1
|
Ali O, Szabó A. Fumonisin distorts the cellular membrane lipid profile: A mechanistic insight. Toxicology 2024; 506:153860. [PMID: 38871209 DOI: 10.1016/j.tox.2024.153860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Monitoring modifications in membrane lipids in association with external stimuli/agents, including fumonisins (FUMs), is a widely employed approach to assess cellular metabolic response/status. FUMs are prevalent fusariotoxins worldwide that have diverse structures with varying toxicity across species; nevertheless, they can induce metabolic disturbances and disease, including cancer. The capacity of FUMs to disrupt membrane lipids, demonstrated across numerous species and organs/tissues, is ascribed to a multitude of factors/events, which range from direct to indirect effects. Certain events are well established, whereas the potential consequences of others remain speculative. The most notable effect is their resemblance to sphingoid bases, which impacts the synthesis of ceramides leading to numerous changes in lipids' composition that are not limited to sphingolipids' composition of the membranes. The next plausible scenario involves the induction of oxidative stress, which is considered an indirect/secondary effect of FUMs. Additional modes of action include modifications of enzyme activities and nuclear signals related to lipid metabolism, although these are likely not yet fully comprehended. This review provides in-depth insight into the current state of these events and their potential mechanistic actions in modifying membrane lipids, with a focus on long-chain fatty acids. This paper also presents a detailed description of the reported modifications to membrane lipids by FUMs.
Collapse
Affiliation(s)
- Omeralfaroug Ali
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Animal Nutrition, Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, Kaposvár 7400, Hungary.
| | - András Szabó
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Animal Nutrition, Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, Kaposvár 7400, Hungary; HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, Kaposvár 7400, Hungary
| |
Collapse
|
2
|
Paul B, Merta H, Ugrankar-Banerjee R, Hensley M, Tran S, Dias do Vale G, McDonald JG, Farber SA, Henne WM. Paraoxonase-like APMAP maintains endoplasmic reticulum-associated lipid and lipoprotein homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577049. [PMID: 38328083 PMCID: PMC10849633 DOI: 10.1101/2024.01.26.577049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Oxidative stress perturbs lipid homeostasis and contributes to metabolic diseases. Though ignored compared to mitochondrial oxidation, the endoplasmic reticulum (ER) generates reactive oxygen species requiring antioxidant quality control. Using multi-organismal profiling featuring Drosophila, zebrafish, and mammalian cells, here we characterize the paraoxonase-like APMAP as an ER-localized protein that promotes redox and lipid homeostasis and lipoprotein maturation. APMAP-depleted mammalian cells exhibit defective ER morphology, elevated ER and oxidative stress, lipid droplet accumulation, and perturbed ApoB-lipoprotein homeostasis. Critically, APMAP loss is rescued with chemical antioxidant NAC. Organismal APMAP depletion in Drosophila perturbs fat and lipoprotein homeostasis, and zebrafish display increased vascular ApoB-containing lipoproteins, particles that are atherogenic in mammals. Lipidomics reveals altered polyunsaturated phospholipids and increased ceramides upon APMAP loss, which perturbs ApoB-lipoprotein maturation. These ApoB-associated defects are rescued by inhibiting ceramide synthesis. Collectively, we propose APMAP is an ER-localized antioxidant that promotes lipid and lipoprotein homeostasis.
Collapse
Affiliation(s)
- Blessy Paul
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390
| | - Holly Merta
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390
| | | | - Monica Hensley
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | - Son Tran
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390
| | - Goncalo Dias do Vale
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX 75390
| | - Jeffrey G McDonald
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX 75390
| | - Steven A Farber
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | - W Mike Henne
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
3
|
Tang Y, Lin Z, Liu L, Yin L, Zhang D, Yu C, Yang C, Gong Y, Wang Y, Liu Y. Attenuated AKT signaling by miR-146a-5p interferes with chicken granulosa cell proliferation, lipid deposition and progesterone biosynthesis. Theriogenology 2024; 214:370-385. [PMID: 37995530 DOI: 10.1016/j.theriogenology.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023]
Abstract
Steroid hormones play a crucial role in the growth and maturation of poultry ovarian follicles, with progesterone secretion by granulosa cells (GC) being essential. According to our previous transcriptome analysis, it apparented that miR-146a-5p expressions were upregulated in the follicles undergoing atresia. In this study, we delved the depth to explore the underlying mechanisms by miR-146a-5p in the regulation of follicle functions in chicken. The study demonstrated that miR-146a-5p suppressed cell growth, lipids accumulation, and progesterone biosynthesis in chicken GC. Through targeting association validations, we identified delta 4-desaturase, sphingolipid 1 (DEGS1) as capable of interacting with miR-146a-5p. Co-transfection experiments further confirmed that DEGS1 reversed the impairment of GC functions by miR-146a-5p. Moreover, we discovered that miR-146a-5p suppressed AKT phosphorylation, while DEGS1 enhanced AKT phosphorylation. Phosphatidylinositol-3 kinase (PI3K) inhibitor (LY294002) studies showed that miR-146a-5p would inhibit AKT phosphorylation by governing the DEGS1/AKT pathway, which in turn regulates GC function. In summary, the findings revealed that miR-146a-5p suppressed cell growth, lipid deposition, and progesterone biosynthesis via the DEGS1/AKT pathway. These results may further enrich our understandings of how non-coding RNA regulates productive performance in chickens.
Collapse
Affiliation(s)
- Yuan Tang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zhongzhen Lin
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Li Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Lingqian Yin
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Donghao Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Chunlin Yu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Chaowu Yang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Yanrong Gong
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yiping Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
4
|
Kipp ZA, Martinez GJ, Bates EA, Maharramov AB, Flight RM, Moseley HNB, Morris AJ, Stec DE, Hinds TD. Bilirubin Nanoparticle Treatment in Obese Mice Inhibits Hepatic Ceramide Production and Remodels Liver Fat Content. Metabolites 2023; 13:215. [PMID: 36837834 PMCID: PMC9965094 DOI: 10.3390/metabo13020215] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/21/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Studies have indicated that increasing plasma bilirubin levels might be useful for preventing and treating hepatic lipid accumulation that occurs with metabolic diseases such as obesity and diabetes. We have previously demonstrated that mice with hyperbilirubinemia had significantly less lipid accumulation in a diet-induced non-alcoholic fatty liver disease (NAFLD) model. However, bilirubin's effects on individual lipid species are currently unknown. Therefore, we used liquid chromatography-mass spectroscopy (LC-MS) to determine the hepatic lipid composition of obese mice with NAFLD treated with bilirubin nanoparticles or vehicle control. We placed the mice on a high-fat diet (HFD) for 24 weeks and then treated them with bilirubin nanoparticles or vehicle control for 4 weeks while maintaining the HFD. Bilirubin nanoparticles suppressed hepatic fat content overall. After analyzing the lipidomics data, we determined that bilirubin inhibited the accumulation of ceramides in the liver. The bilirubin nanoparticles significantly lowered the hepatic expression of two essential enzymes that regulate ceramide production, Sgpl1 and Degs1. Our results demonstrate that the bilirubin nanoparticles improve hepatic fat content by reducing ceramide production, remodeling the liver fat content, and improving overall metabolic health.
Collapse
Affiliation(s)
- Zachary A Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, 760 Press Avenue, Healthy Kentucky Research Building, Lexington, KY 40508, USA
| | - Genesee J Martinez
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, 760 Press Avenue, Healthy Kentucky Research Building, Lexington, KY 40508, USA
| | - Evelyn A Bates
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, 760 Press Avenue, Healthy Kentucky Research Building, Lexington, KY 40508, USA
| | - Agil B Maharramov
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, 760 Press Avenue, Healthy Kentucky Research Building, Lexington, KY 40508, USA
| | - Robert M Flight
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40508, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40508, USA
| | - Hunter N B Moseley
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40508, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40508, USA
- Institute for Biomedical Informatics, University of Kentucky, Lexington, KY 40508, USA
- Center for Clinical and Translational Sciences, University of Kentucky, Lexington, KY 40508, USA
| | - Andrew J Morris
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - David E Stec
- Department of Physiology & Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, 760 Press Avenue, Healthy Kentucky Research Building, Lexington, KY 40508, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40508, USA
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY 40508, USA
| |
Collapse
|
5
|
Serine Palmitoyltransferase Gene Silencing Prevents Ceramide Accumulation and Insulin Resistance in Muscles in Mice Fed a High-Fat Diet. Cells 2022; 11:cells11071123. [PMID: 35406688 PMCID: PMC8997855 DOI: 10.3390/cells11071123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/15/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
Skeletal muscles account for ~80% of insulin-stimulated glucose uptake and play a key role in lipid metabolism. Consumption of a high-fat diet (HFD) contributes to metabolic changes in muscles, including the development of insulin resistance. The studies carried out to date indicate that the accumulation of biologically active lipids, such as long-chain acyl-CoA, diacylglycerols and ceramides, play an important role in the development of insulin resistance in skeletal muscles. Unfortunately, it has not yet been clarified which of these lipid groups plays the dominant role in inducing these disorders. In order to explore this topic further, we locally silenced the gene encoding serine palmitoyltransferase (SPT) in the gastrocnemius muscle of animals with HFD-induced insulin resistance. This enzyme is primarily responsible for the first step of de novo ceramide biosynthesis. The obtained results confirm that the HFD induces the development of whole-body insulin resistance, which results in inhibition of the insulin pathway. This is associated with an increased level of biologically active lipids in the muscles. Our results also demonstrate that silencing the SPT gene with the shRNA plasmid reduces the accumulation of ceramides in gastrocnemius muscle, which, in turn, boosts the activity of the insulin signaling pathway. Furthermore, inhibition of ceramide synthesis does not significantly affect the content of other lipids, which suggests the leading role of ceramide in the lipid-related induction of skeletal muscle insulin resistance.
Collapse
|
6
|
Barbacini P, Torretta E, Arosio B, Ferri E, Capitanio D, Moriggi M, Gelfi C. Novel Insight into the Serum Sphingolipid Fingerprint Characterizing Longevity. Int J Mol Sci 2022; 23:ijms23052428. [PMID: 35269570 PMCID: PMC8910653 DOI: 10.3390/ijms23052428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 01/25/2023] Open
Abstract
Sphingolipids (SLs) are structural components of the lipid bilayer regulating cell functions. In biological fluids, their distribution is sex-specific and is at variance in aging and many disorders. The aim of this study is to identify SL species associated with the decelerated aging of centenarians. SLs, extracted from serum of adults (Ad, 35–37 years old), aged (Ag, 75–77 years old) and centenarian (C, 105–107 years old) women were analyzed by LC-MS/MS in combination with mRNA levels in peripheral blood mononuclear cells (PBMCs) of SL biosynthetic enzymes. Results indicated in Ag and C vs. Ad a comparable ceramides (Cers) increase, whereas dihydroceramide (dhCer) decreased in C vs. Ad. Hexosylceramides (HexCer) species, specifically HexCer 16:0, 22:0 and 24:1 acyl chains, increased in C vs. Ag representing a specific trait of C. Sphingosine (Sph), dihydrosphingosine (dhSph), sphingosine-1-phosphate (S1P) and dihydrosphingosine-1-phosphate (dhS1P), increased both in Ag and C vs. Ad, with higher levels in Ag, indicating a SL fine-tuning associated with a reduced physiological decline in C. mRNA levels of enzymes involved in ceramide de novo biosynthesis increased in Ag whereas enzymes involved in sphingomyelin (SM) degradation increased in C. Collectively, results suggest that Ag produce Cers by de novo synthesis whereas C activate a protective mechanism degrading SMs to Cers converting it into glycosphingolipids.
Collapse
Affiliation(s)
- Pietro Barbacini
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (P.B.); (D.C.)
| | | | - Beatrice Arosio
- Department of Clinical Sciences and Community Health, University of Milan, Via Pace 9, 20122 Milan, Italy;
| | - Evelyn Ferri
- Geriatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Pace 9, 20122 Milan, Italy;
| | - Daniele Capitanio
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (P.B.); (D.C.)
| | - Manuela Moriggi
- Gastroenterology and Digestive Endoscopy Unit, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy;
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (P.B.); (D.C.)
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy;
- Correspondence: ; Tel.: +39-02-50330475
| |
Collapse
|
7
|
De Novo Sphingolipid Biosynthesis in Atherosclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1372:31-46. [DOI: 10.1007/978-981-19-0394-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Crosstalk between ORMDL3, serine palmitoyltransferase, and 5-lipoxygenase in the sphingolipid and eicosanoid metabolic pathways. J Lipid Res 2021; 62:100121. [PMID: 34560079 PMCID: PMC8527048 DOI: 10.1016/j.jlr.2021.100121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/23/2021] [Accepted: 09/08/2021] [Indexed: 11/21/2022] Open
Abstract
Leukotrienes (LTs) and sphingolipids are critical lipid mediators participating in numerous cellular signal transduction events and developing various disorders, such as bronchial hyperactivity leading to asthma. Enzymatic reactions initiating production of these lipid mediators involve 5-lipoxygenase (5-LO)-mediated conversion of arachidonic acid to LTs and serine palmitoyltransferase (SPT)-mediated de novo synthesis of sphingolipids. Previous studies have shown that endoplasmic reticulum membrane protein ORM1-like protein 3 (ORMDL3) inhibits the activity of SPT and subsequent sphingolipid synthesis. However, the role of ORMDL3 in the synthesis of LTs is not known. In this study, we used peritoneal-derived mast cells isolated from ORMDL3 KO or control mice and examined their calcium mobilization, degranulation, NF-κB inhibitor-α phosphorylation, and TNF-α production. We found that peritoneal-derived mast cells with ORMDL3 KO exhibited increased responsiveness to antigen. Detailed lipid analysis showed that compared with WT cells, ORMDL3-deficient cells exhibited not only enhanced production of sphingolipids but also of LT signaling mediators LTB4, 6t-LTB4, LTC4, LTB5, and 6t-LTB5. The crosstalk between ORMDL3 and 5-LO metabolic pathways was supported by the finding that endogenous ORMDL3 and 5-LO are localized in similar endoplasmic reticulum domains in human mast cells and that ORMDL3 physically interacts with 5-LO. Further experiments showed that 5-LO also interacts with the long-chain 1 and long-chain 2 subunits of SPT. In agreement with these findings, 5-LO knockdown increased ceramide levels, and silencing of SPTLC1 decreased arachidonic acid metabolism to LTs to levels observed upon 5-LO knockdown. These results demonstrate functional crosstalk between the LT and sphingolipid metabolic pathways, leading to the production of lipid signaling mediators.
Collapse
|
9
|
Magaye RR, Savira F, Xiong X, Huynh K, Meikle PJ, Reid C, Flynn BL, Kaye D, Liew D, Wang BH. Dihydrosphingosine driven enrichment of sphingolipids attenuates TGFβ induced collagen synthesis in cardiac fibroblasts. IJC HEART & VASCULATURE 2021; 35:100837. [PMID: 34277924 PMCID: PMC8264607 DOI: 10.1016/j.ijcha.2021.100837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 01/22/2023]
Abstract
The sphingolipid de novo synthesis pathway, encompassing the sphingolipids, the enzymes and the cell membrane receptors, are being investigated for their role in diseases and as potential therapeutic targets. The intermediate sphingolipids such as dihydrosphingosine (dhSph) and sphingosine (Sph) have not been investigated due to them being thought of as precursors to other more active lipids such as ceramide (Cer) and sphingosine 1 phosphate (S1P). Here we investigated their effects in terms of collagen synthesis in primary rat neonatal cardiac fibroblasts (NCFs). Our results in NCFs showed that both dhSph and Sph did not induce collagen synthesis, whilst dhSph reduced collagen synthesis induced by transforming growth factor β (TGFβ). The mechanisms of these inhibitory effects were associated with the increased activation of the de novo synthesis pathway that led to increased dihydrosphingosine 1 phosphate (dhS1P). Subsequently, through a negative feedback mechanism that may involve substrate-enzyme receptor interactions, S1P receptor 1 expression (S1PR1) was reduced.
Collapse
Key Words
- Akt, protein kinase B
- CTGF, connective tissue growth factor
- Cardiac fibroblasts
- Cer, ceramide
- Cer1P, ceramide 1 phosphate
- Coll1a1, collagen 1a1
- Collagen synthesis
- Degs1, dihydroceramide desaturase 1 gene
- Des-1, dihydroceramide desaturase 1 enzyme
- Dihydrosphingosine
- ECM, extracellular matrix inhibitor of nuclear kappa B (NFKβ) kinase alpha and beta (IKKα/β)
- MA3PK, mitogen activated protein kinase kinase kinase
- MAPK, mitogren activated protein kinase
- MI, myocardial infarct
- MMP2, matrix metalloproteinase 2
- NCF, neonatal cardiac fibroblasts
- RPS6, ribosomal protein S6
- S1P, sphingosine-1 Phosphate
- S1PR1, sphingosine -1-phosphate receptor 1
- S1PRs, sphingosine 1 phosphate receptor 1-5
- SK1, sphingosine kinase 1
- Sph, sphingosine
- Sphingolipid
- TAK1, transforming growth factor β activating kinase 1
- TGFβ
- TGFβ, transforming growth factor β
- TIMP1, tissue inhibitor of metalloproteinase 1
- d7dhSph, deuterated dihydrosphingosine
- dhCer, dihydroceramide
- dhS1P, dihydrosphingosine 1 phosphate
- mTOR, mammalian target for rapamycin
Collapse
Affiliation(s)
- Ruth R. Magaye
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Melbourne, Australia
| | - Feby Savira
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Melbourne, Australia
| | - Xin Xiong
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Melbourne, Australia
- Shanghai Institute of Heart Failure, Research Centre for Translational Medicine, Shanghai East Hospital, Tongji University, School of Medicine, Shanghai 200120, PR China
| | - Kevin Huynh
- Metabolomics Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Peter J. Meikle
- Metabolomics Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia
- School of Public Health School, Curtin University, Perth, Australia
| | - Christopher Reid
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Melbourne, Australia
- School of Public Health School, Curtin University, Perth, Australia
| | - Bernard L. Flynn
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - David Kaye
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Danny Liew
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Melbourne, Australia
| | - Bing H. Wang
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Melbourne, Australia
| |
Collapse
|
10
|
Murugan B, Krishnan UM. Differently sized drug-loaded mesoporous silica nanoparticles elicit differential gene expression in MCF-7 cancer cells. Nanomedicine (Lond) 2021; 16:1017-1034. [PMID: 33970678 DOI: 10.2217/nnm-2020-0375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: This study investigates the effects of different sized unmodified and chemo-responsive mesoporous silica nanocarriers on MCF-7 cancer cells. Materials & methods: Unmodified and thiol-functionalized large and small-sized mesoporous MCM-41 silica nanoparticles prepared using templated sol-gel process were characterized for their physicochemical properties and in vitro and in vivo anticancer efficacy. Microarray analysis was carried out to assess their differential effect on gene expression. Results: Thiol-functionalized nanoparticles displayed chemo responsive release and greater cytotoxicity to cancer cells when compared with unmodified carriers. Microarray studies showed distinct differences in genes differentially regulated by sMCM-41and lMCM-41 carriers when compared with the free drug. Conclusion: The small chemo-responsive carrier was more effective in suppressing oncogenes and genes involved in proliferation, invasion and survival while the large carrier mainly altered membrane-associated pathways.
Collapse
Affiliation(s)
- Baranya Murugan
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed-to-be University, Thanjavur, 613401, India.,School of Chemical & Biotechnology, SASTRA Deemed-to-be University, Thanjavur, 613401, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed-to-be University, Thanjavur, 613401, India.,School of Chemical & Biotechnology, SASTRA Deemed-to-be University, Thanjavur, 613401, India.,School of Arts, Science & Humanities, SASTRA Deemed-to-be University, Thanjavur, 613401, India
| |
Collapse
|
11
|
Gu W, Wen K, Yan C, Li S, Liu T, Xu C, Liu L, Zhao M, Zhang J, Geng T, Gong D. Maintaining intestinal structural integrity is a potential protective mechanism against inflammation in goose fatty liver. Poult Sci 2020; 99:5297-5307. [PMID: 33142445 PMCID: PMC7647926 DOI: 10.1016/j.psj.2020.08.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 07/21/2020] [Accepted: 08/10/2020] [Indexed: 12/23/2022] Open
Abstract
Overfeeding causes severe steatosis but not inflammation in goose liver, suggesting existence of protective components. Previous studies have shown that some intestinal microbes and their metabolites damage intestinal structural integrity and function, thus causing inflammation in the development of human and mouse nonalcoholic fatty liver disease. Therefore, this study hypothesizes that intestinal structural integrity of goose is maintained during overfeeding, which may provide goose fatty liver a protective mechanism against inflammation. To test this hypothesis, 48 seventy-day-old healthy Landes male geese were overfed (as overfeeding group) or normally fed (as control group). Blood and intestine (jejunum, ileum, and cecum) samples were harvested on the 12th and 24th d of overfeeding. Data showed that goose fatty liver was successfully induced by 24 d of overfeeding. Hematoxylin-eosin staining analysis indicated that the arrangement of villi and crypts in the intestine was orderly, and the intestinal structure was intact with no pathological symptoms in the 2 groups. Enzyme-linked immunosorbent assay and quantitative PCR analysis indicated no significant differences in the expression of tight junction and inflammation-related genes as well as plasma lipopolysaccharide concentration between the groups. Ileal hypertrophy and cecal atrophy were observed in the overfed vs. control geese, probably because of change of sphingolipid metabolism. Activation of apoptotic pathway may help cecum avoid necrosis-induced inflammation. In conclusion, healthy and intact intestine provides a layer of protection for goose fatty liver against inflammation. Sphingolipid metabolism may be involved in the adaptation of ileum and cecum to overfeeding. The hypertrophy of ileum makes it an important contributor to the development of goose fatty liver. The atrophy and decline in the function of cecum may be caused by apoptosis induced by overfeeding.
Collapse
Affiliation(s)
- Wang Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, P. R. China
| | - Kang Wen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, P. R. China
| | - Chunchi Yan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, P. R. China
| | - Shuo Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, P. R. China
| | - Tongjun Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, P. R. China
| | - Cheng Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, P. R. China
| | - Long Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, P. R. China
| | - Minmeng Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, P. R. China
| | - Jun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, P. R. China
| | - Tuoyu Geng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, P. R. China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu Province 225009, P. R. China.
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, P. R. China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu Province 225009, P. R. China.
| |
Collapse
|
12
|
Jakobi K, Beyer S, Koch A, Thomas D, Schwalm S, Zeuzem S, Pfeilschifter J, Grammatikos G. Sorafenib Treatment and Modulation of the Sphingolipid Pathway Affect Proliferation and Viability of Hepatocellular Carcinoma In Vitro. Int J Mol Sci 2020; 21:ijms21072409. [PMID: 32244391 PMCID: PMC7177910 DOI: 10.3390/ijms21072409] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) shows a remarkable heterogeneity and is recognized as a chemoresistant tumor with dismal prognosis. In previous studies, we observed significant alterations in the serum sphingolipids of patients with HCC. This study aimed to investigate the in vitro effects of sorafenib, which is the most widely used systemic HCC medication, on the sphingolipid pathway as well as the effects of inhibiting the sphingolipid pathway in HCC. Huh7.5 and HepG2 cells were stimulated with sorafenib, and inhibitors of the sphingolipid pathway and cell proliferation, viability, and concentrations of bioactive metabolites were assessed. We observed a significant downregulation of cell proliferation and viability and a simultaneous upregulation of dihydroceramides upon sorafenib stimulation. Interestingly, fumonisin B1 (FB1) and the general sphingosine kinase inhibitor SKI II were able to inhibit cell proliferation more prominently in HepG2 and Huh7.5 cells, whereas there were no consistent effects on the formation of dihydroceramides, thus implying an involvement of distinct metabolic pathways. In conclusion, our study demonstrates a significant downregulation of HCC proliferation upon sorafenib, FB1, and SKI II treatment, whereas it seems they exert antiproliferative effects independently from sphingolipids. Certainly, further data would be required to elucidate the potential of FB1 and SKI II as putative novel therapeutic targets in HCC.
Collapse
Affiliation(s)
- Katja Jakobi
- Medizinische Klinik 1, University Hospital, Goethe University Frankfurt am Main, 60590 Frankfurt, Germany; (K.J.); (S.Z.)
- Institut für Allgemeine Pharmakologie und Toxikologie, University Hospital, Goethe University Frankfurt am Main, 60590 Frankfurt, Germany; (S.B.); (A.K.); (S.S.); (J.P.)
| | - Sandra Beyer
- Institut für Allgemeine Pharmakologie und Toxikologie, University Hospital, Goethe University Frankfurt am Main, 60590 Frankfurt, Germany; (S.B.); (A.K.); (S.S.); (J.P.)
| | - Alexander Koch
- Institut für Allgemeine Pharmakologie und Toxikologie, University Hospital, Goethe University Frankfurt am Main, 60590 Frankfurt, Germany; (S.B.); (A.K.); (S.S.); (J.P.)
| | - Dominique Thomas
- Institut für Klinische Pharmakologie und Toxikologie, University Hospital, Goethe University Frankfurt am Main, 60590 Frankfurt, Germany;
| | - Stephanie Schwalm
- Institut für Allgemeine Pharmakologie und Toxikologie, University Hospital, Goethe University Frankfurt am Main, 60590 Frankfurt, Germany; (S.B.); (A.K.); (S.S.); (J.P.)
| | - Stefan Zeuzem
- Medizinische Klinik 1, University Hospital, Goethe University Frankfurt am Main, 60590 Frankfurt, Germany; (K.J.); (S.Z.)
| | - Josef Pfeilschifter
- Institut für Allgemeine Pharmakologie und Toxikologie, University Hospital, Goethe University Frankfurt am Main, 60590 Frankfurt, Germany; (S.B.); (A.K.); (S.S.); (J.P.)
| | - Georgios Grammatikos
- Medizinische Klinik 1, University Hospital, Goethe University Frankfurt am Main, 60590 Frankfurt, Germany; (K.J.); (S.Z.)
- Institut für Allgemeine Pharmakologie und Toxikologie, University Hospital, Goethe University Frankfurt am Main, 60590 Frankfurt, Germany; (S.B.); (A.K.); (S.S.); (J.P.)
- St Luke’s Hospital, 55236 Thessaloniki, Greece
- Correspondence: ; Tel.: +30-2316-014-910
| |
Collapse
|
13
|
Modulation of Fatty Acid-Related Genes in the Response of H9c2 Cardiac Cells to Palmitate and n-3 Polyunsaturated Fatty Acids. Cells 2020; 9:cells9030537. [PMID: 32110930 PMCID: PMC7140414 DOI: 10.3390/cells9030537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/17/2022] Open
Abstract
While high levels of saturated fatty acids are associated with impairment of cardiovascular functions, n-3 polyunsaturated fatty acids (PUFAs) have been shown to exert protective effects. However the molecular mechanisms underlying this evidence are not completely understood. In the present study we have used rat H9c2 ventricular cardiomyoblasts as a cellular model of lipotoxicity to highlight the effects of palmitate, a saturated fatty acid, on genetic and epigenetic modulation of fatty acid metabolism and fate, and the ability of PUFAs, eicosapentaenoic acid, and docosahexaenoic acid, to contrast the actions that may contribute to cardiac dysfunction and remodeling. Treatment with a high dose of palmitate provoked mitochondrial depolarization, apoptosis, and hypertrophy of cardiomyoblasts. Palmitate also enhanced the mRNA levels of sterol regulatory element-binding proteins (SREBPs), a family of master transcription factors for lipogenesis, and it favored the expression of genes encoding key enzymes that metabolically activate palmitate and commit it to biosynthetic pathways. Moreover, miR-33a, a highly conserved microRNA embedded in an intronic sequence of the SREBP2 gene, was co-expressed with the SREBP2 messenger, while its target carnitine palmitoyltransferase-1b was down-regulated. Manipulation of the levels of miR-33a and SREBPs allowed us to understand their involvement in cell death and hypertrophy. The simultaneous addition of PUFAs prevented the effects of palmitate and protected H9c2 cells. These results may have implications for the control of cardiac metabolism and dysfunction, particularly in relation to dietary habits and the quality of fatty acid intake.
Collapse
|
14
|
Blackburn NB, Michael LF, Meikle PJ, Peralta JM, Mosior M, McAhren S, Bui HH, Bellinger MA, Giles C, Kumar S, Leandro AC, Almeida M, Weir JM, Mahaney MC, Dyer TD, Almasy L, VandeBerg JL, Williams-Blangero S, Glahn DC, Duggirala R, Kowala M, Blangero J, Curran JE. Rare DEGS1 variant significantly alters de novo ceramide synthesis pathway. J Lipid Res 2019; 60:1630-1639. [PMID: 31227640 PMCID: PMC6718439 DOI: 10.1194/jlr.p094433] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/13/2019] [Indexed: 02/06/2023] Open
Abstract
The de novo ceramide synthesis pathway is essential to human biology and health, but genetic influences remain unexplored. The core function of this pathway is the generation of biologically active ceramide from its precursor, dihydroceramide. Dihydroceramides have diverse, often protective, biological roles; conversely, increased ceramide levels are biomarkers of complex disease. To explore the genetics of the ceramide synthesis pathway, we searched for deleterious nonsynonymous variants in the genomes of 1,020 Mexican Americans from extended pedigrees. We identified a Hispanic ancestry-specific rare functional variant, L175Q, in delta 4-desaturase, sphingolipid 1 (DEGS1), a key enzyme in the pathway that converts dihydroceramide to ceramide. This amino acid change was significantly associated with large increases in plasma dihydroceramides. Indexes of DEGS1 enzymatic activity were dramatically reduced in heterozygotes. CRISPR/Cas9 genome editing of HepG2 cells confirmed that the L175Q variant results in a partial loss of function for the DEGS1 enzyme. Understanding the biological role of DEGS1 variants, such as L175Q, in ceramide synthesis may improve the understanding of metabolic-related disorders and spur ongoing research of drug targets along this pathway.
Collapse
Affiliation(s)
- Nicholas B Blackburn
- South Texas Diabetes and Obesity Institute University of Texas Rio Grande Valley School of Medicine, Brownsville, TX; Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX.
| | - Laura F Michael
- Lilly Research Laboratories,Eli Lilly and Company, Indianapolis, IN
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Juan M Peralta
- South Texas Diabetes and Obesity Institute University of Texas Rio Grande Valley School of Medicine, Brownsville, TX; Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX; Menzies Institute for Medical Research University of Tasmania, Hobart, TAS, Australia
| | - Marian Mosior
- Lilly Research Laboratories,Eli Lilly and Company, Indianapolis, IN
| | - Scott McAhren
- Lilly Research Laboratories,Eli Lilly and Company, Indianapolis, IN
| | - Hai H Bui
- Lilly Research Laboratories,Eli Lilly and Company, Indianapolis, IN
| | | | - Corey Giles
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Satish Kumar
- South Texas Diabetes and Obesity Institute University of Texas Rio Grande Valley School of Medicine, Brownsville, TX; Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX
| | - Ana C Leandro
- South Texas Diabetes and Obesity Institute University of Texas Rio Grande Valley School of Medicine, Brownsville, TX; Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX
| | - Marcio Almeida
- South Texas Diabetes and Obesity Institute University of Texas Rio Grande Valley School of Medicine, Brownsville, TX; Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX
| | | | - Michael C Mahaney
- South Texas Diabetes and Obesity Institute University of Texas Rio Grande Valley School of Medicine, Brownsville, TX; Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX
| | - Thomas D Dyer
- South Texas Diabetes and Obesity Institute University of Texas Rio Grande Valley School of Medicine, Brownsville, TX; Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX
| | - Laura Almasy
- Department of Biomedical and Health Informatics Children's Hospital of Philadelphia, Philadelphia, PA; Department of Human Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - John L VandeBerg
- South Texas Diabetes and Obesity Institute University of Texas Rio Grande Valley School of Medicine, Brownsville, TX; Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX
| | - Sarah Williams-Blangero
- South Texas Diabetes and Obesity Institute University of Texas Rio Grande Valley School of Medicine, Brownsville, TX; Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX
| | - David C Glahn
- Department of Psychiatry Boston Children's Hospital and Harvard Medical School, Boston, MA; Olin Neuropsychiatry Research Center Institute of Living, Hartford Hospital, Hartford, CT
| | - Ravindranath Duggirala
- South Texas Diabetes and Obesity Institute University of Texas Rio Grande Valley School of Medicine, Brownsville, TX; Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX
| | - Mark Kowala
- Lilly Research Laboratories,Eli Lilly and Company, Indianapolis, IN
| | - John Blangero
- South Texas Diabetes and Obesity Institute University of Texas Rio Grande Valley School of Medicine, Brownsville, TX; Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX
| | - Joanne E Curran
- South Texas Diabetes and Obesity Institute University of Texas Rio Grande Valley School of Medicine, Brownsville, TX; Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX.
| |
Collapse
|
15
|
Le Stunff H, Véret J, Kassis N, Denom J, Meneyrol K, Paul JL, Cruciani-Guglielmacci C, Magnan C, Janel N. Deciphering the Link Between Hyperhomocysteinemia and Ceramide Metabolism in Alzheimer-Type Neurodegeneration. Front Neurol 2019; 10:807. [PMID: 31417486 PMCID: PMC6684947 DOI: 10.3389/fneur.2019.00807] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/15/2019] [Indexed: 12/13/2022] Open
Abstract
Aging is one of the strongest risk factor for Alzheimer's disease (AD). However, several data suggest that dyslipidemia can either contribute or serve as co-factors in AD appearance. AD could be examined as a metabolic disorder mediated by peripheral insulin resistance. Insulin resistance is associated with dyslipidemia, which results in increased hepatic ceramide generation. Hepatic steatosis induces pro-inflammatory cytokine activation which is mediated by the increased ceramides production. Ceramides levels increased in cells due to perturbation in sphingolipid metabolism and upregulated expression of enzymes involved in ceramide synthesis. Cytotoxic ceramides and related molecules generated in liver promote insulin resistance, traffic through the circulation due to injury or cell death caused by local liver inflammation, and because of their hydrophobic nature, they can cross the blood-brain barrier and thereby exert neurotoxic responses as reducing insulin signaling and increasing pro-inflammatory cytokines. These abnormalities propagate a cascade of neurodegeneration associated with oxidative stress and ceramide generation, which potentiate brain insulin resistance, apoptosis, myelin degeneration, and neuro-inflammation. Therefore, excess of toxic lipids generated in liver can cause neurodegeneration. Elevated homocysteine level is also a risk factor for AD pathology and is narrowly associated with metabolic diseases and non-alcoholic fatty liver disease. The existence of a homocysteine/ceramides signaling pathway suggests that homocysteine toxicity could be partly mediated by intracellular ceramide accumulation due to stimulation of ceramide synthase. In this article, we briefly examined the role of homocysteine and ceramide metabolism linking metabolic diseases and non-alcoholic fatty liver disease to AD. We therefore analyzed the expression of mainly enzymes implicated in ceramide and sphingolipid metabolism and demonstrated deregulation of de novo ceramide biosynthesis and S1P metabolism in liver and brain of hyperhomocysteinemic mice.
Collapse
Affiliation(s)
- Hervé Le Stunff
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France.,Institut des Neurosciences Paris-Saclay (Neuro-PSI), Université Paris-Sud, CNRS UMR 9197, Orsay, France
| | - Julien Véret
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France
| | - Nadim Kassis
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France
| | - Jessica Denom
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France
| | | | - Jean-Louis Paul
- AP-HP, Hôpital Européen Georges Pompidou, Service de Biochimie, Paris, France
| | | | | | | |
Collapse
|
16
|
Magaye RR, Savira F, Hua Y, Kelly DJ, Reid C, Flynn B, Liew D, Wang BH. The role of dihydrosphingolipids in disease. Cell Mol Life Sci 2019; 76:1107-1134. [PMID: 30523364 PMCID: PMC11105797 DOI: 10.1007/s00018-018-2984-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/06/2018] [Accepted: 11/26/2018] [Indexed: 12/29/2022]
Abstract
Dihydrosphingolipids refer to sphingolipids early in the biosynthetic pathway that do not contain a C4-trans-double bond in the sphingoid backbone: 3-ketosphinganine (3-ketoSph), dihydrosphingosine (dhSph), dihydrosphingosine-1-phosphate (dhS1P) and dihydroceramide (dhCer). Recent advances in research related to sphingolipid biochemistry have shed light on the importance of sphingolipids in terms of cellular signalling in health and disease. However, dihydrosphingolipids have received less attention and research is lacking especially in terms of their molecular mechanisms of action. This is despite studies implicating them in the pathophysiology of disease, for example dhCer in predicting type 2 diabetes in obese individuals, dhS1P in cardiovascular diseases and dhSph in hepato-renal toxicity. This review gives a comprehensive summary of research in the last 10-15 years on the dihydrosphingolipids, 3-ketoSph, dhSph, dhS1P and dhCer, and their relevant roles in different diseases. It also highlights gaps in research that could be of future interest.
Collapse
Affiliation(s)
- Ruth R Magaye
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Feby Savira
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Yue Hua
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Darren J Kelly
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Christopher Reid
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Bernard Flynn
- Australian Translational Medicinal Chemistry Facility, Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Danny Liew
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Bing H Wang
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
| |
Collapse
|
17
|
Modulation of miRNA expression in aged rat hippocampus by buttermilk and krill oil. Sci Rep 2018; 8:3993. [PMID: 29507352 PMCID: PMC5838111 DOI: 10.1038/s41598-018-22148-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/16/2018] [Indexed: 12/17/2022] Open
Abstract
The increasing incidence of age-induced cognitive decline justifies the search for complementary ways of prevention or delay. We studied the effects of concentrates of phospholipids, sphingolipids, and/or 3-n fatty acids on the expression of genes or miRNAs related to synaptic activity and/or neurodegeneration, in the hippocampus of aged Wistar rats following a 3-month supplementation. The combination of two phospholipidic concentrates of krill oil (KOC) and buttermilk (BMFC) origin modulated the hippocampal expression of 119 miRNAs (11 were common to both BMFC and BMFC + KOC groups). miR-191a-5p and miR-29a-3p changed significantly only in the BMFC group, whereas miR-195-3p and miR-148a-5p did so only in the combined-supplemented group. Thirty-eight, 58, and 72 differentially expressed genes (DEG) were found in the groups supplemented with KOC, BMFC and BMFC + KOC, respectively. Interaction analysis unveiled networks of selected miRNAs with their potential target genes. DEG found in the KOC and BMFC groups were mainly involved in neuroactive processes, whereas they were associated with lysosomes and mRNA surveillance pathways in the BMFC + KOC group. We also report a significant reduction in hippocampal ceramide levels with BMFC + KOC. Our results encourage additional in-depth investigations regarding the potential beneficial effects of these compounds.
Collapse
|
18
|
Thekkoot DM, Young JM, Rothschild MF, Dekkers JCM. Genomewide association analysis of sow lactation performance traits in lines of Yorkshire pigs divergently selected for residual feed intake during grow-finish phase. J Anim Sci 2017; 94:2317-31. [PMID: 27285909 DOI: 10.2527/jas.2015-0258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lactation is an economically and biologically important phase in the life cycle of sows. Short generation intervals in nucleus herds and low heritability of traits associated with lactation along with challenges associated with collecting accurate lactation performance phenotypes emphasize the importance of using genomic tools to examine the underlying genetics of these traits. We report the first genomewide association study (GWAS) on traits associated with lactation and efficiency in 2 lines of Yorkshire pigs that were divergently selected for residual feed intake during grow-finish phase. A total of 862 farrowing records from 2 parities were analyzed using a Bayesian whole genome variable selection model (Bayes B) to locate 1-Mb regions that were most strongly associated with each trait. The GWAS was conducted separately for parity 1 and 2 records. Marker-based heritabilities ranged from 0.03 to 0.39 for parity 1 traits and from 0.06 to 0.40 for parity 2 traits. For all traits studied, around 90% of genetic variance came from a large number of genomic regions with small effects, whereas genomic regions with large effects were found to be different for the same trait measured in parity 1 and 2. The highest percentage of genetic variance explained by a 1-Mb window for each trait ranged from 0.4% for feed intake during lactation to 4.2% for back fat measured at farrowing in parity 1 sows and from 0.2% for lactation feed intake to 5.4% for protein mass loss during lactation in parity 2 sows. A total of thirteen 1-Mb nonoverlapping windows were found to explain more than 1.5% of genetic variance for either a single trait or across multiple traits. These 1-Mb windows were on chromosomes 2, 3, 6, 7, 8, 11, 14, 15, 17, and 18. The major positional candidate genes within 1 Mb upstream and downstream of these windows were , (SSC2), (SSC6) (SSC7), (SSC8), (SSC11), (SSC14), (SSC17). Further validation studies on larger populations are required to validate these findings and to improve our understanding of the biology and complex genetic architecture of traits associated with sow lactation performance.
Collapse
|
19
|
Jang Y, Rao X, Jiang Q. Gamma-tocotrienol profoundly alters sphingolipids in cancer cells by inhibition of dihydroceramide desaturase and possibly activation of sphingolipid hydrolysis during prolonged treatment. J Nutr Biochem 2017; 46:49-56. [PMID: 28456081 DOI: 10.1016/j.jnutbio.2017.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/11/2017] [Accepted: 04/06/2017] [Indexed: 01/10/2023]
Abstract
Vitamin E gamma-tocotrienol (γTE) is known to have anticancer effects, but mechanisms underlying these actions are not clear. Here using liquid chromatography tandem mass spectrometry, we show that γTE induced marked changes of sphingolipids including rapid elevation of dihydrosphingosine and dihydroceramides (dhCers) in various types of cancer cells. The elevation of dihydrosphingolipids coincided with increased cellular stress, as indicated by JNK phosphorylation, and was prior to any sign of induction of apoptosis. Chemically blocking de novo synthesis of sphingolipids partially counteracted γTE-induced apoptosis and autophagy. Experiments using 13C3, 15N-labeled l-serine together with enzyme assays indicate that γTE inhibited cellular dihydroceramide desaturase (DEGS) activity without affecting its protein expression or de novo synthesis of sphingolipids. Unlike the effect on dhCers, γTE decreased ceramides (Cers) after 8-h treatment but increased C18:0-Cer and C16:0-Cer after 16 and 24 h, respectively. The increase of Cers coincides with γTE-induced apoptosis and autophagy. Since γTE inhibits DEGS and decreases de novo Cer synthesis, elevation of Cers during prolonged γTE treatment is likely caused by sphingomeylinase-mediated hydrolysis of sphingomyelin. This idea is supported by the observation that an acid sphingomeylinase inhibitor partially reversed γTE-induced cell death. Our study demonstrates that γTE altered sphingolipid metabolism by inhibiting DEGS activity and possibly by activating SM hydrolysis during prolonged treatment in cancer cells.
Collapse
Affiliation(s)
- Yumi Jang
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907
| | - Xiayu Rao
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907
| | - Qing Jiang
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907.
| |
Collapse
|
20
|
Rodriguez-Cuenca S, Pellegrinelli V, Campbell M, Oresic M, Vidal-Puig A. Sphingolipids and glycerophospholipids - The "ying and yang" of lipotoxicity in metabolic diseases. Prog Lipid Res 2017; 66:14-29. [PMID: 28104532 DOI: 10.1016/j.plipres.2017.01.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 11/30/2016] [Accepted: 01/05/2017] [Indexed: 12/14/2022]
Abstract
Sphingolipids in general and ceramides in particular, contribute to pathophysiological mechanisms by modifying signalling and metabolic pathways. Here, we present the available evidence for a bidirectional homeostatic crosstalk between sphingolipids and glycerophospholipids, whose dysregulation contributes to lipotoxicity induced metabolic stress. The initial evidence for this crosstalk originates from simulated models designed to investigate the biophysical properties of sphingolipids in plasma membrane representations. In this review, we reinterpret some of the original findings and conceptualise them as a sort of "ying/yang" interaction model of opposed/complementary forces, which is consistent with the current knowledge of lipid homeostasis and pathophysiology. We also propose that the dysregulation of the balance between sphingolipids and glycerophospholipids results in a lipotoxic insult relevant in the pathophysiology of common metabolic diseases, typically characterised by their increased ceramide/sphingosine pools.
Collapse
Affiliation(s)
- S Rodriguez-Cuenca
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge. Cambridge, UK.
| | - V Pellegrinelli
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge. Cambridge, UK
| | - M Campbell
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge. Cambridge, UK
| | - M Oresic
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI -20520 Turku, Finland
| | - A Vidal-Puig
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge. Cambridge, UK; Wellcome Trust Sanger Institute, Hinxton, UK.
| |
Collapse
|
21
|
Mechanistic interplay between ceramide and insulin resistance. Sci Rep 2017; 7:41231. [PMID: 28112248 PMCID: PMC5253739 DOI: 10.1038/srep41231] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 12/16/2016] [Indexed: 12/20/2022] Open
Abstract
Recent research adds to a growing body of literature on the essential role of ceramides in glucose homeostasis and insulin signaling, while the mechanistic interplay between various components of ceramide metabolism remains to be quantified. We present an extended model of C16:0 ceramide production through both the de novo synthesis and the salvage pathways. We verify our model with a combination of published models and independent experimental data. In silico experiments of the behavior of ceramide and related bioactive lipids in accordance with the observed transcriptomic changes in obese/diabetic murine macrophages at 5 and 16 weeks support the observation of insulin resistance only at the later phase. Our analysis suggests the pivotal role of ceramide synthase, serine palmitoyltransferase and dihydroceramide desaturase involved in the de novo synthesis and the salvage pathways in influencing insulin resistance versus its regulation.
Collapse
|
22
|
Jang Y, Park NY, Rostgaard-Hansen AL, Huang J, Jiang Q. Vitamin E metabolite 13'-carboxychromanols inhibit pro-inflammatory enzymes, induce apoptosis and autophagy in human cancer cells by modulating sphingolipids and suppress colon tumor development in mice. Free Radic Biol Med 2016; 95:190-9. [PMID: 27016075 PMCID: PMC4867259 DOI: 10.1016/j.freeradbiomed.2016.03.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/29/2016] [Accepted: 03/21/2016] [Indexed: 01/01/2023]
Abstract
Vitamin E forms are substantially metabolized to various carboxychromanols including 13'-carboxychromanols (13'-COOHs) that are found at high levels in feces. However, there is limited knowledge about functions of these metabolites. Here we studied δT-13'-COOH and δTE-13'-COOH, which are metabolites of δ-tocopherol and δ-tocotrienol, respectively. δTE-13'-COOH is also a natural constituent of a traditional medicine Garcinia Kola. Both 13'-COOHs are much stronger than tocopherols in inhibition of pro-inflammatory and cancer promoting cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX), and in induction of apoptosis and autophagy in colon cancer cells. The anticancer effects by 13'-COOHs appeared to be partially independent of inhibition of COX-2/5-LOX. Using liquid chromatography tandem mass spectrometry, we found that 13'-COOHs increased intracellular dihydrosphingosine and dihydroceramides after short-time incubation in HCT-116 cells, and enhanced ceramides while decreased sphingomyelins during prolonged treatment. Modulation of sphingolipids by 13'-COOHs was observed prior to or coinciding with biochemical manifestation of cell death. Pharmaceutically blocking the increase of these sphingolipids partially counteracted 13'-COOH-induced cell death. Further, 13'-COOH inhibited dihydroceramide desaturase without affecting the protein expression. In agreement with these mechanistic findings, δTE-13'-COOH significantly suppressed the growth and multiplicity of colon tumor in mice. Our study demonstrates that 13'-COOHs have anti-inflammatory and anticancer activities, may contribute to in vivo anticancer effect of vitamin E forms and are promising novel cancer prevention agents.
Collapse
Affiliation(s)
- Yumi Jang
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Na-Young Park
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | | | - Jianjie Huang
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Qing Jiang
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
23
|
Fraher D, Sanigorski A, Mellett N, Meikle P, Sinclair A, Gibert Y. Zebrafish Embryonic Lipidomic Analysis Reveals that the Yolk Cell Is Metabolically Active in Processing Lipid. Cell Rep 2016; 14:1317-1329. [DOI: 10.1016/j.celrep.2016.01.016] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/20/2015] [Accepted: 01/02/2016] [Indexed: 01/21/2023] Open
|
24
|
Bernhart E, Damm S, Wintersperger A, Nusshold C, Brunner AM, Plastira I, Rechberger G, Reicher H, Wadsack C, Zimmer A, Malle E, Sattler W. Interference with distinct steps of sphingolipid synthesis and signaling attenuates proliferation of U87MG glioma cells. Biochem Pharmacol 2015; 96:119-30. [PMID: 26002572 PMCID: PMC4490581 DOI: 10.1016/j.bcp.2015.05.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/12/2015] [Indexed: 12/22/2022]
Abstract
Glioblastoma is the most common malignant brain tumor, which, despite combined radio- and chemotherapy, recurs and is invariably fatal for affected patients. Members of the sphingolipid (SL) family are potent effectors of glioma cell proliferation. In particular sphingosine-1-phosphate (S1P) and the corresponding G protein-coupled S1P receptors transmit proliferative signals to glioma cells. To investigate the contribution to glioma cell proliferation we inhibited the first step of de novo SL synthesis in p53wt and p53mut glioma cells, and interfered with S1P signaling specifically in p53wt U87MG cells. Subunit silencing (RNAi) or pharmacological antagonism (using myriocin) of serine palmitoyltransferase (SPT; catalyzing the first committed step of SL biosynthesis) reduced proliferation of p53wt but not p53mut GBM cells. In U87MG cells these observations were accompanied by decreased ceramide, sphingomyelin, and S1P content. Inhibition of SPT upregulated p53 and p21 expression and induced an increase in early and late apoptotic U87MG cells. Exogenously added S1P (complexed to physiological carriers) increased U87MG proliferation. In line, silencing of individual members of the S1P receptor family decreased U87MG proliferation. Silencing and pharmacological inhibition of the ATP-dependent cassette transporter A1 (ABCA1) that facilitates S1P efflux in astrocytes attenuated U87MG growth. Glyburide-mediated inhibition of ABCA1 resulted in intracellular accumulation of S1P raising the possibility that ABCA1 promotes S1P efflux in U87MG glioma cells thereby contributing to inside-out signaling. Our findings indicate that de novo SL synthesis, S1P receptor-mediated signaling, and ABCA1-mediated S1P efflux could provide pharmacological targets to interfere with glioma cell proliferation.
Collapse
Affiliation(s)
- Eva Bernhart
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Sabine Damm
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Andrea Wintersperger
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Christoph Nusshold
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria; BioTechMed Graz, Austria
| | - Anna Martina Brunner
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Ioanna Plastira
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | | | - Helga Reicher
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, Austria
| | - Andreas Zimmer
- BioTechMed Graz, Austria; Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, University of Graz, Austria
| | - Ernst Malle
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Wolfgang Sattler
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria; BioTechMed Graz, Austria.
| |
Collapse
|
25
|
Rodriguez-Cuenca S, Barbarroja N, Vidal-Puig A. Dihydroceramide desaturase 1, the gatekeeper of ceramide induced lipotoxicity. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:40-50. [DOI: 10.1016/j.bbalip.2014.09.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 12/25/2022]
|
26
|
Au PB, Argiropoulos B, Parboosingh JS, Micheil Innes A. Refinement of the critical region of 1q41q42 microdeletion syndrome identifiesFBXO28as a candidate causative gene for intellectual disability and seizures. Am J Med Genet A 2013; 164A:441-8. [DOI: 10.1002/ajmg.a.36320] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 10/06/2013] [Indexed: 12/21/2022]
Affiliation(s)
- P.Y. Billie Au
- Department of Medical Genetics; University of Calgary; Calgary Alberta Canada
| | - Bob Argiropoulos
- Department of Medical Genetics; University of Calgary; Calgary Alberta Canada
- Alberta Children's Hospital Research Institute for Child and Maternal Health; University of Calgary; Calgary Alberta Canada
| | - Jillian S. Parboosingh
- Department of Medical Genetics; University of Calgary; Calgary Alberta Canada
- Alberta Children's Hospital Research Institute for Child and Maternal Health; University of Calgary; Calgary Alberta Canada
| | - A. Micheil Innes
- Department of Medical Genetics; University of Calgary; Calgary Alberta Canada
- Alberta Children's Hospital Research Institute for Child and Maternal Health; University of Calgary; Calgary Alberta Canada
| |
Collapse
|
27
|
Fiedorowicz A, Prokopiuk S, Zendzian-Piotrowska M, Chabowski A, Car H. Sphingolipid profiles are altered in prefrontal cortex of rats under acute hyperglycemia. Neuroscience 2013; 256:282-91. [PMID: 24161280 DOI: 10.1016/j.neuroscience.2013.10.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/12/2013] [Accepted: 10/10/2013] [Indexed: 12/14/2022]
Abstract
Diabetes type 1 is a common autoimmune disease manifesting by insulin deficiency and hyperglycemia, which can lead to dementia-like brain dysfunctions. The factors triggering the pathological processes in hyperglycemic brain remain unknown. We reported in this study that brain areas with different susceptibility to diabetes (prefrontal cortex (PFC), hippocampus, striatum and cerebellum) revealed differential alterations in ceramide (Cer) and sphingomyelin (SM) profiles in rats with streptozotocin-induced hyperglycemia. Employing gas-liquid chromatography, we found that level of total Cer increased significantly only in the PFC of diabetic animals, which also exhibited a broad spectrum of sphingolipid (SLs) changes, such as elevations of Cer-C16:0, -C18:0, -C20:0, -C22:0, -C18:1, -C24:1 and SM-C16:0 and -C18:1. In opposite, only minor changes were noted in other examined structures. In addition, de novo synthesis pathway could play a role in generation of Cer containing monounsaturated fatty acids in PFC during hyperglycemia. In turn, simultaneous accumulation of Cers and their SM counterparts may suggest that overproduced Cers are converted to SMs to avoid excessive Cer-mediated cytotoxicity. We conclude that broad changes in SLs compositions in PFC induced by hyperglycemia may provoke membrane rearrangements in some cell populations, which can disturb cellular signaling and cause tissue damage.
Collapse
Affiliation(s)
- A Fiedorowicz
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland
| | - S Prokopiuk
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland
| | - M Zendzian-Piotrowska
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
| | - A Chabowski
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
| | - H Car
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland.
| |
Collapse
|