1
|
Ceolin V, Spadea M, Apolito V, Saglio F, Fagioli F. Emerging CART Therapies for Pediatric Acute Myeloid Leukemia. J Pediatr Hematol Oncol 2024; 46:393-403. [PMID: 39469946 DOI: 10.1097/mph.0000000000002956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/16/2024] [Indexed: 10/30/2024]
Abstract
The prognosis of children with acute myeloid leukemia (AML) has improved incrementally over the last decades. However, at relapse, overall survival (OS) ∼40% to 50% and is even lower for patients with chemorefractory disease. Effective and less-toxic therapies are urgently needed for these children. In the last years, immune-directed therapies such as chimeric antigen receptor (CAR)-T cells were introduced, which showed outstanding clinical activity against B-cell malignancies. CART therapies are being developed for AML on the basis of the results obtained for other hematologic malignancies. The biggest challenge of CART therapy for AML is to identify a specific target antigen, since antigens expressed in AML cells are usually shared with healthy hematopoietic stem cells. An overview of prospects of CART in pediatric AML, focused on the common antigens targeted by CART in AML that have been tested or are currently under investigation, is provided in this manuscript.
Collapse
Affiliation(s)
- Valeria Ceolin
- Department of Pediatric Oncology/Hematology, Regina Margherita Children's Hospital
| | - Manuela Spadea
- Department of Pediatric Oncology/Hematology, Regina Margherita Children's Hospital
- Department of Pediatric Oncology/Hematology, University of Turin, Turin, Italy
| | - Vincenzo Apolito
- Department of Pediatric Oncology/Hematology, Regina Margherita Children's Hospital
| | - Francesco Saglio
- Department of Pediatric Oncology/Hematology, Regina Margherita Children's Hospital
| | - Franca Fagioli
- Department of Pediatric Oncology/Hematology, Regina Margherita Children's Hospital
- Department of Pediatric Oncology/Hematology, University of Turin, Turin, Italy
| |
Collapse
|
2
|
Narayan R, Piérola AA, Donnellan WB, Yordi AM, Abdul‐Hay M, Platzbecker U, Subklewe M, Kadia TM, Alonso‐Domínguez JM, McCloskey J, Bradford K, Curtis M, Daskalakis N, Guttke C, Safer K, Hiebert B, Murphy J, Li X, Duchin K, Esteban D. First-in-human study of JNJ-67571244, a CD33 × CD3 bispecific antibody, in relapsed/refractory acute myeloid leukemia and myelodysplastic syndrome. Clin Transl Sci 2024; 17:e13742. [PMID: 38494922 PMCID: PMC10945216 DOI: 10.1111/cts.13742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 03/19/2024] Open
Abstract
Relapsed/refractory (r/r) acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) outcomes remain poor. A targeted cluster of differentiation (CD)33 × CD3 bispecific antibody, JNJ-67571244, was assessed to identify the maximum tolerated dose (MTD), recommended phase II dose (RP2D), safety and tolerability, and preliminary clinical activity in patients with r/rAML or r/rMDS. This first-in-human, open-label, phase I, dose-escalation/dose-expansion study included patients with r/rAML or r/rMDS who were ineligible for or had exhausted standard therapeutic options. JNJ-67571244 was administered intravenously or subcutaneously using step-up dosing until ≥1 discontinuation condition was met. Outcomes included safety/tolerability, preliminary clinical activity, and systemic pharmacokinetics and pharmacodynamics. The study was terminated after evaluating 10 dose-escalation cohorts (n = 68) and before starting dose-expansion. Overall, 11 (16.2%) patients experienced ≥1 dose-limiting toxicity; all experienced ≥1 treatment-emergent adverse event (TEAE; treatment related: 60 [88.2%]); and 64 (94.1%) experienced ≥1 TEAE of Grade ≥3 toxicity (treatment related: 28 [41.2%]). Although some patients had temporary disease burden reductions, no responses were seen. JNJ-67571244 administration increased multiple cytokines, which coincided with incidence of cytokine release syndrome, infusion-related reactions, and elevated liver function tests. A prolonged step-up strategy was tested to improve tolerability, though this approach did not prevent hepatotoxicity. T-cell activation following treatment suggested target engagement but did not correlate with clinical activity. Safely reaching the projected exposure level for JNJ-67571244 efficacy was not achieved, thus MTD and RP2D were not determined.
Collapse
Affiliation(s)
- Rupa Narayan
- Division of Hematology/Oncology, Department of MedicineMassachusetts General Hospital, Center for LeukemiaBostonMassachusettsUSA
| | | | - William B. Donnellan
- Hematology/Medical OncologyTennessee Oncology/Sarah Cannon Research InstituteNashvilleTennesseeUSA
| | - Antonieta Molero Yordi
- Experimental Hematology Unit, Department of HematologyVall d'Hebron Institute of Oncology (VHIO), University Hospital Vall d'HebronBarcelonaSpain
- Present address:
AstraZeneca Global DevelopmentBarcelonaSpain.
| | - Maher Abdul‐Hay
- Division of Hematology & Medical OncologyPerlmutter Cancer Center at NYU Langone HealthNew YorkNew YorkUSA
| | - Uwe Platzbecker
- Clinic and Polyclinic for Hematology, Cell Therapy and HemostaseologyUniversity Hospital in LeipzigLeipzigGermany
| | - Marion Subklewe
- Laboratory for Translational Cancer ImmunologyLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Tapan Mahendra Kadia
- Department of Leukemia, Division of Cancer MedicineMD Anderson Cancer CenterHoustonTexasUSA
| | | | - James McCloskey
- Division of LeukemiaHackensack University Medical CenterHackensackNew JerseyUSA
| | | | - Martin Curtis
- Janssen Research & Development LLCResearch Triangle ParkNorth CarolinaUSA
| | | | | | - Karim Safer
- Janssen Research & Development LLCSpring HousePennsylvaniaUSA
| | - Brett Hiebert
- Janssen Pharmaceutica NVResearch & DevelopmentBeerseBelgium
| | | | - Xiang Li
- Janssen Research & Development LLCSpring HousePennsylvaniaUSA
| | - Ken Duchin
- Janssen Research & Development LLCSpring HousePennsylvaniaUSA
- Present address:
AllucentCaryNC 27513USA.
| | - Daniel Esteban
- Grupo de InvestigaciónHospital Clinico de BarcelonaBarcelonaSpain
| |
Collapse
|
3
|
Pérez-Amill L, Bataller À, Delgado J, Esteve J, Juan M, Klein-González N. Advancing CART therapy for acute myeloid leukemia: recent breakthroughs and strategies for future development. Front Immunol 2023; 14:1260470. [PMID: 38098489 PMCID: PMC10720337 DOI: 10.3389/fimmu.2023.1260470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/30/2023] [Indexed: 12/17/2023] Open
Abstract
Chimeric antigen receptor (CAR) T therapies are being developed for acute myeloid leukemia (AML) on the basis of the results obtained for other haematological malignancies and the need of new treatments for relapsed and refractory AML. The biggest challenge of CART therapy for AML is to identify a specific target antigen, since antigens expressed in AML cells are usually shared with healthy haematopoietic stem cells (HSC). The concomitant expression of the target antigen on both tumour and HSC may lead to on-target/off-tumour toxicity. In this review, we guide researchers to design, develop, and translate to the clinic CART therapies for the treatment of AML. Specifically, we describe what issues have to be considered to design these therapies; what in vitro and in vivo assays can be used to prove their efficacy and safety; and what expertise and facilities are needed to treat and manage patients at the hospital.
Collapse
Affiliation(s)
- Lorena Pérez-Amill
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Gyala Therapeutics S.L, Barcelona, Spain
- Department of Immunology, Centre de Diagnòstic Biomèdic (CDB), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Àlex Bataller
- Department of Haematology, Institut Clínic de Malalties Hematològiques i Oncològiques (ICHMO), Hospital Clínic de Barcelona, Barcelona, Spain
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Julio Delgado
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Haematology, Institut Clínic de Malalties Hematològiques i Oncològiques (ICHMO), Hospital Clínic de Barcelona, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Jordi Esteve
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Haematology, Institut Clínic de Malalties Hematològiques i Oncològiques (ICHMO), Hospital Clínic de Barcelona, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Manel Juan
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Immunology, Centre de Diagnòstic Biomèdic (CDB), Hospital Clínic de Barcelona, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
- Hospital Sant Joan de Déu, Universidad de Barcelona, Barcelona, Spain
| | - Nela Klein-González
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Gyala Therapeutics S.L, Barcelona, Spain
- Department of Immunology, Centre de Diagnòstic Biomèdic (CDB), Hospital Clínic de Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Schengrund CL. The Ying and Yang of Ganglioside Function in Cancer. Cancers (Basel) 2023; 15:5362. [PMID: 38001622 PMCID: PMC10670608 DOI: 10.3390/cancers15225362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
The plethora of information about the expression of cancer cell-associated gangliosides, their role(s) in signal transduction, and their potential usefulness in the development of cancer treatments makes this an appropriate time to review these enigmatic glycosphingolipids. Evidence, reflecting the work of many, indicates that (1) expression of specific gangliosides, not generally found in high concentrations in most normal human cells, can be linked to certain types of cancer. (2) Gangliosides can affect the ability of cells to interact either directly or indirectly with growth factor receptors, thereby changing such things as a cell's mobility, rate of proliferation, and metastatic ability. (3) Anti-ganglioside antibodies have been tested, with some success, as potential treatments for certain cancers. (4) Cancer-associated gangliosides shed into the circulation can (a) affect immune cell responsiveness either positively or negatively, (b) be considered as diagnostic markers, and (c) be used to look for recurrence. (5) Cancer registries enable investigators to evaluate data from sufficient numbers of patients to obtain information about potential therapies. Despite advances that have been made, a discussion of possible approaches to identifying additional treatment strategies to inhibit metastasis, responsible for the majority of deaths of cancer patients, as well as for treating therapy-resistant tumors, is included.
Collapse
Affiliation(s)
- Cara-Lynne Schengrund
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
5
|
Doloff JC, Ma M, Sadraei A, Tam HH, Farah S, Hollister-Lock J, Vegas AJ, Veiseh O, Quiroz VM, Rakoski A, Aresta-DaSilva S, Bader AR, Griffin M, Weir GC, Brehm MA, Shultz LD, Langer R, Greiner DL, Anderson DG. Identification of a humanized mouse model for functional testing of immune-mediated biomaterial foreign body response. SCIENCE ADVANCES 2023; 9:eade9488. [PMID: 37327334 PMCID: PMC10275594 DOI: 10.1126/sciadv.ade9488] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 05/05/2023] [Indexed: 06/18/2023]
Abstract
Biomedical devices comprise a major component of modern medicine, however immune-mediated fibrosis and rejection can limit their function over time. Here, we describe a humanized mouse model that recapitulates fibrosis following biomaterial implantation. Cellular and cytokine responses to multiple biomaterials were evaluated across different implant sites. Human innate immune macrophages were verified as essential to biomaterial rejection in this model and were capable of cross-talk with mouse fibroblasts for collagen matrix deposition. Cytokine and cytokine receptor array analysis confirmed core signaling in the fibrotic cascade. Foreign body giant cell formation, often unobserved in mice, was also prominent. Last, high-resolution microscopy coupled with multiplexed antibody capture digital profiling analysis supplied spatial resolution of rejection responses. This model enables the study of human immune cell-mediated fibrosis and interactions with implanted biomaterials and devices.
Collapse
Affiliation(s)
- Joshua C. Doloff
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St., Cambridge, MA 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave., Boston, MA 02115, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Minglin Ma
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St., Cambridge, MA 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave., Boston, MA 02115, USA
| | - Atieh Sadraei
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St., Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Hok Hei Tam
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St., Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Shady Farah
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St., Cambridge, MA 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave., Boston, MA 02115, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Jennifer Hollister-Lock
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA
| | - Arturo J. Vegas
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St., Cambridge, MA 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave., Boston, MA 02115, USA
| | - Omid Veiseh
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St., Cambridge, MA 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave., Boston, MA 02115, USA
| | - Victor M. Quiroz
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Amanda Rakoski
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Stephanie Aresta-DaSilva
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St., Cambridge, MA 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave., Boston, MA 02115, USA
| | - Andrew R. Bader
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St., Cambridge, MA 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave., Boston, MA 02115, USA
| | - Marissa Griffin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St., Cambridge, MA 02139, USA
| | - Gordon C. Weir
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA
| | - Michael A. Brehm
- Program in Molecular Medicine, Diabetes Centre of Excellence, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | | | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St., Cambridge, MA 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave., Boston, MA 02115, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Dale L. Greiner
- Program in Molecular Medicine, Diabetes Centre of Excellence, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Daniel G. Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St., Cambridge, MA 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave., Boston, MA 02115, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| |
Collapse
|
6
|
Sereshki N, Rafiee M, Alipour R, Rahimyan K, Wilkinson D. CD33 as a leukocyte-associated marker expressed on human spermatozoa. BMC Res Notes 2023; 16:57. [PMID: 37081561 PMCID: PMC10120122 DOI: 10.1186/s13104-023-06324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/05/2023] [Indexed: 04/22/2023] Open
Abstract
OBJECTIVE Sialic acid-binding immunoglobulin-type lectins (Siglecs) are commonly present on immune cells and often mediate cell-to-cell interactions and signaling. Studies have shown the presence of Siglecs 1, 2, 5, 6, 10 and 14 on human spermatozoa. To the best of our knowledge, the expression of CD33 on spermatozoa has not yet been studied. Semen samples were collected from 25 healthy men with normal semen status. CD33 expression on purified spermatozoa was evaluated by flow cytometry methods. RESULTS The results demonstrate the expression of CD33 on the surface of purified spermatozoa. The mean (± SD) of MFI (mean fluorescence intensity) was 12.85 (± 1.33) and the mean percentage of spermatozoa that express CD33 was 73.75 (± 3.75). Results were obtained showing that spermatozoa express CD33 (or Siglec-3) on their surface. The physiological role of these molecules on spermatozoa remains to be determined. It is recommended that further research be undertaken regarding the role of Siglecs (such as CD33) on spermatozoa apoptosis.
Collapse
Affiliation(s)
- Nasrin Sereshki
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mitra Rafiee
- Department of Immunology, Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, 9717853577, Iran.
| | - Razieh Alipour
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kourosh Rahimyan
- Department of Microbiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
7
|
CD33 isoforms in microglia and Alzheimer's disease: Friend and foe. Mol Aspects Med 2023; 90:101111. [PMID: 35940942 DOI: 10.1016/j.mam.2022.101111] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is the most common form of neurodegenerative disease and is considered the main cause of dementia worldwide. Genome-wide association studies combined with integrated analysis of functional datasets support a critical role for microglia in AD pathogenesis, identifying them as important potential therapeutic targets. The ability of immunomodulatory receptors on microglia to control the response to pathogenic amyloid-β aggregates has gained significant interest. Siglec-3, also known as CD33, is one of these immunomodulatory receptors expressed on microglia that has been identified as an AD susceptibility factor. Here, we review recent advances made in understanding the multifaceted roles that CD33 plays in microglia with emphasis on two human-specific CD33 isoforms that differentially correlate with AD susceptibility. We also describe several different therapeutic approaches for targeting CD33 that have been advanced for the purpose of skewing microglial cell responses.
Collapse
|
8
|
Ephraim R, Feehan J, Fraser S, Nurgali K, Apostolopoulos V. Cancer Immunotherapy: The Checkpoint between Chronic Colitis and Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14246131. [PMID: 36551617 PMCID: PMC9776998 DOI: 10.3390/cancers14246131] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Inflammatory Bowel Disease (IBD) is a group of diseases that cause intestinal inflammation and lesions because of an abnormal immune response to host gut microflora. Corticosteroids, anti-inflammatories, and antibiotics are often used to reduce non-specific inflammation and relapse rates; however, such treatments are ineffective over time. Patients with chronic colitis are more susceptible to developing colorectal cancer, especially those with a longer duration of colitis. There is often a limit in using chemotherapy due to side effects, leading to reduced efficacy, leaving an urgent need to improve treatments and identify new therapeutic targets. Cancer immunotherapy has made significant advances in recent years and is mainly categorized as cancer vaccines, adoptive cellular immunotherapy, or immune checkpoint blockade therapies. Checkpoint markers are expressed on cancer cells to evade the immune system, and as a result checkpoint inhibitors have transformed cancer treatment in the last 5-10 years. Immune checkpoint inhibitors have produced long-lasting clinical responses in both single and combination therapies. Winnie mice are a viable model of spontaneous chronic colitis with immune responses like human IBD. Determining the expression levels of checkpoint markers in tissues from these mice will provide insights into disease initiation, progression, and cancer. Such information will lead to identification of novel checkpoint markers and the development of treatments with or without immune checkpoint inhibitors or vaccines to slow or stop disease progression.
Collapse
Affiliation(s)
- Ramya Ephraim
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Jack Feehan
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Australian Institute for Musculoskeletal Science, Melbourne, VIC 3021, Australia
| | - Sarah Fraser
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Australian Institute for Musculoskeletal Science, Melbourne, VIC 3021, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Australian Institute for Musculoskeletal Science, Melbourne, VIC 3021, Australia
- Correspondence:
| |
Collapse
|
9
|
Saini P, Adeniji OS, Abdel-Mohsen M. Inhibitory Siglec-sialic acid interactions in balancing immunological activation and tolerance during viral infections. EBioMedicine 2022; 86:104354. [PMID: 36371982 PMCID: PMC9663867 DOI: 10.1016/j.ebiom.2022.104354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 11/11/2022] Open
Abstract
Siglecs are a family of emerging glyco-immune checkpoints. Inhibiting them can enhance the functions of several types of immune cells, whereas engaging them can reduce hyper-inflammation and hyper-activation of immune functions. Siglec-sialoglycan interactions play an important role in modulating immunological functions during cancer, however, their roles in regulating immunological equilibrium during viral infections is less clear. In this review, we discuss the documented and potential roles of inhibitory Siglecs in balancing immune activation and tolerance during viral infections and consider how this balance could affect both the desired anti-viral immunological functions and the unwanted hyper- or chronic inflammation. Finally, we discuss the opportunities to target the Siglec immunological switches to reach an immunological balance during viral infections: inhibiting specific Siglec-sialoglycan interactions when maximum anti-viral immune responses are needed, or inducing other interactions when preventing excessive inflammation or reducing chronic immune activation are the goals.
Collapse
|
10
|
Bizymi N, Matthaiou AM, Matheakakis A, Voulgari I, Aresti N, Zavitsanou K, Karasachinidis A, Mavroudi I, Pontikoglou C, Papadaki HA. New Perspectives on Myeloid-Derived Suppressor Cells and Their Emerging Role in Haematology. J Clin Med 2022; 11:jcm11185326. [PMID: 36142973 PMCID: PMC9504532 DOI: 10.3390/jcm11185326] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 12/03/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are immature cells of myeloid origin that have gained researchers’ attention, as they constitute promising biomarkers and targets for novel therapeutic strategies (i.e., blockage of development, differentiation, depletion, and deactivation) in several conditions, including neoplastic, autoimmune, infective, and inflammatory diseases, as well as pregnancy, obesity, and graft rejection. They are characterised in humans by the typical immunophenotype of CD11b+CD33+HLA-DR–/low and immune-modulating properties leading to decreased T-cell proliferation, induction of T-regulatory cells (T-regs), hindering of natural killer (NK) cell functionality, and macrophage M2-polarisation. The research in the field is challenging, as there are still difficulties in defining cell-surface markers and gating strategies that uniquely identify the different populations of MDSCs, and the currently available functional assays are highly demanding. There is evidence that MDSCs display altered frequency and/or functionality and could be targeted in immune-mediated and malignant haematologic diseases, although there is a large variability of techniques and results between different laboratories. This review presents the current literature concerning MDSCs in a clinical point of view in an attempt to trigger future investigation by serving as a guide to the clinical haematologist in order to apply them in the context of precision medicine as well as the researcher in the field of experimental haematology.
Collapse
Affiliation(s)
- Nikoleta Bizymi
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
- Laboratory of Molecular and Cellular Pneumonology, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Andreas M. Matthaiou
- Laboratory of Molecular and Cellular Pneumonology, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, 2029 Nicosia, Cyprus
| | - Angelos Matheakakis
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Ioanna Voulgari
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Nikoletta Aresti
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Konstantina Zavitsanou
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Anastasios Karasachinidis
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Irene Mavroudi
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Charalampos Pontikoglou
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Helen A. Papadaki
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
- Correspondence: ; Tel.: +30-2810394637
| |
Collapse
|
11
|
Saha S, Khan N, Comi T, Verhagen A, Sasmal A, Diaz S, Yu H, Chen X, Akey JM, Frank M, Gagneux P, Varki A. Evolution of Human-Specific Alleles Protecting Cognitive Function of Grandmothers. Mol Biol Evol 2022; 39:6637508. [PMID: 35809046 PMCID: PMC9356730 DOI: 10.1093/molbev/msac151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The myelomonocytic receptor CD33 (Siglec-3) inhibits innate immune reactivity by extracellular V-set domain recognition of sialic acid (Sia)-containing "self-associated molecular patterns" (SAMPs). We earlier showed that V-set domain-deficient CD33-variant allele, protective against late-onset Alzheimer's Disease (LOAD), is derived and specific to the hominin lineage. We now report multiple hominin-specific CD33 V-set domain mutations. Due to hominin-specific, fixed loss-of-function mutation in the CMAH gene, humans lack N-glycolylneuraminic acid (Neu5Gc), the preferred Sia-ligand of ancestral CD33. Mutational analysis and molecular dynamics (MD)-simulations indicate that fixed change in amino acid 21 of hominin V-set domain and conformational changes related to His45 corrected for Neu5Gc-loss by switching to N-acetylneuraminic acid (Neu5Ac)-recognition. We show that human-specific pathogens Neisseria gonorrhoeae and Group B Streptococcus selectively bind human CD33 (huCD33) as part of immune-evasive molecular mimicry of host SAMPs and that this binding is significantly impacted by amino acid 21 modification. In addition to LOAD-protective CD33 alleles, humans harbor derived, population-universal, cognition-protective variants at several other loci. Interestingly, 11 of 13 SNPs in these human genes (including CD33) are not shared by genomes of archaic hominins: Neanderthals and Denisovans. We present a plausible evolutionary scenario to compile, correlate, and comprehend existing knowledge about huCD33-evolution and suggest that grandmothering emerged in humans.
Collapse
Affiliation(s)
- Sudeshna Saha
- Departments of Medicine, Pathology, Anthropology and Cellular and Molecular Medicine, Center for Academic Research and Training in Anthropogeny and Glycobiology Research and Training Center, University of California San Diego, San Diego, CA 92093, USA
| | - Naazneen Khan
- Departments of Medicine, Pathology, Anthropology and Cellular and Molecular Medicine, Center for Academic Research and Training in Anthropogeny and Glycobiology Research and Training Center, University of California San Diego, San Diego, CA 92093, USA
| | - Troy Comi
- Department of Genetics, Princeton University, Princeton, NJ 08544, USA
| | - Andrea Verhagen
- Departments of Medicine, Pathology, Anthropology and Cellular and Molecular Medicine, Center for Academic Research and Training in Anthropogeny and Glycobiology Research and Training Center, University of California San Diego, San Diego, CA 92093, USA
| | - Aniruddha Sasmal
- Departments of Medicine, Pathology, Anthropology and Cellular and Molecular Medicine, Center for Academic Research and Training in Anthropogeny and Glycobiology Research and Training Center, University of California San Diego, San Diego, CA 92093, USA
| | - Sandra Diaz
- Departments of Medicine, Pathology, Anthropology and Cellular and Molecular Medicine, Center for Academic Research and Training in Anthropogeny and Glycobiology Research and Training Center, University of California San Diego, San Diego, CA 92093, USA
| | - Hai Yu
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA
| | - Xi Chen
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA
| | - Joshua M Akey
- Department of Genetics, Princeton University, Princeton, NJ 08544, USA
| | | | | | | |
Collapse
|
12
|
Kuo YC, Kuo CF, Jenkins K, Hung AFH, Chang WC, Park M, Aguilar B, Starr R, Hibbard J, Brown C, Williams JC. Antibody-based redirection of universal Fabrack-CAR T cells selectively kill antigen bearing tumor cells. J Immunother Cancer 2022; 10:jitc-2021-003752. [PMID: 35728874 PMCID: PMC9214433 DOI: 10.1136/jitc-2021-003752] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2022] [Indexed: 11/07/2022] Open
Abstract
Background Chimeric antigen receptor (CAR) T cells engineered to recognize and target tumor associated antigens have made a profound impact on the quality of life for many patients with cancer. However, tumor heterogeneity and intratumoral immune suppression reduce the efficacy of this approach, allowing for tumor cells devoid of the target antigen to seed disease recurrence. Here, we address the complexity of tumor heterogeneity by developing a universal CAR. Method We constructed a universal Fabrack-CAR with an extracellular domain composed of the non-tumor targeted, cyclic, twelve residue meditope peptide that binds specifically to an engineered binding pocket within the Fab arm of monoclonal antibodies (mAbs). As this site is readily grafted onto therapeutic mAbs, the antigen specificity of these universal Fabrack-CAR T cells is simply conferred by administering mAbs with specificity to the heterogeneous tumor. Results Using in vitro and in vivo studies with multiple meditope-engineered mAbs, we show the feasibility, specificity, and robustness of this approach. These studies demonstrate antigen- and antibody-specific T cell activation, proliferation, and IFNγ production, selective killing of target cells in a mixed population, and tumor regression in animal models. Conclusion Collectively, these findings support the feasibility of this universal Fabrack-CAR T cell approach and provide the rationale for future clinical use in cancer immunotherapy.
Collapse
Affiliation(s)
- Yi-Chiu Kuo
- Department of Molecular Medicine, City of Hope National Medical Center, Duarte, California, USA
| | - Cheng-Fu Kuo
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California, USA.,Irell and Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Duarte, California, USA
| | - Kurt Jenkins
- Department of Molecular Medicine, City of Hope National Medical Center, Duarte, California, USA.,Irell and Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Duarte, California, USA
| | - Alfur Fu-Hsin Hung
- Department of Molecular Medicine, City of Hope National Medical Center, Duarte, California, USA
| | - Wen-Chung Chang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California, USA
| | - Miso Park
- Department of Molecular Medicine, City of Hope National Medical Center, Duarte, California, USA
| | - Brenda Aguilar
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California, USA
| | - Renate Starr
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California, USA
| | - Jonathan Hibbard
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California, USA
| | - Christine Brown
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California, USA
| | - John C Williams
- Department of Molecular Medicine, City of Hope National Medical Center, Duarte, California, USA
| |
Collapse
|
13
|
Primary CD33-targeting CAR-NK cells for the treatment of acute myeloid leukemia. Blood Cancer J 2022; 12:61. [PMID: 35418180 PMCID: PMC9007937 DOI: 10.1038/s41408-022-00660-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/17/2022] Open
Abstract
Acute myeloid leukemia (AML) is a malignant disorder derived from neoplastic myeloid progenitor cells characterized by abnormal proliferation and differentiation. Although novel therapeutics have recently been introduced, AML remains a therapeutic challenge with insufficient cure rates. In the last years, immune-directed therapies such as chimeric antigen receptor (CAR)-T cells were introduced, which showed outstanding clinical activity against B-cell malignancies including acute lymphoblastic leukemia (ALL). However, the application of CAR-T cells appears to be challenging due to the enormous molecular heterogeneity of the disease and potential long-term suppression of hematopoiesis. Here we report on the generation of CD33-targeted CAR-modified natural killer (NK) cells by transduction of blood-derived primary NK cells using baboon envelope pseudotyped lentiviral vectors (BaEV-LVs). Transduced cells displayed stable CAR-expression, unimpeded proliferation, and increased cytotoxic activity against CD33-positive OCI-AML2 and primary AML cells in vitro. Furthermore, CD33-CAR-NK cells strongly reduced leukemic burden and prevented bone marrow engraftment of leukemic cells in OCI-AML2 xenograft mouse models without observable side effects.
Collapse
|
14
|
Chappie TA, Abdelmessih M, Ambroise CW, Boehm M, Cai M, Green M, Guilmette E, Steppan CM, Stevens LM, Wei L, Xi S, Hasson SA. Discovery of Small-Molecule CD33 Pre-mRNA Splicing Modulators. ACS Med Chem Lett 2022; 13:55-62. [PMID: 35059124 PMCID: PMC8762744 DOI: 10.1021/acsmedchemlett.1c00396] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/29/2021] [Indexed: 01/16/2023] Open
Abstract
CD33/Siglec 3 is a myeloid lineage cell surface receptor that is known to regulate microglia activity. Multiple genome-wide association studies (GWAS) have identified genetic variants in the CD33 gene that convey protection from late-onset Alzheimer's disease. Furthermore, mechanistic studies into GWAS-linked variants suggest that disease protection is attributed to the alternative splicing of exon 2 of the CD33 pre-mRNA. Using a phenomimetic screen, a series of compounds were found to enhance the exclusion of CD33 exon 2, acting as a chemomimetic of the GWAS-linked gene variants. Additional studies confirmed that meyloid lineage cells treated with several of these compounds have a reduced full-length V-domain containing CD33 protein, while targeted RNA-seq concordantly demonstrated that compound 1 increases exon 2 skipping in cellular mRNA pools. These studies demonstrate how pharmacological interventions can be used to manipulate disease-relevant pre-mRNA splicing and provide a starting point for future efforts to identify small molecules that alter neuroimmune function that is rooted in the human biology of neurodegenerative disease.
Collapse
Affiliation(s)
- Thomas A. Chappie
- Internal
Medicine Medicinal Chemistry, Pfizer, Inc., Cambridge, Massachusetts 02139, United States,
| | - Mario Abdelmessih
- Primary
Pharmacology Group, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Claude W. Ambroise
- Internal
Medicine Research Unit, Pfizer, Inc., Cambridge, Massachusetts 02139, United States
| | - Markus Boehm
- Internal
Medicine Medicinal Chemistry, Pfizer, Inc., Cambridge, Massachusetts 02139, United States
| | - Mi Cai
- Internal
Medicine Research Unit, Pfizer, Inc., Cambridge, Massachusetts 02139, United States
| | - Michael Green
- Internal
Medicine Medicinal Chemistry, Pfizer, Inc., Cambridge, Massachusetts 02139, United States
| | - Edward Guilmette
- Internal
Medicine Research Unit, Pfizer, Inc., Cambridge, Massachusetts 02139, United States
| | - Claire M. Steppan
- Primary
Pharmacology Group, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Lucy M. Stevens
- Primary
Pharmacology Group, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Liuqing Wei
- Internal
Medicine Medicinal Chemistry, Pfizer, Inc., Cambridge, Massachusetts 02139, United States
| | - Simon Xi
- Internal
Medicine Research Unit, Pfizer, Inc., Cambridge, Massachusetts 02139, United States
| | - Samuel A. Hasson
- Internal
Medicine Research Unit, Pfizer, Inc., Cambridge, Massachusetts 02139, United States
| |
Collapse
|
15
|
Hermans SJ, Nero TL, Morton CJ, Gooi JH, Crespi GAN, Hancock NC, Gao C, Ishii K, Markulić J, Parker MW. Structural biology of cell surface receptors implicated in Alzheimer’s disease. Biophys Rev 2021; 14:233-255. [DOI: 10.1007/s12551-021-00903-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023] Open
|
16
|
Blank N, Mayer M, Mass E. The development and physiological and pathophysiological functions of resident macrophages and glial cells. Adv Immunol 2021; 151:1-47. [PMID: 34656287 DOI: 10.1016/bs.ai.2021.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In the past, brain function and the onset and progression of neurological diseases have been studied in a neuron-centric manner. However, in recent years the focus of many neuroscientists has shifted to other cell types that promote neurodevelopment and contribute to the functionality of neuronal networks in health and disease. Particularly microglia and astrocytes have been implicated in actively contributing to and controlling neuronal development, neuroinflammation, and neurodegeneration. Here, we summarize the development of brain-resident macrophages and astrocytes and their core functions in the developing brain. We discuss their contribution and intercellular crosstalk during tissue homeostasis and pathophysiology. We argue that in-depth knowledge of non-neuronal cells in the brain could provide novel therapeutic targets to reverse or contain neurological diseases.
Collapse
Affiliation(s)
- Nelli Blank
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.
| | - Marina Mayer
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Elvira Mass
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.
| |
Collapse
|
17
|
Shaw BC, Estus S. Pseudogene-Mediated Gene Conversion After CRISPR-Cas9 Editing Demonstrated by Partial CD33 Conversion with SIGLEC22P. CRISPR J 2021; 4:699-709. [PMID: 34558988 DOI: 10.1089/crispr.2021.0052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although gene editing workflows typically consider the possibility of off-target editing, pseudogene-directed homology repair has not, to our knowledge, been reported previously. Here, we employed a CRISPR-Cas9 strategy for targeted excision of exon 2 in CD33 in U937 human monocyte cell line. Candidate clonal cell lines were screened by using a clinically relevant antibody known to label the IgV domain encoded by exon 2 (P67.6, gemtuzumab). In addition to the anticipated deletion of exon 2, we also found unexpected P67.6-negative cell lines, which had apparently retained CD33 exon 2. Sequencing revealed that these lines underwent gene conversion from the nearby SIGLEC22P pseudogene during homology repair that resulted in three missense mutations relative to CD33. Ectopic expression studies confirmed that the P67.6 epitope is dependent upon these amino acids. In summation, we report that pseudogene-directed homology repair can lead to aberrant CRISPR gene editing.
Collapse
Affiliation(s)
- Benjamin C Shaw
- Department of Physiology and Sanders-Brown Center on Aging, University of Kentucky, Lexington, USA
| | - Steven Estus
- Department of Physiology and Sanders-Brown Center on Aging, University of Kentucky, Lexington, USA
| |
Collapse
|
18
|
Gottardi M, Simonetti G, Sperotto A, Nappi D, Ghelli Luserna di Rorà A, Padella A, Norata M, Giannini MB, Musuraca G, Lanza F, Cerchione C, Martinelli G. Therapeutic Targeting of Acute Myeloid Leukemia by Gemtuzumab Ozogamicin. Cancers (Basel) 2021; 13:cancers13184566. [PMID: 34572794 PMCID: PMC8469571 DOI: 10.3390/cancers13184566] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022] Open
Abstract
Acute myeloid leukemia (AML) is a complex hematological malignancy characterized by genetic and clinical heterogeneity and high mortality. Despite the recent introduction of novel pharmaceutical agents in hemato-oncology, few advancements have been made in AML for decades. In the last years, the therapeutic options have rapidly changed, with the approval of innovative compounds that provide new opportunities, together with new challenges for clinicians: among them, on 1 September, 2017 the Food and Drug Administration granted approval for Gemtuzumab Ozogamicin (GO) in combination with daunorubicin and cytarabine for the treatment of adult patients affected by newly diagnosed CD33+ AML. Benefits of GO-based regimens were also reported in the pre- and post-transplantation settings. Moreover, several biomarkers of GO response have been suggested, including expression of CD33 and multidrug resistance genes, cytogenetic and molecular profiles, minimal residual disease and stemness signatures. Among them, elevated CD33 expression on blast cells and non-adverse cytogenetic or molecular risk represent largely validated predictors of good response.
Collapse
Affiliation(s)
- Michele Gottardi
- Onco Hematology, Department of Oncology, Veneto Institute of Oncology IOV, IRCCS, 31033 Padua, Italy
| | - Giorgia Simonetti
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola (FC), Italy
| | - Alessandra Sperotto
- Hematology and Transplant Center Unit, Dipartimento di Area Medica (DAME), Udine University Hospital, 33100 Udine, Italy
| | - Davide Nappi
- Department of Hematology and Cell Bone Marrow Transplantation (CBMT), Ospedale di Bolzano, 39100 Bolzano, Italy
| | - Andrea Ghelli Luserna di Rorà
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola (FC), Italy
| | - Antonella Padella
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola (FC), Italy
| | - Marianna Norata
- Hematology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola (FC), Italy
| | - Maria Benedetta Giannini
- Hematology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola (FC), Italy
| | - Gerardo Musuraca
- Hematology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola (FC), Italy
| | - Francesco Lanza
- Hematology Unit & Romagna Transplant Network, Ravenna Hospital, 48121 Ravenna, Italy
| | - Claudio Cerchione
- Hematology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola (FC), Italy
| | - Giovanni Martinelli
- Scientific Directorate, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola (FC), Italy
| |
Collapse
|
19
|
CD33 Expression and Gentuzumab Ozogamicin in Acute Myeloid Leukemia: Two Sides of the Same Coin. Cancers (Basel) 2021; 13:cancers13133214. [PMID: 34203180 PMCID: PMC8268215 DOI: 10.3390/cancers13133214] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Roughly 85–90% of adult and pediatric acute myeloid leukemia (AML) are CD33-positive. Gemtuzumab ozogamicin (GO), a humanized murine IgG4 anti-CD33 antibody, is the first target therapy approved in AML therapeutic scenario. This review focuses on current biological information and clinical data from several studies investigating the use of GO in patients with AML. Over the years, flow cytometry, cytogenetics, molecular techniques, and genotyping studies of CD33 SNPs have provided a comprehensive analysis of promising biomarkers for GO responses and have potentially helped to identify subgroups of patients that may benefit from GO addition to standard chemotherapies. Increased understanding of molecular mutations, altered intracellular pathways, and their potential relationship with CD33 expression may open new therapeutic landscapes based on combinatorial regimens in an AML scenario. Abstract Acute myeloid leukemia (AML), the most frequent acute leukemia in adults, has been historically treated with infusional cytarabine (ara-c) + daunorubicin (3 + 7) for at least 40 years. The first “target therapy” to be introduced was the monoclonal anti-CD33 gemtuzumab ozogamicin (GO) in 2004. Unfortunately, in 2010 it was voluntarily withdrawn from the market both for safety reasons related to potential liver toxicity and veno-occlusive disease (VOD) and because clinical studies failed to confirm the clinical benefit during induction and maintenance. Seven years later, GO was re-approved based on new data, including insights into its mechanism of action on its target receptor CD33 expressed on myeloid cells. The present review focuses on current biological information and clinical data from several studies investigating GO. Cytogenetic, molecular, and immunophenotypic data are now able to predict the potential positive advantages of GO, with the exception of high-risk AML patients who do not seem to benefit. GO can be considered a ‘repurposed drug’ that could be beneficial for some patients with AML, mostly in combination with new drugs already approved or currently in testing.
Collapse
|
20
|
Hoseini SS, Vadlamudi M, Espinosa-Cotton M, Tran H, Feng Y, Guo HF, Xu H, Cheung I, Cheung NKV. T cell engaging bispecific antibodies targeting CD33 IgV and IgC domains for the treatment of acute myeloid leukemia. J Immunother Cancer 2021; 9:e002509. [PMID: 34035113 PMCID: PMC8154967 DOI: 10.1136/jitc-2021-002509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) remains one of the most challenging hematological malignancies. Despite progress in therapeutics, majority of patients succumb to this neoplasm. CD33 is a proven therapeutic target, given its expression on most AML cells. Almost all anti-CD33 antibodies target the membrane distal immunoglobulin V (IgV) domain of the CD33 extracellular domain. METHODS In this manuscript, we present data on three bispecific antibodies (BsAbs) against the CD33 IgV and membrane proximal immunoglobulin C (IgC) domains. We use in vitro binding and cytotoxicity assays to show the effect of these BsAbs on AML cell lines. We also use immunodeficient mice-bearing leukemias from cell lines and patient-derived xenografts to show the effect of these BsAbs in vivo. RESULTS In vitro, the IgV-targeting BsAb had higher binding to AML cell lines using flow cytometry and delivered more potent cytotoxicity in T-cell-dependent cytotoxicity assays; importantly, the IgC domain-targeting outperformed the IgV domain-targeting BsAb in medullary and extramedullary leukemia animal models. CONCLUSIONS These data support further clinical development of this BsAb for first-in-human phase I clinical trial.
Collapse
MESH Headings
- Animals
- Antibodies, Bispecific/immunology
- Antibodies, Bispecific/pharmacology
- Antibodies, Monoclonal, Humanized/immunology
- Antibodies, Monoclonal, Humanized/pharmacology
- Antineoplastic Agents, Immunological/immunology
- Antineoplastic Agents, Immunological/pharmacology
- Cell Proliferation/drug effects
- Coculture Techniques
- Cytokines/metabolism
- Humans
- Immunoglobulin Domains
- Immunoglobulin Variable Region
- K562 Cells
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Lymphocyte Activation/drug effects
- Mice, Inbred BALB C
- Mice, Inbred NOD
- Mice, SCID
- Sialic Acid Binding Ig-like Lectin 3/antagonists & inhibitors
- Sialic Acid Binding Ig-like Lectin 3/immunology
- Sialic Acid Binding Ig-like Lectin 3/metabolism
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- THP-1 Cells
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Sayed Shahabuddin Hoseini
- Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Ymabs Therapeutics, Nutley, New Jersey, USA
| | | | | | - Hoa Tran
- Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Yi Feng
- Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Hong-Fen Guo
- Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Hong Xu
- Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Irene Cheung
- Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Nai-Kong V Cheung
- Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
21
|
Ann Butler C, Thornton P, Charles Brown G. CD33M inhibits microglial phagocytosis, migration and proliferation, but the Alzheimer's disease-protective variant CD33m stimulates phagocytosis and proliferation, and inhibits adhesion. J Neurochem 2021; 158:297-310. [PMID: 33720433 DOI: 10.1111/jnc.15349] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 01/28/2021] [Accepted: 03/11/2021] [Indexed: 12/13/2022]
Abstract
CD33 is a Siglec (sialic acid-binding immunoglobulin-type lectin) receptor on microglia. Human CD33 can be alternatively spliced into two isoforms: the long isoform (CD33M) and a shorter isoform (CD33m) that lacks the sialic acid-binding site. CD33m appears to protect against Alzheimer's disease; however, it remains unclear how. To investigate potential mechanisms by which CD33m may confer protection, we expressed the CD33m and CD33M isoforms of human CD33 in mouse BV-2 and human CHME3 microglial cells and assessed microglia functions. In the BV-2 cells, CD33M inhibited microglial phagocytosis of beads, synapses, debris and dead cells, while CD33m increased phagocytosis of beads, debris and cells. RNAi knockdown of the endogenous mouse CD33 increased phagocytosis and prevented CD33m's (but not CD33M's) effect on phagocytosis. CD33M increased cell attachment but inhibited cell proliferation, while CD33m did the opposite. We also found that CD33M inhibited cell migration. In human CHME3 cells, CD33M increased cell attachment, but inhibited phagocytosis, proliferation and migration, whereas CD33m did the opposite. We conclude that CD33M inhibits microglial phagocytosis, inhibits migration and increases adhesion, while CD33m increases phagocytosis, proliferation and inhibits adhesion. Thus, CD33m might protect against Alzheimer's disease by increasing microglial proliferation, movement and phagocytosis of debris and dead cells.
Collapse
Affiliation(s)
- Claire Ann Butler
- Department of Biochemistry, University of Cambridge, Cambridge, UK.,AstraZeneca, Cambridge, UK
| | | | | |
Collapse
|
22
|
Ilié M, Lantéri E, Chamorey E, Thamphya B, Hamila M, Montaudié H, Picard-Gauci A, Gardrat S, Passeron T, Lassalle S, Long-Mira E, Cherfils-Vicini J, Gilson E, Hofman V, Hofman P. Association of TRF2 expression and myeloid-derived suppressor cells infiltration with clinical outcome of patients with cutaneous melanoma. Oncoimmunology 2021; 10:1901446. [PMID: 33796413 PMCID: PMC7993190 DOI: 10.1080/2162402x.2021.1901446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The outcome of patients with cutaneous melanoma has been strongly modified by recent advances obtained with Immune Checkpoint Inhibitors (ICIs). However, despite this breakthrough, durable response to ICIs is limited to a subset of patients. We investigated whether the expression of TRF2, which preserves telomere integrity, and have an effect on tumor immunosurveillance notably by directly recruiting and activating myeloid-derived suppressor cells (MDSCs), could be a prognostic biomarker in patients with relapsed or metastatic melanoma based on different treatment regimens. We evaluated retrospectively the association of TRF2 expressed in melanoma cells in combination with intratumoral CD33+ CD15+ CD14- MDSCs, as detected by immunohistochemistry and quantified by digital analysis, to clinicopathological features and overall survival (OS) among 48 patients treated with ICIs and 77 patients treated with other treatment options. The densities/mm2 of TRF2+ cells (P=.003) and CD33+ cells (P=.004) were individually significantly related to poor OS. In addition, only the combined expression of CD33+/CD15+/CD14- cells/mm2 was significantly correlated to poor OS (P=.017) in the whole study population as well as in patients treated by ICIs (P=.023). There was no significant difference in OS when analyzing the other markers individually or in combination according to the treatment regimen. The pre-treatment assessment of TRF2 expression and CD33+ cells/mm2 along with the density of CD33+/CD15+/CD14- cells/mm2 could assess OS and better predict clinical response of patients with melanoma treated by ICIs.
Collapse
Affiliation(s)
- Marius Ilié
- Laboratory of Clinical and Experimental Pathology, Université Côte d'Azur, University Hospital Federation OncoAge, Pasteur Hospital, Nice, France.,CNRS, INSERM, Institute of Research on Cancer and Ageing of Nice (IRCAN), Université Côte d'Azur, University Hospital Federation OncoAge, Nice, France.,The Department is the Biobank, Université Côte d'Azur, University Hospital Federation OncoAge, Hospital-Related Biobank (BB-0033-00025), Pasteur Hospital, Nice, France
| | - Elisabeth Lantéri
- Laboratory of Clinical and Experimental Pathology, Université Côte d'Azur, University Hospital Federation OncoAge, Pasteur Hospital, Nice, France
| | - Emmanuel Chamorey
- Biostatistics Unit, Antoine Lacassagne Comprehensive Cancer Center, Nice, France
| | - Brice Thamphya
- Biostatistics Unit, Antoine Lacassagne Comprehensive Cancer Center, Nice, France
| | - Marame Hamila
- Laboratory of Clinical and Experimental Pathology, Université Côte d'Azur, University Hospital Federation OncoAge, Pasteur Hospital, Nice, France
| | - Henri Montaudié
- Department of Dermatology, Université Côte d'Azur, Archet Hospital, Nice, France
| | | | | | - Thierry Passeron
- Department of Dermatology, Université Côte d'Azur, Archet Hospital, Nice, France
| | - Sandra Lassalle
- Laboratory of Clinical and Experimental Pathology, Université Côte d'Azur, University Hospital Federation OncoAge, Pasteur Hospital, Nice, France.,CNRS, INSERM, Institute of Research on Cancer and Ageing of Nice (IRCAN), Université Côte d'Azur, University Hospital Federation OncoAge, Nice, France.,The Department is the Biobank, Université Côte d'Azur, University Hospital Federation OncoAge, Hospital-Related Biobank (BB-0033-00025), Pasteur Hospital, Nice, France
| | - Elodie Long-Mira
- Laboratory of Clinical and Experimental Pathology, Université Côte d'Azur, University Hospital Federation OncoAge, Pasteur Hospital, Nice, France.,CNRS, INSERM, Institute of Research on Cancer and Ageing of Nice (IRCAN), Université Côte d'Azur, University Hospital Federation OncoAge, Nice, France.,The Department is the Biobank, Université Côte d'Azur, University Hospital Federation OncoAge, Hospital-Related Biobank (BB-0033-00025), Pasteur Hospital, Nice, France
| | - Julien Cherfils-Vicini
- CNRS, INSERM, Institute of Research on Cancer and Ageing of Nice (IRCAN), Université Côte d'Azur, University Hospital Federation OncoAge, Nice, France
| | - Eric Gilson
- CNRS, INSERM, Institute of Research on Cancer and Ageing of Nice (IRCAN), Université Côte d'Azur, University Hospital Federation OncoAge, Nice, France.,Department of Medical Genetics, CHU Nice, Nice, France
| | - Véronique Hofman
- Laboratory of Clinical and Experimental Pathology, Université Côte d'Azur, University Hospital Federation OncoAge, Pasteur Hospital, Nice, France.,CNRS, INSERM, Institute of Research on Cancer and Ageing of Nice (IRCAN), Université Côte d'Azur, University Hospital Federation OncoAge, Nice, France.,The Department is the Biobank, Université Côte d'Azur, University Hospital Federation OncoAge, Hospital-Related Biobank (BB-0033-00025), Pasteur Hospital, Nice, France
| | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology, Université Côte d'Azur, University Hospital Federation OncoAge, Pasteur Hospital, Nice, France.,CNRS, INSERM, Institute of Research on Cancer and Ageing of Nice (IRCAN), Université Côte d'Azur, University Hospital Federation OncoAge, Nice, France.,The Department is the Biobank, Université Côte d'Azur, University Hospital Federation OncoAge, Hospital-Related Biobank (BB-0033-00025), Pasteur Hospital, Nice, France
| |
Collapse
|
23
|
Rosenstock P, Kaufmann T. Sialic Acids and Their Influence on Human NK Cell Function. Cells 2021; 10:263. [PMID: 33572710 PMCID: PMC7911748 DOI: 10.3390/cells10020263] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
Sialic acids are sugars with a nine-carbon backbone, present on the surface of all cells in humans, including immune cells and their target cells, with various functions. Natural Killer (NK) cells are cells of the innate immune system, capable of killing virus-infected and tumor cells. Sialic acids can influence the interaction of NK cells with potential targets in several ways. Different NK cell receptors can bind sialic acids, leading to NK cell inhibition or activation. Moreover, NK cells have sialic acids on their surface, which can regulate receptor abundance and activity. This review is focused on how sialic acids on NK cells and their target cells are involved in NK cell function.
Collapse
Affiliation(s)
- Philip Rosenstock
- Institute for Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Hollystr. 1, D-06114 Halle/Saale, Germany;
| | | |
Collapse
|
24
|
Gbadamosi MO, Shastri VM, Hylkema T, Papageorgiou I, Pardo L, Cogle CR, Doty A, Loken MR, Meshinchi S, Lamba JK. Novel CD33 antibodies unravel localization, biology and therapeutic implications of CD33 isoforms. Future Oncol 2021; 17:263-277. [PMID: 33356566 PMCID: PMC10621775 DOI: 10.2217/fon-2020-0746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/22/2020] [Indexed: 02/03/2023] Open
Abstract
The aim of this study was to establish the therapeutic relevance of the CD33D2 isoform by developing novel antibodies targeting the IgC domain of CD33. Two novel IgC-targeting antibodies, HL2541 and 5C11-2, were developed, and CD33 isoforms were assessed using multiple assays in cells overexpressing either CD33FL or CD33D2 isoforms, unmodified acute myeloid leukemia (AML) cell lines and primary AML specimens representing different genotypes for the CD33 splicing single nucleotide polymorphism. CD33D2 was recognized on cells overexpressing CD33D2 and unmodified AML cell lines; however, minimal/no cell surface detection of CD33D2 was observed in primary AML specimens. Both isoforms were detected intracellularly using novel antibodies. Minimal cell surface expression of CD33D2 on primary AML/progenitor cells warrants further studies on anti-CD33D2 immunotherapeutics.
Collapse
MESH Headings
- Adolescent
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Bone Marrow Cells/metabolism
- Bone Marrow Cells/pathology
- Cell Line, Tumor
- Child
- Child, Preschool
- Female
- Genotype
- Humans
- Immunoglobulin Domains/immunology
- Infant
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Male
- Mice
- Protein Isoforms
- Sialic Acid Binding Ig-like Lectin 3/chemistry
- Sialic Acid Binding Ig-like Lectin 3/genetics
- Sialic Acid Binding Ig-like Lectin 3/immunology
- Sialic Acid Binding Ig-like Lectin 3/metabolism
Collapse
Affiliation(s)
- Mohammed O Gbadamosi
- Department of Pharmacotherapy & Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Vivek M Shastri
- Department of Pharmacotherapy & Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Tiffany Hylkema
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Ioannis Papageorgiou
- Department of Pharmacotherapy & Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | | | - Christopher R Cogle
- Department of Hematology/Oncology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Andria Doty
- Interdisciplinary Center for Biotechnology Flow Cytometry & Imaging Core, University of Florida, Gainesville, FL 32610, USA
| | | | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jatinder K Lamba
- Department of Pharmacotherapy & Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
25
|
Vo DN, Constantinides M, Allende-Vega N, Alexia C, Cartron G, Villalba M. Dissecting the NK Cell Population in Hematological Cancers Confirms the Presence of Tumor Cells and Their Impact on NK Population Function. Vaccines (Basel) 2020; 8:vaccines8040727. [PMID: 33276644 PMCID: PMC7761578 DOI: 10.3390/vaccines8040727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/18/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
The lymphocyte lineage natural killer (NK) cell is part of the innate immune system and protects against pathogens and tumor cells. NK cells are the main cell effectors of the monoclonal antibodies (mAbs) that mediates antibody-dependent cell cytotoxicity (ADCC). Hence, it is relevant to understand NK physiology and status to investigate the biological effect of mAbs in the clinic. NK cells are heterogeneous with multiple subsets that may have specific activity against different attacks. The presence of viral-sculpted NK cell populations has already been described, but the presence of cancer-sculpted NK cells remains unknown. Cancer induces a broad NK cell dysfunction, which has not been linked to a specific population. Here, we investigated the NK cell population by Uniform Manifold Approximation and Projection (UMAP) embed maps in Hodgkin lymphoma (HL) and acute myeloid leukemia (AML) patients at diagnosis and at least 30 days after treatment, which correlates with tumor cell clearance. We found that the NK lineage largely responded to the tumor by generating antitumor NK cells and renewing the population with a subset of immature NK cells. However, we failed to identify a specific "memory-like" subset with the NK cell markers used. Moreover, in patients in relapse, we found essentially the same NK populations as those found at diagnosis, suggesting that NK cells equally respond to the first or second tumor rise. Finally, we observed that previous cytomegalovirus (CMV) infection largely affects the tumor-associated changes in NK population, but the CMV-associated CD57+NKG2C+ NK cell population does not appear to play any role in tumor immunity.
Collapse
Affiliation(s)
- Dang-Nghiem Vo
- IRMB, University Montpellier, INSERM, 34295 Montpellier, France; (D.-N.V.); (M.C.); (N.A.-V.); (C.A.)
| | - Michael Constantinides
- IRMB, University Montpellier, INSERM, 34295 Montpellier, France; (D.-N.V.); (M.C.); (N.A.-V.); (C.A.)
- IRMB, CHU Montpellier, 34295 Montpellier, France
| | - Nerea Allende-Vega
- IRMB, University Montpellier, INSERM, 34295 Montpellier, France; (D.-N.V.); (M.C.); (N.A.-V.); (C.A.)
| | - Catherine Alexia
- IRMB, University Montpellier, INSERM, 34295 Montpellier, France; (D.-N.V.); (M.C.); (N.A.-V.); (C.A.)
| | - Guillaume Cartron
- Département d’Hématologie Clinique, CHU Montpellier, 34295 Montpellier, France;
| | - Martin Villalba
- IRMB, University Montpellier, INSERM, 34295 Montpellier, France; (D.-N.V.); (M.C.); (N.A.-V.); (C.A.)
- IRMB, CHU Montpellier, 34295 Montpellier, France
- IRMB, University Montpellier, INSERM, CNRS, CHU Montpellier, 34295 Montpellier, France
- Correspondence: ; Tel.: +33-467-330465; Fax: +33-467-330113
| |
Collapse
|
26
|
Siokas V, Tsouris Z, Aloizou AM, Bakirtzis C, Liampas I, Koutsis G, Anagnostouli M, Bogdanos DP, Grigoriadis N, Hadjigeorgiou GM, Dardiotis E. Multiple Sclerosis: Shall We Target CD33? Genes (Basel) 2020; 11:E1334. [PMID: 33198164 PMCID: PMC7696272 DOI: 10.3390/genes11111334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/29/2020] [Accepted: 11/05/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic disease of the central nervous system (CNS). Myeloid lineage cells (microglia and macrophages) may participate in the pathogenic mechanisms leading to MS. CD33 is a transmembrane receptor, mainly expressed by myeloid lineage cells. CD33 rs3865444 is a promoter variant previously associated with Alzheimer's disease, whose role in MS remains obscure. OBJECTIVE To assess the role of CD33 rs3865444 in MS risk. METHODS We genotyped 1396 patients with MS and 400 healthy controls for the presence of the CD33 rs3865444 variant. Odds ratios (ORs) with the respective 95% confidence intervals (CIs), were calculated with the SNPStats software, assuming five genetic models (co-dominant, dominant, recessive, over-dominant, and log-additive), with the G allele as the reference allele. The value of 0.05 was set as the threshold for statistical significance. RESULTS CD33 rs3865444 was associated with MS risk in the dominant (GG vs. GT + TT; OR (95% C.I.) = 0.79 (0.63-0.99), p = 0.041) and the over-dominant (GG + TT vs. GT; OR (95% C.I.) = 0.77 (0.61-0.97), p = 0.03) modes of inheritance. Given that the GG genotype was more frequent and the GT genotype was less frequent in MS patients compared to controls-while the observed frequency of the TT genotype did not differ between the two groups-the observed difference in MS risk may be stemming from either the GG (as a risk factor) or the GT (as a protective factor) genotype of CD33 rs3865444. CONCLUSIONS Our preliminary results suggest a possible contribution of CD33 rs3865444 to MS. Therefore, larger multiethnic studies should be conducted, investigating the role of CD33 rs3865444 in MS.
Collapse
Affiliation(s)
- Vasileios Siokas
- Laboratory of Neurogenetics, Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (V.S.); (Ζ.Τ.); (A.-M.A.); (I.L.); (G.M.H.)
| | - Zisis Tsouris
- Laboratory of Neurogenetics, Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (V.S.); (Ζ.Τ.); (A.-M.A.); (I.L.); (G.M.H.)
| | - Athina-Maria Aloizou
- Laboratory of Neurogenetics, Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (V.S.); (Ζ.Τ.); (A.-M.A.); (I.L.); (G.M.H.)
| | - Christos Bakirtzis
- Multiple Sclerosis Center, B’ Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, GR54636 Thessaloniki, Greece; (C.B.); (N.G.)
| | - Ioannis Liampas
- Laboratory of Neurogenetics, Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (V.S.); (Ζ.Τ.); (A.-M.A.); (I.L.); (G.M.H.)
| | - Georgios Koutsis
- Neurogenetics Unit, 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Vassilissis Sofias 72-74 Ave, 11528 Athens, Greece;
| | - Maria Anagnostouli
- Multiple Sclerosis and Demyelinating Diseases Unit and Immunogenetics Laboratory, 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 28 Athens, Greece;
| | - Dimitrios P. Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece;
| | - Nikolaos Grigoriadis
- Multiple Sclerosis Center, B’ Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, GR54636 Thessaloniki, Greece; (C.B.); (N.G.)
| | - Georgios M. Hadjigeorgiou
- Laboratory of Neurogenetics, Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (V.S.); (Ζ.Τ.); (A.-M.A.); (I.L.); (G.M.H.)
- Department of Neurology, Medical School, University of Cyprus, 1678 Nicosia, Cyprus
| | - Efthimios Dardiotis
- Laboratory of Neurogenetics, Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (V.S.); (Ζ.Τ.); (A.-M.A.); (I.L.); (G.M.H.)
| |
Collapse
|
27
|
Choi JW, Kim YJ, Yun KA, Won CH, Lee MW, Choi JH, Chang SE, Lee WJ. The prognostic significance of VISTA and CD33-positive myeloid cells in cutaneous melanoma and their relationship with PD-1 expression. Sci Rep 2020; 10:14372. [PMID: 32873829 PMCID: PMC7462859 DOI: 10.1038/s41598-020-71216-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/10/2020] [Indexed: 12/20/2022] Open
Abstract
V-domain Ig suppressor of T-cell activation (VISTA), which mediates immune evasion in cancer, is mainly expressed on hematopoietic cells and myeloid cells in the tumor. We evaluated correlations among the expression of VISTA, the myeloid-derived suppressor cell marker CD33, and programmed death-1 (PD-1), and determined their relationships with clinicopathological characteristics and disease outcomes in melanoma. Diagnostic tissue from 136 cases of melanoma was evaluated by immunohistochemistry for CD33, VISTA, and PD-1 expression. Dual immunofluorescence using CD33 and VISTA antibodies was performed. VISTA expression positively correlated with CD33 expression in melanoma tissue. Dual immunofluorescence staining revealed that VISTA was expressed by CD33-positive myeloid cells. PD-1 expression correlated with CD33 and VISTA expression. CD33 and VISTA expression were significantly associated with negative prognostic factors, including a deeper Breslow thickness and an advanced stage of disease. High expression of either CD33 or VISTA was associated with worse survival. Positivity for both VISTA and PD-1 predicted worse survival. Multivariate analysis showed that both CD33 and VISTA expression were independent prognostic factors in cutaneous melanoma. VISTA and CD33 expression are independent unfavourable prognostic factors in melanoma, which suggests their potential as therapeutic targets.
Collapse
Affiliation(s)
- Jae Won Choi
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Young Jae Kim
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Kyung A Yun
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Chong Hyun Won
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Mi Woo Lee
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Jee Ho Choi
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Sung Eun Chang
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea.
| | - Woo Jin Lee
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea.
| |
Collapse
|
28
|
Schäfer D, Henze J, Pfeifer R, Schleicher A, Brauner J, Mockel-Tenbrinck N, Barth C, Gudert D, Al Rawashdeh W, Johnston ICD, Hardt O. A Novel Siglec-4 Derived Spacer Improves the Functionality of CAR T Cells Against Membrane-Proximal Epitopes. Front Immunol 2020; 11:1704. [PMID: 32849600 PMCID: PMC7426717 DOI: 10.3389/fimmu.2020.01704] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/25/2020] [Indexed: 11/13/2022] Open
Abstract
A domain that is often neglected in the assessment of chimeric antigen receptor (CAR) functionality is the extracellular spacer module. However, several studies have elucidated that membrane proximal epitopes are best targeted through CARs comprising long spacers, while short spacer CARs exhibit highest activity on distal epitopes. This finding can be explained by the requirement to have an optimal distance between the effector T cell and target cell. Commonly used long spacer domains are the CH2-CH3 domains of IgG molecules. However, CARs containing these spacers generally show inferior in vivo efficacy in mouse models compared to their observed in vitro activity, which is linked to unspecific Fcγ-Receptor binding and can be abolished by mutating the respective regions. Here, we first assessed a CAR therapy targeting membrane proximal CD20 using such a modified long IgG1 spacer. However, despite these mutations, this construct failed to unfold its observed in vitro cytotoxic potential in an in vivo model, while a shorter but less structured CD8α spacer CAR showed complete tumor clearance. Given the shortage of well-described long spacer domains with a favorable functionality profile, we designed a novel class of CAR spacers with similar attributes to IgG spacers but without unspecific off-target binding, derived from the Sialic acid-binding immunoglobulin-type lectins (Siglecs). Of five constructs tested, a Siglec-4 derived spacer showed highest cytotoxic potential and similar performance to a CD8α spacer in a CD20 specific CAR setting. In a pancreatic ductal adenocarcinoma model, a Siglec-4 spacer CAR targeting a membrane proximal (TSPAN8) epitope was efficiently engaged in vitro, while a membrane distal (CD66c) epitope did not activate the T cell. Transfer of the TSPAN8 specific Siglec-4 spacer CAR to an in vivo setting maintained the excellent tumor killing characteristics being indistinguishable from a TSPAN8 CD8α spacer CAR while outperforming an IgG4 long spacer CAR and, at the same time, showing an advantageous central memory CAR T cell phenotype with lower release of inflammatory cytokines. In summary, we developed a novel spacer that combines cytotoxic potential with an advantageous T cell and cytokine release phenotype, which make this an interesting candidate for future clinical applications.
Collapse
Affiliation(s)
- Daniel Schäfer
- Translational Molecular Imaging, Institute for Diagnostic and Interventional Radiology & Clinic for Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany.,R&D Reagents, Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Janina Henze
- Translational Molecular Imaging, Institute for Diagnostic and Interventional Radiology & Clinic for Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany.,R&D Reagents, Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Rita Pfeifer
- R&D Reagents, Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Anna Schleicher
- Faculty of Chemistry and Biosciences, Karlsruher Institute of Technology, Karlsruhe, Germany
| | - Janina Brauner
- R&D Reagents, Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | | | - Carola Barth
- R&D Reagents, Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Daniela Gudert
- R&D Reagents, Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | | | - Ian C D Johnston
- R&D Reagents, Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Olaf Hardt
- R&D Reagents, Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| |
Collapse
|
29
|
Huang YJ, Lee JJ, Fan WL, Hsu CW, Tsai NW, Lu CH, Chang WN, Tsai MH. A CD33 frameshift variant is associated with neuromyelitis optica spectrum disorders. Biomed J 2020; 44:S93-S100. [PMID: 35735085 PMCID: PMC9038945 DOI: 10.1016/j.bj.2020.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 06/09/2020] [Accepted: 07/22/2020] [Indexed: 01/21/2023] Open
|
30
|
Ha SH, Kwak CH, Park JY, Abekura F, Lee YC, Kim JS, Chung TW, Kim CH. 3'-sialyllactose targets cell surface protein, SIGLEC-3, and induces megakaryocyte differentiation and apoptosis by lipid raft-dependent endocytosis. Glycoconj J 2020; 37:187-200. [PMID: 31900723 DOI: 10.1007/s10719-019-09902-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 11/11/2019] [Accepted: 11/26/2019] [Indexed: 12/27/2022]
Abstract
3'-sialyllactose is one of the abundant components in human milk oligosaccharides (HMOs) that protect infants from various viral infections in early stages of immune system development. 3SL is a combination of lactose and sialic acid. Most sialic acids are widely expressed in animal cells and they bind to siglec proteins. In this study, we demonstrate that 3SL specifically binds to CD33. It induces megakaryocyte differentiation and subsequent apoptosis by targeting cell surface protein siglec-3 (CD33) in human chronic myeloid leukemia K562 cells. The 3SL-bound CD33 was internalized to the cytosol via caveolae-dependent endocytosis. At the molecular level, 3SL-bound CD33 recruits the suppressor of cytokine signaling 3 (SOCS3) and SH2 domain-containing protein tyrosine phosphatase 1 (SHP1). SOCS3 is degraded with CD33 by proteasome degradation, while SHP-1 activates extracellular signal-regulated kinase (ERK) to induce megakaryocytic differentiation and subsequent apoptosis. The present study, therefore, suggests that 3SL is a potential anti-leukemia agent affecting differentiation and apoptosis.
Collapse
Affiliation(s)
- Sun-Hyung Ha
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, 300 Chunchun-Dong, Jangan-Gu, Suwon City, Kyunggi-Do, 440-746, South Korea
| | - Choong-Hwan Kwak
- School of Korean Medicine, Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Jun-Young Park
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, 300 Chunchun-Dong, Jangan-Gu, Suwon City, Kyunggi-Do, 440-746, South Korea
| | - Fukushi Abekura
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, 300 Chunchun-Dong, Jangan-Gu, Suwon City, Kyunggi-Do, 440-746, South Korea
| | - Young-Choon Lee
- Faculty of Medicinal Biotechnology, Dong-A University, Busan, Republic of Korea
| | - Jong-Suk Kim
- Department of Biochemistry, Institute for Medical Sciences, Chonbuk National University Medical School, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, South Korea
| | - Tae-Wook Chung
- School of Korean Medicine, Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea.
| | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, 300 Chunchun-Dong, Jangan-Gu, Suwon City, Kyunggi-Do, 440-746, South Korea.
| |
Collapse
|
31
|
Bhattacherjee A, Rodrigues E, Jung J, Luzentales-Simpson M, Enterina JR, Galleguillos D, St. Laurent CD, Nakhaei-Nejad M, Fuchsberger FF, Streith L, Wang Q, Kawasaki N, Duan S, Bains A, Paulson JC, Rademacher C, Giuliani F, Sipione S, Macauley MS. Repression of phagocytosis by human CD33 is not conserved with mouse CD33. Commun Biol 2019; 2:450. [PMID: 31815204 PMCID: PMC6890642 DOI: 10.1038/s42003-019-0698-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/29/2019] [Indexed: 01/08/2023] Open
Abstract
CD33 is an immunomodulatory receptor linked to Alzheimer's disease (AD) susceptibility via regulation of phagocytosis in microglia. Divergent features between human CD33 (hCD33) and murine CD33 (mCD33) include a unique transmembrane lysine in mCD33 and cytoplasmic tyrosine in hCD33. The functional consequences of these differences in restraining phagocytosis remains poorly understood. Using a new αmCD33 monoclonal antibody, we show that mCD33 is expressed at high levels on neutrophils and low levels on microglia. Notably, cell surface expression of mCD33 is entirely dependent on Dap12 due to an interaction with the transmembrane lysine in mCD33. In RAW264.7 cultured macrophages, BV-2 cultured microglia, primary neonatal and adult microglia, uptake of cargo - including aggregated Aβ1-42 - is not altered upon genetic ablation of mCD33. Alternatively, deletion of hCD33 in monocytic cell lines increased cargo uptake. Moreover, transgenic mice expressing hCD33 in the microglial cell lineage showed repressed cargo uptake in primary microglia. Therefore, mCD33 and hCD33 have divergent roles in regulating phagocytosis, highlighting the importance of studying hCD33 in AD susceptibility.
Collapse
Affiliation(s)
| | - Emily Rodrigues
- Department of Chemistry, University of Alberta, Alberta, Canada
| | - Jaesoo Jung
- Department of Chemistry, University of Alberta, Alberta, Canada
| | | | - Jhon R. Enterina
- Department of Medical Microbiology and Immunology, University of Alberta, Alberta, Canada
| | | | | | | | - Felix F. Fuchsberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Laura Streith
- Department of Medical Microbiology and Immunology, University of Alberta, Alberta, Canada
| | - Qian Wang
- Department of Pharmacology, University of Alberta, Alberta, Canada
| | - Norihito Kawasaki
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Shiteng Duan
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Arjun Bains
- Department of Chemistry, University of Alberta, Alberta, Canada
| | - James C. Paulson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Christoph Rademacher
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | | | | | - Matthew S. Macauley
- Department of Chemistry, University of Alberta, Alberta, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Alberta, Canada
| |
Collapse
|
32
|
Liu R, Chu CH, Wang N, Ozkaya-Ahmadov T, Civelekoglu O, Lee D, Arifuzzman AKM, Sarioglu AF. Combinatorial Immunophenotyping of Cell Populations with an Electronic Antibody Microarray. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1904732. [PMID: 31631578 DOI: 10.1002/smll.201904732] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/05/2019] [Indexed: 06/10/2023]
Abstract
Immunophenotyping is widely used to characterize cell populations in basic research and to diagnose diseases from surface biomarkers in the clinic. This process usually requires complex instruments such as flow cytometers or fluorescence microscopes, which are typically housed in centralized laboratories. Microfluidics are combined with an integrated electrical sensor network to create an antibody microarray for label-free cell immunophenotyping against multiple antigens. The device works by fractionating the sample via capturing target subpopulations in an array of microfluidic chambers functionalized against different antigens and by electrically quantifying the cell capture statistics through a network of code-multiplexed electrical sensors. Through a combinatorial arrangement of antibody sequences along different microfluidic paths, the device can measure the prevalence of different cell subpopulations in a sample from computational analysis of the electrical output signal. The device performance is characterized by analyzing heterogeneous samples of mixed tumor cell populations and then the technique is applied to determine leukocyte subpopulations in blood samples and the results are validated against complete blood cell count and flow cytometry results. Label-free immunophenotyping of cell populations against multiple targets on a disposable electronic chip presents opportunities in global health and telemedicine applications for cell-based diagnostics and health monitoring.
Collapse
Affiliation(s)
- Ruxiu Liu
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Chia-Heng Chu
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ningquan Wang
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Tevhide Ozkaya-Ahmadov
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ozgun Civelekoglu
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Dohwan Lee
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - A K M Arifuzzman
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - A Fatih Sarioglu
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
33
|
Eckel AM, Cherian S, Miller V, Soma L. CD33 expression on natural killer cells is a potential confounder for residual disease detection in acute myeloid leukemia by flow cytometry. CYTOMETRY PART B-CLINICAL CYTOMETRY 2019; 98:174-178. [PMID: 31622025 DOI: 10.1002/cyto.b.21846] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/28/2019] [Accepted: 09/06/2019] [Indexed: 12/13/2022]
Abstract
Detection of minimal/measurable residual disease (MRD) in acute myeloid leukemia (AML) is important for guiding patient-specific clinical management. Natural killer (NK) cells can express various markers not typically associated with NK lineage, potentially confounding the detection of MRD by flow cytometry. We have observed CD33 expression on NK cells when evaluating for AML MRD in routine clinical practice in multiple patient samples. To characterize CD33 expression on NK cells, 40 peripheral blood or bone marrow samples with NK cells present at >5% of lymphocytes were selected for further assessment of NK cell phenotype and CD33 expression. Seven of the 40 samples (17.5%) were found to have CD33 expression on at least 5% of the NK cells. The CD33-positive NK cell population accounted for an average of 11.4% of NK cells (median 11.9%, range 8.0-15.3%) and 2.2% of total white cells (median 1.1%, range 0.1-10.1%). This NK cell subset expressed bright CD2, bright CD56, and dim CD16. On average, CD33 expression on NK cells was dimmer than on monocytes (mean median fluorescence intensity ratio 0.4; range 0.1-1.0). This study characterizes expression of CD33 on NK cells. Recognition of this pattern of antigen expression is critical in evaluating samples for MRD in patients with myeloid neoplasms, particularly AML.
Collapse
Affiliation(s)
- Ashley M Eckel
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | - Sindhu Cherian
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | - Valerie Miller
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | - Lorinda Soma
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
34
|
Controversies about the subcellular localization and mechanisms of action of the Alzheimer's disease-protective CD33 splice variant. Acta Neuropathol 2019; 138:671-672. [PMID: 31440824 DOI: 10.1007/s00401-019-02065-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 01/15/2023]
|
35
|
Bärenwaldt A, Läubli H. The sialoglycan-Siglec glyco-immune checkpoint - a target for improving innate and adaptive anti-cancer immunity. Expert Opin Ther Targets 2019; 23:839-853. [PMID: 31524529 DOI: 10.1080/14728222.2019.1667977] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: During cancer progression, tumor cells develop several mechanisms to prevent killing and to shape the immune system into a tumor-promoting environment. One of such regulatory mechanism is the overexpression of sialic acid (Sia) on carbohydrates of proteins and lipids on tumor cells. Sia-containing glycans or sialoglycans were shown to inhibit immune effector functions of NK cells and T cells by engaging inhibitory Siglec receptors on the surface of these cells. They can also modulate the differentiation of myeloid cells into tumor-promoting M2 macrophages. Areas covered: We review the role of sialoglycans in cancer and introduce the Siglecs, their expression on different immune cells and their interaction with cancer-associated sialoglycans. The targeting of this sialoglycan-Siglec glyco-immune checkpoint is discussed along with potential therapeutic approaches. Pubmed was searched for publications on Siglecs, sialic acid, and cancer. Expert opinion: The targeting of sialoglycan-Siglec interactions has become a major focus in cancer research. New approaches have been developed that directly target sialic acids in tumor lesions. Targeted sialidases that cleave sialic acid specifically in the tumor, have already shown efficacy; efforts targeting the sialoglycan-Siglec pathway for improvement of CAR T cell therapy are ongoing. The sialoglycan-Siglec immune checkpoint is a promising new target for cancer immunotherapy.
Collapse
Affiliation(s)
- Anne Bärenwaldt
- Division of Medical Oncology, and Laboratory for Cancer Immunotherapy, Department of Biomedicine, University Hospital Basel , Basel , Switzerland
| | - Heinz Läubli
- Division of Medical Oncology, and Laboratory for Cancer Immunotherapy, Department of Biomedicine, University Hospital Basel , Basel , Switzerland
| |
Collapse
|
36
|
Siddiqui SS, Matar R, Merheb M, Hodeify R, Vazhappilly CG, Marton J, Shamsuddin SA, Al Zouabi H. Siglecs in Brain Function and Neurological Disorders. Cells 2019; 8:E1125. [PMID: 31546700 PMCID: PMC6829431 DOI: 10.3390/cells8101125] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 12/14/2022] Open
Abstract
Siglecs (Sialic acid-binding immunoglobulin-type lectins) are a I-type lectin that typically binds sialic acid. Siglecs are predominantly expressed in immune cells and generate activating or inhibitory signals. They are also shown to be expressed on the surface of cells in the nervous system and have been shown to play central roles in neuroinflammation. There has been a plethora of reviews outlining the studies pertaining to Siglecs in immune cells. However, this review aims to compile the articles on the role of Siglecs in brain function and neurological disorders. In humans, the most abundant Siglecs are CD33 (Siglec-3), Siglec-4 (myelin-associated glycoprotein/MAG), and Siglec-11, Whereas in mice the most abundant are Siglec-1 (sialoadhesin), Siglec-2 (CD22), Siglec-E, Siglec-F, and Siglec-H. This review is divided into three parts. Firstly, we discuss the general biological aspects of Siglecs that are expressed in nervous tissue. Secondly, we discuss about the role of Siglecs in brain function and molecular mechanism for their function. Finally, we collate the available information on Siglecs and neurological disorders. It is intriguing to study this family of proteins in neurological disorders because they carry immunoinhibitory and immunoactivating motifs that can be vital in neuroinflammation.
Collapse
Affiliation(s)
- Shoib Sarwar Siddiqui
- Department of Biotechnology, American University of Ras Al Khaimah (AURAK), Ras Al Khaimah 10021, UAE.
| | - Rachel Matar
- Department of Biotechnology, American University of Ras Al Khaimah (AURAK), Ras Al Khaimah 10021, UAE.
| | - Maxime Merheb
- Department of Biotechnology, American University of Ras Al Khaimah (AURAK), Ras Al Khaimah 10021, UAE.
| | - Rawad Hodeify
- Department of Biotechnology, American University of Ras Al Khaimah (AURAK), Ras Al Khaimah 10021, UAE.
| | - Cijo George Vazhappilly
- Department of Biotechnology, American University of Ras Al Khaimah (AURAK), Ras Al Khaimah 10021, UAE.
| | - John Marton
- Department of Biotechnology, American University of Ras Al Khaimah (AURAK), Ras Al Khaimah 10021, UAE.
| | | | - Hussain Al Zouabi
- Department of Biotechnology, American University of Ras Al Khaimah (AURAK), Ras Al Khaimah 10021, UAE.
| |
Collapse
|
37
|
Estus S, Shaw BC, Devanney N, Katsumata Y, Press EE, Fardo DW. Evaluation of CD33 as a genetic risk factor for Alzheimer's disease. Acta Neuropathol 2019; 138:187-199. [PMID: 30949760 PMCID: PMC7035471 DOI: 10.1007/s00401-019-02000-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/22/2019] [Accepted: 03/30/2019] [Indexed: 12/23/2022]
Abstract
In 2011, genome-wide association studies implicated a polymorphism near CD33 as a genetic risk factor for Alzheimer's disease. This finding sparked interest in this member of the sialic acid-binding immunoglobulin-type lectin family which is linked to innate immunity. Subsequent studies found that CD33 is expressed in microglia in the brain and then investigated the molecular mechanism underlying the CD33 genetic association with Alzheimer's disease. The allele that protects from Alzheimer's disease acts predominately to increase a CD33 isoform lacking exon 2 at the expense of the prototypic, full-length CD33 that contains exon 2. Since this exon encodes the sialic acid ligand-binding domain, the finding that the loss of exon 2 was associated with decreased Alzheimer's disease risk was interpreted as meaning that a decrease in functional CD33 and its associated immune suppression was protective from Alzheimer's disease. However, this interpretation may need to be reconsidered given current findings that a genetic deletion which abrogates CD33 is not associated with Alzheimer's disease risk. Therefore, integrating currently available findings leads us to propose a model wherein the CD33 isoform lacking the ligand-binding domain represents a gain of function variant that reduces Alzheimer's disease risk.
Collapse
Affiliation(s)
- Steven Estus
- Department of Physiology and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.
| | - Benjamin C Shaw
- Department of Physiology and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Nicholas Devanney
- Department of Physiology and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Yuriko Katsumata
- Department of Biostatistics and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | | | - David W Fardo
- Department of Biostatistics and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
38
|
Ma H, Sawas A. Combining Biology and Chemistry for a New Take on Chemotherapy: Antibody-Drug Conjugates in Hematologic Malignancies. Curr Hematol Malig Rep 2019; 13:555-569. [PMID: 30362019 DOI: 10.1007/s11899-018-0485-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE OF REVIEW This review is about the antibody-drug conjugate (ADC), a form of drug delivery consisting of a monoclonal antibody, linker, and cytotoxic payload. We summarize the history of ADC development, highlighting the three FDA-approved ADCs currently available. RECENT FINDINGS Gemtuzumab ozogamicin is a CD33-targeted ADC linked to calicheamicin. It is approved for CD33+ AML in the first line or the relapsed or refractory (R/R) setting. Brentuximab vedotin is a CD30-targeted ADC bound to MMAE. It is approved for the treatment of certain R/R CD30+ lymphomas. Recently, it has been approved for first line therapy with chemotherapy in advanced HL. Inotuzumab ozogamicin is a CD22-directed ADC attached to calicheamicin indicated for the treatment of adults with R/R B cell precursor ALL. Three ADCs have been approved for the treatment of various hematologic malignancies. We discuss the pertinent human trials that led to FDA approval. We include our perspectives about drug resistance, toxicities, and future development.
Collapse
Affiliation(s)
- Helen Ma
- Columbia University Medical Center, New York, NY, 10032, USA
| | - Ahmed Sawas
- Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
39
|
Giese MA, Hind LE, Huttenlocher A. Neutrophil plasticity in the tumor microenvironment. Blood 2019; 133:2159-2167. [PMID: 30898857 PMCID: PMC6524564 DOI: 10.1182/blood-2018-11-844548] [Citation(s) in RCA: 409] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/20/2018] [Indexed: 12/11/2022] Open
Abstract
Neutrophils act as the body's first line of defense against infection and respond to diverse inflammatory cues, including cancer. Neutrophils display plasticity, with the ability to adapt their function in different inflammatory contexts. In the tumor microenvironment, neutrophils have varied functions and have been classified using different terms, including N1/N2 neutrophils, tumor-associated neutrophils, and polymorphonuclear neutrophil myeloid-derived suppressor cells (PMN-MDSCs). These populations of neutrophils are primarily defined by their functional phenotype, because few specific cell surface markers have been identified. In this review, we will discuss neutrophil polarization and plasticity and the function of proinflammatory/anti-inflammatory and protumor/antitumor neutrophils in the tumor microenvironment. We will also discuss how neutrophils with the ability to suppress T-cell activation, referred to by some as PMN-MDSCs, fit into this paradigm.
Collapse
Affiliation(s)
| | - Laurel E Hind
- Department of Medical Microbiology and Immunology and
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology and
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
40
|
CD33 (Siglec-3) Inhibitory Function: Role in the NKG2D/DAP10 Activating Pathway. J Immunol Res 2019; 2019:6032141. [PMID: 31143782 PMCID: PMC6501159 DOI: 10.1155/2019/6032141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/25/2018] [Accepted: 02/28/2019] [Indexed: 12/14/2022] Open
Abstract
CD33 (siglec-3), a well-known target in leukemia therapy, is an inhibitory sialoadhesin expressed in human leukocytes of the myeloid lineage and some lymphoid subsets, including NK cells. It may constitute a control mechanism of the innate immune system; nevertheless, its role as an inhibitory receptor remains elusive. Using human NK cells as a cellular model, we analyzed CD33 inhibitory function upon different activating receptors. In high-cytotoxicity NKL cells, CD33 displayed a prominent inhibition on cytotoxicity triggered by the activating receptors NKG2D and, in a lower extent, 2B4, whereas it did not inhibit NKp46-induced cytotoxicity. NKp46 was partially inhibited by CD33 only when low-cytotoxicity NKL cells were tested. CD33 triggering did not inhibit IFN-γ secretion, contrasting with ILT-2 and CD94/NKG2A inhibitory receptors that inhibited cytotoxicity and IFN-γ secretion induced by all activating receptors tested. CD33-mediated inhibition of NKG2D-induced triggering involved Vav1 dephosphorylation. Our results support the role of CD33 as an inhibitory receptor preferentially regulating the NKG2D/DAP10 cytotoxic signaling pathway, which could be involved in self-tolerance and tumor and infected cell recognition.
Collapse
|
41
|
Ye CJ, Chen J, Villani AC, Gate RE, Subramaniam M, Bhangale T, Lee MN, Raj T, Raychowdhury R, Li W, Rogel N, Simmons S, Imboywa SH, Chipendo PI, McCabe C, Lee MH, Frohlich IY, Stranger BE, De Jager PL, Regev A, Behrens T, Hacohen N. Genetic analysis of isoform usage in the human anti-viral response reveals influenza-specific regulation of ERAP2 transcripts under balancing selection. Genome Res 2018; 28:1812-1825. [PMID: 30446528 PMCID: PMC6280757 DOI: 10.1101/gr.240390.118] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/09/2018] [Indexed: 02/02/2023]
Abstract
While genetic variants are known to be associated with overall gene abundance in stimulated immune cells, less is known about their effects on alternative isoform usage. By analyzing RNA-seq profiles of monocyte-derived dendritic cells from 243 individuals, we uncovered thousands of unannotated isoforms synthesized in response to influenza infection and type 1 interferon stimulation. We identified more than a thousand quantitative trait loci (QTLs) associated with alternate isoform usage (isoQTLs), many of which are independent of expression QTLs (eQTLs) for the same gene. Compared with eQTLs, isoQTLs are enriched for splice sites and untranslated regions, but depleted of sequences upstream of annotated transcription start sites. Both eQTLs and isoQTLs explain a significant proportion of the disease heritability attributed to common genetic variants. At the ERAP2 locus, we shed light on the function of the gene and how two frequent, highly differentiated haplotypes with intermediate frequencies could be maintained by balancing selection. At baseline and following type 1 interferon stimulation, the major haplotype is associated with low ERAP2 expression caused by nonsense-mediated decay, while the minor haplotype, known to increase Crohn's disease risk, is associated with high ERAP2 expression. In response to influenza infection, we found two uncharacterized isoforms expressed from the major haplotype, likely the result of multiple perfectly linked variants affecting the transcription and splicing at the locus. Thus, genetic variants at a single locus could modulate independent gene regulatory processes in innate immune responses and, in the case of ERAP2, may confer a historical fitness advantage in response to virus.
Collapse
Affiliation(s)
- Chun Jimmie Ye
- Institute for Human Genetics, Institute for Health and Computational Sciences, Department of Biostatistics and Epidemiology, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94143, USA
| | - Jenny Chen
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Alexandra-Chloé Villani
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts 02114, USA
| | - Rachel E Gate
- Institute for Human Genetics, Institute for Health and Computational Sciences, Department of Biostatistics and Epidemiology, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94143, USA.,Biomedical Informatics Program, University of California, San Francisco, California 94143, USA
| | - Meena Subramaniam
- Institute for Human Genetics, Institute for Health and Computational Sciences, Department of Biostatistics and Epidemiology, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94143, USA.,Biomedical Informatics Program, University of California, San Francisco, California 94143, USA
| | - Tushar Bhangale
- Genentech Incorporated, South San Francisco, California 94080, USA
| | - Mark N Lee
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts 02114, USA.,Harvard Medical School, Boston, Massachusetts 02116, USA
| | - Towfique Raj
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Harvard Medical School, Boston, Massachusetts 02116, USA.,Departments of Neurology and Psychiatry, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | - Weibo Li
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Noga Rogel
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Sean Simmons
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | | | | | - Cristin McCabe
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Departments of Neurology and Psychiatry, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Michelle H Lee
- Harvard Medical School, Boston, Massachusetts 02116, USA
| | | | - Barbara E Stranger
- Section of Genetic Medicine, Department of Medicine, Institute for Genomics and Systems Biology, Center for Data Intensive Science, The University of Chicago, Chicago, Illinois 60637, USA
| | - Philip L De Jager
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Harvard Medical School, Boston, Massachusetts 02116, USA.,Departments of Neurology and Psychiatry, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Tim Behrens
- Genentech Incorporated, South San Francisco, California 94080, USA
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts 02114, USA
| |
Collapse
|
42
|
Aarts CEM, Kuijpers TW. Neutrophils as myeloid-derived suppressor cells. Eur J Clin Invest 2018; 48 Suppl 2:e12989. [PMID: 29956819 DOI: 10.1111/eci.12989] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/27/2018] [Indexed: 12/13/2022]
Abstract
Neutrophils form the first line of defence against invading pathogens, such as bacteria and fungi, as part of the innate immune response. Recently, neutrophils have also been discovered as repressors of adaptive immune responses. Under certain conditions, such as cancer and severe injury, an expansion of immature and mature neutrophils has been observed to induce suppression of T-cell proliferation. These suppressing cells are known as so-called myeloid-derived suppressor cells (MDSCs), a heterogeneous population of granulocytic-MDSCs and monocytic-MDSCs. Initially, MDSCs were believed to be a specific immature type of myeloid immune cell released from the bone marrow, but mature neutrophils have also been proposed to have suppressive capacity. However, granulocytic-MDSCs show a similar morphology and expression of cell surface markers as mature neutrophils. The only characteristic that discriminates granulocytic (g)-MDSCs from mature neutrophils is their suppressive capacity, raising the question whether human g-MDSCs and neutrophils are actually different cell types or whether they are one plastic cell type that can functionally polarize from microbial killers to immunosuppressor cells, depending on local conditions. In this review, we will focus on the MDSC activity of circulating mature neutrophils.
Collapse
Affiliation(s)
- Cathelijn E M Aarts
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatric Hematology, Immunology & Infectious Disease, Emma Children's Hospital, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
43
|
Paubelle E, Rocher C, Julia E, Thomas X. Chimeric Antigen Receptor-Engineered T Cell Therapy in Acute Myeloid Leukaemia. EUROPEAN MEDICAL JOURNAL 2018. [DOI: 10.33590/emj/10314141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Acute myeloid leukaemia (AML) is a disease with a very poor outcome and remains an area of significant unmet need, necessitating novel therapeutic strategies. The progress made in the field of immunotherapy, in particular chimeric antigen receptor (CAR)-engineered T cells, has given rise to many hopes for pathologies such as B cell acute lymphoblastic leukaemia and B cell lymphoma, and many studies have attempted to translate these successes to AML. This review summarises the recent advances in, and defines an ideal target for, CAR T cell therapy in AML.
Collapse
Affiliation(s)
- Etienne Paubelle
- Department of Hematology, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Lyon, France; LBMC, ENS, CNRS UMR5239, Faculté de Médecine Lyon-Sud, Lyon, France
| | - Clément Rocher
- Department of Hematology, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Lyon, France
| | - Edith Julia
- Department of Hematology, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Lyon, France
| | - Xavier Thomas
- Department of Hematology, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Lyon, France
| |
Collapse
|
44
|
Ryan KJ, White CC, Patel K, Xu J, Olah M, Replogle JM, Frangieh M, Cimpean M, Winn P, McHenry A, Kaskow BJ, Chan G, Cuerdon N, Bennett DA, Boyd JD, Imitola J, Elyaman W, De Jager PL, Bradshaw EM. A human microglia-like cellular model for assessing the effects of neurodegenerative disease gene variants. Sci Transl Med 2018; 9:9/421/eaai7635. [PMID: 29263232 DOI: 10.1126/scitranslmed.aai7635] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 04/12/2017] [Accepted: 08/18/2017] [Indexed: 12/25/2022]
Abstract
Microglia are emerging as a key cell type in neurodegenerative diseases, yet human microglia are challenging to study in vitro. We developed an in vitro cell model system composed of human monocyte-derived microglia-like (MDMi) cells that recapitulated key aspects of microglia phenotype and function. We then used this model system to perform an expression quantitative trait locus (eQTL) study examining 94 genes from loci associated with Alzheimer's disease, Parkinson's disease, and multiple sclerosis. We found six loci (CD33, PILRB, NUP160, LRRK2, RGS1, and METTL21B) in which the risk haplotype drives the association with both disease susceptibility and altered expression of a nearby gene (cis-eQTL). In the PILRB and LRRK2 loci, the cis-eQTL was found in the MDMi cells but not in human peripheral blood monocytes, suggesting that differentiation of monocytes into microglia-like cells led to the acquisition of a cellular state that could reveal the functional consequences of certain genetic variants. We further validated the effect of risk haplotypes at the protein level for PILRB and CD33, and we confirmed that the CD33 risk haplotype altered phagocytosis by the MDMi cells. We propose that increased LRRK2 gene expression by MDMi cells could be a functional outcome of rs76904798, a single-nucleotide polymorphism in the LRKK2 locus that is associated with Parkinson's disease.
Collapse
Affiliation(s)
- Katie J Ryan
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, NRB168, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA.,Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Charles C White
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, NRB168, Boston, MA 02115, USA.,Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Kruti Patel
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, NRB168, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA.,Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Jishu Xu
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, NRB168, Boston, MA 02115, USA.,Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Marta Olah
- Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA.,Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Joseph M Replogle
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, NRB168, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA.,Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Michael Frangieh
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, NRB168, Boston, MA 02115, USA.,Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Maria Cimpean
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, NRB168, Boston, MA 02115, USA.,Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Phoebe Winn
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, NRB168, Boston, MA 02115, USA.,Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Allison McHenry
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, NRB168, Boston, MA 02115, USA.,Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Belinda J Kaskow
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, NRB168, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA.,Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Gail Chan
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, NRB168, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA.,Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Nicole Cuerdon
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, NRB168, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA.,Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Justin D Boyd
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Jaime Imitola
- Laboratory of Neural Stem Cells and Functional Neurogenetics, Departments of Neurology and Neuroscience, The Ohio State University College of Medicine, 333 West 10th Avenue, Columbus, OH 43210, USA
| | - Wassim Elyaman
- Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA.,Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Philip L De Jager
- Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA.,Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Elizabeth M Bradshaw
- Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA. .,Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA
| |
Collapse
|
45
|
Laszlo GS, Harrington KH, Gudgeon CJ, Beddoe ME, Fitzgibbon MP, Ries RE, Lamba JK, McIntosh MW, Meshinchi S, Walter RB. Expression and functional characterization of CD33 transcript variants in human acute myeloid leukemia. Oncotarget 2017; 7:43281-43294. [PMID: 27248327 PMCID: PMC5190023 DOI: 10.18632/oncotarget.9674] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 05/17/2016] [Indexed: 12/04/2022] Open
Abstract
With the demonstration of improved survival of some acute myeloid leukemia (AML) patients with the CD33 antibody-drug conjugate, gemtuzumab ozogamicin (GO), CD33 has been validated as a target for antigen-specific immunotherapy. Since previous studies identified a CD33 splice variant missing exon 2 (CD33∆E2) and, consequently, the immune-dominant membrane-distal V-set domain, we investigated the expression and functional characteristics of CD33 transcript variants in AML. In primary AML specimens, we not only found full-length CD33 (CD33FL) and CD33∆E2 but also corresponding variants containing an alternate exon 7 predicted to encode a CD33 protein lacking most of the intracellular domain (CD33E7a and, not previously described, CD33∆E2,E7a) in almost all cases. In acute leukemia cell sublines engineered to express individual CD33 splice variants, all splice variants had endocytic properties. CD33FL and CD33E7a mediated similar degrees of GO cytotoxicity, whereas CD33∆E2 and CD33∆E2,E7a could not serve as target for GO. Co-expression of CD33∆E2 did not interfere with CD33FL endocytosis and did not impact CD33FL-mediated GO cytotoxicity. Together, our findings document a greater-than-previously thought complexity of CD33 expression in human AML. They identify CD33 variants that lack exon 2 and are not recognized by current CD33-directed therapeutics as potential target for future unconjugated or conjugated antibodies.
Collapse
Affiliation(s)
- George S Laszlo
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Kimberly H Harrington
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Chelsea J Gudgeon
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Mary E Beddoe
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Matthew P Fitzgibbon
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Rhonda E Ries
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jatinder K Lamba
- Department of Pharmacotherapy and Translational Research College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Martin W McIntosh
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Children's Oncology Group, Arcadia, CA, USA.,Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Roland B Walter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Medicine, Division of Hematology, University of Washington, Seattle, WA, USA.,Department of Epidemiology, University of Washington, Seattle, WA, USA
| |
Collapse
|
46
|
Villela-Ma LM, Velez-Ayal AK, Lopez-Sanc RDC, Martinez-C JA, Hernandez- JA. Advantages of Drug Selective Distribution in Cancer Treatment: Brentuximab Vedotin. INT J PHARMACOL 2017. [DOI: 10.3923/ijp.2017.785.807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
Kloess S, Ede Valverde da Silva A, Oberschmidt O, Gardlowski T, Matthies N, Vyas M, Arseniev L, Heuser M, Pogge von Strandmann E, Köhl U. Triplebody Mediates Increased Anti-Leukemic Reactivity of IL-2 Activated Donor Natural Killer (NK) Cells and Impairs Viability of Their CD33-Expressing NK Subset. Front Immunol 2017; 8:1100. [PMID: 28943878 PMCID: PMC5596090 DOI: 10.3389/fimmu.2017.01100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 08/22/2017] [Indexed: 12/23/2022] Open
Abstract
Natural killer cells (NK) are essential for the elimination of resistant acute myeloid and acute lymphoblastic leukemia (AML and ALL) cells. NK cell-based immunotherapies have already successfully entered for clinical trials, but limitations due to immune escape mechanisms were identified. Therefore, we extended our established NK cell protocol by integration of the previously investigated powerful trispecific immunoligand ULBP2-aCD19-aCD33 [the so-called triplebodies (TBs)] to improve the anti-leukemic specificity of activated NK cells. IL-2-driven expansion led to strongly elevated natural killer group 2 member D (NKG2D) expressions on donor NK cells which promote the binding to ULBP2+ TBs. Similarly, CD33 expression on these NK cells could be detected. Dual-specific targeting and elimination were investigated against the B-cell precursor leukemia cell line BV-173 and patient blasts, which were positive for myeloid marker CD33 and B lymphoid marker CD19 exclusively presented on biphenotypic B/myeloid leukemia’s. Cytotoxicity assays demonstrated improved killing properties of NK cells pre-coated with TBs compared to untreated controls. Specific NKG2D blocking on those NK cells in response to TBs diminished this killing activity. On the contrary, the observed upregulation of surface CD33 on about 28.0% of the NK cells decreased their viability in response to TBs during cytotoxic interaction of effector and target cells. Similar side effects were also detected against CD33+ T- and CD19+ B-cells. Very preliminary proof of principle results showed promising effects using NK cells and TBs against primary leukemic cells. In summary, we demonstrated a promising strategy for redirecting primary human NK cells in response to TBs against leukemia, which may lead to a future progress in NK cell-based immunotherapies.
Collapse
Affiliation(s)
- Stephan Kloess
- Institute for Cellular Therapeutics, IFB-Tx, Hannover Medical School (MHH), Hannover, Germany
| | | | - Olaf Oberschmidt
- Institute for Cellular Therapeutics, IFB-Tx, Hannover Medical School (MHH), Hannover, Germany
| | - Tanja Gardlowski
- Institute for Cellular Therapeutics, IFB-Tx, Hannover Medical School (MHH), Hannover, Germany
| | - Nadine Matthies
- Institute for Cellular Therapeutics, IFB-Tx, Hannover Medical School (MHH), Hannover, Germany
| | - Maulik Vyas
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Lubomir Arseniev
- Institute for Cellular Therapeutics, IFB-Tx, Hannover Medical School (MHH), Hannover, Germany
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School (MHH), Hannover, Germany
| | - Elke Pogge von Strandmann
- Experimental Tumor Research, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
| | - Ulrike Köhl
- Institute for Cellular Therapeutics, IFB-Tx, Hannover Medical School (MHH), Hannover, Germany
| |
Collapse
|
48
|
Siddiqui SS, Springer SA, Verhagen A, Sundaramurthy V, Alisson-Silva F, Jiang W, Ghosh P, Varki A. The Alzheimer's disease-protective CD33 splice variant mediates adaptive loss of function via diversion to an intracellular pool. J Biol Chem 2017; 292:15312-15320. [PMID: 28747436 DOI: 10.1074/jbc.m117.799346] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 07/20/2017] [Indexed: 12/25/2022] Open
Abstract
The immunomodulatory receptor Siglec-3/CD33 influences risk for late-onset Alzheimer's disease (LOAD), an apparently human-specific post-reproductive disease. CD33 generates two splice variants: a full-length CD33M transcript produced primarily by the "LOAD-risk" allele and a shorter CD33m isoform lacking the sialic acid-binding domain produced primarily from the "LOAD-protective" allele. An SNP that modulates CD33 splicing to favor CD33m is associated with enhanced microglial activity. Individuals expressing more protective isoform accumulate less brain β-amyloid and have a lower LOAD risk. How the CD33m isoform increases β-amyloid clearance remains unknown. We report that the protection by the CD33m isoform may not be conferred by what it does but, rather, from what it cannot do. Analysis of blood neutrophils and monocytes and a microglial cell line revealed that unlike CD33M, the CD33m isoform does not localize to cell surfaces; instead, it accumulates in peroxisomes. Cell stimulation and activation did not mobilize CD33m to the surface. Thus, the CD33m isoform may neither interact directly with amyloid plaques nor engage in cell-surface signaling. Rather, production and localization of CD33m in peroxisomes is a way of diminishing the amount of CD33M and enhancing β-amyloid clearance. We confirmed intracellular localization by generating a CD33m-specific monoclonal antibody. Of note, CD33 is the only Siglec with a peroxisome-targeting sequence, and this motif emerged by convergent evolution in toothed whales, the only other mammals with a prolonged post-reproductive lifespan. The CD33 allele that protects post-reproductive individuals from LOAD may have evolved by adaptive loss-of-function, an example of the less-is-more hypothesis.
Collapse
Affiliation(s)
- Shoib S Siddiqui
- From the Center for Academic Research and Training in Anthropogeny (CARTA) and Glycobiology Research and Training Center (GRTC) and.,Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093 and
| | - Stevan A Springer
- From the Center for Academic Research and Training in Anthropogeny (CARTA) and Glycobiology Research and Training Center (GRTC) and.,Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093 and
| | - Andrea Verhagen
- From the Center for Academic Research and Training in Anthropogeny (CARTA) and Glycobiology Research and Training Center (GRTC) and.,Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093 and
| | - Venkatasubramaniam Sundaramurthy
- From the Center for Academic Research and Training in Anthropogeny (CARTA) and Glycobiology Research and Training Center (GRTC) and
| | - Frederico Alisson-Silva
- From the Center for Academic Research and Training in Anthropogeny (CARTA) and Glycobiology Research and Training Center (GRTC) and.,Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093 and
| | | | - Pradipta Ghosh
- Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093 and
| | - Ajit Varki
- From the Center for Academic Research and Training in Anthropogeny (CARTA) and Glycobiology Research and Training Center (GRTC) and .,Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093 and
| |
Collapse
|
49
|
Gemtuzumab ozogamicin in acute myeloid leukemia. Leukemia 2017; 31:1855-1868. [PMID: 28607471 DOI: 10.1038/leu.2017.187] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/26/2017] [Accepted: 05/31/2017] [Indexed: 12/13/2022]
Abstract
CD33 is variably expressed on leukemia blasts in almost all patients with acute myeloid leukemia (AML) and possibly leukemia stem cells in some. Efforts to target CD33 therapeutically have focused on gemtuzumab ozogamicin (GO; Mylotarg), an antibody-drug conjugate delivering a DNA-damaging calicheamicin derivative. GO is most effective in acute promyelocytic leukemia but induces remissions in other AML types and received accelerated approval in the US in 2000. However, because a large follow-up study showed no survival improvement and increased early deaths the drug manufacturer voluntarily withdrew the US New Drug Application in 2010. More recently, a meta-analysis of data from several trials reported better survival in adults with favorable- and intermediate-risk cytogenetics but not adverse-risk AML randomized to receive GO along with intensive induction chemotherapy. As a result, GO is being re-evaluated by regulatory agencies. Responses to GO are diverse and predictive biological response markers are needed. Besides cytogenetic risk, ATP-binding cassette transporter activity and possibly CD33 display on AML blasts may predict response, but established clinical assays and prospective validation are lacking. Single-nucleotide polymorphisms in CD33 may also be predictive, most notably rs12459419 where the minor T-allele leads to decreased display of full-length CD33 and preferential translation of a splice variant not recognized by GO. Data from retrospective analyses suggest only patients with the rs12459419 CC genotype may benefit from GO therapy but confirmation is needed. Most important may be markers for AML cell sensitivity to calicheamicin, which varies over 100 000-fold, but useful assays are unavailable. Novel CD33-targeted drugs may overcome some of GO's limitations but it is currently unknown whether such drugs will be more effective in patients benefitting from GO and/or improve outcomes in patients not benefitting from GO, and what the supportive care requirements will be to enable their safe use.
Collapse
|
50
|
Karaca I, Wagner H, Ramirez A. Suche nach Risikogenen bei der Alzheimer-Erkrankung. DER NERVENARZT 2017; 88:744-750. [DOI: 10.1007/s00115-017-0354-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|