1
|
Mahida RY, Yuan Z, Kolluri KK, Scott A, Parekh D, Hardy RS, Matthay MA, Perkins GD, Janes SM, Thickett DR. 11β hydroxysteroid dehydrogenase type 1 transgenic mesenchymal stem cells attenuate inflammation in models of sepsis. Front Bioeng Biotechnol 2024; 12:1422761. [PMID: 39036559 PMCID: PMC11257926 DOI: 10.3389/fbioe.2024.1422761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/12/2024] [Indexed: 07/23/2024] Open
Abstract
Background Human bone marrow mesenchymal stem cell (MSC) administration reduces inflammation in pre-clinical models of sepsis and sepsis-related lung injury, however clinical efficacy in patients has not yet been demonstrated. We previously showed that Alveolar Macrophage (AM) 11β-hydroxysteroid dehydrogenase type-1 (HSD-1) autocrine signalling is impaired in critically ill sepsis patients, which promotes inflammatory injury. Administration of transgenic MSCs (tMSCs) which overexpress HSD-1 may enhance the anti-inflammatory effects of local glucocorticoids and be more effective at reducing inflammation in sepsis than cellular therapy alone. Methods MSCs were transfected using a recombinant lentiviral vector containing the HSD-1 and GPF transgenes under the control of a tetracycline promoter. Thin layer chromatography assessed HSD-1 reductase activity in tMSCs. Mesenchymal stem cell phenotype was assessed by flow cytometry and bi-lineage differentiation. HSD-1 tMSCs were co-cultured with LPS-stimulated monocyte-derived macrophages (MDMs) from healthy volunteers prior to assessment of pro-inflammatory cytokine release. HSD-1 tMSCs were administered intravenously to mice undergoing caecal ligation and puncture (CLP). Results MSCs were transfected with an efficiency of 91.1%, and maintained an MSC phenotype. Functional HSD-1 activity was demonstrated in tMSCs, with predominant reductase cortisol activation (peak 8.23 pM/hour/100,000 cells). HSD-1 tMSC co-culture with LPS-stimulated MDMs suppressed TNFα and IL-6 release. Administration of transgene activated HSD-1 tMSCs in a murine model of CLP attenuated neutrophilic inflammation more effectively than transgene inactive tMSCs (medians 0.403 v 1.36 × 106/ml, p = 0.033). Conclusion The synergistic impact of HSD-1 transgene expression and MSC therapy attenuated neutrophilic inflammation in a mouse model of peritoneal sepsis more effectively than MSC therapy alone. Future studies investigating the anti-inflammatory capacity of HSD-1 tMSCs in models of sepsis-related direct lung injury and inflammatory diseases are required.
Collapse
Affiliation(s)
- Rahul Y. Mahida
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Zhengqiang Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Krishna K. Kolluri
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Aaron Scott
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Dhruv Parekh
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Rowan S. Hardy
- Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Michael A. Matthay
- Cardiovascular Research Institute, Department of Medicine and Department of Anaesthesia, University of California San Francisco, San Francisco, CA, United States
| | - Gavin D. Perkins
- Warwick Medical School, University of Warwick, Warwick, United Kingdom
| | - Sam M. Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - David R. Thickett
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
2
|
Liang J, Dai W, Xue S, Wu F, Cui E, Pan R. Recent progress in mesenchymal stem cell-based therapy for acute lung injury. Cell Tissue Bank 2024; 25:677-684. [PMID: 38466563 DOI: 10.1007/s10561-024-10129-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 01/24/2024] [Indexed: 03/13/2024]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are life-threatening diseases in critically ill patients. Although pathophysiology of ALI/ARDS has been investigated in many studies, effective therapeutic strategies are still limited. Mesenchymal stem cell (MSC)-based therapy is emerging as a promising therapeutic intervention for patients with ALI. During the last two decades, researchers have focused on the efficacy and mechanism of MSC application in ALI animal models. MSC derived from variant resources exhibited therapeutic effects in preclinical studies of ALI with different mechanisms. Based on this, clinical studies on MSC treatment in ALI/ARDS has been tried recently, especially in COVID-19 caused lung injury. Emerging clinical trials of MSCs in treating COVID-19-related conditions have been registered in past two years. The advantages and potential of MSCs in the defense against COVID-19-related ALI or ARDS have been confirmed. This review provides a brief overview of recent research progress in MSC-based therapies in preclinical study and clinical trials in ALI treatment, as well as the underlying mechanisms.
Collapse
Affiliation(s)
- Jinfeng Liang
- Zhejiang Center for Drug and Cosmetic Evaluation, Hangzhou, China
| | - Weiyou Dai
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Shihang Xue
- Xiangshan First People's Hospital Medical and Health Group, Ningbo, China
| | - Feifei Wu
- Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, No.181 Wuchang Road, Hangzhou, 311122, Zhejiang, People's Republic of China
| | - Enhai Cui
- Huzhou Central Hospital, Zhejiang University Huzhou Hospital, Huzhou, 313000, People's Republic of China.
| | - Ruolang Pan
- Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China.
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, No.181 Wuchang Road, Hangzhou, 311122, Zhejiang, People's Republic of China.
| |
Collapse
|
3
|
Wang J, Chen ZJ, Zhang ZY, Shen MP, Zhao B, Zhang W, Zhang Y, Lei JG, Ren CJ, Chang J, Xu CL, Li M, Pi YY, Lu TL, Dai CX, Li SK, Li P. Manufacturing, quality control, and GLP-grade preclinical study of nebulized allogenic adipose mesenchymal stromal cells-derived extracellular vesicles. Stem Cell Res Ther 2024; 15:95. [PMID: 38566259 PMCID: PMC10988864 DOI: 10.1186/s13287-024-03708-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Human adipose stromal cells-derived extracellular vesicles (haMSC-EVs) have been shown to alleviate inflammation in acute lung injury (ALI) animal models. However, there are few systemic studies on clinical-grade haMSC-EVs. Our study aimed to investigate the manufacturing, quality control (QC) and preclinical safety of clinical-grade haMSC-EVs. METHODS haMSC-EVs were isolated from the conditioned medium of human adipose MSCs incubated in 2D containers. Purification was performed by PEG precipitation and differential centrifugation. Characterizations were conducted by nanoparticle tracking analysis, transmission electron microscopy (TEM), Western blotting, nanoflow cytometry analysis, and the TNF-α inhibition ratio of macrophage [after stimulated by lipopolysaccharide (LPS)]. RNA-seq and proteomic analysis with liquid chromatography tandem mass spectrometry (LC-MS/MS) were used to inspect the lot-to-lot consistency of the EV products. Repeated toxicity was evaluated in rats after administration using trace liquid endotracheal nebulizers for 28 days, and respiratory toxicity was evaluated 24 h after the first administration. In vivo therapeutic effects were assessed in an LPS-induced ALI/ acute respiratory distress syndrome (ARDS) rat model. RESULTS The quality criteria have been standardized. In a stability study, haMSC-EVs were found to remain stable after 6 months of storage at - 80°C, 3 months at - 20 °C, and 6 h at room temperature. The microRNA profile and proteome of haMSC-EVs demonstrated suitable lot-to-lot consistency, further suggesting the stability of the production processes. Intratracheally administered 1.5 × 108 particles/rat/day for four weeks elicited no significant toxicity in rats. In LPS-induced ALI/ARDS model rats, intratracheally administered haMSC-EVs alleviated lung injury, possibly by reducing the serum level of inflammatory factors. CONCLUSION haMSC-EVs, as an off-shelf drug, have suitable stability and lot-to-lot consistency. Intratracheally administered haMSC-EVs demonstrated excellent safety at the tested dosages in systematic preclinical toxicity studies. Intratracheally administered haMSC-EVs improved the lung function and exerted anti-inflammatory effects on LPS-induced ALI/ARDS model rats.
Collapse
Affiliation(s)
- Jing Wang
- Cellular Biomedicine Group (Shanghai), Co. Ltd., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, 201210, Shanghai, China
| | - Zhong-Jin Chen
- Cellular Biomedicine Group (Shanghai), Co. Ltd., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, 201210, Shanghai, China
| | - Ze-Yi Zhang
- Cellular Biomedicine Group (Shanghai), Co. Ltd., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, 201210, Shanghai, China
| | - Mei-Ping Shen
- Cellular Biomedicine Group (Shanghai), Co. Ltd., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, 201210, Shanghai, China
| | - Bo Zhao
- Cellular Biomedicine Group (Shanghai), Co. Ltd., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, 201210, Shanghai, China
| | - Wei Zhang
- Cellular Biomedicine Group (Shanghai), Co. Ltd., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, 201210, Shanghai, China
| | - Ye Zhang
- Cellular Biomedicine Group (Shanghai), Co. Ltd., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, 201210, Shanghai, China
| | - Ji-Gang Lei
- Cellular Biomedicine Group (Shanghai), Co. Ltd., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, 201210, Shanghai, China
| | - Cheng-Jie Ren
- Cellular Biomedicine Group (Shanghai), Co. Ltd., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, 201210, Shanghai, China
| | - Jing Chang
- Cellular Biomedicine Group (Shanghai), Co. Ltd., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, 201210, Shanghai, China
| | - Cui-Li Xu
- Cellular Biomedicine Group (Shanghai), Co. Ltd., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, 201210, Shanghai, China
| | - Meng Li
- Cellular Biomedicine Group (Shanghai), Co. Ltd., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, 201210, Shanghai, China
| | - Yang-Yang Pi
- Cellular Biomedicine Group (Shanghai), Co. Ltd., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, 201210, Shanghai, China
| | - Tian-Lun Lu
- Cellular Biomedicine Group (Shanghai), Co. Ltd., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, 201210, Shanghai, China
| | - Cheng-Xiang Dai
- Cellular Biomedicine Group (Shanghai), Co. Ltd., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, 201210, Shanghai, China.
- Daxing Research Institute, University of Science and Technology Beijing, 100083, Beijing, China.
| | - Su-Ke Li
- Cellular Biomedicine Group (Shanghai), Co. Ltd., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, 201210, Shanghai, China.
| | - Ping Li
- Cellular Biomedicine Group (Shanghai), Co. Ltd., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, 201210, Shanghai, China.
| |
Collapse
|
4
|
Batchinsky AI, Roberts TR, Antebi B, Necsoiu C, Choi JH, Herzig M, Cap AP, McDaniel JS, Rathbone CR, Chung KK, Cancio LC. Intravenous Autologous Bone Marrow-derived Mesenchymal Stromal Cells Delay Acute Respiratory Distress Syndrome in Swine. Am J Respir Crit Care Med 2023; 208:1283-1292. [PMID: 37797214 DOI: 10.1164/rccm.202305-0865oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/05/2023] [Indexed: 10/07/2023] Open
Abstract
Rationale: Early post injury mitigation strategies in ARDS are in short supply. Treatments with allogeneic stromal cells are administered after ARDS develops, require specialized expertise and equipment, and to date have shown limited benefit. Objectives: Assess the efficacy of immediate post injury intravenous administration of autologous or allogeneic bone marrow-derived mesenchymal stromal cells (MSCs) for the treatment of acute respiratory distress syndrome (ARDS) due to smoke inhalation and burns. Methods: Yorkshire swine (n = 32, 44.3 ± 0.5 kg) underwent intravenous anesthesia, placement of lines, severe smoke inhalation, and 40% total body surface area flame burns, followed by 72 hours of around-the-clock ICU care. Mechanical ventilation, fluids, pressors, bronchoscopic cast removal, daily lung computed tomography scans, and arterial blood assays were performed. After injury and 24 and 48 hours later, animals were randomized to receive autologous concentrated bone marrow aspirate (n = 10; 3 × 106 white blood cells and a mean of 56.6 × 106 platelets per dose), allogeneic MSCs (n = 10; 6.1 × 106 MSCs per dose) harvested from healthy donor swine, or no treatment in injured control animals (n = 12). Measurements and Main Results: The intravenous administration of MSCs after injury and at 24 and 48 hours delayed the onset of ARDS in swine treated with autologous MSCs (48 ± 10 h) versus control animals (14 ± 2 h) (P = 0.004), reduced ARDS severity at 24 (P < 0.001) and 48 (P = 0.003) hours, and demonstrated visibly diminished consolidation on computed tomography (not significant). Mortality at 72 hours was 1 in 10 (10%) in the autologous group, 5 in 10 (50%) in the allogeneic group, and 6 in 12 (50%) in injured control animals (not significant). Both autologous and allogeneic MSCs suppressed systemic concentrations of TNF-α (tumor necrosis factor-α). Conclusions: The intravenous administration of three doses of freshly processed autologous bone marrow-derived MSCs delays ARDS development and reduces its severity in swine. Bedside retrieval and administration of autologous MSCs in swine is feasible and may be a viable injury mitigation strategy for ARDS.
Collapse
Affiliation(s)
- Andriy I Batchinsky
- Autonomous Reanimation and Evacuation Research Program, The Geneva Foundation, San Antonio, Texas
| | - Teryn R Roberts
- Autonomous Reanimation and Evacuation Research Program, The Geneva Foundation, San Antonio, Texas
| | - Ben Antebi
- Maryland Stem Cell Research Fund, Columbia, Maryland
| | - Corina Necsoiu
- U.S. Army Institute of Surgical Research, Joint Base San Antonio Fort Sam Houston, Fort Sam Houston, Texas
| | - Jae H Choi
- 59th Medical Wing, Joint Base San Antonio Lackland Air Force Base, San Antonio, Texas
| | - Maryanne Herzig
- U.S. Army Institute of Surgical Research, Joint Base San Antonio Fort Sam Houston, Fort Sam Houston, Texas
| | - Andrew P Cap
- U.S. Army Institute of Surgical Research, Joint Base San Antonio Fort Sam Houston, Fort Sam Houston, Texas
| | - Jennifer S McDaniel
- 59th Medical Wing, Joint Base San Antonio Lackland Air Force Base, San Antonio, Texas
| | | | | | - Leopoldo C Cancio
- U.S. Army Institute of Surgical Research, Joint Base San Antonio Fort Sam Houston, Fort Sam Houston, Texas
| |
Collapse
|
5
|
Adamič N, Vengust M. Regenerative medicine in lung diseases: A systematic review. Front Vet Sci 2023; 10:1115708. [PMID: 36733636 PMCID: PMC9887049 DOI: 10.3389/fvets.2023.1115708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/02/2023] [Indexed: 01/18/2023] Open
Abstract
Regenerative medicine has opened the door to the exploration of new therapeutic methods for the treatment of various diseases, especially those associated with local or general disregulation of the immune system. In pulmonary diseases, new therapeutic strategies have emerged that are aimed at restoring functional lung tissue rather than alleviating symptoms. These strategies focus on tissue regeneration using stem cells and/or their derivatives or replacement of dysfunctional tissue using biomedical engineering. Animal health can directly benefit from regenerative therapy strategies and also serve as a translational experimental model for human disease. Several clinical trials have been conducted to evaluate the effects of cellular treatment on inflammatory lung disease in animals. Data reported to date show several beneficial effects in ex vivo and in vivo models; however, our understanding of the mechanisms that regenerative therapies exert on diseased tissues remains incomplete.
Collapse
|
6
|
Wang J, Luo F, Suo Y, Zheng Y, Chen K, You D, Liu Y. Safety, efficacy and biomarkers analysis of mesenchymal stromal cells therapy in ARDS: a systematic review and meta-analysis based on phase I and II RCTs. Stem Cell Res Ther 2022; 13:275. [PMID: 35752865 PMCID: PMC9233855 DOI: 10.1186/s13287-022-02956-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/08/2022] [Indexed: 11/11/2022] Open
Abstract
Background Mesenchymal stromal cells (MSCs) therapy for acute respiratory distress syndrome (ARDS) is an emerging treatment, but most of the current trials of MSCs stay in the animal experimental stage, and the safety and efficacy of MSCs in clinical application are not clear. We aimed to analyze the safety, efficacy and biomarkers of mesenchymal stromal cells in the treatment of ARDS. Methods For this systematic review and meta-analysis, we searched PubMed, Embase, Cochrane Central Register of Controlled Trials, Web of science, CNKI, VIP and Wan Fang data, studies published between database inception and Mar 17, 2022. All randomized controlled trials (RCT) of stem cell interventions for ARDS were included, without language or date restrictions. We did separate meta-analyses for mortality, subjects with adverse events (AEs) and subjects with serious adverse events (SAEs). Since the trials data are dichotomous outcomes, the odds ratio (OR) is adopted for meta-analysis. The quality of the evidence was assessed with the Cochrane risk of bias tool. Findings In total, 5 trials involving 171 patients with ARDS were included in this meta-analysis. A total of 99 individuals were randomly assigned to receive MSCs treatment, and 72 were randomly assigned to receive placebo treatment. Treatment with MSCs appeared to increase the occurrence of adverse events, but this result was not statistically significant (OR, 1.58; 95%CI, 0.64–3.91; P = 0.32). The occurrence of serious adverse events was lower in the MSCs group than in the placebo group (OR, 0.57; 95%CI, 0.14–2.32; P = 0.43); there seems to be no significant difference between the two groups in terms of 28 days mortality (OR, 0.93; 95%CI, 0.45–1.89); oxygenation index and biomarkers showed a tendency to improve in treatment, but there was a lack of more statistically significant clinical evidence to support them. Interpretation Based on the current clinical trials, MSCs intervention has some safety for ARDS patients, but its effectiveness and predictive value of airspace biomarkers need to be determined by more large-scale, standard randomized controlled trials. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02956-3.
Collapse
Affiliation(s)
- Jianbao Wang
- Department of Respiratory and Critical Care Medicine, Fujian Respiratory Medical Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province, China
| | - Fenbin Luo
- Department of Respiratory and Critical Care Medicine, Fujian Respiratory Medical Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province, China
| | - Ye Suo
- Department of Respiratory and Critical Care Medicine, Fujian Respiratory Medical Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province, China
| | - Yuxin Zheng
- Department of Respiratory and Critical Care Medicine, Fujian Respiratory Medical Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province, China
| | - Kaikai Chen
- Department of Respiratory and Critical Care Medicine, Fujian Respiratory Medical Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province, China
| | - Deyuan You
- Department of Respiratory and Critical Care Medicine, Fujian Respiratory Medical Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province, China
| | - Yuqi Liu
- Department of Respiratory and Critical Care Medicine, Fujian Respiratory Medical Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province, China.
| |
Collapse
|
7
|
Safety and efficacy of multipotent adult progenitor cells in acute respiratory distress syndrome (MUST-ARDS): a multicentre, randomised, double-blind, placebo-controlled phase 1/2 trial. Intensive Care Med 2022; 48:36-44. [PMID: 34811567 PMCID: PMC8608557 DOI: 10.1007/s00134-021-06570-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/28/2021] [Indexed: 01/15/2023]
Abstract
PURPOSE Bone marrow-derived, allogeneic, multipotent adult progenitor cells demonstrated safety and efficacy in preclinical models of acute respiratory distress syndrome (ARDS). METHODS This phase 1/2 trial evaluated the safety and tolerability of intravenous multipotent adult progenitor cells in patients with moderate-to-severe ARDS in 12 UK and USA centres. Cohorts 1 and 2 were open-label, evaluating acute safety in three subjects receiving 300 or 900 million cells, respectively. Cohort 3 was a randomised, double-blind, placebo-controlled parallel trial infusing 900 million cells (n = 20) or placebo (n = 10) within 96 h of ARDS diagnosis. Primary outcomes were safety and tolerability. Secondary endpoints included clinical outcomes, quality of life (QoL) and plasma biomarkers. RESULTS No allergic or serious adverse reactions were associated with cell therapy in any cohort. At baseline, the cohort 3 cell group had less severe hypoxia. For cohort 3, 28-day mortality was 25% for cell vs. 45% for placebo recipients. Median 28-day free from intensive care unit (ICU) and ventilator-free days in the cell vs. placebo group were 12.5 (IQR 0,18.5) vs. 4.5 (IQR 0,16.8) and 18.5 (IQR 0,22) vs. 6.5 (IQR 0,18.3), respectively. A prospectively defined severe ARDS subpopulation (PaO2/FiO2 < 150 mmHg (20 kPa); n = 16) showed similar trends in mortality, ICU-free days and ventilator-free days favouring cell therapy. Cell recipients showed greater recovery of QoL through Day 365. CONCLUSIONS Multipotent adult progenitor cells were safe and well tolerated in ARDS. The clinical outcomes warrant larger trials to evaluate the therapeutic efficacy and optimal patient population.
Collapse
|
8
|
Wang M, Zhou T, Zhang Z, Liu H, Zheng Z, Xie H. Current therapeutic strategies for respiratory diseases using mesenchymal stem cells. MedComm (Beijing) 2021; 2:351-380. [PMID: 34766151 PMCID: PMC8554668 DOI: 10.1002/mco2.74] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) have a great potential to proliferate, undergo multi-directional differentiation, and exert immunoregulatory effects. There is already much enthusiasm for their therapeutic potentials for respiratory inflammatory diseases. Although the mechanism of MSCs-based therapy has been well explored, only a few articles have summarized the key advances in this field. We hereby provide a review over the latest progresses made on the MSCs-based therapies for four types of inflammatory respiratory diseases, including idiopathic pulmonary fibrosis, acute respiratory distress syndrome, chronic obstructive pulmonary disease, and asthma, and the uncovery of their underlying mechanisms from the perspective of biological characteristics and functions. Furthermore, we have also discussed the advantages and disadvantages of the MSCs-based therapies and prospects for their optimization.
Collapse
Affiliation(s)
- Ming‐yao Wang
- Laboratory of Stem Cell and Tissue EngineeringOrthopedic Research InstituteMed‐X Center for MaterialsState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduChina
| | - Ting‐yue Zhou
- Laboratory of Stem Cell and Tissue EngineeringOrthopedic Research InstituteMed‐X Center for MaterialsState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduChina
| | - Zhi‐dong Zhang
- Laboratory of Stem Cell and Tissue EngineeringOrthopedic Research InstituteMed‐X Center for MaterialsState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduChina
| | - Hao‐yang Liu
- Laboratory of Stem Cell and Tissue EngineeringOrthopedic Research InstituteMed‐X Center for MaterialsState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduChina
| | - Zhi‐yao Zheng
- Laboratory of Stem Cell and Tissue EngineeringOrthopedic Research InstituteMed‐X Center for MaterialsState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduChina
| | - Hui‐qi Xie
- Laboratory of Stem Cell and Tissue EngineeringOrthopedic Research InstituteMed‐X Center for MaterialsState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduChina
| |
Collapse
|
9
|
Zhang LS, Yu Y, Yu H, Han ZC. Therapeutic prospects of mesenchymal stem/stromal cells in COVID-19 associated pulmonary diseases: From bench to bedside. World J Stem Cells 2021; 13:1058-1071. [PMID: 34567425 PMCID: PMC8422925 DOI: 10.4252/wjsc.v13.i8.1058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/10/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
The ongoing outbreak of coronavirus disease 2019 (COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2 has become a sudden public emergency of international concern and seriously threatens millions of people’s life health. Two current studies have indicated a favorable role for mesenchymal stem/stromal cells (MSCs) in clinical remission of COVID-19 associated pulmonary diseases, yet the systematical elaboration of the therapeutics and underlying mechanism is far from satisfaction. In the present review, we summarize the therapeutic potential of MSCs in COVID-19 associated pulmonary diseases such as pneumonia induced acute lung injury, acute respiratory distress syndrome, and pulmonary fibrosis. Furthermore, we review the underlying mechanism of MSCs including direct- and trans-differentiation, autocrine and paracrine anti-inflammatory effects, homing, and neovascularization, as well as constitutive microenvironment. Finally, we discuss the prospects and supervision of MSC-based cytotherapy for COVID-19 management before large-scale application in clinical practice. Collectively, this review supplies overwhelming new references for understanding the landscapes of MSCs in the remission of COVID-19 associated pulmonary diseases.
Collapse
Affiliation(s)
- Lei-Sheng Zhang
- Qianfoshan Hospital & The First Affiliated Hospital, Shandong First Medical University, Jinan 250014, Shandong Province, China
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- School of Medicine, Nankai University, Tianjin 300071, China
- Precision Medicine Division, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd., Tianjin 301700, China
| | - Yi Yu
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- The First Affiliated Hospital, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Hao Yu
- School of Medicine, Nankai University, Tianjin 300071, China
- Cell Products of National Engineering Center & National Stem Cell Engineering Research Center, Tianjin IMCELL Stem Cell and Gene Technology Co., Ltd., Tianjin 300457, China
| | - Zhong-Chao Han
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Precision Medicine Division, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd., Tianjin 301700, China
- Cell Products of National Engineering Center & National Stem Cell Engineering Research Center, Tianjin IMCELL Stem Cell and Gene Technology Co., Ltd., Tianjin 300457, China
| |
Collapse
|
10
|
Metheny L, Eid S, Wuttisarnwattana P, Auletta JJ, Liu C, Van Dervort A, Paez C, Lee Z, Wilson D, Lazarus HM, Deans R, Vant Hof W, Ktena Y, Cooke KR. Human multipotent adult progenitor cells effectively reduce graft-vs-host disease while preserving graft-vs-leukemia activity. STEM CELLS (DAYTON, OHIO) 2021; 39:1506-1519. [PMID: 34255899 PMCID: PMC8596993 DOI: 10.1002/stem.3434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/24/2021] [Indexed: 11/13/2022]
Abstract
Graft‐vs‐host disease (GvHD) limits successful outcomes following allogeneic blood and marrow transplantation (allo‐BMT). We examined whether the administration of human, bone marrow‐derived, multipotent adult progenitor cells (MAPCs™) could regulate experimental GvHD. The immunoregulatory capacity of MAPC cells was evaluated in vivo using established murine GvHD models. Injection of MAPC cells on day +1 (D1) and +4 (D4) significantly reduced T‐cell expansion and the numbers of donor‐derived, Tumor Necrosis Factor Alpha (TNFα) and Interferon Gamma (IFNγ)‐producing, CD4+ and CD8+ cells by D10 compared with untreated controls. These findings were associated with reductions in serum levels of TNFα and IFNγ, intestinal and hepatic inflammation and systemic GvHD as measured by survival and clinical score. Biodistribution studies showed that MAPC cells tracked from the lung and to the liver, spleen, and mesenteric nodes within 24 hours after injection. MAPC cells inhibited mouse T‐cell proliferation in vitro and this effect was associated with reduced T‐cell activation and inflammatory cytokine secretion and robust increases in the concentrations of Prostaglandin E2 (PGE2) and Transforming Growth Factor Beta (TGFβ). Indomethacin and E‐prostanoid 2 (EP2) receptor antagonism both reversed while EP2 agonism restored MAPC cell‐mediated in vitro T‐cell suppression, confirming the role for PGE2. Furthermore, cyclo‐oxygenase inhibition following allo‐BMT abrogated the protective effects of MAPC cells. Importantly, MAPC cells had no effect on the generation cytotoxic T lymphocyte activity in vitro, and the administration of MAPC cells in the setting of leukemic challenge resulted in superior leukemia‐free survival. Collectively, these data provide valuable information regarding the biodistribution and regulatory capacity of MAPC cells, which may inform future clinical trial design.
Collapse
Affiliation(s)
- Leland Metheny
- University Hospitals Seidman Cancer CenterClevelandOhioUSA
- Case Comprehensive Cancer CenterClevelandOhioUSA
| | - Saada Eid
- Department of PediatricsCase Western Reserve UniversityClevelandOhioUSA
| | - Patiwet Wuttisarnwattana
- Department of Computer EngineeringChiang Mai UniversityChiang MaiThailand
- Department of Biomedical Engineering CenterChiang Mai UniversityChiang MaiThailand
| | - Jeffery J. Auletta
- Host Defense Program, Hematology, Oncology, and Infectious DiseasesNationwide Children's HospitalColumbusOhioUSA
| | - Chen Liu
- Department of PathologyYale School of MedicineNew HavenConnecticutUSA
| | - Alana Van Dervort
- Department of PediatricsCase Western Reserve UniversityClevelandOhioUSA
| | - Conner Paez
- Department of PediatricsCase Western Reserve UniversityClevelandOhioUSA
| | - ZhengHong Lee
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
| | - David Wilson
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
| | | | | | | | - Yiouli Ktena
- Department of OncologyJohns Hopkins Sidney Kimmel Comprehensive Cancer CenterBaltimoreMarylandUSA
| | - Kenneth R. Cooke
- Department of OncologyJohns Hopkins Sidney Kimmel Comprehensive Cancer CenterBaltimoreMarylandUSA
| |
Collapse
|
11
|
Alvites RD, Branquinho MV, Sousa AC, Lopes B, Sousa P, Mendonça C, Atayde LM, Maurício AC. Small Ruminants and Its Use in Regenerative Medicine: Recent Works and Future Perspectives. BIOLOGY 2021; 10:biology10030249. [PMID: 33810087 PMCID: PMC8004958 DOI: 10.3390/biology10030249] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/16/2022]
Abstract
Simple Summary Small ruminants such as sheep and goats have been increasingly used as animal models due to their dimensions, physiology and anatomy identical to those of humans. Their low costs, ease of accommodation, great longevity and easy handling make them advantageous animals to be used in a wide range of research work. Although there is already a lot of scientific literature describing these species, their use still lacks some standardization. The purpose of this review is to summarize the general principles related to the use of small ruminants as animal models for scientific research. Abstract Medical and translational scientific research requires the use of animal models as an initial approach to the study of new therapies and treatments, but when the objective is an exploration of translational potentialities, classical models fail to adequately mimic problems in humans. Among the larger animal models that have been explored more intensely in recent decades, small ruminants, namely sheep and goats, have emerged as excellent options. The main advantages associated to the use of these animals in research works are related to their anatomy and dimensions, larger than conventional laboratory animals, but very similar to those of humans in most physiological systems, in addition to their low maintenance and feeding costs, tendency to be docile, long life expectancies and few ethical complications raised in society. The most obvious disadvantages are the significant differences in some systems such as the gastrointestinal, and the reduced amount of data that limits the comparison between works and the validation of the characterization essays. Despite everything, recently these species have been increasingly used as animal models for diseases in different systems, and the results obtained open doors for their more frequent and advantageous use in the future. The purpose of this review is to summarize the general principles related to the use of small ruminants as animal models, with a focus on regenerative medicine, to group the most relevant works and results published recently and to highlight the potentials for the near future in medical research.
Collapse
Affiliation(s)
- Rui Damásio Alvites
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Mariana Vieira Branquinho
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Ana Catarina Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Bruna Lopes
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Patrícia Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Carla Mendonça
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Luís Miguel Atayde
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Ana Colette Maurício
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
- Correspondence: ; Tel.: +351-919-071-286 or +351-220-428-000
| |
Collapse
|
12
|
Abdelmoneim M, El-Naenaeey ESY, Abd-Allah SH, Gharib AA, Alhussein M, Aboalella DA, Abdelghany EM, Fathy MA, Hussein S. Anti-Inflammatory and Immunomodulatory Role of Bone Marrow-Derived MSCs in Mice with Acute Lung Injury. J Interferon Cytokine Res 2021; 41:29-36. [PMID: 33471617 DOI: 10.1089/jir.2020.0073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Recently, studies suggested that the mesenchymal stem cells (MSCs) have anti-inflammatory and immune-modulatory roles in the induced acute lung injury in mice via controlling innate, humoral, and cell-mediated immunity. Sixty adult male mice were divided equally into three groups. Group A (control group) received an intraperitoneal (IP) phosphate-buffered saline. Group B was injected IP with lipopolysaccharide (LPS). Group C was injected IP with LPS, followed after 2 h by intravenous labeled bone marrow-derived MSCs (BM-MSCs). The plasma and bronchioalveolar lavage (BAL) fluid were collected at 12, 24, and 72 h postinjection. Estimation of total cell and neutrophils count and immunoglobulin M (IgM) in BAL fluid was performed. Enzyme-linked immunosorbent assay (ELISA) was used to analyze tumor necrosis factor-α (TNF-α) that is a proinflammatory cytokine and interleukin-10 (IL-10), which is an anti-inflammatory cytokine, in plasma. Lung samples were collected for histopathological examination at 12, 24, 72 h, and 1 week postinjection. Decreased TNF-α and increased IL-10 levels in the plasma of MSC-treated group compared to the LPS-infected group were observed. Also, decreased IgM level in BAL fluid of the MSC-treated group after 72 h compared to the LPS-infected group was detected with a resolution of inflammation and improvement in lung injury. Moreover, MSC-treated group showed a reduction in total leukocyte count and neutrophil percentage in comparison to control and LPS-infected groups. Histopathological improvement was detected in MSC-treated group as well. In conclusion, systemic MSCs injection has an anti-inflammatory and immune-modulatory effect in LPS-induced acute lung injury in mice.
Collapse
Affiliation(s)
- Mohamed Abdelmoneim
- Microbiology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - El-Sayed Y El-Naenaeey
- Microbiology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Somia Hassan Abd-Allah
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ahlam A Gharib
- Microbiology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mona Alhussein
- Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Doaa Alhussein Aboalella
- Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Eman Mohamed Abdelghany
- Human Anatomy and Embryology Department, and Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Maha Abdelhamid Fathy
- Medical Physiology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Samia Hussein
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
13
|
Sadeghian Chaleshtori S, Mokhber Dezfouli MR, Abbasi J, Dehghan MM, Jabbari Fakhr M, Yadollahi S, Mirabad MM. Prevention of LPS-induced acute respiratory distress syndrome in sheep by bone marrow-derived mesenchymal stem/stromal cells. Life Sci 2020; 263:118600. [PMID: 33068598 DOI: 10.1016/j.lfs.2020.118600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/04/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023]
Abstract
MATERIALS AND METHODS In this study, 10 male Shall sheep were used in two groups and bone marrow samples were collected and BM-MSCs isolated. Then experimental model of ARDS was induced by intrapulmonary injection of LPS to dose of 400 μg/kg. Twenty-four hours after LPS injection, 5 × 107 cells of BM-MSCs were autologous transferred in the group of treatment and 1 ml PBS was infused in the group of control as intrapulmonary. Then, the symptoms of clinical, complete blood count, analysis of arterial blood gases and the concentrations of IL6,IL10,TNF-α,total protein, Ig M and albumin BAL were determined before and at times of 3,6,12,24,48,72, and 168 after transplantation/infusion. KEY FINDINGS The results of the investigations 24 h post-LPS injection(time 0) indicated the occurrence of acute inflammation which confirmed ARDS model. These changes included increase in RR, HR and RT, decrease in PO2 and SatO2 and increase in PCO2, WBC, neutrophils, macrophages, total protein,IL6,IL10, TNF-α,Ig M and albumin. But the stem/stromal cells transplantation reduced the severity of clinical signs induced by LPS, caused significant increase in PO2, SatO2 and IL-10 and significant decrease in PCO2, the total protein, TNF-α,IL-6, Ig M, albumin, WBCs, neutrophils and macrophages at different times of sampling both in compared with before transplantation(time 0) and in compared with the group of control. While in the control group, inflammation continued until the end of the study. SIGNIFICANCE These results showed that BM-MSCs are able to reduce inflammation and have an important role in reconstruction of the damaged lung.
Collapse
Affiliation(s)
- Sirous Sadeghian Chaleshtori
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran; Institute of Biomedical Research, University of Tehran, Tehran, Iran.
| | - Mohammad Reza Mokhber Dezfouli
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran; Institute of Biomedical Research, University of Tehran, Tehran, Iran.
| | - Javad Abbasi
- Graduate of Residency in Large Animal Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad Mehdi Dehghan
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran; Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Massoumeh Jabbari Fakhr
- Department of Tissue Engineering, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran; Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Shokufeh Yadollahi
- Graduated in Doctorate of Veterinary Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad Mehdi Mirabad
- Graduate of Residency in Large Animal Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
14
|
Pham PV, Vu NB. Off-the-shelf mesenchymal stem cells from human umbilical cord tissue can significantly improve symptoms in COVID-19 patients: An analysis of evidential relations. World J Stem Cells 2020; 12:721-730. [PMID: 32952854 PMCID: PMC7477657 DOI: 10.4252/wjsc.v12.i8.721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/21/2020] [Accepted: 08/01/2020] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease-2019 (COVID-19) has affected more than 200 countries worldwide. This disease has hugely affected healthcare systems as well as the economy to an extent never seen before. To date, COVID-19 infection has led to about 165000 deaths in 150 countries. At present, there is no specific drug or efficient treatment for this disease. In this analysis based on evidential relationships of the biological characteristics of MSCs, especially umbilical cord (UC)-derived MSCs as well as the first clinical trial using MSCs for COVID-19 treatment, we discuss the use of UC-MSCs to improve the symptoms of COVID-19 in patients.
Collapse
Affiliation(s)
- Phuc Van Pham
- Stem Cell Institute, University of Science, Ho Chi Minh 08000, Viet Nam
- Vietnam National University, Ho Chi Minh 08000, Viet Nam
| | - Ngoc Bich Vu
- Stem Cell Institute, University of Science, Ho Chi Minh 08000, Viet Nam
- Vietnam National University, Ho Chi Minh 08000, Viet Nam
| |
Collapse
|
15
|
Topcu Sarica L, Zibandeh N, Genç D, Gül F, Akkoç T, Kombak EF, Cinel L, Akkoç T, Cinel I. Immunomodulatory and Tissue-preserving Effects of Human Dental Follicle Stem Cells in a Rat Cecal Ligation and Perforation Sepsis Model. Arch Med Res 2020; 51:397-405. [PMID: 32334851 DOI: 10.1016/j.arcmed.2020.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 03/19/2020] [Accepted: 04/10/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Mesenchymal stem cells may be used for the treatment of sepsis. Dental follicle stem cells (DFSCs) are easily accessible but have not been studied in vivo or in clinical trials in sepsis models. AIM OF THE STUDY We aim to elucidate DFSC effects on host immunological functions in a rat cecal ligation and perforation (CLP) sepsis model. METHODS Adult male rats were categorized into group 1 (sham procedure SP), group 2 (SP + 1 × 106 DFSCs administered 0 h after SP), group 3 (CLP + saline), group 4 (CLP + 1 × 106 DFSCs administered 0 h after CLP), and group 5 (CLP + 1 × 106 DFSCs administered 4 h after CLP). Green fluorescent protein-labeled cells were used for imaging. Histopathological examination of ileal tissues was performed. RESULTS A significant increase in the percentage of CD4+/CD25+/Foxp3+ Treg cells in groups 4 and 5 occurred compared with that in group 3. No significant changes in CD3+/CD4+ helper T-cells and CD3+/CD8+ cytotoxic T-cells were observed. Treatment with DFSCs at 4 h significantly decreased the level of TNF-α compared with that in group 3. No significant changes in IL-10 levels and lymphocyte proliferation suppression were observed. During histopathological examination, no high scoring (Chiu scores: 3 or 4) rats were observed in the curative treatment group (group 5). CONCLUSIONS Treatment with DFSC after 4 h of sepsis induction downregulates tissue inflammatory responses by decreasing TNF-α levels and increasing Treg cell ratio. This also has a protective effect on intestinal tissues during sepsis.
Collapse
Affiliation(s)
- Leyla Topcu Sarica
- Department of Anesthesiology and Reanimation, School of Medicine, Marmara University, Istanbul, Turkey
| | - Noushin Zibandeh
- Department of Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Deniz Genç
- Department of Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Fethi Gül
- Department of Anesthesiology and Reanimation, School of Medicine, Marmara University, Istanbul, Turkey
| | - Tolga Akkoç
- TUBITAK MRC Genetic Engineering and Biotechnology Institute, Gebze, Turkey
| | - Erdem Faruk Kombak
- Department of Pathology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Leyla Cinel
- Department of Pathology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Tunç Akkoç
- Department of Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Ismail Cinel
- Department of Anesthesiology and Reanimation, School of Medicine, Marmara University, Istanbul, Turkey.
| |
Collapse
|
16
|
MacDonald ES, Barrett JG. The Potential of Mesenchymal Stem Cells to Treat Systemic Inflammation in Horses. Front Vet Sci 2020; 6:507. [PMID: 32039250 PMCID: PMC6985200 DOI: 10.3389/fvets.2019.00507] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022] Open
Abstract
One hallmark of mesenchymal stem cells (MSCs) is the ability to differentiate into multiple tissue types which assists in tissue regeneration. Another hallmark of MSCs is their potent anti-inflammatory and immunomodulatory properties and the potential to treat inflammatory, immune-mediated, and ischemic conditions. In equine practice, MSCs have shown efficacy in the treatment of musculoskeletal disorders such as tendinopathy, meniscal tears and cartilage injury. However, there are many equine disease processes and conditions that may benefit from the immunomodulatory properties of MSCs. Examples include conditions associated with overwhelming acute inflammatory response such as systemic inflammatory response syndrome to chronic diseases characterized by a prolonged low level of inflammation such as equine asthma and recurrent uveitis. For the acute inflammatory response processes, there is often high morbidity and mortality with no effective immunomodulatory treatment to prevent the overwhelming synthesis of proinflammatory mediators. For chronic inflammatory disease processes, frequently long-term corticosteroid treatment is the therapeutic mainstay, with serious potential complications. Thus, there is an unmet need for alternative anti-inflammatory treatments for both acute and chronic illnesses in horses. While MSCs show promise for such conditions, much research is needed before a clinically safe and effective treatment will be available. Optimal MSC tissue source, patient vs. donor source (autologous vs. allogeneic) and cell growth conditions need to be determined for each problem. For immediate use, allogeneic MSC treatments is preferable, but immune tolerance and adequate safety require further study. MSC collection and cryopreservation from horses before they are injured or ill, whether from umbilical cord tissue, bone marrow or adipose might become more widespread. Once these fundamental approaches to treating specific diseases with MSCs are determined, the route of administration, dose and timing of administration also need to be studied. To provide a framework for development of MSC immunomodulatory treatments, this article reviews the current understanding of equine MSC anti-inflammatory and immunomodulatory properties and proposes how MSC therapy may be further developed to treat acute onset systemic inflammatory processes and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Elizabeth S MacDonald
- Marion duPont Scott Equine Medical Center, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Leesburg, VA, United States
| | - Jennifer G Barrett
- Marion duPont Scott Equine Medical Center, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Leesburg, VA, United States
| |
Collapse
|
17
|
Wong JJM, Leong JY, Lee JH, Albani S, Yeo JG. Insights into the immuno-pathogenesis of acute respiratory distress syndrome. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:504. [PMID: 31728357 DOI: 10.21037/atm.2019.09.28] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a clinical syndrome associated with oxygenation failure resulting from a direct pulmonary or indirect systemic insult. It is a complex etiological phenomenon involving an array of immune cells acting in a delicate balance between pathogen clearance and immunopathology. There is emerging evidence of the involvement of different immune cell types in ARDS pathogenesis. This includes polarization of alveolar macrophages (AMs), neutrophil netosis, the pro-inflammatory response of T helper 17 subsets, and the anti-inflammatory and regenerative role of T regulatory cell subsets. Knowledge of these pathogenic mechanisms has led to translational opportunities, for example, research in the use of methylprednisolone, DNAse, aspirin, keratinocyte growth factor and in the development of stem cell therapy for ARDS. Discovering subgroups of patients with ARDS afflicted with homogenous pathologic mechanisms can provide prognostic and/or predictive insight that will enable precision medicine. Lastly, new high dimensional immunomic technologies are promising tools in evaluating the host immune response in ARDS and will be discussed in this review.
Collapse
Affiliation(s)
- Judith Ju Ming Wong
- Children's Intensive Care Unit, Department of Pediatric Subspecialty, KK Women's and Children's Hospital, Singapore.,Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, Singapore
| | - Jing Yao Leong
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, Singapore
| | - Jan Hau Lee
- Children's Intensive Care Unit, Department of Pediatric Subspecialty, KK Women's and Children's Hospital, Singapore
| | - Salvatore Albani
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, Singapore.,Division of Medicine, KK Women's and Children's Hospital, Singapore
| | - Joo Guan Yeo
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, Singapore.,Division of Medicine, KK Women's and Children's Hospital, Singapore
| |
Collapse
|
18
|
Shah TG, Predescu D, Predescu S. Mesenchymal stem cells-derived extracellular vesicles in acute respiratory distress syndrome: a review of current literature and potential future treatment options. Clin Transl Med 2019; 8:25. [PMID: 31512000 PMCID: PMC6739436 DOI: 10.1186/s40169-019-0242-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 09/06/2019] [Indexed: 02/08/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening inflammatory lung condition associated with significant morbidity and mortality. Unfortunately, the current treatment for this disease is mainly supportive. Mesenchymal stem cells (MSCs) due to their immunomodulatory properties are increasingly being studied for the treatment of ARDS and have shown promise in multiple animal studies. The therapeutic effects of MSCs are exerted in part in a paracrine manner by releasing extracellular vesicles (EVs), rather than local engraftment. MSC-derived EVs are emerging as potential alternatives to MSC therapy in ARDS. In this review, we will introduce EVs and briefly discuss current data on EVs and MSCs in ARDS. We will discuss current literature on the role of MSC-derived EVs in pathogenesis and treatment of ARDS and their potential as a treatment strategy in the future.
Collapse
Affiliation(s)
- Trushil G Shah
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, 1750 W Harrison St. 1535 JS, Chicago, IL, 60612, USA.,Division of Pulmonary and Critical Care Medicine, University of Texas Southwestern, Dallas, TX, USA
| | - Dan Predescu
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, 1750 W Harrison St. 1535 JS, Chicago, IL, 60612, USA
| | - Sanda Predescu
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, 1750 W Harrison St. 1535 JS, Chicago, IL, 60612, USA.
| |
Collapse
|
19
|
Khan RS, Newsome PN. A Comparison of Phenotypic and Functional Properties of Mesenchymal Stromal Cells and Multipotent Adult Progenitor Cells. Front Immunol 2019; 10:1952. [PMID: 31555259 PMCID: PMC6724467 DOI: 10.3389/fimmu.2019.01952] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/02/2019] [Indexed: 12/15/2022] Open
Abstract
Both Multipotent Adult Progenitor Cells and Mesenchymal Stromal Cells are bone-marrow derived, non-haematopoietic adherent cells, that are well-known for having immunomodulatory and pro-angiogenic properties, whilst being relatively non-immunogenic. However, they are phenotypically and functionally distinct cell types, which has implications for their efficacy in different settings. In this review we compare the phenotypic and functional properties of these two cell types, to help in determining which would be the superior cell type for different applications.
Collapse
Affiliation(s)
- Reenam S Khan
- National Institute for Health Research (NIHR), Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, United Kingdom.,Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Philip N Newsome
- National Institute for Health Research (NIHR), Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, United Kingdom.,Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| |
Collapse
|
20
|
Cardenes N, Aranda-Valderrama P, Carney JP, Sellares Torres J, Alvarez D, Kocyildirim E, Wolfram Smith JA, Ting AE, Lagazzi L, Yu Z, Mason S, Santos E, Lopresti BJ, Rojas M. Cell therapy for ARDS: efficacy of endobronchial versus intravenous administration and biodistribution of MAPCs in a large animal model. BMJ Open Respir Res 2019; 6:e000308. [PMID: 30713713 PMCID: PMC6339992 DOI: 10.1136/bmjresp-2018-000308] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 12/14/2022] Open
Abstract
Introduction Bone marrow-derived multipotent adult progenitor cells (MAPCs) are adult allogeneic adherent stem cells currently investigated clinically for use in acute respiratory distress syndrome (ARDS). To date, there is no agreement on which is the best method for stem cells delivery in ARDS. Here, we compared the efficacy of two different methods of administration and biodistribution of MAPC for the treatment of ARDS in a sheep model. Methods MAPC were labelled with [18F] fluoro-29-deoxy-D-glucose and delivered by endobronchial (EB) or intravenous route 1 hour after lipopolysaccharide infusion in sheep mechanically ventilated. PET/CT images were acquired to determine the biodistribution and retention of the cells at 1 and 5 hours of administration. Results The distribution and retention of the MAPC was dependent on the method of cell administration. By EB route, PET images showed that MAPC remained at the site of administration and no changes were observed after 5 hours, whereas with intravenous route, the cells had broad biodistribution to different organs, being the lung the main organ of retention at 1 and 5 hours. MAPC demonstrated an equal effect on arterial oxygenation recovery by either route of administration. Conclusion The EB or intravenous routes of administration of MAPC are both effective for the treatment of ARDS in an acute sheep model, and the effect of MAPC therapy is not dependent of parenchymal integration or systemic biodistribution.
Collapse
Affiliation(s)
- Nayra Cardenes
- The Dorothy P. and Richard P. Simmons Center for Interstitial Lung Diseases, Pittsburgh, Pennsylvania, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Paola Aranda-Valderrama
- The Dorothy P. and Richard P. Simmons Center for Interstitial Lung Diseases, Pittsburgh, Pennsylvania, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Jonathan P Carney
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Jacobo Sellares Torres
- The Dorothy P. and Richard P. Simmons Center for Interstitial Lung Diseases, Pittsburgh, Pennsylvania, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Interstitial Lung Disease Program, Servei de Pneumología, Institut clinic respiratori, Hospital Clínic, Barcelona, Spain
| | - Diana Alvarez
- The Dorothy P. and Richard P. Simmons Center for Interstitial Lung Diseases, Pittsburgh, Pennsylvania, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Ergin Kocyildirim
- Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Antony E Ting
- Cardiopulmonary Program at Athersys, Inc, Cleveland, Ohio, USA
| | - Luigi Lagazzi
- Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Zheming Yu
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Scott Mason
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Ernesto Santos
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Brian J Lopresti
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Mauricio Rojas
- The Dorothy P. and Richard P. Simmons Center for Interstitial Lung Diseases, Pittsburgh, Pennsylvania, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
21
|
Antebi B, Rodriguez LA, Walker KP, Asher AM, Kamucheka RM, Alvarado L, Mohammadipoor A, Cancio LC. Short-term physiological hypoxia potentiates the therapeutic function of mesenchymal stem cells. Stem Cell Res Ther 2018; 9:265. [PMID: 30305185 PMCID: PMC6180371 DOI: 10.1186/s13287-018-1007-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/20/2018] [Accepted: 09/06/2018] [Indexed: 12/13/2022] Open
Abstract
Background In the bone marrow, MSCs reside in a hypoxic milieu (1–5% O2) that is thought to preserve their multipotent state. Typically, in vitro expansion of MSCs is performed under normoxia (~ 21% O2), a process that has been shown to impair their function. Here, we evaluated the characteristics and function of MSCs cultured under hypoxia and hypothesized that, when compared to normoxia, dedicated hypoxia will augment the functional characteristics of MSCs. Methods Human and porcine bone marrow MSCs were obtained from fresh mononuclear cells. The first study evaluated MSC function following both long-term (10 days) and short-term (48 h) hypoxia (1% O2) culture. In our second study, we evaluated the functional characteristics of MSC cultured under short-term 2% and 5% hypoxia. MSCs were evaluated for their metabolic activity, proliferation, viability, clonogenicity, gene expression, and secretory capacity. Results In long-term culture, common MSC surface marker expression (CD44 and CD105) dropped under hypoxia. Additionally, in long-term culture, MSCs proliferated significantly slower and provided lower yields under hypoxia. Conversely, in short-term culture, MSCs proliferated significantly faster under hypoxia. In both long-term and short-term cultures, MSC metabolic activity was significantly higher under hypoxia. Furthermore, MSCs cultured under hypoxia had upregulated expression of VEGF with concomitant downregulation of HMGB1 and the apoptotic genes BCL-2 and CASP3. Finally, in both hypoxia cultures, the pro-inflammatory cytokine, IL-8, was suppressed, while levels of the anti-inflammatories, IL-1ra and GM-CSF, were elevated in short-term hypoxia only. Conclusions In this study, we demonstrate that hypoxia augments the therapeutic characteristics of both porcine and human MSCs. Yet, short-term 2% hypoxia offers the greatest benefit overall, exemplified by the increase in proliferation, self-renewing capacity, and modulation of key genes and the inflammatory milieu as compared to normoxia. These data are important for generating robust MSCs with augmented function for clinical applications.
Collapse
Affiliation(s)
- Ben Antebi
- United States Army Institute of Surgical Research, San Antonio, TX, USA.
| | - Luis A Rodriguez
- United States Army Institute of Surgical Research, San Antonio, TX, USA
| | - Kerfoot P Walker
- United States Army Institute of Surgical Research, San Antonio, TX, USA.,Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Amber M Asher
- United States Army Institute of Surgical Research, San Antonio, TX, USA.,Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Robin M Kamucheka
- United States Army Institute of Surgical Research, San Antonio, TX, USA.,Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Lucero Alvarado
- United States Army Institute of Surgical Research, San Antonio, TX, USA.,Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Arezoo Mohammadipoor
- United States Army Institute of Surgical Research, San Antonio, TX, USA.,Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Leopoldo C Cancio
- United States Army Institute of Surgical Research, San Antonio, TX, USA
| |
Collapse
|
22
|
Laroye C, Lemarié J, Boufenzer A, Labroca P, Cunat L, Alauzet C, Groubatch F, Cailac C, Jolly L, Bensoussan D, Reppel L, Gibot S. Clinical-grade mesenchymal stem cells derived from umbilical cord improve septic shock in pigs. Intensive Care Med Exp 2018; 6:24. [PMID: 30091119 PMCID: PMC6082751 DOI: 10.1186/s40635-018-0194-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/30/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Septic shock is the leading cause of death in intensive care units. The pathophysiological complexity of this syndrome contributes to an absence of specific treatment. Several preclinical studies in murine models of septic shock have shown improvements to organ injury and survival after administration of mesenchymal stem cells (MSCs). To better mimic a clinical approach in humans, we investigated the impact of randomized controlled double-blind administration of clinical-grade umbilical cord-derived MSCs to a relevant pig model of septic shock. METHODS Septic shock was induced by fecal peritonitis in 12 male domestic pigs. Animals were resuscitated by an experienced intensivist including fluid administration and vasopressors. Four hours after the induction of peritonitis, pigs were randomized to receive intravenous injection of thawed umbilical cord-derived MSCs (UCMSC) (1 × 106 UCMSCs/kg diluted in 75 mL hydroxyethyl starch (HES), (n = 6) or placebo (HES alone, n = 6). Researchers were double-blinded to the treatment administered. Hemodynamic parameters were continuously recorded. Gas exchange, acid-base status, organ function, and plasma cytokine concentrations were assessed at regular intervals until 24 h after the onset of peritonitis when animals were sacrificed under anesthesia. RESULTS Peritonitis induced profound hypotension, hyperlactatemia, and multiple organ failure. These disorders were significantly attenuated when animals were treated with UCMSCs. In particular, cardiovascular failure was attenuated, as attested by a better mean arterial pressure and reduced lactatemia, despite lower norepinephrine requirements. As such, UCMSCs improved survival in this very severe model (60% survival vs. 0% at 24 h). CONCLUSION UCMSCs administration is beneficial in this pig model of polymicrobial septic shock.
Collapse
Affiliation(s)
- Caroline Laroye
- CHRU de Nancy, Unité de Thérapie Cellulaire et banque de tissus, 54500 Vandoeuvre-lès-Nancy, France
- INSERM, U1116, 54500 Vandoeuvre-lès-Nancy, France
- CNRS, UMR 7365, 54500 Vandoeuvre-lès-Nancy, France
- Université de Lorraine, 54000 Nancy, France
| | - Jérémie Lemarié
- INSERM, U1116, 54500 Vandoeuvre-lès-Nancy, France
- Université de Lorraine, 54000 Nancy, France
- CHRU de Nancy, Service de Réanimation Médicale, Hôpital Central, 54000 Nancy, France
| | | | - Pierre Labroca
- CHRU de Nancy, Service de Réanimation Médicale, Hôpital Central, 54000 Nancy, France
| | - Lisiane Cunat
- Université de Lorraine, 54000 Nancy, France
- EA 7300 Stress Immunité Pathogènes, 54500 Vandoeuvre-lès-Nancy, France
| | - Corentine Alauzet
- Université de Lorraine, 54000 Nancy, France
- EA 7300 Stress Immunité Pathogènes, 54500 Vandoeuvre-lès-Nancy, France
| | - Frédérique Groubatch
- Université de Lorraine, 54000 Nancy, France
- Ecole de chirurgie, 54500 Vandoeuvre-lès-Nancy, France
| | - Clémence Cailac
- CHRU de Nancy, laboratoire anatomie et cytologie pathologiques, 54000 Nancy, France
| | - Lucie Jolly
- INSERM, U1116, 54500 Vandoeuvre-lès-Nancy, France
- Université de Lorraine, 54000 Nancy, France
- INOTREM, 54500 Vandoeuvre-lès-Nancy, France
| | - Danièle Bensoussan
- CHRU de Nancy, Unité de Thérapie Cellulaire et banque de tissus, 54500 Vandoeuvre-lès-Nancy, France
- CNRS, UMR 7365, 54500 Vandoeuvre-lès-Nancy, France
- Université de Lorraine, 54000 Nancy, France
| | - Loïc Reppel
- CHRU de Nancy, Unité de Thérapie Cellulaire et banque de tissus, 54500 Vandoeuvre-lès-Nancy, France
- CNRS, UMR 7365, 54500 Vandoeuvre-lès-Nancy, France
- Université de Lorraine, 54000 Nancy, France
| | - Sébastien Gibot
- INSERM, U1116, 54500 Vandoeuvre-lès-Nancy, France
- Université de Lorraine, 54000 Nancy, France
- CHRU de Nancy, Service de Réanimation Médicale, Hôpital Central, 54000 Nancy, France
| |
Collapse
|
23
|
The promise of mesenchymal stem cell therapy for acute respiratory distress syndrome. J Trauma Acute Care Surg 2018; 84:183-191. [PMID: 29019797 DOI: 10.1097/ta.0000000000001713] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review describes the current state of the science on mesenchymal stem cell (MSC) treatment for acute lung injury (ALI). The general characteristics, regenerative potential, and mechanism of action of MSCs are first presented. Next, particular emphasis is placed on the application of MSCs for the treatment of acute respiratory distress syndrome (ARDS) in preclinical and clinical studies. Finally, we discuss current challenges and future directions in the field presented from a clinician-researcher perspective. The objective of this work is to provide the readership with a current review of the literature discussing the hurdles and overall promise of MSCs as therapeutic interventions for the treatment of ARDS.
Collapse
|
24
|
Gazdhar A, Ravikumar P, Pastor J, Heller M, Ye J, Zhang J, Moe OW, Geiser T, Hsia CCW. Alpha-Klotho Enrichment in Induced Pluripotent Stem Cell Secretome Contributes to Antioxidative Protection in Acute Lung Injury. Stem Cells 2017; 36:616-625. [PMID: 29226550 DOI: 10.1002/stem.2752] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/07/2017] [Accepted: 11/21/2017] [Indexed: 02/06/2023]
Abstract
Induced pluripotent stem cells (iPSCs) have been reported to alleviate organ injury, although the mechanisms of action remain unclear and administration of intact cells faces many limitations. We hypothesized that cell-free conditioned media (CM) containing the secretome of iPSCs possess antioxidative constituents that can alleviate pulmonary oxidant stress damage. We derived iPSCs from human dermal fibroblasts and harvested the CM. Addition of iPSC CM to cultured human alveolar type-1 epithelial cells mitigated hyperoxia-induced depletion of endogenous total antioxidant capacity while tracheal instillation of iPSC CM into adult rat lungs enhanced hyperoxia-induced increase in TAC. In both the in vitro and in vivo models, iPSC CM ameliorated oxidative damage to DNA, lipid, and protein, and activated the nuclear factor (erythroid 2)-related factor 2 (Nrf2) network of endogenous antioxidant proteins. Compared with control fibroblast-conditioned or cell-free media, iPSC CM is highly enriched with αKlotho at a concentration up to more than 10-fold of that in normal serum. αKlotho is an essential antioxidative cell maintenance and protective factor and an activator of the Nrf2 network. Immunodepletion of αKlotho reduced iPSC CM-mediated cytoprotection by ∼50%. Thus, the abundant αKlotho content significantly contributes to iPSC-mediated antioxidation and cytoprotection. Results uncover a major mechanism of iPSC action, suggest a fundamental role of αKlotho in iPSC maintenance, and support the translational potential of airway delivery of cell-free iPSC secretome for protection against lung injury. The targeted cell-free secretome-based approach may also be applicable to the amelioration of injury in other organs. Stem Cells 2018;36:616-625.
Collapse
Affiliation(s)
- Amiq Gazdhar
- Department of Pulmonary Medicine, University Hospital, Bern, Switzerland.,Department of Clinical Research, University Hospital, Bern, Switzerland
| | - Priya Ravikumar
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Johanne Pastor
- Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Manfred Heller
- Department of Clinical Research, University Hospital, Bern, Switzerland
| | - Jianfeng Ye
- Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jianning Zhang
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Orson W Moe
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Thomas Geiser
- Department of Pulmonary Medicine, University Hospital, Bern, Switzerland.,Department of Clinical Research, University Hospital, Bern, Switzerland
| | - Connie C W Hsia
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
25
|
Amann EM, Rojewski MT, Rodi S, Fürst D, Fiedler J, Palmer A, Braumüller S, Huber-Lang M, Schrezenmeier H, Brenner RE. Systemic recovery and therapeutic effects of transplanted allogenic and xenogenic mesenchymal stromal cells in a rat blunt chest trauma model. Cytotherapy 2017; 20:218-231. [PMID: 29223534 DOI: 10.1016/j.jcyt.2017.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 08/22/2017] [Accepted: 11/03/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Effective therapy of Acute Lung Injury (ALI) is still a major scientific and clinical problem. To define novel therapeutic strategies for sequelae of blunt chest trauma (TxT) like ALI/Acute Respiratory Distress Syndrome, we have investigated the immunomodulatory and regenerative effects of a single dose of ex vivo expanded human or rat mesenchymal stromal cells (hMSCs/rMSCs) with or without priming, immediately after the induction of TxT in Wistar rats. METHODS We analyzed the histological score of lung injury, the cell count of the broncho alveolar lavage fluid (BAL), the change in local and systemic cytokine level and the recovery of the administered cells 24 h and 5 days post trauma. RESULTS The treatment with hMSCs reduced the injury score 24 h after trauma by at least 50% compared with TxT rats without MSCs. In general, TxT rats treated with hMSCs exhibited a lower level of pro-inflammatory cytokines (interleukin [IL]-1B, IL-6) and chemokines (C-X-C motif chemokine ligand 1 [CXCL1], C-C motif chemokine ligand 2 [CCL2]), but a higher tumor necrosis factor alpha induced protein 6 (TNFAIP6) level in the BAL compared with TxT rats after 24 h. Five days after trauma, cytokine levels and the distribution of inflammatory cells were similar to sham rats. In contrast, the treatment with rMSCs did not reveal such therapeutic effects on the injury score and cytokine levels, except for TNFAIP6 level. CONCLUSION TxT represents a suitable model to study effects of MSCs as an acute treatment strategy after trauma. However, the source of MSCs has to be carefully considered in the design of future studies.
Collapse
Affiliation(s)
- Elisa Maria Amann
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm, University of Ulm, Ulm, Germany; Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Markus Thomas Rojewski
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm, University of Ulm, Ulm, Germany; Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Sinja Rodi
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm, University of Ulm, Ulm, Germany
| | - Daniel Fürst
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm, University of Ulm, Ulm, Germany
| | - Jörg Fiedler
- Orthopedic Department, Division for Biochemistry of Joint and Connective Tissue Diseases, University of Ulm, Ulm, Germany
| | - Annette Palmer
- Institute for Clinical and Experimental Trauma-Immunology, University of Ulm, Ulm, Germany
| | - Sonja Braumüller
- Institute for Clinical and Experimental Trauma-Immunology, University of Ulm, Ulm, Germany
| | - Markus Huber-Lang
- Institute for Clinical and Experimental Trauma-Immunology, University of Ulm, Ulm, Germany
| | - Hubert Schrezenmeier
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm, University of Ulm, Ulm, Germany; Institute of Transfusion Medicine, University of Ulm, Ulm, Germany.
| | - Rolf Erwin Brenner
- Orthopedic Department, Division for Biochemistry of Joint and Connective Tissue Diseases, University of Ulm, Ulm, Germany
| |
Collapse
|
26
|
Laroye C, Gibot S, Reppel L, Bensoussan D. Concise Review: Mesenchymal Stromal/Stem Cells: A New Treatment for Sepsis and Septic Shock? Stem Cells 2017; 35:2331-2339. [PMID: 28856759 DOI: 10.1002/stem.2695] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 12/17/2022]
Abstract
Sepsis and septic shock are the leading cause of admission and mortality in non-coronary intensive care units. Currently, however, no specific treatments are available for this syndrome. Due to the failure of conventional treatments in recent years, research is focusing on innovative therapeutic agents, including cell therapy. One particular type of cell, mesenchymal stromal/stem cells (MSCs), has raised hopes for the treatment of sepsis. Indeed, their immunomodulatory properties, antimicrobial activity and capacity of protection against organ failure confer MSCs with a major advantage to treat the immune and inflammatory dysfunctions associated with sepsis and septic shock. After a brief description of the pathophysiology of sepsis and septic shock, the latest advances in the use of MSCs to treat sepsis will be presented. Stem Cells 2017;35:2331-2339.
Collapse
Affiliation(s)
- Caroline Laroye
- Unité de Thérapie Cellulaire et banque de Tissus, CHRU de Nancy, Vandœuvre-lès-Nancy, France.,INSERM, Vandœuvre-lès-Nancy, France.,UMR 7365 CNRS, Vandœuvre-lès-Nancy, France.,Université de Lorraine, Nancy, France
| | - Sébastien Gibot
- INSERM, Vandœuvre-lès-Nancy, France.,Université de Lorraine, Nancy, France.,CHRU Nancy, Service de Réanimation Médicale, Hôpital Central, Nancy, France
| | - Loïc Reppel
- Unité de Thérapie Cellulaire et banque de Tissus, CHRU de Nancy, Vandœuvre-lès-Nancy, France.,UMR 7365 CNRS, Vandœuvre-lès-Nancy, France.,Université de Lorraine, Nancy, France
| | - Danièle Bensoussan
- Unité de Thérapie Cellulaire et banque de Tissus, CHRU de Nancy, Vandœuvre-lès-Nancy, France.,UMR 7365 CNRS, Vandœuvre-lès-Nancy, France.,Université de Lorraine, Nancy, France
| |
Collapse
|
27
|
Laffey JG, Matthay MA. Fifty Years of Research in ARDS. Cell-based Therapy for Acute Respiratory Distress Syndrome. Biology and Potential Therapeutic Value. Am J Respir Crit Care Med 2017; 196:266-273. [PMID: 28306336 DOI: 10.1164/rccm.201701-0107cp] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
On the basis of several preclinical studies, cell-based therapy has emerged as a potential new therapeutic for acute respiratory distress syndrome (ARDS). Of the various cell-based therapy options, mesenchymal stem/stromal cells (MSCs) from bone marrow, adipose tissue, and umbilical cord have the most experimental data to support their potential efficacy for lung injury from both infectious and noninfectious causes. Mechanistically, MSCs exert their beneficial effects by release of paracrine factors, microvesicles, and transfer of mitochondria, all of which have antiinflammatory and pro-resolving effects on injured lung endothelium and alveolar epithelium, including enhancing the resolution of pulmonary edema by up-regulating sodium-dependent alveolar fluid clearance. MSCs also have antimicrobial effects mediated by release of antimicrobial factors and by up-regulating monocyte/macrophage phagocytosis. Phase 2a clinical trials to establish safety in ARDS are in progress, and two phase 1 trials did not report any serious adverse events. Several issues need further study, including: determining the optimal methods for large-scale production, reconstitution of cryopreserved cells for clinical use, defining cell potency assays, and determining the therapeutic potential of conditioned media derived from MSCs. Because ARDS is a heterogeneous syndrome, targeting MSCs to patients with ARDS with a more hyperinflammatory endotype may further enhance their potential for efficacy.
Collapse
Affiliation(s)
- John G Laffey
- 1 Department of Anesthesia and.,2 Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada; and
| | - Michael A Matthay
- 3 Department of Medicine and.,4 Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California
| |
Collapse
|
28
|
Martens A, Ordies S, Vanaudenaerde BM, Verleden SE, Vos R, Van Raemdonck DE, Verleden GM, Roobrouck VD, Claes S, Schols D, Verbeken E, Verfaillie CM, Neyrinck AP. Immunoregulatory effects of multipotent adult progenitor cells in a porcine ex vivo lung perfusion model. Stem Cell Res Ther 2017; 8:159. [PMID: 28676074 PMCID: PMC5497348 DOI: 10.1186/s13287-017-0603-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/19/2017] [Accepted: 06/05/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Primary graft dysfunction (PGD) is considered to be the end result of an inflammatory response targeting the new lung allograft after transplant. Previous research has indicated that MAPC cell therapy might attenuate this injury by its paracrine effects on the pro-/anti-inflammatory balance. This study aims to investigate the immunoregulatory capacities of MAPC cells in PGD when administered in the airways. METHODS Lungs of domestic pigs (n = 6/group) were subjected to 90 minutes of warm ischemia. Lungs were cold flushed, cannulated on ice and placed on EVLP for 6 hours. At the start of EVLP, 40 ml of an albumin-plasmalyte mixture was distributed in the airways (CONTR group). In the MAPC cell group, 150 million MAPC cells (ReGenesys/Athersys, Cleveland, OH, USA) were added to this mixture. At the end of EVLP, a physiological evaluation (pulmonary vascular resistance, lung compliance, PaO2/FiO2), wet-to-dry weight ratio (W/D) sampling and a multiplex analysis of bronchoalveolar lavage (BAL) (2 × 30 ml) was performed. RESULTS Pulmonary vascular resistance, lung compliance, PaO2/FiO2 and W/D were not statistically different at the end of EVLP between both groups. BAL neutrophilia was significantly reduced in the MAPC cell group. Moreover, there was a significant decrease in TNF-α, IL-1β and IFN-γ in the BAL, but not in IFN-α; whereas IL-4, IL-10 and IL-8 were below the detection limit. CONCLUSIONS Although no physiologic effect of MAPC cell distribution in the airways was detected during EVLP, we observed a reduction in pro-inflammatory cytokines and neutrophils in BAL in the MAPC cell group. This effect on the innate immune system might play an important role in critically modifying the process of PGD after transplantation. Further experiments will have to elucidate the immunoregulatory effect of MAPC cell administration on graft function after transplantation.
Collapse
Affiliation(s)
- An Martens
- Laboratory of Anesthesiology and Algology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven and University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
- Leuven Lung Transplant Unit, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Sofie Ordies
- Laboratory of Anesthesiology and Algology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven and University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
- Leuven Lung Transplant Unit, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Bart M. Vanaudenaerde
- Leuven Lung Transplant Unit, Katholieke Universiteit Leuven, Leuven, Belgium
- Laboratory of Pneumology, Department of Clinical and Experimental Medicine, Lung Transplant Unit, Katholieke Universiteit Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Stijn E. Verleden
- Leuven Lung Transplant Unit, Katholieke Universiteit Leuven, Leuven, Belgium
- Laboratory of Pneumology, Department of Clinical and Experimental Medicine, Lung Transplant Unit, Katholieke Universiteit Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Robin Vos
- Leuven Lung Transplant Unit, Katholieke Universiteit Leuven, Leuven, Belgium
- Laboratory of Pneumology, Department of Clinical and Experimental Medicine, Lung Transplant Unit, Katholieke Universiteit Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Dirk E. Van Raemdonck
- Leuven Lung Transplant Unit, Katholieke Universiteit Leuven, Leuven, Belgium
- Laboratory of Experimental Thoracic Surgery, Department of Clinical and Experimental Medicine, Katholieke Universiteit Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Geert M. Verleden
- Leuven Lung Transplant Unit, Katholieke Universiteit Leuven, Leuven, Belgium
- Laboratory of Pneumology, Department of Clinical and Experimental Medicine, Lung Transplant Unit, Katholieke Universiteit Leuven and University Hospitals Leuven, Leuven, Belgium
| | | | - Sandra Claes
- Laboratory of Virology and Chemotherapy (Rega Institute), Department of Microbiology and Immunology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy (Rega Institute), Department of Microbiology and Immunology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Eric Verbeken
- Department of Histopathology, University Hospitals Leuven, Leuven, Belgium
| | - Catherine M. Verfaillie
- Stem Cell Institute Leuven, Department of Development and Regeneration, KU Leuven-University of Leuven, Leuven, Belgium
| | - Arne P. Neyrinck
- Laboratory of Anesthesiology and Algology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven and University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
- Leuven Lung Transplant Unit, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
29
|
Cunha JPMCM, Leuckx G, Sterkendries P, Korf H, Bomfim-Ferreira G, Overbergh L, Vaes B, Heimberg H, Gysemans C, Mathieu C. Human multipotent adult progenitor cells enhance islet function and revascularisation when co-transplanted as a composite pellet in a mouse model of diabetes. Diabetologia 2017; 60:134-142. [PMID: 27704164 PMCID: PMC6518081 DOI: 10.1007/s00125-016-4120-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/06/2016] [Indexed: 12/28/2022]
Abstract
AIMS/HYPOTHESIS Hypoxia in the initial days after islet transplantation leads to considerable loss of islet mass and contributes to disappointing outcomes in the clinical setting. The aim of the present study was to investigate whether co-transplantation of human non-endothelial bone marrow-derived multipotent adult progenitor cells (MAPCs), which are non-immunogenic and can secrete angiogenic growth factors during the initial days after implantation, could improve islet engraftment and survival. METHODS Islets (150) were co-transplanted, with or without human MAPCs (2.5 × 105) as separate or composite pellets, under the kidney capsule of syngeneic alloxan-induced diabetic C57BL/6 mice. Blood glucose levels were frequently monitored and IPGTTs were carried out. Grafts and serum were harvested at 2 and 5 weeks after transplantation to assess outcome. RESULTS Human MAPCs produced high amounts of angiogenic growth factors, including vascular endothelial growth factor, in vitro and in vivo, as demonstrated by the induction of neo-angiogenesis in the chorioallantoic membrane assay. Islet-human MAPC co-transplantation as a composite pellet significantly improved the outcome of islet transplantation as measured by the initial glycaemic control, diabetes reversal rate, glucose tolerance and serum C-peptide concentration compared with the outcome following transplantation of islets alone. Histologically, a higher blood vessel area and density in addition to a higher vessel/islet ratio were detected in recipients of islet-human MAPC composites. CONCLUSIONS/INTERPRETATION The present data suggest that co-transplantation of mouse pancreatic islets with human MAPCs, which secrete high amounts of angiogenic growth factors, enhance islet graft revascularisation and subsequently improve islet graft function.
Collapse
Affiliation(s)
- João Paulo M C M Cunha
- Laboratory of Clinical and Experimental Endocrinology, Katholieke Universiteit Leuven (KULEUVEN), Campus Gasthuisberg O&N1, Herestraat 49 bus 902, 3000, Leuven, Belgium
| | - Gunter Leuckx
- Beta cell neogenesis laboratory, Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Hannelie Korf
- Laboratory of Clinical and Experimental Endocrinology, Katholieke Universiteit Leuven (KULEUVEN), Campus Gasthuisberg O&N1, Herestraat 49 bus 902, 3000, Leuven, Belgium
| | - Gabriela Bomfim-Ferreira
- Laboratory of Clinical and Experimental Endocrinology, Katholieke Universiteit Leuven (KULEUVEN), Campus Gasthuisberg O&N1, Herestraat 49 bus 902, 3000, Leuven, Belgium
| | - Lutgart Overbergh
- Laboratory of Clinical and Experimental Endocrinology, Katholieke Universiteit Leuven (KULEUVEN), Campus Gasthuisberg O&N1, Herestraat 49 bus 902, 3000, Leuven, Belgium
| | | | - Harry Heimberg
- Beta cell neogenesis laboratory, Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Conny Gysemans
- Laboratory of Clinical and Experimental Endocrinology, Katholieke Universiteit Leuven (KULEUVEN), Campus Gasthuisberg O&N1, Herestraat 49 bus 902, 3000, Leuven, Belgium.
| | - Chantal Mathieu
- Laboratory of Clinical and Experimental Endocrinology, Katholieke Universiteit Leuven (KULEUVEN), Campus Gasthuisberg O&N1, Herestraat 49 bus 902, 3000, Leuven, Belgium
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Acute respiratory distress syndrome (ARDS) is a devastating disease process with a 40% mortality rate, and for which there is no therapy. Stem cells are an exciting potential therapy for ARDS, and are currently the subject of intensive ongoing research efforts. We review data concerning the therapeutic promise of cell-based therapies for ARDS. RECENT FINDINGS Recent experimental studies suggest that cell-based therapies, particularly mesenchymal stem/stromal cells (MSCs), endothelial progenitor cells, and embryonic or induced pluripotent stem cells all offer considerable promise for ARDS. Of these cell types, mesenchymal stromal cells offer the greatest potential for allogeneic therapy, given the large body of preclinical data supporting their use, and the advanced state of our understanding of their diverse mechanisms of action. Although other stem cells such as EPCs also have therapeutic potential, greater barriers exist, particularly the requirement for autologous EPC therapy. Other stem cells, such as ESCs and iPSCs, are at an earlier stage in the translational process, but offer the hope of directly replacing injured lung tissue. Ultimately, lung-derived stem cells may offer the greatest hope for lung diseases, given their homeostatic role in replacing and repairing damaged native lung tissues.MSCs are currently in early phase clinical trials, the results of which will be of critical importance to subsequent translational efforts for MSCs in ARDS. A number of translational challenges exist, including minimizing variability in cell batches, developing standard tests for cell potency, and producing large amounts of clinical-grade cells for use in patients. SUMMARY Cell-based therapies, particularly MSCs, offer considerable promise for the treatment of ARDS. Overcoming translational challenges will be important to fully realizing their therapeutic potential for ARDS.
Collapse
|
31
|
Cruz FF, Weiss DJ, Rocco PRM. Prospects and progress in cell therapy for acute respiratory distress syndrome. Expert Opin Biol Ther 2016; 16:1353-1360. [DOI: 10.1080/14712598.2016.1218845] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Could stem cells be the future therapy for sepsis? Blood Rev 2016; 30:439-452. [PMID: 27297212 DOI: 10.1016/j.blre.2016.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 12/15/2022]
Abstract
The severity and threat of sepsis is well known, and despite several decades of research, the mortality continues to be high. Stem cells have great potential to be used in various clinical disorders. The innate ability of stem cells such as pluripotency, self-renewal makes them potential agents for therapeutic intervention. The pathophysiology of sepsis is a plethora of complex mechanisms which include the initial microbial infection, followed by "cytokine storm," endothelial dysfunction, coagulation cascade, and the late phase of apoptosis and immune paralysis which ultimately results in multiple organ dysfunction. Stem cells could potentially alter each step of this complex pathophysiology of sepsis. Multiple organ dysfunction associated with sepsis most often leads to death and stem cells have shown their ability to prevent the organ damage and improve the organ function. The possible mechanisms of therapeutic potential of stem cells in sepsis have been discussed in detail. The route of administration, dose level, and timing also play vital role in the overall effect of stem cells in sepsis.
Collapse
|
33
|
Moodley Y, Sturm M, Shaw K, Shimbori C, Tan DBA, Kolb M, Graham R. Human mesenchymal stem cells attenuate early damage in a ventilated pig model of acute lung injury. Stem Cell Res 2016; 17:25-31. [PMID: 27231985 DOI: 10.1016/j.scr.2016.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 05/06/2016] [Accepted: 05/11/2016] [Indexed: 01/15/2023] Open
Abstract
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a major cause of global morbidity and mortality. Mesenchymal stem cells (MSC) have shown promise in treating inflammatory lung conditions. We hypothesised that human MSC (hMSC) can improve ALI/ARDS through their anti-inflammatory actions. We subjected pigs (n=6) to intravenous oleic acid (OA) injury, ventilation and hMSC infusion, while the controls (n=5) had intravenous OA, ventilation and an infusion vehicle control. hMSC were infused 1h after the administration of OA. The animals were monitored for additional 4h. Nuclear translocation of nuclear factor-light chain enhancer of activated B cells (NF-κB), a transcription factor that mediates several inflammatory pathways was reduced in hMSC treated pigs compared to controls (p=0.04). There was no significant difference in lung injury, assessed by histological scoring in hMSC treated pigs versus controls (p=0.063). There was no difference in neutrophil counts between hMSC-treated pigs and controls. Within 4h, there was no difference in the levels of IL-10 and IL-8 pre- and post-treatment with hMSC. In addition, there was no difference in hemodynamics, lung mechanics or arterial blood gases between hMSC treated animals and controls. Subsequent studies are required to determine if the observed decrease in inflammatory transcription factors will translate into improvement in inflammation and in physiological parameters over the long term.
Collapse
Affiliation(s)
- Yuben Moodley
- School of Medicine and Pharmacology, University of Western Australia, Nedlands, Western Australia, Australia; Department of Respiratory Medicine, Fiona Stanley Hospital, Murdoch, Western Australia, Australia; Stem Cell Unit, Institute for Respiratory Health, Nedlands, Western Australia, Australia.
| | - Marian Sturm
- School of Medicine and Pharmacology, University of Western Australia, Nedlands, Western Australia, Australia; Cell and Tissue Therapies WA, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Kathryn Shaw
- Cell and Tissue Therapies WA, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Chiko Shimbori
- Department of Medicine, Pathology, and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Dino B A Tan
- School of Medicine and Pharmacology, University of Western Australia, Nedlands, Western Australia, Australia; Stem Cell Unit, Institute for Respiratory Health, Nedlands, Western Australia, Australia
| | - Martin Kolb
- Department of Medicine, Pathology, and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Ruth Graham
- Department of Anesthesia, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
34
|
Horie S, Curley GF, Laffey JG. What's new in cell therapies in ARDS? Intensive Care Med 2015; 42:779-782. [PMID: 26626060 DOI: 10.1007/s00134-015-4140-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/04/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Shahd Horie
- Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland Galway, Galway, Ireland.,Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
| | - Gerard F Curley
- Department of Anesthesia, Keenan Research Centre for Biomedical Science, St Michael's Hospital, 30 bond Street, Toronto, M5B 1W8, Canada
| | - John G Laffey
- Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland. .,Department of Anesthesia, Keenan Research Centre for Biomedical Science, St Michael's Hospital, 30 bond Street, Toronto, M5B 1W8, Canada.
| |
Collapse
|
35
|
La Francesca S, Ting AE, Sakamoto J, Rhudy J, Bonenfant NR, Borg ZD, Cruz FF, Goodwin M, Lehman NA, Taggart JM, Deans R, Weiss DJ. Multipotent adult progenitor cells decrease cold ischemic injury in ex vivo perfused human lungs: an initial pilot and feasibility study. Transplant Res 2014; 3:19. [PMID: 25671090 PMCID: PMC4323223 DOI: 10.1186/2047-1440-3-19] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 09/29/2014] [Indexed: 12/19/2022] Open
Abstract
Background Primary graft dysfunction (PGD) is a significant cause of early morbidity and mortality following lung transplantation. Improved organ preservation techniques will decrease ischemia-reperfusion injury (IRI) contributing to PGD. Adult bone marrow-derived adherent stem cells, including mesenchymal stromal (stem) cells (MSCs) and multipotent adult progenitor cells (MAPCs), have potent anti-inflammatory actions, and we thus postulated that intratracheal MAPC administration during donor lung processing would decrease IRI. The goal of the study was therefore to determine if intratracheal MAPC instillation would decrease lung injury and inflammation in an ex vivo human lung explant model of prolonged cold storage and subsequent reperfusion. Methods Four donor lungs not utilized for transplant underwent 8 h of cold storage (4°C). Following rewarming for approximately 30 min, non-HLA-matched allogeneic MAPCs (1 × 107 MAPCs/lung) were bronchoscopically instilled into the left lower lobe (LLL) and vehicle comparably instilled into the right lower lobe (RLL). The lungs were then perfused and mechanically ventilated for 4 h and subsequently assessed for histologic injury and for inflammatory markers in bronchoalveolar lavage fluid (BALF) and lung tissue. Results All LLLs consistently demonstrated a significant decrease in histologic and BALF inflammation compared to vehicle-treated RLLs. Conclusions These initial pilot studies suggest that use of non-HLA-matched allogeneic MAPCs during donor lung processing can decrease markers of cold ischemia-induced lung injury. Electronic supplementary material The online version of this article (doi:10.1186/2047-1440-3-19) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Saverio La Francesca
- Cardiac Surgery and Cardiopulmonary Transplantation, DeBakey Heart and Vascular Center, The Houston Methodist, Houston, TX USA ; Harvard Apparatus Regenerative Technology, Inc, Holliston, MA USA
| | | | - Jason Sakamoto
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX USA
| | - Jessica Rhudy
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX USA
| | - Nicholas R Bonenfant
- Department of Medicine, University of Vermont College of Medicine, 226 Health Science Research Facility, Burlington, VT USA
| | - Zachary D Borg
- Department of Medicine, University of Vermont College of Medicine, 226 Health Science Research Facility, Burlington, VT USA
| | - Fernanda F Cruz
- Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Meagan Goodwin
- Department of Medicine, University of Vermont College of Medicine, 226 Health Science Research Facility, Burlington, VT USA
| | | | | | | | - Daniel J Weiss
- Department of Medicine, University of Vermont College of Medicine, 226 Health Science Research Facility, Burlington, VT USA
| |
Collapse
|
36
|
Walter J, Ware LB, Matthay MA. Mesenchymal stem cells: mechanisms of potential therapeutic benefit in ARDS and sepsis. THE LANCET RESPIRATORY MEDICINE 2014; 2:1016-26. [PMID: 25465643 DOI: 10.1016/s2213-2600(14)70217-6] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Multipotent mesenchymal stem (stromal) cells (MSCs) have shown promising therapeutic effects in preclinical models of both acute respiratory distress syndrome (ARDS) and sepsis. Although initial research focused on the ability of MSCs to engraft at sites of tissue injury, increasing evidence suggests that MSCs have their therapeutic effects through mechanisms unrelated to long-term incorporation into host tissue. One of the most compelling of these pathways is the ability of MSCs to interact with injured tissue through the release of soluble bioactive factors. This Review provides an overview of the general properties of MSCs, and then outlines ways in which the paracrine effects of MSCs might reduce lung injury and enhance lung repair in ARDS and sepsis. Finally, we summarise ongoing challenges in MSC research and identify areas in which the discipline might progress in the coming years.
Collapse
Affiliation(s)
- James Walter
- Departments of Medicine and Anaesthesia, Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Lorraine B Ware
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Michael A Matthay
- Departments of Medicine and Anaesthesia, Cardiovascular Research Institute, University of California, San Francisco, CA, USA.
| |
Collapse
|
37
|
Rafat N, Dacho C, Kowanetz G, Betzen C, Tönshoff B, Yard B, Beck G. Bone marrow-derived progenitor cells attenuate inflammation in lipopolysaccharide-induced acute respiratory distress syndrome. BMC Res Notes 2014; 7:613. [PMID: 25196505 PMCID: PMC4161837 DOI: 10.1186/1756-0500-7-613] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 08/29/2014] [Indexed: 01/11/2023] Open
Abstract
Background Acute respiratory distress syndrome (ARDS) is the most common cause of respiratory failure among critically ill patients. Novel treatment strategies are required to address this common clinical problem. The application of exogenous adult stem cells was associated with a beneficial outcome in various pre-clinical models of ARDS. In the present study we evaluated the functional capacity and homing ability of bone marrow-derived progenitor cells (BMDPC) in vitro and investigated their potential as a treatment strategy in lipopolysaccharide (LPS)-induced ARDS. Results Evaluation of the BMDPC showed functional capacity to form endothelial outgrowth cell colonies, which stained positive for CD133 and CD31. Furthermore, DiI-stained BMDPC were demonstrated to home to injured lung tissue. Rats treated with BMDPC showed significantly reduced histopathological changes, a reduced expression of ICAM-1 and VCAM-1 by the lung tissue, an inhibition of proinflammatory cytokine synthesis, a reduced weight loss and a reduced mortality (p < 0.03) compared to rats treated with LPS alone. Conclusions These findings suggest that the application of exogenous BMDPC can attenuate inflammation in LPS-induced ARDS and thereby reduce the severity of septic organ damage. Cell therapy strategies using adult stem cells might therefore become a novel and alternative option in ARDS therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Grietje Beck
- Department for Anaesthesiology and Intensive Care Medicine, Dr, Horst-Schmidt Clinic, Wiesbaden, Germany.
| |
Collapse
|
38
|
Masterson C, O'Toole D. The mesenchymal stromal cell magic bullet finds yet another target. Stem Cell Res Ther 2014; 5:82. [PMID: 25158102 PMCID: PMC4097829 DOI: 10.1186/scrt471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Rojas and colleagues have presented an exciting paper demonstrating yet another relevant preclinical setting in which the mesenchymal stromal cell has a potential therapeutic application. What is particularly interesting about this study is that it addresses a disease, blood-borne systemic sepsis, which has multiple complex host responses and involves a variety of disparate organs and immune cell types. Here, the authors focus on how this injury relates more specifically to the lung, with quite dramatic improvements in several assessed injury parameters. Where does this latest demonstration of mesenchymal stromal cell efficacy leave us with regard to getting these cell therapies to the acute respiratory distress syndrome patient?
Collapse
|