1
|
Pöpperl P, Stoff M, Beineke A. Alveolar Macrophages in Viral Respiratory Infections: Sentinels and Saboteurs of Lung Defense. Int J Mol Sci 2025; 26:407. [PMID: 39796262 PMCID: PMC11721917 DOI: 10.3390/ijms26010407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Respiratory viral infections continue to cause pandemic and epidemic outbreaks in humans and animals. Under steady-state conditions, alveolar macrophages (AlvMϕ) fulfill a multitude of tasks in order to maintain tissue homeostasis. Due to their anatomic localization within the deep lung, AlvMϕ are prone to detect and react to inhaled viruses and thus play a role in the early pathogenesis of several respiratory viral infections. Here, detection of viral pathogens causes diverse antiviral and proinflammatory reactions. This fact not only makes them promising research targets, but also suggests them as potential targets for therapeutic and prophylactic approaches. This review aims to give a comprehensive overview of the current knowledge about the role of AlvMϕ in respiratory viral infections of humans and animals.
Collapse
Affiliation(s)
- Pauline Pöpperl
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| | - Melanie Stoff
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| |
Collapse
|
2
|
Habtemariam S. Anti-Inflammatory Therapeutic Mechanisms of Isothiocyanates: Insights from Sulforaphane. Biomedicines 2024; 12:1169. [PMID: 38927376 PMCID: PMC11200786 DOI: 10.3390/biomedicines12061169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Isothiocyanates (ITCs) belong to a group of natural products that possess a highly reactive electrophilic -N=C=S functional group. They are stored in plants as precursor molecules, glucosinolates, which are processed by the tyrosinase enzyme upon plant tissue damage to release ITCs, along with other products. Isolated from broccoli, sulforaphane is by far the most studied antioxidant ITC, acting primarily through the induction of a transcription factor, the nuclear factor erythroid 2-related factor 2 (Nrf2), which upregulates downstream antioxidant genes/proteins. Paradoxically, sulforaphane, as a pro-oxidant compound, can also increase the levels of reactive oxygen species, a mechanism which is attributed to its anticancer effect. Beyond highlighting the common pro-oxidant and antioxidant effects of sulforaphane, the present paper was designed to assess the diverse anti-inflammatory mechanisms reported to date using a variety of in vitro and in vivo experimental models. Sulforaphane downregulates the expression of pro-inflammatory cytokines, chemokines, adhesion molecules, cycloxyhenase-2, and inducible nitric oxide synthase. The signalling pathways of nuclear factor κB, activator protein 1, sirtuins 1, silent information regulator sirtuin 1 and 3, and microRNAs are among those affected by sulforaphane. These anti-inflammatory actions are sometimes due to direct action via interaction with the sulfhydryl structural moiety of cysteine residues in enzymes/proteins. The following are among the topics discussed in this paper: paradoxical signalling pathways such as the immunosuppressant or immunostimulant mechanisms; crosstalk between the oxidative and inflammatory pathways; and effects dependent on health and disease states.
Collapse
Affiliation(s)
- Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UK, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK
| |
Collapse
|
3
|
Rosario-Rodríguez LJ, Cantres-Rosario YM, Carrasquillo-Carrión K, Rodríguez-De Jesús AE, Cartagena-Isern LJ, García-Requena LA, Roche-Lima A, Meléndez LM. Quantitative Proteomics Reveal That CB2R Agonist JWH-133 Downregulates NF-κB Activation, Oxidative Stress, and Lysosomal Exocytosis from HIV-Infected Macrophages. Int J Mol Sci 2024; 25:3246. [PMID: 38542221 PMCID: PMC10970132 DOI: 10.3390/ijms25063246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/13/2024] Open
Abstract
HIV-associated neurocognitive disorders (HAND) affect 15-55% of HIV-positive patients and effective therapies are unavailable. HIV-infected monocyte-derived macrophages (MDM) invade the brain of these individuals, promoting neurotoxicity. We demonstrated an increased expression of cathepsin B (CATB), a lysosomal protease, in monocytes and post-mortem brain tissues of women with HAND. Increased CATB release from HIV-infected MDM leads to neurotoxicity, and their secretion is associated with NF-κB activation, oxidative stress, and lysosomal exocytosis. Cannabinoid receptor 2 (CB2R) agonist, JWH-133, decreases HIV-1 replication, CATB secretion, and neurotoxicity from HIV-infected MDM, but the mechanisms are not entirely understood. We hypothesized that HIV-1 infection upregulates the expression of proteins associated with oxidative stress and that a CB2R agonist could reverse these effects. MDM were isolated from healthy women donors (n = 3), infected with HIV-1ADA, and treated with JWH-133. After 13 days post-infection, cell lysates were labeled by Tandem Mass Tag (TMT) and analyzed by LC/MS/MS quantitative proteomics bioinformatics. While HIV-1 infection upregulated CATB, NF-κB signaling, Nrf2-mediated oxidative stress response, and lysosomal exocytosis, JWH-133 treatment downregulated the expression of the proteins involved in these pathways. Our results suggest that JWH-133 is a potential alternative therapy against HIV-induced neurotoxicity and warrant in vivo studies to test its potential against HAND.
Collapse
Affiliation(s)
- Lester J. Rosario-Rodríguez
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan 00935, Puerto Rico;
| | - Yadira M. Cantres-Rosario
- Translational Proteomics Center, Center for Collaborative Research in Health Disparities, University of Puerto Rico-Medical Sciences Campus, San Juan 00935, Puerto Rico; (Y.M.C.-R.); (A.E.R.-D.J.)
| | - Kelvin Carrasquillo-Carrión
- Integrated Informatics Core, Center for Collaborative Research in Health Disparities, University of Puerto Rico-Medical Sciences Campus, San Juan 00935, Puerto Rico; (K.C.-C.); (A.R.-L.)
| | - Ana E. Rodríguez-De Jesús
- Translational Proteomics Center, Center for Collaborative Research in Health Disparities, University of Puerto Rico-Medical Sciences Campus, San Juan 00935, Puerto Rico; (Y.M.C.-R.); (A.E.R.-D.J.)
| | - Luz J. Cartagena-Isern
- Department of Biology, University of Puerto Rico-Río Piedras Campus, San Juan 00925, Puerto Rico; (L.J.C.-I.); (L.A.G.-R.)
| | - Luis A. García-Requena
- Department of Biology, University of Puerto Rico-Río Piedras Campus, San Juan 00925, Puerto Rico; (L.J.C.-I.); (L.A.G.-R.)
| | - Abiel Roche-Lima
- Integrated Informatics Core, Center for Collaborative Research in Health Disparities, University of Puerto Rico-Medical Sciences Campus, San Juan 00935, Puerto Rico; (K.C.-C.); (A.R.-L.)
| | - Loyda M. Meléndez
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan 00935, Puerto Rico;
- Translational Proteomics Center, Center for Collaborative Research in Health Disparities, University of Puerto Rico-Medical Sciences Campus, San Juan 00935, Puerto Rico; (Y.M.C.-R.); (A.E.R.-D.J.)
| |
Collapse
|
4
|
Daskou M, Fotooh Abadi L, Gain C, Wong M, Sharma E, Kombe Kombe AJ, Nanduri R, Kelesidis T. The Role of the NRF2 Pathway in the Pathogenesis of Viral Respiratory Infections. Pathogens 2023; 13:39. [PMID: 38251346 PMCID: PMC10819673 DOI: 10.3390/pathogens13010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
In humans, acute and chronic respiratory infections caused by viruses are associated with considerable morbidity and mortality. Respiratory viruses infect airway epithelial cells and induce oxidative stress, yet the exact pathogenesis remains unclear. Oxidative stress activates the transcription factor NRF2, which plays a key role in alleviating redox-induced cellular injury. The transcriptional activation of NRF2 has been reported to affect both viral replication and associated inflammation pathways. There is complex bidirectional crosstalk between virus replication and the NRF2 pathway because virus replication directly or indirectly regulates NRF2 expression, and NRF2 activation can reversely hamper viral replication and viral spread across cells and tissues. In this review, we discuss the complex role of the NRF2 pathway in the regulation of the pathogenesis of the main respiratory viruses, including coronaviruses, influenza viruses, respiratory syncytial virus (RSV), and rhinoviruses. We also summarize the scientific evidence regarding the effects of the known NRF2 agonists that can be utilized to alter the NRF2 pathway.
Collapse
Affiliation(s)
- Maria Daskou
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Leila Fotooh Abadi
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.F.A.); (R.N.)
| | - Chandrima Gain
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Wong
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Eashan Sharma
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Arnaud John Kombe Kombe
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.F.A.); (R.N.)
| | - Ravikanth Nanduri
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.F.A.); (R.N.)
| | - Theodoros Kelesidis
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.F.A.); (R.N.)
| |
Collapse
|
5
|
Ramesh PS, Bovilla VR, Swamy VH, Manoli NN, Dasegowda KB, Siddegowda SM, Chandrashekarappa S, Somasundara VM, Kabekkodu SP, Rajesh R, Devegowda D, Thimmulappa RK. Human papillomavirus-driven repression of NRF2 signalling confers chemo-radio sensitivity and predicts prognosis in head and neck squamous cell carcinoma. Free Radic Biol Med 2023; 205:234-243. [PMID: 37328018 DOI: 10.1016/j.freeradbiomed.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/17/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
PURPOSE To investigate the role of NRF2 signalling in conferring superior prognosis in patients with HPV positive (HPV+ve) head & neck squamous cell carcinomas (HNSCC) compared to HPV negative (HPV-ve) HNSCC and develop molecular markers for selection of HPV+ve HNSCC patients for treatment de-escalation trials. METHODS NRF2 activity (NRF2, KEAP1, and NRF2-transcriptional targets), p16, and p53 levels between HPV+ve HNSCC and HPV-ve HNSCC in prospective and retrospective tumor samples as well as from TCGA database were compared. Cancer cells were transfected with HPV-E6/E7 plasmid to elucidate if HPV infection represses NRF2 activity and sensitizes to chemo-radiotherapy. RESULTS Prospective analysis revealed a marked reduction in expression of NRF2, and its downstream genes in HPV+ve tumors compared to HPV-ve tumors. A retrospective analysis by IHC revealed significantly lower NQO1 in p16high tumors compared to p16low tumors and the NQO1 expression correlated negatively with p16 and positively with p53. Analysis of the TCGA database confirmed low constitutive NRF2 activity in HPV+ve HNSCC compared to HPV-ve HNSCC and revealed that HPV+ve HNSCC patients with 'low NQO1' expression showed better overall survival compared to HPV+ve HNSCC patients with 'high NQO1' expression. Ectopic expression of HPV-E6/E7 plasmid in various cancer cells repressed constitutive NRF2 activity, reduced total GSH, increased ROS levels, and sensitized the cancer cells to cisplatin and ionizing radiation. CONCLUSION Low constitutive NRF2 activity contributes to better prognosis of HPV+ve HNSCC patients. Co-expression of p16high, NQO1low, and p53low could serve as a predictive biomarker for the selection of HPV + ve HNSCC patients for de-escalation trials.
Collapse
Affiliation(s)
- Pushkal S Ramesh
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru, India.
| | - Venugopal R Bovilla
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru, India.
| | - Vikas H Swamy
- School of Life Sciences, JSS Academy of Higher Education & Research, Mysuru, India.
| | - Nandini N Manoli
- Department of Pathology, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru, India.
| | | | | | - Shilpa Chandrashekarappa
- Department of Otorhinolaryngology, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru, India.
| | | | - Shama P Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India.
| | - R Rajesh
- Department of Radiotherapy, Narayana Multispeciality Hospital, Mysuru, India.
| | - Devanand Devegowda
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru, India.
| | - Rajesh K Thimmulappa
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru, India.
| |
Collapse
|
6
|
Konstantinidis I, Crothers K, Kunisaki KM, Drummond MB, Benfield T, Zar HJ, Huang L, Morris A. HIV-associated lung disease. Nat Rev Dis Primers 2023; 9:39. [PMID: 37500684 PMCID: PMC11146142 DOI: 10.1038/s41572-023-00450-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 07/29/2023]
Abstract
Lung disease encompasses acute, infectious processes and chronic, non-infectious processes such as chronic obstructive pulmonary disease, asthma and lung cancer. People living with HIV are at increased risk of both acute and chronic lung diseases. Although the use of effective antiretroviral therapy has diminished the burden of infectious lung disease, people living with HIV experience growing morbidity and mortality from chronic lung diseases. A key risk factor for HIV-associated lung disease is cigarette smoking, which is more prevalent in people living with HIV than in uninfected people. Other risk factors include older age, history of bacterial pneumonia, Pneumocystis pneumonia, pulmonary tuberculosis and immunosuppression. Mechanistic investigations support roles for aberrant innate and adaptive immunity, local and systemic inflammation, oxidative stress, altered lung and gut microbiota, and environmental exposures such as biomass fuel burning in the development of HIV-associated lung disease. Assessment, prevention and treatment strategies are largely extrapolated from data from HIV-uninfected people. Smoking cessation is essential. Data on the long-term consequences of HIV-associated lung disease are limited. Efforts to continue quantifying the effects of HIV infection on the lung, especially in low-income and middle-income countries, are essential to advance our knowledge and optimize respiratory care in people living with HIV.
Collapse
Affiliation(s)
- Ioannis Konstantinidis
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kristina Crothers
- Veterans Affairs Puget Sound Healthcare System and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ken M Kunisaki
- Section of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA
| | - M Bradley Drummond
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thomas Benfield
- Department of Infectious Diseases, Copenhagen University Hospital, Amager and Hvidovre, Hvidovre, Denmark
| | - Heather J Zar
- Department of Paediatrics & Child Health, Red Cross War Memorial Children's Hospital, Cape Town, South Africa
- SA-MRC Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Laurence Huang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Alison Morris
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Al-Harbi NO, Imam F, Al-Harbi MM, Qamar W, Aljerian K, Khalid Anwer M, Alharbi M, Almudimeegh S, Alhamed AS, Alshamrani AA. Effect of Apremilast on LPS-induced immunomodulation and inflammation via activation of Nrf2/HO-1 pathways in rat lungs. Saudi Pharm J 2023; 31:1327-1338. [PMID: 37323920 PMCID: PMC10267521 DOI: 10.1016/j.jsps.2023.05.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023] Open
Abstract
Lipopolysaccharides (LPS), the lipid component of gram-negative bacterial cell wall, is recognized as the key factor in acute lung inflammation and is found to exhibit severe immunologic reactions. Phosphodiesterase-4 (PDE-4) inhibitor: "apremilast (AP)" is an immune suppressant and anti-inflammatory drug which introduced to treat psoriatic arthritis. The contemporary experiment designed to study the protective influences of AP against LPS induced lung injury in rodents. Twenty-four (24) male experimental Wistar rats selected, acclimatized, and administered with normal saline, LPS, or AP + LPS respectively from 1 to 4 groups. The lung tissues were evaluated for biochemical parameters (MPO), Enzyme Linked Immunosorbent Assay (ELISA), flowcytometry assay, gene expressions, proteins expression and histopathological examination. AP ameliorates the lung injuries by attenuating immunomodulation and inflammation. LPS exposure upregulated IL-6, TNF-α, and MPO while downregulating IL-4 which were restored in AP pretreated rats. The changes in immunomodulation markers by LPS were reduced by AP treatment. Furthermore, results from the qPCR analysis represented an upregulation in IL-1β, MPO, TNF-α, and p38 whereas downregulated in IL-10 and p53 gene expressions in disease control animals while AP pretreated rats exhibited significant reversal in these expressions. Western blot analysis suggested an upregulation of MCP-1, and NOS-2, whereas HO-1, and Nrf-2 expression were suppressed in LPS exposed animals, while pretreatment with AP showed down regulation in the expression MCP-1, NOS-2, and upregulation of HO-1, and Nrf-2 expression of the mentioned intracellular proteins. Histological studies further affirmed the toxic influences of LPS on the pulmonary tissues. It is concluded that, LPS exposure causes pulmonary toxicities via up regulation of oxidative stress, inflammatory cytokines and stimulation of IL-1β, MPO, TNF-α, p38, MCP-1, and NOS-2 while downregulation of IL-4, IL-10, p53, HO-1, and Nrf-2 at different expression level. Pretreatment with AP controlled the toxic influences of LPS by modulating these signaling pathways.
Collapse
Affiliation(s)
- Naif O. Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Faisal Imam
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammad Matar Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Wajhul Qamar
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Khaldoon Aljerian
- Department of Pathology, College of Medicine, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohammed Alharbi
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Sultan Almudimeegh
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdullah S. Alhamed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ali A Alshamrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
8
|
Staitieh BS, Malik S, Auld SC, Wigger GW, Fan X, Roth AT, Chatterjee T, Arora I, Raju SV, Heath S, Aggrawal S. HIV Increases the Risk of Cigarette Smoke-Induced Emphysema Through MMP-9. J Acquir Immune Defic Syndr 2023; 92:263-270. [PMID: 36331810 PMCID: PMC9911107 DOI: 10.1097/qai.0000000000003125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND HIV is associated with an increased risk for emphysema. Matrix metalloproteinase 9 (MMP-9) is a lung tissue remodeling enzyme associated with emphysema. We previously found MMP-9 activity increases with increases in oxidative stress and that HIV increases alveolar oxidative stress. We hypothesized that HIV proteins would increase the risk of cigarette smoke-induced emphysema due to MMP-9. METHODS HIV-1 transgenic rats and wild-type littermates were exposed to cigarette smoke or sham for 8 weeks. Lung compliance and histology were assessed. Bronchoalveolar lavage (BAL), primary alveolar macrophages (AM), and serum samples were obtained. A rat alveolar macrophage cell line was exposed to the HIV protein Tat, and MMP-9 levels were assessed by Western immunoblotting. MMP-9 protein expression and activity were assessed in AM from the HIV rat model by ELISA and cytoimmunofluoresence, respectively. Serum from human subjects with and without HIV and tobacco dependence was assessed for MMP-9 levels. RESULTS MMP-9 expression was significantly increased in rat alveolar macrophages after Tat exposure. HIV-1 transgenic rats developed emphysema while wild-type littermates did not. MMP-9 expression was also increased in the serum, BAL, and AM of HIV-1 transgenic rats after exposure to cigarette smoke compared with wild-type rats. In parallel, serum samples from HIV+ smokers had higher levels of MMP-9 than subjects without HIV and those who did not smoke. CONCLUSION The combination of HIV and cigarette smoke increases MMP-9 expression in experimental rat HIV models and human subjects. HIV and cigarette smoke both induce alveolar oxidative stress and thereby increase MMP-9 activity.
Collapse
Affiliation(s)
- Bashar S. Staitieh
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University School of Medicine, Atlanta, GA
| | - Simran Malik
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Sara C. Auld
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University School of Medicine, Atlanta, GA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Gregory W. Wigger
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University School of Medicine, Atlanta, GA
| | - Xian Fan
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University School of Medicine, Atlanta, GA
| | - Andrew T. Roth
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Tanima Chatterjee
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Itika Arora
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - S. Vamsee Raju
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL; and
| | - Sonya Heath
- Department of Medicine, Division of Infectious Disease, University of Alabama at Birmingham, Birmingham, AL
| | - Saurabh Aggrawal
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
9
|
Methamphetamine and HIV-1 Tat proteins synergistically induce microglial autophagy via activation of the Nrf2/NQO1/HO-1 signal pathway. Neuropharmacology 2022; 220:109256. [PMID: 36162528 DOI: 10.1016/j.neuropharm.2022.109256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/05/2022] [Accepted: 09/11/2022] [Indexed: 11/22/2022]
Abstract
Methamphetamine (METH) is a psychostimulant that is abused throughout the world. METH is a highly addictive drug commonly used by persons living with HIV, and its use can result in cognitive impairment and memory deficits. METH and human immunodeficiency virus-1 transactivator of transcription (HIV-1Tat) have toxic and synergistic effects on the nervous system; however, the mechanism of their synergistic effects has not been clarified. We used BV2 cells, primary microglia, Nrf2-KO C57BL/6J mice, and autopsied brain tissues of METH-abusing, HIV infection, and METH-abusing individuals comorbid with HIV to explore the regulatory role of Nrf2/NQO1/HO-1 signal pathway on microglia autophagy. Our results showed that microglia were significantly activated by METH and HIV-1Tat protein. METH and HIV-1Tat protein combination significantly increase the autophagy-related proteins (LC3-II, Beclin-1, ATG5, and ATG7) expression in microglia and striatum of C57BL/6J mice. After silencing or knocking out the Nrf2 gene, the expression levels of autophagy-related proteins were significantly increased. In human brain tissue, microglia were activated, Nrf2, LC3-II, and Beclin-1 expression levels were raised, and the p62 expression level was decreased. Our results suggested that METH and HIV or HIV-1Tat synergistically affect autophagy. And the Nrf2 pathway plays a vital role in regulating the synergistic induction of microglial autophagy by METH and HIV-1Tat protein. This study may provide a theoretical basis and new ideas for effective targets for pharmacological intervention in HIV-infected patients with drug abuse.
Collapse
|
10
|
Chen Y, Lai L, Mo Z, Li X, Su X, Li Y, Leng E, Zhang Y, Li W. Mulberry Leaf Extract Alleviates Staphylococcus aureus-Induced Conjunctivitis in Rabbits via Downregulation of NLRP3 Inflammasome and Upregulation of the Nrf2 System and Suppression of Pro-Inflammatory Cytokines. Pharmacology 2022; 107:250-262. [PMID: 35417907 DOI: 10.1159/000523786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/18/2022] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Mulberry (Morus alba L.) leaves are widely used in traditional Chinese medicine for their antioxidant, anti-inflammatory, antibacterial, anti-obesity, antidiabetic, antiatherosclerotic, and anticancer properties. The current study aimed to investigate the effect of mulberry leaf extract (MLE) on Staphylococcus aureus (S. aureus)-induced conjunctivitis (5 × 109 colony-forming units, 0.5 mL/eye) in a rabbit model. METHODS Rabbits were treated with MLE (5 mL/kg·d-1 and 10 mL/kg·d-1), 0.9% saline, pearl bright eye (PBE) drops, or erythromycin eye ointment (EEO) group for 5 days. The ocular infection symptoms, bacterial negative conversion rate, and conjunctival histopathological changes of rabbits in each group were observed. The expression of caspase-1, apoptosis-associated speck-like protein containing a caspase recruitment domain, NOD-like receptor leucine-rich pyrin domain-containing protein 3 (NLRP3), interleukin (IL)-18, IL-6, IL-1β, TNFα, Keap1, and nuclear factor erythroid 2-related factor 2 (Nrf2) in conjunctival tissue of rabbits were detected by quantitative real-time reverse transcription PCR and/or Western blot analysis. RESULTS The results showed that MLE treatment significantly reduced the clinical sign scores of conjunctivitis, alleviated clinical signs, and decreased bacterial load, and histological damage in a time- and dose-dependent manner was compared to that in the control group. The antibacterial and anti-inflammatory activities of MLE (10 mL/kg·d-1) were similar to those of the positive control drug PBE and EEO. In addition, MLE significantly decreased the levels of pro-inflammatory cytokines, downregulated the NLRP3 inflammasome, and upregulated the Nrf2 system. CONCLUSIONS MLE is effective in alleviating S. aureus-induced conjunctivitis in rabbits, and this mechanism is associated with the inhibition of the NLRP3 inflammasome and activation of the Nrf2 system to regulate pro-inflammatory signaling.
Collapse
Affiliation(s)
- Ying Chen
- Zhuhai Campus, Zunyi Medical University, Zhuhai, China,
| | - Linglin Lai
- Zhuhai Campus, Zunyi Medical University, Zhuhai, China.,Department of Drug Clinical Trials, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Zhentao Mo
- Zhuhai Campus, Zunyi Medical University, Zhuhai, China
| | - Xu Li
- Zhuhai Campus, Zunyi Medical University, Zhuhai, China
| | - Xiaotong Su
- Zhuhai Campus, Zunyi Medical University, Zhuhai, China
| | - Yiqi Li
- Zhuhai Campus, Zunyi Medical University, Zhuhai, China
| | - Ennian Leng
- Zhuhai Campus, Zunyi Medical University, Zhuhai, China
| | - Yueyue Zhang
- Zhuhai Campus, Zunyi Medical University, Zhuhai, China
| | - Wenna Li
- Zhuhai Campus, Zunyi Medical University, Zhuhai, China.,Key Laboratory of Basic Pharmacology of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
11
|
Tuli HS, Sak K, Gupta DS, Kaur G, Aggarwal D, Chaturvedi Parashar N, Choudhary R, Yerer MB, Kaur J, Kumar M, Garg VK, Sethi G. Anti-Inflammatory and Anticancer Properties of Birch Bark-Derived Betulin: Recent Developments. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122663. [PMID: 34961132 PMCID: PMC8705846 DOI: 10.3390/plants10122663] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 05/03/2023]
Abstract
Birch tree bark-derived betulin has attracted scientific interest already for several centuries, being one of the first natural products identified from plants. However, the cellular events regulated by betulin and precise molecular mechanisms under these processes have been begun to be understood only recently. Today, we know that betulin can exert important anticancer activities through modulation of diverse cellular pathways. In this review article, betulin-regulated molecular signaling is unraveled and presented with a special focus on its participation in anti-inflammatory processes, especially by modulating nuclear factor-κB (NF-κB), prostaglandin/COX, and nuclear factor erythroid2-related factor 2 (Nrf2)-mediated cascades. By regulating these diverse pathways, betulin can not only affect the development and progression of different cancers, but also enhance the antitumor action of traditional therapeutic modalities. It is expected that by overcoming the low bioavailability of betulin by encapsulating it into nanocarriers, this promising natural compound may provide novel possibilities for targeting inflammation-related cancers.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India; (D.A.); (N.C.P.); (R.C.)
- Correspondence: (H.S.T.); (G.S.)
| | | | - Dhruv Sanjay Gupta
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’s NMIMS, Mumbai 40056, Maharashtra, India; (D.S.G.); (G.K.)
| | - Ginpreet Kaur
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’s NMIMS, Mumbai 40056, Maharashtra, India; (D.S.G.); (G.K.)
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India; (D.A.); (N.C.P.); (R.C.)
| | - Nidarshana Chaturvedi Parashar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India; (D.A.); (N.C.P.); (R.C.)
| | - Renuka Choudhary
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India; (D.A.); (N.C.P.); (R.C.)
| | - Mukerrem Betul Yerer
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey;
| | - Jagjit Kaur
- ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Graduate School of Biomedical Engineering, Faculty of Engineering, The University of New South Wales, Sydney 2052, Australia;
| | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University, Sadopur 134007, Haryana, India;
| | - Vivek Kumar Garg
- Department of Medical Laboratory Technology, University Institute of Applied Health Sciences, Chandigarh University, Gharuan, Mohali 140413, Punjab, India;
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Correspondence: (H.S.T.); (G.S.)
| |
Collapse
|
12
|
The effects of the dietary compound L-sulforaphane against respiratory pathogens. Int J Antimicrob Agents 2021; 58:106460. [PMID: 34695564 DOI: 10.1016/j.ijantimicag.2021.106460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/03/2021] [Accepted: 10/09/2021] [Indexed: 11/20/2022]
Abstract
L-sulforaphane (LSF) is an isothiocyanate derived from cruciferous vegetables that has long been known for its anticarcinogenic, antioxidant and anti-inflammatory effects. LSF also possesses antimicrobial properties, although the evidence for this is limited. Respiratory pathogens, such as Streptococcus pneumoniae, Haemophilus influenzae, Streptococcus pyogenes and respiratory syncytial virus (RSV), are leading global causes of illness and death among children aged under five years, particularly in resource-poor countries where access to vaccines are limited or, in the case of S. pyogenes and RSV, vaccines have not been licensed for use in humans. Therefore, alternative strategies to prevent and/or treat these common infectious diseases are urgently needed. This study was conducted to investigate the antimicrobial effects of LSF against common respiratory pathogens, S. pneumoniae (serotypes 1 and 6B), H. influenzae type B (HiB), non-typeable H. influenzae (NTHi), S. pyogenes and RSV in relevant human cell-based models. LSF significantly inhibited the growth of H. influenzae, but not S. pneumoniae or S. pyogenes. LSF did not improve opsonophagocytic capacity or killing by human phagocytic cell lines (HL-60s and THP-1 macrophages) for S. pneumoniae yet showed some improved killing for H. influenzae species in THP-1 macrophages. However, LSF significantly reduced RSV infection in human lung epithelial cells, associated with increased expression of cyclin D1 (CCND1) gene as well as the antioxidant genes, nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HMOX-1). Overall, LSF represents an exciting avenue for further antimicrobial research, particularly as a novel therapy against H. influenzae species and RSV.
Collapse
|
13
|
Mitochondria as a Cellular Hub in Infection and Inflammation. Int J Mol Sci 2021; 22:ijms222111338. [PMID: 34768767 PMCID: PMC8583510 DOI: 10.3390/ijms222111338] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are the energy center of the cell. They are found in the cell cytoplasm as dynamic networks where they adapt energy production based on the cell’s needs. They are also at the center of the proinflammatory response and have essential roles in the response against pathogenic infections. Mitochondria are a major site for production of Reactive Oxygen Species (ROS; or free radicals), which are essential to fight infection. However, excessive and uncontrolled production can become deleterious to the cell, leading to mitochondrial and tissue damage. Pathogens exploit the role of mitochondria during infection by affecting the oxidative phosphorylation mechanism (OXPHOS), mitochondrial network and disrupting the communication between the nucleus and the mitochondria. The role of mitochondria in these biological processes makes these organelle good targets for the development of therapeutic strategies. In this review, we presented a summary of the endosymbiotic origin of mitochondria and their involvement in the pathogen response, as well as the potential promising mitochondrial targets for the fight against infectious diseases and chronic inflammatory diseases.
Collapse
|
14
|
NRF2 in Viral Infection. Antioxidants (Basel) 2021; 10:antiox10091491. [PMID: 34573123 PMCID: PMC8472116 DOI: 10.3390/antiox10091491] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/29/2022] Open
Abstract
The transcription factor NRF2 is central to redox homeostasis in animal cells and is a well-known driver of chemoresistance in many types of cancer. Recently, new roles have been ascribed to NRF2 which include regulation of antiviral interferon responses and inflammation. In addition, NRF2 is emerging as an important factor in antiviral immunity through interferon-independent mechanisms. In the review, we give an overview of the scientific progress on the involvement and importance of NRF2 in the context of viral infection.
Collapse
|
15
|
Ali A, Mishra R, Kaur H, Chandra Banerjea A. HIV-1 Tat: An update on transcriptional and non-transcriptional functions. Biochimie 2021; 190:24-35. [PMID: 34242726 DOI: 10.1016/j.biochi.2021.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/24/2021] [Accepted: 07/01/2021] [Indexed: 01/05/2023]
Abstract
Over the past decades, much have been learned about HIV-1 virus and its molecular strategies for pathogenesis. However, HIV-1 still remains an enigmatic virus, particularly because of its unique proteins. Establishment of latency and reactivation is still a puzzling question and various temporal and spatial dynamics between HIV-1 proteins itself have given us new way of thinking about its pathogenesis. HIV-1 replication depends on Tat which is a small unstructured protein and subjected to various post-translational modifications for its myriad of functions. HIV-1 Tat protein modulates the functions of various strategic cellular pathways like proteasomal machinery and inflammatory pathways to aid in HIV-1 pathogenesis. Many of the recent findings have shown that Tat is associated with exosomes, cleared from HIV-1 infected cells through its degradation by diverse routes ranging from lysosomal to proteasomal pathways. HIV-1 Tat was also found to be associated with other HIV-1 proteins including Vpr, Nef, Nucleocapsid (NC) and Rev. Interaction of Tat with Vpr and Nef increases its transactivation function, whereas, interaction of Tat with NC or Rev leads to Tat protein degradation and hence suppression of Tat functions. Research in the recent years has established that Tat is not only important for HIV-1 promoter transactivation and virus replication but also modulating multiple cellular and molecular functions leading to HIV-1 pathogenicity. In this review we discussed various transcriptional and non-transcriptional HIV-1 Tat functions which modulate host cell metabolism during HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Amjad Ali
- Virology Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India; Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| | - Ritu Mishra
- Virology Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Harsimrut Kaur
- Department of Chemistry and Biochemistry, School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201310, India.
| | - Akhil Chandra Banerjea
- Virology Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
16
|
Augusti PR, Conterato GMM, Denardin CC, Prazeres ID, Serra AT, Bronze MR, Emanuelli T. Bioactivity, bioavailability, and gut microbiota transformations of dietary phenolic compounds: implications for COVID-19. J Nutr Biochem 2021; 97:108787. [PMID: 34089819 PMCID: PMC8169570 DOI: 10.1016/j.jnutbio.2021.108787] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/28/2021] [Accepted: 05/17/2021] [Indexed: 12/15/2022]
Abstract
The outbreak of mysterious pneumonia at the end of 2019 is associated with widespread research interest worldwide. The coronavirus disease-19 (COVID-19) targets multiple organs through inflammatory, immune, and redox mechanisms, and no effective drug for its prophylaxis or treatment has been identified until now. The use of dietary bioactive compounds, such as phenolic compounds (PC), has emerged as a putative nutritional or therapeutic adjunct approach for COVID-19. In the present study, scientific data on the mechanisms underlying the bioactivity of PC and their usefulness in COVID-19 mitigation are reviewed. In addition, antioxidant, antiviral, anti-inflammatory, and immunomodulatory effects of dietary PC are studied. Moreover, the implications of digestion on the putative benefits of dietary PC against COVID-19 are presented by addressing the bioavailability and biotransformation of PC by the gut microbiota. Lastly, safety issues and possible drug interactions of PC and their implications in COVID-19 therapeutics are discussed.
Collapse
Affiliation(s)
- Paula R Augusti
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Greicy M M Conterato
- Laboratório de Fisiologia da Reprodução Animal, Departamento de Agricultura, Biodiversidade e Floresta, Centro de Ciências Rurais, Universidade Federal de Santa Catarina, Campus de Curitibanos, Curitibanos, SC, Brazil
| | | | - Inês D Prazeres
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana Teresa Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Maria R Bronze
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal; iMED, Faculdade de Farmácia da Universidade de Lisboa, Lisboa, Portugal
| | - Tatiana Emanuelli
- Núcleo Integrado de Desenvolvimento em Análises Laboratoriais (NIDAL), Departamento de Tecnologia e Ciência dos Alimentos, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
17
|
Staitieh BS, Auld SC, Ahmed M, Fan X, Smirnova N, Yeligar SM. Granulocyte Macrophage-Colony Stimulating Factor Reverses HIV Protein-Induced Mitochondrial Derangements in Alveolar Macrophages. AIDS Res Hum Retroviruses 2021; 37:224-232. [PMID: 33059459 DOI: 10.1089/aid.2020.0176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Despite the advent of antiretroviral therapy, people living with HIV suffer from a range of infectious and noninfectious pulmonary complications. HIV impairs antioxidant defenses and innate immune function of the alveolar macrophage by diminishing granulocyte macrophage-colony stimulating factor (GM-CSF) signaling. Since GM-CSF may be linked to mitochondria, we sought to determine the effects of HIV on GM-CSF receptor expression and alveolar macrophage mitochondrial function. At an academic medical center, studies were completed on alveolar macrophages isolated from both wild-type and HIV transgenic (HIV Tg) rats and human subjects with and without HIV. Primary macrophages were plated and evaluated for expression of GM-CSF receptor beta, phagocytic index, and mitochondrial function in the presence and absence of GM-CSF treatment. GM-CSF receptor expression and mitochondrial function were impaired in macrophages isolated from HIV Tg rats, and treatment with GM-CSF restored GM-CSF receptor expression and mitochondrial function. GM-CSF treatment of HIV Tg rats also increased alveolar macrophage levels of the mitochondrial proteins voltage-dependent anion-selective channel 1 (VDAC) and glucose-regulated protein 75 (Grp75). Similar to the HIV Tg rat model, impairments in mitochondrial bioenergetics were confirmed in alveolar macrophages isolated from human subjects with HIV. HIV-associated impairments in alveolar macrophage mitochondrial bioenergetics likely contribute to innate immune dysfunction in HIV infection, and GM-CSF treatment may offer a novel therapeutic strategy for mitigating these deleterious effects.
Collapse
Affiliation(s)
- Bashar S. Staitieh
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sara C. Auld
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Mariam Ahmed
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Xian Fan
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Natalia Smirnova
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Samantha M. Yeligar
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Atlanta VA Health Care System, Decatur, Georgia, USA
| |
Collapse
|
18
|
Talebi M, Talebi M, Farkhondeh T, Mishra G, İlgün S, Samarghandian S. New insights into the role of the Nrf2 signaling pathway in green tea catechin applications. Phytother Res 2021; 35:3078-3112. [PMID: 33569875 DOI: 10.1002/ptr.7033] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/13/2020] [Accepted: 01/12/2021] [Indexed: 12/13/2022]
Abstract
Nuclear factor-erythroid 2-related factor 2 (Nrf2) is a transcriptional signaling pathway that plays a crucial role in numerous clinical complications. Pivotal roles of Nrf2 have been proved in cancer, autoimmune diseases, neurodegeneration, cardiovascular diseases, diabetes mellitus, renal injuries, respiratory conditions, gastrointestinal disturbances, and general disorders related to oxidative stress, inflammation, apoptosis, gelatinolysis, autophagy, and fibrogenesis processes. Green tea catechins as a rich source of phenolic compounds can deal with various clinical problems and manifestations. In this review, we attempted to focus on intervention between green tea catechins and Nrf2. Green tea catechins especially epigallocatechin gallate (EGCG) elucidated the protective role of Nrf2 and its downstream molecules in various disorders through Keap-1, HO-1, NQO-1, GPx, GCLc, GCLm, NF-kB cross-link, kinases, and apoptotic proteins. Subsequently, we compiled an updated expansions of the Nrf2 role as a gate to manage and protect different disorders and feasible indications of green tea catechins through this signaling pathway. The present review highlighted recent evidence-based data in silico, in vitro, and in vivo studies on an outline for future clinical trials.
Collapse
Affiliation(s)
- Marjan Talebi
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Talebi
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas, USA.,Department of Research & Development, Viatris Pharmaceuticals Inc., San Antonio, Texas, USA
| | - Tahereh Farkhondeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran.,Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Gaurav Mishra
- Institute of Medical Sciences, Faculty of Ayurveda, Department of Medicinal Chemistry, Banaras Hindu University, Varanasi, India
| | - Selen İlgün
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
19
|
Dengue Virus Targets Nrf2 for NS2B3-Mediated Degradation Leading to Enhanced Oxidative Stress and Viral Replication. J Virol 2020; 94:JVI.01551-20. [PMID: 32999020 DOI: 10.1128/jvi.01551-20] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/23/2020] [Indexed: 12/16/2022] Open
Abstract
Dengue virus (DENV) is a mosquito-borne virus that infects upward of 300 million people annually and has the potential to cause fatal hemorrhagic fever and shock. While the parameters contributing to dengue immunopathogenesis remain unclear, the collapse of redox homeostasis and the damage induced by oxidative stress have been correlated with the development of inflammation and progression toward the more severe forms of disease. In the present study, we demonstrate that the accumulation of reactive oxygen species (ROS) late after DENV infection (>24 hpi) resulted from a disruption in the balance between oxidative stress and the nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent antioxidant response. The DENV NS2B3 protease complex strategically targeted Nrf2 for degradation in a proteolysis-independent manner; NS2B3 licensed Nrf2 for lysosomal degradation. Impairment of the Nrf2 regulator by the NS2B3 complex inhibited the antioxidant gene network and contributed to the progressive increase in ROS levels, along with increased virus replication and inflammatory or apoptotic gene expression. By 24 hpi, when increased levels of ROS and antiviral proteins were observed, it appeared that the proviral effect of ROS overcame the antiviral effects of the interferon (IFN) response. Overall, these studies demonstrate that DENV infection disrupts the regulatory interplay between DENV-induced stress responses, Nrf2 antioxidant signaling, and the host antiviral immune response, thus exacerbating oxidative stress and inflammation in DENV infection.IMPORTANCE Dengue virus (DENV) is a mosquito-borne pathogen that threatens 2.5 billion people in more than 100 countries annually. Dengue infection induces a spectrum of clinical symptoms, ranging from classical dengue fever to severe dengue hemorrhagic fever or dengue shock syndrome; however, the complexities of DENV immunopathogenesis remain controversial. Previous studies have reported the importance of the transcription factor Nrf2 in the control of redox homeostasis and antiviral/inflammatory or death responses to DENV. Importantly, the production of reactive oxygen species and the subsequent stress response have been linked to the development of inflammation and progression toward the more severe forms of the disease. Here, we demonstrate that DENV uses the NS2B3 protease complex to strategically target Nrf2 for degradation, leading to a progressive increase in oxidative stress, inflammation, and cell death in infected cells. This study underlines the pivotal role of the Nrf2 regulatory network in the context of DENV infection.
Collapse
|
20
|
Beeraka NM, Sadhu SP, Madhunapantula SV, Rao Pragada R, Svistunov AA, Nikolenko VN, Mikhaleva LM, Aliev G. Strategies for Targeting SARS CoV-2: Small Molecule Inhibitors-The Current Status. Front Immunol 2020; 11:552925. [PMID: 33072093 PMCID: PMC7531039 DOI: 10.3389/fimmu.2020.552925] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/18/2020] [Indexed: 01/08/2023] Open
Abstract
Severe Acute Respiratory Syndrome-Corona Virus-2 (SARS-CoV-2) induced Coronavirus Disease - 19 (COVID-19) cases have been increasing at an alarming rate (7.4 million positive cases as on June 11 2020), causing high mortality (4,17,956 deaths as on June 11 2020) and economic loss (a 3.2% shrink in global economy in 2020) across 212 countries globally. The clinical manifestations of this disease are pneumonia, lung injury, inflammation, and severe acute respiratory syndrome (SARS). Currently, there is no vaccine or effective pharmacological agents available for the prevention/treatment of SARS-CoV2 infections. Moreover, development of a suitable vaccine is a challenging task due to antibody-dependent enhancement (ADE) and Th-2 immunopathology, which aggravates infection with SARS-CoV-2. Furthermore, the emerging SARS-CoV-2 strain exhibits several distinct genomic and structural patterns compared to other coronavirus strains, making the development of a suitable vaccine even more difficult. Therefore, the identification of novel small molecule inhibitors (NSMIs) that can interfere with viral entry or viral propagation is of special interest and is vital in managing already infected cases. SARS-CoV-2 infection is mediated by the binding of viral Spike proteins (S-protein) to human cells through a 2-step process, which involves Angiotensin Converting Enzyme-2 (ACE2) and Transmembrane Serine Protease (TMPRSS)-2. Therefore, the development of novel inhibitors of ACE2/TMPRSS2 is likely to be beneficial in combating SARS-CoV-2 infections. However, the usage of ACE-2 inhibitors to block the SARS-CoV-2 viral entry requires additional studies as there are conflicting findings and severe health complications reported for these inhibitors in patients. Hence, the current interest is shifted toward the development of NSMIs, which includes natural antiviral phytochemicals and Nrf-2 activators to manage a SARS-CoV-2 infection. It is imperative to investigate the efficacy of existing antiviral phytochemicals and Nrf-2 activators to mitigate the SARS-CoV-2-mediated oxidative stress. Therefore, in this review, we have reviewed structural features of SARS-CoV-2 with special emphasis on key molecular targets and their known modulators that can be considered for the development of NSMIs.
Collapse
Affiliation(s)
- Narasimha M. Beeraka
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), JSS Academy of Higher Education & Research (JSS AHER), Mysore, India
| | - Surya P. Sadhu
- AU College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, India
| | - SubbaRao V. Madhunapantula
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), JSS Academy of Higher Education & Research (JSS AHER), Mysore, India
- Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysore, India
| | | | - Andrey A. Svistunov
- I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Vladimir N. Nikolenko
- I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
- Department of Normal and Topographic Anatomy, M.V. Lomonosov Moscow State University, Moscow, Russia
| | | | - Gjumrakch Aliev
- Research Institute of Human Morphology, Moscow, Russia
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Moscow, Russia
- GALLY International Research Institute, San Antonio, TX, United States
| |
Collapse
|
21
|
Fan X, Murray SC, Staitieh BS, Spearman P, Guidot DM. HIV Impairs Alveolar Macrophage Function via MicroRNA-144-Induced Suppression of Nrf2. Am J Med Sci 2020; 361:90-97. [PMID: 32773107 DOI: 10.1016/j.amjms.2020.07.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/23/2020] [Accepted: 07/17/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Despite anti-retroviral therapy, HIV-1 infection increases the risk of pneumonia and causes oxidative stress and defective alveolar macrophage (AM) immune function. We have previously determined that HIV-1 proteins inhibit antioxidant defenses and impair AM phagocytosis by suppressing nuclear factor (erythroid-derived 2)-like 2 (Nrf2). Given its known effects on Nrf2, we hypothesize miR-144 mediates the HIV-1 induced suppression of Nrf2. METHODS Primary AMs isolated from HIV-1 transgenic (HIV-1 Tg) rats and wild type littermates (WT) as well as human monocyte-derived macrophages (MDMs) infected ex vivo with HIV-1 were used. We modulated miR-144 expression using a miR-144 mimic or an inhibitor to assay its effects on Nrf2/ARE activity and AM functions in vitro and in vivo. RESULTS MiR-144 expression was increased in AMs from HIV-1 Tg rats and in HIV-1-infected human MDMs compared to cells from WT rats and non-infected human MDMs, respectively. Increasing miR-144 with a miR-144 mimic inhibited the expression of Nrf2 and its downstream effectors in WT rat macrophages and consequently impaired their bacterial phagocytic capacity and H2O2 scavenging ability. These effects on Nrf2 expression and AM function were reversed by antagonizing miR-144 ex vivo or in the airways of HIV-1 Tg rats in vivo, but this protection was abrogated by silencing Nrf2 expression. CONCLUSIONS Our results suggest that inhibiting miR-144 or interfering with its deleterious effects on Nrf2 attenuates HIV-1-mediated AM immune dysfunction and improves lung health in individuals with HIV.
Collapse
Affiliation(s)
- Xian Fan
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia.
| | - Shannon C Murray
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Bashar S Staitieh
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Paul Spearman
- Department of Pediatrics, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - David M Guidot
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia; Atlanta VA Medical Center, Decatur, Georgia
| |
Collapse
|
22
|
McCord JM, Hybertson BM, Cota-Gomez A, Geraci KP, Gao B. Nrf2 Activator PB125 ® as a Potential Therapeutic Agent against COVID-19. Antioxidants (Basel) 2020; 9:E518. [PMID: 32545518 PMCID: PMC7346195 DOI: 10.3390/antiox9060518] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/04/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
Nrf2 is a transcription factor that regulates cellular redox balance and the expression of a wide array of genes involved in immunity and inflammation, including antiviral actions. Nrf2 activity declines with age, making the elderly more susceptible to oxidative stress-mediated diseases, which include type 2 diabetes, chronic inflammation, and viral infections. Published evidence suggests that Nrf2 activity may regulate important mechanisms affecting viral susceptibility and replication. We examined gene expression levels by GeneChip microarray and by RNA-seq assays. We found that the potent Nrf2-activating composition PB125® downregulates ACE2 and TMPRSS2 mRNA expression in human liver-derived HepG2 cells. ACE2 is a surface receptor and TMPRSS2 activates the spike protein for SARS-CoV-2 entry into host cells. Furthermore, in endotoxin-stimulated primary human pulmonary artery endothelial cells, we report the marked downregulation by PB125 of 36 genes encoding cytokines. These include IL-1-beta, IL-6, TNF-α, the cell adhesion molecules ICAM-1, VCAM-1, and E-selectin, and a group of IFN-γ-induced genes. Many of these cytokines have been specifically identified in the "cytokine storm" observed in fatal cases of COVID-19, suggesting that Nrf2 activation may significantly decrease the intensity of the storm.
Collapse
Affiliation(s)
- Joe M. McCord
- Pathways Bioscience, Aurora, CO 80045, USA; (B.M.H.); (B.G.)
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.C.-G.); (K.P.G.)
| | - Brooks M. Hybertson
- Pathways Bioscience, Aurora, CO 80045, USA; (B.M.H.); (B.G.)
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.C.-G.); (K.P.G.)
| | - Adela Cota-Gomez
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.C.-G.); (K.P.G.)
| | - Kara P. Geraci
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.C.-G.); (K.P.G.)
| | - Bifeng Gao
- Pathways Bioscience, Aurora, CO 80045, USA; (B.M.H.); (B.G.)
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.C.-G.); (K.P.G.)
| |
Collapse
|
23
|
McCord JM, Hybertson BM, Cota-Gomez A, Gao B. Nrf2 Activator PB125® as a Potential Therapeutic Agent Against COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32511372 PMCID: PMC7263501 DOI: 10.1101/2020.05.16.099788] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nrf2 is a transcription factor that regulates cellular redox balance and the expression of a wide array of genes involved in immunity and inflammation, including antiviral actions. Nrf2 activity declines with age, making the elderly more susceptible to oxidative stress-mediated diseases, which include type 2 diabetes, chronic inflammation, and viral infections. Published evidence suggests that Nrf2 activity may regulate important mechanisms affecting viral susceptibility and replication. We examined gene expression levels by GeneChip microarray and by RNA-seq assays. We found that the potent Nrf2 activating composition PB125® downregulates ACE2 and TMPRSS2 mRNA expression in human liver-derived HepG2 cells. ACE2 is a surface receptor and TMPRSS2 activates the spike protein for SARS-Cov-2 entry into host cells. Furthermore, in endotoxin-stimulated primary human pulmonary artery endothelial cells we report the marked downregulation by PB125 of 36 genes encoding cytokines. These include IL1-beta, IL6, TNF-α the cell adhesion molecules ICAM1, VCAM1, and E-selectin, and a group of IFN-γ-induced genes. Many of these cytokines have been specifically identified in the “cytokine storm” observed in fatal cases of COVID-19, suggesting that Nrf2 activation may significantly decrease the intensity of the storm.
Collapse
Affiliation(s)
- Joe M McCord
- Pathways Bioscience, Aurora, CO 80045, USA.,Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Brooks M Hybertson
- Pathways Bioscience, Aurora, CO 80045, USA.,Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Adela Cota-Gomez
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Bifeng Gao
- Pathways Bioscience, Aurora, CO 80045, USA.,Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
24
|
Ali M, Bonay M, Vanhee V, Vinit S, Deramaudt TB. Comparative effectiveness of 4 natural and chemical activators of Nrf2 on inflammation, oxidative stress, macrophage polarization, and bactericidal activity in an in vitro macrophage infection model. PLoS One 2020; 15:e0234484. [PMID: 32511271 PMCID: PMC7279588 DOI: 10.1371/journal.pone.0234484] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/27/2020] [Indexed: 12/27/2022] Open
Abstract
Inflammation plays a crucial role in the defense response of the innate immune system against pathogen infection. In this study, we selected 4 compounds for their potential or proven anti-inflammatory and/or anti-microbial properties to test on our in vitro model of bacteria-infected THP-1-derived macrophages. We first compared the capacity of sulforaphane (SFN), wogonin (WG), oltipraz (OTZ), and dimethyl fumarate (DMF) to induce the nuclear factor erythroid 2-related factor 2 (Nrf2), a key regulator of the antioxidant, anti-inflammatory response pathways. Next, we performed a comparative evaluation of the antioxidant and anti-inflammatory efficacies of the 4 selected compounds. THP-1-derived macrophages and LPS-stimulated macrophages were treated with each compound and expression levels of genes coding for inflammatory cytokines IL-1β, IL-6, and TNF-α were quantified by RT-qPCR. Moreover, expression levels of genes coding for M1 (IL-23, CCR7, IL-1β, IL-6, and TNF-α) and M2 (PPARγ, MRC1, CCL22, and IL-10) markers were determined in classically-activated M1 macrophages treated with each compound. Finally, the effects of each compound on the intracellular bacterial survival of gram-negative E. coli and gram-positive S. aureus in THP-1-derived macrophages and PBMC-derived macrophages were examined. Our data confirmed the anti-inflammatory and antioxidant effects of SFN, WG, and DMF on LPS-stimulated THP-1-derived macrophages. In addition, SFN or WG treatment of classically-activated THP-1-derived macrophages reduced expression levels of M1 marker genes, while SFN or DMF treatment upregulated the M2 marker gene MRC1. This decrease in expression of M1 marker genes may be correlated with the decrease in intracellular S. aureus load in SFN- or DMF-treated macrophages. Interestingly, an increase in intracellular survival of E. coli in SFN-treated THP-1-derived macrophages that was not observed in PBMC-derived macrophages. Conversely, OTZ exhibited pro-oxidant and proinflammatory properties, and affected intracellular survival of E. coli in THP-1-derived macrophages. Altogether, we provide new potential therapeutic alternatives in treating inflammation and bacterial infection.
Collapse
Affiliation(s)
- Malika Ali
- UVSQ, INSERM END-ICAP, Université Paris-Saclay, Versailles, France
| | - Marcel Bonay
- UVSQ, INSERM END-ICAP, Université Paris-Saclay, Versailles, France
- Service de Physiologie-Explorations Fonctionnelles, Hôpital Ambroise Paré, APHP, Boulogne, France
| | - Valentin Vanhee
- UVSQ, INSERM END-ICAP, Université Paris-Saclay, Versailles, France
| | - Stéphane Vinit
- UVSQ, INSERM END-ICAP, Université Paris-Saclay, Versailles, France
| | | |
Collapse
|
25
|
Progressive Rotavirus Infection Downregulates Redox-Sensitive Transcription Factor Nrf2 and Nrf2-Driven Transcription Units. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7289120. [PMID: 32322337 PMCID: PMC7165344 DOI: 10.1155/2020/7289120] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/31/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022]
Abstract
Eukaryotic cells adopt highly tuned stress response physiology under threats of exogenous stressors including viruses to maintain cellular homeostasis. Not surprisingly, avoidance of cellular stress response pathways is an essential facet of virus-induced obligatory host reprogramming to invoke a cellular environment conducive to viral perpetuation. Adaptive cellular responses to oxidative and electrophilic stress are usually taken care of by an antioxidant defense system, core to which lies the redox-responsive transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and Nrf2-driven transcriptional cascade. Deregulation of host redox balance and redox stress-sensitive Nrf2 antioxidant defense have been reported for many viruses. In the current study, we aimed to study the modulation of the Nrf2-based host cellular redox defense system in response to Rotavirus (RV) infection in vitro. Interestingly, we found that Nrf2 protein levels decline sharply with progression of RV infection beyond an initial upsurge. Moreover, Nrf2 decrease as a whole was found to be accompanied by active nuclear vacuity of Nrf2, resulting in lowered expression of stress-responsive Nrf2 target genes heme oxygenase-1 (HO-1), NAD(P)H quinone dehydrogenase 1, and superoxide dismutase 1 both in the presence and absence of Nrf2-driven transcriptional inducers. Initial induction of Nrf2 concurred with RV-induced early burst of oxidative stress and therefore was sensitive to treatments with antioxidants. Reduction of Nrf2 levels beyond initial hours, however, was found to be independent of the cellular redox status. Furthermore, increasing the half-life of Nrf2 through inhibition of the Kelch-like erythroid cell-derived protein with CNC homology- (ECH-) associated protein 1/Cullin3-RING Box1-based canonical Nrf2 turnover pathway could not restore Nrf2 levels post RV-SA11 infection. Depletion of the Nrf2/HO-1 axis was subsequently found to be sensitive to proteasome inhibition with concurrent observation of increased K48-linked ubiquitination associated with Nrf2. Together, the present study describes robust downregulation of Nrf2-dependent cellular redox defense beyond initial hours of RV infection, justifying our previous observation of potent antirotaviral implications of Nrf2 agonists.
Collapse
|
26
|
Manes TL, Simenauer A, Geohring JL, Flemming J, Brehm M, Cota-Gomez A. The HIV-Tat protein interacts with Sp3 transcription factor and inhibits its binding to a distal site of the sod2 promoter in human pulmonary artery endothelial cells. Free Radic Biol Med 2020; 147:102-113. [PMID: 31863909 PMCID: PMC7039131 DOI: 10.1016/j.freeradbiomed.2019.12.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/03/2019] [Accepted: 12/16/2019] [Indexed: 12/16/2022]
Abstract
Redox imbalance results in damage to cellular macromolecules and interferes with signaling pathways, leading to an inflammatory cellular and tissue environment. As such, the cellular oxidative environment is tightly regulated by several redox-modulating pathways. Many viruses have evolved intricate mechanisms to manipulate these pathways for their benefit, including HIV-1, which requires a pro-oxidant cellular environment for optimal replication. One such virulence factor responsible for modulating the redox environment is the HIV Transactivator of transcription (Tat). Tat is of particular interest as it is actively secreted by infected cells and internalized by uninfected bystander cells where it can elicit pro-oxidant effects resulting in inflammation and damage. Previously, we demonstrated that Tat regulates basal expression of Superoxide Dismutase 2 (sod2) by altering the binding of the Sp-transcription factors at regions relatively near (approx. -210 nucleotides) upstream of the transcriptional start site. Now, using in silico analysis and a series of sod2 promoter reporter constructs, we have identified putative clusters of Sp-binding sites located further upstream of the proximal sod2 promoter, between nucleotides -3400 to -210, and tested their effect on basal transcription and for their sensitivity to HIV-1 Tat. In this report, we demonstrate that under basal conditions, maximal transcription requires a cluster of Sp-binding sites in the -584 nucleotide region, which is extremely sensitive to Tat. Using chromatin immunoprecipitation (ChIP) we demonstrate that Tat results in altered occupancy of Sp1 and Sp3 at this distal Tat-sensitive regulatory element and strongly stimulated endogenous expression of SOD2 in human pulmonary artery endothelial cells (HPAEC). We also report altered expression of Sp1 and Sp3 in Tat-expressing HPAEC as well as in the lungs of HIV-1 infected humanized mice. Lastly, Tat co-immunoprecipitated with endogenous Sp3 but not Sp1 and did not alter the acetylation state of Sp3. Thus, here, we have defined a novel and important cis-acting factor in HIV-1 Tat-mediated regulation of SOD2, demonstrated that modulation of Sp1 and Sp3 activity by Tat promotes SOD2 expression in primary human pulmonary artery endothelial cells and determined that pulmonary levels of Sp3 as well as SOD2 are increased in the lungs of a mouse model of HIV infection.
Collapse
Affiliation(s)
- Terrin L Manes
- University of Colorado Anschutz Medical Campus, Department of Medicine Division of Pulmonary Sciences and Critical Care Medicine, 12700 E. 19th Avenue, Mailstop C272, Aurora, CO, 80045, USA
| | - Ari Simenauer
- University of Colorado Anschutz Medical Campus, Department of Medicine Division of Pulmonary Sciences and Critical Care Medicine, 12700 E. 19th Avenue, Mailstop C272, Aurora, CO, 80045, USA
| | - Jason L Geohring
- University of Colorado Anschutz Medical Campus, Department of Medicine Division of Pulmonary Sciences and Critical Care Medicine, 12700 E. 19th Avenue, Mailstop C272, Aurora, CO, 80045, USA
| | - Juliana Flemming
- University of Colorado Anschutz Medical Campus, Department of Medicine Division of Pulmonary Sciences and Critical Care Medicine, 12700 E. 19th Avenue, Mailstop C272, Aurora, CO, 80045, USA
| | - Michael Brehm
- University of Massachusetts Medical School, 368 Plantation Street, AS7-2053, Worcester, MA, 01605, USA
| | - Adela Cota-Gomez
- University of Colorado Anschutz Medical Campus, Department of Medicine Division of Pulmonary Sciences and Critical Care Medicine, 12700 E. 19th Avenue, Mailstop C272, Aurora, CO, 80045, USA.
| |
Collapse
|
27
|
Affiliation(s)
- Sushma K Cribbs
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
28
|
Cribbs SK, Crothers K, Morris A. Pathogenesis of HIV-Related Lung Disease: Immunity, Infection, and Inflammation. Physiol Rev 2019; 100:603-632. [PMID: 31600121 DOI: 10.1152/physrev.00039.2018] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite anti-retroviral therapy (ART), human immunodeficiency virus-1 (HIV)-related pulmonary disease continues to be a major cause of morbidity and mortality for people living with HIV (PLWH). The spectrum of lung diseases has changed from acute opportunistic infections resulting in death to chronic lung diseases for those with access to ART. Chronic immune activation and suppression can result in impairment of innate immunity and progressive loss of T cell and B cell functionality with aberrant cytokine and chemokine responses systemically as well as in the lung. HIV can be detected in the lungs of PLWH and has profound effects on cellular immune functions. In addition, HIV-related lung injury and disease can occur secondary to a number of mechanisms including altered pulmonary and systemic inflammatory pathways, viral persistence in the lung, oxidative stress with additive effects of smoke exposure, microbial translocation, and alterations in the lung and gut microbiome. Although ART has had profound effects on systemic viral suppression in HIV, the impact of ART on lung immunology still needs to be fully elucidated. Understanding of the mechanisms by which HIV-related lung diseases continue to occur is critical to the development of new preventive and therapeutic strategies to improve lung health in PLWH.
Collapse
Affiliation(s)
- Sushma K Cribbs
- Pulmonary Medicine, Department of Veterans Affairs, Atlanta, Georgia; Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, Emory University, Atlanta, Georgia; Department of Medicine, Veterans Affairs Puget Sound Health Care System and Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, Washington; and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kristina Crothers
- Pulmonary Medicine, Department of Veterans Affairs, Atlanta, Georgia; Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, Emory University, Atlanta, Georgia; Department of Medicine, Veterans Affairs Puget Sound Health Care System and Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, Washington; and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Alison Morris
- Pulmonary Medicine, Department of Veterans Affairs, Atlanta, Georgia; Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, Emory University, Atlanta, Georgia; Department of Medicine, Veterans Affairs Puget Sound Health Care System and Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, Washington; and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
29
|
Simenauer A, Assefa B, Rios-Ochoa J, Geraci K, Hybertson B, Gao B, McCord J, Elajaili H, Nozik-Grayck E, Cota-Gomez A. Repression of Nrf2/ARE regulated antioxidant genes and dysregulation of the cellular redox environment by the HIV Transactivator of Transcription. Free Radic Biol Med 2019; 141:244-252. [PMID: 31238128 PMCID: PMC7096131 DOI: 10.1016/j.freeradbiomed.2019.06.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 11/17/2022]
Abstract
Chronic HIV infection in the era of anti-retroviral therapy is associated with dramatically increased risk of developing severe cardio pulmonary disease. Common to these diseases is increased oxidative burden and chronic inflammation despite low viremia and restoration of CD4+ T-cell levels. Soluble viral factors are heavily implicated in these disease processes, including the HIV Transactivator of Transcription (Tat). Tat is produced in high levels during infection and secreted from infected cells into circulation where it is internalized by bystander cells and is known to regulate inflammatory pathways and elicit a pro-oxidant environment. We have examined the effects of Tat on the anti-oxidant regulatory network driven by the transcription factor Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) in primary human pulmonary arterial endothelial cells, which are heavily involved in pathogenesis of HIV associated lung diseases including pulmonary arterial hypertension and COPD. Co-expression of Tat and a luciferase reporter construct driven by the Nrf2 activated anti-oxidant response element (ARE) demonstrated markedly reduced Nrf2/ARE activity, even when stimulated by the potent Nrf2 activating compound PB125. Additionally, Heme-oxygenase-1 (HO-1) transcription was potently repressed by Tat in a cell line as well as primary endothelial cells, and treatment with PB125 failed to restore transcriptional activity. Other anti-oxidant Nrf2 genes examined included NADPH Dehydrogenase Quinone 1 (NQO1) and Sulfiredoxin-1 (SRXN1). NQO1 was repressed basally by Tat, while SRXN1 transcription was refractory to activation by PB125 in the presence of Tat. Lastly, we demonstrated that Tat expressing cells have increased indicators of oxidative stress including elevated production of reactive oxygen species, measured by electron paramagnetic resonance spectroscopy, and increased levels of nitrotyrosine content. These observations suggest a novel mechanism by which HIV Tat increases oxidative burden by dysregulation of the Nrf2/ARE pathway.
Collapse
Affiliation(s)
- Ari Simenauer
- University of Colorado Anschutz Medical Campus, Department of Medicine Division of Pulmonary Sciences and Critical Care Medicine, 12700 E. 19th Avenue, Mailstop C272, 80045, Aurora, CO, USA
| | - Betelhem Assefa
- University of Colorado Anschutz Medical Campus, Department of Medicine Division of Pulmonary Sciences and Critical Care Medicine, 12700 E. 19th Avenue, Mailstop C272, 80045, Aurora, CO, USA
| | - Jose Rios-Ochoa
- University of Colorado Anschutz Medical Campus, Department of Medicine Division of Pulmonary Sciences and Critical Care Medicine, 12700 E. 19th Avenue, Mailstop C272, 80045, Aurora, CO, USA
| | - Kara Geraci
- University of Colorado Anschutz Medical Campus, Department of Medicine Division of Pulmonary Sciences and Critical Care Medicine, 12700 E. 19th Avenue, Mailstop C272, 80045, Aurora, CO, USA
| | - Brooks Hybertson
- University of Colorado Anschutz Medical Campus, Department of Medicine Division of Pulmonary Sciences and Critical Care Medicine, 12700 E. 19th Avenue, Mailstop C272, 80045, Aurora, CO, USA; Pathways Bioscience, USA
| | - Bifeng Gao
- University of Colorado Anschutz Medical Campus, Department of Medicine Division of Pulmonary Sciences and Critical Care Medicine, 12700 E. 19th Avenue, Mailstop C272, 80045, Aurora, CO, USA; Pathways Bioscience, USA
| | - Joe McCord
- University of Colorado Anschutz Medical Campus, Department of Medicine Division of Pulmonary Sciences and Critical Care Medicine, 12700 E. 19th Avenue, Mailstop C272, 80045, Aurora, CO, USA; Pathways Bioscience, USA
| | - Hanan Elajaili
- University of Colorado Anschutz Medical Campus, Department of Pediatrics, Cardiovascular Pulmonary Research Labs and Pediatric Critical Care Medicine, University of Colorado Denver, Pediatric Critical Care Medicine, Box B131, 12700 E. 19th Avenue, Research 2, Room, 6121, USA
| | - Eva Nozik-Grayck
- University of Colorado Anschutz Medical Campus, Department of Pediatrics, Cardiovascular Pulmonary Research Labs and Pediatric Critical Care Medicine, University of Colorado Denver, Pediatric Critical Care Medicine, Box B131, 12700 E. 19th Avenue, Research 2, Room, 6121, USA
| | - Adela Cota-Gomez
- University of Colorado Anschutz Medical Campus, Department of Medicine Division of Pulmonary Sciences and Critical Care Medicine, 12700 E. 19th Avenue, Mailstop C272, 80045, Aurora, CO, USA.
| |
Collapse
|
30
|
Hunegnaw R, Mushtaq Z, Enyindah-Asonye G, Hoang T, Robert-Guroff M. Alveolar Macrophage Dysfunction and Increased PD-1 Expression During Chronic SIV Infection of Rhesus Macaques. Front Immunol 2019; 10:1537. [PMID: 31333668 PMCID: PMC6618664 DOI: 10.3389/fimmu.2019.01537] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/19/2019] [Indexed: 01/04/2023] Open
Abstract
HIV infected individuals have been shown to be pre-disposed to pulmonary infections even while receiving anti-retroviral therapy. Alveolar macrophages (AMs) play a critical role in lung innate immunity, but contradictory results have been reported regarding their functionality following HIV infection. Here, using the SIV rhesus macaque model, we document the effect of SIV infection on the phenotypic and functional properties of AMs. Following infection with SIVmac251, AMs in bronchoalveolar lavage (BAL) sampled over 2- to 20-weeks post-infection (wpi) were compared to those in BAL samples from naïve macaques. AM expression of proinflammatory cytokines TNF-α, IL-6, IL-1β, and chemokine RANTES drastically increased 2-wpi compared to AMs of naïve macaques (p < 0.0001 for all), but dropped significantly with progression to chronic infection. Phagocytic activity of AMs 2-and 4-wpi was elevated compared to AMs of naive animals (p = 0.0005, p = 0.0004, respectively) but significantly decreased by 12-wpi (p = 0.0022, p = 0.0019, respectively). By 20-wpi the ability of AMs from chronically infected animals to perform SIV-specific antibody-dependent phagocytosis (ADP) was also diminished (p = 0.028). Acute SIV infection was associated with increased FcγRIII expression which subsequently declined with disease progression. Frequency of FcγRIII+ AMs showed a strong trend toward correlation with SIV-specific ADP, and at 2-wpi FcγRIII expression negatively correlated with viral load (r = -0.6819; p = 0.0013), suggesting a contribution to viremia control. Importantly, PD-1 was found to be expressed on AMs and showed a strong trend toward correlation with plasma viral load (r = 0.8266; p = 0.058), indicating that similar to over-expression on T-cells, PD-1 expression on AMs may also be associated with disease progression. Further, AMs predominantly expressed PD-L2, which remained consistent over the course of infection. PD-1 blockade enhanced SIV-specific ADP by AMs from chronic infection indicating that the PD-1/PD-L2 pathway may modulate functional activity of AMs at that stage. These findings provide new insight into the dynamics of SIV infection leading to AM dysfunction and alteration of pulmonary innate immunity. Our results suggest new pathways to exploit in developing therapies targeting pulmonary disease susceptibility in HIV-infected individuals.
Collapse
Affiliation(s)
- Ruth Hunegnaw
- Immune Biology of Retroviral Infection Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Zuena Mushtaq
- Immune Biology of Retroviral Infection Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Gospel Enyindah-Asonye
- Immune Biology of Retroviral Infection Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Tanya Hoang
- Immune Biology of Retroviral Infection Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Marjorie Robert-Guroff
- Immune Biology of Retroviral Infection Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
31
|
Mg-supplementation attenuated lipogenic and oxidative/nitrosative gene expression caused by Combination Antiretroviral Therapy (cART) in HIV-1-transgenic rats. PLoS One 2019; 14:e0210107. [PMID: 30668566 PMCID: PMC6342322 DOI: 10.1371/journal.pone.0210107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/17/2018] [Indexed: 12/12/2022] Open
Abstract
We determined if HIV-1 expression in transgenic (HIV-1-Tg) rats enhanced hepatic genomic changes related to oxidative/nitrosative stress and lipogenesis during cART-treatment, and assessed effects of Mg-supplementation. A clinically used cART (atazanavir-ritonavir+Truvada) was given orally to control and HIV-1-Tg rats (18 weeks) with normal or 6-fold dietary-Mg. Oxidative/nitrosative and lipogenic genes were determined by real-time RT-PCR. cART induced a 4-fold upregulation of sterol regulatory element-binding protein-1 (SREBP-1) in HIV-1-Tg-rats, but not in controls; Tg rats displayed a 2.5-fold higher expression. Both were completely prevented by Mg-supplementation. Nrf2 (Nuclear erythroid-derived factor 2), a master transcription factor controlling redox homeostasis, was down-regulated 50% in HIV-Tg rats, and reduced further to 25% in Tg+cART-rats. Two downstream antioxidant genes, heme oxygenase-1(HmOX1) and Glutathione-S-transferase(GST), were elevated in HIV-Tg alone but were suppressed by cART treatment. Decreased Nrf2 in Tg±cART were normalized by Mg-supplementation along with the reversal of altered HmOX1 and GST expression. Concomitantly, iNOS (inducible nitric oxide synthase) was upregulated 2-fold in Tg+cART rats, which was reversed by Mg-supplementation. In parallel, cART-treatment led to substantial increases in plasma 8-isoprostane, nitrotyrosine, and RBC-GSSG (oxidized glutathione) levels in HIV-1-Tg rats; all indices of oxidative/nitrosative stress were suppressed by Mg-supplementation. Both plasma triglyceride and cholesterol levels were elevated in Tg+cART rats, but were lowered by Mg-supplementation. Thus, the synergistic effects of cART and HIV-1 expression on lipogenic and oxidative/nitrosative effects were revealed at the genomic and biochemical levels. Down-regulation of Nrf2 in the Tg+cART rats suggested their antioxidant response was severely compromised; these abnormal metabolic and oxidative stress effects were effectively attenuated by Mg-supplementation at the genomic level.
Collapse
|
32
|
Therapeutic Modulation of Virus-Induced Oxidative Stress via the Nrf2-Dependent Antioxidative Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6208067. [PMID: 30515256 PMCID: PMC6234444 DOI: 10.1155/2018/6208067] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/24/2018] [Indexed: 12/17/2022]
Abstract
Virus-induced oxidative stress plays a critical role in the viral life cycle as well as the pathogenesis of viral diseases. In response to reactive oxygen species (ROS) generation by a virus, a host cell activates an antioxidative defense system for its own protection. Particularly, a nuclear factor erythroid 2p45-related factor 2 (Nrf2) pathway works in a front-line for cytoprotection and detoxification. Recently, a series of studies suggested that a group of clinically relevant viruses have the capacity for positive and negative regulations of the Nrf2 pathway. This virus-induced modulation of the host antioxidative response turned out to be a crucial determinant for the progression of several viral diseases. In this review, virus-specific examples of positive and negative modulations of the Nrf2 pathway will be summarized first. Then a number of successful genetic and pharmacological manipulations of the Nrf2 pathway for suppression of the viral replication and the pathogenesis-associated oxidative damage will be discussed later. Understanding of the interplay between virus-induced oxidative stress and antioxidative host response will aid in the discovery of potential antiviral supplements for better management of viral diseases.
Collapse
|
33
|
Ramezani A, Nahad MP, Faghihloo E. The role of Nrf2 transcription factor in viral infection. J Cell Biochem 2018; 119:6366-6382. [DOI: 10.1002/jcb.26897] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/28/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Ali Ramezani
- Virology DepartmentSchool of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
- Hepatitis Research CenterBirjand University of Medical SciencesBirjandIran
| | - Mehdi Parsa Nahad
- Virology DepartmentSchool of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Ebrahim Faghihloo
- Department of MicrobiologySchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
34
|
Pal VK, Bandyopadhyay P, Singh A. Hydrogen sulfide in physiology and pathogenesis of bacteria and viruses. IUBMB Life 2018; 70:393-410. [PMID: 29601123 PMCID: PMC6029659 DOI: 10.1002/iub.1740] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/14/2018] [Accepted: 03/02/2018] [Indexed: 12/18/2022]
Abstract
An increasing number of studies have established hydrogen sulfide (H2S) gas as a major cytoprotectant and redox modulator. Following its discovery, H2S has been found to have pleiotropic effects on physiology and human health. H2S acts as a gasotransmitter and exerts its influence on gastrointestinal, neuronal, cardiovascular, respiratory, renal, and hepatic systems. Recent discoveries have clearly indicated the importance of H2S in regulating vasorelaxation, angiogenesis, apoptosis, ageing, and metabolism. Contrary to studies in higher organisms, the role of H2S in the pathophysiology of infectious agents such as bacteria and viruses has been less studied. Bacterial and viral infections are often accompanied by changes in the redox physiology of both the host and the pathogen. Emerging studies indicate that bacterial-derived H2S constitutes a defense system against antibiotics and oxidative stress. The H2S signaling pathway also seems to interfere with redox-based events affected on infection with viruses. This review aims to summarize recent advances on the emerging role of H2S gas in the bacterial physiology and viral infections. Such studies have opened up new research avenues exploiting H2S as a potential therapeutic intervention.
Collapse
Affiliation(s)
- Virender Kumar Pal
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science (IISc), Bangalore, India
| | - Parijat Bandyopadhyay
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science (IISc), Bangalore, India
| | - Amit Singh
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science (IISc), Bangalore, India
| |
Collapse
|
35
|
Accelerated inflammation and oxidative stress induced by LPS in acute lung injury: Ιnhibition by ST1926. Int J Mol Med 2018; 41:3405-3421. [PMID: 29568857 PMCID: PMC5881729 DOI: 10.3892/ijmm.2018.3574] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 02/20/2018] [Indexed: 01/01/2023] Open
Abstract
Bioavailable and less toxic synthetic retinoids, such as the atypical adamantyl retinoid ST1926, have been well developed and investigated in clinical trials for many diseases. The aim of our study was to explore the role of ST1926 in lipopolysaccharide (LPS)-induced acute lung injury (ALI) and to reveal the possible molecular mechanism. Mice were treated with LPS to induce acute lung injury followed by ST1926 administration. After LPS induction, mice administered with ST1926 showed lower inflammation infiltration in bronchoalveolar lavage (BAL) fluid, and pro-inflammatory cytokines, including interleukin-1β (IL-1β), IL-18, IL-6 and tumor necrosis factor-α (TNF-α) in serum and lung tissue samples obtained from mice. In addition, western blot assays suggested that ST1926 suppressed nuclear factor-κB (NF-κB), inhibitor-κB kinase-α (IκBα) and IκB kinase (IKKα), as well as Toll-like receptor 4 (TLR4) induced by LPS. In addition, reactive oxygen species (ROS) stimulated by LPS was also suppressed for ST1926 through inhibiting p38 and extracellular receptor kinase (ERK) signaling pathway. Taken together, the data here indicated that ST1926 may be of potential value in treating acute lung injury through inflammation and ROS suppression via inactivating TLR4/NF-κB and p38/ERK1/2 signaling pathways.
Collapse
|
36
|
Nrf2 as regulator of innate immunity: A molecular Swiss army knife! Biotechnol Adv 2018; 36:358-370. [DOI: 10.1016/j.biotechadv.2017.12.012] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/16/2017] [Accepted: 12/19/2017] [Indexed: 12/12/2022]
|
37
|
Hennig P, Garstkiewicz M, Grossi S, Di Filippo M, French LE, Beer HD. The Crosstalk between Nrf2 and Inflammasomes. Int J Mol Sci 2018; 19:ijms19020562. [PMID: 29438305 PMCID: PMC5855784 DOI: 10.3390/ijms19020562] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 01/03/2023] Open
Abstract
The Nrf2 (nuclear factor E2-related factor or nuclear factor (erythroid-derived 2)-like 2) transcription factor is a key player in cytoprotection and activated in stress conditions caused by reactive oxygen species (ROS) or electrophiles. Inflammasomes represent central regulators of inflammation. Upon detection of various stress factors, assembly of the inflamasome protein complex results in activation and secretion of proinflammatory cytokines. In addition, inflammasome activation causes pyroptosis, a lytic form of cell death, which supports inflammation. There is growing evidence of a crosstalk between the Nrf2 and inflammasome pathways at different levels. For example, Nrf2 activating compounds inhibit inflammasomes and consequently inflammation. This review summarizes what is known about the complex and predominantly antagonistic relationship of both stress-activated pathways.
Collapse
Affiliation(s)
- Paulina Hennig
- Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, F30, CH-8091 Zurich, Switzerland.
| | - Martha Garstkiewicz
- Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, F30, CH-8091 Zurich, Switzerland.
| | - Serena Grossi
- Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, F30, CH-8091 Zurich, Switzerland.
| | - Michela Di Filippo
- Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, F30, CH-8091 Zurich, Switzerland.
| | - Lars E French
- Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, F30, CH-8091 Zurich, Switzerland.
- Faculty of Medicine, University of Zurich, CH-8091 Zurich, Switzerland.
| | - Hans-Dietmar Beer
- Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, F30, CH-8091 Zurich, Switzerland.
- Faculty of Medicine, University of Zurich, CH-8091 Zurich, Switzerland.
| |
Collapse
|