1
|
Salve BG, Sharma S, Vijay N. Evolutionary diversity of CXCL16-CXCR6: Convergent substitutions and recurrent gene loss in sauropsids. Immunogenetics 2024; 76:397-415. [PMID: 39400711 DOI: 10.1007/s00251-024-01357-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024]
Abstract
The CXCL16-CXCR6 axis is crucial for regulating the persistence of CD8 tissue-resident memory T cells (TRM). CXCR6 deficiency lowers TRM cell numbers in the lungs and depletes ILC3s in the lamina propria, impairing mucosal defence. This axis is linked to diseases like HIV/SIV, cancer, and COVID-19. Together, these highlight that the CXCL16-CXCR6 axis is pivotal in host immunity. Previous studies of the CXCL16-CXCR6 axis found genetic variation among species but were limited to primates and rodents. To understand the evolution and diversity of CXCL16-CXCR6 across vertebrates, we compared approximately 400 1-to-1 CXCR6 orthologs spanning diverse vertebrates. The unique DRF motif of CXCR6 facilitates leukocyte adhesion by interacting with cell surface-expressed CXCL16 and plays a key role in G-protein selectivity during receptor signalling; however, our findings show that this motif is not universal. The DRF motif is restricted to mammals, turtles, and frogs, while the DRY motif, typical in other CKRs, is found in snakes and lizards. Most birds exhibit the DRL motif. These substitutions at the DRF motif affect the receptor-Gi/o protein interaction. We establish recurrent CXCR6 gene loss in 10 out of 36 bird orders, including Galliformes and Passeriformes, Crocodilia, and Elapidae, attributed to segmental deletions and/or frame-disrupting changes. Notably, single-cell RNA sequencing of the lung shows a drop in TRM cells in species with CXCR6 loss, suggesting a possible link. The concurrent loss of ITGAE, CXCL16, and CXCR6 in chickens may have altered CD8 TRM cell abundance, with implications for immunity against viral diseases and vaccines inducing CD8 TRM cells.
Collapse
Affiliation(s)
- Buddhabhushan Girish Salve
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India
| | - Sandhya Sharma
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India
| | - Nagarjun Vijay
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India.
| |
Collapse
|
2
|
Leroux LP, Chaparro V, Plouffe A, Johnston B, Jaramillo M. Toxoplasma gondii infection induces the expression of the chemokine CXCL16 in macrophages to promote chemoattraction of CXCR6 + cells. Infect Immun 2024; 92:e0030924. [PMID: 39436058 PMCID: PMC11556035 DOI: 10.1128/iai.00309-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
CXCL16 is a multifaceted chemokine expressed by macrophages and other immune cells in response to viral and bacterial pathogens. However, few studies have investigated its role in parasitic infections. The obligate intracellular parasite Toxoplasma gondii (T. gondii) is the causative agent of toxoplasmosis, an infection with potentially deleterious consequences in immunocompromised individuals and the developing fetus of acutely infected pregnant women. Chemokines are critical mediators of host defense and, as such, dysregulation of their expression is a subversion strategy often employed by the parasite to ensure its survival. Herein, we report that types I and II T. gondii strains upregulated the expression of both transmembrane and soluble forms of CXCL16 in infected bone marrow-derived macrophages (BMDM). Exposure to soluble T. gondii antigens (STAg) and to excreted-secreted proteins (TgESP) led to the induction of CXCL16. Cxcl16 mRNA abundance and CXCL16 protein levels increased in a time-dependent manner upon T. gondii infection. Importantly, conditioned medium (CM) collected from T. gondii-infected wild-type (WT) macrophage cultures promoted the migration of RAW264.7 cells expressing CXCR6, the cognate receptor of CXCL16, an effect that was significantly reduced by a neutralizing anti-CXCL16 antibody or use of CM from CXCL16 knockout (KO) macrophages. Lastly, T. gondii-driven CXCL16 expression appeared to modulate cytokine-induced (IL-4 + IL-13) alternative macrophage activation and M2 phenotypic marker expression. Further investigation is required to determine whether this chemokine contributes to the pathogenesis of toxoplasmosis and to elucidate the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Louis-Philippe Leroux
- Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie (CAFSB), Laval, Québec, Canada
| | - Visnu Chaparro
- Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie (CAFSB), Laval, Québec, Canada
| | - Alexandra Plouffe
- Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie (CAFSB), Laval, Québec, Canada
| | - Brent Johnston
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Maritza Jaramillo
- Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie (CAFSB), Laval, Québec, Canada
| |
Collapse
|
3
|
Tooley K, Jerby L, Escobar G, Krovi SH, Mangani D, Dandekar G, Cheng H, Madi A, Goldschmidt E, Lambden C, Krishnan RK, Rozenblatt-Rosen O, Regev A, Anderson AC. Pan-cancer mapping of single CD8 + T cell profiles reveals a TCF1:CXCR6 axis regulating CD28 co-stimulation and anti-tumor immunity. Cell Rep Med 2024; 5:101640. [PMID: 38959885 PMCID: PMC11293343 DOI: 10.1016/j.xcrm.2024.101640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 01/05/2024] [Accepted: 06/11/2024] [Indexed: 07/05/2024]
Abstract
CD8+ T cells must persist and function in diverse tumor microenvironments to exert their effects. Thus, understanding common underlying expression programs could better inform the next generation of immunotherapies. We apply a generalizable matrix factorization algorithm that recovers both shared and context-specific expression programs from diverse datasets to a single-cell RNA sequencing (scRNA-seq) compendium of 33,161 CD8+ T cells from 132 patients with seven human cancers. Our meta-single-cell analyses uncover a pan-cancer T cell dysfunction program that predicts clinical non-response to checkpoint blockade in melanoma and highlights CXCR6 as a pan-cancer marker of chronically activated T cells. Cxcr6 is trans-activated by AP-1 and repressed by TCF1. Using mouse models, we show that Cxcr6 deletion in CD8+ T cells increases apoptosis of PD1+TIM3+ cells, dampens CD28 signaling, and compromises tumor growth control. Our study uncovers a TCF1:CXCR6 axis that counterbalances PD1-mediated suppression of CD8+ cell responses and is essential for effective anti-tumor immunity.
Collapse
Affiliation(s)
- Katherine Tooley
- The Gene Lay Institute of Immunology and Inflammation of Brigham and Women's Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Division of Medical Sciences, Harvard Medical School, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Livnat Jerby
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Giulia Escobar
- The Gene Lay Institute of Immunology and Inflammation of Brigham and Women's Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - S Harsha Krovi
- The Gene Lay Institute of Immunology and Inflammation of Brigham and Women's Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Davide Mangani
- The Gene Lay Institute of Immunology and Inflammation of Brigham and Women's Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Gitanjali Dandekar
- The Gene Lay Institute of Immunology and Inflammation of Brigham and Women's Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Hanning Cheng
- The Gene Lay Institute of Immunology and Inflammation of Brigham and Women's Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Asaf Madi
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ella Goldschmidt
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Conner Lambden
- The Gene Lay Institute of Immunology and Inflammation of Brigham and Women's Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Rajesh K Krishnan
- The Gene Lay Institute of Immunology and Inflammation of Brigham and Women's Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute and Koch Institute of Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Ana C Anderson
- The Gene Lay Institute of Immunology and Inflammation of Brigham and Women's Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Wang FT, Wu TQ, Lin Y, Jiao YR, Li JY, Ruan Y, Yin L, Chen CQ. The role of the CXCR6/CXCL16 axis in the pathogenesis of fibrotic disease. Int Immunopharmacol 2024; 132:112015. [PMID: 38608478 DOI: 10.1016/j.intimp.2024.112015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
CXC chemokine receptor 6 (CXCR6), a seven-transmembrane domain G-protein-coupled receptor, plays a pivotal regulatory role in inflammation and tissue damage through its interaction with CXC chemokine ligand 16 (CXCL16). This axis is implicated in the pathogenesis of various fibrotic diseases and correlates with clinical parameters that indicate disease severity, activity, and prognosis in organ fibrosis, including afflictions of the liver, kidney, lung, cardiovascular system, skin, and intestines. Soluble CXCL16 (sCXCL16) serves as a chemokine, facilitating the migration and recruitment of CXCR6-expressing cells, while membrane-bound CXCL16 (mCXCL16) functions as a transmembrane protein with adhesion properties, facilitating intercellular interactions by binding to CXCR6. The CXCR6/CXCL16 axis is established to regulate the cycle of damage and repair during chronic inflammation, either through modulating immune cell-mediated intercellular communication or by independently influencing fibroblast homing, proliferation, and activation, with each pathway potentially culminating in the onset and progression of fibrotic diseases. However, clinically exploiting the targeting of the CXCR6/CXCL16 axis requires further elucidation of the intricate chemokine interactions within fibrosis pathogenesis. This review explores the biology of CXCR6/CXCL16, its multifaceted effects contributing to fibrosis in various organs, and the prospective clinical implications of these insights.
Collapse
Affiliation(s)
- Fang-Tao Wang
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Tian-Qi Wu
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yin Lin
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yi-Ran Jiao
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ji-Yuan Li
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yu Ruan
- Surgery and Anesthesia Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Lu Yin
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Chun-Qiu Chen
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
5
|
Szukiewicz D. CX3CL1 (Fractalkine)-CX3CR1 Axis in Inflammation-Induced Angiogenesis and Tumorigenesis. Int J Mol Sci 2024; 25:4679. [PMID: 38731899 PMCID: PMC11083509 DOI: 10.3390/ijms25094679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
The chemotactic cytokine fractalkine (FKN, chemokine CX3CL1) has unique properties resulting from the combination of chemoattractants and adhesion molecules. The soluble form (sFKN) has chemotactic properties and strongly attracts T cells and monocytes. The membrane-bound form (mFKN) facilitates diapedesis and is responsible for cell-to-cell adhesion, especially by promoting the strong adhesion of leukocytes (monocytes) to activated endothelial cells with the subsequent formation of an extracellular matrix and angiogenesis. FKN signaling occurs via CX3CR1, which is the only known member of the CX3C chemokine receptor subfamily. Signaling within the FKN-CX3CR1 axis plays an important role in many processes related to inflammation and the immune response, which often occur simultaneously and overlap. FKN is strongly upregulated by hypoxia and/or inflammation-induced inflammatory cytokine release, and it may act locally as a key angiogenic factor in the highly hypoxic tumor microenvironment. The importance of the FKN/CX3CR1 signaling pathway in tumorigenesis and cancer metastasis results from its influence on cell adhesion, apoptosis, and cell migration. This review presents the role of the FKN signaling pathway in the context of angiogenesis in inflammation and cancer. The mechanisms determining the pro- or anti-tumor effects are presented, which are the cause of the seemingly contradictory results that create confusion regarding the therapeutic goals.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
6
|
Chia TY, Billingham LK, Boland L, Katz JL, Arrieta VA, Shireman J, Rosas AL, DeLay SL, Zillinger K, Geng Y, Kruger J, Silvers C, Wang H, Vazquez Cervantes GI, Hou D, Wang S, Wan H, Sonabend A, Zhang P, Lee-Chang C, Miska J. The CXCL16-CXCR6 axis in glioblastoma modulates T-cell activity in a spatiotemporal context. Front Immunol 2024; 14:1331287. [PMID: 38299146 PMCID: PMC10827847 DOI: 10.3389/fimmu.2023.1331287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/19/2023] [Indexed: 02/02/2024] Open
Abstract
Introduction Glioblastoma multiforme (GBM) pathobiology is characterized by its significant induction of immunosuppression within the tumor microenvironment, predominantly mediated by immunosuppressive tumor-associated myeloid cells (TAMCs). Myeloid cells play a pivotal role in shaping the GBM microenvironment and influencing immune responses, with direct interactions with effector immune cells critically impacting these processes. Methods Our study investigates the role of the CXCR6/CXCL16 axis in T-cell myeloid interactions within GBM tissues. We examined the surface expression of CXCL16, revealing its limitation to TAMCs, while microglia release CXCL16 as a cytokine. The study explores how these distinct expression patterns affect T-cell engagement, focusing on the consequences for T-cell function within the tumor environment. Additionally, we assessed the significance of CXCR6 expression in T-cell activation and the initial migration to tumor tissues. Results Our data demonstrates that CXCL16 surface expression on TAMCs results in predominant T-cell engagement with these cells, leading to impaired T-cell function within the tumor environment. Conversely, our findings highlight the essential role of CXCR6 expression in facilitating T-cell activation and initial migration to tumor tissues. The CXCL16-CXCR6 axis exhibits dualistic characteristics, facilitating the early stages of the T-cell immune response and promoting T-cell infiltration into tumors. However, once inside the tumor, this axis contributes to immunosuppression. Discussion The dual nature of the CXCL16-CXCR6 axis underscores its potential as a therapeutic target in GBM. However, our results emphasize the importance of carefully considering the timing and context of intervention. While targeting this axis holds promise in combating GBM, the complex interplay between TAMCs, microglia, and T cells suggests that intervention strategies need to be tailored to optimize the balance between promoting antitumor immunity and preventing immunosuppression within the dynamic tumor microenvironment.
Collapse
Affiliation(s)
- Tzu-Yi Chia
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Leah K. Billingham
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Lauren Boland
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL, United States
| | - Joshua L. Katz
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Victor A. Arrieta
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jack Shireman
- Department of Neurosurgery, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI, United States
| | - Aurora-Lopez Rosas
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Susan L. DeLay
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Kaylee Zillinger
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Yuheng Geng
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jeandre Kruger
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Caylee Silvers
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Hanxiang Wang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Gustavo Ignacio Vazquez Cervantes
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - David Hou
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Si Wang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Hanxiao Wan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Adam Sonabend
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Peng Zhang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Catalina Lee-Chang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jason Miska
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
7
|
Abstract
For our immune system to contain or eliminate malignant solid tumours, both myeloid and lymphoid haematopoietic cells must not only extravasate from the bloodstream into the tumour tissue but also further migrate to various specialized niches of the tumour microenvironment to functionally interact with each other, with non-haematopoietic stromal cells and, ultimately, with cancer cells. These interactions regulate local immune cell survival, proliferative expansion, differentiation and their execution of pro-tumour or antitumour effector functions, which collectively determine the outcome of spontaneous or therapeutically induced antitumour immune responses. None of these interactions occur randomly but are orchestrated and critically depend on migratory guidance cues provided by chemokines, a large family of chemotactic cytokines, and their receptors. Understanding the functional organization of the tumour immune microenvironment inevitably requires knowledge of the multifaceted roles of chemokines in the recruitment and positioning of its cellular constituents. Gaining such knowledge will not only generate new insights into the mechanisms underlying antitumour immunity or immune tolerance but also inform the development of biomarkers (or 'biopatterns') based on spatial tumour tissue analyses, as well as novel strategies to therapeutically engineer immune responses in patients with cancer. Here we will discuss recent observations on the role of chemokines in the tumour microenvironment in the context of our knowledge of their physiological functions in development, homeostasis and antimicrobial responses.
Collapse
Affiliation(s)
- Thorsten R Mempel
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Julia K Lill
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lukas M Altenburger
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Cheng D, Wang J, Wang Y, Xue Y, Yang Q, Yang Q, Zhao H, Huang J, Peng X. Chemokines: Function and therapeutic potential in bone metastasis of lung cancer. Cytokine 2023; 172:156403. [PMID: 37871366 DOI: 10.1016/j.cyto.2023.156403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
Lung cancer is a rapidly progressing disease with a poor prognosis. Bone metastasis is commonly found in 40.6% of advanced-stage patients. The mortality rate of lung cancer patients with bone metastasis can be significantly decreased by implementing novel diagnostic techniques, improved staging and classification systems, precise surgical interventions, and advanced treatment modalities. However, it is important to note that there is currently a lack of radical procedures available for these patients due to the development of drug resistance. Consequently, palliative care approaches are commonly employed in clinical practice. Therefore, new understandings of the process of bone metastasis of lung cancer are critical for developing better treatment strategies to improve patient's clinical cure rate and quality of life. Chemokines are cell-secreted small signaling proteins in cancer occurrence, proliferation, invasion, and metastasis. In this study, we review the development of bone metastasis in lung cancer and discuss the mechanisms of specific chemokine families (CC, CXC, CX3C, and XC) in regulating the biological activities of tumors and promoting bone metastasis. We also highlight some preclinical studies and clinical trials on chemokines for lung cancer and bone metastasis.
Collapse
Affiliation(s)
- Dezhou Cheng
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Jiancheng Wang
- Department of Radiology, The Second People's Hospital of Jingzhou, China
| | - Yiling Wang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yanfang Xue
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Qing Yang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Qun Yang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Huichuan Zhao
- Department of Pathology of the First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Jinbai Huang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China; Department of Medical Imaging, the First Affiliated Hospital of Yangtze University, and School of Medicine of Yangtze University, Jingzhou, Hubei, China.
| | - Xiaochun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China.
| |
Collapse
|
9
|
Williams A, Bissinger R, Shamaa H, Patel S, Bourne L, Artunc F, Qadri SM. Pathophysiology of Red Blood Cell Dysfunction in Diabetes and Its Complications. PATHOPHYSIOLOGY 2023; 30:327-345. [PMID: 37606388 PMCID: PMC10443300 DOI: 10.3390/pathophysiology30030026] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/23/2023] Open
Abstract
Diabetes Mellitus (DM) is a complex metabolic disorder associated with multiple microvascular complications leading to nephropathy, retinopathy, and neuropathy. Mounting evidence suggests that red blood cell (RBC) alterations are both a cause and consequence of disturbances related to DM-associated complications. Importantly, a significant proportion of DM patients develop varying degrees of anemia of confounding etiology, leading to increased morbidity. In chronic hyperglycemia, RBCs display morphological, enzymatic, and biophysical changes, which in turn prime them for swift phagocytic clearance from circulation. A multitude of endogenous factors, such as oxidative and dicarbonyl stress, uremic toxins, extracellular hypertonicity, sorbitol accumulation, and deranged nitric oxide metabolism, have been implicated in pathological RBC changes in DM. This review collates clinical laboratory findings of changes in hematology indices in DM patients and discusses recent reports on the putative mechanisms underpinning shortened RBC survival and disturbed cell membrane architecture within the diabetic milieu. Specifically, RBC cell death signaling, RBC metabolism, procoagulant RBC phenotype, RBC-triggered endothelial cell dysfunction, and changes in RBC deformability and aggregation in the context of DM are discussed. Understanding the mechanisms of RBC alterations in DM provides valuable insights into the clinical significance of the crosstalk between RBCs and microangiopathy in DM.
Collapse
Affiliation(s)
- Alyssa Williams
- Faculty of Science, Ontario Tech University, Oshawa, ON L1G 0C5, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Rosi Bissinger
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Hala Shamaa
- Faculty of Health Sciences, Ontario Tech University, Oshawa, ON L1G 0C5, Canada
| | - Shivani Patel
- Faculty of Health Sciences, Ontario Tech University, Oshawa, ON L1G 0C5, Canada
| | - Lavern Bourne
- Faculty of Health Sciences, Ontario Tech University, Oshawa, ON L1G 0C5, Canada
| | - Ferruh Artunc
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany
- Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, 72076 Tübingen, Germany
- German Center for Diabetes Research at the University of Tübingen, 72076 Tübingen, Germany
| | - Syed M. Qadri
- Faculty of Health Sciences, Ontario Tech University, Oshawa, ON L1G 0C5, Canada
| |
Collapse
|
10
|
Bao N, Fu B, Zhong X, Jia S, Ren Z, Wang H, Wang W, Shi H, Li J, Ge F, Chang Q, Gong Y, Liu W, Qiu F, Xu S, Li T. Role of the CXCR6/CXCL16 axis in autoimmune diseases. Int Immunopharmacol 2023; 121:110530. [PMID: 37348231 DOI: 10.1016/j.intimp.2023.110530] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/01/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023]
Abstract
The C-X-C motif ligand 16, or CXCL16, is a chemokine that belongs to the ELR - CXC subfamily. Its function is to bind to the chemokine receptor CXCR6, which is a G protein-coupled receptor with 7 transmembrane domains. The CXCR6/CXCL16 axis has been linked to the development of numerous autoimmune diseases and is connected to clinical parameters that reflect disease severity, activity, and prognosis in conditions such as multiple sclerosis, autoimmune hepatitis, rheumatoid arthritis, Crohn's disease, and psoriasis. CXCL16 is expressed in various immune cells, such as dendritic cells, monocytes, macrophages, and B cells. During autoimmune diseases, CXCL16 can facilitate the adhesion of immune cells like monocytes, T cells, NKT cells, and others to endothelial cells and dendritic cells. Additionally, sCXCL16 can regulate the migration of CXCR6-expressing leukocytes, which includes CD8+ T cells, CD4+ T cells, NK cells, constant natural killer T cells, plasma cells, and monocytes. Further investigation is required to comprehend the intricate interactions between chemokines and the pathogenesis of autoimmune diseases. It remains to be seen whether the CXCR6/CXCL16 axis represents a new target for the treatment of these conditions.
Collapse
Affiliation(s)
- Nandi Bao
- Senior Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Bo Fu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Beijing, China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| | - Xiaoling Zhong
- Department of neurology, School of Medicine, South China University of Technology, Guangzhou, China; Department of neurology, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing, China
| | - Shuangshuang Jia
- Department of neurology, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing, China; Navy Clinical College, the Fifth School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Zhuangzhuang Ren
- Navy Clinical College, the Fifth School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Haoran Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Beijing, China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| | - Weihua Wang
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Hui Shi
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Jun Li
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Fulin Ge
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Qing Chang
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Yuan Gong
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Wenhui Liu
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Feng Qiu
- Senior Department of Neurology, The First Medical Center of PLA General Hospital, Beijing, China.
| | - Shiping Xu
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.
| | - Tingting Li
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China; Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
11
|
Cui Y, Wu H, Liu Z, Ma T, Liang W, Zeng Q, Chen D, Qin Q, Huang B, Wang MH, Huang X, He Y, Kuang Y, Sugimoto S, Sato T, Wang L. CXCL16 inhibits epithelial regeneration and promotes fibrosis during the progression of radiation enteritis. J Pathol 2023; 259:180-193. [PMID: 36373877 DOI: 10.1002/path.6031] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/02/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Radiation enteritis (RE) is a prevalent complication of radiotherapy for pelvic malignant tumors, characterized by severe intestinal epithelial destruction and progressive submucosal fibrosis. However, little is known about the pathogenesis of this disease, and so far, there is no specific targeted therapy. Here, we report that CXCL16 is upregulated in the injured intestinal tissues of RE patients and in a mouse model. Genetic deletion of Cxcl16 mitigates fibrosis and promotes intestinal stem cell-mediated epithelial regeneration after radiation injury in mice. Mechanistically, CXCL16 functions on myofibroblasts through its receptor CXCR6 and activates JAK3/STAT3 signaling to promote fibrosis and, at the same time, to transcriptionally modulate the levels of BMP4 and hepatocyte growth factor (HGF) in myofibroblasts. Moreover, we find that CXCL16 and CXCR6 auto- and cross-regulate themselves in positive feedback loops. Treatment with CXCL16 neutralizing monoclonal antibody attenuates fibrosis and improves the epithelial repair in RE mouse model. Our findings emphasize the important role of CXCL16 in the progression of RE and suggest that CXCL16 signaling could be a potential therapeutic target for RE. © 2022 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Yanmei Cui
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Haiyong Wu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Zhihang Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Tenghui Ma
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Wenfeng Liang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Qingzhi Zeng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Daici Chen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Qiyuan Qin
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Binjie Huang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Michael Hu Wang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Xiaoyan Huang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Yanjiong He
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Yingyi Kuang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Shinya Sugimoto
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan.,Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Toshiro Sato
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan.,Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Lei Wang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China.,Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| |
Collapse
|
12
|
Kazakova E, Iamshchikov P, Larionova I, Kzhyshkowska J. Macrophage scavenger receptors: Tumor support and tumor inhibition. Front Oncol 2023; 12:1096897. [PMID: 36686729 PMCID: PMC9853406 DOI: 10.3389/fonc.2022.1096897] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/13/2022] [Indexed: 01/08/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are a heterogeneous population of myeloid cells that constitute up to 50% of the cell mass of human tumors. TAMs interact with the components of the tumor microenvironment (TME) by using scavenger receptors (SRs), a large superfamily of multifunctional receptors that recognize, internalize and transport to the endosomal/lysosomal pathway apoptotic cells, cytokines, matrix molecules, lipid modified lipoproteins and other unwanted-self ligands. In our review, we summarized state-of-the art for the role of macrophage scavenger receptors in tumor development and their significance as cancer biomarkers. In this review we focused on functional activity of TAM-expressing SRs in animal models and in patients, and summarized the data for different human cancer types about the prognostic significance of TAM-expressed SRs. We discussed the role of SRs in the regulation of cancer cell biology, cell-cell and cell-matrix interaction in TME, immune status in TME, angiogenesis, and intratumoral metabolism. Targeting of tumor-promoting SRs can be a promising therapeutic approach in anti-cancer therapy. In our review we provide evidence for both tumor supporting and tumor inhibiting functions of scavenger receptors expressed on TAMs. We focused on the key differences in the prognostic and functional roles of SRs that are specific for cancer types. We highlighted perspectives for inhibition of tumor-promoting SRs in anti-cancer therapy.
Collapse
Affiliation(s)
- Elena Kazakova
- Laboratory of translational cellular and molecular biomedicine, National Research Tomsk State University, Tomsk, Russia,Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Pavel Iamshchikov
- Laboratory of translational cellular and molecular biomedicine, National Research Tomsk State University, Tomsk, Russia,Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Irina Larionova
- Laboratory of translational cellular and molecular biomedicine, National Research Tomsk State University, Tomsk, Russia,Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia,Laboratory of Genetic Technologies, Siberian State Medical University, Tomsk, Russia
| | - Julia Kzhyshkowska
- Laboratory of translational cellular and molecular biomedicine, National Research Tomsk State University, Tomsk, Russia,Laboratory of Genetic Technologies, Siberian State Medical University, Tomsk, Russia,Institute of Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany,German Red Cross Blood Service Baden-Württemberg – Hessen, Mannheim, Germany,*Correspondence: Julia Kzhyshkowska,
| |
Collapse
|
13
|
Guan T, Emschermann F, Schories C, Groga-Bada P, Martus P, Borst O, Gawaz M, Geisler T, Rath D, Chatterjee M. Platelet SR-PSOX/CXCL16-CXCR6 Axis Influences Thrombotic Propensity and Prognosis in Coronary Artery Disease. Int J Mol Sci 2022; 23:ijms231911066. [PMID: 36232370 PMCID: PMC9570123 DOI: 10.3390/ijms231911066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/10/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Platelets express the transmembrane chemokine SR-PSOX/CXCL16, proteolytic cleavage of which generates the sCXCL16 soluble-(s) chemokine. The sCXCL16 engages CXCR6 on platelets to synergistically propagate degranulation, aggregation and thrombotic response. Currently, we have investigated the pro-thrombotic and prognostic association of platelet CXCL16−CXCR6 axis in CAD-(n = 240; CCS n = 62; ACS n = 178) patients. Platelet surface-associated-CXCL16 and CXCR6 surface expression ascertained by flow cytometry correlated significantly with platelet activation markers (CD62P denoting degranulation and PAC-1 binding denoting α2bβ3-integrin activation). Higher platelet CXCL16 surface association (1st quartile vs. 2nd−4th quartiles) corresponded to significantly elevated collagen-induced platelet aggregation assessed by whole blood impedance aggregometry. Platelet-CXCL16 and CXCR6 expression did not alter with dyslipidemia, triglyceride, total cholesterol, or LDL levels, but higher (>median) plasma HDL levels corresponded with decreased platelet-CXCL16 and CXCR6. Although platelet-CXCL16 and CXCR6 expression did not change significantly with or correlate with troponin I levels, they corresponded with higher Creatine Kinase-(CK) activity and progressively deteriorating left ventricular ejection fraction (LVEF) at admission. Elevated-(4th quartile) platelet-CXCL16 (p = 0.023) and CXCR6 (p = 0.030) measured at admission were significantly associated with a worse prognosis. However, after Cox-PH regression analysis, only platelet-CXCL16 was ascertained as an independent predictor for all-cause of mortality. Therefore, the platelet CXCL16−CXCR6 axis may influence thrombotic propensity and prognosis in CAD patients.
Collapse
Affiliation(s)
- Tianyun Guan
- Department of Cardiology and Angiology, University Hospital Tübingen, Otfried Müller Straße 10, 72076 Tübingen, Germany
| | - Frederic Emschermann
- Department of Cardiology and Angiology, University Hospital Tübingen, Otfried Müller Straße 10, 72076 Tübingen, Germany
| | - Christoph Schories
- Department of Cardiology and Angiology, University Hospital Tübingen, Otfried Müller Straße 10, 72076 Tübingen, Germany
| | - Patrick Groga-Bada
- Department of Cardiology and Angiology, University Hospital Tübingen, Otfried Müller Straße 10, 72076 Tübingen, Germany
| | - Peter Martus
- Institute for Clinical Epidemiology and Applied Biostatistics, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Oliver Borst
- Department of Cardiology and Angiology, University Hospital Tübingen, Otfried Müller Straße 10, 72076 Tübingen, Germany
| | - Meinrad Gawaz
- Department of Cardiology and Angiology, University Hospital Tübingen, Otfried Müller Straße 10, 72076 Tübingen, Germany
| | - Tobias Geisler
- Department of Cardiology and Angiology, University Hospital Tübingen, Otfried Müller Straße 10, 72076 Tübingen, Germany
| | - Dominik Rath
- Department of Cardiology and Angiology, University Hospital Tübingen, Otfried Müller Straße 10, 72076 Tübingen, Germany
- Correspondence: (D.R.); (M.C.); Tel.: +49-7071-2974944 (M.C.)
| | - Madhumita Chatterjee
- Department of Cardiology and Angiology, University Hospital Tübingen, Otfried Müller Straße 10, 72076 Tübingen, Germany
- Department of Pharmacology, Experimental Therapy and Toxicology, University Hospital Tübingen, Wilhelmstrasse 56, 72074 Tübingen, Germany
- Correspondence: (D.R.); (M.C.); Tel.: +49-7071-2974944 (M.C.)
| |
Collapse
|
14
|
Pontejo SM, Murphy PM. Chemokines and phosphatidylserine: New binding partners for apoptotic cell clearance. Front Cell Dev Biol 2022; 10:943590. [PMID: 36092729 PMCID: PMC9456247 DOI: 10.3389/fcell.2022.943590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
|
15
|
Chemokines and NSCLC: Emerging role in prognosis, heterogeneity, and therapeutics. Semin Cancer Biol 2022; 86:233-246. [PMID: 35787939 DOI: 10.1016/j.semcancer.2022.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 12/11/2022]
Abstract
Lung cancer persists to contribute to one-quarter of cancer-associated deaths. Among the different histologies, non-small cell lung cancer (NSCLC) alone accounts for 85% of the cases. The development of therapies involving immune checkpoint inhibitors and angiogenesis inhibitors has increased patients' survival probability and reduced mortality rates. Developing targeted therapies against essential genetic alterations also translates to better treatment strategies. But the benefits still seem farfetched due to the development of drug resistance and refractory tumors. In this review, we have highlighted the interplay of different tumor microenvironment components, essentially discussing the chemokine families (CC, CXC, C, and CX3C) that regulate the tumor biology in NSCLC and promote tumor growth, metastasis, and associated heterogeneity. The development of therapeutics and prognostic markers is a complex and multipronged approach. However, some essential chemokines can act as critical players for being considered potential prognostic markers and therapeutic targets.
Collapse
|
16
|
Heng AHS, Han CW, Abbott C, McColl SR, Comerford I. Chemokine-Driven Migration of Pro-Inflammatory CD4 + T Cells in CNS Autoimmune Disease. Front Immunol 2022; 13:817473. [PMID: 35250997 PMCID: PMC8889115 DOI: 10.3389/fimmu.2022.817473] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/25/2022] [Indexed: 12/13/2022] Open
Abstract
Pro-inflammatory CD4+ T helper (Th) cells drive the pathogenesis of many autoimmune conditions. Recent advances have modified views of the phenotype of pro-inflammatory Th cells in autoimmunity, extending the breadth of known Th cell subsets that operate as drivers of these responses. Heterogeneity and plasticity within Th1 and Th17 cells, and the discovery of subsets of Th cells dedicated to production of other pro-inflammatory cytokines such as GM-CSF have led to these advances. Here, we review recent progress in this area and focus specifically upon evidence for chemokine receptors that drive recruitment of these various pro-inflammatory Th cell subsets to sites of autoimmune inflammation in the CNS. We discuss expression of specific chemokine receptors by subsets of pro-inflammatory Th cells and highlight which receptors may be tractable targets of therapeutic interventions to limit pathogenic Th cell recruitment in autoimmunity.
Collapse
Affiliation(s)
- Aaron H S Heng
- The Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA, Australia
| | - Caleb W Han
- The Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA, Australia
| | - Caitlin Abbott
- The Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA, Australia
| | - Shaun R McColl
- The Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA, Australia
| | - Iain Comerford
- The Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
17
|
Li T, Pan J, Chen H, Fang Y, Sun Y. CXCR6-based immunotherapy in autoimmune, cancer and inflammatory infliction. Acta Pharm Sin B 2022; 12:3255-3262. [PMID: 35967287 PMCID: PMC9366225 DOI: 10.1016/j.apsb.2022.03.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/25/2022] [Accepted: 02/25/2022] [Indexed: 01/22/2023] Open
Affiliation(s)
- Tingting Li
- Department of Gastroenterology, the Second Medical Center, National Clinical Research Center for Geriatric Diseases, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing 100853, China
- Corresponding authors.
| | - Jie Pan
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Hongqi Chen
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yongliang Fang
- Department of Urology, Boston Children's Hospital, Departments of Microbiology and Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
- Corresponding authors.
| |
Collapse
|
18
|
Patten DA, Wilkinson AL, O'Keeffe A, Shetty S. Scavenger Receptors: Novel Roles in the Pathogenesis of Liver Inflammation and Cancer. Semin Liver Dis 2022; 42:61-76. [PMID: 34553345 PMCID: PMC8893982 DOI: 10.1055/s-0041-1733876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The scavenger receptor superfamily represents a highly diverse collection of evolutionarily-conserved receptors which are known to play key roles in host homeostasis, the most prominent of which is the clearance of unwanted endogenous macromolecules, such as oxidized low-density lipoproteins, from the systemic circulation. Members of this family have also been well characterized in their binding and internalization of a vast range of exogenous antigens and, consequently, are generally considered to be pattern recognition receptors, thus contributing to innate immunity. Several studies have implicated scavenger receptors in the pathophysiology of several inflammatory diseases, such as Alzheimer's and atherosclerosis. Hepatic resident cellular populations express a diverse complement of scavenger receptors in keeping with the liver's homeostatic functions, but there is gathering interest in the contribution of these receptors to hepatic inflammation and its complications. Here, we review the expression of scavenger receptors in the liver, their functionality in liver homeostasis, and their role in inflammatory liver disease and cancer.
Collapse
Affiliation(s)
- Daniel A. Patten
- National Institute for Health Research Birmingham Liver Biomedical Research Unit, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Alex L. Wilkinson
- National Institute for Health Research Birmingham Liver Biomedical Research Unit, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Ayla O'Keeffe
- National Institute for Health Research Birmingham Liver Biomedical Research Unit, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Shishir Shetty
- National Institute for Health Research Birmingham Liver Biomedical Research Unit, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
19
|
Taban Q, Mumtaz PT, Masoodi KZ, Haq E, Ahmad SM. Scavenger receptors in host defense: from functional aspects to mode of action. Cell Commun Signal 2022; 20:2. [PMID: 34980167 PMCID: PMC8721182 DOI: 10.1186/s12964-021-00812-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/27/2021] [Indexed: 12/17/2022] Open
Abstract
Scavenger receptors belong to a superfamily of proteins that are structurally heterogeneous and encompass the miscellaneous group of transmembrane proteins and soluble secretory extracellular domain. They are functionally diverse as they are involved in various disorders and biological pathways and their major function in innate immunity and homeostasis. Numerous scavenger receptors have been discovered so far and are apportioned in various classes (A-L). Scavenger receptors are documented as pattern recognition receptors and known to act in coordination with other co-receptors such as Toll-like receptors in generating the immune responses against a repertoire of ligands such as microbial pathogens, non-self, intracellular and modified self-molecules through various diverse mechanisms like adhesion, endocytosis and phagocytosis etc. Unlike, most of the scavenger receptors discussed below have both membrane and soluble forms that participate in scavenging; the role of a potential scavenging receptor Angiotensin-Converting Enzyme-2 has also been discussed whereby only its soluble form might participate in preventing the pathogen entry and replication, unlike its membrane-bound form. This review majorly gives an insight on the functional aspect of scavenger receptors in host defence and describes their mode of action extensively in various immune pathways involved with each receptor type. Video abstract.
Collapse
Affiliation(s)
- Qamar Taban
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e- Kashmir University of Agricultural Sciences and Technology - Kashmir, Shuhama, 190006, India.,Department of Biotechnology, University of Kashmir, Hazratbal Srinagar, Kashmir, India
| | | | - Khalid Z Masoodi
- Division of Plant Biotechnology, Transcriptomics Laboratory, SKUAST-K, Shalimar, India
| | - Ehtishamul Haq
- Department of Biotechnology, University of Kashmir, Hazratbal Srinagar, Kashmir, India
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e- Kashmir University of Agricultural Sciences and Technology - Kashmir, Shuhama, 190006, India.
| |
Collapse
|
20
|
Lesch S, Blumenberg V, Stoiber S, Gottschlich A, Ogonek J, Cadilha BL, Dantes Z, Rataj F, Dorman K, Lutz J, Karches CH, Heise C, Kurzay M, Larimer BM, Grassmann S, Rapp M, Nottebrock A, Kruger S, Tokarew N, Metzger P, Hoerth C, Benmebarek MR, Dhoqina D, Grünmeier R, Seifert M, Oener A, Umut Ö, Joaquina S, Vimeux L, Tran T, Hank T, Baba T, Huynh D, Megens RTA, Janssen KP, Jastroch M, Lamp D, Ruehland S, Di Pilato M, Pruessmann JN, Thomas M, Marr C, Ormanns S, Reischer A, Hristov M, Tartour E, Donnadieu E, Rothenfusser S, Duewell P, König LM, Schnurr M, Subklewe M, Liss AS, Halama N, Reichert M, Mempel TR, Endres S, Kobold S. T cells armed with C-X-C chemokine receptor type 6 enhance adoptive cell therapy for pancreatic tumours. Nat Biomed Eng 2021; 5:1246-1260. [PMID: 34083764 PMCID: PMC7611996 DOI: 10.1038/s41551-021-00737-6] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 04/26/2021] [Indexed: 02/04/2023]
Abstract
The efficacy of adoptive cell therapy for solid tumours is hampered by the poor accumulation of the transferred T cells in tumour tissue. Here, we show that forced expression of C-X-C chemokine receptor type 6 (whose ligand is highly expressed by human and murine pancreatic cancer cells and tumour-infiltrating immune cells) in antigen-specific T cells enhanced the recognition and lysis of pancreatic cancer cells and the efficacy of adoptive cell therapy for pancreatic cancer. In mice with subcutaneous pancreatic tumours treated with T cells with either a transgenic T-cell receptor or a murine chimeric antigen receptor targeting the tumour-associated antigen epithelial cell adhesion molecule, and in mice with orthotopic pancreatic tumours or patient-derived xenografts treated with T cells expressing a chimeric antigen receptor targeting mesothelin, the T cells exhibited enhanced intratumoral accumulation, exerted sustained anti-tumoral activity and prolonged animal survival only when co-expressing C-X-C chemokine receptor type 6. Arming tumour-specific T cells with tumour-specific chemokine receptors may represent a promising strategy for the realization of adoptive cell therapy for solid tumours.
Collapse
Affiliation(s)
- Stefanie Lesch
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Viktoria Blumenberg
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stefan Stoiber
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Adrian Gottschlich
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Justyna Ogonek
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Bruno L Cadilha
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Zahra Dantes
- Klinik und Poliklinik für Innere Medizin II, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Felicitas Rataj
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Klara Dorman
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Johannes Lutz
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Clara H Karches
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Constanze Heise
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mathias Kurzay
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Benjamin M Larimer
- Center for Precision Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Simon Grassmann
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Moritz Rapp
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Alessia Nottebrock
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stephan Kruger
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nicholas Tokarew
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Philipp Metzger
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christine Hoerth
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mohamed-Reda Benmebarek
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Dario Dhoqina
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ruth Grünmeier
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Matthias Seifert
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Arman Oener
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Öykü Umut
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sandy Joaquina
- Université de Paris, Institute Cochin, INSERM, CNRS, Paris, France
- Equipe labellisée Ligue Contre le Cancer, Toulouse, France
| | - Lene Vimeux
- Université de Paris, Institute Cochin, INSERM, CNRS, Paris, France
- Equipe labellisée Ligue Contre le Cancer, Toulouse, France
| | - Thi Tran
- Equipe labellisée Ligue Contre le Cancer, Toulouse, France
- Université de Paris, PARCC, INSERM U970, Paris, France
| | - Thomas Hank
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Taisuke Baba
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Duc Huynh
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Remco T A Megens
- Institute for Cardiovascular Prevention (IPEK), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Cardiovascular Research Institute Maastricht (CARIM), Department of BioMedical Engineering, Maastricht University, Maastricht, the Netherlands
| | - Klaus-Peter Janssen
- Department of Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Martin Jastroch
- Helmholtz Diabetes Center and German Diabetes Center (DZD), Helmholtz Zentrum München, Neuherberg, Germany
| | - Daniel Lamp
- Helmholtz Diabetes Center and German Diabetes Center (DZD), Helmholtz Zentrum München, Neuherberg, Germany
| | - Svenja Ruehland
- LMU Biocenter, Department Biology II, Ludwig Maximilians-Universität München, Munich, Germany
| | - Mauro Di Pilato
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Jasper N Pruessmann
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Moritz Thomas
- Institute of Computational Biology, Helmholtz Zentrum München (German Research Center for Environmental Health), Neuherberg, Germany
- School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Carsten Marr
- Institute of Computational Biology, Helmholtz Zentrum München (German Research Center for Environmental Health), Neuherberg, Germany
| | - Steffen Ormanns
- Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anna Reischer
- Department of Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael Hristov
- Institute for Cardiovascular Prevention (IPEK), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Eric Tartour
- Equipe labellisée Ligue Contre le Cancer, Toulouse, France
- Université de Paris, PARCC, INSERM U970, Paris, France
- Service d'Immunologie Biologique, APHP, Hôpital Européen Georges Pompidou, Paris, France
| | - Emmanuel Donnadieu
- Université de Paris, Institute Cochin, INSERM, CNRS, Paris, France
- Equipe labellisée Ligue Contre le Cancer, Toulouse, France
| | - Simon Rothenfusser
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany
| | - Peter Duewell
- Institute of Innate Immunity, University of Bonn, Bonn, Germany
| | - Lars M König
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Max Schnurr
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marion Subklewe
- Department of Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Andrew S Liss
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Niels Halama
- Department of Translational Immunotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Maximilian Reichert
- Klinik und Poliklinik für Innere Medizin II, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
- Center for Functional Protein Assemblies (CPA), Technische Universität München, Garching, Germany
- German Center for Translational Cancer Research (DKTK), Munich, Germany
| | - Thorsten R Mempel
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Stefan Endres
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany
- German Center for Translational Cancer Research (DKTK), Munich, Germany
| | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany.
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany.
- German Center for Translational Cancer Research (DKTK), Munich, Germany.
| |
Collapse
|
21
|
CXCR6+CD4+ T cells promote mortality during Trypanosoma brucei infection. PLoS Pathog 2021; 17:e1009968. [PMID: 34614031 PMCID: PMC8523071 DOI: 10.1371/journal.ppat.1009968] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/18/2021] [Accepted: 09/24/2021] [Indexed: 01/09/2023] Open
Abstract
Liver macrophages internalize circulating bloodborne parasites. It remains poorly understood how this process affects the fate of the macrophages and T cell responses in the liver. Here, we report that infection by Trypanosoma brucei induced depletion of macrophages in the liver, leading to the repopulation of CXCL16-secreting intrahepatic macrophages, associated with substantial accumulation of CXCR6+CD4+ T cells in the liver. Interestingly, disruption of CXCR6 signaling did not affect control of the parasitemia, but significantly enhanced the survival of infected mice, associated with reduced inflammation and liver injury. Infected CXCR6 deficient mice displayed a reduced accumulation of CD4+ T cells in the liver; adoptive transfer experiments suggested that the reduction of CD4+ T cells in the liver was attributed to a cell intrinsic property of CXCR6 deficient CD4+ T cells. Importantly, infected CXCR6 deficient mice receiving wild-type CD4+ T cells survived significantly shorter than those receiving CXCR6 deficient CD4+ T cells, demonstrating that CXCR6+CD4+ T cells promote the mortality. We conclude that infection of T. brucei leads to depletion and repopulation of liver macrophages, associated with a substantial influx of CXCR6+CD4+ T cells that mediates mortality.
Collapse
|
22
|
Yuan JQ, Zhang KJ, Wang SM, Guo L. YAP1/MMP7/CXCL16 axis affects efficacy of neoadjuvant chemotherapy via tumor environment immunosuppression in triple-negative breast cancer. Gland Surg 2021; 10:2799-2814. [PMID: 34733729 PMCID: PMC8514296 DOI: 10.21037/gs-21-612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/17/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND To evaluate the association of potential YAP1/MMP7/CXCL16 axis and tumor infiltrating lymphocytes (TILs) related chemo-response in triple-negative breast cancer (TNBC) patients. METHODS We estimated the messenger RNA (mRNA) expression levels of Yes-associated protein 1 (YAP1), MMP7, and CXCL16 in paired TNBC tumor/para-tumor tissues by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), and performed statistical analysis according to neoadjuvant chemotherapy (NAC) response. Based on The Cancer Genome Atlas (TCGA) data, we noticed outstanding expression of MMP7/CXCL16 in TNBC cases, as well as associations between MMP7/CXCL16 and HIPPO-YAP1-relevant kinases. We also performed gene set enrichment analysis (GSEA) between MMP7/CXCL16 and YAP1-associated pathways. Western blotting assay was employed to evaluate YAP1/MMP7/CXCL16 expression in vitro and their modulation sequence. Logistic model stepwise regression analysis was used to assess YAP1, MMP7, CXCL16, and TILs as therapeutic predictors. Residual cancer burden (RCB) score was calculated and statistically analyzed according to intensity of these variables, and receiver operating characteristic (ROC) curve also showed their predictive value in NAC response. Recruitment efficacy for CD4+/CD8+ TIL cells (TCGA data) as well as quantified TIL cells density were both explored according to YAP1, MMP7, and CXCL16 expression level. RESULTS Up-regulation of YAP1/MMP7 and down-regulation of CXCL16 were both significant in TNBC cases with poor NAC response. Inhibition of YAP1 induced down-regulation of MMP7 and up-regulation of CXCL16, whereas inhibition of MMP7 also induced up-regulation of CXCL16. It was also shown that MMP7/CXCL16 was enriched in the YAP1-related pathway. Activation of the YAP1/MMP7/CXCL16 axis obviously affected RCB of TNBC cases. The ROC curve also supported the predictive value of YAP1/MMP7/CXCL16 axis and TILs density in NAC response prospect. The density of TILs, meanwhile, demonstrated a strong link with the YAP1/MMP7/CXCL16 axis. Over expression of YAP1/MMP7 significantly suppressed recruitment of CD4+/CD8+ TILs, while CXCL16 over expression had a beneficial impact on anti-tumor immune. CONCLUSIONS Over expression of causes up-regulation of MMP7 and down-regulation of CXCL16, which suppressed CD4+/CD8+ TILs recruitment and indirectly affected NAC response of TNBC patients.
Collapse
Affiliation(s)
- Jia-Qi Yuan
- Clinical Research Center for Breast Cancer Control and Prevention in Hunan Province, Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ke-Jing Zhang
- Clinical Research Center for Breast Cancer Control and Prevention in Hunan Province, Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Shou-Man Wang
- Clinical Research Center for Breast Cancer Control and Prevention in Hunan Province, Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Guo
- Clinical Research Center for Breast Cancer Control and Prevention in Hunan Province, Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
23
|
Vella JL, Molodtsov A, Angeles CV, Branchini BR, Turk MJ, Huang YH. Dendritic cells maintain anti-tumor immunity by positioning CD8 skin-resident memory T cells. Life Sci Alliance 2021; 4:4/10/e202101056. [PMID: 34362825 PMCID: PMC8356251 DOI: 10.26508/lsa.202101056] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/31/2022] Open
Abstract
Tissue-resident memory (TRM) T cells are emerging as critical components of the immune response to cancer; yet, requirements for their ongoing function and maintenance remain unclear. APCs promote TRM cell differentiation and re-activation but have not been implicated in sustaining TRM cell responses. Here, we identified a novel role for dendritic cells in supporting TRM to melanoma. We showed that CD8 TRM cells remain in close proximity to dendritic cells in the skin. Depletion of CD11c+ cells results in rapid disaggregation and eventual loss of melanoma-specific TRM cells. In addition, we determined that TRM migration and/or persistence requires chemotaxis and adhesion mediated by the CXCR6/CXCL16 axis. The interaction between CXCR6-expressing TRM cells and CXCL16-expressing APCs was found to be critical for sustaining TRM cell-mediated tumor protection. These findings substantially expand our knowledge of APC functions in TRM T-cell homeostasis and longevity.
Collapse
Affiliation(s)
- Jennifer L Vella
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Aleksey Molodtsov
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Christina V Angeles
- Department of Surgery, University of Michigan, Rogel Cancer Center, Ann Arbor, MI, USA
| | | | - Mary Jo Turk
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.,Norris Cotton Cancer Center, Lebanon, NH, USA
| | - Yina H Huang
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA .,Norris Cotton Cancer Center, Lebanon, NH, USA.,Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| |
Collapse
|
24
|
Targeting the chemokine network in atherosclerosis. Atherosclerosis 2021; 330:95-106. [PMID: 34247863 DOI: 10.1016/j.atherosclerosis.2021.06.912] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/07/2021] [Accepted: 06/24/2021] [Indexed: 01/31/2023]
Abstract
Chemokines and their receptors represent a potential target for immunotherapy in chronic inflammation. They comprise a large family of cytokines with chemotactic activity, and their cognate receptors are expressed on all cells of the body. This network dictates leukocyte recruitment and activation, angiogenesis, cell proliferation and maturation. Dysregulation of chemokine and chemokine receptor expression as well as function participates in many pathologies including cancer, autoimmune diseases and chronic inflammation. In atherosclerosis, a lipid-driven chronic inflammation of middle-sized and large arteries, chemokines and their receptors participates in almost all stages of the disease from initiation of fatty streaks to mature atherosclerotic plaque formation. Atherosclerosis and its complications are the main driver of mortality and morbidity in cardiovascular diseases (CVD). Hence, exploring new fields of therapeutic targeting of atherosclerosis is of key importance. This review gives an overview of the recent advances on the role of key chemokines and chemokine receptors in atherosclerosis, addresses chemokine-based biomarkers at biochemical, imaging and genetic level in human studies, and highlights the clinial trials targeting atherosclerosis.
Collapse
|
25
|
Pontejo SM, Murphy PM. Chemokines act as phosphatidylserine-bound "find-me" signals in apoptotic cell clearance. PLoS Biol 2021; 19:e3001259. [PMID: 34038417 PMCID: PMC8213124 DOI: 10.1371/journal.pbio.3001259] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/18/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022] Open
Abstract
Removal of apoptotic cells is essential for maintenance of tissue homeostasis. Chemotactic cues termed "find-me" signals attract phagocytes toward apoptotic cells, which selectively expose the anionic phospholipid phosphatidylserine (PS) and other "eat-me" signals to distinguish healthy from apoptotic cells for phagocytosis. Blebs released by apoptotic cells can deliver find-me signals; however, the mechanism is poorly understood. Here, we demonstrate that apoptotic blebs generated in vivo from mouse thymus attract phagocytes using endogenous chemokines bound to the bleb surface. We show that chemokine binding to apoptotic cells is mediated by PS and that high affinity binding of PS and other anionic phospholipids is a general property of many but not all chemokines. Chemokines are positively charged proteins that also bind to anionic glycosaminoglycans (GAGs) on cell surfaces for presentation to leukocyte G protein-coupled receptors (GPCRs). We found that apoptotic cells down-regulate GAGs as they up-regulate PS on the cell surface and that PS-bound chemokines, unlike GAG-bound chemokines, are able to directly activate chemokine receptors. Thus, we conclude that PS-bound chemokines may serve as find-me signals on apoptotic vesicles acting at cognate chemokine receptors on leukocytes.
Collapse
Affiliation(s)
- Sergio M Pontejo
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Philip M Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
26
|
Blair TC, Alice AF, Zebertavage L, Crittenden MR, Gough MJ. The Dynamic Entropy of Tumor Immune Infiltrates: The Impact of Recirculation, Antigen-Specific Interactions, and Retention on T Cells in Tumors. Front Oncol 2021; 11:653625. [PMID: 33968757 PMCID: PMC8101411 DOI: 10.3389/fonc.2021.653625] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Analysis of tumor infiltration using conventional methods reveals a snapshot view of lymphocyte interactions with the tumor environment. However, lymphocytes have the unique capacity for continued recirculation, exploring varied tissues for the presence of cognate antigens according to inflammatory triggers and chemokine gradients. We discuss the role of the inflammatory and cellular makeup of the tumor environment, as well as antigen expressed by cancer cells or cross-presented by stromal antigen presenting cells, on recirculation kinetics of T cells. We aim to discuss how current cancer therapies may manipulate lymphocyte recirculation versus retention to impact lymphocyte exclusion in the tumor.
Collapse
Affiliation(s)
- Tiffany C Blair
- Molecular Microbiology and Immunology, Oregon Health and Sciences University (OHSU), Portland, OR, United States.,Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR, United States
| | - Alejandro F Alice
- Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR, United States
| | - Lauren Zebertavage
- Molecular Microbiology and Immunology, Oregon Health and Sciences University (OHSU), Portland, OR, United States.,Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR, United States
| | - Marka R Crittenden
- Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR, United States.,The Oregon Clinic, Portland, OR, United States
| | - Michael J Gough
- Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR, United States
| |
Collapse
|
27
|
The Role of CXCL16 in the Pathogenesis of Cancer and Other Diseases. Int J Mol Sci 2021; 22:ijms22073490. [PMID: 33800554 PMCID: PMC8036711 DOI: 10.3390/ijms22073490] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/15/2022] Open
Abstract
CXCL16 is a chemotactic cytokine belonging to the α-chemokine subfamily. It plays a significant role in the progression of cancer, as well as the course of atherosclerosis, renal fibrosis, and non-alcoholic fatty liver disease (NAFLD). Since there has been no review paper discussing the importance of this chemokine in various diseases, we have collected all available knowledge about CXCL16 in this review. In the first part of the paper, we discuss background information about CXCL16 and its receptor, CXCR6. Next, we focus on the importance of CXCL16 in a variety of diseases, with an emphasis on cancer. We discuss the role of CXCL16 in tumor cell proliferation, migration, invasion, and metastasis. Next, we describe the role of CXCL16 in the tumor microenvironment, including involvement in angiogenesis, and its significance in tumor-associated cells (cancer associated fibroblasts (CAF), microglia, tumor-associated macrophages (TAM), tumor-associated neutrophils (TAN), mesenchymal stem cells (MSC), myeloid suppressor cells (MDSC), and regulatory T cells (Treg)). Finally, we focus on the antitumor properties of CXCL16, which are mainly caused by natural killer T (NKT) cells. At the end of the article, we summarize the importance of CXCL16 in cancer therapy.
Collapse
|
28
|
Restivo I, Attanzio A, Tesoriere L, Allegra M. Suicidal Erythrocyte Death in Metabolic Syndrome. Antioxidants (Basel) 2021; 10:antiox10020154. [PMID: 33494379 PMCID: PMC7911029 DOI: 10.3390/antiox10020154] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
Eryptosis is a coordinated, programmed cell death culminating with the disposal of cells without disruption of the cell membrane and the release of endocellular oxidative and pro-inflammatory milieu. While providing a convenient form of death for erythrocytes, dysregulated eryptosis may result in a series of detrimental and harmful pathological consequences highly related to the endothelial dysfunction (ED). Metabolic syndrome (MetS) is described as a cluster of cardiometabolic factors (hyperglycemia, dyslipidemia, hypertension and obesity) that increases the risk of cardiovascular complications such as those related to diabetes and atherosclerosis. In the light of the crucial role exerted by the eryptotic process in the ED, the focus of the present review is to report and discuss the involvement of eryptosis within MetS, where vascular complications are utterly relevant. Current knowledge on the mechanisms leading to eryptosis in MetS-related conditions (hyperglycemia, dyslipidemia, hypertension and obesity) will be analyzed. Moreover, clinical evidence supporting or proposing a role for eryptosis in the ED, associated to MetS cardiovascular complications, will be discussed.
Collapse
Affiliation(s)
| | | | - Luisa Tesoriere
- Correspondence: (L.T.); (M.A.); Tel.: +39-091-238-96803 (L.T. & M.A.)
| | - Mario Allegra
- Correspondence: (L.T.); (M.A.); Tel.: +39-091-238-96803 (L.T. & M.A.)
| |
Collapse
|
29
|
Rivas-Fuentes S, Salgado-Aguayo A, Arratia-Quijada J, Gorocica-Rosete P. Regulation and biological functions of the CX3CL1-CX3CR1 axis and its relevance in solid cancer: A mini-review. J Cancer 2021; 12:571-583. [PMID: 33391453 PMCID: PMC7738983 DOI: 10.7150/jca.47022] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 10/11/2020] [Indexed: 12/13/2022] Open
Abstract
CX3CL1 is a transmembrane protein from which a soluble form can be generated by proteolytic shedding. Membranal and soluble forms of CX3CL1 exhibit different functions, although both bind to the CX3CR1 chemokine receptor. The CX3CL1-CX3CR1 axis mediates the adhesion of leukocytes and is also involved in cell survival and recruitment of immune cell subpopulations. The function of CX3CL1 is finely tuned by cytokines and transcription factors regulating its expression and post-translational modifications. On homeostasis, the CX3CL1-CX3CR1 axis participates in the removal of damaged neurons and neurogenesis, and it is also involved on several pathological contexts. The CX3CL1-CX3CR1 axis induces several cellular responses relevant to cancer such as proliferation, migration, invasion and apoptosis resistance. In this review, we address biological aspects of this molecular axis with important therapeutic potential, emphasizing its role in cancer, one of the most prevalent chronic diseases which significantly affect the quality of life and life expectancy of patients.
Collapse
Affiliation(s)
- Selma Rivas-Fuentes
- Department of Research on Biochemistry, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Alfonso Salgado-Aguayo
- Laboratory of Research on Rheumatic Diseases, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Jenny Arratia-Quijada
- Department of Biomedical Sciences, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá Jalisco, Mexico
| | - Patricia Gorocica-Rosete
- Department of Research on Biochemistry, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| |
Collapse
|
30
|
Mikolajczyk TP, Szczepaniak P, Vidler F, Maffia P, Graham GJ, Guzik TJ. Role of inflammatory chemokines in hypertension. Pharmacol Ther 2020; 223:107799. [PMID: 33359600 DOI: 10.1016/j.pharmthera.2020.107799] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
Hypertension is associated with immune cells activation and their migration into the kidney, vasculature, heart and brain. These inflammatory mechanisms are critical for blood pressure regulation and mediate target organ damage, creating unique novel targets for pharmacological modulation. In response to angiotensin II and other pro-hypertensive stimuli, the expression of several inflammatory chemokines and their receptors is increased in the target organs, mediating homing of immune cells. In this review, we summarize the contribution of key inflammatory chemokines and their receptors to increased accumulation of immune cells in target organs and effects on vascular dysfunction, remodeling, oxidative stress and fibrosis, all of which contribute to blood pressure elevation. In particular, the role of CCL2, CCL5, CXCL8, CXCL9, CXCL10, CXCL11, CXCL16, CXCL1, CX3CL1, XCL1 and their receptors in the context of hypertension is discussed. Recent studies have tested the efficacy of pharmacological or genetic targeting of chemokines and their receptors on the development of hypertension. Promising results indicate that some of these pathways may serve as future therapeutic targets to improve blood pressure control and prevent target organ consequences including kidney failure, heart failure, atherosclerosis or cognitive impairment.
Collapse
Affiliation(s)
- Tomasz P Mikolajczyk
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland; Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Piotr Szczepaniak
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Francesca Vidler
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Pasquale Maffia
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK; BHF Centre for Excellence Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK; Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Gerard J Graham
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Tomasz J Guzik
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland; BHF Centre for Excellence Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
31
|
Gilly A, Park YC, Png G, Barysenka A, Fischer I, Bjørnland T, Southam L, Suveges D, Neumeyer S, Rayner NW, Tsafantakis E, Karaleftheri M, Dedoussis G, Zeggini E. Whole-genome sequencing analysis of the cardiometabolic proteome. Nat Commun 2020; 11:6336. [PMID: 33303764 PMCID: PMC7729872 DOI: 10.1038/s41467-020-20079-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022] Open
Abstract
The human proteome is a crucial intermediate between complex diseases and their genetic and environmental components, and an important source of drug development targets and biomarkers. Here, we comprehensively assess the genetic architecture of 257 circulating protein biomarkers of cardiometabolic relevance through high-depth (22.5×) whole-genome sequencing (WGS) in 1328 individuals. We discover 131 independent sequence variant associations (P < 7.45 × 10-11) across the allele frequency spectrum, all of which replicate in an independent cohort (n = 1605, 18.4x WGS). We identify for the first time replicating evidence for rare-variant cis-acting protein quantitative trait loci for five genes, involving both coding and noncoding variation. We construct and validate polygenic scores that explain up to 45% of protein level variation. We find causal links between protein levels and disease risk, identifying high-value biomarkers and drug development targets.
Collapse
Affiliation(s)
- Arthur Gilly
- Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Young-Chan Park
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- University of Cambridge, Cambridge, UK
| | - Grace Png
- Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Andrei Barysenka
- Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Iris Fischer
- Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Thea Bjørnland
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Department of Mathematical Sciences, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway
| | - Lorraine Southam
- Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Wellcome Centre for Human Genetics, Oxford, UK
| | - Daniel Suveges
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SH, UK
| | - Sonja Neumeyer
- Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - N William Rayner
- Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | | | | | - George Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Moschato, Greece
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany.
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.
- TUM School of Medicine, Technical University of Munich and Klinikum Rechts der Isar, Munich, Germany.
| |
Collapse
|
32
|
Yu H, Yang A, Liu L, Mak JYW, Fairlie DP, Cowley S. CXCL16 Stimulates Antigen-Induced MAIT Cell Accumulation but Trafficking During Lung Infection Is CXCR6-Independent. Front Immunol 2020; 11:1773. [PMID: 32849637 PMCID: PMC7426740 DOI: 10.3389/fimmu.2020.01773] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/02/2020] [Indexed: 12/20/2022] Open
Abstract
Mucosa-associated invariant T (MAIT) cells are a unique T cell subset that contributes to protective immunity against microbial pathogens, but little is known about the role of chemokines in recruiting MAIT cells to the site of infection. Pulmonary infection with Francisella tularensis live vaccine strain (LVS) stimulates the accrual of large numbers of MAIT cells in the lungs of mice. Using this infection model, we find that MAIT cells are predominantly CXCR6+ but do not require CXCR6 for accumulation in the lungs. However, CXCR6 does contribute to long-term retention of MAIT cells in the airway lumen after clearance of the infection. We also find that MAIT cells are not recruited from secondary lymphoid organs and largely proliferate in situ in the lungs after infection. Nevertheless, the only known ligand for CXCR6, CXCL16, is sufficient to drive MAIT cell accumulation in the lungs in the absence of infection when administered in combination with the MAIT cell antigen 5-OP-RU. Overall, this new data advances the understanding of mechanisms that facilitate MAIT cell accumulation and retention in the lungs.
Collapse
Affiliation(s)
- Huifeng Yu
- Laboratory of Mucosal Pathogens and Cellular Immunology, Division of Bacterial Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Amy Yang
- Laboratory of Mucosal Pathogens and Cellular Immunology, Division of Bacterial Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Ligong Liu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Jeffrey Y W Mak
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - David P Fairlie
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Siobhan Cowley
- Laboratory of Mucosal Pathogens and Cellular Immunology, Division of Bacterial Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
33
|
Bitsi S. The chemokine CXCL16 can rescue the defects in insulin signaling and sensitivity caused by palmitate in C2C12 myotubes. Cytokine 2020; 133:155154. [PMID: 32535333 DOI: 10.1016/j.cyto.2020.155154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/13/2020] [Accepted: 06/03/2020] [Indexed: 11/25/2022]
Abstract
In obesity, macrophages infiltrate peripheral tissues and secrete pro-inflammatory cytokines that impact local insulin sensitivity. Lipopolysaccharide (LPS) and the saturated fatty acid (FA) palmitate polarise macrophages towards a pro-inflammatory phenotype in vitro and indirectly cause insulin resistance (IR) in myotubes. In contrast, unsaturated FAs confer an anti-inflammatory phenotype and counteract the actions of palmitate. To explore paracrine mechanisms of interest, J774 macrophages were exposed to palmitate ± palmitoleate or control medium and the conditioned media generated were screened using a cytokine array. Of the 62 cytokines examined, 8 were significantly differentially expressed following FA treatments. Notably, CXCL16 secretion was downregulated by palmitate. In follow-up experiments using ELISAs, this downregulation was confirmed and reversed by simultaneous addition of palmitoleate or oleate, while LPS also diminished CXCL16 secretion. To dissect potential effects of CXCL16, C2C12 myotubes were treated with palmitate to induce IR, recombinant soluble CXCL16 (sCXCL16), combined treatment, or control medium. Palmitate caused the expected reduction of insulin-stimulated Akt activation and glycogen synthesis, whereas simultaneous treatment with sCXCL16 attenuated these effects. These data indicate a putative role for CXCL16 in preservation of Akt activation and insulin signaling in the context of chronic low-grade inflammation in skeletal muscle.
Collapse
Affiliation(s)
- Stavroula Bitsi
- Comparative Biomedical Sciences Department, Royal Veterinary College, London NW1 0TU, United Kingdom.
| |
Collapse
|
34
|
Aragón CC, Tafúr RA, Suárez-Avellaneda A, Martínez MDT, Salas ADL, Tobón GJ. Urinary biomarkers in lupus nephritis. J Transl Autoimmun 2020; 3:100042. [PMID: 32743523 PMCID: PMC7388339 DOI: 10.1016/j.jtauto.2020.100042] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 01/07/2020] [Accepted: 02/06/2020] [Indexed: 02/08/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is the prototypical autoimmune disease that can affect any organ of the body. Multiple mechanisms may contribute to the pathophysiology of systemic lupus, including failure to remove apoptotic bodies, hyperactivity of self-reactive B and T lymphocytes, abnormal exposure to autoantigens, and increased levels of B-cell stimulatory cytokines. The involvement of the kidney, called lupus nephritis (LN), during the course of the disease affects between 30% and 60% of adult SLE patients, and up to 70% of children. LN is an immune-mediated glomerulonephritis that is a common and serious finding in patients with SLE. Nowadays, renal biopsy is considered the gold standard for classifying LN, besides its degree of activity or chronicity. Nevertheless, renal biopsy lacks the ability to predict which patients will respond to immunosuppressive therapy and is a costly and risky procedure that is not practical in the monitoring of LN because serial repetitions would be necessary. Consequently, many serum and urinary biomarkers have been studied in SLE patients for the complementary study of LN, existing conventional biomarkers like proteinuria, protein/creatinine ratio in spot urine, 24 h urine proteinuria, creatinine clearance, among others and non-conventional biomarkers, like Monocyte chemoattractant protein-1 (MCP-1), have been correlated with the histological findings of the different types of LN. In this article, we review the advances in lupus nephritis urinary biomarkers. Such markers ideally should be capable of predicting early sub-clinical flares and could be used to follow response to therapy. In addition, some of these markers have been found to be involved in the pathogenesis of lupus nephritis.
Collapse
Affiliation(s)
- Cristian C. Aragón
- GIRAT: Grupo de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Fundación Valle Del Lili and Universidad Icesi, Cali, Colombia
| | - Raúl-Alejandro Tafúr
- GIRAT: Grupo de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Fundación Valle Del Lili and Universidad Icesi, Cali, Colombia
- Universidad Icesi, Medical School, Cali, Colombia
| | - Ana Suárez-Avellaneda
- GIRAT: Grupo de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Fundación Valle Del Lili and Universidad Icesi, Cali, Colombia
| | - MD. Tatiana Martínez
- GIRAT: Grupo de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Fundación Valle Del Lili and Universidad Icesi, Cali, Colombia
- Universidad Icesi, Medical School, Cali, Colombia
| | - Alejandra de las Salas
- GIRAT: Grupo de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Fundación Valle Del Lili and Universidad Icesi, Cali, Colombia
- Universidad Icesi, Medical School, Cali, Colombia
| | - Gabriel J. Tobón
- GIRAT: Grupo de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Fundación Valle Del Lili and Universidad Icesi, Cali, Colombia
| |
Collapse
|
35
|
Shi JW, Yang HL, Fan DX, Yang SL, Qiu XM, Wang Y, Lai ZZ, Ha SY, Ruan LY, Shen HH, Zhou WJ, Li MQ. The role of CXC chemokine ligand 16 in physiological and pathological pregnancies. Am J Reprod Immunol 2020; 83:e13223. [PMID: 31972050 DOI: 10.1111/aji.13223] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 12/15/2022] Open
Abstract
The survival and development of a semi-allogeneic fetus during pregnancy require the involvement of a series of cytokines and immune cells. Chemokines are a type of special cytokine those were originally described as having a role in leukocyte trafficking. CXC chemokine ligand (CXCL) 16 is a member of the chemokine family, and CXC chemokine receptor (CXCR) 6 is its sole receptor. Emerging evidence has shown that CXCL16/CXCR6 is expressed at the maternal-fetal interface, by cell types that include trophoblast cells, decidual stroma cells, and decidual immune cells (eg, monocytes, γδT cells, and natural killer T (NKT) cells). The regulation of expression of CXCL16 is quite complex, and this process involves a multitude of factors. CXCL16 exerts a critical role in the establishment of a successful pregnancy through a series of molecular interactions at the maternal-fetal interface. However, an abnormal expression of CXCL16 is associated with certain pathological states associated with pregnancy, including recurrent miscarriage, pre-eclampsia, and gestational diabetes mellitus (GDM). In the present review, the expression and pleiotropic roles of CXCL16 under conditions of physiological and pathological pregnancy are systematically discussed.
Collapse
Affiliation(s)
- Jia-Wei Shi
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Hui-Li Yang
- Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Deng-Xuan Fan
- Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Shao-Liang Yang
- Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Xue-Min Qiu
- Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Yan Wang
- Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Zhen-Zhen Lai
- Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Si-Yao Ha
- Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Lu-Yu Ruan
- Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Hui-Hui Shen
- Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Wen-Jie Zhou
- Center of Reproductive Medicine of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming-Qing Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Ma Z, Yu R, Zhu Q, Sun L, Jian L, Wang X, Zhao J, Li C, Liu X. CXCL16/CXCR6 axis promotes bleomycin-induced fibrotic process in MRC-5 cells via the PI3K/AKT/FOXO3a pathway. Int Immunopharmacol 2019; 81:106035. [PMID: 31753588 DOI: 10.1016/j.intimp.2019.106035] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/01/2019] [Accepted: 11/06/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Interstitial lung disease (ILD) is a progressive and irreversible lung disease with very limited therapeutic options. Previous studies have found that chemokine ligands CXCL16 and CXCR6 play critical roles in organ fibrosis. However, whether CXCL16 and CXCR6 are also involved in the pathogenesis of ILD, as well as their regulatory role in pulmonary fibrosis, has not been reported. METHODS In this study, we detected CXCL16 levels in patients with rheumatoid arthritis-associated ILD (RA-ILD) and examined the critical role of the CXCL16/CXCR6 axis in the proliferation and collagen production of human pulmonary fibroblasts (MRC-5 cells). The effect of anti-CXCL16 antibody on the bleomycin-induced fibrogenesis in cultured MRC-5 cells was also evaluated. RESULTS Our results indicated that serum soluble CXCL16 was significantly higher in RA-ILD patients and also associated with the severity of lung fibrosis. CXCL16 facilitates fibrosis by enhancing proliferation, migration, and collagen production of MRC-5 cells. Furthermore, a synergistic fibrogenic effect of CXCL16 and bleomycin has been found. CXCL16 stimulated the activation of PI3K/AKT/FOXO3a signaling pathway in MRC-5 cells, and the inhibition by specific inhibitors Wortmannin and LY294002, or knockdown of CXCR6 by siRNA also suppressed the biological functions of MRC-5 cells mediated by CXCL16. Similarly, down-regulation of CXCR6 also partly blocked BLM-induced fibrogenesis in MRC-5 cells. CONCLUSIONS CXCL16/CXCR6 axis promotes proliferation and collagen production of MRC-5 cells by the PI3K/AKT/FOXO3a signaling pathway, and inhibition of the CXCL16/CXCR6 axis may provide a new therapeutic strategy targeting pulmonary fibrosis.
Collapse
Affiliation(s)
- Zhenzhen Ma
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, China
| | - Ruohan Yu
- Department of Rheumatology and Immunology, Beijing Tsinghua Changgung Hospital, Beijing 102218, China
| | - Qiao Zhu
- Department of Radiology, Peking University Third Hospital, Beijing 100191, China
| | - Lin Sun
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, China
| | - Leilei Jian
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, China
| | - Xinyu Wang
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, China
| | - Jinxia Zhao
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, China
| | - Changhong Li
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, China.
| | - Xiangyuan Liu
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
37
|
Linke B, Meyer Dos Santos S, Picard-Willems B, Keese M, Harder S, Geisslinger G, Scholich K. CXCL16/CXCR6-mediated adhesion of human peripheral blood mononuclear cells to inflamed endothelium. Cytokine 2019. [DOI: 10.1016/j.cyto.2017.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
38
|
Wein AN, McMaster SR, Takamura S, Dunbar PR, Cartwright EK, Hayward SL, McManus DT, Shimaoka T, Ueha S, Tsukui T, Masumoto T, Kurachi M, Matsushima K, Kohlmeier JE. CXCR6 regulates localization of tissue-resident memory CD8 T cells to the airways. J Exp Med 2019; 216:2748-2762. [PMID: 31558615 PMCID: PMC6888981 DOI: 10.1084/jem.20181308] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 01/14/2019] [Accepted: 08/13/2019] [Indexed: 01/02/2023] Open
Abstract
Lung TRM cells are present in both the interstitium and airways, but factors regulating their localization to these distinct sites are unknown. This work shows that the CXCR6/CXCL16 axis governs the partitioning of TRM cells to different compartments of the lung and maintains the airway TRM cell pool. Resident memory T cells (TRM cells) are an important first-line defense against respiratory pathogens, but the unique contributions of lung TRM cell populations to protective immunity and the factors that govern their localization to different compartments of the lung are not well understood. Here, we show that airway and interstitial TRM cells have distinct effector functions and that CXCR6 controls the partitioning of TRM cells within the lung by recruiting CD8 TRM cells to the airways. The absence of CXCR6 significantly decreases airway CD8 TRM cells due to altered trafficking of CXCR6−/− cells within the lung, and not decreased survival in the airways. CXCL16, the ligand for CXCR6, is localized primarily at the respiratory epithelium, and mice lacking CXCL16 also had decreased CD8 TRM cells in the airways. Finally, blocking CXCL16 inhibited the steady-state maintenance of airway TRM cells. Thus, the CXCR6/CXCL16 signaling axis controls the localization of TRM cells to different compartments of the lung and maintains airway TRM cells.
Collapse
Affiliation(s)
- Alexander N Wein
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Sean R McMaster
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Shiki Takamura
- Department of Immunology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Paul R Dunbar
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Emily K Cartwright
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Sarah L Hayward
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Daniel T McManus
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Takeshi Shimaoka
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Satoshi Ueha
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Tatsuya Tsukui
- Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Tomoko Masumoto
- Department of Immunology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Makoto Kurachi
- Department of Microbiology and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Jacob E Kohlmeier
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA .,Emory-UGA Center of Excellence for Influenza Research and Surveillance, Atlanta, GA
| |
Collapse
|
39
|
Yang D, Han Y, Chen L, Liu Y, Cao R, Wang Q, Zhao J. Scavenger receptor class B type I (SR-BI) in Ruditapes philippinarum: A versatile receptor with multiple functions. FISH & SHELLFISH IMMUNOLOGY 2019; 88:328-334. [PMID: 30858096 DOI: 10.1016/j.fsi.2019.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/02/2019] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
In the present study, a scavenger receptor class B type I (designed as RpSR-BI) was cloned and characterized from manila clam Ruditapes philippinarum. The full-length cDNA of RpSR-BI was of 2000 bp, containing an open reading frame (ORF) of 1515 bp. Multiple alignments and phylogenetic analysis strongly suggested that RpSR-BI was a member of the scavenger receptors family. The mRNA transcript of RpSR-BI was constitutively expressed in all tested tissues, and mainly expressed in hepatopancreas and hemocytes. Generally, Vibrio anguillarum or Micrococcus luteus challenge induced the expression of RpSR-BI transcripts in hemocytes of manila clams. Recombinant protein of RpSR-BI (rRpSR-BI) could bind lipopolysaccharides, peptidoglycan and glucan, but not chitin in vitro. Coinciding with the PAMPs binding assay, a broad agglutination spectrum was displayed by rRpSR-BI including Gram-positive bacteria and Gram-negative bacteria. Moreover, rRpSR-BI could enhance the phagocytosis and chemotaxis of hemocytes. These results showed that RpSR-BI functioned as a pattern recognition receptor (PRR) with distinct recognition spectrum, and also as an opsonin involved in the innate immune response of R. philippinarum.
Collapse
Affiliation(s)
- Dinglong Yang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Yijing Han
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Lizhu Chen
- Shandong Marine Resource and Environment Research Institute, Yantai, 264006, PR China
| | - Yongliang Liu
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Ruiwen Cao
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qing Wang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Jianmin Zhao
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Center for Ocean Mega-science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, PR China.
| |
Collapse
|
40
|
Leishmania donovani Lipophosphoglycan Increases Macrophage-Dependent Chemotaxis of CXCR6-Expressing Cells via CXCL16 Induction. Infect Immun 2019; 87:IAI.00064-19. [PMID: 30804103 DOI: 10.1128/iai.00064-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/18/2019] [Indexed: 12/15/2022] Open
Abstract
CXCL16 is a multifunctional chemokine that is highly expressed by macrophages and other immune cells in response to bacterial and viral pathogens; however, little is known regarding the role of CXCL16 during parasitic infections. The protozoan parasite Leishmania donovani is the causative agent of visceral leishmaniasis. Even though chemokine production is a host defense mechanism during infection, subversion of the host chemokine system constitutes a survival strategy adopted by the parasite. Here, we report that L. donovani promastigotes upregulate CXCL16 synthesis and secretion by bone marrow-derived macrophages (BMDM). In contrast to wild-type parasites, a strain deficient in the virulence factor lipophosphoglycan (LPG) failed to induce CXCL16 production. Consistent with this, cell treatment with purified L. donovani LPG augmented CXCL16 expression and secretion. Notably, the ability of BMDM to promote migration of cells expressing CXCR6, the cognate receptor of CXCL16, was augmented upon L. donovani infection in a CXCL16- and LPG-dependent manner. Mechanistically, CXCL16 induction by L. donovani required the activity of AKT and the mechanistic target of rapamycin (mTOR) but was independent of Toll-like receptor signaling. Collectively, these data provide evidence that CXCL16 is part of the inflammatory response elicited by L. donovani LPG in vitro Further investigation using CXCL16 knockout mice is required to determine whether this chemokine contributes to the pathogenesis of visceral leishmaniasis and to elucidate the underlying molecular mechanisms.
Collapse
|
41
|
Zhu H, Zhang Q, Chen G. CXCR6 deficiency ameliorates ischemia-reperfusion injury by reducing the recruitment and cytokine production of hepatic NKT cells in a mouse model of non-alcoholic fatty liver disease. Int Immunopharmacol 2019; 72:224-234. [PMID: 31002999 DOI: 10.1016/j.intimp.2019.04.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/26/2019] [Accepted: 04/08/2019] [Indexed: 12/16/2022]
Abstract
Fatty liver is used for transplantation due to organ shortage, but prone to cause complications like ischemia-reperfusion injury (IRI). NKT cells as a bridge between innate and adaptive immunity were reported to infiltrate the liver at the early phase of IRI induced in normal liver. However, the localization mechanism of NKT cells is not precise, and the role of NKT cells in fatty liver IRI is poorly understood. In present murine IRI model of non-alcoholic fatty liver disease, we demonstrated that although the number reduced in fatty liver, NKT cells still activated and accumulated to fatty liver following IRI, and contributed to IRI by producing inflammatory cytokine IFN-γ. We revealed that NKT cells in fatty liver expressed more CXCR6, a vital chemokine receptor; meanwhile, the ligand CXCL16 mRNA expression level in fatty liver was up-regulated. The up-regulation of the CXCR6/CXCL16 axis in fatty liver happened in IRI, which maybe endow NKT cells more chemotaxis. We further found CXCR6 deficiency reduced the recruitment of NKT cells in a tissue-dependent manner, and impaired the IFN-γ producing capacity of hepatic NKT cells. Serum ALT level and hepatic histology were both improved in CXCR6 deficient mice. The results provide evidence of the pathogenic role of NKT cells in fatty liver IRI, and important localization mechanism involving up-regulated CXCR6/CXCL16. Deficiency of CXCR6 protects the fatty liver from IRI by reducing the recruitment and cytokine production of hepatic NKT cells.
Collapse
Affiliation(s)
- Huanbing Zhu
- Department of Hepatic Surgery and Liver Transplantation Center of The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China; Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States of America.
| | - Qi Zhang
- Department of Hepatic Surgery and Liver Transplantation Center of The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Guihua Chen
- Department of Hepatic Surgery and Liver Transplantation Center of The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
42
|
Sandor AM, Lindsay RS, Dyjack N, Whitesell JC, Rios C, Bradley BJ, Haskins K, Serreze DV, Geurts AM, Chen YG, Seibold MA, Jacobelli J, Friedman RS. CD11c + Cells Are Gatekeepers for Lymphocyte Trafficking to Infiltrated Islets During Type 1 Diabetes. Front Immunol 2019; 10:99. [PMID: 30766536 PMCID: PMC6365440 DOI: 10.3389/fimmu.2019.00099] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/14/2019] [Indexed: 01/06/2023] Open
Abstract
Type 1 diabetes (T1D) is a T cell mediated autoimmune disease that affects more than 19 million people with incidence increasing rapidly worldwide. For T cells to effectively drive T1D, they must first traffic to the islets and extravasate through the islet vasculature. Understanding the cues that lead to T cell entry into inflamed islets is important because diagnosed T1D patients already have established immune infiltration of their islets. Here we show that CD11c+ cells are a key mediator of T cell trafficking to infiltrated islets in non-obese diabetic (NOD) mice. Using intravital 2-photon islet imaging we show that T cell extravasation into the islets is an extended process, with T cells arresting in the islet vasculature in close proximity to perivascular CD11c+ cells. Antigen is not required for T cell trafficking to infiltrated islets, but T cell chemokine receptor signaling is necessary. Using RNAseq, we show that islet CD11c+ cells express over 20 different chemokines that bind chemokine receptors expressed on islet T cells. One highly expressed chemokine-receptor pair is CXCL16-CXCR6. However, NOD. CXCR6-/- mice progressed normally to T1D and CXCR6 deficient T cells trafficked normally to the islets. Even with CXCR3 and CXCR6 dual deficiency, T cells trafficked to infiltrated islets. These data reinforce that chemokine receptor signaling is highly redundant for T cell trafficking to inflamed islets. Importantly, depletion of CD11c+ cells strongly inhibited T cell trafficking to infiltrated islets of NOD mice. We suggest that targeted depletion of CD11c+ cells associated with the islet vasculature may yield a therapeutic target to inhibit T cell trafficking to inflamed islets to prevent progression of T1D.
Collapse
Affiliation(s)
- Adam M Sandor
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Biomedical Research, National Jewish Health, Denver, CO, United States
| | - Robin S Lindsay
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Biomedical Research, National Jewish Health, Denver, CO, United States
| | - Nathan Dyjack
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, United States
| | - Jennifer C Whitesell
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Biomedical Research, National Jewish Health, Denver, CO, United States
| | - Cydney Rios
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, United States
| | - Brenda J Bradley
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kathryn Haskins
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | | | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Yi-Guang Chen
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Max A Seibold
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, United States.,Department of Pediatrics, National Jewish Health, Denver, CO, United States.,Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jordan Jacobelli
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Biomedical Research, National Jewish Health, Denver, CO, United States
| | - Rachel S Friedman
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Biomedical Research, National Jewish Health, Denver, CO, United States
| |
Collapse
|
43
|
An C, Jia L, Wen J, Wang Y. Targeting Bone Marrow-Derived Fibroblasts for Renal Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1165:305-322. [DOI: 10.1007/978-981-13-8871-2_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
44
|
Patten DA, Shetty S. More Than Just a Removal Service: Scavenger Receptors in Leukocyte Trafficking. Front Immunol 2018; 9:2904. [PMID: 30631321 PMCID: PMC6315190 DOI: 10.3389/fimmu.2018.02904] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/27/2018] [Indexed: 12/15/2022] Open
Abstract
Scavenger receptors are a highly diverse superfamily of proteins which are grouped by their inherent ability to bind and internalize a wide array of structurally diverse ligands which can be either endogenous or exogenous in nature. Consequently, scavenger receptors are known to play important roles in host homeostasis, with common endogenous ligands including apoptotic cells, and modified low density lipoproteins (LDLs); additionally, scavenger receptors are key regulators of inflammatory diseases, such as atherosclerosis. Also, as a consequence of their affinity for a wide range of microbial products, their role in innate immunity is also being increasingly studied. However, in this review, a secondary function of a number of endothelial-expressed scavenger receptors is discussed. There is increasing evidence that some endothelial-expressed scavenger receptors are able to directly bind leukocyte-expressed ligands and subsequently act as adhesion molecules in the trafficking of leukocytes in lymphatic and vascular tissues. Here, we cover the current literature on this alternative role for endothelial-expressed scavenger receptors and also speculate on their therapeutic potential.
Collapse
Affiliation(s)
- Daniel A Patten
- National Institute for Health Research Birmingham Liver Biomedical Research Unit and Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Shishir Shetty
- National Institute for Health Research Birmingham Liver Biomedical Research Unit and Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
45
|
Jiang L, Yang M, Li X, Wang Y, Zhou G, Zhao J. CXC Motif Ligand 16 Promotes Nonalcoholic Fatty Liver Disease Progression via Hepatocyte-Stellate Cell Crosstalk. J Clin Endocrinol Metab 2018; 103:3974-3985. [PMID: 30053055 DOI: 10.1210/jc.2018-00762] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 07/13/2018] [Indexed: 12/25/2022]
Abstract
CONTEXT Nonalcoholic fatty liver disease (NAFLD) is a focus of attention because of its prevalence. CXC motif ligand 16 (CXCL16) has been studied in inflammatory and metabolic diseases. OBJECTIVE To investigate the role of CXCL16 in steatosis and fibrosis in patients with NAFLD. DESIGN Liver specimens and sera of patients with NAFLD were collected from 2012 to 2017. SETTING Beijing 302 Hospital. PARTICIPANTS 117 patients with NAFLD and 15 healthy controls. INTERVENTIONS None. MAIN OUTCOME MEASURES The main outcome measures were CXCL16 levels in sera and biopsy specimens of patients with NAFLD. RESULTS CXCL16 serum level was markedly elevated in patients with NAFLD, especially in those at the S3 steatosis level according to the steatosis, activity, and fibrosis (SAF) scoring system. The different serum levels of CXCL16 between groups were due to data in patients with A or F scores ≥2, according to the SAF scoring system. CXCL16 accumulated around steatotic hepatocytes in biopsy specimens. In vitro, CXCL16 treatment led to severe steatosis of hepatocytes in the hepatocyte-stellate cell coculture system and suppressed the respiration rate of hepatocytes. Lipogenic gene expression and hepatic stellate cell activation indexes were increased in a CXCL16 overexpression system. In addition, ligands in the Hedgehog pathway cascade were downregulated in hepatocytes. CONCLUSIONS CXCL16 was highly expressed in patients with NAFLD, suggesting that it may contribute to steatotic and fibrotic progression. CXCL16 may be a potential noninvasive marker of NAFLD and a future potential therapeutic target to treat NAFLD.
Collapse
Affiliation(s)
- Lina Jiang
- Department of Pathology and Hepatology, Beijing 302 Hospital, Beijing, China
| | - Mei Yang
- Department of Pathology and Hepatology, Beijing 302 Hospital, Beijing, China
| | - Xi Li
- Department of Pathology and Hepatology, Beijing 302 Hospital, Beijing, China
| | - Yijin Wang
- Department of Pathology and Hepatology, Beijing 302 Hospital, Beijing, China
| | - Guangde Zhou
- Department of Pathology and Hepatology, Beijing 302 Hospital, Beijing, China
| | - Jingmin Zhao
- Department of Pathology and Hepatology, Beijing 302 Hospital, Beijing, China
| |
Collapse
|
46
|
Xu F, He D, Liu J, Ni Q, Lyu Y, Xiong S, Li Y. Genetic diversification of chemokine CXCL16 and its receptor CXCR6 in primates. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 85:86-94. [PMID: 29635005 DOI: 10.1016/j.dci.2018.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
Chemokine CXCL16 and its receptor CXCR6 are associated with a series of physiological and pathological processes in cooperative and stand-alone fashions. To shed insight into their versatile nature, we studied genetic variations of CXCL16 and CXCR6 in primates. Evolutionary analyses revealed that these genes underwent a similar evolutionary fate. Both genes experienced adaptive diversification with the phylogenetic division of cercopithecoids (Old World monkeys) and hominoids (humans, great apes, and gibbons) from their common ancestor. In contrast, they were conserved in the periods preceding and following the dividing process. In terms of the adaptive diversification between cercopithecoids and hominoids, the adaptive genetic changes have occurred in the mucin-like and chemokine domains of CXCL16 and the N-terminus and transmembrane helixes of CXCR6. In combination with currently available structural and functional information for CXCL16 and CXCR6, the parallels between the evolutionary footprints and the co-occurrence of adaptive diversification at some evolutionary stage suggest that interplay could exist between the diversification-related amino acid sites, or between the domains on which the identified sites are located, in physiological processes such as chemotaxis and/or cell adhesion.
Collapse
Affiliation(s)
- Feifei Xu
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Dan He
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Jiabin Liu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, People's Republic of China
| | - Qingyong Ni
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Yongqing Lyu
- The First Hospital of Kunming Calmette International Hospital, People's Republic of China
| | - Shiqiu Xiong
- Cancer Research Centre, University of Leicester, United Kingdom
| | - Yan Li
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China.
| |
Collapse
|
47
|
Hong L, Wang S, Li W, Wu D, Chen W. Tumor-associated macrophages promote the metastasis of ovarian carcinoma cells by enhancing CXCL16/CXCR6 expression. Pathol Res Pract 2018; 214:1345-1351. [PMID: 30049511 DOI: 10.1016/j.prp.2018.07.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/25/2018] [Accepted: 07/08/2018] [Indexed: 12/31/2022]
Abstract
This study investigated the underlying mechanism by which C-X-C motif chemokine ligand 16 (CXCL16)/C-X-C motif chemokine receptor 6 (CXCR6) signaling is activated by tumor-associated macrophages and assists in regulating the metastasis of ovarian carcinoma. Specimens of ovarian carcinoma tissue and adjacent tissue were collected from 20 ovarian carcinoma patients. Human THP-1 cells were induced to differentiate into macrophages, which were then co-cultured with SKOV3 cells and low concentrations of tumor necrosis factor-α (TNF-α) to simulate the inflammatory microenvironment of ovarian carcinoma. Additionally, small interfering RNA (siRNA) targeting CXCR6 was transfected into SKOV3 cells; after which, the levels of nuclear factor kappa B p65 (NF-κB p65) protein and phosphorylated PI3K and Akt were measured. The migration and invasion abilities of the SKOV3 cells were also tested. The levels of TNF-α, interluekin-6 (IL-6), NF-κB p65, CXCL16, and CXCR6 expression in the ovarian carcinoma tissues were higher than those in the precancerous tissues. CXCR6 expression was positively correlated with TNF-α, IL-6, and CXCL16 expression. Co-culture of SKOV3 cells with macrophages significantly promoted CXCL16, CXCR6, NF-κB, and p65 expression by the SKOV3 cells, increased their levels of phosphorylated PI3K and Akt, and increased the migration and invasion abilities of SKOV3 cells. Silencing of CXCR6 or blocking the PI3K/Akt signal pathway markedly attenuated the expression of NF-κB p65 and phosphorylation of PI3K and Akt, as well as the migration and invasion abilities of SKOV3 cells. These findings demonstrate that macrophages can promote the migration and invasion of ovarian carcinoma cells by affecting the CXCL16/CXCR6 pathway.
Collapse
Affiliation(s)
- Lan Hong
- Department of Gynecology, Hainan General Hospital, Haikou, 570311, Hainan Province, China; Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Shengtan Wang
- Department of Gynecology, Hainan General Hospital, Haikou, 570311, Hainan Province, China
| | - Wei Li
- Department of Gynecology, Hainan General Hospital, Haikou, 570311, Hainan Province, China
| | - Dongcai Wu
- Department of Obstetrics, Hainan General Hospital, Haikou, 570311, Hainan Province, China
| | - Wangsheng Chen
- Department of Radiology, Hainan General Hospital, Haikou, 570311, Hainan Province, China.
| |
Collapse
|
48
|
Wei X, Zhao T, Ai K, Li H, Jiang X, Li C, Wang Q, Yang J, Zhang R, Yang J. Role of scavenger receptor from Octopus ocellatus as a co-receptor of Toll-like receptor in initiation of TLR-NF-κB signaling during anti-bacterial response. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 84:14-27. [PMID: 29409792 DOI: 10.1016/j.dci.2018.01.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 06/07/2023]
Abstract
Scavenger receptors are crucial for innate immunity owing to their prominent role in clearance of harmful endogenous factors, immune recognition, and more importantly, as co-receptors of Toll-like receptors (TLRs) to initiate downstream responses. At present, invertebrate scavenger receptors, especially their role in immune mechanisms, are largely unknown. We report here that scavenger receptors form a diverse superfamily in Octopus ocellatus, including at least five different members with distinct tissue expression patterns. Two members, OoSR-B and OoSR-I, are grouped into class B and I scavenger receptors, respectively. OoSR-B and OoSR-I are located on the hemocyte membrane, and both recombinant scavenger receptors could serve as pattern recognition receptors to bind a broad range of pathogen-associated molecular patterns. Although OoSR-B and OoSR-I expression was induced by bacterial stimulation, only OoSR-B promoted hemocyte phagocytosis. Moreover, OoSR-B, but not OoSR-I, could act as a co-receptor of TLR to activate TLR-NF-κB signaling and initiate TNF-α production during anti-bacterial response. As the first report on an invertebrate scavenger receptor acting as a co-receptor of TLR, our study reveals the immune mechanism mediated by scavenger receptors in O. ocellatus, and provides new insight into the evolution of this important receptor family.
Collapse
Affiliation(s)
- Xiumei Wei
- Laboratory of Aquatic Comparative Immunology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Tianyu Zhao
- Laboratory of Aquatic Comparative Immunology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Kete Ai
- Laboratory of Aquatic Comparative Immunology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Huiying Li
- Laboratory of Aquatic Comparative Immunology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xu Jiang
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Cheng Li
- Laboratory of Aquatic Comparative Immunology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Qianqian Wang
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Jianmin Yang
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Ranran Zhang
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Jialong Yang
- Laboratory of Aquatic Comparative Immunology, School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
49
|
Fan DX, Zhou WJ, Jin LP, Li MQ, Xu XH, Xu CJ. Trophoblast-Derived CXCL16 Decreased Granzyme B Production of Decidual γδ T Cells and Promoted Bcl-xL Expression of Trophoblasts. Reprod Sci 2018; 26:532-542. [PMID: 29909746 DOI: 10.1177/1933719118777638] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Decidual γδ T cells are known to regulate the function of trophoblasts at the maternal-fetal interface; however, little is known about the molecular mechanisms of cross talk between trophoblast cells and decidual γδ T cells. METHODS Expression of chemokine C-X-C motif ligand 6 (CXCL16) and its receptor CXCR6 was evaluated in first-trimester human villus and decidual tissues by immunohistochemistry. γδ T cells were isolated from first-trimester human deciduae and cocultured with JEG3 trophoblast cells. Cell proliferation and apoptosis-related molecules, together with cytotoxicity factor and cytokine production, were measured by flow cytometry analysis. RESULTS Expression of CXCL16 and CXCR6 was reduced at the maternal-fetal interface in patients who experienced unexplained recurrent spontaneous abortion as compared to healthy pregnancy women. With the administration of pregnancy-related hormones or coculture with JEG3 cells, CXCR6 expression was upregulated on decidual γδ T cells. CXCL16 derived from JEG3 cells caused a decrease in granzyme B production of decidual γδ T cells. In addition, decidual γδ T cells educated by JEG3-derived CXCL16 upregulated the expression of Bcl-xL in JEG3 cells. CONCLUSION This study suggested that the CXCL16/CXCR6 axis may contribute to maintaining normal pregnancy by reducing the secretion of cytotoxic factor granzyme B of decidual γδ T cells and promoting the expression of antiapoptotic marker Bcl-xL of trophoblasts.
Collapse
Affiliation(s)
- Deng-Xuan Fan
- 1 Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China
| | - Wen-Jie Zhou
- 1 Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China
| | - Li-Ping Jin
- 2 Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Ming-Qing Li
- 1 Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China
| | - Xiang-Hong Xu
- 2 Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Cong-Jian Xu
- 1 Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China.,3 Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, People's Republic of China.,4 Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
50
|
Wang H, Shao Y, Zhang S, Xie A, Ye Y, Shi L, Jin L, Pan X, Lin Z, Li X, Yang S. CXCL16 deficiency attenuates acetaminophen-induced hepatotoxicity through decreasing hepatic oxidative stress and inflammation in mice. Acta Biochim Biophys Sin (Shanghai) 2018; 49:541-549. [PMID: 28459937 DOI: 10.1093/abbs/gmx040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Indexed: 01/06/2023] Open
Abstract
Chemokine C-X-C ligand 16 (CXCL16), a single-pass Type I membrane protein belonging to the CXC chemokine family, is related to the inflammatory response in liver injury. In present study, we investigated the pathophysiological role of CXCL16, a unique membrane-bound chemokine, in acetaminophen (APAP)-induced hepatotoxicity in mice. Mice were injected with APAP, and blood and tissue samples were harvested at different time points. The serum high-mobility group box 1 and CXCL16 levels were quantified by sandwich immunoassays. The liver tissue sections were stained with hematoxylin-eosin or with dihydroethidium staining. The expressions of CXCL16 and other cytokines were examined by real-time polymerase chain reaction. Ly6-B, p-jun N-terminal kinase (p-JNK), and JNK expressions were measured by western blot analysis. Intracellular glutathione, reactive oxygen species, and malondialdehyde levels were also measured. APAP overdose increased hepatic CXCL16 mRNA and serum CXCL16 protein levels. CXCL16-deficient mice exhibited significantly less liver injury and hepatic necrosis, as well as a lower mortality than wild-type (WT) mice in response to APAP-overdose treatment. APAP elevated the production of oxidative stress and decreased mitochondrial respiratory chain activation in WT mice, which was strongly reversed in CXCL16-knockout mice. In addition, CXCL16 deficiency inhibited the neutrophil infiltration and the production of proinflammatory cytokines triggered by APAP-overdose treatment. Our study revealed that CXCL16 is a critical regulator of liver immune response to APAP-induced hepatotoxicity, thus providing a potential strategy for the treatment of drug-induced acute liver failure by targeting CXCL16.
Collapse
Affiliation(s)
- Hong Wang
- Department of Bioengineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Department of Pharmacy, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Yihui Shao
- Department of Pharmacy, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Saisai Zhang
- Department of Pharmacy, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Anqi Xie
- Department of Pharmacy, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Yanna Ye
- Department of Pharmacy, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Lihua Shi
- Department of Pharmacy, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Leigang Jin
- Department of Pharmacy, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Xuebo Pan
- Department of Pharmacy, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhuofeng Lin
- Department of Pharmacy, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaokun Li
- Department of Pharmacy, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Shulin Yang
- Department of Bioengineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|