain one of the most challenging issues in surgical practice. The development of new kinds of barriers is key to addressing peritoneal adhesions and repairing abdominal wall defects. It is already well recognized that ideal barrier materials need to have good resistance to nonspecific protein adsorption, cell adhesion, and bacterial colonization for preventing the initial development of adhesion. Herein, electrospun poly(4-hydroxybutyrate) (P4HB) membranes infused with perfluorocarbon oil are used as physical barriers. The oil-infused P4HB membranes can greatly prevent protein attachment and reduce blood cell adhesion in vitro. It is further shown that the perfluorocarbon oil-infused P4HB membranes can reduce bacterial colonization. The in vivo study reveals that perfluoro(decahydronaphthalene)-infused P4HB membranes can significantly prevent peritoneal adhesions in the classic abdominal wall defects' model and accelerate defect repair, as evidenced by gross examination and histological evaluation. This work provides a safe fluorinated lubricant-impregnated P4HB physical barrier to inhibit the formation of postoperative peritoneal adhesions and efficiently repair soft-tissue defects.
Collapse
Affiliation(s)
- Xiuxia Sun
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Qi Chen
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Angelique A Guan
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Shuaishuai Yuan
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- National Engineering Laboratory of Medical Implantable Devices & Key Laboratory for Medical Implantable Devices of Shandong Province, WEGO Holding Company Limited, Weihai, 264210, P. R. China
| | - Zhibo Li
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
22
|
Klicova M, Rosendorf J, Erben J, Horakova J. Antiadhesive Nanofibrous Materials for Medicine: Preventing Undesirable Tissue Adhesions. ACS OMEGA 2023; 8:20152-20162. [PMID: 37323398 PMCID: PMC10268260 DOI: 10.1021/acsomega.3c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/10/2023] [Indexed: 06/17/2023]
Abstract
Undesirable postoperative tissue adhesions remain among the most common complications after surgery. Apart from pharmacological antiadhesive agents, various physical barriers have been developed in order to prevent postoperative tissue adhesions. Nevertheless, many introduced materials suffer from shortcomings during in vivo application. Thus, there is an increasing need to develop a novel barrier material. However, various challenging criteria have to be met, so this issue pushes the research in materials to its current limits. Nanofibers play a major role in breaking the wall of this issue. Due to their properties, such as a large surface area for functionalization, tunable degradation rate, or the possibility of layering individual nanofibrous materials, it is feasible to create an antiadhesive surface while maintaining biocompatibility. There are many ways to produce nanofibrous material; electrospinning is the most used and versatile technique. This review reveals the different approaches and puts them into context.
Collapse
Affiliation(s)
- Marketa Klicova
- Department
of Nonwovens and Nanofibrous Materials, Faculty of Textile Engineering, Technical University of Liberec, Studentska 2, 461 17 Liberec, Czech Republic
| | - Jachym Rosendorf
- Biomedical
Center, Faculty of Medicine in Pilsen, Charles
University, Alej Svobody
1655/76, 323 00 Plzen, Czech Republic
| | - Jakub Erben
- Department
of Nonwovens and Nanofibrous Materials, Faculty of Textile Engineering, Technical University of Liberec, Studentska 2, 461 17 Liberec, Czech Republic
| | - Jana Horakova
- Department
of Nonwovens and Nanofibrous Materials, Faculty of Textile Engineering, Technical University of Liberec, Studentska 2, 461 17 Liberec, Czech Republic
| |
Collapse
|
23
|
The Controlled Release and Prevention of Abdominal Adhesion of Tannic Acid and Mitomycin C-Loaded Thermosensitive Gel. Polymers (Basel) 2023; 15:polym15040975. [PMID: 36850258 PMCID: PMC9966773 DOI: 10.3390/polym15040975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/26/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
Postoperative abdominal adhesion is one of the most common complications after abdominal surgery. A single drug or physical barrier treatment does not achieve the ideal anti-adhesion effect. We developed a thermosensitive hydrogel (PPH hydrogel) consisting of poloxamer 407 (P407), poloxamer (P188), and hydroxypropyl methylcellulose (HPMC) co-blended. An injectable thermosensitive TA/MMC-PPH hydrogel was obtained by loading tannic acid (TA) with an anti-inflammatory effect and mitomycin C (MMC), which inhibits fibroblast migration or proliferation. The optimal prescriptions of PPH hydrogels with a suitable gelling time (63 s) at 37 °C was 20% (w/v) P407, 18% (w/v) P188, and 0.5% (w/v) HPMC. The scanning electron microscopy (SEM) revealed that the PPH hydrogel had a three-dimensional mesh structure, which was favorable for drug encapsulation. The PPH hydrogel had a suitable gelation temperature of 33 °C, a high gel strength, and complicated viscosity at 37 °C, according to the rheological analysis. In vitro release studies have shown that the PPH hydrogel could delay the release of TA and MMC and conform to the first-order release rate. Anti-adhesion tests performed on rats in vivo revealed that TA/MMC-PPH hydrogel significantly reduced the risk of postoperative adhesion. In conclusion, the TA/MMC-PPH hydrogel prepared in this study showed an excellent performance in both controlled drug release and anti-adhesive effects. It can be used as a protocol to prevent or reduce postoperative abdominal adhesion.
Collapse
|
24
|
Capella-Monsonís H, Shridhar A, Chirravuri B, Figucia M, Learn G, Greenawalt K, Badylak SF. A Comparative Study of the Resorption and Immune Response for Two Starch-Based Hemostat Powders. J Surg Res 2023; 282:210-224. [PMID: 36327703 DOI: 10.1016/j.jss.2022.09.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 08/25/2022] [Accepted: 09/20/2022] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Powder hemostats are valuable adjuncts to minimize intraoperative and postoperative complications. In addition to promotion of rapid coagulation, resorption, and biocompatibility are desirable attributes. Plant starch-based polysaccharide hemostat powders are effective and widely used hemostatic agents, however their source and/or processing can affect characteristics such as in vivo degradability. For example, Arista is a purified/hydrolyzed starch powder that is rapidly resorbed in vivo; whereas PerClot shows slow resorption and preservation of a crystalline form. MATERIALS AND METHODS In the present study, we compared the cellular response to the hemostatic agents PerClot and Arista both in vitro and in vivo, and used potato starch and urinary bladder extracellular matrix (UBM-ECM) as high crystallinity/slowly resorbable and prohealing controls, respectively. RESULTS All test articles and their degradation products were cytocompatible in vitro as measured by cell viability and metabolic activity of bone-marrow macrophages. PerClot induced a stronger proinflammatory, M1-like macrophage response in vitro (P < 0.001) than Arista, likely due to differences in source composition. Histologic examination of the in vivo surgical site showed the almost complete degradation of Arista after 12 h (day 0), whereas both PerClot and potato starch were still present at 28 d with crystals identifiable with polarized light microscopy and periodic acid Schiff (PAS) staining. Macrophage phenotype in vivo showed no differences between PerClot and Arista. Collagen deposition and mononuclear cell accumulation consistent with an early foreign body response were present around PerClot and potato starch crystals, whereas no such cell or connective tissue deposition was noted at the site of Arista or UBM-ECM placement.
Collapse
Affiliation(s)
- Héctor Capella-Monsonís
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Arthi Shridhar
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bharadwaj Chirravuri
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Matthew Figucia
- BDI Surgery, Becton, Dickinson and Company, Warwick, Rhode Island
| | - Greg Learn
- BDI Surgery, Becton, Dickinson and Company, Warwick, Rhode Island
| | - Keith Greenawalt
- BDI Surgery, Becton, Dickinson and Company, Warwick, Rhode Island
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
25
|
De Lazari MGT, Viana CTR, Pereira LX, Orellano LAA, Ulrich H, Andrade SP, Campos PP. Sodium butyrate attenuates peritoneal fibroproliferative process in mice. Exp Physiol 2023; 108:146-157. [PMID: 36459573 PMCID: PMC10103766 DOI: 10.1113/ep090559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022]
Abstract
NEW FINDINGS What is the central question of this study? Peritoneal injury can result in a persistent fibroproliferative process in the abdominal cavity, causing pain and loss of function of internal organs. This study aimed to demonstrate the use of sodium butyrate (NaBu) as a potential agent to attenuate peritoneal fibrosis induced by a synthetic matrix. What is the main finding and its importance? Our findings provide the first evidence that NaBu attenuates the inflammatory, angiogenesis and fibrogenesis axes involved in the formation of peritoneal fibrovascular tissue, indicating the potential of this compound to ameliorate peritoneal fibrosis. ABSTRACT The aim of this study was to identify the bio-efficacy of sodium butyrate (NaBu) on preventing the development of peritoneal fibrovascular tissue induced by implantation of a synthetic matrix in the abdominal cavity. Polyether-polyurethane sponge discs were implanted in the peritoneal cavity of mice, which were treated daily with oral administration of NaBu (100 mg/kg). Control animals received water (100 μl). After 7 days, the implants were removed for assessment of inflammatory, angiogenic and fibrogenic markers. Compared with control values, NaBu treatment decreased mast cell recruitment/activation, inflammatory enzyme activities, levels of pro-inflammatory cytokines, and the proteins p65 and p50 of the nuclear factor-κB pathway. Angiogenesis, as determined by haemoglobin content, vascular endothelial growth factor levels and the number of blood vessels in the implant, was reduced by the treatment. In NaBu-treated animals, the predominant collagen present in the abdominal fibrovascular tissue was thin collagen, whereas in control implants it was thick collagen. Transforming growth factor-β1 levels were also lower in implants of treated animals. Sodium butyrate downregulated the inflammatory, angiogenesis and fibrogenesis axes of the fibroproliferative tissue induced by the intraperitoneal synthetic matrix. This compound has potential to control/regulate chronic inflammation and adverse healing processes in the abdominal cavity.
Collapse
Affiliation(s)
| | | | - Luciana Xavier Pereira
- Department of Experimental PathologyUniversidade Federal de São João del‐ReiDivinópolisMinas GeraisBrazil
| | | | - Henning Ulrich
- Department of BiochemistryInstitute of ChemistryUniversity of São PauloSão PauloSão PauloBrazil
| | - Silvia Passos Andrade
- Department of Physiology and BiophysicsInstitute of Biological SciencesUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Paula Peixoto Campos
- Department of General PathologyInstitute of Biological SciencesUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| |
Collapse
|
26
|
Ibrahim A, Kamel WH, Soliman M. Efficacy of gelatin sponge in the prevention of post-surgical intra-abdominal adhesion in a rat model. Res Vet Sci 2022; 152:26-33. [PMID: 35914363 DOI: 10.1016/j.rvsc.2022.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/19/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022]
Abstract
Although different products have been developed to prevent post-surgical adhesion, their efficacy remains unsatisfactory. This study aimed to evaluate the efficacy of the gelatin sponge in the prevention of post-surgical intra-abdominal adhesions in a rat model. Rats were randomly divided into sham, adhesion, and gelatin groups. All rats, except the sham group, underwent cecal abrasion to establish an adhesion model. After celiotomy, a sterile gelatin sponge was applied intra-abdominal on the abraded cecum in the gelatin group. Rats were sacrificed on day 14 post-surgery and intra-abdominal adhesions were evaluated and scored. Adhesion tissues were evaluated by histological, histochemical, and immunohistochemical analysis. Intra-abdominal adhesions were recorded in all rats of the adhesion group. Intra-abdominal application of gelatin sponge significantly (P < 0.001) reduced intra-abdominal adhesions by 91% in the gelatin group relative to the adhesion group. The histological analysis revealed a marked decrease (P < 0.001) in the inflammatory score and neovascularization in the gelatin group. The histochemical analysis found that gelatin sponge administration reduced adhesion formation and thickness of adhesion tissue. Moreover, gelatin sponge significantly (P < 0.0001) increased MMP-9 expression and decreased macrophage marker expression in adhesive tissue. This study revealed that the application of gelatin sponge markedly reduced the post-surgical intra-abdominal adhesions and suggests new guidance for using gelatin sponge as an anti-adhesive substance in clinical practice.
Collapse
Affiliation(s)
- Ahmed Ibrahim
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt.
| | - Walaa H Kamel
- Department of Veterinary Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt..
| | - Mahmoud Soliman
- Department of Veterinary Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt.; Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju 81186, Republic of Korea.
| |
Collapse
|
27
|
Brito-Rojas IC, Neil Valentín Vega-Peña NVVP. Obstrucción intestinal por adherencias: un lienzo en blanco en el que el cirujano elige los colores. REVISTA COLOMBIANA DE CIRUGÍA 2022. [DOI: 10.30944/20117582.2146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Introducción. La obstrucción intestinal es una patología de alta prevalencia. Su abordaje diagnóstico y terapéutico ha evolucionado acorde con el avance del conocimiento e implementación de la tecnología. El impacto de sus complicaciones obliga a redoblar esfuerzos en pro de lograr una mayor efectividad. Se hizo una aproximación reflexiva al problema, mediante una identificación de los puntos controversiales de interés para el cirujano general.
Métodos. Se realizó una búsqueda sistemática de la literatura en varias bases de datos, utilizando dos ecuaciones de búsqueda que emplearon términos seleccionados a partir de los tesauros “Medical Subject Heading” (MeSH) y “Descriptores en Ciencias de la Salud” (DeCS).
Resultados. Se recolectaron 43 artículos y a partir de ellos se construyó el texto de revisión. La identificación pronta de los posibles candidatos a cirugía, mediante un esquema diagnóstico y terapéutico, se constituye en una prioridad en el manejo de estos pacientes. De igual manera, se efectúan consideraciones en la toma de decisiones con respecto a la vía quirúrgica, así como recomendaciones técnicas operatorias producto de la experiencia y lo reportado en la literatura. Existen factores propios del cirujano, del contexto y del paciente, que inciden en la resolución del problema.
Conclusión. La obstrucción intestinal y sus implicaciones clínicas obligan a una reevaluación constante de su estado del arte y avances en el manejo, tendiente a una búsqueda de oportunidades para impactar favorablemente en su curso clínico. Hay estrategias por implementar, inclusive el manejo laparoscópico en casos seleccionados.
Collapse
|
28
|
Kakanezhadi A, Rezaei M, Raisi A, Dezfoulian O, Davoodi F, Ahmadvand H. Rosmarinic acid prevents post-operative abdominal adhesions in a rat model. Sci Rep 2022; 12:18593. [PMID: 36329196 PMCID: PMC9633689 DOI: 10.1038/s41598-022-22000-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
This study aims to determine the effects of rosmarinic acid which involved the mechanisms to decrease the postoperative peritoneal adhesion formation in rats. Various incisions and removing a 1 × 1 cm piece of peritoneum was used to induce the peritoneal adhesions. Experimental groups were as follows: 1-Sham group. 2-Control group: Peritoneal adhesions were induced and no treatments were performed. 3-Treatment groups: Following inducing peritoneal adhesions, animals received rosmarinic acid with 50 and 70 mg/kg dosage, respectively. Macroscopic examination of adhesions indicated that adhesion bands were reduced in both treatment groups compared to the control group. Moreover, the adhesion score was decreased in both treatment groups on day 14. Inflammation and fibroblast proliferation were both reduced in the treatment groups on day 14. TGF-β1, TNF-α, and VEGF were all evaluated by western blot and immunohistochemistry on days 3 and 14. Treatment groups reduced inflammatory cytokines on days 3 and 14. The treatment group with a 70 mg/kg dosage decreased TGF-β1 and TNF-α levels more than the other treatment group. The administration of rosmarinic acid significantly reduced MDA and increased CAT levels. In conclusion, the rosmarinic acid was effective to reduce the adhesion bands, inflammatory cytokines, angiogenesis, and oxidative stress.
Collapse
Affiliation(s)
- Ali Kakanezhadi
- grid.411406.60000 0004 1757 0173Department of Clinical Sciences, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Mehrdad Rezaei
- grid.411406.60000 0004 1757 0173Department of Clinical Sciences, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Abbas Raisi
- grid.411406.60000 0004 1757 0173Department of Clinical Sciences, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Omid Dezfoulian
- grid.411406.60000 0004 1757 0173Department of Pathobiology, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Farshid Davoodi
- grid.412763.50000 0004 0442 8645Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Hassan Ahmadvand
- grid.411950.80000 0004 0611 9280Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
29
|
Chen W, Chen Y, Ren Y, Gao C, Ning C, Deng H, Li P, Ma Y, Li H, Fu L, Tian G, Yang Z, Sui X, Yuan Z, Guo Q, Liu S. Lipid nanoparticle-assisted miR29a delivery based on core-shell nanofibers improves tendon healing by cross-regulation of the immune response and matrix remodeling. Biomaterials 2022; 291:121888. [DOI: 10.1016/j.biomaterials.2022.121888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/28/2022] [Accepted: 10/28/2022] [Indexed: 11/15/2022]
|
30
|
Hill MA, Walkowiak OA, Head WT, Kwon JH, Kavarana MN, Rajab TK. A review of animal models for post-operative pericardial adhesions. Front Surg 2022; 9:966410. [PMID: 36171819 PMCID: PMC9510625 DOI: 10.3389/fsurg.2022.966410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/22/2022] [Indexed: 11/22/2022] Open
Abstract
Post-operative pericardial adhesions remain a serious complication after cardiac surgery that can lead to increased morbidity and mortality. Fibrous adhesions can destroy tissue planes leading to injury of surrounding vasculature, lengthening of operation time, and increased healthcare costs. While animal models are necessary for studying the formation and prevention of post-operative pericardial adhesions, a standardized animal model for inducing post-operative pericardial adhesions has not yet been established. In order to address this barrier to progress, an analysis of the literature on animal models for post-operative pericardial adhesions was performed. The animal model, method used to induce adhesions, and the time to allow development of adhesions were analyzed. Our analysis found that introduction of autologous blood into the pericardial cavity in addition to physical abrasion of the epicardium caused more severe adhesion formation in comparison to abrasion alone or abrasion with desiccation (vs. abrasion alone p = 0.0002; vs. abrasion and desiccation p = 0.0184). The most common time frame allowed for adhesion formation was 2 weeks, with the shortest time being 10 days and the longest being 12 months. Finally, we found that the difference in adhesion severity in all animal species was similar, suggesting the major determinants for the choice of model are animal size, animal cost, and the availability of research tools in the particular model. This survey of the literature provides a rational guide for researchers to select the appropriate adhesion induction modality, animal model, and time allowed for the development of adhesions.
Collapse
|
31
|
Watanabe J, Yamaguchi S, Takemasa I, Yasui M, Hirano Y, Nakano D, Shiomi A, Munakata S, Naito M, Tsukamoto S, Ishibe A, Kuriu Y, Uchima Y, Mori S, Kanazawa H, Wakabayashi G, Yamada T, Ezu M, Watanabe M, Kinugasa Y. Safety, efficacy, and operability of a newly developed absorbable adhesion barrier (GM142) in patients with primary rectal cancer scheduled for diverting ileostomy during laparoscopic surgery: Randomized controlled trial. Ann Gastroenterol Surg 2022; 6:515-522. [PMID: 35847436 PMCID: PMC9271016 DOI: 10.1002/ags3.12544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 01/22/2023] Open
Abstract
Aim The aim of this study was to compare the outcomes of GM142, a newly developed gelatin film with a concave and convex structure to a commercially available conventional film, hyaluronate-carboxymethylcellulose. Methods Patients with primary rectal cancer who were scheduled for diverting ileostomy during laparoscopic surgery were eligible for this study. Patients were randomized before surgery and an antiadhesion film was applied under the umbilical incision. The primary outcome was the incidence of adhesion under the midline incision confirmed by second-look surgery for diverting ileostomy closure. The secondary outcomes were the adhesion severity score, the extent of adhesion score, the presence of intestinal obstruction, and the success of all patching. Results A total of 146 patients were enrolled. A total of 123 patients were included in the full analysis set. The primary outcome of "no adhesion" was observed in 66.1% in the GM142 group and 55.7% in the conventional film group. The noninferiority of GM142 to conventional film was confirmed (P = .0005). The secondary outcomes were similar between the groups. For the safety evaluation, there were no safety concerns regarding allergic reactions to gelatin or increased gelatin-specific IgE antibody titers. Conclusions The noninferiority of GM142 to conventional film was shown. GM142 showed no major safety issues. The clinical safety profiles of GM142 suggested certain physiological benefits of the gelatin film as an adhesion barrier.
Collapse
Affiliation(s)
- Jun Watanabe
- Department of SurgeryGastroenterological CenterYokohama City University Medical CenterYokohamaJapan
| | - Shigeki Yamaguchi
- Department of SurgeryDivision of Colorectal SurgeryTokyo Women's Medical UniversityTokyoJapan
| | - Ichiro Takemasa
- Department of SurgerySurgical Oncology and ScienceSapporo Medical University School of MedicineHokkaidoJapan
| | - Masayoshi Yasui
- Department of Gastroenterological SurgeryOsaka International Cancer InstituteOsakaJapan
| | - Yasumitsu Hirano
- Department of Gastroenterological SurgerySaitama Medical University International Medical CenterSaitamaJapan
| | - Daisuke Nakano
- Department of SurgeryTokyo Metropolitan Cancer and Infectious Diseases Center Komagome HospitalTokyoJapan
| | - Akio Shiomi
- Division of Colon and Rectal SurgeryShizuoka Cancer CenterShizuokaJapan
| | - Shinya Munakata
- Department of Coloproctological SurgeryFaculty of MedicineJuntendo UniversityTokyoJapan
| | - Masanori Naito
- Department of SurgeryKitasato University Medical CenterSaitamaJapan
- Department of Gastroenterological SurgerySt. Marianna University Yokohama West HospitalYokohamaJapan
| | - Shunsuke Tsukamoto
- Department of Colorectal SurgeryNational Cancer Center HospitalTokyoJapan
| | - Atsushi Ishibe
- Department of Gastroenterological SurgeryYokohama City University Graduate School of MedicineYokohamaJapan
| | - Yoshiaki Kuriu
- Department of SurgeryKyoto Prefectural University of MedicineKyotoJapan
| | | | - Shinichiro Mori
- Department of Digestive Surgery, Breast and Thyroid SurgeryKagoshima University Graduate School of Medical SciencesKagoshimaJapan
| | - Hideki Kanazawa
- Department of SurgerySagamihara National HospitalNational Hospital OrganizationKanagawaJapan
| | - Go Wakabayashi
- Department of SurgeryAgeo Central General HospitalSaitamaJapan
| | - Takeshi Yamada
- Department of Gastrointestinal and Hepato‐Biliary‐Pancreatic SurgeryNippon Medical SchoolTokyoJapan
| | | | - Masahiko Watanabe
- Department of SurgeryKitasato University Kitasato Institute HospitalTokyoJapan
| | - Yusuke Kinugasa
- Department of Gastrointestinal SurgeryTokyo Medical and Dental UniversityTokyoJapan
| |
Collapse
|
32
|
Hügle T, Nasi S, Ehirchiou D, Omoumi P, So A, Busso N. Fibrin deposition associates with cartilage degeneration in arthritis. EBioMedicine 2022; 81:104081. [PMID: 35660787 PMCID: PMC9163430 DOI: 10.1016/j.ebiom.2022.104081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 12/04/2022] Open
Abstract
Background Cartilage damage in inflammatory arthritis is attributed to inflammatory cytokines and pannus infiltration. Activation of the coagulation system is a well known feature of arthritis, especially in rheumatoid arthritis (RA). Here we describe mechanisms by which fibrin directly mediates cartilage degeneration. Methods Fibrin deposits were stained on cartilage and synovial tissue of RA and osteoarthritis (OA) patients and in murine adjuvant-induced arthritis (AIA) in wild-type or fibrinogen deficient mice. Fibrinogen expression and procoagulant activity in chondrocytes were evaluated using qRT-PCR analysis and turbidimetry. Chondro-synovial adhesion was studied in co-cultures of human RA cartilage and synoviocytes, and in the AIA model. Calcific deposits were stained in human RA and OA cartilage and in vitro in fibrinogen-stimulated chondrocytes. Findings Fibrin deposits on cartilage correlated with the severity of cartilage damage in human RA explants and in AIA in wild-type mice, whilst fibrinogen deficient mice were protected. Fibrin upregulated Adamts5 and Mmp13 in chondrocytes. Chondro-synovial adhesion only occurred in fibrin-rich cartilage areas and correlated with cartilage damage. In vitro, autologous human synoviocytes, cultured on RA cartilage explants, adhered exclusively to fibrin-rich areas. Fibrin co-localized with calcification in human RA cartilage and triggered chondrocyte mineralization by inducing pro-calcification genes (Anx5, Pit1, Pc1) and the IL-6 cytokine. Similar fibrin-mediated mechanisms were observed in OA models, but to a lesser extent and without pseudo-membranes formation. Interpretation In arthritis, fibrin plaques directly impair cartilage integrity via a triad of catabolism, adhesion, and calcification. Funding None.
Collapse
|
33
|
Jeong JE, Han SS, Shim HE, Kim W, Lee BS, Kim YJ, Kang SW. Hyaluronic microparticle-based biomimetic artificial neighbors of cells for three-dimensional cell culture. Carbohydr Polym 2022; 294:119770. [DOI: 10.1016/j.carbpol.2022.119770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 06/10/2022] [Accepted: 06/19/2022] [Indexed: 11/02/2022]
|
34
|
Abstract
BACKGROUND Peritoneal adhesion formation is common after abdominal surgery and results in severe complications. Tissue hypoxia is one of the main drivers of peritoneal adhesions. Thus, we determined the clinical role of hypoxia-inducible factor (HIF)-1 signaling in peritoneal adhesions and investigated whether the biguanide antidiabetic drug metformin shows HIF-inhibitory effects and could be repurposed to prevent adhesion formation. STUDY DESIGN As part of the ReLap study (DRKS00013001), adhesive tissue from patients undergoing relaparotomy was harvested and graded using the adhesion grade score. HIF-1 signaling activity within tissue biopsies was determined and correlated with adhesion severity. The effect of metformin on HIF-1 activity was analyzed by quantification of HIF target gene expression and HIF-1 protein stabilization in human mesothelial cells and murine fibroblast under normoxia and hypoxia. Mice were treated with vehicle or metformin 3 days before and until 7 days after induction of peritoneal adhesions; alternatively, metformin treatment was discontinued 48 hours before induction of peritoneal adhesions. RESULTS HIF-1 signaling activity correlated with adhesion severity in patient biopsies. Metformin significantly mitigated HIF-1 activity in vitro and in vivo. Oral treatment with metformin markedly prevented adhesion formation in mice even when the treatment was discontinued 48 hours before surgery. Although metformin treatment did not alter macrophage polarization, metformin reduced proinflammatory leucocyte infiltration and attenuated hypoxia-induced profibrogenic expression patterns and myofibroblast activation. CONCLUSIONS Metformin mitigates adhesion formation by inhibiting HIF-1-dependent (myo)fibroblast activation, conferring an antiadhesive microenvironment after abdominal surgery. Repurposing the clinically approved drug metformin might be useful to prevent or treat postoperative adhesions.
Collapse
|
35
|
Short-and long-term outcomes of postoperative intrauterine application of hyaluronic acid gel: a meta-analysis of randomized controlled trials. J Minim Invasive Gynecol 2022; 29:934-942. [DOI: 10.1016/j.jmig.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 11/20/2022]
|
36
|
Khan WH, Abaid A, Butt UI, Warraich MU, Ayyaz M, Shafiq A. Efficacy of Cross-Linked Hyaluronic Acid Gel for the Reduction of Post-operative Obstructive Symptoms Due to Adhesions. Cureus 2022; 14:e22469. [PMID: 35371704 PMCID: PMC8942047 DOI: 10.7759/cureus.22469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2022] [Indexed: 11/05/2022] Open
|
37
|
Russo V, El Khatib M, Prencipe G, Citeroni MR, Faydaver M, Mauro A, Berardinelli P, Cerveró-Varona A, Haidar-Montes AA, Turriani M, Di Giacinto O, Raspa M, Scavizzi F, Bonaventura F, Stöckl J, Barboni B. Tendon Immune Regeneration: Insights on the Synergetic Role of Stem and Immune Cells during Tendon Regeneration. Cells 2022; 11:434. [PMID: 35159244 PMCID: PMC8834336 DOI: 10.3390/cells11030434] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 12/11/2022] Open
Abstract
Tendon disorders represent a very common pathology in today's population, and tendinopathies that account 30% of tendon-related injuries, affect yearly millions of people which in turn cause huge socioeconomic and health repercussions worldwide. Inflammation plays a prominent role in the development of tendon pathologies, and advances in understanding the underlying mechanisms during the inflammatory state have provided additional insights into its potential role in tendon disorders. Different cell compartments, in combination with secreted immune modulators, have shown to control and modulate the inflammatory response during tendinopathies. Stromal compartment represented by tenocytes has shown to display an important role in orchestrating the inflammatory response during tendon injuries due to the interplay they exhibit with the immune-sensing and infiltrating compartments, which belong to resident and recruited immune cells. The use of stem cells or their derived secretomes within the regenerative medicine field might represent synergic new therapeutical approaches that can be used to tune the reaction of immune cells within the damaged tissues. To this end, promising opportunities are headed to the stimulation of macrophages polarization towards anti-inflammatory phenotype together with the recruitment of stem cells, that possess immunomodulatory properties, able to infiltrate within the damaged tissues and improve tendinopathies resolution. Indeed, the comprehension of the interactions between tenocytes or stem cells with the immune cells might considerably modulate the immune reaction solving hence the inflammatory response and preventing fibrotic tissue formation. The purpose of this review is to compare the roles of distinct cell compartments during tendon homeostasis and injury. Furthermore, the role of immune cells in this field, as well as their interactions with stem cells and tenocytes during tendon regeneration, will be discussed to gain insights into new ways for dealing with tendinopathies.
Collapse
Affiliation(s)
- Valentina Russo
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Mohammad El Khatib
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Giuseppe Prencipe
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Maria Rita Citeroni
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Melisa Faydaver
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Annunziata Mauro
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Paolo Berardinelli
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Adrián Cerveró-Varona
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Arlette A. Haidar-Montes
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Maura Turriani
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Oriana Di Giacinto
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Marcello Raspa
- National Research Council (CNR), Campus International Development (EMMA-INFRAFRONTIER-IMPC), Institute of Biochemistry and Cellular Biology (IBBC), 00015 Monterotondo Scalo, Italy; (M.R.); (F.S.); (F.B.)
| | - Ferdinando Scavizzi
- National Research Council (CNR), Campus International Development (EMMA-INFRAFRONTIER-IMPC), Institute of Biochemistry and Cellular Biology (IBBC), 00015 Monterotondo Scalo, Italy; (M.R.); (F.S.); (F.B.)
| | - Fabrizio Bonaventura
- National Research Council (CNR), Campus International Development (EMMA-INFRAFRONTIER-IMPC), Institute of Biochemistry and Cellular Biology (IBBC), 00015 Monterotondo Scalo, Italy; (M.R.); (F.S.); (F.B.)
| | - Johannes Stöckl
- Centre for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Barbara Barboni
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| |
Collapse
|
38
|
Kocurkova A, Nesporova K, Sandanusova M, Kerberova M, Lehka K, Velebny V, Kubala L, Ambrozova G. Endogenously-Produced Hyaluronan and Its Potential to Regulate the Development of Peritoneal Adhesions. Biomolecules 2021; 12:biom12010045. [PMID: 35053193 PMCID: PMC8773905 DOI: 10.3390/biom12010045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 12/23/2022] Open
Abstract
Formation of peritoneal adhesions (PA) is one of the major complications following intra-abdominal surgery. It is primarily caused by activation of the mesothelial layer and underlying tissues in the peritoneal membrane resulting in the transition of mesothelial cells (MCs) and fibroblasts to a pro-fibrotic phenotype. Pro-fibrotic transition of MCs—mesothelial-to-mesenchymal transition (MMT), and fibroblasts activation to myofibroblasts are interconnected to changes in cellular metabolism and culminate in the deposition of extracellular matrix (ECM) in the form of fibrotic tissue between injured sides in the abdominal cavity. However, ECM is not only a mechanical scaffold of the newly synthetized tissue but reciprocally affects fibrosis development. Hyaluronan (HA), an important component of ECM, is a non-sulfated glycosaminoglycan consisting of N-acetyl-D-glucosamine (GlcNAc) and D-glucuronic acid (GlcUA) that can affect the majority of processes involved in PA formation. This review considers the role of endogenously produced HA in the context of different fibrosis-related pathologies and its overlap in the development of PA.
Collapse
Affiliation(s)
- Anna Kocurkova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic; (A.K.); (M.S.); (M.K.); (L.K.)
- Institute of Experimental Biology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
| | - Kristina Nesporova
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic; (K.N.); (K.L.); (V.V.)
| | - Miriam Sandanusova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic; (A.K.); (M.S.); (M.K.); (L.K.)
- Institute of Experimental Biology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
| | - Michaela Kerberova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic; (A.K.); (M.S.); (M.K.); (L.K.)
| | - Katerina Lehka
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic; (K.N.); (K.L.); (V.V.)
| | - Vladimir Velebny
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic; (K.N.); (K.L.); (V.V.)
| | - Lukas Kubala
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic; (A.K.); (M.S.); (M.K.); (L.K.)
- Institute of Experimental Biology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
| | - Gabriela Ambrozova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic; (A.K.); (M.S.); (M.K.); (L.K.)
- Correspondence:
| |
Collapse
|
39
|
Hashimoto Y, Yamashita A, Negishi J, Kimura T, Funamoto S, Kishida A. 4-Arm PEG-Functionalized Decellularized Pericardium for Effective Prevention of Postoperative Adhesion in Cardiac Surgery. ACS Biomater Sci Eng 2021; 8:261-272. [PMID: 34937336 DOI: 10.1021/acsbiomaterials.1c00990] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Postoperative adhesions are a very common and serious complication in cardiac surgery, and the development of an effective anti-adhesion membrane showing resistance to the physical stimulus generated by the pulsation of the heart is desirable. In this study, an anti-adhesion material was developed through amine coupling between decellularized bovine pericardia (dBPCs) and 4-arm poly(ethylene glycol) succinimidyl glutarate (4-arm PEG-NHS) for the postoperative care of cardiac surgical patients. The efficacy of the 4-arm PEG-functionalized dBPCs in the prevention of adhesions after cardiac surgery was investigated in a rabbit heart adhesion model. The dBPCs meet the requirements for biocompatibility, flexibility, and sufficient suturable strength, and the 4-arm PEG moieties provide an anti-adhesion effect by the high excluded volume interactions of the PEG chains with proteins. The 4-arm PEG-functionalized dBPCs had a significantly greater anti-adhesion effect than the other materials tested and showed re-establishment of the mesothelial monolayer. These results suggested that the 4-arm PEG-functionalized dBPCs are a favorable material for an anti-adhesion membrane.
Collapse
Affiliation(s)
- Yoshihide Hashimoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Akitatsu Yamashita
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Jun Negishi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.,Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Tsuyoshi Kimura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Seiichi Funamoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Akio Kishida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
40
|
Ajam Y, Midha S, Tan ACW, Blunn G, Kalaskar DM. Design and In Vivo Testing of Novel Single-Stage Tendon Graft Using Polyurethane Nanocomposite Polymer for Tendon Reconstruction. J Plast Reconstr Aesthet Surg 2021; 75:1467-1475. [PMID: 34953746 DOI: 10.1016/j.bjps.2021.11.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 11/14/2021] [Indexed: 11/18/2022]
Abstract
Severe trauma, failure of prior surgical repair, delayed presentation and excessive scarring around the flexor tendon bed often necessitate a two-stage surgical reconstruction, where a silicone spacer is used in the first stage to recreate the fibro-osseous tunnel through which the tendon graft can glide in the second stage. This staged procedure involves great commitment on the part of both patient and surgeon, over the course of several months, involving a prolonged period of rehabilitation that can be quite disruptive to the patient's life and work. Reducing this from a two-stage into a single-stage procedure, therefore, has the potential to reduce rehabilitation time and cost, expedite return to work, and improve outcomes. To address this, we developed polyurethane (PU) nanocomposite, as an engineered tendon sheath, for treatment of delayed flexor tendon division as a single-stage procedure. The clinically conformant tubular grafts were tested for their efficacy in the peroneus tertius tendon of 6 Mule sheep for 3 months. Semi-quantitative histological assessment was carried out by analysing four descriptive layers: tendon, tendon/polymer sheath interface, polymer sheath, and polymer sheath/surrounding tissue. Four (out of 6) of the implanted PU nanocomposites showed moderate to substantial healing of the injured tendons, with minimal adhesion after repair, ensuring good gliding movement. No statistical differences were observed in tendon repair based on intra-regional variation in the explanted grafts, indicating homogeneity in tendon repair. Overall, the PU nanocomposite bears morphological stability and functionality for tendon repair, in single-stage surgical reconstruction, demonstrating promising evidence for clinical translation.
Collapse
Affiliation(s)
- Yazan Ajam
- Department of Plastic and Reconstructive Surgery, Royal Free London NHS Foundation Trust Hospital, London, United Kingdom
| | - Swati Midha
- UCL Division of Surgery & Interventional Science, University College London, London, United Kingdom; Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Arthur C W Tan
- Ninewells Hospital and Medical School, NHS Tayside, Dundee, United Kingdom
| | - Gordon Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Deepak M Kalaskar
- UCL Division of Surgery & Interventional Science, University College London, London, United Kingdom; Royal National Orthopaedic Hospital-NHS Trust, Brockley Hill, Stanmore HA7 4LP, London, United Kingdom.
| |
Collapse
|
41
|
Shin YH, Yun HW, Park SY, Choi SJ, Park IS, Min BH, Kim JK. Effect of glutaraldehyde-crosslinked cartilage acellular matrix film on anti-adhesion and nerve regeneration in a rat sciatic nerve injury model. J Tissue Eng Regen Med 2021; 15:1023-1036. [PMID: 34591344 DOI: 10.1002/term.3249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 09/01/2021] [Indexed: 01/16/2023]
Abstract
Decellularized extra-cellular matrix (ECM) has been studied as an alternative to anti-adhesive biomaterials and cartilage acellular matrix (CAM) has been shown to inhibit postoperative adhesion in several organs. This study aimed to evaluate the suitability of glutaraldehyde (GA) crosslinked CAM-films as anti-adhesion barriers for peripheral nerve injury. The films were successfully fabricated and showed improved physical properties such as mechanical strength, swelling ratio, and lengthened degradation period while maintaining the microstructure and chemical composition after GA crosslinking. In the in vitro study of CAM-film, the dsDNA content met the recommended limit of decellularization and more than 70% of the major ECM components were preserved after decellularization. The adhesion and proliferation of seeded human umbilical vein endothelial cells and fibroblasts were significantly lower in CAM-film than in control, but similar with Seprafilm. However, the CAM-film extract did not show cytotoxicity. In the in vivo study, the peri-neural fibrosis was thicker, adhesion score higher, and peri-neural collagen fibers more abundant in the control group than in the CAM-film group. The total number of myelinated axons was significantly higher in the CAM-film group than in the control group. The inflammatory marker decreased with time in the CAM-film group compared to that in the control group, whereas the nerve regenerative marker expression was maintained. Moreover, the ankle angles at contracture and toe-off were higher in the CAM film-treated rats than in the control rats. GA-crosslinked CAM films may be used during peripheral nerve surgery to prevent peri-neural adhesion and enhance nerve functional recovery.
Collapse
Affiliation(s)
- Young Ho Shin
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hee-Woong Yun
- Cell Therapy Center, Ajou Medical Center, Suwon, Korea
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Korea
| | - Suk Young Park
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Soon Jin Choi
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - In-Su Park
- Cell Therapy Center, Ajou Medical Center, Suwon, Korea
| | - Byoung-Hyun Min
- Cell Therapy Center, Ajou Medical Center, Suwon, Korea
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Korea
| | - Jae Kwang Kim
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
42
|
Fatehi Hassanabad A, Zarzycki AN, Jeon K, Dundas JA, Vasanthan V, Deniset JF, Fedak PWM. Prevention of Post-Operative Adhesions: A Comprehensive Review of Present and Emerging Strategies. Biomolecules 2021; 11:biom11071027. [PMID: 34356652 PMCID: PMC8301806 DOI: 10.3390/biom11071027] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
Post-operative adhesions affect patients undergoing all types of surgeries. They are associated with serious complications, including higher risk of morbidity and mortality. Given increased hospitalization, longer operative times, and longer length of hospital stay, post-surgical adhesions also pose a great financial burden. Although our knowledge of some of the underlying mechanisms driving adhesion formation has significantly improved over the past two decades, literature has yet to fully explain the pathogenesis and etiology of post-surgical adhesions. As a result, finding an ideal preventative strategy and leveraging appropriate tissue engineering strategies has proven to be difficult. Different products have been developed and enjoyed various levels of success along the translational tissue engineering research spectrum, but their clinical translation has been limited. Herein, we comprehensively review the agents and products that have been developed to mitigate post-operative adhesion formation. We also assess emerging strategies that aid in facilitating precision and personalized medicine to improve outcomes for patients and our healthcare system.
Collapse
Affiliation(s)
- Ali Fatehi Hassanabad
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2N9, Canada; (A.F.H.); (A.N.Z.); (J.A.D.); (V.V.); (J.F.D.)
| | - Anna N. Zarzycki
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2N9, Canada; (A.F.H.); (A.N.Z.); (J.A.D.); (V.V.); (J.F.D.)
| | - Kristina Jeon
- Department of Anesthesiology and Pain Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R7, Canada;
| | - Jameson A. Dundas
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2N9, Canada; (A.F.H.); (A.N.Z.); (J.A.D.); (V.V.); (J.F.D.)
| | - Vishnu Vasanthan
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2N9, Canada; (A.F.H.); (A.N.Z.); (J.A.D.); (V.V.); (J.F.D.)
| | - Justin F. Deniset
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2N9, Canada; (A.F.H.); (A.N.Z.); (J.A.D.); (V.V.); (J.F.D.)
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Paul W. M. Fedak
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2N9, Canada; (A.F.H.); (A.N.Z.); (J.A.D.); (V.V.); (J.F.D.)
- Correspondence:
| |
Collapse
|
43
|
Wang X, Liu Z, Sandoval-Salaiza DA, Afewerki S, Jimenez-Rodriguez MG, Sanchez-Melgar L, Güemes-Aguilar G, Gonzalez-Sanchez DG, Noble O, Lerma C, Parra-Saldivar R, Lemos DR, Llamas-Esperon GA, Shi J, Li L, Lobo AO, Fuentes-Baldemar AA, Bonventre JV, Dong N, Ruiz-Esparza GU. Nanostructured Non-Newtonian Drug Delivery Barrier Prevents Postoperative Intrapericardial Adhesions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29231-29246. [PMID: 34137251 DOI: 10.1021/acsami.0c20084] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With the increasing volume of cardiovascular surgeries and the rising adoption rate of new methodologies that serve as a bridge to cardiac transplantation and that require multiple surgical interventions, the formation of postoperative intrapericardial adhesions has become a challenging problem that limits future surgical procedures, causes serious complications, and increases medical costs. To prevent this pathology, we developed a nanotechnology-based self-healing drug delivery hydrogel barrier composed of silicate nanodisks and polyethylene glycol with the ability to coat the epicardial surface of the heart without friction and locally deliver dexamethasone, an anti-inflammatory drug. After the fabrication of the hydrogel, mechanical characterization and responses to shear, strain, and recovery were analyzed, confirming its shear-thinning and self-healing properties. This behavior allowed its facile injection (5.75 ± 0.15 to 22.01 ± 0.95 N) and subsequent mechanical recovery. The encapsulation of dexamethasone within the hydrogel system was confirmed by 1H NMR, and controlled release for 5 days was observed. In vitro, limited cellular adhesion to the hydrogel surface was achieved, and its anti-inflammatory properties were confirmed, as downregulation of ICAM-1 and VCAM-1 was observed in TNF-α activated endothelial cells. In vivo, 1 week after administration of the hydrogel to a rabbit model of intrapericardial injury, superior efficacy was observed when compared to a commercial adhesion barrier, as histological and immunohistochemical examination revealed reduced adhesion formation and minimal immune infiltration of CD3+ lymphocytes and CD68+ macrophages, as well as NF-κβ downregulation. We presented a novel nanostructured drug delivery hydrogel system with unique mechanical and biological properties that act synergistically to prevent cellular infiltration while providing local immunomodulation to protect the intrapericardial space after a surgical intervention.
Collapse
Affiliation(s)
- Xichi Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Division of Health Sciences and Technology, Harvard University - Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zongtao Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Diego A Sandoval-Salaiza
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Division of Health Sciences and Technology, Harvard University - Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- School of Engineering and Science, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico
| | - Samson Afewerki
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Division of Health Sciences and Technology, Harvard University - Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mildred G Jimenez-Rodriguez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Division of Health Sciences and Technology, Harvard University - Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- School of Engineering and Science, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico
| | - Lorena Sanchez-Melgar
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Division of Health Sciences and Technology, Harvard University - Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- School of Engineering and Science, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico
| | - Gabriela Güemes-Aguilar
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Division of Health Sciences and Technology, Harvard University - Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- School of Medicine and Health Science, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico
| | - David G Gonzalez-Sanchez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Division of Health Sciences and Technology, Harvard University - Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- School of Medicine and Health Science, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico
| | - Oscar Noble
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Division of Health Sciences and Technology, Harvard University - Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- School of Medicine and Health Science, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico
| | - Cecilia Lerma
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Division of Health Sciences and Technology, Harvard University - Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- School of Engineering and Science, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico
| | - Roberto Parra-Saldivar
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Division of Health Sciences and Technology, Harvard University - Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- School of Engineering and Science, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico
| | - Dario R Lemos
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Guillermo A Llamas-Esperon
- Department of Interventional Cardiology, Hospital Cardiológica, Aguascalientes, Aguascalientes 20230, Mexico
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Li Li
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Anderson O Lobo
- LIMAV-Interdisciplinary Laboratory for Advanced Materials, BioMatLab group, Material Science and Engineering Graduate Program, UFPI- Federal University of Piauí, Teresina, Piauí 64049-550, Brazil
| | - Andres A Fuentes-Baldemar
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Division of Health Sciences and Technology, Harvard University - Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Joseph V Bonventre
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Division of Health Sciences and Technology, Harvard University - Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guillermo U Ruiz-Esparza
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Division of Health Sciences and Technology, Harvard University - Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
44
|
Fu Y, Gong T, Tsauo J, Sang M, Zhao H, Zhang X, Li J, Li X. Nintedanib, a multitarget tyrosine kinase inhibitor, suppresses postoperative peritoneal adhesion formation in a rat model. Surgery 2021; 170:806-812. [PMID: 33972093 DOI: 10.1016/j.surg.2021.03.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/02/2021] [Accepted: 03/25/2019] [Indexed: 10/21/2022]
Abstract
BACKGROUND Nintedanib is an antifibrotic agent approved by the United States Food and Drug Administration for the treatment of lung fibrosis. This study aimed to evaluate the efficacy of nintedanib for the prevention of postoperative peritoneal adhesion formation in a rat model. METHODS Eighteen female Sprague-Dawley rats underwent peritoneal ischemic button creation to induce peritoneal adhesion formation and were randomly allocated to receive 1 mL saline, 50 mg/kg nintedanib, or 100 mg/kg nintedanib by gavage once daily for 7 days. Peritoneal adhesion evaluation and histological and immunochemical examinations were performed on postoperative day 7. Twelve additional Sprague-Dawley rats underwent ileal resection and anastomosis and were randomized to receive saline or 100 mg/kg nintedanib by gavage once daily for 7 days. Anastomotic bursting pressure was assessed on postoperative day 7. RESULTS All rats survived until death 7 days after surgery without complications. Peritoneal adhesion incidence, quality, and tenacity were lower in both nintedanib groups than in the saline group (P < .01), but no differences were found between the 2 nintedanib groups (P > .05). Histological and immunochemical results demonstrated less inflammation, fibrosis, collagen, and cell proliferation and fewer myofibroblasts in the ischemic buttons treated with 50 mg/kg or 100 mg/kg nintedanib than in those treated with saline (P < .01), but no difference was found between the 2 nintedanib groups (P > .05). Anastomotic bursting pressures were not significantly different between the saline and nintedanib groups (P > .05). CONCLUSION Nintedanib is effective for the prevention of postoperative peritoneal adhesion formation in a rat model.
Collapse
Affiliation(s)
- Yan Fu
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Tao Gong
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jiaywei Tsauo
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Mingchen Sang
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - He Zhao
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiaowu Zhang
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jingui Li
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiao Li
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
45
|
Hyaluronic Acid Treatment Improves Healing of the Tenorrhaphy Site by Suppressing Adhesions through Extracellular Matrix Remodeling in a Rat Model. Polymers (Basel) 2021; 13:polym13060928. [PMID: 33802991 PMCID: PMC8002636 DOI: 10.3390/polym13060928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 11/17/2022] Open
Abstract
Due to the limited supply of vessels and nerves, acute or chronic tendon injuries often result in significant and persistent complications, such as pain and sprains, as well as the loss of joint functions. Among these complications, tendon adhesions within the surrounding soft tissue have been shown to significantly impair the range of motion. In this study, to elucidate the effects of a hyaluronic acid (HA) injection at the site of tenorrhaphy on tendon adhesion formation, we used a full transection model of a rat’s Achilles tendon to investigate the anti-adhesive function of HA. Our initial findings showed that significantly lower adhesion scores were observed in the HA-treated experimental group than in the normal saline-treated control group, as determined by macroscopic and histological evaluations. Hematoxylin and eosin, as well as picrosirius red staining, showed denser and irregular collagen fibers, with the larger number of infiltrating inflammatory cells in the control group indicating severe adhesion formation. Furthermore, we observed that the expression of tendon adhesion markers in operated tendon tissue, such as collagen type I, transforming growth factor-β1, and plasminogen activator inhibitor-1, was suppressed at both the gene and protein levels following HA treatment. These results suggest that HA injections could reduce tendon adhesion formation by significantly ameliorating inflammatory-associated reactions.
Collapse
|
46
|
Kheilnezhad B, Hadjizadeh A. A review: progress in preventing tissue adhesions from a biomaterial perspective. Biomater Sci 2021; 9:2850-2873. [PMID: 33710194 DOI: 10.1039/d0bm02023k] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Postoperative adhesions (POA) are one of the main problems suffered by patients and are a common complaint. It is considered to be closely associated with the healing mechanism of damaged tissues. Tissue adhesions accompany other symptoms such as inflammation, pain, and even dyskinesia under certain conditions, compromising the patients' quality of life. On the other hand, common treatments involve high costs, re-surgery or long-term hospital stays. Therefore, alternative approaches need to be formulated so that aforementioned problems can be resolved. To this end, a review of recent advances in this context is imperative. In this review, we have highlighted the mechanism of adhesion formation, advances in common therapeutic approaches, and prospective treatments in preventing tissue adhesions. Based on the literature, it can be determined that the disadvantages of available commercial products in the treatment of tissue adhesion have led researchers to utilize alternative methods for designing anti-adhesive products with different structures such as electrospun fibrous mats, hydrogels, and nanospheres. These studies are on the fast track in producing optimal anti-adhesion materials. We hope that this article can attract attention by showing various mechanisms and solutions involved in adhesion problems and inspire the further development of anti-adhesion biomaterials.
Collapse
Affiliation(s)
| | - Afra Hadjizadeh
- Department of Biomedical Engineering, Amirkabir University, Tehran, Iran.
| |
Collapse
|
47
|
Imere A, Ligorio C, O'Brien M, Wong JKF, Domingos M, Cartmell SH. Engineering a cell-hydrogel-fibre composite to mimic the structure and function of the tendon synovial sheath. Acta Biomater 2021; 119:140-154. [PMID: 33189954 DOI: 10.1016/j.actbio.2020.11.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 12/27/2022]
Abstract
The repair of tendon injuries is often compromised by post-operative peritendinous adhesions. Placing a physical barrier at the interface between the tendon and the surrounding tissue could potentially solve this problem by reducing adhesion formation. At present, no such system is available for routine use in clinical practice. Here, we propose the development of a bilayer membrane combining a nanofibrous poly(ε-caprolactone) (PCL) electrospun mesh with a layer of self-assembling peptide hydrogel (SAPH) laden with type-B synoviocytes. This bilayer membrane would act as an anti-adhesion system capable of restoring tendon lubrication, while assisting with synovial sheath regeneration. The PCL mesh showed adequate mechanical properties (Young's modulus=19±4 MPa, ultimate tensile stress=9.6±1.7 MPa, failure load=0.5±0.1 N), indicating that the membrane is easy to handle and capable to withstand the frictional forces generated on the tendon's surface during movement (~0.3 N). Morphological analysis confirmed the generation of a mesh with nanosized PCL fibres and small pores (< 3 μm), which prevented fibroblast infiltration to impede extrinsic healing but still allowing diffusion of nutrients and waste. Rheological tests showed that incorporation of SAPH layer allows good lubrication properties when the membrane is articulated against porcine tendon or hypodermis, suggesting that restoration of tendon gliding is possible upon implantation. Moreover, viability and metabolic activity tests indicated that the SAPH was conducive to rabbit synoviocyte growth and proliferation over 28 days of 3D culture, sustaining cell production of specific matrix components, particularly hyaluronic acid. Synoviocyte-laden peptide hydrogel promoted a sustained endogenous production of hyaluronic acid, providing an anti-friction layer that potentially restores the tendon gliding environment.
Collapse
Affiliation(s)
- Angela Imere
- Department of Materials, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, UK.; The Henry Royce Institute, Royce Hub Building, The University of Manchester, Manchester, UK
| | - Cosimo Ligorio
- Department of Materials, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, UK.; Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester, UK
| | - Marie O'Brien
- Department of Materials, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, UK.; The Henry Royce Institute, Royce Hub Building, The University of Manchester, Manchester, UK
| | - Jason K F Wong
- Blond McIndoe Laboratories, Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.; Department of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Marco Domingos
- The Henry Royce Institute, Royce Hub Building, The University of Manchester, Manchester, UK.; Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| | - Sarah H Cartmell
- Department of Materials, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, UK.; The Henry Royce Institute, Royce Hub Building, The University of Manchester, Manchester, UK..
| |
Collapse
|
48
|
Peritoneal adhesions: Occurrence, prevention and experimental models. Acta Biomater 2020; 116:84-104. [PMID: 32871282 DOI: 10.1016/j.actbio.2020.08.036] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/20/2022]
Abstract
Peritoneal adhesions (PA) are a postoperative syndrome with high incidence rate, which can cause chronic abdominal pain, intestinal obstruction, and female infertility. Previous studies have identified that PA are caused by a disordered feedback of blood coagulation, inflammation, and fibrinolysis. Monocytes, macrophages, fibroblasts, and mesothelial cells are involved in this process, and secreted signaling molecules, such as tumor necrosis factor alpha (TNF-α), interleukin-10 (IL-10), tissue plasminogen activator (tPA), and type 1 plasminogen activator inhibitor (PAI-1), play a key role in PA development. There have been many attempts to prevent PA formation by anti-PA drugs, barriers, and other therapeutic methods, but their effectiveness has not been widely accepted. Treatment by biomaterial-based barriers is believed to be the most promising method to prevent PA formation in recent years. In this review, the pathogenesis, treatment approaches, and animal models of PA are summarized and discussed to understand the challenges faced in the biomaterial-based anti-PA treatments.
Collapse
|
49
|
Kim YI, Lee M, Kim SI, Seol A, Lee EJ, Kim HS, Song YS. A Randomized Controlled Trial of Thermo-Sensitive Sol-Gel Anti-Adhesion Agent after Gynecologic Surgery. J Clin Med 2020; 9:E2261. [PMID: 32708699 PMCID: PMC7408806 DOI: 10.3390/jcm9072261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 11/17/2022] Open
Abstract
Postoperative abdominal adhesions can lead to several adverse consequences such as pelvic pain, bowel obstruction, and infertility. We aimed to explore the anti-adhesion efficacy and safety of a thermo-sensitive sol-gel agent in patients who receive abdominopelvic surgery for benign gynecologic disease. This study was a randomized, controlled, single-blind clinical trial of women undergoing benign gynecologic surgery between January 2017 and December 2017. The patients were randomly assigned to three groups with a 1:1:1 ratio: experimental group (received the thermo-sensitive sol-gel agent), control group (untreated), and comparator group (received 4% icodextrin). Patients were followed for 4 weeks postoperatively, and efficacy was evaluated by performing the visceral slide test to identify adhesion formation. In total, 183 patients were enrolled in the study, and 178 (97.3%) completed the trial. The incidence rate of abdominal adhesion formation was significantly lower in the experimental group than in the control group (7.9% vs. 21.1%, p = 0.040); however, it was similar between the experimental and comparator groups (7.9% vs. 13.8%. p = 0.299). At 4 weeks, no differences in adhesion-related symptoms were observed between the experimental and control groups. Adverse events were mostly mild and did not differ significantly among the three groups (p = 0.375). In conclusion, use of a thermo-sensitive sol-gel agent was safe and effective to prevent abdominal adhesions after benign gynecologic surgeries.
Collapse
Affiliation(s)
- Young Im Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Korea;
| | - Maria Lee
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea or (M.L.); (S.I.K.); (A.S.); (E.J.L.); (H.S.K.)
| | - Se Ik Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea or (M.L.); (S.I.K.); (A.S.); (E.J.L.); (H.S.K.)
| | - Aeran Seol
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea or (M.L.); (S.I.K.); (A.S.); (E.J.L.); (H.S.K.)
| | - Eun Ji Lee
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea or (M.L.); (S.I.K.); (A.S.); (E.J.L.); (H.S.K.)
| | - Hee Seung Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea or (M.L.); (S.I.K.); (A.S.); (E.J.L.); (H.S.K.)
| | - Yong Sang Song
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea or (M.L.); (S.I.K.); (A.S.); (E.J.L.); (H.S.K.)
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
50
|
Capella-Monsonís H, Kelly J, Kearns S, Zeugolis DI. Decellularised porcine peritoneum as a tendon protector sheet. Biomed Mater 2019; 14:044102. [DOI: 10.1088/1748-605x/ab2301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|