1
|
Aggio V, Fabbella L, Poletti S, Lorenzi C, Finardi A, Colombo C, Zanardi R, Furlan R, Benedetti F. Circulating cytotoxic immune cell composition, activation status and toxins expression associate with white matter microstructure in bipolar disorder. Sci Rep 2023; 13:22209. [PMID: 38097657 PMCID: PMC10721611 DOI: 10.1038/s41598-023-49146-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023] Open
Abstract
Patients with bipolar disorder (BD) show higher immuno-inflammatory setpoints, with in vivo alterations in white matter (WM) microstructure and post-mortem infiltration of T cells in the brain. Cytotoxic CD8+ T cells can enter and damage the brain in inflammatory disorders, but little is known in BD. Our study aimed to investigate the relationship between cytotoxic T cells and WM alterations in BD. In a sample of 83 inpatients with BD in an active phase of illness (68 depressive, 15 manic), we performed flow cytometry immunophenotyping to investigate frequencies, activation status, and expression of cytotoxic markers in CD8+ and tested for their association with diffusion tensor imaging (DTI) measures of WM microstructure. Frequencies of naïve and activated CD8+ cell populations expressing Perforin, or both Perforin and Granzyme, negatively associated with WM microstructure. CD8+ Naïve cells negative for Granzyme and Perforin positively associates with indexes of WM integrity, while the frequency of CD8+ memory cells negatively associates with index of WM microstructure, irrespective of toxins expression. The resulting associations involve measures representative of orientational coherence and myelination of the fibers (FA and RD), suggesting disrupted oligodendrocyte-mediated myelination. These findings seems to support the hypothesis that immunosenescence (less naïve, more memory T cells) can detrimentally influence WM microstructure in BD and that peripheral CD8+ T cells may participate in inducing an immune-related WM damage in BD mediated by killer proteins.
Collapse
Affiliation(s)
- Veronica Aggio
- Psychiatry and Clinical Psychobiology Unit, Division of Neurosciences, IRCCS San Raffaele Scientific Institute, San Raffaele Turro, Via Stamira d'Ancona 20, 20127, Milano, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| | - Lorena Fabbella
- Clinical Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Poletti
- Psychiatry and Clinical Psychobiology Unit, Division of Neurosciences, IRCCS San Raffaele Scientific Institute, San Raffaele Turro, Via Stamira d'Ancona 20, 20127, Milano, Italy
| | - Cristina Lorenzi
- Psychiatry and Clinical Psychobiology Unit, Division of Neurosciences, IRCCS San Raffaele Scientific Institute, San Raffaele Turro, Via Stamira d'Ancona 20, 20127, Milano, Italy
| | - Annamaria Finardi
- Clinical Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Colombo
- Vita-Salute San Raffaele University, Milan, Italy
- Mood Disorders Unit, IRCCS Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Raffaella Zanardi
- Mood Disorders Unit, IRCCS Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Roberto Furlan
- Vita-Salute San Raffaele University, Milan, Italy
- Clinical Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Benedetti
- Psychiatry and Clinical Psychobiology Unit, Division of Neurosciences, IRCCS San Raffaele Scientific Institute, San Raffaele Turro, Via Stamira d'Ancona 20, 20127, Milano, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
2
|
Kim BH, Kim SH, Han C, Jeong HG, Lee MS, Kim J. Antidepressant-induced mania in panic disorder: a single-case study of clinical and functional connectivity characteristics. Front Psychiatry 2023; 14:1205126. [PMID: 37304446 PMCID: PMC10248065 DOI: 10.3389/fpsyt.2023.1205126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Background Mental health issues, including panic disorder (PD), are prevalent and often co-occur with anxiety and bipolar disorders. While panic disorder is characterized by unexpected panic attacks, and its treatment often involves antidepressants, there is a 20-40% risk of inducing mania (antidepressant-induced mania) during treatment, making it crucial to understand mania risk factors. However, research on clinical and neurological characteristics of patients with anxiety disorders who develop mania is limited. Methods In this single case study, we conducted a larger prospective study on panic disorder, comparing baseline data between one patient who developed mania (PD-manic) and others who did not (PD-NM group). We enrolled 27 patients with panic disorder and 30 healthy controls (HCs) and examined alterations in amygdala-based brain connectivity using a seed-based whole-brain approach. We also performed exploratory comparisons with healthy controls using ROI-to-ROI analyses and conducted statistical inferences at a threshold of cluster-level family-wise error-corrected p < 0.05, with the cluster-forming threshold at the voxel level of uncorrected p < 0.001. Results The patient with PD-mania showed lower connectivity in brain regions related to the default mode network (left precuneous cortex, maximum z-value within the cluster = -6.99) and frontoparietal network (right middle frontal gyrus, maximum z-value within the cluster = -7.38; two regions in left supramarginal gyrus, maximum z-value within the cluster = -5.02 and -5.86), and higher in brain regions associated with visual processing network (right lingual gyrus, maximum z-value within the cluster = 7.86; right lateral occipital cortex, maximum z-value within the cluster = 8.09; right medial temporal gyrus, maximum z-value within the cluster = 8.16) in the patient with PD-mania compared to the PD-NM group. One significantly identified cluster, the left medial temporal gyrus (maximum z-value within the cluster = 5.82), presented higher resting-state functional connectivity with the right amygdala. Additionally, ROI-to-ROI analysis revealed that significant clusters between PD-manic and PD-NM groups differed from HCs in the PD-manic group but not in the PD-NM group. Conclusion Here, we demonstrate altered amygdala-DMN and amygdala-FPN connectivity in the PD-manic patient, as reported in bipolar disorder (hypo) manic episodes. Our study suggests that amygdala-based resting-state functional connectivity could serve as a potential biomarker for antidepressant-induced mania in panic disorder patients. Our findings provide an advance in understanding the neurological basis of antidepressant-induced mania, but further research with larger cohorts and more cases is necessary for a broader perspective on this issue.
Collapse
Affiliation(s)
- Byung-Hoon Kim
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Behavioral Sciences in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung-Hyun Kim
- Department of Psychiatry, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Changsu Han
- Department of Psychiatry, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyun-Ghang Jeong
- Department of Psychiatry, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Moon-Soo Lee
- Department of Psychiatry, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Junhyung Kim
- Department of Psychiatry, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
3
|
Robledo-Rengifo P, Palacio-Ortiz JD, García-Valencia J, Vargas-Upegui C. Is structural connectivity different in child and adolescent relatives of patients with bipolar disorder? A narrative review according to studies with DTI. REVISTA COLOMBIANA DE PSIQUIATRIA (ENGLISH ED.) 2023; 52:146-155. [PMID: 37474351 DOI: 10.1016/j.rcpeng.2021.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/18/2021] [Indexed: 07/22/2023]
Abstract
INTRODUCTION Bipolar disorder (BD) has been associated with a decrease in white matter integrity. Diffusion tensor imaging (DTI) studies have enabled these changes to be elucidated with higher quality. Due to BD's high heritability, some studies have been conducted in relatives of BD patients looking at white matter integrity, and have found that structural connectivity may also be affected. This alteration has been proposed as a potential BD biomarker of vulnerability. However, there are few studies in children and adolescents. OBJECTIVE To conduct a review of the literature on changes in white matter integrity determined by DTI in high-risk children and adolescents. RESULTS Brain structural connectivity in the paediatric population is described in studies using DTI. Changes in the myelination process from its evolution within normal neurodevelopment to the findings in fractional anisotropy (FA) in BD patients and their high-risk relatives are also described. CONCLUSIONS Studies show that both BD patients and their at-risk relatives present a decrease in FA in specific brain regions. Studies in children and adolescents with a high risk of BD, indicate a reduced FA in axonal tracts involved in emotional and cognitive functions. Decreased FA can be considered as a vulnerability biomarker for BD.
Collapse
Affiliation(s)
- Paula Robledo-Rengifo
- Grupo de Investigación en Psiquiatría (GIPSI), Departamento de Psiquiatría, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Juan David Palacio-Ortiz
- Grupo de Investigación en Psiquiatría (GIPSI), Departamento de Psiquiatría, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia; Grupo de Trastornos del Ánimo, Hospital San Vicente Fundación, Medellín, Colombia.
| | - Jenny García-Valencia
- Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Cristian Vargas-Upegui
- Grupo de Investigación en Psiquiatría (GIPSI), Departamento de Psiquiatría, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia; Grupo de Trastornos del Ánimo, Hospital San Vicente Fundación, Medellín, Colombia
| |
Collapse
|
4
|
Investigation of endophenotype potential of decreased fractional anisotropy in pediatric bipolar disorder patients and unrelated offspring of bipolar disorder patients. CNS Spectr 2022; 27:709-715. [PMID: 34044907 DOI: 10.1017/s1092852921000584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Bipolar disorder (BD) is a severe psychiatric disorder associated with structural and functional brain abnormalities, some of which have been found in unaffected relatives as well. In this study, we examined the potential role of decreased fractional anisotropy (FA) as a BD endophenotype, in adolescents at high risk for BD. METHODS We included 15 offspring of patients with BD, 16 pediatric BD patients, and 16 matched controls. Diffusion weighted scans were obtained on a 3T scanner using an echo-planar sequence. Scans were segmented using FreeSurfer. RESULTS Our results showed significantly decreased FA in six brain areas of offspring group; left superior temporal gyrus (LSTG; P < .0001), left transverse temporal gyrus (LTTG; P = .002), left banks of the superior temporal sulcus (LBSTS; P = .002), left anterior cingulum (LAC; P = .003), right temporal pole (RTP; P = .004) and left frontal pole (LFP; P = .017). On analysis, LSTG, LAC, and RTP demonstrated a potential to be an endophenotype when comparing all three groups. FA values in three regions, LBSTS, LTTG, and LFP were increased only in controls. CONCLUSION Our findings point at decreased FA as a possible endophenotype for BD, as they were found in children of patients with BD. Most of these areas were previously found to have morphological and functional changes in adult and pediatric BD, and are thought to play important roles in affected domains of functioning. Prospective follow up studies should be performed to detect reliability of decreased FA as an endophenotype and effects of treatment on FA.
Collapse
|
5
|
Roberts G, Wen W, Ridgway K, Ho C, Gooch P, Leung V, Williams T, Breakspear M, Mitchell PB. Hippocampal cingulum white matter increases over time in young people at high genetic risk for bipolar disorder. J Affect Disord 2022; 314:325-332. [PMID: 35878837 DOI: 10.1016/j.jad.2022.07.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/23/2022] [Accepted: 07/17/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Bipolar disorder (BD) is a strongly familial psychiatric disorder associated with white matter (WM) brain abnormalities. It is unclear whether such abnormalities are present in relatives without BD, and little is known about WM trajectories in those at increased genetic risk. METHODS Diffusion magnetic resonance imaging (dMRI) data were acquired at baseline and after two years in 91 unaffected individuals with a first-degree relative with bipolar disorder (HR), and 85 individuals with no family history of mental illness (CON). All participants were aged between 12 and 30 years at baseline. We examined longitudinal change in Fractional Anisotropy (FA) using tract-based spatial statistics (TBSS). RESULTS Compared to the CON group, HR participants showed a significant increase in FA in the right cingulum (hippocampus) (CGH) over a two-year period (p < .05, FDR corrected). This effect was more pronounced in HR individuals without a lifetime diagnosis of a mood disorder than those with a mood disorder. LIMITATIONS While our study is well powered to achieve the primary objectives, our sub-group analyses were under powered. CONCLUSIONS In one of the very few longitudinal neuroimaging studies of young people at high risk for BD, this study reports novel evidence of atypical white matter development in HR individuals in a key cortico-limbic tract involved in emotion regulation. Our findings also suggest that this different white matter developmental trajectory may be stronger in HR individuals without affective psychopathology. As such, increases in FA in the right CGH of HR participants may be a biomarker of resilience to mood disorders.
Collapse
Affiliation(s)
- G Roberts
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia.
| | - W Wen
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
| | - K Ridgway
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
| | - C Ho
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
| | - P Gooch
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
| | - V Leung
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
| | - T Williams
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
| | - M Breakspear
- School of Psychology, Faculty of Science, Discipline of Psychiatry, Faculty of Health and Medicine, University of Newcastle, NSW, Australia
| | - P B Mitchell
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
| |
Collapse
|
6
|
Lima Santos JP, Bertocci M, Bebko G, Goldstein T, Kim T, Iyengar S, Bonar L, Gill M, Merranko J, Yendiki A, Birmaher B, Phillips ML, Versace A. White Matter Correlates of Early-Onset Bipolar Illness and Predictors of One-Year Recurrence of Depression in Adults with Bipolar Disorder. J Clin Med 2022; 11:3432. [PMID: 35743502 PMCID: PMC9225103 DOI: 10.3390/jcm11123432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
Diffusion Magnetic Resonance Imaging (dMRI) studies have reported abnormalities in emotion regulation circuits in BD; however, no study has examined the contribution of previous illness on these mechanisms. Using global probabilistic tractography, we aimed to identify neural correlates of previous BD illness and the extent to which these can help predict one-year recurrence of depressive episodes. dMRI data were collected in 70 adults with early-onset BD who were clinically followed for up to 18 years and 39 healthy controls. Higher number of depressive episodes during childhood/adolescence and higher percentage of time with syndromic depression during longitudinal follow-up was associated with lower fractional anisotropy (FA) in focal regions of the forceps minor (left, F = 4.4, p = 0.003; right, F = 3.1, p = 0.021) and anterior cingulum bundle (left, F = 4.7, p = 0.002; right, F = 7.0, p < 0.001). Lower FA in these regions was also associated with higher depressive and anxiety symptoms at scan. Remarkably, those having higher FA in the right cluster of the forceps minor (AOR = 0.43, p = 0.017) and in a cluster of the posterior cingulum bundle (right, AOR = 0.50, p = 0.032) were protected against the recurrence of depressive episodes. Previous depressive symptomatology may cause neurodegenerative effects in the forceps minor that are associated with worsening of BD symptomatology in subsequent years. Abnormalities in the posterior cingulum may also play a role.
Collapse
Affiliation(s)
- João Paulo Lima Santos
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15260, USA; (M.B.); (G.B.); (T.G.); (S.I.); (L.B.); (M.G.); (J.M.); (B.B.); (M.L.P.); (A.V.)
| | - Michele Bertocci
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15260, USA; (M.B.); (G.B.); (T.G.); (S.I.); (L.B.); (M.G.); (J.M.); (B.B.); (M.L.P.); (A.V.)
| | - Genna Bebko
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15260, USA; (M.B.); (G.B.); (T.G.); (S.I.); (L.B.); (M.G.); (J.M.); (B.B.); (M.L.P.); (A.V.)
| | - Tina Goldstein
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15260, USA; (M.B.); (G.B.); (T.G.); (S.I.); (L.B.); (M.G.); (J.M.); (B.B.); (M.L.P.); (A.V.)
| | - Tae Kim
- Magnetic Resonance Research Center, Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| | - Satish Iyengar
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15260, USA; (M.B.); (G.B.); (T.G.); (S.I.); (L.B.); (M.G.); (J.M.); (B.B.); (M.L.P.); (A.V.)
| | - Lisa Bonar
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15260, USA; (M.B.); (G.B.); (T.G.); (S.I.); (L.B.); (M.G.); (J.M.); (B.B.); (M.L.P.); (A.V.)
| | - MaryKay Gill
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15260, USA; (M.B.); (G.B.); (T.G.); (S.I.); (L.B.); (M.G.); (J.M.); (B.B.); (M.L.P.); (A.V.)
| | - John Merranko
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15260, USA; (M.B.); (G.B.); (T.G.); (S.I.); (L.B.); (M.G.); (J.M.); (B.B.); (M.L.P.); (A.V.)
| | - Anastasia Yendiki
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA;
| | - Boris Birmaher
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15260, USA; (M.B.); (G.B.); (T.G.); (S.I.); (L.B.); (M.G.); (J.M.); (B.B.); (M.L.P.); (A.V.)
| | - Mary L. Phillips
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15260, USA; (M.B.); (G.B.); (T.G.); (S.I.); (L.B.); (M.G.); (J.M.); (B.B.); (M.L.P.); (A.V.)
| | - Amelia Versace
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15260, USA; (M.B.); (G.B.); (T.G.); (S.I.); (L.B.); (M.G.); (J.M.); (B.B.); (M.L.P.); (A.V.)
- Magnetic Resonance Research Center, Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| |
Collapse
|
7
|
Cha J, Spielberg JM, Hu B, Altinay M, Anand A. Differences in network properties of the structural connectome in bipolar and unipolar depression. Psychiatry Res Neuroimaging 2022; 321:111442. [PMID: 35152051 PMCID: PMC10577577 DOI: 10.1016/j.pscychresns.2022.111442] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Differentiation between Bipolar Disorder Depression (BDD) and Unipolar Major Depressive Disorder (MDD) is critical to clinical practice. This study investigated machine learning classification of BDD and MDD using graph properties of Diffusion-weighted Imaging (DWI)-based structural connectome. METHODS This study included a large number of medication-free (N =229) subjects: 60 BDD, 95 MDD, and 74 Healthy Control (HC) subjects. DWI probabilistic tractography was performed to create Fractional Anisotropy (FA) and Total Streamline (TS)-based structural connectivity matrices. Global and nodal graph properties were computed from these matrices and tested for group differences. Next, using identified graph properties, machine learning classification (MLC) between BDD, MDD, MDD with risk factors for developing BD (MDD+), and MDD without risk factors for developing BD (MDD-) was conducted. RESULTS Communicability Efficiency of the left superior frontal gyrus (SFG) was significantly higher in BDD vs. MDD. In particular, Communicability Efficiency using TS-based connectivity in the left SFG as well as FA-based connectivity in the right middle anterior cingulate area was higher in the BDD vs. MDD- group. There were no significant differences in graph properties between BDD and MDD+. Direct comparison between MDD+ and MDD- showed differences in Eigenvector Centrality (TS-based connectivity) of the left middle frontal sulcus. Acceptable Area Under Curve (AUC) for classification were seen between the BDD and MDD- groups, and between the MDD+ and MDD- groups, using the differing graph properties. CONCLUSION Graph properties of DWI-based connectivity can discriminate between BDD and MDD subjects without risk factors for BD.
Collapse
Affiliation(s)
- Jungwon Cha
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, USA; Center for Behavioral Health, Cleveland Clinic, USA
| | | | - Bo Hu
- Center for Quantitative Health Sciences, Cleveland Clinic, USA
| | | | - Amit Anand
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, USA; Center for Behavioral Health, Cleveland Clinic, USA
| |
Collapse
|
8
|
Xu M, Zhang W, Hochwalt P, Yang C, Liu N, Qu J, Sun H, DelBello MP, Lui S, Nery FG. Structural connectivity associated with familial risk for mental illness: A meta‐analysis of diffusion tensor imaging studies in relatives of patients with severe mental disorders. Hum Brain Mapp 2022; 43:2936-2950. [PMID: 35285560 PMCID: PMC9120564 DOI: 10.1002/hbm.25827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/23/2022] [Accepted: 02/14/2022] [Indexed: 02/05/2023] Open
Abstract
Schizophrenia (SCZ), bipolar disorder (BD), and major depressive disorder (MDD) are heritable conditions with overlapping genetic liability. Transdiagnostic and disorder‐specific brain changes associated with familial risk for developing these disorders remain poorly understood. We carried out a meta‐analysis of diffusion tensor imaging (DTI) studies to investigate white matter microstructure abnormalities in relatives that might correspond to shared and discrete biomarkers of familial risk for psychotic or mood disorders. A systematic search of PubMed and Embase was performed to identify DTI studies in relatives of SCZ, BD, and MDD patients. Seed‐based d Mapping software was used to investigate global differences in fractional anisotropy (FA) between overall and disorder‐specific relatives and healthy controls (HC). Our search identified 25 studies that met full inclusion criteria. A total of 1,144 relatives and 1,238 HC were included in the meta‐analysis. The overall relatives exhibited decreased FA in the genu and splenium of corpus callosum (CC) compared with HC. This finding was found highly replicable in jack‐knife analysis and subgroup analyses. In disorder‐specific analysis, compared to HC, relatives of SCZ patients exhibited the same changes while those of BD showed reduced FA in the left inferior longitudinal fasciculus (ILF). The present study showed decreased FA in the genu and splenium of CC in relatives of SCZ, BD, and MDD patients, which might represent a shared familial vulnerability marker of severe mental illness. The white matter abnormalities in the left ILF might represent a specific familial risk for bipolar disorder.
Collapse
Affiliation(s)
- Mengyuan Xu
- Department of Radiology West China Hospital of Sichuan University Chengdu China
- Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu China
| | - Wenjing Zhang
- Department of Radiology West China Hospital of Sichuan University Chengdu China
- Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu China
| | - Paul Hochwalt
- Department of Psychiatry and Behavioral Neuroscience University of Cincinnati College of Medicine Cincinnati Ohio USA
| | - Chengmin Yang
- Department of Radiology West China Hospital of Sichuan University Chengdu China
- Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu China
| | - Naici Liu
- Department of Radiology West China Hospital of Sichuan University Chengdu China
- Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu China
| | - Jiao Qu
- Department of Radiology West China Hospital of Sichuan University Chengdu China
- Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu China
| | - Hui Sun
- Department of Radiology West China Hospital of Sichuan University Chengdu China
- Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu China
| | - Melissa P. DelBello
- Department of Psychiatry and Behavioral Neuroscience University of Cincinnati College of Medicine Cincinnati Ohio USA
| | - Su Lui
- Department of Radiology West China Hospital of Sichuan University Chengdu China
- Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu China
| | - Fabiano G. Nery
- Department of Psychiatry and Behavioral Neuroscience University of Cincinnati College of Medicine Cincinnati Ohio USA
| |
Collapse
|
9
|
Luttenbacher I, Phillips A, Kazemi R, Hadipour AL, Sanghvi I, Martinez J, Adamson MM. Transdiagnostic role of glutamate and white matter damage in neuropsychiatric disorders: A Systematic Review. J Psychiatr Res 2022; 147:324-348. [PMID: 35151030 DOI: 10.1016/j.jpsychires.2021.12.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/08/2021] [Accepted: 12/19/2021] [Indexed: 12/09/2022]
Abstract
Neuropsychiatric disorders including generalized anxiety disorder (GAD), obsessive-compulsive disorder (OCD), major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SZ) have been considered distinct categories of diseases despite their overlapping characteristics and symptomatology. We aimed to provide an in-depth review elucidating the role of glutamate/Glx and white matter (WM) abnormalities in these disorders from a transdiagnostic perspective. The PubMed online database was searched for studies published between 2010 and 2021. After careful screening, 401 studies were included. The findings point to decreased levels of glutamate in the Anterior Cingulate Cortex in both SZ and BD, whereas Glx is elevated in the Hippocampus in SZ and MDD. With regard to WM abnormalities, the Corpus Callosum and superior Longitudinal Fascicle were the most consistently identified brain regions showing decreased fractional anisotropy (FA) across all the reviewed disorders, except GAD. Additionally, the Uncinate Fasciculus displayed decreased FA in all disorders, except OCD. Decreased FA was also found in the inferior Longitudinal Fasciculus, inferior Fronto-Occipital Fasciculus, Thalamic Radiation, and Corona Radiata in SZ, BD, and MDD. Decreased FA in the Fornix and Corticospinal Tract were found in BD and SZ patients. The Cingulum and Anterior Limb of Internal Capsule exhibited decreased FA in MDD and SZ patients. The results suggest a gradual increase in severity from GAD to SZ defined by the number of brain regions with WM abnormality which may be partially caused by abnormal glutamate levels. WM damage could thus be considered a potential marker of some of the main neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ines Luttenbacher
- Department of Social & Behavioral Sciences, University of Amsterdam, Amsterdam, Netherlands; Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Angela Phillips
- Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Reza Kazemi
- Department of Cognitive Psychology, Institute for Cognitive Science Studies, Tehran, Iran
| | - Abed L Hadipour
- Department of Cognitive Sciences, University of Messina, Messina, Italy
| | - Isha Sanghvi
- Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Department of Neuroscience, University of Southern California, Los Angeles, CA, USA
| | - Julian Martinez
- Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Palo Alto University, Palo Alto, CA, USA
| | - Maheen M Adamson
- Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
10
|
Differentiating white matter measures that protect against vs. predispose to bipolar disorder and other psychopathology in at-risk youth. Neuropsychopharmacology 2021; 46:2207-2216. [PMID: 34285367 PMCID: PMC8505429 DOI: 10.1038/s41386-021-01088-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/17/2021] [Accepted: 06/24/2021] [Indexed: 12/02/2022]
Abstract
Bipolar disorder (BD) is highly heritable. Identifying objective biomarkers reflecting pathophysiological processes predisposing to, versus protecting against BD, can help identify BD risk in offspring of BD parents. We recruited 21 BD participants with a first-degree relative with BD, 25 offspring of BD parents, 27 offspring of comparison parents with non-BD psychiatric disorders, and 32 healthy offspring of healthy parents. In at-risk groups, 23 had non-BD diagnoses and 29, no Axis-I diagnoses(healthy). Five at-risk offspring who developed BD post scan(Converters) were included. Diffusion imaging(dMRI) analysis with tract segmentation identified between-group differences in the microstructure of prefrontal tracts supporting emotional regulation relevant to BD: forceps minor, anterior thalamic radiation(ATR), cingulum bundle(CB), and uncinate fasciculus(UF). BD participants showed lower fractional anisotropy (FA) in the right CB (anterior portion) than other groups (q < 0.05); and in bilateral ATR (posterior portion) versus at-risk groups (q < 0.001). Healthy, but not non-BD, at-risk participants showed significantly higher FA in bilateral ATR clusters than healthy controls (qs < 0.05). At-risk groups showed higher FA in these clusters than BD participants (qs < 0.05). Non-BD versus healthy at-risk participants, and Converters versus offspring of BD parents, showed lower FA in the right ATR cluster (qs < 0.05). Low anterior right CB FA in BD participants versus other groups might result from having BD. High bilateral ATR FA in at-risk groups, and in healthy at-risk participants, versus healthy controls might protect against BD/other psychiatric disorders. Absence of elevated right ATR FA in non-BD versus healthy at-risk participants, and in Converters versus non-converter offspring of BD parents, might lower protection against BD in at-risk groups.
Collapse
|
11
|
Robledo-Rengifo P, Palacio-Ortiz JD, García-Valencia J, Vargas-Upegui C. Is Structural Connectivity Different in Child and Adolescent Relatives of Patients with Bipolar Disorder? A Narrative Review According to Studies with DTI. REVISTA COLOMBIANA DE PSIQUIATRIA (ENGLISH ED.) 2021; 52:S0034-7450(21)00039-1. [PMID: 34217530 DOI: 10.1016/j.rcp.2021.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/02/2020] [Accepted: 01/18/2021] [Indexed: 06/13/2023]
Abstract
INTRODUCTION Bipolar disorder (BD) has been associated with a decrease in white matter integrity. Diffusion tensor imaging (DTI) studies have enabled these changes to be elucidated with higher quality. Due to BD's high heritability, some studies have been conducted in relatives of BD patients looking at white matter integrity, and have found that structural connectivity may also be affected. This alteration has been proposed as a potential BD biomarker of vulnerability. However, there are few studies in children and adolescents. OBJECTIVE To conduct a review of the literature on changes in white matter integrity determined by DTI in high-risk children and adolescents. RESULTS Brain structural connectivity in the paediatric population is described in studies using DTI. Changes in the myelination process from its evolution within normal neurodevelopment to the findings in fractional anisotropy (FA) in BD patients and their high-risk relatives are also described. CONCLUSIONS Studies show that both BD patients and their at-risk relatives present a decrease in FA in specific brain regions. Studies in children and adolescents with a high risk of BD, indicate a reduced FA in axonal tracts involved in emotional and cognitive functions. Decreased FA can be considered as a vulnerability biomarker for BD.
Collapse
Affiliation(s)
- Paula Robledo-Rengifo
- Grupo de Investigación en Psiquiatría (GIPSI), Departamento de Psiquiatría, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Juan David Palacio-Ortiz
- Grupo de Investigación en Psiquiatría (GIPSI), Departamento de Psiquiatría, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia; Grupo de Trastornos del Ánimo, Hospital San Vicente Fundación, Medellín, Colombia.
| | - Jenny García-Valencia
- Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Cristian Vargas-Upegui
- Grupo de Investigación en Psiquiatría (GIPSI), Departamento de Psiquiatría, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia; Grupo de Trastornos del Ánimo, Hospital San Vicente Fundación, Medellín, Colombia
| |
Collapse
|
12
|
Guglielmo R, Miskowiak KW, Hasler G. Evaluating endophenotypes for bipolar disorder. Int J Bipolar Disord 2021; 9:17. [PMID: 34046710 PMCID: PMC8160068 DOI: 10.1186/s40345-021-00220-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phenotypic heterogeneity is a major impediment to the elucidation of the neurobiology and genetics of bipolar disorder. Endophenotype could help in reducing heterogeneity by defining biological traits that are more direct expressions of gene effects. The aim of this review is to examine the recent literature on clinical, epidemiological, neurobiological, and genetic findings and to select and evaluate candidate endophenotypes for bipolar disorder. Evaluating putative endophenotype could be helpful in better understanding the neurobiology of bipolar disorder by improving the definition of bipolar-related phenotypes in genetic studies. In this manner, research on endophenotypes could be useful to improve psychopathological diagnostics in the long-run by dissecting psychiatric macro phenotypes into biologically valid components. MAIN BODY The associations among the psychopathological and biological endophenotypes are discussed with respect to specificity, temporal stability, heritability, familiarity, and clinical and biological plausibility. Numerous findings regarding brain function, brain structure, neuropsychology and altered neurochemical pathways in patients with bipolar disorder and their relatives deserve further investigation. Overall, major findings suggest a developmental origin of this disorder as all the candidate endophenotypes that we have been able to select are present both in the early stages of the disorder as well as in subjects at risk. CONCLUSIONS Among the stronger candidate endophenotypes, we suggest circadian rhythm instability, dysmodulation of emotion and reward, altered neuroimmune state, attention and executive dysfunctions, anterior cingulate cortex thickness and early white matter abnormalities. In particular, early white matter abnormalities could be the result of a vulnerable brain on which new stressors are added in young adulthood which favours the onset of the disorder. Possible pathways that lead to a vulnerable brain are discussed starting from the data about molecular and imaging endophenotypes of bipolar disorder.
Collapse
Affiliation(s)
- Riccardo Guglielmo
- Psychiatry Research Unit, Fribourg Network for Mental Health (RFSM), University of Fribourg, Chemin du Cardinal-Journet 3, 1752, Villars-sur-Glâne, Switzerland.,Department of Neuroscience, Institute of Psychiatry, Catholic University Medical School, Largo Francesco Vito 1, 00168, Rome, Italy
| | - Kamilla Woznica Miskowiak
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Gregor Hasler
- Psychiatry Research Unit, Fribourg Network for Mental Health (RFSM), University of Fribourg, Chemin du Cardinal-Journet 3, 1752, Villars-sur-Glâne, Switzerland.
| |
Collapse
|
13
|
Koreki A, Niida R, Niida A, Yamagata B, Anamizu S, Mimura M. Comparison of White Matter Structure of Drug-Naïve Patients With Bipolar Disorder and Major Depressive Disorder Using Diffusion Tensor Tractography. Front Psychiatry 2021; 12:714502. [PMID: 35237182 PMCID: PMC8882824 DOI: 10.3389/fpsyt.2021.714502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The presence of microstructural white matter (WM) abnormalities in individuals with bipolar disorder (BD) has previously been reported. However, the interpretation of data is challenging because pharmacological treatment has a potential effect on WM integrity. To date, no study has compared the differences in WM structure among drug-naïve BD patients, drug-naïve major depression disorder (MDD) patients, and healthy controls (HC) using the visual evaluation method of diffusion tensor tractography (DTT). METHODS This retrospective study included 12 drug-naïve patients with BD, 15 drug-naïve patients with MDD, and 27 age- and sex-matched HC individuals. Visual evaluation, fractional anisotropy (FA), and apparent diffusion coefficient (ADC) were analysed in the anterior thalamic radiation (ATR) as a tract of interest using the optimal follow-up truncation threshold. They were also analysed in the cingulate fasciculus, superior longitudinal fasciculus, inferior longitudinal fasciculus, inferior fronto-occipital fasciculus, uncinate fasciculus, and fornix. RESULTS No significant differences were found in the FA or ADC of any tract. However, visual evaluation revealed poorer depiction of ATR in patients with BD than in patients with MDD and HC individuals (p = 0.004). Our post-hoc analysis showed a significant difference between BD and HC patients (p = 0.018). CONCLUSIONS The visual evaluation method of DTT revealed poor depiction of ATR in patients with BD compared with HC individuals and MDD patients, suggesting microstructural WM abnormalities of ATR in BD.
Collapse
Affiliation(s)
- Akihiro Koreki
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.,Department of Psychiatry, National Hospital Organization Shimofusa Psychiatric Medical Center, Chiba, Japan
| | - Richi Niida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.,Department of Radiology, Tomishiro Central Hospital, Tomigusuku, Japan
| | - Akira Niida
- Department of Radiology, Tomishiro Central Hospital, Tomigusuku, Japan
| | - Bun Yamagata
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Sachiko Anamizu
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
14
|
Masuda Y, Okada G, Takamura M, Shibasaki C, Yoshino A, Yokoyama S, Ichikawa N, Okuhata S, Kobayashi T, Yamawaki S, Okamoto Y. White matter abnormalities and cognitive function in euthymic patients with bipolar disorder and major depressive disorder. Brain Behav 2020; 10:e01868. [PMID: 33009714 PMCID: PMC7749556 DOI: 10.1002/brb3.1868] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 08/12/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES In recent years, a growing number of diffusion tensor imaging (DTI) studies have compared white matter integrity between patients with major depressive disorder (MDD) and bipolar disorder (BD). However, few studies have examined the pathophysiological significance of different degrees of white matter abnormalities between the two disorders. The present study comprehensively assessed white matter integrity among healthy controls (HC) and euthymic patients with MDD and BD using whole-brain tractography and examined associations between white matter integrity and cognitive functioning. METHODS We performed neurocognitive examinations and DTI with 30 HCs, 30 patients with MDD, and 30 patients with BD. We statistically evaluated white matter integrity and cognitive function differences across the three groups, assessing associations between white matter integrities and cognitive function. RESULTS The BD group showed lower fractional anisotropy (FA) for the corpus callosum body, as well as lower, sustained attention and set-shifting scores compared to the other groups. FA for the left body of the corpus callosum was correlated with sustained attention in patients with BD. CONCLUSIONS The significant reduction of white matter integrity in the corpus callosum in BD, compared to MDD, was associated with an impairment of sustained attention. This result promotes the understanding of the significance of white matter integrity in mood disorders.
Collapse
Affiliation(s)
- Yoshikazu Masuda
- Department of Psychiatry and Neuroscience, Hiroshima University, Hiroshima, Japan
| | - Go Okada
- Department of Psychiatry and Neuroscience, Hiroshima University, Hiroshima, Japan
| | - Masahiro Takamura
- Department of Psychiatry and Neuroscience, Hiroshima University, Hiroshima, Japan
| | - Chiyo Shibasaki
- Department of Psychiatry and Neuroscience, Hiroshima University, Hiroshima, Japan
| | - Atsuo Yoshino
- Department of Psychiatry and Neuroscience, Hiroshima University, Hiroshima, Japan
| | - Satoshi Yokoyama
- Department of Psychiatry and Neuroscience, Hiroshima University, Hiroshima, Japan
| | - Naho Ichikawa
- Department of Psychiatry and Neuroscience, Hiroshima University, Hiroshima, Japan
| | - Shiho Okuhata
- Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | | | - Shigeto Yamawaki
- Department of Psychiatry and Neuroscience, Hiroshima University, Hiroshima, Japan
| | - Yasumasa Okamoto
- Department of Psychiatry and Neuroscience, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
15
|
Hu R, Stavish C, Leibenluft E, Linke JO. White Matter Microstructure in Individuals With and At Risk for Bipolar Disorder: Evidence for an Endophenotype From a Voxel-Based Meta-analysis. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 5:1104-1113. [PMID: 32839153 PMCID: PMC11102922 DOI: 10.1016/j.bpsc.2020.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND Aberrant white matter (WM) microstructure has been proposed as a mechanism underlying bipolar disorder (BD). Given the strong genetic underpinnings of both WM microstructure and BD, such WM aberrations may be not only a disease marker, but also an endophenotype of BD. If so, they should be observable in individuals at risk for BD (AR) (i.e., first-degree relatives). This meta-analysis integrates evidence on perturbed WM microstructure in individuals with or at risk for BD. METHODS A comprehensive search of literature published through April 2020 identified diffusion tensor imaging studies that used a voxel-based approach to compare fractional anisotropy (FA) and radial diffusivity between individuals with BD and/or AR individuals and healthy volunteers. Effect size comparison and conjunction analysis allowed identification of endophenotypes and disease markers of BD. Effects of age, sex, mood state, and psychotropic medication were explored using meta-regressions. RESULTS We included 57 studies in individuals with BD (N = 4631) and 10 in AR individuals (N = 753). Both individuals with and at risk for BD were associated with lower FA in the body and splenium of the corpus callosum. In the BD group, decreased FA and increased radial diffusivity comprised the entire corpus callosum, anterior thalamic radiation, fronto-orbito-polar tracts, and superior longitudinal fasciculus, and were influenced by age, sex, and mood state. Studies with higher proportions of individuals taking lithium or antipsychotics reported smaller FA reductions in BD. CONCLUSIONS Findings suggest that abnormalities in the body and splenium of the corpus callosum may be an endophenotype for BD, and they associate BD with WM tracts relevant for working memory performance, attention, and reward processing.
Collapse
Affiliation(s)
- Rebecca Hu
- Section on Mood Dysregulation and Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Caitlin Stavish
- Section on Mood Dysregulation and Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Ellen Leibenluft
- Section on Mood Dysregulation and Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Julia O Linke
- Section on Mood Dysregulation and Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
16
|
Yamada S, Takahashi S, Ohoshi Y, Ishida T, Tsuji T, Shinosaki K, Terada M, Ukai S. Widespread white matter microstructural abnormalities and cognitive impairment in schizophrenia, bipolar disorder, and major depressive disorder: Tract-based spatial statistics study. Psychiatry Res Neuroimaging 2020; 298:111045. [PMID: 32087457 DOI: 10.1016/j.pscychresns.2020.111045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 02/01/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Shinichi Yamada
- Department of Neuropsychiatry, Wakayama Medical University, 811-1, Kimiidera, Wakayama 641-0012 Japan.
| | - Shun Takahashi
- Department of Neuropsychiatry, Wakayama Medical University, 811-1, Kimiidera, Wakayama 641-0012 Japan
| | - Yuji Ohoshi
- Department of Neuropsychiatry, Wakayama Medical University, 811-1, Kimiidera, Wakayama 641-0012 Japan
| | - Takuya Ishida
- Department of Neuropsychiatry, Wakayama Medical University, 811-1, Kimiidera, Wakayama 641-0012 Japan
| | - Tomikimi Tsuji
- Department of Neuropsychiatry, Wakayama Medical University, 811-1, Kimiidera, Wakayama 641-0012 Japan
| | | | | | - Satoshi Ukai
- Department of Neuropsychiatry, Wakayama Medical University, 811-1, Kimiidera, Wakayama 641-0012 Japan
| |
Collapse
|
17
|
Tang F, Yang H, Li L, Ji E, Fu Z, Zhang Z. Fusion analysis of gray matter and white matter in bipolar disorder by multimodal CCA-joint ICA. J Affect Disord 2020; 263:80-88. [PMID: 31818800 DOI: 10.1016/j.jad.2019.11.119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 09/24/2019] [Accepted: 11/28/2019] [Indexed: 01/15/2023]
Abstract
BACKGROUND Bipolar disorder (BD) patients show morphological abnormalities in gray matter (GM) and white matter (WM), which can be revealed by structure MRI (sMRI) and diffusion tensor imaging (DTI) respectively. However, previous studies on BD mainly relied on separated analysis of single neuroimaging modality, and it remains unclear how GM and WM covary to the abnormal brain structures of BD patients. METHODS We recorded multimodal sMRI-DTI data of 35 BD patients and 30 healthy controls (HC) and used multimodal canonical component analysis and joint independent component analysis (mCCA-jICA) to identify altered covariant structures in GM and WM of BD. Group-discriminative and joint group-discriminative independent components (ICs) were identified between BD and HC. Correlation analysis was performed between the mixing coefficients and behavioral index. RESULTS For BD patients, experiments results revealed that the GM atrophy in inferior frontal gyrus, right anterior cingulate gyrus and left superior frontal gyrus are associated with the WM integrity reduction in corticospinal tract and superior longitudinal fasciculus. Further, compared with HC, different correlation between mixing coefficients of ICs and age was observed for BD patients. LIMITATIONS The number of participants needs to be increased to more rigorously validate the results of this study, ideally from multiple sites. Functional imaging data could be utilized to explore structural-functional covariant pattern in BD. Possible confounding effect of medication. CONCLUSIONS We performed fusion analysis of sMRI and DTI and revealed covariant (GM-WM) structural patterns of BD patients. This study could be useful for developing more reliable neural biomarkers of BD.
Collapse
Affiliation(s)
- Fei Tang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong, China; Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen 518060, China
| | - Haichen Yang
- Department for Affective Disorders, Shenzhen Mental Health Centre, Shenzhen Key Lab for Psychological Healthcare, Shenzhen 518020, China
| | - Linling Li
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong, China; Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen 518060, China
| | - Erni Ji
- Department for Affective Disorders, Shenzhen Mental Health Centre, Shenzhen Key Lab for Psychological Healthcare, Shenzhen 518020, China
| | - Zening Fu
- The Mind Research Network, University of New Mexico, Albuquerque, NM 87106, USA
| | - Zhiguo Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong, China; Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen 518060, China; Peng Cheng Laboratory, Shenzhen 518055, China.
| |
Collapse
|
18
|
Simões B, Vassos E, Shergill S, McDonald C, Toulopoulou T, Kalidindi S, Kane F, Murray R, Bramon E, Ferreira H, Prata D. Schizophrenia polygenic risk score influence on white matter microstructure. J Psychiatr Res 2020; 121:62-67. [PMID: 31770658 DOI: 10.1016/j.jpsychires.2019.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 12/25/2022]
Abstract
Schizophrenia (SZ) and bipolar disorder (BD) are highly heritable, share symptomatology, and have a polygenic architecture. The impact of recent polygenic risk scores (PRS) for psychosis, which combine multiple genome-wide associated risk variations, should be assessed on heritable brain phenotypes also previously associated with the illnesses, for a better understanding of the pathways to disease. We have recently reported on the current SZ PRS's ability to predict 1st episode of psychosis case-control status and general cognition. Herein, we test its penetrance on white matter microstructure, which is known to be impaired in SZ, in BD and their relatives, using 141 participants (including SZ, BP, relatives of SZ or BP patients, and healthy volunteers), and two white matter integrity indexes: fractional anisotropy (FA) and mean diffusivity (MD). No significant correlation between the SZ PRS and FA or MD was found, thus it remains unclear whether white matter changes are primarily associated with SZ genetic risk profiles.
Collapse
Affiliation(s)
- Beatriz Simões
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Portugal
| | - Evangelos Vassos
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Sukhi Shergill
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Colm McDonald
- Centre for Neuroimaging & Cognitive Genomics (NICOG), NCBES Galway Neuroscience Centre, National University of Ireland Galway, Ireland
| | - Timothea Toulopoulou
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Psychology, The University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Psychology, Bilkent University, Turkey
| | - Sridevi Kalidindi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; South London and Maudsley NHS Foundation Trust, London, UK
| | - Fergus Kane
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Robin Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Elvira Bramon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Mental Health Neurosciences Research Department, Division of Psychiatry, University College London, London, UK
| | - Hugo Ferreira
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Portugal
| | - Diana Prata
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Portugal; Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Instituto Universitário de Lisboa (ISCTE-IUL), Centro de Investigação e Intervenção Social, Lisboa, Portugal.
| |
Collapse
|
19
|
Furlan R, Melloni E, Finardi A, Vai B, Di Toro S, Aggio V, Battistini L, Borsellino G, Manfredi E, Falini A, Colombo C, Poletti S, Benedetti F. Natural killer cells protect white matter integrity in bipolar disorder. Brain Behav Immun 2019; 81:410-421. [PMID: 31254622 DOI: 10.1016/j.bbi.2019.06.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/08/2019] [Accepted: 06/25/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Bipolar Disorder (BD) associates with disrupted white matter (WM) microstructure and functional connectivity, and with a perturbation of the immune system. Higher cytokines, and reduced T cells, correlated with WM disruption and fMRI responses. A core component of the innate immune system, natural killer (NK) cells were detected in brain parenchyma, but never studied in BD. METHODS We studied Diffusion Tensor Imaging (DTI) measures of water diffusion, fMRI corticolimbic functional response and connectivity, and multi-parameter cytofluorometry analysis of NK (CD56+) subpopulations, in 30 inpatients with active Bipolar Disorder type I. NK cells were also obtained in 36 healthy controls. RESULTS Patients had significantly higher circulating counts of CD56+GMCSF+, CD56+INFγ+, and CD56+IL17+. NK cell levels positively associated to fractional anisotropy (FA) measures. CD56+TNFα+, CD56+INFγ+, and CD56+GMCSF+ directly correlated with FA, and inversely with radial (RD) and mean (MD) diffusivity. Duration of lithium treatment associated with higher CD56+TNFα+, CD56+IL2+, and CD56+IL4+, and positively associated with FA in tracts were NKs had significant effects. A mediation model suggested a partial mediation of CD56+TNFα+ cells, higher in patients on lithium, on the effects of lithium on FA. Frequencies of the same cytokine-producing NK cells also influenced fMRI cortico-limbic functional connectivity during processing of both, emotional and non-emotional stimuli. DISCUSSION Higher circulating cytokine-producing NK cells associated with lithium treatment, and with DTI measures of WM integrity, partially mediating the effect of lithium on WM. The same cells associated with fMRI responses and connectivity, thus suggesting an effect on structural and functional connectomics in BD.
Collapse
Affiliation(s)
- Roberto Furlan
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
| | - Elisa Melloni
- University Vita-Salute San Raffaele, Italy; Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
| | - Annamaria Finardi
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
| | - Benedetta Vai
- University Vita-Salute San Raffaele, Italy; Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
| | - Sara Di Toro
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
| | - Veronica Aggio
- University Vita-Salute San Raffaele, Italy; Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
| | | | | | | | - Andrea Falini
- University Vita-Salute San Raffaele, Italy; Department of Neuroradiology, San Raffaele Scientific Institute, Milano, Italy
| | - Cristina Colombo
- University Vita-Salute San Raffaele, Italy; Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
| | - Sara Poletti
- University Vita-Salute San Raffaele, Italy; Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
| | - Francesco Benedetti
- University Vita-Salute San Raffaele, Italy; Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy.
| |
Collapse
|
20
|
Genetic Predisposition and Disease Expression of Bipolar Disorder Reflected in Shape Changes of the Anterior Limbic Network. Brain Sci 2019; 9:brainsci9090240. [PMID: 31546815 PMCID: PMC6770562 DOI: 10.3390/brainsci9090240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 11/17/2022] Open
Abstract
Bipolar disorder (BD) is a genetically and phenotypically complex psychiatric disease. Although previous studies have suggested that the relatives of BD patients have an increased risk of experiencing affective disturbances, most relatives who have similar genotypes may not manifest the disorder. We aim to identify the neuroimaging alterations—specifically, the cortical folding structures of the anterior limbic network (ALN)—in BD patients and their siblings, compared to healthy controls. The shared alterations in patients and their siblings may indicate the hereditary predisposition of BD, and the altered cortical structures unique to BD patients may be a probe of BD expression. High-resolution, T1-weighted magnetic resonance images for 17 euthymic patients with BD, 17 unaffected siblings of BD patients, and 22 healthy controls were acquired. We categorized the cortical regions within the ALN into sulcal and gyral areas, based on the shape index, followed by the measurement of the folding degree, using the curvedness. Our results revealed that the changes in cortical folding in the orbitofrontal and temporal regions were associated with a hereditary predisposition to BD. Cortical folding structures in multiple regions of the ALN, particularly in the striatal–thalamic circuit and anterior cingulate cortex, could be used to differentiate BD patients from healthy controls and unaffected siblings. We concluded that the cortical folding structures of ALN can provide potential biomarkers for clinical diagnosis of BD and differentiation from the unaffected siblings.
Collapse
|
21
|
A O, K B, J G, C S, S M, M A. Nonlinear dynamics of mood regulation in unaffected first-degree relatives of bipolar disorder patients. J Affect Disord 2019; 243:274-279. [PMID: 30248639 DOI: 10.1016/j.jad.2018.09.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/14/2018] [Accepted: 09/15/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Mood regulation is a complex and poorly understood process. In this study, we aimed to analyze the underlying dynamics of mood regulation in unaffected first degree relatives of patients diagnosed with bipolar disorder using time-series analysis. METHODS We recruited 30 unaffected first-degree relatives of bipolar disorder patients. Participants rated their mood, anxiety and energy levels using a paper-based visual analog scale; they recorded their sleep and life events as well. Participants provided information on these variables over a three month period, twice per day. We compared their data using Box-Jenkins time series analysis with data from 30 healthy controls (HC) and 30 euthymic bipolar patients (BD) to obtain information on the autocorrelation and cross-correlation of the series, and calculated entropy for mood, anxiety and energy series. RESULTS We analyzed 14,980 data points: 5200 in the healthy control group; 4970 in the bipolar group and 4810 in the unaffected relatives group. There were no significant differences between groups in terms of age, sex or education levels. Using Kolmogorov-Smirnov test, we found that individual measures were normally distributed in the whole sample (D = 0.23, p > 0.1). Autocorrelation functions for mood in all groups are governed by the ARIMA (1,1,0) model, which means that current values in the series are related to one previous point only. In terms of entropy for the mood series, unaffected relatives and bipolar patients showed lower values [mean (SD) : 1.028 ± 0.679; 1.042 ± 0.680], respectively, compared to healthy controls [(1.476 ± 0.33); F (2,74) = 4.39, p < 0.01]. The same case was seen in the energy series, with lower values in the unaffected relatives and bipolar patient groups [mean (SD) : 1.644 ± 0.566; 1.511 ± 0.879], respectively, compared to healthy controls [2.230 ± 0.531; F(2, 75) = 7.89, p < 0.001]. LIMITATIONS Low resolution for the visual analog scale. CONCLUSIONS Using nonlinear analyses, we found that the underlying structure of mood regulation in unaffected relatives is undistinguishable from the one found in bipolar patients. Compared to healthy controls, both bipolar patients and their unaffected relatives showed lower entropy levels, which is in keeping with a more rigid system, not as flexible to cope with the demands of a changing environment.
Collapse
Affiliation(s)
- Ortiz A
- Mood Disorders Program, Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| | - Bradler K
- Department of Mathematics, University of Ottawa, Ottawa, ON, Canada
| | - Garnham J
- Mood Disorders Program, Capital Health District Authority, Halifax, NS, Canada
| | - Slaney C
- Mood Disorders Program, Capital Health District Authority, Halifax, NS, Canada
| | - McLean S
- Mood Disorders Program, Royal Ottawa Hospital, Ottawa, ON, Canada
| | - Alda M
- Mood Disorders Program, Department of Psychiatry, Dalhousie University, Halifax, NS, Canada; National Institute of Mental Health, Klecany, Czech Republic
| |
Collapse
|
22
|
Acuff HE, Versace A, Bertocci MA, Hanford LC, Ladouceur CD, Manelis A, Monk K, Bonar L, McCaffrey A, Goldstein BI, Goldstein TR, Sakolsky D, Axelson D, Birmaher B, Phillips ML. White matter - emotion processing activity relationships in youth offspring of bipolar parents. J Affect Disord 2019; 243:153-164. [PMID: 30243195 PMCID: PMC6476540 DOI: 10.1016/j.jad.2018.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/31/2018] [Accepted: 09/09/2018] [Indexed: 01/10/2023]
Abstract
BACKGROUND Early detection of Bipolar Disorder (BD) is critical for targeting interventions to delay or prevent illness onset. Yet, the absence of objective BD biomarkers makes accurately identifying at-risk youth difficult. In this study, we examined how relationships between white matter tract (WMT) structure and activity in emotion processing neural circuitry differentiate youth at risk for BD from youth at risk for other psychiatric disorders. METHODS Offspring (ages 8-17) of parents with BD (OBP, n = 32), offspring of comparison parents with non-BD psychopathology (OCP, n = 30), and offspring of healthy parents (OHP, n = 24) underwent diffusion tensor and functional magnetic resonance imaging while performing an emotional face processing task. Penalized and multiple regression analyses included GROUP(OBP,OCP)xWMT interactions as main independent variables, and emotion processing activity as dependent variables, to determine significant group differences in WMT-activity relationships. RESULTS 8 GROUPxWMT interaction variables contributed to 16.5% of the variance in amygdala and prefrontal cortical activity to happy faces. Of these, significant group differences in slopes (inverse for OBP, positive for OCP) existed for the relationship between forceps minor radial diffusivity and rostral anterior cingulate activity (p = 0.014). Slopes remained significantly different in unmedicated youth without psychiatric disorders (p = 0.017) and were moderated by affective lability symptoms (F(1,29) = 5.566, p = 0.036). LIMITATIONS Relatively small sample sizes were included. CONCLUSIONS Forceps minor radial diffusivity-rostral anterior cingulate activity relationships may reflect underlying neuropathological processes that contribute to affectively labile youth at risk for BD and may help differentiate them from youth at risk for other psychiatric disorders.
Collapse
Affiliation(s)
- Heather E. Acuff
- Departments of Neuroscience, Psychology, and Psychiatry, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA,Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amelia Versace
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | - Anna Manelis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kelly Monk
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lisa Bonar
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alicia McCaffrey
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Tina R. Goldstein
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dara Sakolsky
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - David Axelson
- Department of Psychiatry, Nationwide Children’s Hospital and The Ohio State College of Medicine, Columbus, OH, USA
| | | | - Boris Birmaher
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mary L. Phillips
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
23
|
Ren S, Chang M, Yin Z, Feng R, Wei Y, Duan J, Jiang X, Wei S, Tang Y, Wang F, Li S. Age-Related Alterations of White Matter Integrity in Adolescents and Young Adults With Bipolar Disorder. Front Psychiatry 2019; 10:1010. [PMID: 32047447 PMCID: PMC6997540 DOI: 10.3389/fpsyt.2019.01010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/20/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Alterations of white matter integrity during adolescence/young adulthood may contribute to the neurodevelopmental pathophysiology of bipolar disorder (BD), but it remains unknown how white matter integrity changes in BD patients during this critical period of brain development. In the present study, we aimed to identify possible age-associated alterations of white matter integrity in adolescents and young adults with BD across the age range of 13-30 years. METHODS We divided the participants into two groups by age as follows: adolescent group involving individuals of 13-21 years old (39 patients with BD and 39 healthy controls) and young adult group involving individuals of 22-30 years old (47 patients with BD and 47 healthy controls). Diffusion tensor imaging (DTI) was performed in all participants to assess white matter integrity. RESULTS In the adolescent group, compared to those of healthy controls, fractional anisotropy (FA) values were significantly lower in BD patients in the left inferior longitudinal fasciculus, splenium of the corpus callosum and posterior thalamic radiation. In the young adult group, BD patients showed significantly decreased FA values in the bilateral uncinate fasciculus, genu of the corpus callosum, right anterior limb of internal capsule and fornix compared to healthy controls. White matter impairments changed from the posterior brain to the anterior brain representing a back-to-front spatiotemporal directionality in an age-related pattern. CONCLUSIONS Our findings provide neuroimaging evidence supporting a back-to-front spatiotemporal directionality of the altered development of white matter integrity associated with age in BD patients during adolescence/young adulthood.
Collapse
Affiliation(s)
- Sihua Ren
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China.,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Miao Chang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China.,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhiyang Yin
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ruiqi Feng
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China.,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yange Wei
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jia Duan
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaowei Jiang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China.,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shengnan Wei
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China.,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yanqing Tang
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Fei Wang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China.,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Songbai Li
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
24
|
Yang C, Li L, Hu X, Luo Q, Kuang W, Lui S, Huang X, Dai J, He M, Kemp GJ, Sweeney JA, Gong Q. Psychoradiologic abnormalities of white matter in patients with bipolar disorder: diffusion tensor imaging studies using tract-based spatial statistics. J Psychiatry Neurosci 2019; 44:32-44. [PMID: 30565904 PMCID: PMC6306286 DOI: 10.1503/jpn.170221] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND An increasing number of psychoradiology studies that use tract-based spatial statistics (TBSS) of diffusion tensor imaging have reported abnormalities of white matter in patients with bipolar disorder; however, robust conclusions have proven elusive, especially considering some important clinical and demographic factors. In the present study, we performed a quantitative meta-analysis of TBSS studies to elucidate the most consistent white-matter abnormalities in patients with bipolar disorder. METHODS We conducted a systematic search up to May 2017 for all TBSS studies comparing fractional anisotropy (FA) between patients with bipolar disorder and healthy controls. We performed anisotropic effect size–signed differential mapping meta-analysis. RESULTS We identified a total of 22 data sets including 556 patients with bipolar disorder and 623 healthy controls. We found significant FA reductions in the genu and body of the corpus callosum in patients with bipolar disorder relative to healthy controls. No regions of increased FA were reported. In subgroup analyses, the FA reduction in the genu of the corpus callosum retained significance in patients with bipolar disorder type I, and the FA reduction in the body of the corpus callosum retained significance in euthymic patients with bipolar disorder. Meta-regression analysis revealed that the percentage of female patients was negatively correlated with reduced FA in the body of the corpus callosum. LIMITATIONS Data acquisition, patient characteristics and clinical variables in the included studies were heterogeneous. The small number of diffusion tensor imaging studies using TBSS in patients with bipolar disorder type II, as well as the lack of other clinical information, hindered the application of subgroup meta-analyses. CONCLUSION Our study consistently identified decreased FA in the genu and body of the corpus callosum, suggesting that interhemispheric communication may be the connectivity most affected in patients with bipolar disorder.
Collapse
Affiliation(s)
- Cheng Yang
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| | - Lei Li
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| | - Xinyu Hu
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| | - Qiang Luo
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| | - Weihong Kuang
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| | - Su Lui
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| | - Xiaoqi Huang
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| | - Jing Dai
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| | - Manxi He
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| | - Graham J. Kemp
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| | - John A Sweeney
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| | - Qiyong Gong
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| |
Collapse
|
25
|
Vai B, Bertocchi C, Benedetti F. Cortico-limbic connectivity as a possible biomarker for bipolar disorder: where are we now? Expert Rev Neurother 2019; 19:159-172. [PMID: 30599797 DOI: 10.1080/14737175.2019.1562338] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The fronto-limbic network has been suggested as a key circuitry in the pathophysiology and maintenance of bipolar disorder. In the past decade, a disrupted connectivity within prefrontal-limbic structures was identified as a promising candidate biomarker for the disorder. Areas Covered: In this review, the authors examine current literature in terms of the structural, functional and effective connectivity in bipolar disorder, integrating recent findings of imaging genetics and machine learning. This paper profiles the current knowledge and identifies future perspectives to provide reliable and usable neuroimaging biomarkers for bipolar psychopathology in clinical practice. Expert Opinion: The replication and the translation of acquired knowledge into useful and usable tools represents one of the current greatest challenges in biomarker research applied to psychiatry.
Collapse
Affiliation(s)
- Benedetta Vai
- a Psychiatry & Clinical Psychobiology , Division of Neuroscience, Scientific Institute Ospedale San Raffaele , Milano , Italy.,b University Vita-Salute San Raffaele , Milano , Italy
| | - Carlotta Bertocchi
- a Psychiatry & Clinical Psychobiology , Division of Neuroscience, Scientific Institute Ospedale San Raffaele , Milano , Italy
| | - Francesco Benedetti
- a Psychiatry & Clinical Psychobiology , Division of Neuroscience, Scientific Institute Ospedale San Raffaele , Milano , Italy.,b University Vita-Salute San Raffaele , Milano , Italy
| |
Collapse
|
26
|
Versace A, Ladouceur CD, Graur S, Acuff HE, Bonar LK, Monk K, McCaffrey A, Yendiki A, Leemans A, Travis MJ, Diwadkar VA, Holland SK, Sunshine JL, Kowatch RA, Horwitz SM, Frazier TW, Arnold LE, Fristad MA, Youngstrom EA, Findling RL, Goldstein BI, Goldstein T, Axelson D, Birmaher B, Phillips ML. Diffusion imaging markers of bipolar versus general psychopathology risk in youth at-risk. Neuropsychopharmacology 2018; 43:2212-2220. [PMID: 29795244 PMCID: PMC6135796 DOI: 10.1038/s41386-018-0083-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/31/2018] [Accepted: 04/10/2018] [Indexed: 12/22/2022]
Abstract
Bipolar disorder (BD) is highly heritable. Thus, studies in first-degree relatives of individuals with BD could lead to the discovery of objective risk markers of BD. Abnormalities in white matter structure reported in at-risk individuals could play an important role in the pathophysiology of BD. Due to the lack of studies with other at-risk offspring, however, it remains unclear whether such abnormalities reflect BD-specific or generic risk markers for future psychopathology. Using a tract-profile approach, we examined 18 major white matter tracts in 38 offspring of BD parents, 36 offspring of comparison parents with non-BD psychopathology (depression, attention-deficit/hyperactivity disorder), and 41 offspring of healthy parents. Both at-risk groups showed significantly lower fractional anisotropy (FA) in left-sided tracts (cingulum, inferior longitudinal fasciculus, forceps minor), and significantly greater FA in right-sided tracts (uncinate fasciculus and inferior longitudinal fasciculus), relative to offspring of healthy parents (P < 0.05). These abnormalities were present in both healthy and affected youth in at-risk groups. Only offspring (particularly healthy offspring) of BD parents showed lower FA in the right superior longitudinal fasciculus relative to healthy offspring of healthy parents (P < 0.05). We show, for the first time, important similarities, and some differences, in white matter structure between offspring of BD and offspring of non-BD parents. Findings suggest that lower left-sided and higher right-sided FA in tracts important for emotional regulation may represent markers of risk for general, rather than BD-specific, psychopathology. Lower FA in the right superior longitudinal fasciculus may protect against development of BD in offspring of BD parents.
Collapse
Affiliation(s)
- A Versace
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA.
| | - C D Ladouceur
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - S Graur
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - H E Acuff
- Departments of Neuroscience, Psychology, and Psychiatry, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - L K Bonar
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - K Monk
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - A McCaffrey
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - A Yendiki
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - A Leemans
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M J Travis
- LAMS Consortium, Epping, NSW, 1710, Australia
| | | | - S K Holland
- LAMS Consortium, Epping, NSW, 1710, Australia
| | | | - R A Kowatch
- LAMS Consortium, Epping, NSW, 1710, Australia
| | - S M Horwitz
- LAMS Consortium, Epping, NSW, 1710, Australia
| | - T W Frazier
- LAMS Consortium, Epping, NSW, 1710, Australia
| | - L E Arnold
- Department of Psychiatry, Nationwide Children's Hospital and The Ohio State College of Medicine, Columbus, OH, USA
| | - M A Fristad
- LAMS Consortium, Epping, NSW, 1710, Australia
| | | | | | - B I Goldstein
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - T Goldstein
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - D Axelson
- Department of Psychiatry, Nationwide Children's Hospital and The Ohio State College of Medicine, Columbus, OH, USA
| | - B Birmaher
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - M L Phillips
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
27
|
Ganzola R, McIntosh AM, Nickson T, Sprooten E, Bastin ME, Giles S, Macdonald A, Sussmann J, Duchesne S, Whalley HC. Diffusion tensor imaging correlates of early markers of depression in youth at high-familial risk for bipolar disorder. J Child Psychol Psychiatry 2018; 59:917-927. [PMID: 29488219 DOI: 10.1111/jcpp.12879] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/15/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND Mood disorders are familial psychiatric diseases, in which patients show reduced white matter (WM) integrity. We sought to determine whether WM integrity was affected in young offspring at high-familial risk of mood disorder before they go on to develop major depressive disorder (MDD). METHODS The Bipolar Family study is a prospective longitudinal study examining young individuals (age 16-25 years) at familial risk of mood disorder on three occasions 2 years apart. This study used baseline imaging data, categorizing groups according to clinical outcome at follow-up. Diffusion tensor MRI data were acquired for 61 controls and 106 high-risk individuals, the latter divided into 78 high-risk subjects who remained well throughout the study ('high-risk well') and 28 individuals who subsequently developed MDD ('high-risk MDD'). Voxel-wise between-group comparison of fractional anisotropy (FA) based on diagnostic status was performed using tract-based spatial statistics (TBSS). RESULTS Compared to controls, both high-risk groups showed widespread decreases in FA (pcorr < .05) at baseline. Although FA in the high-risk MDD group negatively correlated with subthreshold depressive symptoms at the time of scanning (pcorr < .05), there were no statistically significant differences at p-corrected levels between the two high-risk groups. CONCLUSIONS These results suggest that decreased FA is related to the presence of familial risk for mood disorder along with subdiagnostic symptoms at the time of scanning rather than predictive of subsequent diagnosis. Due to the difficulties performing such longitudinal prospective studies, we note, however, that this latter analysis may be underpowered due to sample size within the high-risk MDD group. Further clinical follow-up may clarify these findings.
Collapse
Affiliation(s)
- Rossana Ganzola
- Centre de Recherche CERVO, Institut Universitaire en Santé Mentale de Québec, Québec, QC, Canada
| | | | - Thomas Nickson
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Emma Sprooten
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mark E Bastin
- Centre for Clinical Brain Sciences, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Stephen Giles
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Alix Macdonald
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | | | - Simon Duchesne
- Centre de Recherche CERVO, Institut Universitaire en Santé Mentale de Québec, Québec, QC, Canada.,Départment de Radiologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | | |
Collapse
|
28
|
White Matter Microstructure in Bipolar Disorder Is Influenced by the Interaction between a Glutamate Transporter EAAT1 Gene Variant and Early Stress. Mol Neurobiol 2018; 56:702-710. [DOI: 10.1007/s12035-018-1117-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/11/2018] [Indexed: 12/19/2022]
|
29
|
Kynurenine pathway and white matter microstructure in bipolar disorder. Eur Arch Psychiatry Clin Neurosci 2018; 268:157-168. [PMID: 27619930 DOI: 10.1007/s00406-016-0731-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/02/2016] [Indexed: 12/27/2022]
Abstract
Decreased availability of serotonin in the central nervous system has been suggested to be a central factor in the pathogenesis of depression. Activation of indoleamine 2-3 dioxygenase following a pro-inflammatory state could reduce the amount of tryptophan converted to serotonin and increase the production of tryptophan catabolites such as kynurenic acid, an antagonist of ionotropic excitatory aminoacid receptors, whose levels are reduced in bipolar disorder. Abnormalities in white matter (WM) integrity have been widely reported in BD. We then hypothesized that metabolites involved in serotoninergic turnover in BD could influence DTI measures of WM microstructure. Peripheral levels of tryptophan, kynurenine, kynurenic acid, 3-hydroxy-kynurenine, and 5-HIAA were analysed in 22 patients affected by BD and 15 healthy controls. WM microstructure was evaluated using diffusion tensor imaging and tract-based spatial statistics with threshold-free cluster enhancement only in bipolar patients. We observed that kynurenic acid and 5-HIAA were reduced in BD and associated with DTI measures of WM integrity in several association fibres: inferior and superior longitudinal fasciculus, cingulum bundle, corpus callosum, uncus, anterior thalamic radiation and corona radiata. Our results seem to suggest that higher levels of 5-HIAA, a measure of serotonin levels, and higher levels of kynurenic acid, which protects from glutamate excitotoxicity, could exert a protective effect on WM microstructure. Reduced levels of these metabolites in BD thus seem to confirm a crucial role of serotonin turnover in BD pathophysiology.
Collapse
|
30
|
A Homer 1 gene variant influences brain structure and function, lithium effects on white matter, and antidepressant response in bipolar disorder: A multimodal genetic imaging study. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:88-95. [PMID: 29079138 DOI: 10.1016/j.pnpbp.2017.10.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/28/2017] [Accepted: 10/21/2017] [Indexed: 11/24/2022]
Abstract
BACKGROUND The Homer family of postsynaptic scaffolding proteins plays a crucial role in glutamate-mediated synaptic plasticity, a phenotype associated with Bipolar Disorder (BD). Homer is a target for antidepressants and mood stabilizers. The AA risk genotype of the Homer rs7713917 A>G SNP has been associated with mood disorders and suicide, and in healthy humans with brain function. Despite the evidence linking Homer 1 gene and function to mood disorder, as well as its involvement in animal models of depression, no study has yet investigated the role of Homer in bipolar depression and treatment response. METHODS We studied 199 inpatients, affected by a major depressive episode in course of BD. 147 patients were studied with structural MRI of grey and white matter, and 50 with BOLD functional MRI of emotional processing. 158 patients were treated with combined total sleep deprivation and light therapy. RESULTS At neuroimaging, patients with the AA genotype showed lower grey matter volumes in medial prefrontal cortex, higher BOLD fMRI neural responses to emotional stimuli in anterior cingulate cortex, and lower fractional anisotropy in bilateral frontal WM tracts. Lithium treatment increased axial diffusivity more in AA patients than in G*carriers. At clinical evaluation, the same AA homozygotes showed a worse antidepressant response to combined SD and LT. CONCLUSIONS rs7713917 influenced brain grey and white matter structure and function in BD, long term effects of lithium on white matter structure, and antidepressant response to chronotherapeutics, thus suggesting that glutamatergic neuroplasticity and Homer 1 function might play a role in BD psychopathology and response to treatment.
Collapse
|
31
|
Weathers J, Lippard ETC, Spencer L, Pittman B, Wang F, Blumberg HP. Longitudinal Diffusion Tensor Imaging Study of Adolescents and Young Adults With Bipolar Disorder. J Am Acad Child Adolesc Psychiatry 2018; 57:111-117. [PMID: 29413143 PMCID: PMC5806147 DOI: 10.1016/j.jaac.2017.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/04/2017] [Accepted: 11/21/2017] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Longitudinal neuroimaging during adolescence/young adulthood, when bipolar disorder (BD) commonly emerges, can help elucidate the neurodevelopmental pathophysiology of BD. Adults with BD have shown reduced structural integrity in the uncinate fasciculus (UF), a white matter (WM) tract providing major connections between the amygdala and ventral prefrontal cortex (vPFC), important in emotion regulation. In this longitudinal diffusion tensor imaging (DTI) study of adolescents/young adults, we hypothesized differences in age- and time-related changes in UF integrity in BD compared to healthy controls (HC). METHOD Two DTI scans were obtained in 27 adolescents/young adults with BD and 37 HC adolescents/young adults, on average approximately 2.5 years apart. Interactions between diagnosis with age and with time for UF fractional anisotropy (FA) were assessed. Exploratory analyses were performed including euthymic-only participants with BD, and for potential influences of demographic and clinical factors. Whole-brain analyses were performed to explore for interactions in other regions. RESULTS There were significant interactions between diagnosis with age and with time for UF FA (p < .05). Healthy control adolescents/young adults showed significant UF FA increases with age and over time (p < .05), whereas no significant changes with age or over time were observed in the adolescents/young adults with BD. Significant interactions with age and time were also observed in analyses including euthymic-only participants with BD (p < .05). CONCLUSION These findings provide neuroimaging evidence supporting differences in UF WM structural development during adolescence/young adulthood, suggesting that differences in the development of an amygdala-vPFC system subserving emotion regulation may be a trait feature of BD neurodevelopment.
Collapse
Affiliation(s)
- Judah Weathers
- Yale School of Medicine, New Haven, CT; Yale Child Study Center, New Haven
| | - Elizabeth T C Lippard
- Yale School of Medicine, New Haven, CT; Dell Medical School, University of Texas at Austin, TX
| | | | | | - Fei Wang
- Yale School of Medicine, New Haven, CT; First Affiliated Hospital, China Medical University, Shenyang, China
| | - Hilary P Blumberg
- Yale School of Medicine, New Haven, CT; Yale Child Study Center, New Haven.
| |
Collapse
|
32
|
Roberts G, Perry A, Lord A, Frankland A, Leung V, Holmes-Preston E, Levy F, Lenroot RK, Mitchell PB, Breakspear M. Structural dysconnectivity of key cognitive and emotional hubs in young people at high genetic risk for bipolar disorder. Mol Psychiatry 2018; 23:413-421. [PMID: 27994220 PMCID: PMC5794888 DOI: 10.1038/mp.2016.216] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/30/2016] [Accepted: 10/04/2016] [Indexed: 01/01/2023]
Abstract
Emerging evidence suggests that psychiatric disorders are associated with disturbances in structural brain networks. Little is known, however, about brain networks in those at high risk (HR) of bipolar disorder (BD), with such disturbances carrying substantial predictive and etiological value. Whole-brain tractography was performed on diffusion-weighted images acquired from 84 unaffected HR individuals with at least one first-degree relative with BD, 38 young patients with BD and 96 matched controls (CNs) with no family history of mental illness. We studied structural connectivity differences between these groups, with a focus on highly connected hubs and networks involving emotional centres. HR participants showed lower structural connectivity in two lateralised sub-networks centred on bilateral inferior frontal gyri and left insular cortex, as well as increased connectivity in a right lateralised limbic sub-network compared with CN subjects. BD was associated with weaker connectivity in a small right-sided sub-network involving connections between fronto-temporal and temporal areas. Although these sub-networks preferentially involved structural hubs, the integrity of the highly connected structural backbone was preserved in both groups. Weaker structural brain networks involving key emotional centres occur in young people at genetic risk of BD and those with established BD. In contrast to other psychiatric disorders such as schizophrenia, the structural core of the brain remains intact, despite the local involvement of network hubs. These results add to our understanding of the neurobiological correlates of BD and provide predictions for outcomes in young people at high genetic risk for BD.
Collapse
Affiliation(s)
- G Roberts
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia,Black Dog Institute, Prince of Wales Hospital, Randwick, NSW, Australia
| | - A Perry
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia,Program of Mental Health Research, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia,Metro North Mental Health Service, Brisbane, QLD, Australia,Centre for Healthy Brain Ageing, Randwick, NSW, Australia
| | - A Lord
- Program of Mental Health Research, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - A Frankland
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia,Black Dog Institute, Prince of Wales Hospital, Randwick, NSW, Australia
| | - V Leung
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia,Black Dog Institute, Prince of Wales Hospital, Randwick, NSW, Australia
| | - E Holmes-Preston
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia,Black Dog Institute, Prince of Wales Hospital, Randwick, NSW, Australia
| | - F Levy
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia,Prince of Wales Hospital, Randwick, NSW, Australia
| | - R K Lenroot
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia,Neuroscience Research Australia, Randwick, NSW, Australia
| | - P B Mitchell
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia,Black Dog Institute, Prince of Wales Hospital, Randwick, NSW, Australia,Prince of Wales Hospital, Randwick, NSW, Australia
| | - M Breakspear
- Program of Mental Health Research, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia,Metro North Mental Health Service, Brisbane, QLD, Australia,Systems Neuroscience Group, QIMR Berghofer Institute of Medical Research, 300 Herston Road, Herston, QLD, Australia. E-mail:
| |
Collapse
|
33
|
Prunas C, Delvecchio G, Perlini C, Barillari M, Ruggeri M, Altamura AC, Bellani M, Brambilla P. Diffusion imaging study of the Corpus Callosum in bipolar disorder. Psychiatry Res Neuroimaging 2018; 271:75-81. [PMID: 29129544 DOI: 10.1016/j.pscychresns.2017.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 09/06/2017] [Accepted: 11/02/2017] [Indexed: 01/28/2023]
Abstract
Structural and diffusion imaging studies have provided some evidence of abnormal organization of Corpus Callosum (CC) in Bipolar Disorder (BD). Therefore, by using Diffusion Weighted Imaging (DWI), which allows to build subtle prediction models of fiber integrity for white matter (WM) tracts, this study aims to further explore the microstructure integrity of CC in BD patients compared to matched healthy controls. Twenty-four chronic patients with BD and 35 healthy controls were included in the study. Circular regions of interest were placed, on diffusion images, in the left and right side of callosal regions (i.e. rostrum/genu, anterior body, posterior body, splenium) and the Apparent Diffusion Coefficient (ADC) was then calculated. Significantly increased ADC values were found in right anterior body and in right splenium in BD patients compared to healthy controls (all p < 0.05, Bonferroni corrected). In this study, we found abnormally increased ADC callosal values in BD suggesting microstructural anomalies specifically in the right hemisphere. Interestingly, this finding further supports the presence of an altered inter-hemispheric communication between frontal and temporo-parietal association areas in patients with BD, which may ultimately result in clinical symptoms and cognitive deficits.
Collapse
Affiliation(s)
- Cecilia Prunas
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | | | - Cinzia Perlini
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Psychology, University of Verona, Verona, Italy; InterUniversity Centre for Behavioural Neurosciences, University of Verona, Verona, Italy
| | - Marco Barillari
- Section of Neurology, Department of Neurological and Movement Sciences, University Hospital of Verona, Verona, Italy
| | | | - A Carlo Altamura
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Marcella Bellani
- InterUniversity Centre for Behavioural Neurosciences, University of Verona, Verona, Italy; Section of Psychiatry, AOUI Verona, Verona, Italy
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy; Department of Psychiatry and Behavioural Neurosciences, University of Texas at Houston, TX, USA.
| |
Collapse
|
34
|
Pezzoli S, Emsell L, Yip SW, Dima D, Giannakopoulos P, Zarei M, Tognin S, Arnone D, James A, Haller S, Frangou S, Goodwin GM, McDonald C, Kempton MJ. Meta-analysis of regional white matter volume in bipolar disorder with replication in an independent sample using coordinates, T-maps, and individual MRI data. Neurosci Biobehav Rev 2018; 84:162-170. [PMID: 29162519 PMCID: PMC5771263 DOI: 10.1016/j.neubiorev.2017.11.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/20/2017] [Accepted: 11/14/2017] [Indexed: 12/15/2022]
Abstract
Converging evidence suggests that bipolar disorder (BD) is associated with white matter (WM) abnormalities. Meta-analyses of voxel based morphometry (VBM) data is commonly performed using published coordinates, however this method is limited since it ignores non-significant data. Obtaining statistical maps from studies (T-maps) as well as raw MRI datasets increases accuracy and allows for a comprehensive analysis of clinical variables. We obtained coordinate data (7-studies), T-Maps (12-studies, including unpublished data) and raw MRI datasets (5-studies) and analysed the 24 studies using Seed-based d Mapping (SDM). A VBM analysis was conducted to verify the results in an independent sample. The meta-analysis revealed decreased WM volume in the posterior corpus callosum extending to WM in the posterior cingulate cortex. This region was significantly reduced in volume in BD patients in the independent dataset (p=0.003) but there was no association with clinical variables. We identified a robust WM volume abnormality in BD patients that may represent a trait marker of the disease and used a novel methodology to validate the findings.
Collapse
Affiliation(s)
- Stefania Pezzoli
- Department of Neuroscience, Medical School, University of Sheffield, Sheffield, UK; Department of Psychosis Studies, Institute of Psychiatry Psychology & Neuroscience, King's College London, UK
| | - Louise Emsell
- Translational MRI, Department of Imaging & Pathology, KU Leuven, Belgium; Department of Old Age Psychiatry, University Psychiatry Centre (UPC), KU Leuven, Belgium; Neuroimaging, Cognition & Genomics Centre (NICOG) & NCBES Galway Neuroscience Centre, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Sarah W Yip
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Danai Dima
- Department of Psychology, City, University of London, UK; Department of Neuroimaging, Institute of Psychiatry, Psychology and Neurosciences, King's College London, UK
| | | | - Mojtaba Zarei
- National Brain Mapping Centre, Shahid Beheshti University, General and Medical Campus, Tehran, Iran
| | - Stefania Tognin
- Department of Psychosis Studies, Institute of Psychiatry Psychology & Neuroscience, King's College London, UK
| | - Danilo Arnone
- Centre for Affective Disorders, Institute of Psychiatry Psychology & Neuroscience, King's College London, UK
| | - Anthony James
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Sven Haller
- Affidea CDRC - Centre Diagnostique Radiologique de Carouge, Switzerland; Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden; Department of Neuroradiology, University Hospital Freiburg, Germany; Faculty of Medicine of the University of Geneva, Switzerland
| | | | - Guy M Goodwin
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Colm McDonald
- Neuroimaging, Cognition & Genomics Centre (NICOG) & NCBES Galway Neuroscience Centre, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Matthew J Kempton
- Department of Psychosis Studies, Institute of Psychiatry Psychology & Neuroscience, King's College London, UK; Department of Neuroimaging, Institute of Psychiatry, Psychology and Neurosciences, King's College London, UK.
| |
Collapse
|
35
|
Mahapatra A, Khandelwal SK, Sharan P, Garg A, Mishra NK. Diffusion tensor imaging tractography study in bipolar disorder patients compared to first-degree relatives and healthy controls. Psychiatry Clin Neurosci 2017; 71:706-715. [PMID: 28419638 DOI: 10.1111/pcn.12530] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 11/28/2022]
Abstract
AIM We aimed to compare white matter structural changes in specific tracts by diffusion tensor imaging (DTI) tractography in patients with bipolar disorder (BD) I, non-ill first-degree relatives (FDR) of the patients, and healthy controls (HC). METHODS In a cross-sectional study, we studied right-handed subjects consisting of 16 euthymic BD I patients, 15 FDR, and 15 HC. The anterior thalamic radiation, uncinate fasciculus, corpus callosum, and cingulum bundle were reconstructed by DTI tractography. Mean fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values were compared for group differences followed by post-hoc analysis. RESULTS The three groups did not differ in terms of sociodemographic variables. There were significant group differences in the FA values among the BD I patients, their FDR, and the HC for the corpus callosum, the dorsal part of the right cingulum bundle, the hippocampal part of the cingulum bundle bilaterally, and the uncinate fasciculus (P < 0.001). The FA values in the patients were significantly lower than in controls, and FDR also showed similar differences; however, they were smaller than those in patients. No significant difference was found between the groups for FA values of the dorsal part of the left cingulum bundle and anterior thalamic radiation. Significant differences were present for ADC values among the groups for the corpus callosum, the dorsal and hippocampal parts of the cingulum, anterior thalamic radiation, and uncinate fasciculus bilaterally (P < 0.01). The FA and ADC values did not correlate significantly with age or any clinical variables. CONCLUSION These findings suggest that BD patients and their FDR show alterations in microstructural integrity of white matter tracts, compared to the healthy population.
Collapse
Affiliation(s)
- Ananya Mahapatra
- Department of Psychiatry & National Drug Dependence Treatment Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Sudhir K Khandelwal
- Department of Psychiatry & National Drug Dependence Treatment Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Pratap Sharan
- Department of Psychiatry & National Drug Dependence Treatment Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Ajay Garg
- Department of Neuroradiology, All India Institute of Medical Sciences, New Delhi, India
| | - Nalini K Mishra
- Department of Neuroradiology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
36
|
Kim BN, Kwon SM. Initial Psychometric Properties of the Korean Altman Self-Rating Mania Scale: Preliminary Validation Study in a Non-Clinical Sample. Psychiatry Investig 2017; 14:562-567. [PMID: 29042880 PMCID: PMC5639123 DOI: 10.4306/pi.2017.14.5.562] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/05/2016] [Accepted: 08/05/2016] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE We aimed to examine the reliability and validity of the Korean Altman Self-Rating Mania Scale (K-ASRM) in a large sample of Korean non-clinical undergraduates. METHODS Participants (n=1,091) filled out the K-ASRM with other self-report questionnaires assessing bipolarity, mood symptoms and affect. Reliability test, exploratory factor analysis and correlation analyses were conducted to examine its psychometric properties. RESULTS The reliability of the K-ASRM was adequate (Cronbach's α=0.73, item-to-total correlation 0.53-0.78) and the exploratory factor analysis yielded one factor of mania. The K-ASRM demonstrated significant associations with measures of hypomanic personality (r=0.33), lifetime history of hypomanic symptoms (r=0.23). Also, the K-ASRM was significantly correlated with positive affect (r=0.53), negative affect (r=-0.17) and depressive symptoms (r=-0.35). CONCLUSION These results suggest preliminary possibility that the K-ASRM can be utilized as self-rating tool for mania in Korea as well as future directions for further validation.
Collapse
Affiliation(s)
- Bin-Na Kim
- Department of Psychology, Seoul National University, Seoul, Republic of Korea
| | - Seok-Man Kwon
- Department of Psychology, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
37
|
Benedetti F, Melloni EMT, Dallaspezia S, Bollettini I, Locatelli C, Poletti S, Colombo C. Night sleep influences white matter microstructure in bipolar depression. J Affect Disord 2017; 218:380-387. [PMID: 28500983 DOI: 10.1016/j.jad.2017.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 05/02/2017] [Accepted: 05/06/2017] [Indexed: 01/21/2023]
Abstract
BACKGROUND Alteration of circadian rhythms and sleep disruption are prominent trait-like features of bipolar disorder (BD). Diffusion tensor imaging (DTI) measures suggest a widespread alteration of white matter (WM) microstructure in patients with BD. Sleep promotes myelination and oligodendrocyte precursor cells proliferation. We hypothesized a possible association between DTI measures of WM microstructure and sleep quantity measures in BD. METHODS We studied 69 inpatients affected by a depressive episode in course of type I BD. We used whole brain tract-based spatial statistics on DTI measures of WM microstructure: axial, radial, and mean diffusivity (AD, RD, MD), and fractional anisotropy (FA). Self-assessed measures of time asleep (TA) and total sleep time (TST) were extracted from the Pittsburgh Sleep Quality Index (PSQI). Actigraphic recordings were performed on a subsample of 23 patients. RESULTS We observed a positive correlation of DTI measures of FA with actigraphic measures of TA and TST, and with PSQI measure of TA. DTI measures of RD inversely associated with actigraphic measure of TA, and with PSQI measures of TA and TST. Several WM tracts were involved, including corpus callosum, cyngulate gyrus, uncinate fasciculus, left superior and inferior longitudinal and fronto-occipital fasciculi, thalamic radiation, corona radiata, retrolenticular part of internal capsule and corticospinal tract. LIMITATIONS The study is correlational in nature, and no conclusion about a causal connection can be drawn. CONCLUSIONS Reduced FA with increased RD and MD indicate higher water diffusivity associated with less organized myelin and/or axonal structures. Our findings suggest an association between sleep disruption and these measures of brain microstructure in specific tracts contributing to the functional connectivity in BD.
Collapse
Affiliation(s)
- Francesco Benedetti
- Department of Clinical Neurosciences and CERMAC, Scientific Institute Ospedale San Raffaele and Vita-Salute San Raffaele University, Milano, Italy.
| | - Elisa M T Melloni
- Department of Clinical Neurosciences and CERMAC, Scientific Institute Ospedale San Raffaele and Vita-Salute San Raffaele University, Milano, Italy
| | - Sara Dallaspezia
- Department of Clinical Neurosciences and CERMAC, Scientific Institute Ospedale San Raffaele and Vita-Salute San Raffaele University, Milano, Italy
| | - Irene Bollettini
- Department of Clinical Neurosciences and CERMAC, Scientific Institute Ospedale San Raffaele and Vita-Salute San Raffaele University, Milano, Italy
| | - Clara Locatelli
- Department of Clinical Neurosciences and CERMAC, Scientific Institute Ospedale San Raffaele and Vita-Salute San Raffaele University, Milano, Italy
| | - Sara Poletti
- Department of Clinical Neurosciences and CERMAC, Scientific Institute Ospedale San Raffaele and Vita-Salute San Raffaele University, Milano, Italy
| | - Cristina Colombo
- Department of Clinical Neurosciences and CERMAC, Scientific Institute Ospedale San Raffaele and Vita-Salute San Raffaele University, Milano, Italy
| |
Collapse
|
38
|
Dong D, Wang Y, Chang X, Jiang Y, Klugah-Brown B, Luo C, Yao D. Shared abnormality of white matter integrity in schizophrenia and bipolar disorder: A comparative voxel-based meta-analysis. Schizophr Res 2017; 185:41-50. [PMID: 28082140 DOI: 10.1016/j.schres.2017.01.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/06/2016] [Accepted: 01/03/2017] [Indexed: 01/04/2023]
Abstract
Patients with schizophrenia and bipolar disorder (BD) shared a significant overlap in genetic susceptibility, pharmacological treatment responses, neuropsychological deficits, and epidemiological features. However, it remains unknown whether these clinical overlaps are mediated by shared or disorder-specific abnormalities of white matter integrity. In this voxel-based meta-analytic comparison of whole-brain white matter integrity, we aimed to identify the shared or disorder-specific structural abnormalities between schizophrenia and BD. A comprehensive literature search was conducted up to February 2016 to identify studies that compared between patients and healthy controls (HC) by using whole-brain diffusion approach (schizophrenia: 24 datasets with 754 patients vs. 775 HC; BD: 23 datasets with 705 patients vs. 679 HC). Voxel-wise meta-analyses were conducted and restricted to unified template using seed-based d-Mapping. Abnormal white matter integrity was calculated within each condition and a direct comparison of effect size was performed of alterations between two conditions. Two regions with significant reductions of fractional anisotropy (FA) characterized abnormal water diffusion in both disorders: the genu of the corpus callosum (CC) and posterior cingulum fibers. There was no significant difference found between the two disorders. Our results highlighted shared impairments of FA at genu of the CC and left posterior cingulum fibers, which suggests that, phenotypic overlap between schizophrenia and BD could be related to common brain circuit dysfunction.
Collapse
Affiliation(s)
- Debo Dong
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Yulin Wang
- Faculty of Psychological and Educational Sciences, Department of Experimental and Applied Psychology, Research Group of Biological Psychology, Vrije Universiteit Brussel, Brussels 1040, Belgium; Faculty of Psychology and Educational Sciences, Department of Data Analysis, Ghent University, Henri Dunantlaan 2, Ghent B-9000, Belgium.
| | - Xuebin Chang
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Yuchao Jiang
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Benjamin Klugah-Brown
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Cheng Luo
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Dezhong Yao
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
39
|
Dev SI, Nguyen TT, McKenna BS, Sutherland AN, Bartsch H, Theilmann RJ, Eyler LT. Steeper Slope of Age-Related Changes in White Matter Microstructure and Processing Speed in Bipolar Disorder. Am J Geriatr Psychiatry 2017; 25:744-752. [PMID: 28342644 PMCID: PMC5479871 DOI: 10.1016/j.jagp.2017.02.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 01/23/2023]
Abstract
OBJECTIVES Bipolar disorder (BD) is associated with compromised white matter (WM) integrity and deficits in processing speed (PS). Few studies, however, have investigated age relationships with WM structure and cognition to understand possible changes in brain health over the lifespan. This investigation explored whether BD and healthy counterpart (HC) participants exhibited differential age-related associations with WM and cognition, which may be suggestive of accelerated brain and cognitive aging. DESIGN Cross-sectional study. SETTING University of California San Diego and the Veterans Administration San Diego Healthcare System. PARTICIPANTS 33 euthymic BD and 38 HC participants. MEASUREMENTS Diffusion tensor imaging was acquired as a measure of WM integrity, and tract-specific fractional anisotropy (FA) was extracted utilizing the Johns Hopkins University probability atlas. PS was assessed with the Number and Letter Sequencing conditions of the Delis-Kaplan Executive Function System Trail Making Test. RESULTS BD participants demonstrated slower PS compared with the HC group, but no group differences were found in FA across tracts. Multiple linear regressions revealed a significant group-by-age interaction for the right uncinate fasciculus, the left hippocampal portion of the cingulum, and for PS, such that older age was associated with lower FA values and slower PS in the BD group only. The relationship between age and PS did not significantly change after accounting for uncinate FA, suggesting that the observed age associations occur independently. CONCLUSIONS Results provide support for future study of the accelerated aging hypothesis by identifying markers of brain health that demonstrate a differential age association in BD.
Collapse
Affiliation(s)
- Sheena I. Dev
- Research Service, Veterans Affairs San Diego Healthcare system, San Diego, California,Department of Psychiatry, University of California, San Diego,San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California
| | - Tanya T. Nguyen
- Department of Psychiatry, University of California, San Diego,VA San Diego Healthcare System, Mental Illness Research, Education, and Clinical Center (MIRECC), San Diego, California
| | | | - Ashley N. Sutherland
- Research Service, Veterans Affairs San Diego Healthcare system, San Diego, California,Department of Psychiatry, University of California, San Diego
| | - Hauke Bartsch
- Department of Radiology, University of California, San Diego
| | | | - Lisa T. Eyler
- Research Service, Veterans Affairs San Diego Healthcare system, San Diego, California,Department of Psychiatry, University of California, San Diego,San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California
| |
Collapse
|
40
|
Ishida T, Donishi T, Iwatani J, Yamada S, Takahashi S, Ukai S, Shinosaki K, Terada M, Kaneoke Y. Interhemispheric disconnectivity in the sensorimotor network in bipolar disorder revealed by functional connectivity and diffusion tensor imaging analysis. Heliyon 2017; 3:e00335. [PMID: 28721394 PMCID: PMC5486438 DOI: 10.1016/j.heliyon.2017.e00335] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/12/2017] [Accepted: 06/19/2017] [Indexed: 01/21/2023] Open
Abstract
Background Little is known regarding interhemispheric functional connectivity (FC) abnormalities via the corpus callosum in subjects with bipolar disorder (BD), which might be a key pathophysiological basis of emotional processing alterations in BD. Methods We performed tract-based spatial statistics (TBSS) using diffusion tensor imaging (DTI) in 24 healthy control (HC) and 22 BD subjects. Next, we analyzed the neural networks with independent component analysis (ICA) in 32HC and 25 BD subjects using resting-state functional magnetic resonance imaging. Results In TBSS analysis, we found reduced fractional anisotropy (FA) in the corpus callosum of BD subjects. In ICA, functional within-connectivity was reduced in two clusters in the sensorimotor network (SMN) (right and left primary somatosensory areas) of BD subjects compared with HCs. FC between the two clusters and FA values in the corpus callosum of BD subjects was significantly correlated. Further, the functional within-connectivity was related to Young Mania Rating Scale (YMRS) total scores in the right premotor area in the SMN of BD subjects. Limitations Almost all of our BD subjects were taking several medications which could be a confounding factor. Conclusions Our findings suggest that interhemispheric FC dysfunction in the SMN is associated with the impaired nerve fibers in the corpus callosum, which could be one of pathophysiological bases of emotion processing dysregulation in BD patients.
Collapse
Affiliation(s)
- Takuya Ishida
- Department of System Neurophysiology, Graduate School of Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan.,Department of Neuropsychiatry, Graduate School of Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Tomohiro Donishi
- Department of System Neurophysiology, Graduate School of Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Jun Iwatani
- Department of Neuropsychiatry, Graduate School of Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Shinichi Yamada
- Department of Neuropsychiatry, Graduate School of Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Shun Takahashi
- Department of Neuropsychiatry, Graduate School of Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Satoshi Ukai
- Department of Neuropsychiatry, Graduate School of Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Kazuhiro Shinosaki
- Department of Neuropsychiatry, Graduate School of Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Masaki Terada
- Wakayama-Minami Radiology Clinic, 870-2 Kimiidera, Wakayama 641-0012, Japan
| | - Yoshiki Kaneoke
- Department of System Neurophysiology, Graduate School of Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| |
Collapse
|
41
|
Ishida T, Donishi T, Iwatani J, Yamada S, Takahashi S, Ukai S, Shinosaki K, Terada M, Kaneoke Y. Elucidating the aberrant brain regions in bipolar disorder using T1-weighted/T2-weighted magnetic resonance ratio images. Psychiatry Res Neuroimaging 2017; 263:76-84. [PMID: 28366873 DOI: 10.1016/j.pscychresns.2017.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 02/22/2017] [Accepted: 03/17/2017] [Indexed: 01/28/2023]
Abstract
Although diffusion tensor imaging (DTI) have revealed brain abnormalities in bipolar disorder (BD) subjects, DTI methods might not detect disease-related abnormalities in the white matter (WM) where nerve fibers are crossing. We investigated BD myelin-related abnormal brain regions in both gray matter and WM for 29 BD and 33 healthy control (HC) participants using T1-weighted (T1w)/T2-weighted (T2w) ratio images that increase myelin-related contrast irrespective of nerve fiber orientation. To check effect of the brain volume, the results were compared with those of voxel-based morphometry (VBM). We found significantly lower T1w/T2w signal intensity in broad WM regions in BD subjects, including the corpus callosum, corona radiata, internal capsule, middle cerebellar peduncle and cerebellum. Regional volume reduction was found in the WM bilateral posterior thalami and retrolenticular part of the internal capsules of BD subjects. We also performed tract-based spatial statistics (TBSS) in 25 BD and 24 HC participants and compared those for the T1w/T2w ratio images. Both methods detected the BD corpus callosum abnormality. Further, the ratio images detected the corona radiata and the cerebellar abnormality in BD. These results suggest that T1w/T2w ratio image analysis could take a complementary role with the DTI method in elucidating myelin-related abnormalities in BD.
Collapse
Affiliation(s)
- Takuya Ishida
- Department of System Neurophysiology, and Graduate School of Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan; Department of Neuropsychiatry, Graduate School of Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan.
| | - Tomohiro Donishi
- Department of System Neurophysiology, and Graduate School of Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Jun Iwatani
- Department of Neuropsychiatry, Graduate School of Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Shinichi Yamada
- Department of Neuropsychiatry, Graduate School of Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Shun Takahashi
- Department of Neuropsychiatry, Graduate School of Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Satoshi Ukai
- Department of Neuropsychiatry, Graduate School of Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Kazuhiro Shinosaki
- Department of Neuropsychiatry, Graduate School of Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Masaki Terada
- Wakayama-Minami Radiology Clinic, 870-2 Kimiidera, Wakayama 641-0012, Japan
| | - Yoshiki Kaneoke
- Department of System Neurophysiology, and Graduate School of Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| |
Collapse
|
42
|
Mazza E, Poletti S, Bollettini I, Locatelli C, Falini A, Colombo C, Benedetti F. Body mass index associates with white matter microstructure in bipolar depression. Bipolar Disord 2017; 19:116-127. [PMID: 28418197 DOI: 10.1111/bdi.12484] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 03/06/2017] [Accepted: 03/12/2017] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Obesity has been reported in over 60% of bipolar disorder (BD) patients. It worsens the severity of illness, and influences cognition and functional outcomes. White matter (WM) abnormalities are one of the most consistently reported findings in neuroimaging studies of BD. We hypothesized that body mass index (BMI) could correlate with WM integrity in bipolar patients. METHODS We evaluated BMI in a sample of 164 depressed patients affected by BD. We performed whole-brain tract-based spatial statistics with threshold-free cluster enhancement for the diffusion tensor imaging (DTI) measures of WM integrity: fractional anisotropy; axial, radial, and mean diffusivity. RESULTS We observed that BMI was associated with DTI measures of WM integrity in several fiber tracts: anterior corona radiata, anterior thalamic radiation, inferior fronto-occipital fasciculus and corpus callosum. CONCLUSIONS The association of BMI in key WM tracts that are crucial to mood regulation and neurocognitive functioning suggests that BMI might contribute to the pathophysiology of BD through a detrimental action on structural connectivity in critical cortico-limbic networks.
Collapse
Affiliation(s)
- Elena Mazza
- Department of Clinical Neurosciences, Scientific Institute Ospedale San Raffaele, Milan, Italy
| | - Sara Poletti
- Department of Clinical Neurosciences, Scientific Institute Ospedale San Raffaele, Milan, Italy.,C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy
| | - Irene Bollettini
- Department of Clinical Neurosciences, Scientific Institute Ospedale San Raffaele, Milan, Italy.,C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy
| | - Clara Locatelli
- Department of Clinical Neurosciences, Scientific Institute Ospedale San Raffaele, Milan, Italy.,C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy
| | - Andrea Falini
- C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy.,Department of Neuroradiology, Scientific Institute Ospedale San Raffaele, Milan, Italy
| | - Cristina Colombo
- Department of Clinical Neurosciences, Scientific Institute Ospedale San Raffaele, Milan, Italy
| | - Francesco Benedetti
- Department of Clinical Neurosciences, Scientific Institute Ospedale San Raffaele, Milan, Italy.,C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
43
|
Ganzola R, Duchesne S. Voxel-based morphometry meta-analysis of gray and white matter finds significant areas of differences in bipolar patients from healthy controls. Bipolar Disord 2017; 19:74-83. [PMID: 28444949 DOI: 10.1111/bdi.12488] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 03/06/2017] [Accepted: 03/12/2017] [Indexed: 12/15/2022]
Abstract
OBJECTIVE We present a retrospective meta-analysis of voxel-based morphometry (VBM) of gray (GM) and white matter (WM) differences between patients with bipolar disorder (BD) and behaviorally healthy controls. METHODS We used the activation likelihood estimation and Sleuth software for our meta-analysis, considering P-value maps at the cluster level inference of .05 with uncorrected P<.001. Results were visualized with the software MANGO. RESULTS We included twenty-five articles in the analysis, and separated the comparisons where BD patients had lower GM or WM concentrations than controls (573 subjects, 21 experiments, and 117 locations/180 subjects, five experiments, and 15 locations, respectively) and the comparisons where BD patients had greater GM concentrations than controls (217 subjects, nine experiments, and 49 locations). Higher WM concentrations in BD patients were not detected. We observed for BD reduced GM concentrations in the left medial frontal gyrus and right inferior/precentral gyri encompassing the insular cortex, and greater GM concentrations in the left putamen. Further, lower WM concentrations were detected in the left inferior longitudinal fasciculus, left superior corona radiata, and left posterior cingulum. CONCLUSIONS This meta-analysis confirms deterioration of frontal and insular regions as already found in previous meta-analysis. GM reductions in these regions could be related to emotional processing and decision making, which are typically impaired in BD. Moreover, we found abnormalities in precentral frontal areas and putamen that have been linked to more basic functions, which could point to sensory and specific cognitive deficits. Finally, WM reductions involved circuitry that may contribute to emotional dysregulation in BD.
Collapse
Affiliation(s)
- Rossana Ganzola
- Institut universitaire en santé mentale de Québec, Québec City, Québec, Canada
| | - Simon Duchesne
- Institut universitaire en santé mentale de Québec, Québec City, Québec, Canada.,Départment de Radiologie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
44
|
Nery FG, Norris M, Eliassen JC, Weber WA, Blom TJ, Welge JA, Barzman DA, Strawn JR, Adler CM, Strakowski SM, DelBello MP. White matter volumes in youth offspring of bipolar parents. J Affect Disord 2017; 209:246-253. [PMID: 27936454 PMCID: PMC10530655 DOI: 10.1016/j.jad.2016.11.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/25/2016] [Accepted: 11/15/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND Studying youth at high risk of developing bipolar disorder may clarify neurobiological factors associated with vulnerability to this illness. We present here a baseline characterization of brain structure in youth at-risk for bipolar disorder. METHODS Magnetic resonance images were obtained from 115 child and adolescent offspring of bipolar disorder type I subjects and 57 healthy child and adolescent offspring of healthy parents (healthy control offspring). Offspring of parents with bipolar disorder were divided into healthy bipolar offspring (n=47) or symptomatic bipolar offspring (n=68), according to presence or absence of childhood-onset psychopathology. All bipolar offspring were free of major mood and psychotic disorders. Gray (GM) and white matter (WM) volumes were compared between groups using voxel-based morphometry. RESULTS No differences in GM volumes were found across groups. Healthy bipolar offspring presented with decreased WM volumes in areas of the right frontal, temporal and parietal lobes, and in the left temporal and parietal lobes compared to healthy control offspring. Symptomatic bipolar offspring did not present with any differences in WM volumes compared to either healthy bipolar offspring or healthy control offspring. LIMITATIONS Cross-sectional design and heterogeneous sample of symptomatic bipolar offspring. CONCLUSIONS WM volume decreases in areas of the frontal, occipital, and parietal lobes are present in bipolar offspring prior to the development of any psychiatric symptoms, and may be a correlate of familial risk to bipolar disorder. In this large cohort, we have not found evidence for regional GM volume abnormalities as an endophenotype for bipolar disorder.
Collapse
Affiliation(s)
- Fabiano G Nery
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Matthew Norris
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - James C Eliassen
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Wade A Weber
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Thomas J Blom
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jeffrey A Welge
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Drew A Barzman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jeffrey R Strawn
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Caleb M Adler
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Stephen M Strakowski
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Melissa P DelBello
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
45
|
Gkintoni E, Pallis EG, Bitsios P, Giakoumaki SG. Neurocognitive performance, psychopathology and social functioning in individuals at high risk for schizophrenia or psychotic bipolar disorder. J Affect Disord 2017; 208:512-520. [PMID: 27810272 DOI: 10.1016/j.jad.2016.10.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/05/2016] [Accepted: 10/22/2016] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Although cognitive deficits are consistent endophenotypes of schizophrenia and bipolar disorder, findings in psychotic bipolar disorder (BDP) are inconsistent. In this study we compared adult unaffected first-degree relatives of schizophrenia and BDP patients on cognition, psychopathology, social functioning and quality of life. METHODS Sixty-six unaffected first-degree relatives of schizophrenia patients (SUnR), 36 unaffected first-degree relatives of BDP patients (BDPUnR) and 102 controls participated in the study. Between-group differences were examined and Discriminant Function Analysis (DFA) predicted group membership. RESULTS Visual memory, control inhibition, working memory, cognitive flexibility and abstract reasoning were linearly impaired in the relatives' groups. Poorer verbal fluency and processing speed were evident only in the SUnR group. The SUnR group had higher depressive and somatization symptoms while the BDPUnR group had higher anxiety and lower social functioning compared with the controls. Individuals with superior cognition were more likely to be classified as controls; those with higher social functioning, prolonged processing speed and lower anxiety were more likely to be classified as SUnR. LIMITATIONS The relatives' sample is quite heterogeneous; the effects of genetic or environmental risk-factors were not examined. CONCLUSIONS Cognitive functions mediated by a fronto-parietal network, show linear impairments in unaffected relatives of BDP and schizophrenia patients; processing speed and verbal fluency impairments were evident only in schizophrenia relatives. Self-perceived symptomatology and social functioning also differ between schizophrenia and BDP relatives. The continuum seen in patients in several indices was also seen in the cognitive impairments in unaffected relatives of schizophrenia and BDP patients.
Collapse
Affiliation(s)
- Evgenia Gkintoni
- Department of Psychology, Gallos University campus, University of Crete, Rethymno, Crete, Greece
| | - Eleftherios G Pallis
- Department of Medicine, School of Health Sciences, National and Kapodistrian University of Athens, Greece
| | - Panos Bitsios
- Department of Psychiatry & Behavioral Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Stella G Giakoumaki
- Department of Psychology, Gallos University campus, University of Crete, Rethymno, Crete, Greece.
| |
Collapse
|
46
|
Neuroprotection after a first episode of mania: a randomized controlled maintenance trial comparing the effects of lithium and quetiapine on grey and white matter volume. Transl Psychiatry 2017; 7:e1011. [PMID: 28117843 PMCID: PMC5545739 DOI: 10.1038/tp.2016.281] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 11/13/2016] [Accepted: 11/27/2016] [Indexed: 01/13/2023] Open
Abstract
Lithium and quetiapine are effective treatments for bipolar disorder, but their potential neuroprotective effects in humans remain unclear. A single blinded equivalence randomized controlled maintenance trial was conducted in a prospective cohort of first-episode mania (FEM) patients (n=26) to longitudinally compare the putative protective effects of lithium and quetapine on grey and white matter volume. A healthy control sample was also collected (n=20). Using structural MRI scans, voxel-wise grey and white matter volumes at baseline and changes over time in response to treatment were investigated. Patients were assessed at three time points (baseline, 3 and 12-month follow-up), whereas healthy controls were assessed at two time points (baseline and 12-month follow-up). Patients were randomized to lithium (serum level 0.6 mmol l-1, n=20) or quetiapine (flexibly dosed up to 800 mg per day, n=19) monotherapy. At baseline, compared with healthy control subjects, patients with FEM showed reduced grey matter in the orbitofrontal cortex, anterior cingulate, inferior frontal gyrus and cerebellum. In addition, patients had reduced internal capsule white matter volume bilaterally (t1,66>3.20, P<0.01). Longitudinally, there was a significant treatment × time effect only in the white matter of the left internal capsule (F2,112=8.54, P<0.01). Post hoc testing showed that, compared with baseline, lithium was more effective than quetiapine in slowing the progression of white matter volume reduction after 12 months (t1,24=3.76, P<0.01). Our data support the role of lithium but not quetiapine therapy in limiting white matter reduction early in the illness course after FEM.
Collapse
|
47
|
Bollettini I, Melloni EMT, Aggio V, Poletti S, Lorenzi C, Pirovano A, Vai B, Dallaspezia S, Colombo C, Benedetti F. Clock genes associate with white matter integrity in depressed bipolar patients. Chronobiol Int 2016; 34:212-224. [DOI: 10.1080/07420528.2016.1260026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Irene Bollettini
- Department of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
- C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy
- PhD program in Philosophy and Sciences of Mind, University Vita-Salute San Raffaele, Milan, Italy
| | - Elisa Maria Teresa Melloni
- Department of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
- C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy
- PhD program in Molecular Medicine, University Vita-Salute San Raffaele, Milan, Italy
| | - Veronica Aggio
- Department of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
- C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy
| | - Sara Poletti
- Department of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
- C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy
| | - Cristina Lorenzi
- Department of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
| | - Adele Pirovano
- Department of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
| | - Benedetta Vai
- Department of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
- C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy
- PhD program in Evolutionary Psychopathology, Libera Università Maria SS. Assunta, Rome, Italy
| | - Sara Dallaspezia
- Department of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
- C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy
| | - Cristina Colombo
- Department of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
| | - Francesco Benedetti
- Department of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
- C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
48
|
Mallas E, Carletti F, Chaddock CA, Shergill S, Woolley J, Picchioni MM, McDonald C, Toulopoulou T, Kravariti E, Kalidindi S, Bramon E, Murray R, Barker GJ, Prata DP. The impact of CACNA1C gene, and its epistasis with ZNF804A, on white matter microstructure in health, schizophrenia and bipolar disorder1. GENES BRAIN AND BEHAVIOR 2016; 16:479-488. [DOI: 10.1111/gbb.12355] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 12/16/2022]
Affiliation(s)
- E. Mallas
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience; King's College London
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Department of Medicine; Imperial College London; London
| | - F. Carletti
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience; King's College London
- Department of Neuroradiology, John Radcliffe Hospital; Oxford University Hospitals NHS Trust; Oxford
| | - C. A. Chaddock
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience; King's College London
| | - S. Shergill
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience; King's College London
| | - J. Woolley
- Psychological Medicine; Royal Brompton & Harefield NHS Trust; London
| | - M. M. Picchioni
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience; King's College London
- St. Andrew's Academic Department; St Andrew's Healthcare; Northampton UK
| | - C. McDonald
- Neuroimaging, Cognition & Genomics Centre (NICOG) & NCBES Galway Neuroscience Centre, College of Medicine, Nursing and Health Sciences; National University of Ireland Galway; Galway Ireland
| | - T. Toulopoulou
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience; King's College London
- Department of Psychology; The University of Hong Kong; Hong Kong Special Administrative Region
| | - E. Kravariti
- Department of Psychology, Institute of Psychiatry; Psychology & Neuroscience King's College London
| | - S. Kalidindi
- Department of Psychology, Institute of Psychiatry; Psychology & Neuroscience King's College London
| | - E. Bramon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience; King's College London
- Mental Health Neurosciences Research Department, Division of Psychiatry; University College London
| | - R. Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience; King's College London
| | - G. J. Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience; King's College London; London UK
| | - D. P. Prata
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience; King's College London; London UK
- Instituto de Medicina Molecular; Faculdade de Medicina da Universidade de Lisboa; Lisbon Portugal
| |
Collapse
|
49
|
Özerdem A, Ceylan D, Can G. Neurobiology of Risk for Bipolar Disorder. CURRENT TREATMENT OPTIONS IN PSYCHIATRY 2016; 3:315-329. [PMID: 27867834 PMCID: PMC5093194 DOI: 10.1007/s40501-016-0093-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Bipolar disorder (BD) is a chronic mental illness which follows a relapsing and remitting course and requires lifetime treatment. The lack of biological markers for BD is a major difficulty in clinical practice. Exploring multiple endophenotypes to fit in multivariate genetic models for BD is an important element in the process of finding tools to facilitate early diagnosis, early intervention, prevention of new episodes, and follow-up of treatment response in BD. Reviewing of studies on neuroimaging, neurocognition, and biochemical parameters in populations with high genetic risk for the illness can yield an integrative perspective on the neurobiology of risk for BD. The most up-to-date data reveals consistent deficits in executive function, response inhibition, verbal memory/learning, verbal fluency, and processing speed in risk groups for BD. Functional magnetic resonance imaging (fMRI) studies report alterations in the activity of the inferior frontal gyrus, medial prefrontal cortex, and limbic areas, particularly in the amygdala in unaffected first-degree relatives (FDR) of BD compared to healthy controls. Risk groups for BD also present altered immune and neurochemical modulation. Despite inconsistencies, accumulating data reveals cognitive and imaging markers for risk and to a less extent resilience of BD. Findings on neural modulation markers are preliminary and require further studies. Although the knowledge on the neurobiology of risk for BD has been inadequate to provide benefits for clinical practice, further studies on structural and functional changes in the brain, neurocognitive functioning, and neurochemical modulation have a potential to reveal biomarkers for risk and resilience for BD. Multimodal, multicenter, population-based studies with large sample size allowing for homogeneous subgroup analyses will immensely contribute to the elucidation of biological markers for risk for BD in an integrative model.
Collapse
Affiliation(s)
- Ayşegül Özerdem
- Department of Psychiatry, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
- Department of Neuroscience, Health Sciences Institute, Dokuz Eylül University, Izmir, Turkey
| | - Deniz Ceylan
- Department of Neuroscience, Health Sciences Institute, Dokuz Eylül University, Izmir, Turkey
- Department of Psychiatry, Gümüşhane State Hospital, Gümüşhane, Turkey
| | - Güneş Can
- Department of Psychiatry, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| |
Collapse
|
50
|
Haarman BCM'B, Riemersma-Van der Lek RF, Burger H, de Groot JC, Drexhage HA, Nolen WA, Cerliani L. Diffusion tensor imaging in euthymic bipolar disorder - A tract-based spatial statistics study. J Affect Disord 2016; 203:281-291. [PMID: 27317921 DOI: 10.1016/j.jad.2016.05.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/22/2016] [Indexed: 11/15/2022]
Abstract
BACKGROUND In the current DTI study we compared euthymic bipolar I disorder (BD-I) patients and healthy controls (HC). We subsequently divided the total patient group into lithium-users and non-lithium-users and estimated differences across the three groups. METHODS Twenty-one euthymic BD-I patients and twenty-two HC participants were included in psychiatric interviews and MRI image acquisition (diffusion-weighted (DW) and T1-weighted scans). Fractional anisotropy (FA), radial, mean and axial diffusivity (RD, MD, AD) were estimated from the DW data, using DTI. These measures were then compared between groups using FSL Tract Based Spatial Statistics (TBSS). Correlations with age at onset, number of episodes and depression score were analyzed. RESULTS A difference in FA, MD, RD and AD between the whole sample of euthymic BD-I patients and healthy controls could not be detected. Amongst others, lithium-using patients demonstrated a higher FA and lower RD when compared to non-lithium-using BD-I patients in the corpus callosum and left anterior corona radiata. Widespread clusters demonstrated negative FA associations and positive RD and MD associations with minor depressive symptoms. LIMITATIONS Patients were naturalistically treated. Although the sample size is comparable to several other DTI studies, a larger sample size would have been benificial. TBSS and DTI have their own limitations. CONCLUSION Our findings support the theory that previously described DTI-based microstructural differences between HC and BD patients could be less pronounced in euthymic BD patients. Differences in FA between patients using and not using lithium suggest a counteracting effect of lithium on white matter microstructural disturbances.
Collapse
Affiliation(s)
- Bartholomeus C M 'Benno' Haarman
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, Groningen, The Netherlands; Radiology Morphological Solutions, Berkel en Rodenrijs, The Netherlands.
| | - Rixt F Riemersma-Van der Lek
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, Groningen, The Netherlands
| | - Huibert Burger
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, Department of General Practice, Groningen, The Netherlands
| | - Jan Cees de Groot
- University of Groningen, University Medical Center Groningen, Department of Radiology, Groningen, The Netherlands
| | - Hemmo A Drexhage
- Erasmus MC, Department of Immunology, Rotterdam, The Netherlands
| | - Willem A Nolen
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, Groningen, The Netherlands
| | - Leonardo Cerliani
- University of Groningen, Neuroimaging Center, Groningen, The Netherlands; Institute du Cerveau et de la Moelle épinière, Paris, France
| |
Collapse
|