1
|
Fondelli F, Willemyns J, Domenech-Garcia R, Mansilla MJ, Godoy-Tena G, Ferreté-Bonastre AG, Agúndez-Moreno A, Presas-Rodriguez S, Ramo-Tello C, Ballestar E, Martínez-Cáceres E. Targeting aryl hydrocarbon receptor functionally restores tolerogenic dendritic cells derived from patients with multiple sclerosis. J Clin Invest 2024; 134:e178949. [PMID: 39287981 PMCID: PMC11527446 DOI: 10.1172/jci178949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 09/11/2024] [Indexed: 09/19/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic disease characterized by dysregulated self-reactive immune responses that damage the neurons' myelin sheath, leading to progressive disability. The primary therapeutic option, immunosuppressants, inhibits pathogenic anti-myelin responses but depresses the immune system. Antigen-specific monocyte-derived autologous tolerogenic dendritic cells (tolDCs) offer alternative therapeutic approaches to restore tolerance to autoantigens without causing generalized immunosuppression. However, immune dysregulation in MS could impact the properties of the monocytes used as starting material for this cell therapy. Here, we characterized CD14+ monocytes, mature dendritic cells, and vitamin D3-tolDCs (VitD3-tolDCs) from active, treatment-naive MS patients and healthy donors (HDs). Using multiomics, we identified a switch in these cell types toward proinflammatory features characterized by alterations in the aryl hydrocarbon receptor (AhR) and NF-κB pathways. MS patient-derived VitD3-tolDCs showed reduced tolerogenic properties compared with those from HDs, which were fully restored through direct AhR agonism and by use of in vivo or in vitro dimethyl fumarate (DMF) supplementation. Additionally, in the experimental autoimmune encephalomyelitis mouse model, combined therapy of DMF and VitD3-tolDCs was more efficient than monotherapies in reducing the clinical score of mice. We propose that a combined therapy with DMF and VitD3-tolDCs offers enhanced therapeutic potential in treating MS.
Collapse
MESH Headings
- Humans
- Dendritic Cells/immunology
- Receptors, Aryl Hydrocarbon/immunology
- Receptors, Aryl Hydrocarbon/agonists
- Receptors, Aryl Hydrocarbon/metabolism
- Animals
- Mice
- Female
- Male
- Immune Tolerance
- Multiple Sclerosis/immunology
- Multiple Sclerosis/pathology
- Multiple Sclerosis/therapy
- Multiple Sclerosis/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/therapy
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Adult
- Middle Aged
- Monocytes/immunology
- Monocytes/metabolism
- NF-kappa B/metabolism
- NF-kappa B/immunology
- Cholecalciferol/pharmacology
- Basic Helix-Loop-Helix Transcription Factors/immunology
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Basic Helix-Loop-Helix Transcription Factors/genetics
Collapse
Affiliation(s)
- Federico Fondelli
- Immunology Division, Laboratori Clínic de la Metropolitana Nord, Germans Trias i Pujol University Hospital and Research Institute, Campus Can Ruti, Badalona, Spain
- Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Jana Willemyns
- Immunology Division, Laboratori Clínic de la Metropolitana Nord, Germans Trias i Pujol University Hospital and Research Institute, Campus Can Ruti, Badalona, Spain
- Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Roger Domenech-Garcia
- Immunology Division, Laboratori Clínic de la Metropolitana Nord, Germans Trias i Pujol University Hospital and Research Institute, Campus Can Ruti, Badalona, Spain
- Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Maria José Mansilla
- Immunology Division, Laboratori Clínic de la Metropolitana Nord, Germans Trias i Pujol University Hospital and Research Institute, Campus Can Ruti, Badalona, Spain
| | - Gerard Godoy-Tena
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
| | - Anna G. Ferreté-Bonastre
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
| | - Alex Agúndez-Moreno
- Immunology Division, Laboratori Clínic de la Metropolitana Nord, Germans Trias i Pujol University Hospital and Research Institute, Campus Can Ruti, Badalona, Spain
- Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Silvia Presas-Rodriguez
- Multiple Sclerosis Unit, Department of Neurosciences, Germans Trias i Pujol University Hospital, Badalona, Spain
- Department of Medicine, Campus Bellaterra, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Cristina Ramo-Tello
- Multiple Sclerosis Unit, Department of Neurosciences, Germans Trias i Pujol University Hospital, Badalona, Spain
- Department of Medicine, Campus Bellaterra, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
- Epigenetics in Inflammatory and Metabolic Diseases Laboratory, Health Science Center (HSC), East China Normal University (ECNU), Shanghai, China
| | - Eva Martínez-Cáceres
- Immunology Division, Laboratori Clínic de la Metropolitana Nord, Germans Trias i Pujol University Hospital and Research Institute, Campus Can Ruti, Badalona, Spain
- Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
2
|
Stoian A, Muntean C, Babă DF, Manea A, Dénes L, Simon-Szabó Z, Kosovski IB, Nemes-Nagy E, Gliga FI, Stoian M. Update on Biomarkers of Chronic Inflammatory Processes Underlying Diabetic Neuropathy. Int J Mol Sci 2024; 25:10395. [PMID: 39408723 PMCID: PMC11476795 DOI: 10.3390/ijms251910395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
There is an increasing prevalence of diabetes mellitus (DM), particularly type 2 DM (T2DM), and its associated complications. T2DM is linked to insulin resistance, chronic inflammation, and oxidative stress, which can lead to both macrovascular and microvascular complications, including peripheral diabetic neuropathy (PDN). Inflammatory processes play a key role in the development and progression of T2DM and its complications, with specific markers like C-reactive protein (CRP), interleukins (ILs), and tumor necrosis factor (TNF)-α being associated with increased risk. Other key inflammatory markers such as nuclear factor kappa B (NF-κB) are activated under hyperglycemic and oxidative stress conditions and contribute to the aggravation of PDN by regulating inflammatory gene expression and enhancing endothelial dysfunction. Other important roles in the inflammatory processes are played by Toll-like receptors (TLRs), caveolin 1 (CAV1), and monocyte chemoattractant protein 1 (MCP1). There is a relationship between vitamin D deficiency and PDN, highlighting the critical role of vitamin D in regulating inflammation and immune responses. The involvement of macrophages in PDN is also suspected, emphasizing their role in chronic inflammation and nerve damage in diabetic patients. Vitamin D supplementation has been found to reduce neuropathy severity, decrease inflammatory markers, and improve glycemic control. These findings suggest that addressing vitamin D deficiency could offer therapeutic benefits for PDN. These molecular pathways are critical in understanding the pathogenesis of DM complications and may offer potential biomarkers or therapeutic targets including anti-inflammatory treatments, vitamin D supplementation, macrophage phenotype modulation, and lifestyle modifications, aimed at reducing inflammation and preventing PDN. Ongoing and more extensive clinical trials with the aim of investigating anti-inflammatory agents, TNF-α inhibitors, and antioxidants are needed to advance deeper into the understanding and treatment of painful diabetic neuropathy.
Collapse
Affiliation(s)
- Adina Stoian
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania; (A.S.); (F.I.G.)
| | - Carmen Muntean
- Department of Pediatrics 1, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Dragoș-Florin Babă
- Emergency Institute for Cardiovascular Diseases and Transplantation, 540142 Targu Mures, Romania;
- Department of Cell and Molecular Biology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Andrei Manea
- Department of Radiology, Mureș County Emergency Hospital, 540136 Targu Mures, Romania;
| | - Lóránd Dénes
- Department of Anatomy and Embryology, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Zsuzsánna Simon-Szabó
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania; (A.S.); (F.I.G.)
| | - Irina Bianca Kosovski
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania; (A.S.); (F.I.G.)
| | - Enikő Nemes-Nagy
- Department of Chemistry and Medical Biochemistry, Faculty of Medicine in English, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Florina Ioana Gliga
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania; (A.S.); (F.I.G.)
| | - Mircea Stoian
- Department of Anesthesiology and Intensive Care, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania;
| |
Collapse
|
3
|
Siwan E, Wong J, Brooks BA, Shinko D, Baker CJ, Deshpande N, McLennan SV, Twigg SM, Min D. Deep Immune and RNA Profiling Revealed Distinct Circulating CD163+ Monocytes in Diabetes-Related Complications. Int J Mol Sci 2024; 25:10094. [PMID: 39337580 PMCID: PMC11432403 DOI: 10.3390/ijms251810094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
CD163, a scavenger receptor with anti-inflammatory function expressed exclusively on monocytes/macrophages, is dysregulated in cases of diabetes complications. This study aimed to characterize circulating CD163+ monocytes in the presence (D+Comps) or absence (D-Comps) of diabetes-related complications. RNA-sequencing and mass cytometry were conducted on CD163+ monocytes in adults with long-duration diabetes and D+Comps or D-Comps. Out of 10,868 differentially expressed genes identified between D+Comps and D-Comps, 885 were up-regulated and 190 were down-regulated with a ≥ 1.5-fold change. In D+Comps, 'regulation of centrosome cycle' genes were enriched 6.7-fold compared to the reference genome. MIR27A, MIR3648-1, and MIR23A, the most up-regulated and CD200R1, the most down-regulated gene, were detected in D+Comps from the list of 75 'genes of interest'. CD163+ monocytes in D+Comps had a low proportion of recruitment markers CCR5, CD11b, CD11c, CD31, and immune regulation markers CD39 and CD86. A gene-protein network identified down-regulated TLR4 and CD11b as 'hub-nodes'. In conclusion, this study reports novel insights into CD163+ monocyte dysregulation in diabetes-related complications. Enriched centrosome cycle genes and up-regulated miRNAs linked to apoptosis, coupled with down-regulated monocyte activation, recruitment, and immune regulation, suggest functionally distinct CD163+ monocytes in cases of diabetes complications. Further investigation is needed to confirm their role in diabetes-related tissue damage.
Collapse
Affiliation(s)
- Elisha Siwan
- Greg Brown Diabetes and Endocrine Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkin Centre, The University of Sydney, Sydney, NSW 2006, Australia; (E.S.); (J.W.); (C.J.B.); (S.V.M.); (S.M.T.)
| | - Jencia Wong
- Greg Brown Diabetes and Endocrine Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkin Centre, The University of Sydney, Sydney, NSW 2006, Australia; (E.S.); (J.W.); (C.J.B.); (S.V.M.); (S.M.T.)
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia;
| | - Belinda A. Brooks
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia;
| | - Diana Shinko
- Sydney Cytometry, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Callum J. Baker
- Greg Brown Diabetes and Endocrine Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkin Centre, The University of Sydney, Sydney, NSW 2006, Australia; (E.S.); (J.W.); (C.J.B.); (S.V.M.); (S.M.T.)
| | - Nandan Deshpande
- Sydney Informatics Hub, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Susan V. McLennan
- Greg Brown Diabetes and Endocrine Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkin Centre, The University of Sydney, Sydney, NSW 2006, Australia; (E.S.); (J.W.); (C.J.B.); (S.V.M.); (S.M.T.)
- NSW Health Pathology, Sydney, NSW 2050, Australia
| | - Stephen M. Twigg
- Greg Brown Diabetes and Endocrine Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkin Centre, The University of Sydney, Sydney, NSW 2006, Australia; (E.S.); (J.W.); (C.J.B.); (S.V.M.); (S.M.T.)
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia;
| | - Danqing Min
- Greg Brown Diabetes and Endocrine Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkin Centre, The University of Sydney, Sydney, NSW 2006, Australia; (E.S.); (J.W.); (C.J.B.); (S.V.M.); (S.M.T.)
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia;
| |
Collapse
|
4
|
Hector S, Thulesius HO, Landin-Olsson M, Hillman M, Melin EO. Soluble CD163 and glycated haemoglobin were independently associated with the progression of diabetic retinopathy in adult patients with type 1 diabetes. BMJ Open Ophthalmol 2023; 8:e001314. [PMID: 37493689 PMCID: PMC10351291 DOI: 10.1136/bmjophth-2023-001314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/21/2023] [Indexed: 07/27/2023] Open
Abstract
OBJECTIVE High vitreous levels of soluble (s)CD163 have been demonstrated in severe diabetic retinopathy (DR). The aim of this study was to explore the predictive values of plasma sCD163 and glycated haemoglobin (HbA1c) for DR progression in adults with type 1 diabetes. METHODS AND ANALYSES The study design was prospective. Fundus photography performed in 2009 and at follow-up (≤12 years later) were compared after being categorised according to the International Clinical Diabetic Retinopathy Disease Severity Scale. 'DR progression at least one level' was calculated. In 2009, data collection (sex, age, diabetes duration, metabolic variables, serum creatinine, macroalbuminuria and lifestyle factors) and biochemical analyses were performed. Plasma sCD163 and HbA1c were divided into quartiles. Logistic regression analyses were performed. RESULTS The prevalence of DR in 2009 versus at follow-up in 270 participants (57% male) were: no apparent 28% vs 18%; mild 20% vs 13%; moderate 24% vs 26%; severe 11% vs 13%; and proliferative DR 17% vs 30% (p<0.001). DR progression occurred in 101 (45%) patients. HbA1c ≥54 mmol/mol (≥7.1%) (>1st quartile) (adjusted odds ratio (AOR) 3.8, p<0.001) and sCD163 ≥343 ng/mL (>1st quartile) (AOR 2.6, p=0.004) were independently associated with DR progression. The associations with DR progression increased significantly from the first to the fourth quartile for HbA1c (AORs: 1; 2.5; 3.6; 7.4), but not for sCD163 (AORs: 1; 2.9; 2.4; 2.4). CONCLUSION Plasma sCD163 may constitute a valuable biomarker for DR progression in addition to and independent of the well-established biomarker HbA1c.
Collapse
Affiliation(s)
- Sven Hector
- Research and Development, Region Kronoberg, Växjö, Sweden
- Ophthalmology, Central Hospital Växjö, Växjö, Kronoberg, Sweden
| | - Hans Olav Thulesius
- Department of Medicine and Optometry, Linnaeus University, Kalmar, Sweden
- Division of Family Medicine, Lund University Faculty of Medicine, Malmö, Sweden
| | - Mona Landin-Olsson
- Department of Clinical Sciences, Diabetology and Endocrinology, Lund University Faculty of Medicine, Lund, Sweden
- Diabetes Research Laboratory, Lund University Faculty of Medicine, Lund, Sweden
| | - Magnus Hillman
- Diabetes Research Laboratory, Lund University Faculty of Medicine, Lund, Sweden
| | - Eva Olga Melin
- Department of Clinical Sciences, Diabetology and Endocrinology, Lund University Faculty of Medicine, Lund, Sweden
- Diabetes Research Laboratory, Lund University Faculty of Medicine, Lund, Sweden
| |
Collapse
|
5
|
Siwan E, Parry SN, Williams KH, McGill MJ, Wu T, Wong J, Twigg SM, Min D. Circulating soluble CD163 as a potential biomarker of diabetes complications. J Diabetes Complications 2023; 37:108525. [PMID: 37301062 DOI: 10.1016/j.jdiacomp.2023.108525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
AIMS To investigate whether soluble CD163 (sCD163) is altered in those with diabetes and various subtypes of complications and non-alcoholic fatty liver disease (NAFLD), and whether it can assess disease complications and severity in people with diabetes. METHODS Adults with diabetes (n = 101) were recruited and assessed for the presence of any complications (D+Comps). Liver steatosis presence was determined by ultrasound and liver stiffness measurement (LSM) by transient elastography. Liver pathology other than non-alcoholic steatohepatitis (NASH) was excluded. Plasma sCD163 was measured by ELISA. RESULTS sCD163 was higher in D+Comps (n = 59) compared to D-comps (n = 42) in those with microvascular complications (n = 56; 1.3-fold), including a 1.4-fold increase in chronic kidney disease (CKD) (n = 42). sCD163 correlated positively with HbA1c and urinary albumin-creatinine ratio and negatively with HDL-c in D+Comps. sCD163 was increased 1.7-fold in those with advanced NASH fibrosis (LSM ≥ 10.3 kPa, n = 19) compared to those without (LSM < 10.3 kPa, n = 80). The AUC-ROC-curve was 0.64 for sCD163 to detect CKD and 0.74 to detect advanced NASH fibrosis. CONCLUSIONS In this study, the elevated circulating sCD163 occurred in people with diabetes who had microvascular complications or advanced NASH fibrosis, suggesting sCD163 may have clinical utility as a biomarker in certain diabetes complications and disease severity in NAFLD.
Collapse
Affiliation(s)
- Elisha Siwan
- Greg Brown Diabetes and Endocrine Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkin Centre, The University of Sydney, Sydney, NSW, Australia
| | - Sarah N Parry
- Greg Brown Diabetes and Endocrine Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkin Centre, The University of Sydney, Sydney, NSW, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Kathryn H Williams
- Nepean Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Margaret J McGill
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Ted Wu
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Jencia Wong
- Greg Brown Diabetes and Endocrine Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkin Centre, The University of Sydney, Sydney, NSW, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Stephen M Twigg
- Greg Brown Diabetes and Endocrine Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkin Centre, The University of Sydney, Sydney, NSW, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Danqing Min
- Greg Brown Diabetes and Endocrine Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkin Centre, The University of Sydney, Sydney, NSW, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia.
| |
Collapse
|
6
|
Han Z, Liu Q, Li H, Zhang M, You L, Lin Y, Wang K, Gou Q, Wang Z, Zhou S, Cai Y, Yuan L, Chen H. The role of monocytes in thrombotic diseases: a review. Front Cardiovasc Med 2023; 10:1113827. [PMID: 37332592 PMCID: PMC10272466 DOI: 10.3389/fcvm.2023.1113827] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
Cardiovascular and cerebrovascular diseases are the number one killer threatening people's life and health, among which cardiovascular thrombotic events are the most common. As the cause of particularly serious cardiovascular events, thrombosis can trigger fatal crises such as acute coronary syndrome (myocardial infarction and unstable angina), cerebral infarction and so on. Circulating monocytes are an important part of innate immunity. Their main physiological functions are phagocytosis, removal of injured and senescent cells and their debris, and development into macrophages and dendritic cells. At the same time, they also participate in the pathophysiological processes of pro-coagulation and anticoagulation. According to recent studies, monocytes have been found to play a significant role in thrombosis and thrombotic diseases of the immune system. In this manuscript, we review the relationship between monocyte subsets and cardiovascular thrombotic events and analyze the role of monocytes in arterial thrombosis and their involvement in intravenous thrombolysis. Finally, we summarize the mechanism and therapeutic regimen of monocyte and thrombosis in hypertension, antiphospholipid syndrome, atherosclerosis, rheumatic heart disease, lower extremity deep venous thrombosis, and diabetic nephropathy.
Collapse
Affiliation(s)
- Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiong Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongpeng Li
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meiqi Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Luling You
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Wang
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiaoyin Gou
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhanzhan Wang
- Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
| | - Shuwei Zhou
- Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - YiJin Cai
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lan Yuan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haoran Chen
- Science and Education Department, Chengdu Xinhua Hospital, Chengdu, China
| |
Collapse
|
7
|
Siwan E, Twigg SM, Min D. Alterations of CD163 expression in the complications of diabetes: A systematic review. J Diabetes Complications 2022; 36:108150. [PMID: 35190247 DOI: 10.1016/j.jdiacomp.2022.108150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 11/22/2022]
Abstract
AIMS Diabetes mellitus is a state of chronic low-grade inflammation. Scavenger receptor CD163, expressed on monocyte/macrophage cells with anti-inflammatory functions, has been observed in diabetes complications. This review aimed to systematically survey human studies published until 31st January 2022 for CD163 expression, in particular diabetes complications and additionally to investigate whether CD163 may be implicated as a biomarker of, and mediator in, the progression of diabetes complications. METHODS A systematic literature search undertaken in Scopus, Embase and Medline established 79 papers of relevance. Data extraction and assessment followed the PRISMA workflow. RESULTS Based on specific criteria, 11 studies totalling 821 participants were included in this review. CD163 was quantified in various forms including soluble, cell surface, and mRNA measures. This review found that soluble CD163 was upregulated in diabetes complications in various local body fluids and systemically in plasma or serum and therefore implicated in the progression of those complications. CD163+ cells and mRNA were variably expressed across diabetes complications. CONCLUSIONS CD163 was altered in series of diabetes complications and the circulating sCD163 has potential utility as an inflammation biomarker. The variable expression of CD163 on cell surfaces and its mRNA across different diabetes complications warrants further systematic investigation.
Collapse
Affiliation(s)
- Elisha Siwan
- Greg Brown Diabetes and Endocrinology Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Australia
| | - Stephen M Twigg
- Greg Brown Diabetes and Endocrinology Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Danqing Min
- Greg Brown Diabetes and Endocrinology Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia.
| |
Collapse
|
8
|
Fan X, Zhang X, Liu LC, Kim AY, Curley SP, Chen X, Dworkin LD, Cooper CJ, Gupta R. Interleukin-10 attenuates renal injury after myocardial infarction in diabetes. J Investig Med 2022; 70:1233-1242. [PMID: 35140126 DOI: 10.1136/jim-2021-002008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2022] [Indexed: 01/06/2023]
Abstract
Acute kidney injury (AKI) is a common complication after myocardial infarction (MI) and associated with significant morbidity and mortality. AKI after MI occurs more frequently in patients with diabetes, however, the underlying mechanisms are poorly understood, and specific treatments are lacking. Using the murine MI model, we show that diabetic mice had higher expression of the kidney injury marker, neutrophil gelatinase-associated lipocalin (NGAL), 3 days after MI compared with control mice. This higher expression of NGAL was still significant after controlling for differences in myocardial infarct size between diabetic and control mice. Prior data demonstrate increased cell-free hemoglobin after MI in diabetic mice. Therefore, we investigated heme clearance components, including heme oxygenase 1 (HO-1) and CD163, in the kidneys and found that both HO-1 and CD163 were dysregulated in diabetic mice pre-MI and post-MI. Significantly higher levels of urine iron were also observed in diabetic mice compared with control mice after MI. Next, the renal protective effect of interleukin 10 (IL-10) after MI was tested in diabetic MI. IL-10 treatment demonstrated multiple protective effects after diabetic MI including reduction in acute renal inflammation, upregulation of renal heme clearance pathways, attenuation of chronic renal fibrosis, and reduction in albuminuria after diabetic MI. In vitro, IL-10 potentiated hemoglobin-induced HO-1 expression in mouse bone marrow-derived macrophages and renal proximal tubule (HK-2) cells. Furthermore, IL-10 reduced hemoglobin-induced reactive oxygen species in HK-2 cells and collagen synthesis in mouse embryonic fibroblast cells. We conclude that impaired renal heme clearance pathways in diabetes contribute to AKI after MI, and IL-10 attenuates renal injury after diabetic MI.
Collapse
Affiliation(s)
- Xiaoming Fan
- Department of Medicine, University of Toledo - Health Science Campus, Toledo, Ohio, USA
| | - Xiaolu Zhang
- Department of Medicine, University of Toledo - Health Science Campus, Toledo, Ohio, USA
| | - Lijun C Liu
- Department of Medicine, University of Toledo - Health Science Campus, Toledo, Ohio, USA
| | - Annes Y Kim
- Department of Medicine, University of Toledo - Health Science Campus, Toledo, Ohio, USA
| | - Sean P Curley
- Department of Medicine, University of Toledo - Health Science Campus, Toledo, Ohio, USA
| | - Xiaohuan Chen
- Department of Medicine, University of Toledo - Health Science Campus, Toledo, Ohio, USA
| | - Lance D Dworkin
- Department of Medicine, University of Toledo - Health Science Campus, Toledo, Ohio, USA
| | - Christopher J Cooper
- Department of Medicine, University of Toledo - Health Science Campus, Toledo, Ohio, USA
| | - Rajesh Gupta
- Department of Medicine, University of Toledo - Health Science Campus, Toledo, Ohio, USA
| |
Collapse
|
9
|
Švachová V, Krupičková L, Novotný M, Fialová M, Mezerová K, Čečrdlová E, Lánská V, Slavčev A, Viklický O, Viklický O, Stříž I. Changes in phenotypic patterns of blood monocytes after kidney transplantation and during acute rejection. Physiol Res 2021; 70:709-721. [PMID: 34505523 DOI: 10.33549/physiolres.934700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Peripheral blood monocytes, which serve as precursors for tissue macrophages and dendritic cells (DC), play a key role in the immune response to kidney allograft, reparation processes and homeostasis regulation. In this prospective study, we used multicolor flow cytometry to monitor the phenotypic patterns of peripheral monocytes in subjects with uncomplicated outcomes and those with acute rejection. We found a reciprocal increase in the proportion of "classical monocytes" (CD14+CD16-) along with a decline in pro-inflammatory "intermediary" (CD14+CD16+) and "non-classical" (CD14lowCD16+) monocytes in subjects with normal outcomes. In subjects with acute rejection, we observed no reduction in "intermediary" monocytes and no increase in "classical" monocytes. Patients with uncomplicated outcomes exhibited downregulated HLA-DR in all three monocyte subpopulations. However, non-classical monocytes were unaffected in subjects with acute rejection. Expression of CD47 was downregulated after transplantation, while patients with antibody-mediated rejection and donor-specific antibodies showed higher pre-transplant values. In monocytes isolated at the time of biopsy, CD47 expression was higher in individuals with acute rejection compared to patients with normal outcomes one year post-transplant. Expression of CD209 (DC-SIGN) and the proportion of CD163+CD206+ subpopulations were upregulated during the first week after kidney transplantation. CD209 was also upregulated in samples taken on the day of biopsy confirming acute rejection. Our data demonstrate that kidney allograft transplantation is associated with phenotypic changes in peripheral blood monocytes during acute rejection.
Collapse
Affiliation(s)
- V Švachová
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague 4, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Utomo L, Fahy N, Kops N, van Tiel ST, Waarsing J, Verhaar JAN, Leenen PJM, van Osch GJVM, Bastiaansen‐Jenniskens YM. Macrophage phenotypes and monocyte subsets after destabilization of the medial meniscus in mice. J Orthop Res 2021; 39:2270-2280. [PMID: 33336820 PMCID: PMC8518591 DOI: 10.1002/jor.24958] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/10/2020] [Accepted: 12/14/2020] [Indexed: 02/04/2023]
Abstract
Macrophages play an important role in the development and progression of osteoarthritis (OA). The aim of this study was to identify macrophage phenotypes in synovium and monocyte subsets in peripheral blood in C57BL/6 mice by destabilizing the medial meniscus (DMM), and the association of macrophage subsets with OA features. DMM, sham, and non-operated knees were histologically assessed between 1 and 56 days for macrophage polarization states by immunohistochemistry (IHC), cartilage damage, synovial thickening, and osteophytes (n = 9 per timepoint). Naive knees (n = 6) were used as controls. Monocyte and polarized synovial macrophage subsets were evaluated by flow cytometry. CD64 and CD206 levels on IHC were higher at early timepoints in DMM and sham knees compared to naive knees. iNOS labeling intensity was higher in DMM and sham knees than in naive knees from d3 onwards. CD163 expression was unaltered at all timepoints. Even though macrophage polarization profiles were similar in DMM and sham knees, only in DMM knees the presence of iNOS and CD206 associated with synovial thickness, and CD163 staining inversely correlated with osteophyte presence. At day 14, monocyte subset distribution was different in peripheral blood of DMM mice compared with sham mice. In conclusion, monocyte subsets in blood and synovial macrophage phenotypes vary after joint surgery. High levels of iNOS+ , CD163+ , and CD206+ cells are found in both destabilized and sham-operated knees, and coexistence with joint instability may be a requirement to initiate and exacerbate OA progression.
Collapse
Affiliation(s)
- Lizette Utomo
- Department of Orthopaedics, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands,Present address:
L. Utomo, Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Niamh Fahy
- Department of Orthopaedics, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands,Department of Oral and Maxillofacial Surgery, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Nicole Kops
- Department of Orthopaedics, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Sandra T. van Tiel
- Department of Radiology and Nuclear Medicine, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Jan Waarsing
- Department of Orthopaedics, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Jan A. N. Verhaar
- Department of Orthopaedics, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Pieter J. M. Leenen
- Department of Immunology, Erasmus MCUniversity Medical Center RotterdamThe Netherlands
| | - Gerjo J. V. M. van Osch
- Department of Orthopaedics, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands,Department of Otorhinolaryngology, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | | |
Collapse
|
11
|
Wang T, Ashrafi A, Modareszadeh P, Deese AR, Chacon Castro MDC, Alemi PS, Zhang L. An Analysis of the Multifaceted Roles of Heme in the Pathogenesis of Cancer and Related Diseases. Cancers (Basel) 2021; 13:4142. [PMID: 34439295 PMCID: PMC8393563 DOI: 10.3390/cancers13164142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/08/2021] [Accepted: 08/13/2021] [Indexed: 12/28/2022] Open
Abstract
Heme is an essential prosthetic group in proteins and enzymes involved in oxygen utilization and metabolism. Heme also plays versatile and fascinating roles in regulating fundamental biological processes, ranging from aerobic respiration to drug metabolism. Increasing experimental and epidemiological data have shown that altered heme homeostasis accelerates the development and progression of common diseases, including various cancers, diabetes, vascular diseases, and Alzheimer's disease. The effects of heme on the pathogenesis of these diseases may be mediated via its action on various cellular signaling and regulatory proteins, as well as its function in cellular bioenergetics, specifically, oxidative phosphorylation (OXPHOS). Elevated heme levels in cancer cells intensify OXPHOS, leading to higher ATP generation and fueling tumorigenic functions. In contrast, lowered heme levels in neurons may reduce OXPHOS, leading to defects in bioenergetics and causing neurological deficits. Further, heme has been shown to modulate the activities of diverse cellular proteins influencing disease pathogenesis. These include BTB and CNC homology 1 (BACH1), tumor suppressor P53 protein, progesterone receptor membrane component 1 protein (PGRMC1), cystathionine-β-synthase (CBS), soluble guanylate cyclase (sGC), and nitric oxide synthases (NOS). This review provides an in-depth analysis of heme function in influencing diverse molecular and cellular processes germane to disease pathogenesis and the modes by which heme modulates the activities of cellular proteins involved in the development of cancer and other common diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Li Zhang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA; (T.W.); (A.A.); (P.M.); (A.R.D.); (M.D.C.C.C.); (P.S.A.)
| |
Collapse
|
12
|
Cantero-Navarro E, Rayego-Mateos S, Orejudo M, Tejedor-Santamaria L, Tejera-Muñoz A, Sanz AB, Marquez-Exposito L, Marchant V, Santos-Sanchez L, Egido J, Ortiz A, Bellon T, Rodrigues-Diez RR, Ruiz-Ortega M. Role of Macrophages and Related Cytokines in Kidney Disease. Front Med (Lausanne) 2021; 8:688060. [PMID: 34307414 PMCID: PMC8295566 DOI: 10.3389/fmed.2021.688060] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a key characteristic of kidney disease, but this immune response is two-faced. In the acute phase of kidney injury, there is an activation of the immune cells to fight against the insult, contributing to kidney repair and regeneration. However, in chronic kidney diseases (CKD), immune cells that infiltrate the kidney play a deleterious role, actively participating in disease progression, and contributing to nephron loss and fibrosis. Importantly, CKD is a chronic inflammatory disease. In early CKD stages, patients present sub-clinical inflammation, activation of immune circulating cells and therefore, anti-inflammatory strategies have been proposed as a common therapeutic target for renal diseases. Recent studies have highlighted the plasticity of immune cells and the complexity of their functions. Among immune cells, monocytes/macrophages play an important role in all steps of kidney injury. However, the phenotype characterization between human and mice immune cells showed different markers; therefore the extrapolation of experimental studies in mice could not reflect human renal diseases. Here we will review the current information about the characteristics of different macrophage phenotypes, mainly focused on macrophage-related cytokines, with special attention to the chemokine CCL18, and its murine functional homolog CCL8, and the macrophage marker CD163, and their role in kidney pathology.
Collapse
Affiliation(s)
- Elena Cantero-Navarro
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Sandra Rayego-Mateos
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Macarena Orejudo
- Renal, Vascular and Diabetes Research Laboratory, Fundación IIS -Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Lucía Tejedor-Santamaria
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Tejera-Muñoz
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Belén Sanz
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
- Laboratory of Nephrology and Hypertension, Fundación IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Laura Marquez-Exposito
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Vanessa Marchant
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Santos-Sanchez
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, Fundación IIS -Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Alberto Ortiz
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
- Laboratory of Nephrology and Hypertension, Fundación IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Teresa Bellon
- La Paz Hospital Health Research Institute, Madrid, Spain
| | - Raúl R Rodrigues-Diez
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Ruiz-Ortega
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
13
|
Min D, Nube V, Tao A, Yuan X, Williams PF, Brooks BA, Wong J, Twigg SM, McLennan SV. Monocyte phenotype as a predictive marker for wound healing in diabetes-related foot ulcers. J Diabetes Complications 2021; 35:107889. [PMID: 33642146 DOI: 10.1016/j.jdiacomp.2021.107889] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/05/2021] [Accepted: 02/06/2021] [Indexed: 01/13/2023]
Abstract
AIMS Delayed healing of diabetes-related foot ulcers (DRFUs) is associated with increased macrophage and matrix metalloproteinases (MMPs) at the wound site. Whether circulating monocyte phenotype and/or MMPs are altered in association with wound healing outcome is unknown, and was investigated in this study. METHODS Blood was obtained from 21 participants with DRFU, at initial visit (V1), week-4 (V2), and week-8 (V3) for measurement of monocyte number (CD14+), phenotype (CD16, CD163) and chemokine receptors (CCRs) by flow cytometry, and circulating MMPs and TIMP-1 by ELISA. RESULTS Six wounds healed during the study. At V1, non-classical CD16++ monocytes and MMP-3 were higher in healed vs unhealed (both p < 0.05). At V3, the increased %CD16++ persisted and %CCR2+ was decreased in healed, but no other monocyte markers nor MMP/TIMP differed between groups. Increased wound closure rate (WCR) at V3 correlated with increased %CD16++ monocytes and decreased MMP-2 at V1 or V1 + V2. Receiver operating characteristic (ROC) curves yielded an area-under-the-curve of %CD16++ at V1 of 0.78 to predict ulcer healing at V3. CONCLUSIONS These results indicate that circulating monocyte phenotype and MMPs alter as DRFUs heal. The relationship of %CD16++ monocytes with WCR and ROC curve suggest a predictive role of %CD16++ monocytes for ulcer healing.
Collapse
Affiliation(s)
- Danqing Min
- Diabetes Centre, Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Greg Brown Diabetes and Endocrinology Research Laboratory, Sydney Medical School (Central), Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| | - Vanessa Nube
- Diabetes Centre, Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Greg Brown Diabetes and Endocrinology Research Laboratory, Sydney Medical School (Central), Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Anh Tao
- Greg Brown Diabetes and Endocrinology Research Laboratory, Sydney Medical School (Central), Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Xin Yuan
- Greg Brown Diabetes and Endocrinology Research Laboratory, Sydney Medical School (Central), Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Paul F Williams
- Greg Brown Diabetes and Endocrinology Research Laboratory, Sydney Medical School (Central), Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Belinda A Brooks
- Diabetes Centre, Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Greg Brown Diabetes and Endocrinology Research Laboratory, Sydney Medical School (Central), Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Jencia Wong
- Diabetes Centre, Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Greg Brown Diabetes and Endocrinology Research Laboratory, Sydney Medical School (Central), Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Stephen M Twigg
- Diabetes Centre, Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Greg Brown Diabetes and Endocrinology Research Laboratory, Sydney Medical School (Central), Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Susan V McLennan
- Diabetes Centre, Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Greg Brown Diabetes and Endocrinology Research Laboratory, Sydney Medical School (Central), Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; NSW Health Pathology, Sydney, NSW, Australia
| |
Collapse
|
14
|
Valtierra-Alvarado MA, Castañeda Delgado JE, Ramírez-Talavera SI, Lugo-Villarino G, Dueñas-Arteaga F, Lugo-Sánchez A, Adame-Villalpando MS, Rivas-Santiago B, Enciso-Moreno J, Serrano CJ. Type 2 diabetes mellitus metabolic control correlates with the phenotype of human monocytes and monocyte-derived macrophages. J Diabetes Complications 2020; 34:107708. [PMID: 32843282 DOI: 10.1016/j.jdiacomp.2020.107708] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/31/2020] [Accepted: 08/08/2020] [Indexed: 12/24/2022]
Abstract
AIMS Monocytes and macrophages express cell-surface markers indicative of their inflammatory and activation status. In this study, we investigated whether these markers are affected or correlated in non-obese T2D subjects, or glycemic/metabolic control variables. METHODS Clinical data was recorded, and peripheral blood drawn from T2D patients (n = 28) and control subjects (n = 27). Isolated monocytes were evaluated by flow cytometry for the expression of CD14, CD16, and the phenotypic markers for the different states of activation spectrum, such as pro-inflammatory (M1) (HLA-DR, CD86), anti-inflammatory/pro-resolving (M2) (CD163, CD206, MERTK, PD-L1) and metabolically-activated (MMe) (CD36, ABCA-1). From a subset of individuals, monocytes-derived macrophages (MDM) were obtained and evaluated for phenotypic markers. A correlation analysis was performed between the clinical variables and the marker expression. RESULTS The frequency of CD14++CD16- monocytes was lower in T2D patients and it correlates negatively with poor control in glycemic and metabolic variables. T2D monocytes expressed lower levels of HLA-DR, CD86, PD-L1, and CD163, which correlated negatively with poor metabolic control. In MDM from T2D patients, HLA-DR, CD86 and CD163 expression was lower and it inversely correlated with deficient glycemic or metabolic control parameters. CONCLUSION The glycemic/metabolic control associated with T2D influences monocyte and MDM phenotypes toward an immune-suppressive phenotype.
Collapse
Affiliation(s)
- M A Valtierra-Alvarado
- Unidad de Investigación Biomédica Zacatecas, Instituto Mexicano del Seguro Social, Mexico; Departamento de Inmunología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí (UASLP), Mexico
| | - J E Castañeda Delgado
- Cátedras CONACyT, Consejo Nacional de Ciencia y Tecnología (CONACyT-México), Unidad de Investigación Biomédica Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas, Mexico
| | - S I Ramírez-Talavera
- Unidad de Investigación Biomédica Zacatecas, Instituto Mexicano del Seguro Social, Mexico; Departamento de Inmunología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí (UASLP), Mexico
| | - G Lugo-Villarino
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - F Dueñas-Arteaga
- Universidad Autónoma de Zacatecas, Unidad Académica de Medicina Humana y Ciencias de la Salud, Zacatecas, Mexico
| | - A Lugo-Sánchez
- Unidad de Investigación Biomédica Zacatecas, Instituto Mexicano del Seguro Social, Mexico; Universidad Autónoma de Zacatecas, Unidad Académica de Ciencias Químicas, Zacatecas, Mexico
| | - M S Adame-Villalpando
- Unidad de Investigación Biomédica Zacatecas, Instituto Mexicano del Seguro Social, Mexico; Universidad Autónoma de Zacatecas, Unidad Académica de Ciencias Químicas, Zacatecas, Mexico
| | - B Rivas-Santiago
- Unidad de Investigación Biomédica Zacatecas, Instituto Mexicano del Seguro Social, Mexico
| | - J Enciso-Moreno
- Unidad de Investigación Biomédica Zacatecas, Instituto Mexicano del Seguro Social, Mexico
| | - C J Serrano
- Unidad de Investigación Biomédica Zacatecas, Instituto Mexicano del Seguro Social, Mexico.
| |
Collapse
|
15
|
El Aggan H, Mahmoud S, El Shair H, Elabd H. Increased macrophage activation marker soluble CD163 is associated with graft dysfunction and metabolic derangements in renal transplant recipients. Biomed J 2020; 44:S179-S189. [PMID: 35300946 PMCID: PMC9068521 DOI: 10.1016/j.bj.2020.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 08/28/2020] [Accepted: 09/25/2020] [Indexed: 12/16/2022] Open
Affiliation(s)
- Hayam El Aggan
- Department of Internal Medicine (Nephrology and Transplantation Unit), University of Alexandria, Alexandria, Egypt.
| | - Sabah Mahmoud
- Department of Medical Biochemistry, University of Alexandria, Alexandria, Egypt
| | - Heba El Shair
- Department of Internal Medicine (Nephrology and Transplantation Unit), University of Alexandria, Alexandria, Egypt
| | - Hazem Elabd
- Department of Internal Medicine (Nephrology and Transplantation Unit), University of Alexandria, Alexandria, Egypt
| |
Collapse
|
16
|
Yamashita M, Utsumi Y, Yamauchi K. S100A9/CD163 Expression in Circulating Classical Monocytes in Chronic Obstructive Pulmonary Disease. COPD 2020; 17:587-594. [PMID: 32962431 DOI: 10.1080/15412555.2020.1793925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Although many studies have characterized polarity of macrophages in chronic obstructive pulmonary disease (COPD), limited information is available regarding cellular phenotypes of circulating monocytes in this condition. This study aimed to determine the influence of cigarette smoking and COPD on the cellular phenotype of circulating monocytes. Thirty-two patients with COPD and 36 healthy volunteers (n = 17 and 19 in nonsmokers and smokers with normal lung functions, respectively) were enrolled in this study. The expression of two cell surface markers, pro-inflammatory-related S100A9 and anti-inflammatory-related CD163, on classical monocytes was analyzed by flow cytometry. The percentage of CD14strongCD16- classical monocytes in circulating monocytes showed no difference among the three groups. The percentage of S100A9+, S100A9+CD163-, and S100A9+CD163+ cells in classical monocytes was significantly increased in COPD patients relative to nonsmoker controls. In contrast, the levels of S100A9-CD163+ cells were significantly decreased in smokers with normal lung functions and in COPD patients relative to that in nonsmokers. Multivariate analyses revealed an independent association between S100A9+ cell rates and COPD (exponent 1.0336, 95% confidence interval [CI] 1.0063-1.0617, p value < 0.05). In Receiver operating characteristic (ROC) analyses, the ratio of S100A9+CD163-/S100A9-CD163+ cells yielded a receiver operating characteristic-area under the curve of 0.719 (95% CI = 0.567-0.871) for discrimination between smokers with normal lung functions and COPD patients. In conclusion, our results demonstrated increased pro-inflammatory phenotypes in circulating classical monocytes in COPD, providing novel insights to elucidate their roles in the pathogenesis of COPD.
Collapse
Affiliation(s)
- Masahiro Yamashita
- Department of Pulmonary Medicine, Allergy and Immunological Diseases, Iwate Medical University School of Medicine, Shiwa, Japan
| | - Yu Utsumi
- Department of Pulmonary Medicine, Allergy and Immunological Diseases, Iwate Medical University School of Medicine, Shiwa, Japan
| | - Kohei Yamauchi
- Department of Pulmonary Medicine, Allergy and Immunological Diseases, Iwate Medical University School of Medicine, Shiwa, Japan.,Department of Internal Medicine, Takisawa Chuo Hospital, Takisawa, Japan
| |
Collapse
|
17
|
Gupta R, Liu L, Zhang X, Fan X, Krishnamurthy P, Verma S, Tongers J, Misener S, Ashcherkin N, Sun H, Tian J, Kishore R. IL-10 provides cardioprotection in diabetic myocardial infarction via upregulation of Heme clearance pathways. JCI Insight 2020; 5:133050. [PMID: 32879134 PMCID: PMC7526458 DOI: 10.1172/jci.insight.133050] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 07/29/2020] [Indexed: 01/10/2023] Open
Abstract
Diabetes is a risk factor for myocardial infarction, and outcomes after myocardial infarction are worse among diabetics compared with nondiabetics. Diabetes is associated with impaired Heme clearance. Here, we determined whether heme toxicity and impaired heme clearance contribute to diabetic myocardial infarction injury and assessed IL-10 as a therapeutic agent for diabetic myocardial infarction. Plasma-free hemoglobin was significantly elevated in diabetic mice compared with nondiabetic mice after myocardial infarction. Infarct size had strong correlation to the level of plasma-free hemoglobin. Hemoglobin and reactive iron deposition within the infarct zone were also demonstrated in diabetic MI. IL-10 significantly reduced infarct size and improved cardiac function in diabetic mice. Moreover, IL-10 improved capillary density, reduced apoptosis, and decreased inflammation in the border zone of the infarcted hearts, findings that were partially inhibited by Tin protoporphyrin (a heme oxygenase-1 inhibitor). IL-10 upregulated CD163, the hemoglobin:haptoglobin scavenger receptor, and heme oxygenase-1 in THP-1-derived and primary human CD14+ macrophages. IL-10 significantly protected against ischemic injury when HL-1 cardiomyocytes were cotreated with hemoglobin. Together, our findings indicate that IL-10 is cardioprotective in diabetic myocardial infarction via upregulation of heme clearance pathways. These findings implicate heme clearance as a potentially novel therapeutic direction for diabetic myocardial infarction.
Collapse
Affiliation(s)
- Rajesh Gupta
- Division of Cardiovascular Medicine, Department of Medicine, University of Toledo College of Medicine, Toledo, Ohio, USA
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lijun Liu
- Division of Cardiovascular Medicine, Department of Medicine, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Xiaolu Zhang
- Division of Cardiovascular Medicine, Department of Medicine, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Xiaoming Fan
- Division of Cardiovascular Medicine, Department of Medicine, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Prasanna Krishnamurthy
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Biomedical Engineering and
| | - Suresh Verma
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jörn Tongers
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Mid-German Heart Center, Department of Internal Medicine III, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University, Halle (Saale), Germany
| | - Sol Misener
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nikita Ashcherkin
- Division of Cardiovascular Medicine, Department of Medicine, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Hongliu Sun
- Department of Pathology, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Jiang Tian
- Division of Cardiovascular Medicine, Department of Medicine, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Raj Kishore
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
18
|
Skytthe MK, Graversen JH, Moestrup SK. Targeting of CD163 + Macrophages in Inflammatory and Malignant Diseases. Int J Mol Sci 2020; 21:E5497. [PMID: 32752088 PMCID: PMC7432735 DOI: 10.3390/ijms21155497] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023] Open
Abstract
The macrophage is a key cell in the pro- and anti-inflammatory response including that of the inflammatory microenvironment of malignant tumors. Much current drug development in chronic inflammatory diseases and cancer therefore focuses on the macrophage as a target for immunotherapy. However, this strategy is complicated by the pleiotropic phenotype of the macrophage that is highly responsive to its microenvironment. The plasticity leads to numerous types of macrophages with rather different and, to some extent, opposing functionalities, as evident by the existence of macrophages with either stimulating or down-regulating effect on inflammation and tumor growth. The phenotypes are characterized by different surface markers and the present review describes recent progress in drug-targeting of the surface marker CD163 expressed in a subpopulation of macrophages. CD163 is an abundant endocytic receptor for multiple ligands, quantitatively important being the haptoglobin-hemoglobin complex. The microenvironment of inflammation and tumorigenesis is particular rich in CD163+ macrophages. The use of antibodies for directing anti-inflammatory (e.g., glucocorticoids) or tumoricidal (e.g., doxorubicin) drugs to CD163+ macrophages in animal models of inflammation and cancer has demonstrated a high efficacy of the conjugate drugs. This macrophage-targeting approach has a low toxicity profile that may highly improve the therapeutic window of many current drugs and drug candidates.
Collapse
Affiliation(s)
- Maria K. Skytthe
- Department of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (M.K.S.); (S.K.M.)
| | - Jonas Heilskov Graversen
- Department of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (M.K.S.); (S.K.M.)
| | - Søren K. Moestrup
- Department of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (M.K.S.); (S.K.M.)
- Department of Biomedicine, Aarhus University, 8200 Aarhus, Denmark
| |
Collapse
|
19
|
Ruth D, Mahendra J, Kumar A, Namasivayam A, Mahendra L, Devarajan N. Role of Cluster of Differentiation 163 in Diabetes-Periodontitis Interplay. Cureus 2020; 12:e8523. [PMID: 32656036 PMCID: PMC7346304 DOI: 10.7759/cureus.8523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Background The aim of the present study was to assess and quantify cluster of differentiation 163 (CD163) protein levels and CD163 messenger RNA (mRNA) gene expression in subgingival plaque samples of generalized chronic periodontitis subjects with and without type II diabetes mellitus (DM). Materials and methods Eighty chronic periodontitis subjects were selected and divided into 40 systemically healthy, generalized chronic periodontitis subjects (Group I) and 40 generalized chronic periodontitis subjects diagnosed with type II diabetes mellitus (Group II). Age, body mass index (BMI), income, plaque index (PI), bleeding on probing (BOP), probing pocket depth (PPD), and clinical attachment level (CAL) were recorded. CD163 protein and gene expressions were quantified and compared between the groups. Results The mean age, BMI, income, PI, BOP %, and CD163 protein and gene expression were higher in Group II (p< 0.05) as compared to Group I. In Group I, CD163 protein levels showed a negative correlation with respect to BMI and PI, and this was statistically significant. In Group II, all the periodontal parameters showed a positive correlation with CD163 protein levels. Overall, PI and BOP % were significantly correlated with CD163 protein levels. Both CD163 protein and gene expression showed a negative correlation with each other (p= 0.001). Conclusion The elevated protein levels of CD163 in the subgingival plaque samples of generalized chronic periodontitis individuals with type II diabetes mellitus signify the involvement of CD163 in the pathogenesis of both periodontitis and diabetes mellitus. CD163 can play a challenging role as a diagnostic, as well as a prognostic biomarker, in both these inflammatory diseases.
Collapse
Affiliation(s)
- Daliah Ruth
- Periodontics, Meenakshi Academy of Higher Education and Research, Meenakshi Ammal Dental College and Hospital, Chennai, IND
| | - Jaideep Mahendra
- Periodontics, Meenakshi Ammal Dental College and Hospital, Chennai, IND
| | - Anilkumar Kumar
- Periodontics, Meenakshi Academy of Higher Education and Research, Meenakshi Ammal Dental College and Hospital, Chennai, IND
| | - Ambalavanan Namasivayam
- Periodontics, Meenakshi Academy of Higher Education and Research, Meenakshi Ammal Dental College and Hospital, Chennai, IND
| | - Little Mahendra
- Periodontics, Maktoum Bin Hamdan Dental University College, Dubai, ARE
| | - Nalini Devarajan
- Research, Central Research Laboratory, Meenakshi Academy of Higher Education and Research, Meenakshi Ammal Dental College and Hospital, Chennai, IND
| |
Collapse
|
20
|
The effects of hepatic steatosis on thromboxane A2 induced portal hypertension. GASTROENTEROLOGIA Y HEPATOLOGIA 2019; 42:534-541. [DOI: 10.1016/j.gastrohep.2019.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/19/2019] [Accepted: 03/29/2019] [Indexed: 01/09/2023]
|
21
|
Costantini A, Viola N, Berretta A, Galeazzi R, Matacchione G, Sabbatinelli J, Storci G, De Matteis S, Butini L, Rippo MR, Procopio AD, Caraceni D, Antonicelli R, Olivieri F, Bonafè M. Age-related M1/M2 phenotype changes in circulating monocytes from healthy/unhealthy individuals. Aging (Albany NY) 2019; 10:1268-1280. [PMID: 29885276 PMCID: PMC6046240 DOI: 10.18632/aging.101465] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/30/2018] [Indexed: 01/10/2023]
Abstract
Macrophage polarization is a candidate biomarker of disease-related inflammatory status, but its modulation during aging has not been investigated. To do this, the M1/M2 profile was assessed by CD80/CD163 gating in classical (CD14++CD16-), intermediate (CD14++CD16+), and non-classical (CD14lowCD16+) monocytes from 31 healthy subjects (CTRs) of different ages. Cytofluorimetric analysis showed a significantly different CD80/CD163 distribution in the three subsets, as more than 80% of classical and intermediate monocytes were CD80+CD163+, whereas most non-classical monocytes were CD80-CD163- and CD163+. Non-classical CD163+ monocytes were significantly higher whereas classical CD163+ and CD80-CD163- monocytes significantly lower in older than younger CTRs (cut-off, 65 years), suggesting different age-related trends for M2 subsets. To establish whether an M1/M2 imbalance could be associated with disease, 21 patients with acute myocardial infarction (AMI) were compared with older CTRs. The AMI patients showed a significantly decreased proportion of CD163+CD80+ and an increased proportion of CD163+ and CD163-CD80- cells among classical monocytes, opposite trends to those observed in healthy aging. Moreover, a significantly greater proportion of intermediate and non-classical CD80+ monocytes suggested a shift to a pro-inflammatory phenotype. Overall, CD163/CD80 cytofluorimetric characterization of circulating monocytes provides additional information about their polarization and could be an innovative tool to monitor aging.
Collapse
Affiliation(s)
- Andrea Costantini
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy.,Azienda Ospedaliero Universitaria Ospedali Riuniti, Ancona, Italy
| | - Nadia Viola
- Azienda Ospedaliero Universitaria Ospedali Riuniti, Ancona, Italy
| | | | - Roberta Galeazzi
- Clinical and Molecular Laboratory, I.N.R.C.A. (Italian National Research Centre on Aging)-IRCCS, Ancona, Italy
| | - Giulia Matacchione
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Gianluca Storci
- Department of Experimental, Diagnostic and Specialty Medicine, DIMES, Alma Mater Studiorum, Bologna, Italy
| | - Serena De Matteis
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Luca Butini
- Azienda Ospedaliero Universitaria Ospedali Riuniti, Ancona, Italy
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy.,Center of Clinical Pathology and Innovative Therapy, I.N.R.C.A. (Italian National Research Centre on Aging)-IRCCS, Ancona, Italy
| | - Daniele Caraceni
- Department of Cardiology, I.N.R.C.A. (Italian National Research Centre on Aging)-IRCCS, Ancona, Italy
| | - Roberto Antonicelli
- Department of Cardiology, I.N.R.C.A. (Italian National Research Centre on Aging)-IRCCS, Ancona, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy.,Center of Clinical Pathology and Innovative Therapy, I.N.R.C.A. (Italian National Research Centre on Aging)-IRCCS, Ancona, Italy
| | - Massimiliano Bonafè
- Department of Experimental, Diagnostic and Specialty Medicine, DIMES, Alma Mater Studiorum, Bologna, Italy.,Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| |
Collapse
|
22
|
Alvarado-Vázquez PA, Grosick RL, Moracho-Vilrriales C, Ward E, Threatt T, Romero-Sandoval EA. Cytokine production capabilities of human primary monocyte-derived macrophages from patients with diabetes mellitus type 2 with and without diabetic peripheral neuropathy. J Pain Res 2018; 12:69-81. [PMID: 30588081 PMCID: PMC6305162 DOI: 10.2147/jpr.s186372] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Monocytes from patients with diabetes mellitus type 2 (DM2) are dysfunctional, persistently primed, and prone to a proinflammatory phenotype. This may alter the phenotype of their differentiation to macrophages and result in diabetic peripheral neuropathy (DPN), nerve damage, nerve sensitization, and chronic pain. We have previously demonstrated that CD163 is a molecule that promotes an anti-inflammatory cellular phenotype in human primary macrophages, but this has not been proven in macrophages from patients with DM2 or DPN. Thus, we hypothesize that macrophages from patients with DM2 or DPN display an altered proinflammatory functional phenotype related to cytokine production and that the induction of CD163 expression will promote a more homeostatic phenotype by reducing their proinflammatory responsiveness. PATIENTS AND METHODS We tested these hypotheses in vitro using blood monocyte-derived macrophages from healthy subjects and patients with DM2 with and without DPN. Cells were incubated in the presence or the absence of 5 µg/mL of lipopolysaccharide (LPS). The concentrations of interleukin-10, interleukin-6, tumor necrosis factor-alpha (TNF-α), TGF-β, and monocyte chemoattractant protein-1 (MCP-1) were measured using ELISA assays. Macrophages were transfected with an empty vector plasmid or a plasmid containing the CD163 gene using mannosylated polyethylenimine nanoparticles. RESULTS Our results show that nonstimulated DM2 or DPN macrophages have a constitutive primed proinflammatory state and display a deficient production of proinflammatory cytokines upon a proinflammatory challenge when compared to healthy macrophages. CD163 induction produced an anti-inflammatory phenotype in the healthy control group, and this effect was partial in DM2 or DPN macrophages. CONCLUSION Our results suggest that diabetic macrophages adopt a complex phenotype that is only partially reversed by CD163 induction. Future experiments are focused on elucidating this differential responsiveness between healthy and diabetic macrophages.
Collapse
Affiliation(s)
| | - Rachel L Grosick
- Department of Pharmacy Practice, Presbyterian College School of Pharmacy, Clinton, SC, USA
| | | | - Eileen Ward
- Department of Pharmacy Practice, Presbyterian College School of Pharmacy, Clinton, SC, USA
| | - Tiffaney Threatt
- Department of Pharmacy Practice, Presbyterian College School of Pharmacy, Clinton, SC, USA
| | - Edgar Alfonso Romero-Sandoval
- Department of Anesthesiology, Pain Mechanisms Laboratory, Wake Forest University School of Medicine, Winston-Salem, NC, USA,
| |
Collapse
|
23
|
Hemodialysis-related changes in phenotypical features of monocytes. Sci Rep 2018; 8:13964. [PMID: 30228352 PMCID: PMC6143543 DOI: 10.1038/s41598-018-31889-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/12/2018] [Indexed: 12/26/2022] Open
Abstract
Hemodialysis (HD) patients exhibit chronic inflammation and leukocyte activation. We investigated the surface-marker profile of monocytes by flow cytometry to assess the chronic effect of uremia and the acute effect of dialysis on their phenotypical and functional features in 16 healthy controls (CON) and 15 HD patients before and after a polysulfone-based dialysis session. Median fluorescence intensities were analyzed indicating expression of CD14, CD16, integrins (CD11b, CD18), chemokine receptors (CCR2, CX3CR1), scavenger receptors (CD36, CD163) and Toll-like receptor-2 (TLR2). Before and after dialysis, HD patients harbour 0.9-fold less CD14++CD16- (Mo1), 1.8-fold more CD14++CD16+ (Mo2) and CD14+CD16++ (Mo3) monocytes than CON. HD patients' Mo1 showed elevated expression of CD11b (1.7-fold), CD18 (1.2-fold) and CD36 (2.1-fold), whereas CD163 expression was reduced in Mo1 and Mo2 (0.6-fold) compared to CON. These markers remained unaffected by dialysis. CX3CR1 expression on Mo2 and Mo3 was lower in HD patients before (0.8-fold) and further diminished after dialysis (0.6-fold). Stimulation of monocytes resulted in diminished responses in HD patients compared to CON. In conclusion, a systematic analysis of the expression of particular surface markers on distinct monocyte subsets may help to distinguish between uremia and/or dialysis induced effects and to evaluate the functionality of monocytes and biocompatibility of HD.
Collapse
|
24
|
Monocytes Promote Crescent Formation in Anti-Myeloperoxidase Antibody–Induced Glomerulonephritis. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1908-1915. [DOI: 10.1016/j.ajpath.2017.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 11/20/2022]
|
25
|
Kawarabayashi R, Motoyama K, Nakamura M, Yamazaki Y, Morioka T, Mori K, Fukumoto S, Imanishi Y, Shioi A, Shoji T, Emoto M, Inaba M. The Association between Monocyte Surface CD163 and Insulin Resistance in Patients with Type 2 Diabetes. J Diabetes Res 2017; 2017:6549242. [PMID: 29445750 PMCID: PMC5763167 DOI: 10.1155/2017/6549242] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/22/2017] [Indexed: 11/17/2022] Open
Abstract
AIM To investigate the association between monocyte CD163 and insulin resistance in patients with type 2 diabetes. METHODS One hundred sixty-six patients with type 2 diabetes without inflammatory or chronic kidney disease were recruited. The monocyte CD163 levels were measured by flow cytometry and soluble CD163 (sCD163) by ELISA. Insulin resistance was evaluated by the index of the homeostasis model assessment (HOMA-R). RESULTS The median sCD163 and monocyte CD163 expression levels were 582.9 (472.4-720.0) ng/ml and 6061 (4486-7876) mean fluorescent intensity (MFI), respectively. In a simple regression analysis, monocyte CD163 was inversely correlated with log [HOMA-R] (r = -0.257, p = 0.010), and sCD163 was positively correlated with log [HOMA-R] (r = 0.198, p = 0.042). In multiple regression analyses, monocyte CD163 was an independent contributor to log [HOMA-R] (β = -0.220, p = 0.020) even after adjustment of various clinical factors for HOMA-R (R2 = 0.281, p = 0.001), whereas sCD163 was not. CONCLUSIONS Monocyte surface CD163 expression levels were more significantly associated with insulin resistance than sCD163 in patients with type 2 diabetes, suggesting a novel pathophysiological role of CD163.
Collapse
MESH Headings
- Aged
- Antigens, CD/blood
- Antigens, CD/chemistry
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/blood
- Antigens, Differentiation, Myelomonocytic/chemistry
- Antigens, Differentiation, Myelomonocytic/metabolism
- Biomarkers/blood
- Biomarkers/metabolism
- Cross-Sectional Studies
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/immunology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/therapy
- Diet, Diabetic
- Drug Therapy, Combination
- Enzyme-Linked Immunosorbent Assay
- Female
- Flow Cytometry
- Humans
- Hypoglycemic Agents/therapeutic use
- Insulin Resistance
- Japan
- Male
- Middle Aged
- Monocytes/drug effects
- Monocytes/immunology
- Monocytes/metabolism
- Receptors, Cell Surface/blood
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/metabolism
- Regression Analysis
- Reproducibility of Results
- Solubility
Collapse
Affiliation(s)
- Reina Kawarabayashi
- Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Koka Motoyama
- Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Miyuki Nakamura
- Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yuko Yamazaki
- Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tomoaki Morioka
- Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Katsuhito Mori
- Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shinya Fukumoto
- Department of Premier Preventive Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yasuo Imanishi
- Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Atsushi Shioi
- Department of Vascular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tetsuo Shoji
- Department of Vascular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masanori Emoto
- Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masaaki Inaba
- Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|