1
|
Asiimwe R, Knott B, Greene ME, Wright E, Bell M, Epstein D, Yates SD, Gonzalez MV, Fry S, Boydston E, Clevenger S, Locke JE, Brocato BE, Burgan CM, Burney R, Arora N, Duncan VE, Richter HE, Gunn D, Freud AG, Little SC, Porrett PM. Inhibition of NFAT promotes loss of tissue resident uterine natural killer cells and attendant pregnancy complications in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.07.583906. [PMID: 38559147 PMCID: PMC10979847 DOI: 10.1101/2024.03.07.583906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Uterine natural killer cells (uNKs) are a tissue resident lymphocyte population that are critical for pregnancy success. Although mouse models have demonstrated that NK deficiency results in abnormal placentation and poor pregnancy outcomes, the generalizability of this knowledge to humans remains unclear. Here we identify uterus transplant (UTx) recipients as a human population with reduced uNK cells and altered pregnancy phenotypes. We show that the NK reduction in UTx correlates with impaired transcriptional programming of NK tissue residency arising from the inhibition of NFAT-mediated signaling. Our observations suggest that NFAT-dependent genes modulate multiple molecular tissue residency programs in uNKs. These include early residency programs involving AP-1-family transcription factors and TGF-β-mediated upregulation of surface integrins. Collectively, our data identify a previously undescribed role for NFAT in uterine NK tissue residency and provide novel mechanistic insights into the biologic basis of pregnancy complications due to alteration of tissue resident NK subsets in humans. One Sentence Summary Role of NFAT in uterine NK cell tissue residency.
Collapse
|
2
|
Parks SE, Geng T, Monsivais D. Endometrial TGFβ signaling fosters early pregnancy development by remodeling the fetomaternal interface. Am J Reprod Immunol 2023; 90:e13789. [PMID: 38009061 PMCID: PMC10683870 DOI: 10.1111/aji.13789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 11/28/2023] Open
Abstract
The endometrium is a unique and highly regenerative tissue with crucial roles during the reproductive lifespan of a woman. As the first site of contact between mother and embryo, the endometrium, and its critical processes of decidualization and immune cell recruitment, play a leading role in the establishment of pregnancy, embryonic development, and reproductive capacity. These integral processes are achieved by the concerted actions of steroid hormones and a myriad of growth factor signaling pathways. This review focuses on the roles of the transforming growth factor β (TGFβ) pathway in the endometrium during the earliest stages of pregnancy through the lens of immune cell regulation and function. We discuss how key ligands in the TGFβ family signal through downstream SMAD transcription factors and ultimately remodel the endometrium into a state suitable for embryo implantation and development. We also focus on the key roles of the TGFβ signaling pathway in recruiting uterine natural killer cells and their collective remodeling of the decidua and spiral arteries. By providing key details about immune cell populations and TGFβ signaling within the endometrium, it is our goal to shed light on the intricate remodeling that is required to achieve a successful pregnancy.
Collapse
Affiliation(s)
- Sydney E. Parks
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
- Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ting Geng
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Diana Monsivais
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
- Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
3
|
Shen Q, Wu X, Chen J, He C, Wang Z, Zhou B, Zhang H. Immune Regulation of Seminal Plasma on the Endometrial Microenvironment: Physiological and Pathological Conditions. Int J Mol Sci 2023; 24:14639. [PMID: 37834087 PMCID: PMC10572377 DOI: 10.3390/ijms241914639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Seminal plasma (SP) accounts for more than 90% of semen volume. It induces inflammation, regulates immune tolerance, and facilitates embryonic development and implantation in the female reproductive tract. In the physiological state, SP promotes endometrial decidualization and causes changes in immune cells such as macrophages, natural killer cells, regulatory T cells, and dendritic cells. This leads to the secretion of cytokines and chemokines and also results in the alteration of miRNA profiles and the expression of genes related to endometrial tolerance and angiogenesis. Together, these changes modulate the endometrial immune microenvironment and contribute to implantation and pregnancy. However, in pathological situations, abnormal alterations in SP due to advanced age or poor diet in men can interfere with a woman's immune adaptation to pregnancy, negatively affecting embryo implantation and even the health of the offspring. Uterine pathologies such as endometriosis and endometritis can cause the endometrium to respond negatively to SP, which can further contribute to pathological progress and interfere with conception. The research on the mechanism of SP in the endometrium is conducive to the development of new targets for intervention to improve reproductive outcomes and may also provide new ideas for semen-assisted treatment of clinical infertility.
Collapse
Affiliation(s)
- Qiuzi Shen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.S.); (X.W.); (J.C.); (C.H.)
| | - Xiaoyu Wu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.S.); (X.W.); (J.C.); (C.H.)
| | - Jin Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.S.); (X.W.); (J.C.); (C.H.)
| | - Chao He
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.S.); (X.W.); (J.C.); (C.H.)
| | - Zehao Wang
- School of Management, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Boyan Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.S.); (X.W.); (J.C.); (C.H.)
| | - Huiping Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.S.); (X.W.); (J.C.); (C.H.)
| |
Collapse
|
4
|
Herrera L, Martin-Inaraja M, Bengoetxea A, Vendrell A, Pérez-Fernández S, Eguizabal C, Matorras R. Natural killer cell subsets in endometrial fluid: a pilot study of their association with the endometrial cycle and reproductive parameters. J Assist Reprod Genet 2023; 40:2241-2250. [PMID: 37436645 PMCID: PMC10440323 DOI: 10.1007/s10815-023-02862-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/13/2023] [Indexed: 07/13/2023] Open
Abstract
PURPOSE To investigate if there are natural killer (NK) cells in endometrial fluid (EF) and their relationship with the endometrial cycle and reproductive parameters. METHODS The population under study consisted of 43 women aged 18-40 undergoing infertility workup at our University Hospital in 2021-2022. The EF samples were obtained at the first visit to our unit, on occasion of the mock embryo transfer. The day of the cycle was considered only in cycles of 27-29 days. An immunophenotype study of NK in EF was performed by flow cytometry analysis. In a subgroup of women, on the same day, NK was studied in EF and peripheral blood. RESULTS Our study is the first to evidence NK cells in EF. None of the NK cells observed corresponded to a mature peripheral blood NK cell population (stages 4-5), and neither endometrial nor decidual uNK cells were detected. Nevertheless, we found 2 patient groups with an NK cell subset with a higher expression of CD16+, which could belong to an intermediate or transient stage between the uNK and pbNK NK cell population in the EF. We found that CD16 was significantly increased in the mid-late luteal phase and its correlation with the day of the cycle. The NK immunophenotype was different in EF and peripheral blood. CONCLUSION We described a new component of the EF, the NK cells, whose CD16 activity is closely correlated with the day of the cycle. These cells could play a role in implantation/implantation failure.
Collapse
Affiliation(s)
- Lara Herrera
- Cell Therapy, Stem Cells and Tissues Group, Basque Centre for Blood Transfusion and Human Tissues, 48960, Galdakao, Spain
- Cell Therapy, Stem Cells and Tissues Group, Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
| | - Myriam Martin-Inaraja
- Cell Therapy, Stem Cells and Tissues Group, Basque Centre for Blood Transfusion and Human Tissues, 48960, Galdakao, Spain
- Cell Therapy, Stem Cells and Tissues Group, Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
| | - Ainara Bengoetxea
- Human Reproduction Unit, Department of Obstetrics and Gynecology, Cruces University Hospital, Barakaldo, Spain
- Biocruces Bizkaia Health Research Institute, Plaza de Cruces s/n, 48903, Barakaldo, Spain
| | - Alberto Vendrell
- Biocruces Bizkaia Health Research Institute, Plaza de Cruces s/n, 48903, Barakaldo, Spain.
| | - Silvia Pérez-Fernández
- Biocruces Bizkaia Health Research Institute, Plaza de Cruces s/n, 48903, Barakaldo, Spain
| | - Cristina Eguizabal
- Cell Therapy, Stem Cells and Tissues Group, Basque Centre for Blood Transfusion and Human Tissues, 48960, Galdakao, Spain
- Cell Therapy, Stem Cells and Tissues Group, Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
| | - Roberto Matorras
- Human Reproduction Unit, Department of Obstetrics and Gynecology, Cruces University Hospital, Barakaldo, Spain
- Biocruces Bizkaia Health Research Institute, Plaza de Cruces s/n, 48903, Barakaldo, Spain
- Department of Medical-Surgical Specialties, Basque Country University, Lejona, Spain
- Instituto Valenciano de Infertilidad - IVI Bilbao, IVIRMA, Lejona, Spain
| |
Collapse
|
5
|
Composition and effects of seminal plasma in the female reproductive tracts on implantation of human embryos. Biomed Pharmacother 2022; 151:113065. [PMID: 35550527 DOI: 10.1016/j.biopha.2022.113065] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/21/2022] Open
Abstract
The function of seminal plasma involves acting as a transport medium for sperm and as a means of communication between the reproductive tissues of the male and female. It is also a vital factor to prime the reproductive tracts of the female for optimal pregnancy. When the reproductive tract of the female is exposed to seminal plasma, serious alterations take place, enhancing pathogen and debris clearance observed in the uterus throughout mating. It is also capable of supporting embryo growth, promoting the receptivity of the uterus, and establishing tolerance to the semi-allogenic embryo. Moreover, seminal plasma is capable of regulating the functions of several female reproductive organs and providing an ideal condition for effective embryo implantation and pregnancy. It is believed that the health state of the offspring is affected by exposure to seminal plasma. For the treatment of infertility, assisted reproductive technologies have been extensively employed. The application of seminal plasma as a therapeutic approach to enhance the development of embryo competency and rate of implantation, receptivity of endometrium, and establishment of maternal immune tolerance in cycles of ART appears possible. Herein, current knowledge on the composition of seminal plasma and the physiological roles it possesses on various parts of the female reproductive tract are summarized. Moreover, the role of seminal plasma in the development of embryos, implantation, and the following fetal growth and survival have been reviewed in this article.
Collapse
|
6
|
Xie M, Li Y, Meng YZ, Xu P, Yang YG, Dong S, He J, Hu Z. Uterine Natural Killer Cells: A Rising Star in Human Pregnancy Regulation. Front Immunol 2022; 13:918550. [PMID: 35720413 PMCID: PMC9198966 DOI: 10.3389/fimmu.2022.918550] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/09/2022] [Indexed: 12/28/2022] Open
Abstract
Uterine natural killer (uNK) cells are an immune subset located in the uterus. uNK cells have distinct tissue-specific characteristics compared to their counterparts in peripheral blood and lymphoid organs. Based on their location and the pregnancy status of the host, uNK cells are classified as endometrial NK (eNK) cells or decidua NK (dNK) cells. uNK cells are important in protecting the host from pathogen invasion and contribute to a series of physiological processes that affect successful pregnancy, including uterine spiral artery remodeling, fetal development, and immunity tolerance. Abnormal alterations in uNK cell numbers and/or impaired function may cause pregnancy complications, such as recurrent miscarriage, preeclampsia, or even infertility. In this review, we introduce recent advances in human uNK cell research under normal physiological or pathological conditions, and summarize their unique influences on the process of pregnancy complications or uterine diseases. Finally, we propose the potential clinical use of uNK cells as a novel cellular immunotherapeutic approach for reproductive disorders.
Collapse
Affiliation(s)
- Min Xie
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Yan Li
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Yi-Zi Meng
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Peng Xu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China.,International Center of Future Science, Jilin University, Changchun, China
| | - Shuai Dong
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Jin He
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China
| | - Zheng Hu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Lin JZ, Lin N. Three Oxidative Stress-Related Genes That Associate Endometrial Immune Cells Are Considered as Potential Biomarkers for the Prediction of Unexplained Recurrent Implantation Failure. Front Immunol 2022; 13:902268. [PMID: 35720403 PMCID: PMC9203891 DOI: 10.3389/fimmu.2022.902268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/16/2022] [Indexed: 02/05/2023] Open
Abstract
Recurrent implantation failure (RIF) represents a new challenge in the field of assisted reproductive technology (ART). Considering the known effects of immune cell regulation on embryo implantation process, as well as our gene set variation analysis (GSVA) results that suggested the association between RIF and pathways of oxidative stress and immune responses, we hypothesized that oxidative stress- related genes (OSGs) associated with aberrant immunological factor may represent novel biomarkers for unexplained RIF. We therefore screened out the immune cell coexpressed OSGs by performing CIBERSORT, LM22 matrix and Pearson correlation, followed by constructing an OSG signature by least absolute shrinkage and selection operator (LASSO) regression. Three OSGs (AXL, SLC7A11 and UBQLN1) were then identified to establish a RIF risk signature, which showed high ability to discriminating RIF from fertile control. A nomogram was established, with a free online calculator for easier clinical application. Finally, Chilibot, protein-protein interaction analysis and BioGPS were sequentially applied for the investigation of functional relationships of these three genes with RIF and other OSGs, as well as their expression abundance across different human tissues. In conclusion, we identified an OSG signature that are relevant novel markers for the occurrence of unexplained RIF.
Collapse
Affiliation(s)
- Jia-zhe Lin
- Neurosurgical Department, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Nuan Lin
- Obstetrics and Gynecology Department, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
8
|
Rawat P, Das A. Differential expression of disparate transcription factor regime holds the key for NK cell development and function modulation. Life Sci 2022; 297:120471. [DOI: 10.1016/j.lfs.2022.120471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
|
9
|
The identification of endometrial immune cell densities and clustering analysis in the mid-luteal phase as predictor for pregnancy outcomes after IVF-ET treatment. J Reprod Immunol 2021; 148:103431. [PMID: 34627075 DOI: 10.1016/j.jri.2021.103431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/02/2021] [Accepted: 09/29/2021] [Indexed: 11/21/2022]
Abstract
Changes in endometrial immune cell density has been reported to be associated with reproductive failure. The prognostic value of endometrial immune cell density measurement remains uncertain. We aimed to investigate the prognostic value of endometrial immune cells measurement on pregnancy outcome after IVF in women. In this prospective study, one hundred twenty-eight women underwent endometrial sampling in a natural cycle preceding single frozen-thawed embryo transfer (ET). Endometrial biopsy was obtained precisely 7 days after luteinizing hormone surge (LH + 7). Multiplex immunohistochemical method was employed to simultaneously stain the endometrium samples with a panel of human antibodies against CD56 for uterine natural killer (uNK) cells, CD3 and CD8 for T cell, CD3 for pan T cells and CD68 for macrophages. The density of the various immune cells and the clustering levels between them were measured. ET was performed at the blastocyst stage. Women who did not conceive had a significantly higher density of uNK cells and higher clustering level between uNK cells-and-macrophages than women who did conceive. In accordance, the prognostic value of uNK measurement on pregnancy outcome was significantly improved when combined with uNK-to-macrophage clustering analysis simultaneously. Taken together, our results suggested that uNK cells density and clustering level between uNK cells-and macrophages may be a promising predictor for successful implantation after IVF-ET.
Collapse
|
10
|
Kanter JR, Mani S, Gordon SM, Mainigi M. Uterine natural killer cell biology and role in early pregnancy establishment and outcomes. F&S REVIEWS 2021; 2:265-286. [PMID: 35756138 PMCID: PMC9232176 DOI: 10.1016/j.xfnr.2021.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Objective While immune cells were originally thought to only play a role in maternal tolerance of the semiallogenic fetus, an active role in pregnancy establishment is becoming increasingly apparent. Uterine natural killer (uNK) cells are of specific interest because of their cyclic increase in number during the window of implantation. As a distinct entity from their peripheral blood counterparts, understanding the biology and function of uNK cells will provide the framework for understanding their role in early pregnancy establishment and adverse pregnancy outcomes. Evidence Review This review discusses unique uNK cell characteristics and presents clinical implications resulting from their dysfunction. We also systematically present existing knowledge about uNK cell function in three processes critical for successful human embryo implantation and placentation: stromal cell decidualization, spiral artery remodeling, and extravillous trophoblast invasion. Finally, we review the features of uNK cells that could help guide future investigations. Results It is clear the uNK cells are intimately involved in multiple facets of early pregnancy. This is accomplished directly, through the secretion of factors that regulate stromal cells and trophoblast function; and indirectly, via interaction with other maternal cell types present at the maternal-fetal interface. Current work also suggests that uNK cells are a heterogenous population, with subsets that potentially accomplish different functions. Conclusion Establishment of pregnancy through successful embryo implantation and placentation requires crosstalk between multiple maternal cell types and invading fetal trophoblast cells. Defects in this process have been associated with multiple adverse perinatal outcomes including hypertensive disorders of pregnancy, placenta accreta, and recurrent miscarriage though the mechanism underlying development of these defects remain unclear. Abnormalities in NK cell number and function which would disrupt physiological maternal-fetal crosstalk, could play a critical role in abnormal implantation and placentation. It is therefore imperative to dissect the unique physiological role of uNK cells in pregnancy and use this knowledge to inform clinical practice by determining how uNK cell dysfunction could lead to reproductive failure.
Collapse
Affiliation(s)
- Jessica R. Kanter
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Sneha Mani
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Scott M. Gordon
- Division of Neonatology, Children’s Hospital of Philadelphia, Pennsylvania
| | - Monica Mainigi
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
11
|
Mai C, Fukui A, Takeyama R, Yamamoto M, Saeki S, Yamaya A, Kato T, Ukita Y, Wakimoto Y, Shibahara H. NK cells that differ in expression of NKp46 might play different roles in endometrium. J Reprod Immunol 2021; 147:103367. [PMID: 34464905 DOI: 10.1016/j.jri.2021.103367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/13/2021] [Accepted: 08/22/2021] [Indexed: 12/17/2022]
Abstract
NKp46 is a natural cytotoxicity receptor expressed by NK cells and its expression is decreased in reproductive failure patients. NKp46 can be subdivided into NKp46dim and NKp46bright according to different fluorescence staining intensities. We investigated the role of the NKp46 receptor in determining the reproductive outcomes. Uterine endometrium was collected from 34 women with reproductive failure and divided into the pregnant and failed groups based on the results of a pregnancy reaction test during a 1-year follow-up period. NKp46 receptor and other activating or inhibitory receptors expressed on NK cells as well as intracellular cytokine production by NK cells were analyzed by multicolor flow cytometry. In the failed group, the percentage of NKp46dim NK cells (P < 0.05) was significantly higher and percentages of NKp46bright NK cells (P < 0.01) and CD16-/CD56bright NK cells (P < 0.05) were significantly lower than those in the pregnant group. NKp46dim NK cells were significantly and positively correlated with CD16+/NKp46dim NK cells; NKp46bright NK cells were significantly and positively correlated with CD16-/NKp46bright NK cells. CD16+/NKp46dim NK cells were significantly and positively correlated with IFN-γ- and/or TNF-α-producing NK cells; CD16-/NKp46bright NK cells were significantly and positively correlated with TGF-β1-producing NK cells. We suggest that the NKp46 receptor plays different roles in reproduction based on the different fluorescence intensities associated with NK cells, i.e. NKp46dim NK cells are involved in killing cells, whereas NKp46bright NK cells are involved in cytokine production, indicating that NKp46 could be a predictive marker to see a tolerate condition for embryos.
Collapse
Affiliation(s)
- Chuxian Mai
- Department of Obstetrics and Gynecology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Atsushi Fukui
- Department of Obstetrics and Gynecology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Ryu Takeyama
- Department of Obstetrics and Gynecology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Mayu Yamamoto
- Department of Obstetrics and Gynecology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Shinichiro Saeki
- Department of Obstetrics and Gynecology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Ayano Yamaya
- Department of Obstetrics and Gynecology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Toru Kato
- Department of Obstetrics and Gynecology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Yuji Ukita
- Department of Obstetrics and Gynecology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Yu Wakimoto
- Department of Obstetrics and Gynecology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Hiroaki Shibahara
- Department of Obstetrics and Gynecology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
| |
Collapse
|
12
|
Immune checkpoints and reproductive immunology: Pioneers in the future therapy of infertility related Disorders? Int Immunopharmacol 2021; 99:107935. [PMID: 34304000 DOI: 10.1016/j.intimp.2021.107935] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 01/01/2023]
Abstract
As co-stimulatory receptors, immune checkpoint molecules are found on the surface of various immune cells and transduce inhibitory signals following ligand binding. The most studied members in this regard include PD-1, TIM-3, and CTLA-4. The physiological part immune checkpoints possess is the prevention of dangerous immune attacks towards self-antigens throughout an immune response, which takes place through the negative regulation of the effector immune cells, through the induction of T-cell exhaustion, for instance. It has recently been suggested that each checkpoint reduces immunoactivation via distinct intracellular mechanisms of signaling. Regulators of immune checkpoints are supposed to participate actively in immune defense mechanisms against infections, preventing autoimmunity, transplantation, and tumor immune evasion. In pregnancy, as an active immunotolerance mechanism which is also natural, the maternal immune system encounters two simultaneous challenges; in addition to accepting the semi-allogeneic fetus, the maternal immune system should also prevent infections. In this regard, the part immune checkpoint molecules possess is particularly interesting. Herein, the current understanding of such part in reproductive immunology is described.
Collapse
|
13
|
A Brief Analysis of Tissue-Resident NK Cells in Pregnancy and Endometrial Diseases: The Importance of Pharmacologic Modulation. IMMUNO 2021. [DOI: 10.3390/immuno1030011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
NK cells are lymphocytes involved in the innate and adaptative immune response. These cells are located in peripheral blood and tissues with ample functions, from immune vigilant to tolerogenic reactions. In the endometrium, NK cell populations vary depending on age, hormones, and inflammation. When pregnancy occurs, tissue-resident NK cells and conventional NK cells are recruited to protect the fetus, a tolerogenic response. On the contrary, in the inflamed endometrium, various inflammatory cells down-regulate NK tolerance and impair embryo implantation. Therefore, NK cells’ pharmacological modulation is difficult to achieve. Several strategies have been used, from progesterone, lipid emulsions to steroids; the success has not been as expected. However, new therapeutic approaches have been proposed to decrease the endometrial inflammatory burden and increase pregnancy success based on understanding NK cell physiology.
Collapse
|
14
|
Díaz-Hernández I, Alecsandru D, García-Velasco JA, Domínguez F. Uterine natural killer cells: from foe to friend in reproduction. Hum Reprod Update 2021; 27:720-746. [PMID: 33528013 DOI: 10.1093/humupd/dmaa062] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/15/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Recurrent miscarriage and pre-eclampsia are common reproductive disorders, but their causes are often unknown. Recent evidence has provided new insight into immune system influences in reproductive disorders. A subset of lymphocytes of the innate immune system known as uterine natural killer (uNK) cells are now recognized as fundamental to achieving embryo implantation and successful pregnancy, but were initially attributed a bad reputation. Indeed, immune therapies have been developed to treat the 'exaggerated' immune response from uNK cells. These treatments have been based on studies of peripheral blood natural killer (pbNK) cells. However, uNK cells and pbNK cells have different phenotypic and functional characteristics. The functions of uNK cells are closely related to their interactions with the extravillous trophoblast cells (EVTs) and spiral arteries, which underlie an essential role in regulating vascular function, controlling trophoblast invasion and promoting placental development. EVTs express MHC molecules of class I HLA-C/E/G/F, while uNK cells express, among other receptors, killer cell immunoglobulin-like receptors (KIRs) that bind to HLA-C or CD94/NKG2A inhibitory receptors, and then bind HLA-E. Associations of certain KIR/HLA-C combinations with recurrent miscarriage, pre-eclampsia, and foetal growth restriction and the interactions between uNK cells, trophoblasts and vascular cells have led to the hypothesis that uNK cells may play a role in embryo implantation. OBJECTIVE AND RATIONALE Our objective was to review the evolution of our understanding of uNK cells, their functions, and their increasingly relevant role in reproduction. SEARCH METHODS Relevant literature through June 2020 was retrieved using Google Scholar and PubMed. Search terms comprised uNK cells, human pregnancy, reproductive failure, maternal KIR and HLA-C, HLA-E/G/F in EVT cells, angiogenic cytokines, CD56+ NK cells, spiral artery, oestrogen and progesterone receptors, KIR haplotype and paternal HLA-C2. OUTCOMES This review provides key insights into the evolving conceptualization of uNK cells, from their not-so-promising beginnings to now, when they are considered allies in reproduction. We synthesized current knowledge about uNK cells, their involvement in reproduction and their main functions in placental vascular remodeling and trophoblast invasion. One of the issues that this review presents is the enormous complexity involved in studying the immune system in reproduction. The complexity in the immunology of the maternal-foetal interface lies in the great variety of participating molecules, the processes and interactions that occur at different levels (molecular, cellular, tissue, etc.) and the great diversity of genetic combinations that are translated into different types of responses. WIDER IMPLICATIONS Insights into uNK cells could offer an important breakthrough for ART outcomes, since each patient could be assessed based on the combination of HLA and its receptors in their uNK cells, evaluating the critical interactions at the materno-foetal interface. However, owing to the technical challenges in studying uNK cells in vivo, there is still much knowledge to gain, particularly regarding their exact origin and functions. New studies using novel molecular and genetic approaches can facilitate the identification of mechanisms by which uNK cells interact with other cells at the materno-foetal interface, perhaps translating this knowledge into clinical applicability.
Collapse
Affiliation(s)
| | - Diana Alecsandru
- Department of Immunology and Department of Reproductive Endocrinology and Infertility, Instituto Valenciano de Infertilidad-Madrid, Rey Juan Carlos University (IVI), Madrid 28023, Spain
| | - Juan Antonio García-Velasco
- Department of Immunology and Department of Reproductive Endocrinology and Infertility, Instituto Valenciano de Infertilidad-Madrid, Rey Juan Carlos University (IVI), Madrid 28023, Spain
| | | |
Collapse
|
15
|
Huhn O, Zhao X, Esposito L, Moffett A, Colucci F, Sharkey AM. How Do Uterine Natural Killer and Innate Lymphoid Cells Contribute to Successful Pregnancy? Front Immunol 2021; 12:607669. [PMID: 34234770 PMCID: PMC8256162 DOI: 10.3389/fimmu.2021.607669] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 05/10/2021] [Indexed: 12/19/2022] Open
Abstract
Innate lymphoid cells (ILCs) are the most abundant immune cells in the uterine mucosa both before and during pregnancy. Circumstantial evidence suggests they play important roles in regulating placental development but exactly how they contribute to the successful outcome of pregnancy is still unclear. Uterine ILCs (uILCs) include subsets of tissue-resident natural killer (NK) cells and ILCs, and until recently the phenotype and functions of uILCs were poorly defined. Determining the specific roles of each subset is intrinsically challenging because of the rapidly changing nature of the tissue both during the menstrual cycle and pregnancy. Single-cell RNA sequencing (scRNAseq) and high dimensional flow and mass cytometry approaches have recently been used to analyse uILC populations in the uterus in both humans and mice. This detailed characterisation has significantly changed our understanding of the heterogeneity within the uILC compartment. It will also enable key clinical questions to be addressed including whether specific uILC subsets are altered in infertility, miscarriage and pregnancy disorders such as foetal growth restriction and pre-eclampsia. Here, we summarise recent advances in our understanding of the phenotypic and functional diversity of uILCs in non-pregnant endometrium and first trimester decidua, and review how these cells may contribute to successful placental development.
Collapse
Affiliation(s)
- Oisín Huhn
- Department of Obstetrics and Gynaecology, National Institute for Health Research Cambridge, Biomedical Research Centre, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience University of Cambridge, Cambridge, United Kingdom
| | - Xiaohui Zhao
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience University of Cambridge, Cambridge, United Kingdom
| | - Laura Esposito
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience University of Cambridge, Cambridge, United Kingdom
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Ashley Moffett
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience University of Cambridge, Cambridge, United Kingdom
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Francesco Colucci
- Department of Obstetrics and Gynaecology, National Institute for Health Research Cambridge, Biomedical Research Centre, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience University of Cambridge, Cambridge, United Kingdom
| | - Andrew M. Sharkey
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience University of Cambridge, Cambridge, United Kingdom
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
16
|
Rodriguez‐Garcia M, Patel MV, Shen Z, Wira CR. The impact of aging on innate and adaptive immunity in the human female genital tract. Aging Cell 2021; 20:e13361. [PMID: 33951269 PMCID: PMC8135005 DOI: 10.1111/acel.13361] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 01/10/2023] Open
Abstract
Mucosal tissues in the human female reproductive tract (FRT) are primary sites for both gynecological cancers and infections by a spectrum of sexually transmitted pathogens, including human immunodeficiency virus (HIV), that compromise women's health. While the regulation of innate and adaptive immune protection in the FRT by hormonal cyclic changes across the menstrual cycle and pregnancy are being intensely studied, little to nothing is known about the alterations in mucosal immune protection that occur throughout the FRT as women age following menopause. The immune system in the FRT has two key functions: defense against pathogens and reproduction. After menopause, natural reproductive function ends, and therefore, two overlapping processes contribute to alterations in immune protection in aging women: menopause and immunosenescence. The goal of this review is to summarize the multiple immune changes that occur in the FRT with aging, including the impact on the function of epithelial cells, immune cells, and stromal fibroblasts. These studies indicate that major aspects of innate and adaptive immunity in the FRT are compromised in a site‐specific manner in the FRT as women age. Further, at some FRT sites, immunological compensation occurs. Overall, alterations in mucosal immune protection contribute to the increased risk of sexually transmitted infections (STI), urogenital infections, and gynecological cancers. Further studies are essential to provide a foundation for the development of novel therapeutic interventions to restore immune protection and reverse conditions that threaten women's lives as they age.
Collapse
Affiliation(s)
| | - Mickey V. Patel
- Department of Microbiology and Immunology Geisel School of Medicine at Dartmouth Lebanon NH USA
| | - Zheng Shen
- Department of Microbiology and Immunology Geisel School of Medicine at Dartmouth Lebanon NH USA
| | - Charles R. Wira
- Department of Microbiology and Immunology Geisel School of Medicine at Dartmouth Lebanon NH USA
| |
Collapse
|
17
|
Liu Y, Chen P, Fei H, Li M, Li X, Li T. Natural killer cells contributed to recurrent miscarriage by SP1-CASP3-PARP1. Int Immunopharmacol 2021; 93:107424. [PMID: 33556666 DOI: 10.1016/j.intimp.2021.107424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/06/2021] [Accepted: 01/19/2021] [Indexed: 11/19/2022]
Abstract
Recurrent miscarriage (RM) is an early pregnancy complication. Natural Killer cells are an important part of the innate immune system of endometrial. In this study, weighted gene correlation network analysis was used to study the expression profile data of the endometrial tissue of patients with recurrent miscarriage and selected brown module as key module positively related to the numbers of miscarriages. With metascape tool, natural killer cells mediated cytotoxicity related genes, such as CASP3, were selected. DisNor database showed that CASP3 down-regulates PARP1. According to TRRUST database, CASP3 was regulated by SP1. Through comprehensive analysis of uNK cell related genes, we proposed that natural killer cells contribute to recurrent miscarriage by SP1-CASP3-PARP1.
Collapse
Affiliation(s)
- Yun Liu
- Department of Obstetrics and Gynecology, The Seventh Affiliated Hospital, Sun Yat-sen University, China.
| | - Peigen Chen
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-sen University, China.
| | - Hui Fei
- Department of Obstetrics and Gynecology, The Seventh Affiliated Hospital, Sun Yat-sen University, China.
| | - Mengxiong Li
- Department of Obstetrics and Gynecology, The Seventh Affiliated Hospital, Sun Yat-sen University, China.
| | - Xian Li
- Affiliated Hospital of Zunyi Medical University, China
| | - Tian Li
- Department of Obstetrics and Gynecology, The Seventh Affiliated Hospital, Sun Yat-sen University, China.
| |
Collapse
|
18
|
Guerrero B, Hassouneh F, Delgado E, Casado JG, Tarazona R. Natural killer cells in recurrent miscarriage: An overview. J Reprod Immunol 2020; 142:103209. [PMID: 32992208 DOI: 10.1016/j.jri.2020.103209] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/31/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022]
Abstract
Recurrent Miscarriage is an early pregnancy complication which affects about 1-3 % of child-bearing couples. The mechanisms involved in the occurrence of recurrent miscarriages are not clearly understood. In the last decade Natural Killer cells have been studied in peripheral blood and uterus in order to determine if there are specific characteristics of Natural Killer cells associated with miscarriage. Different authors have described an increased number of uterine and peripheral blood Natural Killer cells in women with recurrent miscarriages compared to control women. However, its relationship with miscarriage has not been confirmed. In patients with recurrent miscarriage a lack of inhibition of decidua Natural Killer cells can be observed, which leads to a more activated state characterized by higher levels of proinflammatory cytokines. In peripheral blood, it has been also reported a dysfunctional cytokine production by Natural Killer cells, with an increase of interferon-γ levels and a decrease of Interleukin-4. Significant progress has been made in the last decade in understanding the biology of Natural Killer cells, including the identification of new receptors that also contribute to the activation and regulation of Natural Killer cells. In this review, we summarize the current progress in the study of Natural Killer cells in recurrent miscarriage.
Collapse
Affiliation(s)
| | | | - Elena Delgado
- Clínica Norba, Ginecología y Reproducción, Cáceres, Spain
| | - Javier G Casado
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | | |
Collapse
|
19
|
Bahrami-Asl Z, Farzadi L, Fattahi A, Yousefi M, Quinonero A, Hakimi P, Latifi Z, Nejabati HR, Ghasemnejad T, Sadigh AR, Heidari MH, Nouri M, Novin MG, Dominguez F. Tacrolimus Improves the Implantation Rate in Patients with Elevated Th1/2 Helper Cell Ratio and Repeated Implantation Failure (RIF). Geburtshilfe Frauenheilkd 2020; 80:851-862. [PMID: 32817992 PMCID: PMC7428373 DOI: 10.1055/a-1056-3148] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/09/2019] [Indexed: 12/21/2022] Open
Abstract
Introduction
An abnormal endometrial immune response is involved in the pathogenesis of repeated implantation failure (RIF), so we investigated the effectiveness of tacrolimus treatment on the endometrium of RIF patients.
Materials and Methods
Ten RIF patients with elevated T-helper 1/T-helper 2 (Th1/Th2) cell ratios were recruited into a clinical study. The expression of p53, leukemia inhibitory factor (LIF), interleukin (IL)-4, IL-10, IL-17, and interferon gamma (IFN-γ) in the endometrium of patients with and without tacrolimus treatment and the association of these factors with assisted reproductive technology (ART) outcomes were investigated.
Results
Tacrolimus significantly increased the expression of LIF, IL-10, and IL-17 and decreased the expression of IL-4, IFN-γ, and the IFN-γ/IL-10 ratio in RIF patients. Tacrolimus treatment resulted in an implantation rate of 40%, a clinical pregnancy rate of 50%, and a live birth rate of 35% in RIF patients with elevated Th1/Th2 ratios who had previously failed to become pregnant despite at least three transfers of embryos. We also found a significant positive correlation between IL-10 levels and the implantation rate.
Conclusions
Our findings suggest that RIF patients with a higher Th1/Th2 ratio could be candidates for tacrolimus therapy and that this immunosuppressive drug could be acting through upregulation of LIF, IL-10, and IL-17.
Collapse
Affiliation(s)
- Zahra Bahrami-Asl
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Fundacion Instituto Valenciano de Infertilidad (FIVI), Instituto Universitario IVI (IUIVI), ISS LaFe, Valencia, Spain
| | - Laya Farzadi
- Department of Reproductive Biology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Fattahi
- Department of Reproductive Biology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alicia Quinonero
- Fundacion Instituto Valenciano de Infertilidad (FIVI), Instituto Universitario IVI (IUIVI), ISS LaFe, Valencia, Spain
| | - Parvin Hakimi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Latifi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Reza Nejabati
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Ghasemnejad
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aydin Raei Sadigh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hassan Heidari
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Nouri
- Department of Reproductive Biology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Institute for Stem Cell and Regenerative Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marefat Ghaffari Novin
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Francisco Dominguez
- Fundacion Instituto Valenciano de Infertilidad (FIVI), Instituto Universitario IVI (IUIVI), ISS LaFe, Valencia, Spain
| |
Collapse
|
20
|
Lee CL, Vijayan M, Wang X, Lam KKW, Koistinen H, Seppala M, Li RHW, Ng EHY, Yeung WSB, Chiu PCN. Glycodelin-A stimulates the conversion of human peripheral blood CD16-CD56bright NK cell to a decidual NK cell-like phenotype. Hum Reprod 2020; 34:689-701. [PMID: 30597092 DOI: 10.1093/humrep/dey378] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/25/2018] [Accepted: 12/03/2018] [Indexed: 12/22/2022] Open
Abstract
STUDY QUESTION Does glycodelin-A (GdA) induce conversion of human peripheral blood CD16-CD56bright natural killer (NK) cells to decidual NK (dNK) cells to facilitate placentation? SUMMARY ANSWER GdA binds to blood CD16-CD56bright NK cells via its sialylated glycans and converts them to a dNK-like cells, which in turn regulate endothelial cell angiogenesis and trophoblast invasion via vascular endothelial growth factor (VEGF) and insulin-like growth factor-binding protein 1 (IGFBP-1) secretion, respectively. WHAT IS KNOWN ALREADY dNK cells are the most abundant leucocyte population in the decidua. These cells express CD16-CD56bright phenotype. Peripheral blood CD16-CD56bright NK cells and hematopoietic precursors have been suggested to be capable of differentiating towards dNK cells upon exposure to the decidual microenvironment. These cells regulate trophoblast invasion during spiral arteries remodelling and mediate homoeostasis and functions of the endothelial cells. GdA is an abundant glycoprotein in the human decidua with peak expression between the 6th and 12th week of gestation, suggesting a role in early pregnancy. Indeed, GdA interacts with and modulates functions and differentiation of trophoblast and immune cells in the human feto-maternal interface. Aberrant GdA expression during pregnancy is associated with unexplained infertility, pregnancy loss and pre-eclampsia. STUDY DESIGN, SIZE, DURATION CD16+CD56dim, CD16-CD56bright and dNK cells were isolated from human peripheral blood and decidua tissue, respectively, by immuno-magnetic beads or fluorescence-activated cell sorting. Human extravillous trophoblasts were isolated from first trimester placental tissue after termination of pregnancy. Biological activities of the cells were studied after treatment with GdA at a physiological dose of 5 μg/mL. GdA was purified from human amniotic fluid by immuno-affinity chromatography. PARTICIPANTS/MATERIALS, SETTING, METHODS Expression of VEGF, CD9, CD49a, CD151 and CD158a in the cells were determined by flow cytometry. Angiogenic proteins in the spent media of NK cells were determined by cytokine array and ELISA. Blocking antibodies were used to study the functions of the identified angiogenic proteins. Endothelial cell angiogenesis was determined by tube formation and trans-well migration assays. Cell invasion and migration were determined by trans-well invasion/migration assay. Binding of normal and de-sialylated GdA, and expression of L-selectin and siglec-7 on the NK cells were analysed by flow cytometry. The association between GdA and L-selectin on NK cells was confirmed by immunoprecipitation. Extracellular signal-regulated protein kinases (ERK) activation was determined by Western blotting and functional assays. MAIN RESULTS AND THE ROLE OF CHANCE GdA treatment enhanced the expression of dNK cell markers CD9 and CD49a and the production of the functional dNK secretory product VEGF in the peripheral blood CD16-CD56bright NK cells. The spent media of GdA-treated CD16-CD56bright NK cells promoted tube formation of human umbilical vein endothelial cells and invasiveness of trophoblasts. These stimulatory effects were mediated by the stimulatory activities of GdA on an ERK-activation dependent production of VEGF and IGFBP-1 by the NK cells. GdA had a stronger binding affinity to the CD16-CD56bright NK cells as compared to the CD16+CD56dim NK cells. This GdA-NK cell interaction was reduced by de-sialylation. GdA interacted with L-selectin, expressed only in the CD16-CD56bright NK cells, but not in the CD16+CD56dim NK cells. Anti-L-selectin functional blocking antibody suppressed the binding and biological activities of GdA on the NK cells. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Some of the above findings are based on a small sample size of peripheral blood CD16-CD56bright NK cells. These results need to be confirmed with human primary dNK cells. WIDER IMPLICATIONS OF THE FINDINGS This is the first study on the biological role of GdA on conversion of CD16-CD56bright NK cells to dNK-like cells. Further investigation on the glycosylation and functions of GdA will enhance our understanding on human placentation and placenta-associated complications with altered NK cell biology. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the Hong Kong Research Grant Council Grant 17122415, Sanming Project of Medicine in Shenzhen, the Finnish Cancer Foundation, Sigrid Jusélius Foundation and the Finnish Society of Clinical Chemistry. The authors have no competing interests to declare.
Collapse
Affiliation(s)
- Cheuk-Lun Lee
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, 7/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong.,Shenzhen Key Laboratory of Fertility Regulation, Department of Obstetrics and Gynecology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Madhavi Vijayan
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, 7/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Xia Wang
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, 7/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Kevin K W Lam
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, 7/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong.,Shenzhen Key Laboratory of Fertility Regulation, Department of Obstetrics and Gynecology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Hannu Koistinen
- Department of Clinical Chemistry and Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, HUS Helsinki, Finland
| | - Markku Seppala
- Department of Clinical Chemistry and Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, HUS Helsinki, Finland
| | - Raymond H W Li
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, 7/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong.,Shenzhen Key Laboratory of Fertility Regulation, Department of Obstetrics and Gynecology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Ernest H Y Ng
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, 7/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong.,Shenzhen Key Laboratory of Fertility Regulation, Department of Obstetrics and Gynecology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - William S B Yeung
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, 7/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong.,Shenzhen Key Laboratory of Fertility Regulation, Department of Obstetrics and Gynecology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Philip C N Chiu
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, 7/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong.,Shenzhen Key Laboratory of Fertility Regulation, Department of Obstetrics and Gynecology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
21
|
The phenotype of decidual CD56+ lymphocytes is influenced by secreted factors from decidual stromal cells but not macrophages in the first trimester of pregnancy. J Reprod Immunol 2020; 138:103082. [PMID: 31982613 DOI: 10.1016/j.jri.2020.103082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 01/08/2020] [Accepted: 01/12/2020] [Indexed: 11/23/2022]
Abstract
During the first trimester of pregnancy the decidua is comprised of decidual stromal cells (DSC), invading fetal trophoblast cells and maternal leukocytes, including decidual natural killer (dNK) cells and macrophages. dNK cells are distinct from peripheral blood NK cells and have a role in regulating trophoblast invasion and spiral artery remodelling. The unique phenotype of dNK cells results from the decidual environment in which they reside, however the interaction and influence of other cells in the decidua on dNK phenotype is unknown. We isolated first trimester DSC and decidual macrophages and investigated the effect that DSC and decidual macrophage secreted factors have on CD56+ decidual lymphocyte receptor expression and cytokine secretion (including dNK cells). We report that DSC secreted factors induce the secretion of the cytokines IL-8 and IL-6 from first trimester CD56+ cells. However, neither DSC nor decidual macrophage secreted factors changed CD56+ cell receptor expression. These results suggest that secreted factors from DSC influence CD56+ decidual lymphocytes during the first trimester of pregnancy and therefore may play a role in regulating the unique phenotype and function of dNK cells during placentation.
Collapse
|
22
|
Yang HL, Zhou WJ, Lu H, Lei ST, Ha SY, Lai ZZ, Zheng ZM, Ruan LY, He YY, Li DJ, Li MQ, Shao J. Decidual stromal cells promote the differentiation of CD56 bright CD16 - NK cells by secreting IL-24 in early pregnancy. Am J Reprod Immunol 2019; 81:e13110. [PMID: 30903677 DOI: 10.1111/aji.13110] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/12/2019] [Accepted: 03/06/2019] [Indexed: 01/24/2023] Open
Abstract
PROBLEM Decidual stromal cells (DSCs) are important origins of cytokines to modulate maternal-fetal immunotolerance and provide a feasible environment for embryo implantation and development. Interleukin (IL)-24 is a multifunctional cancer killing cytokine and a pleiotropic immunoregulator with complex potency according to tissue or cell types. Its role in establishment and maintenance of normal pregnancy is largely unknown. The aim of our study was to investigate the function and significance of IL-24 and its receptor in the coordination between DSCs and natural killer cells (NK) in early pregnancy. METHOD OF STUDY The levels of IL-24 in DSC, endometrial stromal cell (ESC), peripheral blood NK cells (pNK), or decidual NK cells (dNK) culture supernatants were detected by enzyme-linked immunosorbent assay (ELISA), and the levels of IL-24 receptors were determined by real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and flow cytometry assays. The effect of IL-24 on the functions of decidual NK cells was analyzed by flow cytometry assays in vitro. RESULTS The concentration of IL-24 in culture supernatant of DSCs was significantly higher than that of ESCs. Both eNK (endometrial NK cells) and dNK highly expressed IL-24 receptors (IL-20R1 and IL-22R1), especially on CD56dim eNK. However, there were extremely low levels of IL-20R1 and IL-22R1 on pNK. Recombinant human IL-24 or DSCs-secreted IL-24 downregulated the levels of CD16, Granzyme B, perforin, and interferon (IFN)-γ and upregulated the levels of inhibitory receptors killer-cell immunoglobulin-like receptor (KIR)2DL1 and KIR3DL1, or immunotolerant or angiogenic cytokines (eg, transforming growth factor (TGF)-β, IL-10, and IL-8), and elevated the percentage of CD56bright CD16- dNK in vitro. CONCLUSION These data suggest that DSCs promote the differentiation of CD56bright CD16- NK with high levels of inhibitory receptors, immunotolerant, and angiogenic cytokines by secreting IL-24 during decidualization in early pregnancy.
Collapse
Affiliation(s)
- Hui-Li Yang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Laboratory of Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Wen-Jie Zhou
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Han Lu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Laboratory of Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Sha-Ting Lei
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Si-Yao Ha
- Laboratory of Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Zhen-Zhen Lai
- Laboratory of Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Zi-Meng Zheng
- Laboratory of Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Lu-Yu Ruan
- Laboratory of Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Yin-Yan He
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Da-Jin Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Laboratory of Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Ming-Qing Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Laboratory of Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Jun Shao
- Laboratory of Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Miko E, Meggyes M, Doba K, Barakonyi A, Szereday L. Immune Checkpoint Molecules in Reproductive Immunology. Front Immunol 2019; 10:846. [PMID: 31057559 PMCID: PMC6482223 DOI: 10.3389/fimmu.2019.00846] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/01/2019] [Indexed: 01/11/2023] Open
Abstract
Immune checkpoint molecules, like CTLA-4, TIM-3, PD-1, are negative regulators of immune responses to avoid immune injury. Checkpoint regulators are thought to actively participate in the immune defense of infections, prevention of autoimmunity, transplantation, and tumor immune evasion. Maternal-fetal immunotolerance represents a real immunological challenge for the immune system of the mother: beside acceptance of the semiallogeneic fetus, the maternal immune system has to be prepared for immune defense mostly against infections. In this particular situation, the role of immune checkpoint molecules could be of special interest. In this review, we describe current knowledge on the role of immune checkpoint molecules in reproductive immunology.
Collapse
Affiliation(s)
- Eva Miko
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary.,Janos Szentagothai Research Centre, Pécs, Hungary
| | - Matyas Meggyes
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary.,Janos Szentagothai Research Centre, Pécs, Hungary
| | - Katalin Doba
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - Aliz Barakonyi
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary.,Janos Szentagothai Research Centre, Pécs, Hungary
| | - Laszlo Szereday
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary.,Janos Szentagothai Research Centre, Pécs, Hungary
| |
Collapse
|
24
|
Pollheimer J, Vondra S, Baltayeva J, Beristain AG, Knöfler M. Regulation of Placental Extravillous Trophoblasts by the Maternal Uterine Environment. Front Immunol 2018; 9:2597. [PMID: 30483261 PMCID: PMC6243063 DOI: 10.3389/fimmu.2018.02597] [Citation(s) in RCA: 250] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/22/2018] [Indexed: 12/22/2022] Open
Abstract
During placentation invasive extravillous trophoblasts (EVTs) migrate into the maternal uterus and modify its vessels. In particular, remodeling of the spiral arteries by EVTs is critical for adapting blood flow and nutrient transport to the developing fetus. Failures in this process have been noticed in different pregnancy complications such as preeclampsia, intrauterine growth restriction, stillbirth, or recurrent abortion. Upon invasion into the decidua, the endometrium of pregnancy, EVTs encounter different maternal cell types such as decidual macrophages, uterine NK (uNK) cells and stromal cells expressing a plethora of growth factors and cytokines. Here, we will summarize development of the EVT lineage, a process occurring independently of the uterine environment, and formation of its different subtypes. Further, we will discuss interactions of EVTs with arteries, veins and lymphatics and illustrate how the decidua and its different immune cells regulate EVT differentiation, invasion and survival. The present literature suggests that the decidual environment and its soluble factors critically modulate EVT function and reproductive success.
Collapse
Affiliation(s)
- Jürgen Pollheimer
- Department of Obstetrics and Gynaecology, Medical University of Vienna, Vienna, Austria
| | - Sigrid Vondra
- Department of Obstetrics and Gynaecology, Medical University of Vienna, Vienna, Austria
| | - Jennet Baltayeva
- British Columbia's Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
| | - Alexander Guillermo Beristain
- British Columbia's Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
| | - Martin Knöfler
- Department of Obstetrics and Gynaecology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
25
|
Jiang Y, Yang M, Sun X, Chen X, Ma M, Yin X, Qian S, Zhang Z, Fu Y, Liu J, Han X, Xu J, Shang H. IL-10 + NK and TGF-β + NK cells play negative regulatory roles in HIV infection. BMC Infect Dis 2018; 18:80. [PMID: 29439673 PMCID: PMC5812185 DOI: 10.1186/s12879-018-2991-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/07/2018] [Indexed: 12/23/2022] Open
Abstract
Background Natural killer (NK) cells play cytotoxic roles by targeting tumor cells or virus infected cells, they also play regulatory roles by secreting cytokines and chemokines. Transforming growth factor (TGF)-β and interleukin (IL)-10 are important immunosuppressive cytokines potentially related to the immune dysregulation that occurs in the infection of human immunodeficiency virus (HIV). NK cells are an important source of TGF-β and a main early producer of IL-10 in response to viral infection. Here, we evaluated the percentages of IL-10+ and TGF-β+ NK cells in HIV-infected patients relative to healthy controls (HCs). Methods Study participants (n = 63) included 31 antiretroviral treatment (ART)-naïve HIV-infected patients, 17 ART-treated HIV-infected patients, and 15 HIV-negative HCs. Expression of IL-10 or TGF-β in NK cells was examined by flow cytometry, and the influences of recombinant IL-10 (rIL-10) or recombinant TGF-β (rTGF-β) on NK cell function were investigated in vitro. Results Compared with HCs, ART-naïve HIV-infected patients had increased percentages of IL-10+ (2.0% vs. 0.4%, p = 0.015) and TGF-β+ (4.5% vs. 2.1%, p = 0.022) NK cells, and ART-treated patients also had a higher percentage of IL-10+ NK cells (2.5% vs. 0.4%, p = 0.002). The percentages of IL-10+ and TGF-β+ NK cells were positively correlated (r = 0.388; p = 0.010). The results of in vitro experiments demonstrated that rIL-10 and rTGF-β inhibited NK cell CD107a expression (p = 0.037 and p = 0.024, respectively), IFN-γ secretion (p = 0.006, p = 0.016, respectively), and granzyme B release after stimulation (p = 0.014, p = 0.040, respectively). Conclusions Our data suggest that the percentages of IL-10+ or TGF-β+ NK cells are increased in HIV-infected patients, and that rIL-10 and/or rTGF-β can inhibit NK cell functions in vitro, providing a potential therapeutic target for strategies aimed at combating HIV infection.
Collapse
Affiliation(s)
- Yongjun Jiang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, No. 155, Nanjingbei Street, Heping District, Shenyang, Liaoning Province, 110001, China
| | - Mei Yang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, No. 155, Nanjingbei Street, Heping District, Shenyang, Liaoning Province, 110001, China
| | - Xiaojuan Sun
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, No. 155, Nanjingbei Street, Heping District, Shenyang, Liaoning Province, 110001, China.,Clinical Laboratory, Shenyang Women and Children's Hospital, Shenyang, China
| | - Xi Chen
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, No. 155, Nanjingbei Street, Heping District, Shenyang, Liaoning Province, 110001, China
| | - Meichen Ma
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, No. 155, Nanjingbei Street, Heping District, Shenyang, Liaoning Province, 110001, China
| | - Xiaowan Yin
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, No. 155, Nanjingbei Street, Heping District, Shenyang, Liaoning Province, 110001, China
| | - Shi Qian
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, No. 155, Nanjingbei Street, Heping District, Shenyang, Liaoning Province, 110001, China
| | - Zining Zhang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, No. 155, Nanjingbei Street, Heping District, Shenyang, Liaoning Province, 110001, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, China
| | - Yajing Fu
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, No. 155, Nanjingbei Street, Heping District, Shenyang, Liaoning Province, 110001, China
| | - Jing Liu
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, No. 155, Nanjingbei Street, Heping District, Shenyang, Liaoning Province, 110001, China
| | - Xiaoxu Han
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, No. 155, Nanjingbei Street, Heping District, Shenyang, Liaoning Province, 110001, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, China
| | - Junjie Xu
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, No. 155, Nanjingbei Street, Heping District, Shenyang, Liaoning Province, 110001, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, China
| | - Hong Shang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, No. 155, Nanjingbei Street, Heping District, Shenyang, Liaoning Province, 110001, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, China.
| |
Collapse
|
26
|
Vasudevan S, Kamat MM, Walusimbi SS, Pate JL, Ott TL. Effects of early pregnancy on uterine lymphocytes and endometrial expression of immune-regulatory molecules in dairy heifers†. Biol Reprod 2017. [DOI: 10.1093/biolre/iox061] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
27
|
Sanjabi S, Oh SA, Li MO. Regulation of the Immune Response by TGF-β: From Conception to Autoimmunity and Infection. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022236. [PMID: 28108486 DOI: 10.1101/cshperspect.a022236] [Citation(s) in RCA: 410] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transforming growth factor β (TGF-β) is a pleiotropic cytokine involved in both suppressive and inflammatory immune responses. After 30 years of intense study, we have only begun to elucidate how TGF-β alters immunity under various conditions. Under steady-state conditions, TGF-β regulates thymic T-cell selection and maintains homeostasis of the naïve T-cell pool. TGF-β inhibits cytotoxic T lymphocyte (CTL), Th1-, and Th2-cell differentiation while promoting peripheral (p)Treg-, Th17-, Th9-, and Tfh-cell generation, and T-cell tissue residence in response to immune challenges. Similarly, TGF-β controls the proliferation, survival, activation, and differentiation of B cells, as well as the development and functions of innate cells, including natural killer (NK) cells, macrophages, dendritic cells, and granulocytes. Collectively, TGF-β plays a pivotal role in maintaining peripheral tolerance against self- and innocuous antigens, such as food, commensal bacteria, and fetal alloantigens, and in controlling immune responses to pathogens.
Collapse
Affiliation(s)
- Shomyseh Sanjabi
- Institute of Virology and Immunology, Gladstone Institutes, San Francisco, California 94158.,Department of Microbiology and Immunology, University of California, San Francisco, California 94143
| | - Soyoung A Oh
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Ming O Li
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
28
|
Maekawa R, Taketani T, Mihara Y, Sato S, Okada M, Tamura I, Jozaki K, Kajimura T, Asada H, Tamura H, Takasaki A, Sugino N. Thin endometrium transcriptome analysis reveals a potential mechanism of implantation failure. Reprod Med Biol 2017; 16:206-227. [PMID: 29259471 PMCID: PMC5661823 DOI: 10.1002/rmb2.12030] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/09/2017] [Indexed: 01/09/2023] Open
Abstract
Aim Although a thin endometrium has been well recognized as a critical factor in implantation failure, little information is available regarding the molecular mechanisms. The present study investigated these mechanisms by using genome‐wide mRNA expression analysis. Methods Thin and normal endometrial tissue was obtained from a total of six women during the mid‐luteal phase of the menstrual cycle. The transcriptomes were analyzed with a microarray. Differentially expressed genes were classified according to Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Results The study identified 318 up‐regulated genes and 322 down‐regulated genes in the thin endometrium, compared to the control endometrium. The GO and KEGG pathway analyses indicated that the thin endometrium possessed aberrantly activated immunity and natural killer cell cytotoxicity that was accompanied by an increased number of inflammatory cytokines, such as IFN‐γ. Various genes that were related to metabolism and anti‐oxidative stress were down‐regulated in the thin endometrium. Conclusion Implantation failure in the thin endometrium appears to be associated with an aberrantly activated inflammatory environment and aberrantly decreased response to oxidative stress.
Collapse
Affiliation(s)
- Ryo Maekawa
- Department of Obstetrics and Gynecology Yamaguchi University Graduate School of Medicine Ube Japan
| | - Toshiaki Taketani
- Department of Obstetrics and Gynecology Yamaguchi University Graduate School of Medicine Ube Japan
| | - Yumiko Mihara
- Department of Obstetrics and Gynecology Yamaguchi University Graduate School of Medicine Ube Japan
| | - Shun Sato
- Department of Obstetrics and Gynecology Yamaguchi University Graduate School of Medicine Ube Japan
| | - Maki Okada
- Department of Obstetrics and Gynecology Yamaguchi University Graduate School of Medicine Ube Japan
| | - Isao Tamura
- Department of Obstetrics and Gynecology Yamaguchi University Graduate School of Medicine Ube Japan
| | - Kosuke Jozaki
- Department of Obstetrics and Gynecology Yamaguchi University Graduate School of Medicine Ube Japan
| | - Takuya Kajimura
- Department of Obstetrics and Gynecology Yamaguchi University Graduate School of Medicine Ube Japan
| | - Hiromi Asada
- Department of Obstetrics and Gynecology Yamaguchi University Graduate School of Medicine Ube Japan
| | - Hiroshi Tamura
- Department of Obstetrics and Gynecology Yamaguchi University Graduate School of Medicine Ube Japan
| | - Akihisa Takasaki
- Department of Obstetrics and Gynecology Saiseikai Shimonoseki General Hospital Shimonoseki Japan
| | - Norihiro Sugino
- Department of Obstetrics and Gynecology Yamaguchi University Graduate School of Medicine Ube Japan
| |
Collapse
|
29
|
Park SY, Yun S, Ryu BJ, Han AR, Lee SK. Trophoblasts regulate natural killer cells via control of interleukin-15 receptor signaling. Am J Reprod Immunol 2017; 78. [DOI: 10.1111/aji.12628] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/09/2016] [Indexed: 01/02/2023] Open
Affiliation(s)
- Seo Y. Park
- Department of Obstetrics and Gynecology; College of Medicine; Myunggok Medical Research Center; Konyang University; Daejeon Korea
| | - Sohyun Yun
- Department of Obstetrics and Gynecology; College of Medicine; Myunggok Medical Research Center; Konyang University; Daejeon Korea
| | - Byung J. Ryu
- Department of Obstetrics and Gynecology; College of Medicine; Myunggok Medical Research Center; Konyang University; Daejeon Korea
| | - Ae R. Han
- Department of Obstetrics and Gynecology; College of Medicine; Myunggok Medical Research Center; Konyang University; Daejeon Korea
| | - Sung K. Lee
- Department of Obstetrics and Gynecology; College of Medicine; Myunggok Medical Research Center; Konyang University; Daejeon Korea
| |
Collapse
|
30
|
Composition and dynamics of the uterine NK cell KIR repertoire in menstrual blood. Mucosal Immunol 2017; 10:322-331. [PMID: 27271316 DOI: 10.1038/mi.2016.50] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 05/04/2016] [Indexed: 02/04/2023]
Abstract
Uterine natural killer (NK) cells are abundantly present in endometrium and decidua. Their function is governed by interactions between killer cell immunoglobulin-like receptors (KIRs) and cognate human leukocyte antigen (HLA) class I ligands. These interactions have implications for reproductive success. Whereas most uterine NK cells are known to express KIRs, little information is available about KIR repertoire formation and stability over time. This is primarily due to inherent difficulties in gaining access to human uterine tissue. As endometrial immune cells are shed during menstruation, menstrual blood may serve as a source for studies of KIRs on uterine NK cells. Here, we performed a combined assessment of six inhibitory and activating KIRs on uterine NK cells from paired menstrual and peripheral blood. Menstrual blood contained a high frequency of uterine NK cells expressing KIRs. The uterine NK cell KIR repertoires were markedly different from those in peripheral blood NK cells, biased toward KIR2D-receptor expression, and formed independently of selection conferred by cognate HLA class I molecules. Moreover, uterine NKG2C+self-KIR+ NK cell expansions were detected. Finally, the distinct KIR repertoires of uterine NK cells were stable over multiple menstrual cycles. Our results provide novel insight into KIR repertoire formation on human uterine NK cells.
Collapse
|
31
|
Lédée N, Prat-Ellenberg L, Chevrier L, Balet R, Simon C, Lenoble C, Irani EE, Bouret D, Cassuto G, Vitoux D, Vezmar K, Bensussan A, Chaouat G, Petitbarat M. Uterine immune profiling for increasing live birth rate: A one-to-one matched cohort study. J Reprod Immunol 2017; 119:23-30. [DOI: 10.1016/j.jri.2016.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/16/2016] [Accepted: 11/18/2016] [Indexed: 01/31/2023]
|
32
|
Woodby B, Scott M, Bodily J. The Interaction Between Human Papillomaviruses and the Stromal Microenvironment. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 144:169-238. [PMID: 27865458 PMCID: PMC5727914 DOI: 10.1016/bs.pmbts.2016.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human papillomaviruses (HPVs) are small, double-stranded DNA viruses that replicate in stratified squamous epithelia and cause a variety of malignancies. Current efforts in HPV biology are focused on understanding the virus-host interactions that enable HPV to persist for years or decades in the tissue. The importance of interactions between tumor cells and the stromal microenvironment has become increasingly apparent in recent years, but how stromal interactions impact the normal, benign life cycle of HPVs, or progression of lesions to cancer is less understood. Furthermore, how productively replicating HPV impacts cells in the stromal environment is also unclear. Here we bring together some of the relevant literature on keratinocyte-stromal interactions and their impacts on HPV biology, focusing on stromal fibroblasts, immune cells, and endothelial cells. We discuss how HPV oncogenes in infected cells manipulate other cells in their environment, and, conversely, how neighboring cells may impact the efficiency or course of HPV infection.
Collapse
Affiliation(s)
- B Woodby
- Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - M Scott
- Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - J Bodily
- Louisiana State University Health Sciences Center, Shreveport, LA, United States.
| |
Collapse
|
33
|
Gomaa MF, Serag Eldeen IF, Farid LA, El-Saeed MME, Abas AM, Aawd NM. Uterine natural killer cells dysregulation in idiopathic human preterm birth: a pilot study. J Matern Fetal Neonatal Med 2016; 30:1782-1786. [PMID: 27593347 DOI: 10.1080/14767058.2016.1224840] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE To compare between uterine natural killer (uNK) cells in the placental samples of preterm birth and term labor. STUDY DESIGN Two-arm case-control study. This study included 60 participants divided into two groups. The first group included 30 cases of idiopathic spontaneous preterm labor and the other group included 30 women who delivered by a spontaneous term vaginal delivery and with no history of previous preterm labor. RESULT(S) There were no CD16- CD56bright uNK cells in either groups; CD16+ CD56dim uNK cells were present in only 1 case out of 30 term delivery placentae (3.3%), whereas they were found in 21 cases out of 30 (70%) preterm placental samples with a significant statistical difference (p < 0.0001) and OR 67.667, 95% CI (7.95-575.69). CD16+CD56dim uNK cells were found to be invading both the villi and the decidua in 11 cases (70%), whereas those cells were found invading only the villi in 10 cases (33.3%). CONCLUSION CD16+CD56dim cells are expressed in both the decidua and the villi of patients with idiopathic preterm labor suggesting an association between uNK cells dysregulation and idiopathic human preterm labor.
Collapse
Affiliation(s)
- Mostafa Fouad Gomaa
- a Department of Obstetrics and Gynecology , Ain Shams University , Cairo , Egypt and
| | | | - Laila Aly Farid
- a Department of Obstetrics and Gynecology , Ain Shams University , Cairo , Egypt and
| | | | - Ahmed Mohammed Abas
- a Department of Obstetrics and Gynecology , Ain Shams University , Cairo , Egypt and
| | - Nahla Mohammad Aawd
- b Department of Pathology , Early Cancer Detection Unit, Ain Shams University , Cairo , Egypt
| |
Collapse
|
34
|
Melsen JE, Lugthart G, Lankester AC, Schilham MW. Human Circulating and Tissue-Resident CD56(bright) Natural Killer Cell Populations. Front Immunol 2016; 7:262. [PMID: 27446091 PMCID: PMC4927633 DOI: 10.3389/fimmu.2016.00262] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/21/2016] [Indexed: 11/18/2022] Open
Abstract
Two human natural killer (NK) cell subsets are usually distinguished, displaying the CD56dimCD16+ and the CD56brightCD16−/+ phenotype. This distinction is based on NK cells present in blood, where the CD56dim NK cells predominate. However, CD56bright NK cells outnumber CD56dim NK cells in the human body due to the fact that they are predominant in peripheral and lymphoid tissues. Interestingly, within the total CD56bright NK cell compartment, a major phenotypical and functional diversity is observed, as demonstrated by the discovery of tissue-resident CD56bright NK cells in the uterus, liver, and lymphoid tissues. Uterus-resident CD56bright NK cells express CD49a while the liver- and lymphoid tissue-resident CD56bright NK cells are characterized by co-expression of CD69 and CXCR6. Tissue-resident CD56bright NK cells have a low natural cytotoxicity and produce little interferon-γ upon monokine stimulation. Their distribution and specific phenotype suggest that the tissue-resident CD56bright NK cells exert tissue-specific functions. In this review, we examine the CD56bright NK cell diversity by discussing the distribution, phenotype, and function of circulating and tissue-resident CD56bright NK cells. In addition, we address the ongoing debate concerning the developmental relationship between circulating CD56bright and CD56dim NK cells and speculate on the position of tissue-resident CD56bright NK cells. We conclude that distinguishing tissue-resident CD56bright NK cells from circulating CD56bright NK cells is a prerequisite for the better understanding of the specific role of CD56bright NK cells in the complex process of human immune regulation.
Collapse
Affiliation(s)
- Janine E Melsen
- Department of Pediatrics, Leiden University Medical Center , Leiden , Netherlands
| | - Gertjan Lugthart
- Department of Pediatrics, Leiden University Medical Center , Leiden , Netherlands
| | - Arjan C Lankester
- Department of Pediatrics, Leiden University Medical Center , Leiden , Netherlands
| | - Marco W Schilham
- Department of Pediatrics, Leiden University Medical Center , Leiden , Netherlands
| |
Collapse
|
35
|
Nayama M, Collinet P, Salzet M, Vinatier D. [Immunological aspects of ovarian cancer: Therapeutic perspectives]. ACTA ACUST UNITED AC 2016; 45:1020-1036. [PMID: 27320132 DOI: 10.1016/j.jgyn.2016.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 05/07/2016] [Accepted: 05/13/2016] [Indexed: 01/09/2023]
Abstract
Ovarian cancer is recognized by the immunological system of its host. Initially, it is effective to destroy and eliminate the cancer. But gradually, resistant tumor cells more aggressive and those able to protect themselves by inducing immune tolerance will be selected. Immunotherapy to be effective should consider both components of immune response with an action on cytotoxic immune effectors and action on tolerance mechanisms. The manipulations of the immune system should be cautious, because the immune effects are not isolated. A theoretically efficient handling may simultaneously cause an adverse effect which was not envisaged and could neutralize the benefits of treatment. Knowledge of tolerance mechanisms set up by the tumor is for the clinician a prerequisite before they prescribe these treatments. For each cancer, the knowledge of its immunological status is a prerequisite to propose adapted immunological therapies.
Collapse
Affiliation(s)
- M Nayama
- Service de gynécologie obstétrique, maternité Issaka-Gazoby, BP 10975, Niamey, Niger
| | - P Collinet
- CHU de Lille, 59000 Lille, France; Département universitaire de gynécologie obstétrique, université Nord-de-France, 59045 Lille cedex, France
| | - M Salzet
- EA 4550, IFR 147, laboratoire PRISM : protéomique, réponse inflammatoire, spectrométrie de Masse, université Lille 1, bâtiment SN3, 1(er) étage, 59655 Villeneuve d'Ascq cedex, France
| | - D Vinatier
- CHU de Lille, 59000 Lille, France; EA 4550, IFR 147, laboratoire PRISM : protéomique, réponse inflammatoire, spectrométrie de Masse, université Lille 1, bâtiment SN3, 1(er) étage, 59655 Villeneuve d'Ascq cedex, France; Département universitaire de gynécologie obstétrique, université Nord-de-France, 59045 Lille cedex, France.
| |
Collapse
|
36
|
Lédée N, Petitbarat M, Chevrier L, Vitoux D, Vezmar K, Rahmati M, Dubanchet S, Gahéry H, Bensussan A, Chaouat G. The Uterine Immune Profile May Help Women With Repeated Unexplained Embryo Implantation Failure After In Vitro Fertilization. Am J Reprod Immunol 2016; 75:388-401. [PMID: 26777262 PMCID: PMC4849202 DOI: 10.1111/aji.12483] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 12/17/2015] [Indexed: 11/29/2022] Open
Abstract
LABELED PROBLEM Embryo implantation remains the main limiting factor in assisted reproductive medicine (20% success rate). METHODS OF STUDY An endometrial immune profiling was performed among 394 women with the previous history of repeated embryo implantation failures (RIF). The endometrial immune profile documented the ratio of IL-15/Fn-14 mRNA as a biomarker of uNK cell activation/maturation (together with the uNK cell count) and the IL-18/TWEAK mRNA ratio as a biomarker of both angiogenesis and the Th1/Th2 balance. According to their profile, we recommended personalized care to counteract the documented dysregulation and assessed its effects by the live birth rate (LBR) for the next embryo transfer. RESULTS Endometrial immune profiles appeared to be dysregulated in 81.7% of the RIF patients compared to control. Overactivation was diagnosed in 56.6% and low activation in 25%. The LBR among these dysregulated/treated patients at the first subsequent embryo transfer was 39.8%. CONCLUSION Endometrial immune profiling may improve our understanding of RIF and subsequent LBR if treated.
Collapse
Affiliation(s)
- Nathalie Lédée
- MatriceLAB Innove SARLSaint‐Louis HospitalParisFrance
- Research CenterInstitut National de Santé et de Recherche MédicaleINSERM UMR‐976Saint‐Louis HospitalParisFrance
- Paris Diderot UniversityParisFrance
| | | | | | - Dominique Vitoux
- Plateforme de Diagnostic Biologique Automatisé AP‐HPSaint‐Louis HospitalParisFrance
| | - Katia Vezmar
- MatriceLAB Innove SARLSaint‐Louis HospitalParisFrance
| | - Mona Rahmati
- Research CenterInstitut National de Santé et de Recherche MédicaleINSERM UMR‐976Saint‐Louis HospitalParisFrance
- Paris Diderot UniversityParisFrance
| | - Sylvie Dubanchet
- Research CenterInstitut National de Santé et de Recherche MédicaleINSERM UMR‐976Saint‐Louis HospitalParisFrance
- Paris Diderot UniversityParisFrance
| | - Hanne Gahéry
- Research CenterInstitut National de Santé et de Recherche MédicaleINSERM UMR‐976Saint‐Louis HospitalParisFrance
- Paris Diderot UniversityParisFrance
| | - Armand Bensussan
- Research CenterInstitut National de Santé et de Recherche MédicaleINSERM UMR‐976Saint‐Louis HospitalParisFrance
- Paris Diderot UniversityParisFrance
| | - Gerard Chaouat
- Research CenterInstitut National de Santé et de Recherche MédicaleINSERM UMR‐976Saint‐Louis HospitalParisFrance
- Paris Diderot UniversityParisFrance
| |
Collapse
|
37
|
Sun J, Yang M, Ban Y, Gao W, Song B, Wang Y, Zhang Y, Shao Q, Kong B, Qu X. Tim-3 Is Upregulated in NK Cells during Early Pregnancy and Inhibits NK Cytotoxicity toward Trophoblast in Galectin-9 Dependent Pathway. PLoS One 2016; 11:e0147186. [PMID: 26789128 PMCID: PMC4720443 DOI: 10.1371/journal.pone.0147186] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/30/2015] [Indexed: 12/13/2022] Open
Abstract
NK cells accumulate at the maternal-fetal interface (MFI) and play essential roles in maintaining immune tolerance during pregnancy. The mechanisms that facilitate NK cells tolerance to fetal tissue are largely unknown. T cell Ig and mucin domain-containing protein 3 (Tim-3) is a newly defined molecule with essential immunological function in many physiological and pathological processes. Recent study showed that Tim-3 was involved in the regulation of immune tolerance at MFI. However, whether Tim-3 regulates NK cells cytotoxicity toward trophoblasts is unclear. Here, we showed Tim-3 was mainly expressed by decidual NK cells (dNK) and Tim-3 level in dNK was higher than peripheral NK cells (pNK). Tim-3+ dNK expressed more levels of mature markers CD94 and CD69 than Tim-3- dNK cells and blocking Tim-3 significantly inhibited dNK IFN-γ and TNF-α secretion. Furthermore, we found TGF-β1 may contribute to such up-regulation of Tim-3 in NK cells. Interestingly, blocking Tim-3 enhanced NK cytotoxicity toward trophoblast cell line HTR-8 but not K562. We found HTR-8 expressed Tim-3 ligand Galectin-9, in contrast K562 did not. Small interfering RNA-mediated silencing of Galectin-9 expression enhanced NK cytotoxicity toward HTR-8. We further showed Tim-3/Galecin-9 inhibited NK cytotoxicity toward trophoblast partially via impairing the degranulation process. In addition, clinical data showed that abnormal Tim-3 level on pNK might be associated with recurrent spontaneous abortion (RSA). Thus, our data demonstrate Tim-3/Galectin-9 pathway maintains local tolerance by suppressing NK cytotoxicity toward trophoblasts which may represent a new immunologic tolerance mechanism at MFI.
Collapse
Affiliation(s)
- Jintang Sun
- Institute of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, People's Republic of China
| | - Meixiang Yang
- Institute of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, People's Republic of China
| | - Yanli Ban
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong, People's Republic of China
| | - Wenjuan Gao
- Institute of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, People's Republic of China
| | - Bingfeng Song
- Institute of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, People's Republic of China
| | - Yang Wang
- Institute of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, People's Republic of China
| | - Yun Zhang
- Institute of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, People's Republic of China
| | - Qianqian Shao
- Institute of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, People's Republic of China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong, People's Republic of China
| | - Xun Qu
- Institute of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, People's Republic of China
- * E-mail:
| |
Collapse
|
38
|
The TGF-β superfamily in dendritic cell biology. Cytokine Growth Factor Rev 2015; 26:647-57. [PMID: 26115564 DOI: 10.1016/j.cytogfr.2015.06.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 06/15/2015] [Indexed: 12/18/2022]
Abstract
The TGF-β superfamily consists of a large group of pleiotropic cytokines that are involved in the regulation of many developmental, physiological and pathological processes. Dendritic cells are antigen-presenting cells that play a key role in innate and adaptive immune responses. Dendritic cells have a complex relationship with the TGF-β cytokine superfamily being both source and targets for many of these cytokines. Some TGF-β family members are expressed by dendritic cells and modulate immune responses, for instance through the induction of T cell polarization. Others play a crucial role in the development and function of the different dendritic cell subsets. This review summarizes the current knowledge on the role of TGF-β family cytokines in dendritic cell biology, focusing on TGF-β as well as on other, less characterized, members of these important immune mediators.
Collapse
|
39
|
Wira CR, Rodriguez-Garcia M, Patel MV. The role of sex hormones in immune protection of the female reproductive tract. Nat Rev Immunol 2015; 15:217-30. [PMID: 25743222 PMCID: PMC4716657 DOI: 10.1038/nri3819] [Citation(s) in RCA: 274] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Within the human female reproductive tract (FRT), the challenge of protection against sexually transmitted infections (STIs) is coupled with the need to enable successful reproduction. Oestradiol and progesterone, which are secreted during the menstrual cycle, affect epithelial cells, fibroblasts and immune cells in the FRT to modify their functions and hence the individual's susceptibility to STIs in ways that are unique to specific sites in the FRT. The innate and adaptive immune systems are under hormonal control, and immune protection in the FRT varies with the phase of the menstrual cycle. Immune protection is dampened during the secretory phase of the cycle to optimize conditions for fertilization and pregnancy, which creates a 'window of vulnerability' during which potential pathogens can enter and infect the FRT.
Collapse
Affiliation(s)
- Charles R Wira
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756, USA
| | - Marta Rodriguez-Garcia
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756, USA
| | - Mickey V Patel
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756, USA
| |
Collapse
|
40
|
Bulmer JN, Lash GE. The Role of Uterine NK Cells in Normal Reproduction and Reproductive Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 868:95-126. [PMID: 26178847 DOI: 10.1007/978-3-319-18881-2_5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The human endometrium contains a substantial population of leucocytes which vary in distribution during the menstrual cycle and pregnancy. An unusual population of natural killer (NK) cells, termed uterine NK (uNK) cells, are the most abundant of these cells in early pregnancy. The increase in number of uNK cells in the mid-secretory phase of the cycle with further increases in early pregnancy has focused attention on the role of uNK cells in early pregnancy. Despite many studies, the in vivo role of these cells is uncertain. This chapter reviews current information regarding the role of uNK cells in healthy human pregnancy and evidence indicating their importance in various reproductive and pregnancy problems. Studies in humans are limited by the availability of suitable tissues and the limitations of extrapolation from animal models.
Collapse
Affiliation(s)
- Judith N Bulmer
- Reproductive and Vascular Biology Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK,
| | | |
Collapse
|
41
|
Lysakova-Devine T, O'Farrelly C. Tissue-specific NK cell populations and their origin. J Leukoc Biol 2014; 96:981-90. [DOI: 10.1189/jlb.1ru0514-241r] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
42
|
Wira CR, Fahey JV, Rodriguez-Garcia M, Shen Z, Patel MV. Regulation of mucosal immunity in the female reproductive tract: the role of sex hormones in immune protection against sexually transmitted pathogens. Am J Reprod Immunol 2014; 72:236-58. [PMID: 24734774 PMCID: PMC4351777 DOI: 10.1111/aji.12252] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 03/15/2014] [Indexed: 01/01/2023] Open
Abstract
The immune system in the female reproductive tract (FRT) does not mount an attack against human immunodeficiency virus (HIV) or other sexually transmitted infections (STI) with a single endogenously produced microbicide or with a single arm of the immune system. Instead, the body deploys dozens of innate antimicrobials to the secretions of the FRT. Working together, these antimicrobials along with mucosal antibodies attack viral, bacterial, and fungal targets. Within the FRT, the unique challenges of protection against sexually transmitted pathogens coupled with the need to sustain the development of an allogeneic fetus, has evolved in such a way that sex hormones precisely regulate immune function to accomplish both tasks. The studies presented in this review demonstrate that estradiol (E2 ) and progesterone secreted during the menstrual cycle act both directly and indirectly on epithelial cells, fibroblasts and immune cells in the reproductive tract to modify immune function in a way that is unique to specific sites throughout the FRT. As presented in this review, studies from our laboratory and others demonstrate that the innate and adaptive immune systems are under hormonal control, that protection varies with the stage of the menstrual cycle and as such, is dampened during the secretory stage of the cycle to optimize conditions for fertilization and pregnancy. In doing so, a window of STI vulnerability is created during which potential pathogens including HIV enter the reproductive tract to infect host targets.
Collapse
Affiliation(s)
- Charles R Wira
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH, USA
| | | | | | | | | |
Collapse
|
43
|
Nguyen PV, Kafka JK, Ferreira VH, Roth K, Kaushic C. Innate and adaptive immune responses in male and female reproductive tracts in homeostasis and following HIV infection. Cell Mol Immunol 2014; 11:410-27. [PMID: 24976268 DOI: 10.1038/cmi.2014.41] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 05/08/2014] [Indexed: 12/13/2022] Open
Abstract
The male and female reproductive tracts are complex microenvironments that have diverse functional demands. The immune system in the reproductive tract has the demanding task of providing a protective environment for a fetal allograft while simultaneously conferring protection against potential pathogens. As such, it has evolved a unique set of adaptations, primarily under the influence of sex hormones, which make it distinct from other mucosal sites. Here, we discuss the various components of the immune system that are present in both the male and female reproductive tracts, including innate soluble factors and cells and humoral and cell-mediated adaptive immunity under homeostatic conditions. We review the evidence showing unique phenotypic and functional characteristics of immune cells and responses in the male and female reproductive tracts that exhibit compartmentalization from systemic immunity and discuss how these features are influenced by sex hormones. We also examine the interactions among the reproductive tract, sex hormones and immune responses following HIV-1 infection. An improved understanding of the unique characteristics of the male and female reproductive tracts will provide insights into improving clinical treatments of the immunological causes of infertility and the design of prophylactic interventions for the prevention of sexually transmitted infections.
Collapse
|
44
|
Jabrane-Ferrat N, Siewiera J. The up side of decidual natural killer cells: new developments in immunology of pregnancy. Immunology 2014; 141:490-7. [PMID: 24256296 DOI: 10.1111/imm.12218] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/05/2013] [Accepted: 11/17/2013] [Indexed: 12/30/2022] Open
Abstract
Early phases of human pregnancy are associated with the accumulation of a unique subset of natural killer (NK) cells in the maternal decidua. Decidual NK (dNK) cells that are devoid of cytotoxicity play a pivotal role in successful pregnancy. By secreting large amounts of cytokines/chemokines and angiogenic factors, dNK cells participate in all steps of placentation including trophoblast invasion into the maternal endometrium and vascular remodelling. In this review, we summarize some of dNK cell features and discuss more recent exciting data that challenge the conventional view of these cells. Our new data demonstrate that dNK cells undergo fine tuning or even subvert their classical inhibitory machinery and turn into a real defence force in order to prevent the spread of viruses to fetal tissue. Today it is not clear how these phenotypic and functional adaptations impact cellular cross-talk at the fetal-maternal interface and tissue homeostasis. Ultimately, precise understanding of the molecular mechanisms that govern dNK cell plasticity during congenital human cytomegalovirus infection should lead to the design of more robust strategies to reverse immune escape during viral infection and cancer.
Collapse
Affiliation(s)
- Nabila Jabrane-Ferrat
- Institut National de la Santé et de la Recherche Médicale, UMR 1043, Toulouse, France; Centre National Recherche Scientifique, UMR 5282, Toulouse, France; Université Toulouse III Paul Sabatier, Toulouse, France
| | | |
Collapse
|
45
|
Schminkey DL, Groer M. Imitating a stress response: a new hypothesis about the innate immune system's role in pregnancy. Med Hypotheses 2014; 82:721-9. [PMID: 24698849 DOI: 10.1016/j.mehy.2014.03.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 03/08/2014] [Indexed: 11/24/2022]
Abstract
Recent research challenges long-held hypotheses about mechanisms through which pregnancy induces maternal immune suppression or tolerance of the embryo/fetus. It is now understood that normal pregnancy engages the immune system and that the immune milieu changes with advancing gestation. We suggest that pregnancy mimics the innate immune system's response to stress, causing a sterile inflammatory response that is necessary for successful reproduction. The relationship between external stressors and immunomodulation in pregnancy has been acknowledged, but the specific mechanisms are still being explicated. Implantation and the first trimester are times of immune activation and intensive inflammation in the uterine environment. A period of immune quiescence during the second trimester allows for the growth and development of the maturing fetus. Labor is also an inflammatory event. The length of gestation and timing of parturition can be influenced by environmental stressors. These stressors affect pregnancy through neuroendocrine interaction with the immune system, specifically through the hypothalamic-pituitary-adrenal (HPA) axis and the hypothalamic-pituitary-ovarian axis. Trophoblastic cells that constitute the maternal-fetal interface appear to harness the maternal immune system to promote and maximize the reproductive success of the mother and fetus. Pregnancy is a time of upregulated innate immune responses and decreased adaptive, cell-mediated responses. The inflammatory processes of pregnancy resemble an immune response to brief naturalistic stressors: there is a shift from T helper (Th) 1 to T helper (Th) 2 dominant adaptive immunity with a concomitant shift in cytokine production, decreased proliferation of T cells, and decreased cytotoxicity of natural killer (NK) cells. Inclusion of both murine and human studies, allows an exploration of insights into how trophoblasts influence the activity of the maternal innate immune system during gestation.
Collapse
|
46
|
Amjadi F, Salehi E, Mehdizadeh M, Aflatoonian R. Role of the innate immunity in female reproductive tract. Adv Biomed Res 2014; 3:1. [PMID: 24592358 PMCID: PMC3928842 DOI: 10.4103/2277-9175.124626] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 07/10/2013] [Indexed: 02/06/2023] Open
Abstract
The mucosal immune system in the female reproductive tract (FRT) is well equipped to meet the sexually transmitted pathogens, allogeneic sperm, and the immunologically distinct fetus. Analysis of the FRT indicates that epithelial cells provide a physical barrier against pathogens and microbial infections as well as secretions containing anti-microbial peptides, cytokines, and chemokines which recruit and activate immune cells. Epithelial and immune cells confer protection in part through Toll-like receptors. The aim of this literature is to review the diverse components of the innate immune system, contributing to an exclusive protection system throughout the FRT.
Collapse
Affiliation(s)
- Fatemehsadat Amjadi
- Applied Physiology Research Center and Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Anatomy, Tehran University of Medical Science, Tehran, Iran
| | - Ensieh Salehi
- Department of Anatomy, Tehran University of Medical Science, Tehran, Iran
| | - Mehdi Mehdizadeh
- Department of Anatomy, Cellular and Molecular Research Center, Iran University of Medical Science, Iran
| | - Reza Aflatoonian
- Department of Endocrinology and Female Infertility at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
47
|
van der Molen RG, Schutten JHF, van Cranenbroek B, ter Meer M, Donckers J, Scholten RR, van der Heijden OWH, Spaanderman MEA, Joosten I. Menstrual blood closely resembles the uterine immune micro-environment and is clearly distinct from peripheral blood. Hum Reprod 2013; 29:303-14. [DOI: 10.1093/humrep/det398] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
48
|
Yu J, Freud AG, Caligiuri MA. Location and cellular stages of natural killer cell development. Trends Immunol 2013; 34:573-82. [PMID: 24055329 DOI: 10.1016/j.it.2013.07.005] [Citation(s) in RCA: 273] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/15/2013] [Accepted: 07/19/2013] [Indexed: 01/29/2023]
Abstract
The identification of distinct tissue-specific natural killer (NK) cell populations that apparently mature from local precursor populations has brought new insight into the diversity and developmental regulation of this important lymphoid subset. NK cells provide a necessary link between the early (innate) and late (adaptive) immune responses to infection. Gaining a better understanding of the processes that govern NK cell development should allow us to harness better NK cell functions in multiple clinical settings, as well as to gain further insight into how these cells undergo malignant transformation. In this review, we summarize recent advances in understanding sites and cellular stages of NK cell development in humans and mice.
Collapse
Affiliation(s)
- Jianhua Yu
- Division of Hematology, Department of Internal Medicine, College of Medicine, Ohio State University, Columbus, OH 43210, USA; Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; James Cancer Hospital and Solove Research Institute, Ohio State University, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW A series of recent studies defy conventional wisdom by showing that natural killer (NK) cells exert a powerful and long-lasting influence on the immune response to whole organ allografts. The early activation of NK cells following transplantation is associated with killing of allogeneic target cells and release of immunomodulatory chemokines and cytokines, which can contribute to either rejection or tolerance. Here, we review findings describing NK cell receptors, potential mediators and mechanisms underlying the dual influence of NK cells in solid organ transplantation. RECENT FINDINGS New studies show that NK cells can discriminate between self and foreign tissues and play a key role in the initiation and regulation of adaptive immune responses after solid organ transplantation. Depending upon the types of NK cell receptors engaged and the nature of cytokines released, early NK cell activation can promote either rejection or tolerance. SUMMARY Solid organ transplantation is associated with the early activation of NK cells, which are then licensed to kill allogeneic target cells directly or via antibody-dependent cellular cytotoxicity and release various chemokines and immunomodulatory cytokines. Depending upon the nature of NK cell subsets activated and their ability to kill allogeneic target cells and release certain types of cytokines, NK cells can promote the activation/expansion of pro-inflammatory Th1 cells or regulatory Th2/Treg cells thus tilting the balance of alloimmunity towards rejection or tolerance. An in-depth understanding of these mechanisms will be necessary in order to design therapies targeting NK cells in human transplantation.
Collapse
|
50
|
Lin CY, Kift-Morgan A, Moser B, Topley N, Eberl M. Suppression of pro-inflammatory T-cell responses by human mesothelial cells. Nephrol Dial Transplant 2013; 28:1743-50. [PMID: 23355626 DOI: 10.1093/ndt/gfs612] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Human γδ T cells reactive to the microbial metabolite (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP) contribute to acute inflammatory responses. We have previously shown that peritoneal dialysis (PD)-associated infections with HMB-PP producing bacteria are characterized by locally elevated γδ T-cell frequencies and poorer clinical outcome compared with HMB-PP negative infections, implying that γδ T cells may be of diagnostic, prognostic and therapeutic value in acute disease. The regulation by local tissue cells of these potentially detrimental γδ T-cell responses remains to be investigated. METHODS Freshly isolated γδ or αβ T cells were cultured with primary mesothelial cells derived from omental tissue, or with mesothelial cell-conditioned medium. Stimulation of cytokine production and proliferation by peripheral T cells in response to HMB-PP or CD3/CD28 beads was assessed by flow cytometry. RESULTS Resting mesothelial cells were potent suppressors of pro-inflammatory γδ T cells as well as CD4+ and CD8+ αβ T cells. The suppression of γδ T-cell responses was mediated through soluble factors released by primary mesothelial cells and could be counteracted by SB-431542, a selective inhibitor of TGF-β and activin signalling. Recombinant TGF-β1 but not activin-A mimicked the mesothelial cell-mediated suppression of γδ T-cell responses to HMB-PP. CONCLUSIONS The present findings indicate an important regulatory function of mesothelial cells in the peritoneal cavity by dampening pro-inflammatory T-cell responses, which may help preserve the tissue integrity of the peritoneal membrane in the steady state and possibly during the resolution of acute inflammation.
Collapse
Affiliation(s)
- Chan-Yu Lin
- Cardiff Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | | | | | | | | |
Collapse
|