1
|
Hosaka N. Thymus transplantation as immunotherapy for the enhancement and/or correction of T cell function. Med Mol Morphol 2024; 57:155-160. [PMID: 38935299 DOI: 10.1007/s00795-024-00394-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
The thymus is where T cells, among the most important immune cells involved in biological defense and homeostasis, are produced and developed. The thymus plays an important role in the defense against infection and cancer as well as the prevention of autoimmune diseases. However, the thymus gland atrophies with age, which might have pathological functions, and in some circumstances, there is a congenital defect in the thymus. These can be the cause of many diseases related to the dysregulation of T cell functions. Thus, the enhancement and/or normalization of thymic function may lead to protection against and treatment of a wide variety of diseases. Therefore, thymus transplantation is considered a strong candidate for permanent treatment. The status and issues related to thymus transplantation for possible immunotherapy are discussed although it is still at an early stage of development.
Collapse
Affiliation(s)
- Naoki Hosaka
- Department of Pathology, Fuchu Hospital, 1-10-7 Hiko-Cho, Izumi, Osaka, 594-0076, Japan.
- Department of Hygiene and Public Health, Kansai Medical University, 2-5-1 Shin-Machi, Hirakata, Osaka, 573-1010, Japan.
| |
Collapse
|
2
|
Liu T, Xia S. The Proteostasis of Thymic Stromal Cells in Health and Diseases. Protein J 2024; 43:447-463. [PMID: 38622349 DOI: 10.1007/s10930-024-10197-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2024] [Indexed: 04/17/2024]
Abstract
The thymus is the key immune organ for the development of T cells. Different populations of thymic stromal cells interact with T cells, thereby controlling the dynamic development of T cells through their differentiation and function. Proteostasis represents a balance between protein expression, folding, and modification and protein clearance, and its fluctuation usually depends at least partially on related protein regulatory systems for further survival and effects. However, in terms of the substantial requirement for self-antigens and their processing burden, increasing evidence highlights that protein regulation contributes to the physiological effects of thymic stromal cells. Impaired proteostasis may expedite the progression of thymic involution and dysfunction, accompanied by the development of autoimmune diseases or thymoma. Hence, in this review, we summarize the regulation of proteostasis within different types of thymic stromal cells under physiological and pathological conditions to identify potential targets for thymic regeneration and immunotherapy.
Collapse
Affiliation(s)
- Ting Liu
- Department of Immunology, School of Medicine, Jiangsu University, 301, Xuefu Road, Zhenjiang, Jiangsu, 212013, China
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, 301, Xuefu Road, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
3
|
Yang J, Liu J, Liang J, Li F, Wang W, Chen H, Xie X. Epithelial-mesenchymal transition in age-associated thymic involution: Mechanisms and therapeutic implications. Ageing Res Rev 2023; 92:102115. [PMID: 37922996 DOI: 10.1016/j.arr.2023.102115] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/17/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
The thymus is a critical immune organ with endocrine and immune functions that plays important roles in the physiological and pathological processes of the body. However, with aging, the thymus undergoes degenerative changes leading to decreased production and output of naive T cells and the secretion of thymic hormones and related cytokines, thereby promoting the occurrence and development of various age-associated diseases. Therefore, identifying essential processes that regulate age-associated thymic involution is crucial for long-term control of thymic involution and age-associated disease progression. Epithelial-mesenchymal transition (EMT) is a well-established process involved in organ aging and functional impairment through tissue fibrosis in several organs, such as the heart and kidney. In the thymus, EMT promotes fibrosis and potentially adipogenesis, leading to thymic involution. This review focuses on the factors involved in thymic involution, including oxidative stress, inflammation, and hormones, from the perspective of EMT. Furthermore, current interventions for reversing age-associated thymic involution by targeting EMT-associated processes are summarized. Understanding the key mechanisms of thymic involution through EMT as an entry point may promote the development of new therapies and clinical agents to reverse thymic involution and age-associated disease.
Collapse
Affiliation(s)
- Jiali Yang
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Juan Liu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Jiayu Liang
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Fan Li
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Wenwen Wang
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Huan Chen
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China.
| | - Xiang Xie
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China.
| |
Collapse
|
4
|
Lagou MK, Karagiannis GS. Obesity-induced thymic involution and cancer risk. Semin Cancer Biol 2023; 93:3-19. [PMID: 37088128 DOI: 10.1016/j.semcancer.2023.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
Declining thymic functions associated either with old age (i.e., age-related thymic involution), or with acute involution as a result of stress, infectious disease, or cytoreductive therapies (e.g., chemotherapy/radiotherapy), have been associated with cancer development. A key mechanism underlying such increased cancer risk is the thymus-dependent debilitation of adaptive immunity, which is responsible for orchestrating immunoediting mechanisms and tumor immune surveillance. In the past few years, a blooming set of evidence has intriguingly linked obesity with cancer development and progression. The majority of such studies has focused on obesity-driven chronic inflammation, steroid/sex hormone and adipokine production, and hyperinsulinemia, as principal factors affecting the tumor microenvironment and driving the development of primary malignancy. However, experimental observations about the negative impact of obesity on T cell development and maturation have existed for more than half a century. Here, we critically discuss the molecular and cellular mechanisms of obesity-driven thymic involution as a previously underrepresented intermediary pathology leading to cancer development and progression. This knowledge could be especially relevant in the context of childhood obesity, because impaired thymic function in young individuals leads to immune system abnormalities, and predisposes to various pediatric cancers. A thorough understanding behind the molecular and cellular circuitries governing obesity-induced thymic involution could therefore help towards the rationalized development of targeted thymic regeneration strategies for obese individuals at high risk of cancer development.
Collapse
Affiliation(s)
- Maria K Lagou
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA; Tumor Microenvironment of Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, USA
| | - George S Karagiannis
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA; Tumor Microenvironment of Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, USA; Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA; Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
5
|
Reiche ME, Poels K, Bosmans LA, Vos WG, Van Tiel CM, Gijbels MJJ, Aarts SABM, Den Toom M, Beckers L, Weber C, Atzler D, Rensen PCN, Kooijman S, Lutgens E. Adipocytes control hematopoiesis and inflammation through CD40 signaling. Haematologica 2023; 108:1873-1885. [PMID: 36475519 PMCID: PMC10316249 DOI: 10.3324/haematol.2022.281482] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/30/2022] [Indexed: 08/18/2024] Open
Abstract
The co-stimulatory CD40-CD40L dyad plays an important role in chronic inflammatory diseases associated with aging. Although CD40 is mainly expressed by immune cells, CD40 is also present on adipocytes. We aimed to delineate the role of adipocyte CD40 in the aging hematopoietic system and evaluated the effects of adipocyte CD40 deficiency on cardiometabolic diseases. Adult adipocyte CD40-deficient mice (AdiCD40KO) mice had a decrease in bone marrow hematopoietic stem cells (Lin-Sca+cKit+, LSK) and common lymphoid progenitors, which was associated with increased bone marrow adiposity and T-cell activation, along with elevated plasma corticosterone levels, a phenotype that became more pronounced with age. Atherosclerotic AdiCD40koApoE-/- (CD40AKO) mice also displayed changes in the LSK population, showing increased myeloid and lymphoid multipotent progenitors, and augmented corticosterone levels. Increased T-cell activation could be observed in bone marrow, spleen, and adipose tissue, while the numbers of B cells were decreased. Although atherosclerosis was reduced in CD40AKO mice, plaques contained more activated T cells and larger necrotic cores. Analysis of peripheral adipose tissue in a diet-induced model of obesity revealed that obese AdiCD40KO mice had increased T-cell activation in adipose tissue and lymphoid organs, but decreased weight gain and improved insulin sensitivity, along with increased fat oxidation. In conclusion, adipocyte CD40 plays an important role in maintaining immune cell homeostasis in bone marrow during aging and chronic inflammatory diseases, particularly of the lymphoid populations. Although adipocyte CD40 deficiency reduces atherosclerosis burden and ameliorates diet-induced obesity, the accompanying T-cell activation may eventually aggravate cardiometabolic diseases.
Collapse
Affiliation(s)
- Myrthe E Reiche
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands; Department of Medical Cell Biology, Uppsala University, Uppsala
| | - Kikkie Poels
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam
| | - Laura A Bosmans
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam
| | - Winnie G Vos
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam
| | - Claudia M Van Tiel
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam
| | - Marion J J Gijbels
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands; Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, Maastricht
| | - Suzanne A B M Aarts
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam
| | - Myrthe Den Toom
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam
| | - Linda Beckers
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam
| | - Christian Weber
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, Maastricht, The Netherlands; Institute of Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, Munich, Germany; German Centre of Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich
| | - Dorothee Atzler
- Institute of Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, Munich, Germany; German Centre of Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany; Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians Universität, Munich
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden
| | - Sander Kooijman
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden
| | - Esther Lutgens
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands; Institute of Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, Munich, Germany; German Centre of Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany; Cardiovascular Medicine, Experimental CardioVascular Immunology Laboratory, Mayo Clinic, Rochester, MN.
| |
Collapse
|
6
|
Reis MDDS, Veneziani LP, Porto FL, Lins MP, Mendes-da-Cruz DA, Savino W. Intrathymic somatotropic circuitry: consequences upon thymus involution. Front Immunol 2023; 14:1108630. [PMID: 37426675 PMCID: PMC10323194 DOI: 10.3389/fimmu.2023.1108630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Growth hormone (GH) is a classic pituitary-derived hormone crucial to body growth and metabolism. In the pituitary gland, GH production is stimulated by GH-releasing hormone and inhibited by somatostatin. GH secretion can also be induced by other peptides, such as ghrelin, which interacts with receptors present in somatotropic cells. It is well established that GH acts directly on target cells or indirectly by stimulating the production of insulin-like growth factors (IGFs), particularly IGF-1. Notably, such somatotropic circuitry is also involved in the development and function of immune cells and organs, including the thymus. Interestingly, GH, IGF-1, ghrelin, and somatostatin are expressed in the thymus in the lymphoid and microenvironmental compartments, where they stimulate the secretion of soluble factors and extracellular matrix molecules involved in the general process of intrathymic T-cell development. Clinical trials in which GH was used to treat immunocompromised patients successfully recovered thymic function. Additionally, there is evidence that the reduction in the function of the somatotropic axis is associated with age-related thymus atrophy. Treatment with GH, IGF-1 or ghrelin can restore thymopoiesis of old animals, thus in keeping with a clinical study showing that treatment with GH, associated with metformin and dehydroepiandrosterone, could induce thymus regeneration in healthy aged individuals. In conclusion, the molecules of the somatotrophic axis can be envisioned as potential therapeutic targets for thymus regeneration in age-related or pathological thymus involution.
Collapse
Affiliation(s)
- Maria Danielma dos Santos Reis
- Laboratory of Cell Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Brazil
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | - Luciana Peixoto Veneziani
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- INOVA-IOC Network on Neuroimmunomodulation, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Felipe Lima Porto
- Laboratory of Cell Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Brazil
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | - Marvin Paulo Lins
- Laboratory of Cell Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Brazil
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | - Daniella Arêas Mendes-da-Cruz
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- INOVA-IOC Network on Neuroimmunomodulation, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Wilson Savino
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- INOVA-IOC Network on Neuroimmunomodulation, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Gustafsson K, Scadden DT. Isolation of Thymus Stromal Cells from Human and Murine Tissue. Methods Mol Biol 2023; 2567:191-201. [PMID: 36255703 DOI: 10.1007/978-1-0716-2679-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
T cells go through most of their maturation in the thymus, and the stromal constituents of the thymus are therefore essential for T cell differentiation. The thymic stroma secretes the factors that recruit and sustain T cell progenitors, and they also partake in the shaping of a functional and tolerant T cell receptor repertoire. The damage incurred to the thymic stromal compartment by bone marrow conditioning regimens as well as by the natural aging process impairs T cell production. Yet little is known of how to prevent or reverse this damage. The development of high-throughput, single-cell analysis technologies has enabled better characterization of thymic stromal cells. This does however require tissue dissociation protocols optimized for stromal cell isolation. In this chapter, we detail the methodology of harvesting thymus stromal cells from human and murine tissue for downstream applications such as flow cytometric analysis and single-cell RNA sequencing.
Collapse
Affiliation(s)
- Karin Gustafsson
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - David T Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
8
|
Liang Z, Dong X, Zhang Z, Zhang Q, Zhao Y. Age-related thymic involution: Mechanisms and functional impact. Aging Cell 2022; 21:e13671. [PMID: 35822239 PMCID: PMC9381902 DOI: 10.1111/acel.13671] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/16/2022] [Accepted: 07/01/2022] [Indexed: 11/28/2022] Open
Abstract
The thymus is the primary immune organ responsible for generating self‐tolerant and immunocompetent T cells. However, the thymus gradually involutes during early life resulting in declined naïve T‐cell production, a process known as age‐related thymic involution. Thymic involution has many negative impacts on immune function including reduced pathogen resistance, high autoimmunity incidence, and attenuated tumor immunosurveillance. Age‐related thymic involution leads to a gradual reduction in thymic cellularity and thymic stromal microenvironment disruption, including loss of definite cortical‐medullary junctions, reduction of cortical thymic epithelial cells and medullary thymic epithelial cells, fibroblast expansion, and an increase in perivascular space. The compromised thymic microenvironment in aged individuals substantially disturbs thymocyte development and differentiation. Age‐related thymic involution is regulated by many transcription factors, micro RNAs, growth factors, cytokines, and other factors. In this review, we summarize the current understanding of age‐related thymic involution mechanisms and effects.
Collapse
Affiliation(s)
- Zhanfeng Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Xue Dong
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhaoqi Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qian Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Bhalla P, Su DM, van Oers NSC. Thymus Functionality Needs More Than a Few TECs. Front Immunol 2022; 13:864777. [PMID: 35757725 PMCID: PMC9229346 DOI: 10.3389/fimmu.2022.864777] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/03/2022] [Indexed: 12/18/2022] Open
Abstract
The thymus, a primary lymphoid organ, produces the T cells of the immune system. Originating from the 3rd pharyngeal pouch during embryogenesis, this organ functions throughout life. Yet, thymopoiesis can be transiently or permanently damaged contingent on the types of systemic stresses encountered. The thymus also undergoes a functional decline during aging, resulting in a progressive reduction in naïve T cell output. This atrophy is evidenced by a deteriorating thymic microenvironment, including, but not limited, epithelial-to-mesenchymal transitions, fibrosis and adipogenesis. An exploration of cellular changes in the thymus at various stages of life, including mouse models of in-born errors of immunity and with single cell RNA sequencing, is revealing an expanding number of distinct cell types influencing thymus functions. The thymus microenvironment, established through interactions between immature and mature thymocytes with thymus epithelial cells (TEC), is well known. Less well appreciated are the contributions of neural crest cell-derived mesenchymal cells, endothelial cells, diverse hematopoietic cell populations, adipocytes, and fibroblasts in the thymic microenvironment. In the current review, we will explore the contributions of the many stromal cell types participating in the formation, expansion, and contraction of the thymus under normal and pathophysiological processes. Such information will better inform approaches for restoring thymus functionality, including thymus organoid technologies, beneficial when an individuals’ own tissue is congenitally, clinically, or accidentally rendered non-functional.
Collapse
Affiliation(s)
- Pratibha Bhalla
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Dong-Ming Su
- Department of Microbiology, Immunology & Genetics, The University of North Texas Health Sciences Center, Fort Worth, TX, United States
| | - Nicolai S C van Oers
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
10
|
Gulla S, Reddy MC, Reddy VC, Chitta S, Bhanoori M, Lomada D. Role of thymus in health and disease. Int Rev Immunol 2022; 42:347-363. [PMID: 35593192 DOI: 10.1080/08830185.2022.2064461] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/26/2022] [Accepted: 04/04/2022] [Indexed: 01/04/2023]
Abstract
The thymus is a primary lymphoid organ, essential for the development of T-cells that will protect from invading pathogens, immune disorders, and cancer. The thymus decreases in size and cellularity with age referred to as thymus involution or atrophy. This involution causes decreased T-cell development and decreased naive T-cell emigration to the periphery, increased proportion of memory T cells, and a restricted, altered T-cell receptor (TCR) repertoire. The changes in composition and function of the circulating T cell pool as a result of thymic involution led to increased susceptibility to infectious diseases including the recent COVID and a higher risk for autoimmune disorders and cancers. Thymic involution consisting of both structural and functional loss of the thymus has a deleterious effect on T cell development, T cell selection, and tolerance. The mechanisms which act on the structural (cortex and medulla) matrix of the thymus, the gradual accumulation of genetic mutations, and altered gene expressions may lead to immunosenescence as a result of thymus involution. Understanding the molecular mechanisms behind thymic involution is critical for identifying diagnostic biomarkers and targets for treatment help to develop strategies to mitigate thymic involution-associated complications. This review is focused on the consequences of thymic involution in infections, immune disorders, and diseases, identifying potential checkpoints and potential approaches to sustain or restore the function of the thymus particularly in elderly and immune-compromised individuals.
Collapse
Affiliation(s)
- Surendra Gulla
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | - Madhava C Reddy
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | - Vajra C Reddy
- Katuri Medical College and Hospital, Chinnakondrupadu, Guntur, India
| | | | - Manjula Bhanoori
- Department of Biochemistry, Osmania University, Hyderabad, Telangana State, India
| | - Dakshayani Lomada
- Department of Genetics and Genomics, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| |
Collapse
|
11
|
ISASHIKI Y, OHASHI Y, IMATAKE S, BAAKHTARI M, RAMAH A, KIDA T, YANAGITA T, YASUDA M. Studies on the immune status of calves with chronic inflammation and thymus atrophy. J Vet Med Sci 2022; 84:734-742. [PMID: 35400674 PMCID: PMC9246677 DOI: 10.1292/jvms.22-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The thymus is a primary lymphoid organ where the primary T cell repertoire is generated.
Thymus atrophy is induced by various conditions, including infectious diseases,
glucocorticoid treatment, and poor breeding management. Cattle with thymus atrophy tend to
exhibit weak calf syndrome, a condition in which approximately half of neonates die
shortly after birth. Calves with thymus atrophy that survive the first month typically
contract chronic inflammatory diseases. In this study, we analyzed the populations of the
peripheral blood mononuclear cells and thymocytes in calves with thymus atrophy. In
addition, we evaluated polarization of master gene and cytokine mRNA expression in
peripheral blood CD4+ cells in the calves. The population of
CD4+CD8+ cells in thymus of the calves with thymus atrophy was
lower than that of control calves. IL10 mRNA expression in peripheral
blood CD4+ cells of calves with thymus atrophy was significantly lower than
that of control calves. TBX21 mRNA expression in peripheral
CD4+ cells of thymus atrophy calves was tended to be higher than that of the
control group. In addition, FOXP3 mRNA expression in peripheral
CD4+ cells of the thymus atrophy calves was tended to be lower than that of
the control calves. Thymus atrophy calves exhibited chronic inflammatory disease leading,
in severe situations, to conditions such as pneumonia with caseous necrosis. These severe
inflammatory responses likely are due to decreases in IL10 mRNA
expression, impairing control of macrophages, one of the main cell fractions of natural
immunity.
Collapse
Affiliation(s)
- Yumi ISASHIKI
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, University of Miyazaki
| | - Yuki OHASHI
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki
| | - Shoichiro IMATAKE
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki
| | - Mahmoud BAAKHTARI
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki
| | - Amany RAMAH
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki
| | - Tetsuo KIDA
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, University of Miyazaki
| | - Tenya YANAGITA
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, University of Miyazaki
| | - Masahiro YASUDA
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki
| |
Collapse
|
12
|
James KD, Jenkinson WE, Anderson G. Non-Epithelial Stromal Cells in Thymus Development and Function. Front Immunol 2021; 12:634367. [PMID: 33717173 PMCID: PMC7946857 DOI: 10.3389/fimmu.2021.634367] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/19/2021] [Indexed: 12/23/2022] Open
Abstract
The thymus supports T-cell development via specialized microenvironments that ensure a diverse, functional and self-tolerant T-cell population. These microenvironments are classically defined as distinct cortex and medulla regions that each contain specialized subsets of stromal cells. Extensive research on thymic epithelial cells (TEC) within the cortex and medulla has defined their essential roles during T-cell development. Significantly, there are additional non-epithelial stromal cells (NES) that exist alongside TEC within thymic microenvironments, including multiple subsets of mesenchymal and endothelial cells. In contrast to our current understanding of TEC biology, the developmental origins, lineage relationships, and functional properties, of NES remain poorly understood. However, experimental evidence suggests these cells are important for thymus function by either directly influencing T-cell development, or by indirectly regulating TEC development and/or function. Here, we focus attention on the contribution of NES to thymic microenvironments, including their phenotypic identification and functional classification, and explore their impact on thymus function.
Collapse
Affiliation(s)
- Kieran D James
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - William E Jenkinson
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Graham Anderson
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
13
|
Ciarambino T, Para O, Giordano M. Immune system and COVID-19 by sex differences and age. WOMEN'S HEALTH (LONDON, ENGLAND) 2021; 17:17455065211022262. [PMID: 34096383 PMCID: PMC8188967 DOI: 10.1177/17455065211022262] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/19/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022]
Abstract
In COVID-19 disease, are reported gender differences in relation to severity and death. The aim of this review is to highlight gender differences in the immune response to COVID-19. The included studies were identified using PubMed, until 30 October 2020. The search included the following keywords: SARS-CoV-2, COVID-19, gender, age, sex, and immune system. Literature described that females compared to males have greater inflammatory, antiviral, and humoral immune responses. In female, estrogen is a potential ally to alleviate SARS-COV-2 disease. In male, testosterone reduces vaccination response and depresses the cytokine response. In the older patients, and in particular, in female older patients, it has been reported a progressive functional decline in the immune systems. Differences by gender were reported in infection diseases, including SARS-CoV-2. These data should be confirmed by the other epidemiological studies.
Collapse
Affiliation(s)
- Tiziana Ciarambino
- Department of Internal Medicine, Marcianise Hospital, ASL Caserta, Italy
| | - Ombretta Para
- Department of Internal Medicine, Careggi Hospital, University of Florence, Florence, Italy
| | - Mauro Giordano
- Department of Internal Medicine, University of Campania, L. Vanvitelli, Naples, Italy
| |
Collapse
|
14
|
Hazeldine J, Lord JM. Immunesenescence: A Predisposing Risk Factor for the Development of COVID-19? Front Immunol 2020; 11:573662. [PMID: 33123152 PMCID: PMC7573102 DOI: 10.3389/fimmu.2020.573662] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/28/2020] [Indexed: 01/08/2023] Open
Abstract
Bearing a strong resemblance to the phenotypic and functional remodeling of the immune system that occurs during aging (termed immunesenescence), the immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of Coronavirus disease 2019 (COVID-19), is characterized by an expansion of inflammatory monocytes, functional exhaustion of lymphocytes, dysregulated myeloid responses and the presence of highly activated senescent T cells. Alongside advanced age, male gender and pre-existing co-morbidities [e.g., obesity and type 2 diabetes (T2D)] are emerging as significant risk factors for COVID-19. Interestingly, immunesenescence is more profound in males when compared to females, whilst accelerated aging of the immune system, termed premature immunesenescence, has been described in obese subjects and T2D patients. Thus, as three distinct demographic groups with an increased susceptibility to COVID-19 share a common immune profile, could immunesenescence be a generic contributory factor in the development of severe COVID-19? Here, by focussing on three key aspects of an immune response, namely pathogen recognition, elimination and resolution, we address this question by discussing how immunesenescence may weaken or exacerbate the immune response to SARS-CoV-2. We also highlight how aspects of immunesenescence could render potential COVID-19 treatments less effective in older adults and draw attention to certain therapeutic options, which by reversing or circumventing certain features of immunesenescence may prove to be beneficial for the treatment of groups at high risk of severe COVID-19.
Collapse
Affiliation(s)
- Jon Hazeldine
- Medical Research Council-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Janet M. Lord
- Medical Research Council-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Birmingham Biomedical Research Centre, University Hospital Birmingham National Health Service Foundation Trust and University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
15
|
Mukohira H, Hara T, Abe S, Tani-Ichi S, Sehara-Fujisawa A, Nagasawa T, Tobe K, Ikuta K. Mesenchymal stromal cells in bone marrow express adiponectin and are efficiently targeted by an adiponectin promoter-driven Cre transgene. Int Immunol 2020; 31:729-742. [PMID: 31094421 DOI: 10.1093/intimm/dxz042] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 05/14/2019] [Indexed: 02/06/2023] Open
Abstract
Stromal cells in bone marrow (BM) constitute a specific microenvironment supporting the development and maintenance of hematopoietic cells. Adiponectin is a cytokine secreted by adipocytes. Besides its anti-diabetic and anti-atherogenic roles, adiponectin reportedly regulates the development and function of hematopoietic cells in BM. However, it remains unclear whether mesenchymal stromal cells in BM express adiponectin. Here, we show that PDGFRβ+VCAM-1+ stromal cells express adiponectin. Lineage tracing revealed that a majority of PDGFRβ+VCAM-1+ cells were targeted by an adiponectin promoter-driven Cre (Adipoq-Cre) transgene. Additionally, the Adipoq-Cre transgene targets a minority of osteoblasts at a younger age but larger populations are targeted at an older age. Furthermore, the Adipoq-Cre transgene targets almost all CXCL12-abundant reticular (CAR) cells and most of the stromal cells targeted by the Adipoq-Cre transgene are CAR cells. Finally, deletion of interleukin-7 (IL-7) by the Adipoq-Cre transgene resulted in severe impairment of B lymphopoiesis in BM. These results demonstrate that PDGFRβ+VCAM-1+ stromal cells in BM express adiponectin and are targeted by the Adipoq-Cre transgene, suggesting a broader specificity of the Adipoq-Cre transgene.
Collapse
Affiliation(s)
- Hisa Mukohira
- Laboratory of Immune Regulation, Department of Virus Research, Institute of Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahiro Hara
- Laboratory of Immune Regulation, Department of Virus Research, Institute of Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Shinya Abe
- Laboratory of Immune Regulation, Department of Virus Research, Institute of Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shizue Tani-Ichi
- Laboratory of Immune Regulation, Department of Virus Research, Institute of Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Laboratory of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsuko Sehara-Fujisawa
- Laboratory of Tissue Stem Cell Biology, Department of Regeneration Science and Engineering, Institute of Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takashi Nagasawa
- Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kazuyuki Tobe
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute of Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
16
|
Afroz S, Shama, Battu S, Matin S, Solouki S, Elmore JP, Minhas G, Huang W, August A, Khan N. Amino acid starvation enhances vaccine efficacy by augmenting neutralizing antibody production. Sci Signal 2019; 12:12/607/eaav4717. [PMID: 31719173 DOI: 10.1126/scisignal.aav4717] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Specific reduction in the intake of proteins or amino acids (AAs) offers enormous health benefits, including increased life span, protection against age-associated disorders, and improved metabolic fitness and immunity. Cells respond to conditions of AA starvation by activating the amino acid starvation response (AAR). Here, we showed that mimicking AAR with halofuginone (HF) enhanced the magnitude and affinity of neutralizing, antigen-specific antibody responses in mice immunized with dengue virus envelope domain III protein (DENVrEDIII), a potent vaccine candidate against DENV. HF enhanced the formation of germinal centers (GCs) and increased the production of the cytokine IL-10 in the secondary lymphoid organs of vaccinated mice. Furthermore, HF promoted the transcription of genes associated with memory B cell formation and maintenance and maturation of GCs in the draining lymph nodes of vaccinated mice. The increased abundance of IL-10 in HF-preconditioned mice correlated with enhanced GC responses and may promote the establishment of long-lived plasma cells that secrete antigen-specific, high-affinity antibodies. Thus, these data suggest that mimetics of AA starvation could provide an alternative strategy to augment the efficacy of vaccines against dengue and other infectious diseases.
Collapse
Affiliation(s)
- Sumbul Afroz
- School of Life Sciences, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, 500046 Telangana, India
| | - Shama
- School of Life Sciences, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, 500046 Telangana, India
| | - Srikanth Battu
- School of Life Sciences, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, 500046 Telangana, India
| | - Shaikh Matin
- School of Life Sciences, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, 500046 Telangana, India
| | - Sabrina Solouki
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Jessica P Elmore
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Gillipsie Minhas
- School of Life Sciences, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, 500046 Telangana, India
| | - Weishan Huang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.,Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Nooruddin Khan
- School of Life Sciences, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, 500046 Telangana, India.
| |
Collapse
|
17
|
Axin Family of Scaffolding Proteins in Development: Lessons from C. elegans. J Dev Biol 2019; 7:jdb7040020. [PMID: 31618970 PMCID: PMC6956378 DOI: 10.3390/jdb7040020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 12/21/2022] Open
Abstract
Scaffold proteins serve important roles in cellular signaling by integrating inputs from multiple signaling molecules to regulate downstream effectors that, in turn, carry out specific biological functions. One such protein, Axin, represents a major evolutionarily conserved scaffold protein in metazoans that participates in the WNT pathway and other pathways to regulate diverse cellular processes. This review summarizes the vast amount of literature on the regulation and functions of the Axin family of genes in eukaryotes, with a specific focus on Caenorhabditis elegans development. By combining early studies with recent findings, the review is aimed to serve as an updated reference for the roles of Axin in C. elegans and other model systems.
Collapse
|
18
|
Abstract
The thymus is a primary lymphoid organ essential for the development of T lymphocytes, which orchestrate adaptive immune responses. T-cell development in the thymus is spatially regulated; key checkpoints in T-cell maturation and selection occur in cortical and medullary regions to eliminate self-reactive T cells, establish central tolerance, and export naïve T cells to the periphery with the potential to recognize diverse pathogens. Thymic output is also temporally regulated due to age-related involution of the thymus accompanied by loss of epithelial cells. This review discusses the structural and age-related control of thymus function in humans.
Collapse
Affiliation(s)
- Puspa Thapa
- Columbia Center for Translational Immunology, Columbia University Medical Center, 650 West 168th Street, BB1501, New York, NY 10032, USA
| | - Donna L Farber
- Department of Surgery, Columbia Center for Translational Immunology, Columbia University Medical Center, 650 West 168th Street, BB1501, New York, NY 10032, USA.
| |
Collapse
|
19
|
PRY-1/Axin signaling regulates lipid metabolism in Caenorhabditis elegans. PLoS One 2018; 13:e0206540. [PMID: 30403720 PMCID: PMC6221325 DOI: 10.1371/journal.pone.0206540] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/15/2018] [Indexed: 02/02/2023] Open
Abstract
The nematode Caenorhabditis elegans constitutes a leading animal model to study how signaling pathway components function in conserved biological processes. Here, we describe the role of an Axin family member, PRY-1, in lipid metabolism. Axins are scaffolding proteins that play crucial roles in signal transduction pathways by physically interacting with multiple factors and coordinating the assembly of protein complexes. Genome-wide transcriptome profiling of a pry-1 mutant revealed differentially regulated genes that are associated with lipid metabolism such as vitellogenins (yolk lipoproteins), fatty acid desaturases, lipases, and fatty acid transporters. Consistent with these categorizations, we found that pry-1 is crucial for the maintenance of lipid levels. Knockdowns of vit genes in a pry-1 mutant background restored lipid levels, suggesting that vitellogenins contribute to PRY-1 function in lipid metabolic processes. Additionally, lowered expression of desaturases and lipidomic analysis provided evidence that fatty acid synthesis is reduced in pry-1 mutants. Accordingly, an exogenous supply of oleic acid restored depleted lipids in somatic tissues of worms. Overall, our findings demonstrate that PRY-1/Axin signaling is essential for lipid metabolism and involves the regulation of yolk proteins.
Collapse
|
20
|
Ernszt D, Banfai K, Kellermayer Z, Pap A, Lord JM, Pongracz JE, Kvell K. PPARgamma Deficiency Counteracts Thymic Senescence. Front Immunol 2017; 8:1515. [PMID: 29163553 PMCID: PMC5681731 DOI: 10.3389/fimmu.2017.01515] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/26/2017] [Indexed: 12/30/2022] Open
Abstract
Thymic senescence contributes to increased incidence of infection, cancer and autoimmunity at senior ages. This process manifests as adipose involution. As with other adipose tissues, thymic adipose involution is also controlled by PPARgamma. This is supported by observations reporting that systemic PPARgamma activation accelerates thymic adipose involution. Therefore, we hypothesized that decreased PPARgamma activity could prevent thymic adipose involution, although it may trigger metabolic adverse effects. We have confirmed that both human and murine thymic sections show marked staining for PPARgamma at senior ages. We have also tested the thymic lobes of PPARgamma haplo-insufficient and null mice. Supporting our working hypothesis both adult PPARgamma haplo-insufficient and null mice show delayed thymic senescence by thymus histology, thymocyte mouse T-cell recombination excision circle qPCR and peripheral blood naive T-cell ratio by flow-cytometry. Delayed senescence showed dose-response with respect to PPARgamma deficiency. Functional immune parameters were also evaluated at senior ages in PPARgamma haplo-insufficient mice (null mice do not reach senior ages due to metabolic adverse affects). As expected, sustained and elevated T-cell production conferred oral tolerance and enhanced vaccination efficiency in senior PPARgamma haplo-insufficient, but not in senior wild-type littermates according to ELISA IgG measurements. Of note, humans also show increased oral intolerance issues and decreased protection by vaccines at senior ages. Moreover, PPARgamma haplo-insufficiency also exists in human known as a rare disease (FPLD3) causing metabolic adverse effects, similar to the mouse. When compared to age- and metabolic disorder-matched other patient samples (FPLD2 not affecting PPARgamma activity), FPLD3 patients showed increased human Trec (hTrec) values by qPCR (within healthy human range) suggesting delayed thymic senescence, in accordance with mouse results and supporting our working hypothesis. In summary, our experiments prove that systemic decrease of PPARgamma activity prevents thymic senescence, albeit with metabolic drawbacks. However, thymic tissue-specific PPARgamma antagonism would likely solve the issue.
Collapse
Affiliation(s)
- David Ernszt
- Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, University of Pecs, Pecs, Hungary.,Szentagothai Research Center, University of Pecs, Pecs, Hungary
| | - Krisztina Banfai
- Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, University of Pecs, Pecs, Hungary.,Szentagothai Research Center, University of Pecs, Pecs, Hungary
| | - Zoltan Kellermayer
- Faculty of Medicine, Department of Immunology and Biotechnology, University of Pecs, Pecs, Hungary
| | - Attila Pap
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Janet M Lord
- College of Medical and Dental Sciences, Institute of Inflammation and Aging, University of Birmingham, Birmingham, United Kingdom
| | - Judit E Pongracz
- Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, University of Pecs, Pecs, Hungary.,Szentagothai Research Center, University of Pecs, Pecs, Hungary
| | - Krisztian Kvell
- Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, University of Pecs, Pecs, Hungary.,Szentagothai Research Center, University of Pecs, Pecs, Hungary
| |
Collapse
|
21
|
Guo D, Ye Y, Qi J, Tan X, Zhang Y, Ma Y, Li Y. Age and sex differences in microRNAs expression during the process of thymus aging. Acta Biochim Biophys Sin (Shanghai) 2017; 49:409-419. [PMID: 28369179 DOI: 10.1093/abbs/gmx029] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Indexed: 12/18/2022] Open
Abstract
The gender-biased thymus involution and the importance of microRNAs (miRNAs, miRs) expression in modulating the thymus development have been reported in many studies. However, how males and females differ in so many ways in thymus involution remains unclear. To address this question, we investigated the miRNA expression profiles in both untreated 3- and 12-month-old female and male mice thymuses. The results showed that 7 and 18 miRNAs were defined as the sex- and age-specific miRNAs, respectively. The expression of miR-181c-5p, miR-20b-5p, miR-98b-5p, miR-329-3p, miR-341-5p, and miR-2137 showed significant age-difference in mice thymus by quantitative polymerase chain reaction. High expression levels of miR-2137 were detected in mice thymic epithelial cells and gradually increased during the process of thymus aging. MiR-27b-3p and miR-378a-3p of the female-biased miRNAs were confirmed as the sex- and estrogen-responsive miRNAs in mice thymus in vivo. Their potential target genes and the pathway were identified by the online software. Possible regulation roles of sex- and age-specific miRNA expression during the process of thymus aging were discussed. Our results suggested that these miRNAs may be potential biomarkers for the study of sex- and age-specific thymus aging and involution.
Collapse
Affiliation(s)
- Dongguang Guo
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yaqiong Ye
- Department of Basic Veterinary Medicine, School of Life Science and Engineering, Foshan University, Foshan 528000, China
| | - Junjie Qi
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiaotong Tan
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yuan Zhang
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yongjiang Ma
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yugu Li
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
22
|
Modular transcriptional repertoire and MicroRNA target analyses characterize genomic dysregulation in the thymus of Down syndrome infants. Oncotarget 2016; 7:7497-533. [PMID: 26848775 PMCID: PMC4884935 DOI: 10.18632/oncotarget.7120] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/23/2016] [Indexed: 12/25/2022] Open
Abstract
Trisomy 21-driven transcriptional alterations in human thymus were characterized through gene coexpression network (GCN) and miRNA-target analyses. We used whole thymic tissue--obtained at heart surgery from Down syndrome (DS) and karyotipically normal subjects (CT)--and a network-based approach for GCN analysis that allows the identification of modular transcriptional repertoires (communities) and the interactions between all the system's constituents through community detection. Changes in the degree of connections observed for hierarchically important hubs/genes in CT and DS networks corresponded to community changes. Distinct communities of highly interconnected genes were topologically identified in these networks. The role of miRNAs in modulating the expression of highly connected genes in CT and DS was revealed through miRNA-target analysis. Trisomy 21 gene dysregulation in thymus may be depicted as the breakdown and altered reorganization of transcriptional modules. Leading networks acting in normal or disease states were identified. CT networks would depict the "canonical" way of thymus functioning. Conversely, DS networks represent a "non-canonical" way, i.e., thymic tissue adaptation under trisomy 21 genomic dysregulation. This adaptation is probably driven by epigenetic mechanisms acting at chromatin level and through the miRNA control of transcriptional programs involving the networks' high-hierarchy genes.
Collapse
|
23
|
Abstract
As the primary site of T-cell development, the thymus plays a key role in the generation of a strong yet self-tolerant adaptive immune response, essential in the face of the potential threat from pathogens or neoplasia. As the importance of the role of the thymus has grown, so too has the understanding that it is extremely sensitive to both acute and chronic injury. The thymus undergoes rapid degeneration following a range of toxic insults, and also involutes as part of the aging process, albeit at a faster rate than many other tissues. The thymus is, however, capable of regenerating, restoring its function to a degree. Potential mechanisms for this endogenous thymic regeneration include keratinocyte growth factor (KGF) signaling, and a more recently described pathway in which innate lymphoid cells produce interleukin-22 (IL-22) in response to loss of double positive thymocytes and upregulation of IL-23 by dendritic cells. Endogenous repair is unable to fully restore the thymus, particularly in the aged population, and this paves the way toward the need for exogenous strategies to help regenerate or even replace thymic function. Therapies currently in clinical trials include KGF, use of the cytokines IL-7 and IL-22, and hormonal modulation including growth hormone administration and sex steroid inhibition. Further novel strategies are emerging in the preclinical setting, including the use of precursor T cells and thymus bioengineering. The use of such strategies offers hope that for many patients, the next regeneration of their thymus is a step closer.
Collapse
Affiliation(s)
- Mohammed S Chaudhry
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Enrico Velardi
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jarrod A Dudakov
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Marcel R M van den Brink
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
24
|
Hisazumi R, Kayumi M, Zhang W, Kikukawa R, Nasu T, Yasuda M. Evaluation of bovine thymic function by measurement of signal joint T-cell receptor excision circles. Vet Immunol Immunopathol 2016; 169:74-8. [PMID: 26827842 DOI: 10.1016/j.vetimm.2015.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/18/2015] [Accepted: 12/25/2015] [Indexed: 11/24/2022]
Abstract
A signal joint T-cell receptor excision circle (sjTREC) is a circular DNA produced by T-cell receptor α gene rearrangement in the thymus. Measurements of sjTREC values have been used to evaluate thymic function. We recently established a quantitative PCR (QPCR) assay of bovine sjTREC. In the present study, we used this QPCR assay to measure the sjTREC value in bovine peripheral blood mononuclear cells and we then evaluated the relationships between sjTREC values and peripheral blood T-cell number, growth stage, gender, and meteorological season. The sjTREC value was highest at the neonatal stage, and its value subsequently decreased with age. On the other hand, the peripheral T-cell number increased with age. The sjTREC value in calves up to 50-days old was significantly higher for males than for females, suggesting that thymic function might differ by gender. In addition, the sjTREC value and the peripheral T-cell number were significantly higher in calves in the summer season than in calves in the winter season. These data suggest that bovine thymic function is highly variable and varies according to the growth stage, gender, and environmental factors such as air temperature or the UV index.
Collapse
Affiliation(s)
- Rinnosuke Hisazumi
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-2192, Japan; Forensic Science Laboratory, Miyazaki Prefecture Police H.Q., Miyazaki 880-8509, Japan
| | - Miya Kayumi
- Department of Veterinary Anatomy, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Weidong Zhang
- Department of Veterinary Anatomy, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | | | - Tetuo Nasu
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-2192, Japan; Department of Veterinary Anatomy, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Masahiro Yasuda
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-2192, Japan; Department of Veterinary Anatomy, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan.
| |
Collapse
|
25
|
WEI TIANLI, ZHANG NANNAN, GUO ZHIBIN, CHI FENG, SONG YAN, ZHU XIKE. Wnt4 signaling is associated with the decrease of proliferation and increase of apoptosis during age-related thymic involution. Mol Med Rep 2015; 12:7568-76. [DOI: 10.3892/mmr.2015.4343] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 09/01/2015] [Indexed: 11/06/2022] Open
|
26
|
Im E, Kim H, Kim J, Lee H, Yang H. Tributyltin acetate-induced immunotoxicity is related to inhibition of T cell development in the mouse thymus. Mol Cell Toxicol 2015. [DOI: 10.1007/s13273-015-0022-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Rezzani R, Nardo L, Favero G, Peroni M, Rodella LF. Thymus and aging: morphological, radiological, and functional overview. AGE (DORDRECHT, NETHERLANDS) 2014; 36:313-51. [PMID: 23877171 PMCID: PMC3889907 DOI: 10.1007/s11357-013-9564-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 07/01/2013] [Indexed: 05/20/2023]
Abstract
Aging is a continuous process that induces many alterations in the cytoarchitecture of different organs and systems both in humans and animals. Moreover, it is associated with increased susceptibility to infectious, autoimmune, and neoplastic processes. The thymus is a primary lymphoid organ responsible for the production of immunocompetent T cells and, with aging, it atrophies and declines in functions. Universality of thymic involution in all species possessing thymus, including human, indicates it as a long-standing evolutionary event. Although it is accepted that many factors contribute to age-associated thymic involution, little is known about the mechanisms involved in the process. The exact time point of the initiation is not well defined. To address the issue, we report the exact age of thymus throughout the review so that readers can have a nicely pictured synoptic view of the process. Focusing our attention on the different stages of the development of the thymus gland (natal, postnatal, adult, and old), we describe chronologically the morphological changes of the gland. We report that the thymic morphology and cell types are evolutionarily preserved in several vertebrate species. This finding is important in understanding the similar problems caused by senescence and other diseases. Another point that we considered very important is to indicate the assessment of the thymus through radiological images to highlight its variability in shape, size, and anatomical conformation.
Collapse
Affiliation(s)
- Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, Viale Europa 11, 25123, Brescia, Italy,
| | | | | | | | | |
Collapse
|
28
|
Griffith AV, Fallahi M, Venables T, Petrie HT. Persistent degenerative changes in thymic organ function revealed by an inducible model of organ regrowth. Aging Cell 2012; 11:169-77. [PMID: 22103718 DOI: 10.1111/j.1474-9726.2011.00773.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The thymus is the most rapidly aging tissue in the body, with progressive atrophy beginning as early as birth and not later than adolescence. Latent regenerative potential exists in the atrophic thymus, because certain stimuli can induce quantitative regrowth, but qualitative function of T lymphocytes produced by the regenerated organ has not been fully assessed. Using a genome-wide computational approach, we show that accelerated thymic aging is primarily a function of stromal cells, and that while overall cellularity of the thymus can be restored, many other aspects of thymic function cannot. Medullary islet complexity and tissue-restricted antigen expression decrease with age, representing potential mechanisms for age-related increases in autoimmune disease, but neither of these is restored by induced regrowth, suggesting that new T cells produced by the regrown thymus will probably include more autoreactive cells. Global analysis of stromal gene expression profiles implicates widespread changes in Wnt signaling as the most significant hallmark of degeneration, changes that once again persist even at peak regrowth. Consistent with the permanent nature of age-related molecular changes in stromal cells, induced thymic regrowth is not durable, with the regrown organ returning to an atrophic state within 2 weeks of reaching peak size. Our findings indicate that while quantitative regrowth of the thymus is achievable, the changes associated with aging persist, including potential negative implications for autoimmunity.
Collapse
Affiliation(s)
- Ann V Griffith
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | | | | |
Collapse
|
29
|
Leposavić G, Pilipović I, Perišić M. Age-associated remodeling of neural and nonneural thymic catecholaminergic network affects thymopoietic productivity. Neuroimmunomodulation 2011; 18:290-308. [PMID: 21952681 DOI: 10.1159/000329499] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Ageing is associated with a progressive decline in thymic cytoarchitecture followed by a less efficient T cell development and decreased emigration of naïve T cells to the periphery. These thymic changes are linked to increased morbidity and mortality from infectious, malignant and autoimmune diseases in old age. Therefore, it is of paramount importance to understand the thymic homeostatic processes across the life span, as well as to identify factors and elucidate mechanisms driving or contributing to the thymic involution. Catecholamines (CAs) derived from sympathetic nerves and produced locally by thymic cells represent an important component of the thymic microenvironment. In young rats, they provide a subtle tonic suppressive influence on T cell development acting via β(2)- and α(1)-adrenoceptors (ARs) expressed on thymic nonlymphoid cells and thymocytes. In the face of thymic involution, a progressive increase in the thymic noradrenaline level, reflecting a rise in the density of noradrenergic nerve fibers and CA-synthesizing cells, occurs. In addition, the density of β(2)- and α(1)-AR-expressing thymic nonlymphoid cells and the α(1)-AR thymocyte surface density also exhibit a pronounced increase with age. The data obtained from studies investigating effects of AR blockade on T cell development indicated that age-related changes in CA-mediated thymic communications, certainly those involving α(1)-ARs, may contribute to diminished thymopoietic efficiency in the elderly. Having in mind thymic plasticity in the course of ageing, and broadening possibilities for pharmacological modulation of CA signaling, we here present and discuss the progress in research related to a role of CAs in thymic homeostasis and age-related decay in the thymic naïve T cell output.
Collapse
Affiliation(s)
- Gordana Leposavić
- Immunology Research Centre 'Branislav Janković', Institute of Virology, Vaccines and Sera 'Torlak', Belgrade, Serbia. Gordana.Leposavic @ pharmacy.bg.ac.rs
| | | | | |
Collapse
|
30
|
Thymic fatness and approaches to enhance thymopoietic fitness in aging. Curr Opin Immunol 2010; 22:521-8. [PMID: 20650623 DOI: 10.1016/j.coi.2010.06.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Revised: 06/18/2010] [Accepted: 06/29/2010] [Indexed: 12/19/2022]
Abstract
With advancing age, the thymus undergoes striking fibrotic and fatty changes that culminate in its transformation into adipose tissue. As the thymus involutes, reduction in thymocytes and thymic epithelial cells precede the emergence of mature lipid-laden adipocytes. Dogma dictates that adipocytes are 'passive' cells that occupy non-epithelial thymic space or 'infiltrate' the non-cellular thymic niches. The provenance and purpose of ectopic thymic adipocytes during aging in an organ that is required for establishment and maintenance of T cell repertoire remains an unsolved puzzle. Nonetheless, tantalizing clues about elaborate reciprocal relationship between thymic fatness and thymopoietic fitness are emerging. Blocking or bypassing the route toward thymic adiposity may complement the approaches to rejuvenate thymopoiesis and immunity in elderly.
Collapse
|
31
|
Youm YH, Yang H, Amin R, Smith SR, Leff T, Dixit VD. Thiazolidinedione treatment and constitutive-PPARgamma activation induces ectopic adipogenesis and promotes age-related thymic involution. Aging Cell 2010; 9:478-89. [PMID: 20374200 PMCID: PMC2910128 DOI: 10.1111/j.1474-9726.2010.00574.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Age-related thymic involution is characterized by reduction in T cell production together with ectopic adipocyte development within the hematopoietic and thymic niches. Peroxisome proliferator-activated receptor gamma (PPARgamma) is required for adipocyte development, glucose homeostasis and is a target for several insulin-sensitizing drugs. Our prior studies showed that age-related elevation of PPARgamma expression in thymic stromal cells is associated with thymic involution. Here, using clinically relevant pharmacological and genetic manipulations in mouse models, we provide evidence that activation of PPARgamma leads to reduction in thymopoiesis. Treatment of aged mice with antihyperglycemic PPARgamma-ligand class of thiazolidinedione drug, rosiglitazone caused robust thymic expression of classical pro-adipogenic transcripts. Rosiglitazone reduced thymic cellularity, lowered the naïve T cell number and T cell receptor excision circles (TRECs) indicative of compromised thymopoiesis. To directly investigate whether PPARgamma activation induces thymic involution, we created transgenic mice with constitutive-active PPARgamma (CA-PPARg) fusion protein in cells of adipogenic lineage. Importantly, CA-PPARgamma transgene was expressed in thymus and in fibroblast-specific protein-1/S100A4 (FSP1(+)) cells, a marker of secondary mesenchymal cells. The CAPPARgamma fusion protein mimicked the liganded PPARgamma receptor and the transgenic mice displayed increased ectopic thymic adipogenesis and reduced thymopoiesis. Furthermore, the reduction in thymopoiesis in CA-PPARgamma mice was associated with higher bone marrow adiposity and lower hematopoietic stem cell progenitor pool. Consistent with lower thymic output, CAPPARgamma transgenic mice had restricted T cell receptor repertoire diversity. Collectively, our data suggest that activation of PPARgamma accelerates thymic aging and thymus-specific PPARgamma antagonist may forestall age-related decline in T cell diversity.
Collapse
Affiliation(s)
- Yun-Hee Youm
- Laboratory of Neuroendocrine-Immunology, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808
| | - Hyunwon Yang
- Laboratory of Neuroendocrine-Immunology, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808
| | - Raj Amin
- Endocrinology Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808
| | - Steven R. Smith
- Endocrinology Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808
| | - Todd Leff
- Department of Pathology, Wayne State University, Detroit, MI 48201
| | - Vishwa Deep Dixit
- Laboratory of Neuroendocrine-Immunology, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808
| |
Collapse
|
32
|
Abstract
As the expanding obese population grows older, their successful immunologic aging will be critical to enhancing the health span. Obesity increases risk of infections and cancer, suggesting adverse effects on immune surveillance. Here, we report that obesity compromises the mechanisms regulating T-cell generation by inducing premature thymic involution. Diet-induced obesity reduced thymocyte counts and significantly increased apoptosis of developing T-cell populations. Obesity accelerated the age-related reduction of T-cell receptor (TCR) excision circle bearing peripheral lymphocytes, an index of recently generated T cells from thymus. Consistent with reduced thymopoiesis, dietary obesity led to reduction in peripheral naive T cells with increased frequency of effector-memory cells. Defects in thymopoiesis in obese mice were related with decrease in the lymphoid-primed multipotent progenitor (Lin-Sca1+Kit+ Flt3+) as well as common lymphoid progenitor (Lin-Sca1+CD117(lo)CD127+) pools. The TCR spectratyping analysis showed that obesity compromised V-beta TCR repertoire diversity. Furthermore, the obesity induced by melanocortin 4 receptor deficiency also constricted the T-cell repertoire diversity, recapitulating the thymic defects observed with diet-induced obesity. In middle-aged humans, progressive adiposity with or without type 2 diabetes also compromised thymic output. Collectively, these findings establish that obesity constricts T-cell diversity by accelerating age-related thymic involution.
Collapse
|
33
|
Yang H, Youm YH, Dixit VD. Inhibition of thymic adipogenesis by caloric restriction is coupled with reduction in age-related thymic involution. THE JOURNAL OF IMMUNOLOGY 2009; 183:3040-52. [PMID: 19648267 DOI: 10.4049/jimmunol.0900562] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Aging of thymus is characterized by reduction in naive T cell output together with progressive replacement of lymphostromal thymic zones with adipocytes. Determining how calorie restriction (CR), a prolongevity metabolic intervention, regulates thymic aging may allow identification of relevant mechanisms to prevent immunosenescence. Using a mouse model of chronic CR, we found that a reduction in age-related thymic adipogenic mechanism is coupled with maintenance of thymic function. The CR increased cellular density in the thymic cortex and medulla and preserved the epithelial signatures. Interestingly, CR prevented the age-related increase in epithelial-mesenchymal transition (EMT) regulators, FoxC2, and fibroblast-specific protein-1 (FSP-1), together with reduction in lipid-laden thymic fibroblasts. Additionally, CR specifically blocked the age-related elevation of thymic proadipogenic master regulator, peroxisome proliferator activated receptor gamma (PPARgamma), and its upstream activator xanthine-oxidoreductase (XOR). Furthermore, we found that specific inhibition of PPARgamma in thymic stromal cells prevented their adipogenic transformation in an XOR-dependent mechanism. Activation of PPARgamma-driven adipogenesis in OP9-DL1 stromal cells compromised their ability to support T cell development. Conversely, CR-induced reduction in EMT and thymic adipogenesis were coupled with elevated thymic output. Compared with 26-mo-old ad libitum fed mice, the T cells derived from age-matched CR animals displayed greater proliferation and higher IL-2 expression. Furthermore, CR prevented the deterioration of the peripheral TCR repertoire diversity in older animals. Collectively, our findings demonstrate that reducing proadipogenic signaling in thymus via CR may promote thymopoiesis during aging.
Collapse
Affiliation(s)
- Hyunwon Yang
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | | | | |
Collapse
|