1
|
He S, Li L, Yao Y, Su J, Lei S, Zhang Y, Zeng H. Bile acid and its bidirectional interactions with gut microbiota: a review. Crit Rev Microbiol 2024; 50:684-701. [PMID: 37766478 DOI: 10.1080/1040841x.2023.2262020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Bile acids (BAs) are an important metabolite produced by cholesterol catabolism. It serves important roles in glucose and lipid metabolism and host-microbe interaction. Recent research has shown that different gut-microbiota can secrete different metabolic-enzymes to mediate the deconjugation, dehydroxylation and epimerization of BAs. In addition, microbes mediate BAs transformation and exert physiological functions in metabolic diseases may have a potentially close relationship with diet. Therefore, elaborating the pathways by which gut microbes mediate the transformation of BAs through enzymatic reactions involved are principal to understand the mechanism of effects between dietary patterns, gut microbes and BAs, and to provide theoretical knowledge for the development of functional foods to regulate metabolic diseases. In the present review, we summarized works on the physiological function of BAs, as well as the classification and composition of BAs in different animal models and its organs. In addition, we mainly focus on the bidirectional interactions of gut microbes with BAs transformation, and discuss the effects of diet on microbial transformation of BAs. Finally, we raised the question of further in-depth investigation of the food-gut microbial-BAs relationship, which might contribute to the improvement of metabolic diseases through dietary interventions in the future.
Collapse
Affiliation(s)
- Shuqi He
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lanxin Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yingning Yao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinhan Su
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Suzhen Lei
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongliang Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
2
|
Xiao M, Zhou Y, Wang Z, Dai W, Wang D, Wan Z, Chen Z, Li Q, Zheng S. The dysregulation of biliary tract microflora is closely related to primary choledocholithiasis: a multicenter study. Sci Rep 2024; 14:9004. [PMID: 38637624 PMCID: PMC11026428 DOI: 10.1038/s41598-024-59737-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024] Open
Abstract
Bile microecology changes play an important role in the occurrence and development of choledocholithiasis. At present, there is no clear report on the difference of bile microecology between asymptomatic patients with gallbladder polyps and choledocholithiasis. This study compared bile microecology between gallbladder polyp patients and patients with choledocholithiasis to identify risk factors for primary choledocholithiasis. This study was conducted in 3 hospitals in different regions of China. Bile samples from 26 patients with gallbladder polyps and 31 patients with choledocholithiasis were collected by laparoscopic cholecystectomy and endoscopic retrograde choledocholithiasis cholangiography (ERCP), respectively. The collected samples were used for 16S ribosomal RNA sequencing and liquid chromatography mass spectrometry analysis. The α-diversity of bile microecological colonies was similar between gallbladder polyp and choledocholithiasis, but the β-diversity was different. Firmicutes, Proteobacteri, Bacteroidota and Actinobacteriota are the most common phyla in the gallbladder polyp group and choledocholithiasis group. However, compared with the gallbladder polyp patients, the abundance of Actinobacteriota has significantly lower in the choledocholithiasis group. At the genera level, the abundance of a variety of bacteria varies between the two groups, and Enterococcus was significantly elevated in choledocholithiasis group. In addition, bile biofilm formation-Pseudomonas aeruginosa was more metabolically active in the choledocholithiasis group, which was closely related to stone formation. The analysis of metabolites showed that a variety of metabolites decreased in the choledocholithiasis group, and the concentration of beta-muricholic acid decreased most significantly. For the first time, our study compared the bile of gallbladder polyp patients with patients with choledocholithiasis, and suggested that the change in the abundance of Actinobacteriota and Enterococcus were closely related to choledocholithiasis. The role of Pseudomonas aeruginosa biofilm in the formation of choledocholithiasis was discovered for the first time, and some prevention schemes for choledocholithiasis were discussed, which has important biological and medical significance.
Collapse
Affiliation(s)
- Min Xiao
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Surgery, Shulan (Hangzhou) Hospital, Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, China
- Department of Surgery, Shulan (Quzhou) Hospital, Quzhou, Zhejiang, China
| | - Yankun Zhou
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Surgery, Shulan (Hangzhou) Hospital, Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, China
| | - Zhengfei Wang
- Department of Surgery, Quzhou People's Hospital, Quzhou, Zhejiang, China
| | - Wenchao Dai
- Department of Surgery, Shulan (Quzhou) Hospital, Quzhou, Zhejiang, China
| | - Di Wang
- Department of Surgery, Shulan (Hangzhou) Hospital, Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Zhenmiao Wan
- Department of Surgery, Shulan (Hangzhou) Hospital, Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, China
- Division of Hepatobiliary and Pancreatic Surgery, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Zhitao Chen
- Department of Surgery, Shulan (Hangzhou) Hospital, Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Qiyong Li
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Department of Surgery, Shulan (Hangzhou) Hospital, Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China.
| | - ShuSen Zheng
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Department of Surgery, Shulan (Hangzhou) Hospital, Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Huang D, Shen S, Zhuang Q, Ye X, Qian Y, Dong Z, Wan X. Ganoderma lucidum polysaccharide ameliorates cholesterol gallstone formation by modulating cholesterol and bile acid metabolism in an FXR-dependent manner. Chin Med 2024; 19:16. [PMID: 38268006 PMCID: PMC10809463 DOI: 10.1186/s13020-024-00889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/18/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Cholesterol gallstone (CG) disease is a worldwide common disease characterized by cholesterol supersaturation in gallbladder bile. Ganoderma lucidum polysaccharide (GLP) has been shown to possess various beneficial effects against metabolic disorders. However, the role and underlying mechanism of GLP in CG formation are still unknown. This study aimed to determine the role of GLP in ameliorating lithogenic diet (LD)-induced CG formation. METHODS Mice were fed either a normal chow diet, a LD, or LD supplemented with GLP. Real-time quantitative polymerase chain reaction (RT-qPCR) and western blotting were used to detect the expression of genes involved in cholesterol and bile acid (BA) metabolism. The BA concentrations in the ileum were quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The microbiota in cecal contents were characterized using 16S ribosomal RNA (16S rRNA) gene sequencing. RESULTS GLP effectively alleviated CG formation induced by LD. Specifically, GLP reduced the total cholesterol (TC) levels, increased the total BA levels, and decreased the cholesterol saturation index (CSI) in gallbladder bile. The protective effect of GLP was attributed to the inhibition of farnesoid X receptor (FXR) signaling, increased hepatic BA synthesis and decreased hepatic cholesterol synthesis and secretion. GLP also altered the BA composition in the ileum, reducing FXR-agonistic BAs and increasing FXR-antagonistic BAs, which may contribute to the inhibition of intestinal FXR signaling. Additionally, GLP improved dysbiosis of the intestinal flora and reduced the serum levels of hydrogen sulfide (H2S), a bacterial metabolite that can induce hepatic FXR, thereby inhibiting hepatic FXR signaling. Moreover, the protective effect of GLP against CG formation could be reversed by both the global and gut-restricted FXR agonists. CONCLUSIONS Taken together, GLP ameliorates CG formation by regulating cholesterol and BA metabolism in an FXR-dependent manner. Our study demonstrates that GLP may be a potential strategy for the prevention against CG disease.
Collapse
Affiliation(s)
- Dan Huang
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| | - Shuang Shen
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| | - Qian Zhuang
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| | - Xin Ye
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| | - Yueqin Qian
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| | - Zhixia Dong
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China.
| | - Xinjian Wan
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
4
|
Shen S, Huang D, Qian S, Ye X, Zhuang Q, Wan X, Dong Z. Hyodeoxycholic acid attenuates cholesterol gallstone formation via modulation of bile acid metabolism and gut microbiota. Eur J Pharmacol 2023; 955:175891. [PMID: 37429516 DOI: 10.1016/j.ejphar.2023.175891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/15/2023] [Accepted: 06/28/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND & AIMS Hyodeoxycholic acid (HDCA), a hydrophilic bile acid (BA), may prevent and suppress the formation of cholesterol gallstones (CGs). However, the mechanism by which HDCA prevents CGs formation remains unclear. This study aimed to investigate the underlying mechanism of HDCA in preventing CG formation. METHODS C57BL/6J mice were fed either a lithogenic diet (LD), a chow diet, or LD combined with HDCA. The concentration of BAs in the liver and ileum were determined using liquid chromatography-mass spectrometry (LC-MS/MS). Genes involved in cholesterol and BAs metabolism were detected using polymerase chain reaction (PCR). The gut microbiota in the faeces was determined using 16S rRNA. RESULTS HDCA supplementation effectively prevented LD-induced CG formation. HDCA increased the gene expression of BA synthesis enzymes, including Cyp7a1, Cyp7b1, and Cyp8b1, and decreased the expression of the cholesterol transporter Abcg5/g8 gene in the liver. HDCA inhibited LD-induced Nuclear farnesoid X receptor (Fxr) activation and reduced the gene expression of Fgf15 and Shp in the ileum. These data indicate that HDCA could prevent CGs formation partly by promoting BA synthesis in the liver and reduced the cholesterol efflux. In addition, HDCA administration reversed the LD-induced decrease in the abundance of norank_f_Muribaculaceae, which was inversely proportional to cholesterol levels. CONCLUSIONS HDCA attenuated CG formation by modulating BA synthesis and gut microbiota. This study provides new insights into the mechanism by which HDCA prevents CG formation. LAY SUMMARY In this study, we found that HDCA supplementation suppressed LD-induced CGs in mice by inhibiting Fxr in the ileum, enhancing BA synthesis, and increasing the abundance of norank_f_Muribaculaceae in the gut microbiota. HDCA can also downregulate the level of total cholesterol in the serum, liver, and bile.
Collapse
Affiliation(s)
- Shuang Shen
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Central Lab, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Huang
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengnan Qian
- Central Lab, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Ye
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Zhuang
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinjian Wan
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhixia Dong
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Mo P, Chen H, Jiang X, Hu F, Zhang F, Shan G, Chen W, Li S, Xu G. Effect of hepatic NPC1L1 on cholesterol gallstone disease and its mechanism. Heliyon 2023; 9:e15757. [PMID: 37159680 PMCID: PMC10163659 DOI: 10.1016/j.heliyon.2023.e15757] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/11/2023] Open
Abstract
Cholesterol gallstone disease (CGD) is associated with bile cholesterol supersaturation. The Niemann-Pick C1-like 1 (NPC1L1), the inhibitory target of ezetimibe (EZE), is a critical sterol transporter of cholesterol absorption. Intestinal NPC1L1 facilitates the absorption of cholesterol, whereas hepatic NPC1L1 promotes cholesterol uptake by hepatocytes and reduces bile cholesterol supersaturation. The potential of hepatic NPC1L1 to prevent CGD has yet to be established due to its absence in the mice model. In this study, we generated mice expressing hepatic NPC1L1 using adeno-associated virus (AAV) gene delivery. The biliary cholesterol saturations and gallstone formations were explored under chow diet and lithogenic diet (LD) with or without EZE treatment. The long-term (8-week) LD-fed AAV-mNPC1L1 mice exhibited no significant differences in biliary cholesterol saturation and gallstone formation compared to WT mice. EZE effectively prevented CGD in both WT and AAV-mNPC1L1 mice. Mechanistically, prolonged LD feeding induced the degradation of hepatic NPC1L1, whereas short-term (2-week) LD feeding preserved the expression of hepatic NPC1L1. In conclusion, our findings suggest that hepatic NPC1L1 is unable to prevent CGD, whereas EZE functions as an efficient bile cholesterol desaturator during CGD development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Guoqiang Xu
- Corresponding author. Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310006, Zhejiang, China.
| |
Collapse
|
6
|
Lu J, Shang X, Yao B, Sun D, Liu J, Zhang Y, Wang H, Shi J, Chen H, Shi T, Liu M, Wang X. The role of CYP1A1/2 in cholesterol ester accumulation provides a new perspective for the treatment of hypercholesterolemia. Acta Pharm Sin B 2023; 13:648-661. [PMID: 36873188 PMCID: PMC9978856 DOI: 10.1016/j.apsb.2022.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022] Open
Abstract
Cholesterol is an important precursor of many endogenous molecules. Disruption of cholesterol homeostasis can cause many pathological changes, leading to liver and cardiovascular diseases. CYP1A is widely involved in cholesterol metabolic network, but its exact function has not been fully elucidated. Here, we aim to explore how CYP1A regulates cholesterol homeostasis. Our data showed that CYP1A1/2 knockout (KO) rats presented cholesterol deposition in blood and liver. The serum levels of low-density lipoprotein cholesterol, high-density lipoprotein cholesterol and total cholesterol were significantly increased in KO rats. Further studies found that the lipogenesis pathway (LXRα-SREBP1-SCD1) of KO rats was activated, and the key protein of cholesterol ester hydrolysis (CES1) was inhibited. Importantly, lansoprazole can significantly alleviate rat hepatic lipid deposition in hypercholesterolemia models by inducing CYP1A. Our findings reveal the role of CYP1A as a potential regulator of cholesterol homeostasis and provide a new perspective for the treatment of hypercholesterolemia.
Collapse
Affiliation(s)
| | | | | | - Dongyi Sun
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai 200241, China
| | - Jie Liu
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai 200241, China
| | - Yuanjin Zhang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai 200241, China
| | - He Wang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai 200241, China
| | - Jingru Shi
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai 200241, China
| | - Huaqing Chen
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai 200241, China
| | - Tieliu Shi
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai 200241, China
| | - Mingyao Liu
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai 200241, China
| | - Xin Wang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai 200241, China
| |
Collapse
|
7
|
Zhuang Q, Cheng J, Xia J, Ning M, Wu S, Shen S, Shi Y, Huang D, Dong Z, Wan X. Gypenosides Prevent and Dissolve Cholesterol Gallstones by Modulating the Homeostasis of Cholesterol and Bile Acids. Front Med (Lausanne) 2022; 9:818144. [PMID: 35445045 PMCID: PMC9013900 DOI: 10.3389/fmed.2022.818144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/24/2022] [Indexed: 12/03/2022] Open
Abstract
Gypenosides (GPs), obtained from Gynostemma pentaphyllum (Thunb.) Makino, have been traditionally prescribed to treat metabolic disorders in Asians. This study assessed whether GPs could prevent lithogenic diet (LD)-induced cholesterol gallstone (CG) formation and enhance CG dissolution in mice. Gallstone-susceptible C57BL/6J mice were fed an LD or normal chow, with or without GPs. Bile acids (BAs) in gallbladder bile were analyzed by liquid chromatography-tandem mass spectrometry. Differentially expressed hepatic genes were identified by RNA sequencing, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. GPs were found to prevent LD-induced CG formation and to dissolve pre-existing LD-induced CGs. GPs reduced total cholesterol levels and increased BA levels in bile, as well as reducing the BA Hydrophobicity Index, ratio of 12α-hydroxylated (12α-OH) to non-12α-OH BAs, and Cholesterol Saturation Index in gallbladder bile. GO and KEGG pathway enrichment analyses indicated that GPs-induced genes were involved in BA biosynthesis and cholesterol metabolism. GPs increased the hepatic expression of genes encoding the cytochrome P450 (Cyp) enzymes Cyp7a1, Cyp7b1, and Cyp8b1, while decreasing the hepatic expression of genes encoding the adenosine triphosphate-binding cassette (Abc) transporters Abcg5 and Abcg8. GPs may be a promising strategy for preventing and dissolving CGs.
Collapse
Affiliation(s)
- Qian Zhuang
- Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jinnian Cheng
- Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jie Xia
- Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Min Ning
- Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Shan Wu
- Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Shuang Shen
- Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yan Shi
- Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Dan Huang
- Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhixia Dong
- Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xinjian Wan
- Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
8
|
Xie AJ, Mai CT, Zhu YZ, Liu XC, Xie Y. Bile acids as regulatory molecules and potential targets in metabolic diseases. Life Sci 2021; 287:120152. [PMID: 34793769 DOI: 10.1016/j.lfs.2021.120152] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/06/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023]
Abstract
Bile acids are important hydroxylated steroids that are synthesized in the liver from cholesterol for intestinal absorption of lipids and other fatty-nutrient. They also display remarkable and immense functions such as regulating immune responses, managing the apoptosis of cells, participating in glucose metabolism, and so on. Some bile acids were used for the treatment or prevention of diseases such as gallstones, primary biliary cirrhosis, and colorectal cancer. Meanwhile, the accumulation of toxic bile acids leads to apoptosis, necrosis, and inflammation. Alteration of bile acids metabolism, as well as the gut microbiota that interacted with bile acids, contributes to the pathogenesis of metabolic diseases. Therefore, the purpose of this review is to summarize the current functions and pre-clinical or clinical applications of bile acids, and to further discuss the alteration of bile acids in metabolic disorders as well as the manipulation of bile acids metabolism as potential therapeutic targets.
Collapse
Affiliation(s)
- Ai-Jin Xie
- School of Pharmacy, Macau University of Science and Technology, Taipa, Macau
| | - Chu-Tian Mai
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Yi-Zhun Zhu
- School of Pharmacy, Macau University of Science and Technology, Taipa, Macau
| | - Xian-Cheng Liu
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, PR China.
| | - Ying Xie
- School of Pharmacy, Macau University of Science and Technology, Taipa, Macau.
| |
Collapse
|
9
|
Shen W, Wang Y, Shao W, Wang Q, Jiang Z, Hu H. Dietary plant sterols prevented cholesterol gallstone formation in mice. Food Funct 2021; 12:11829-11837. [PMID: 34787152 DOI: 10.1039/d1fo02695j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cholesterol gallstone disease is a common global condition. This study investigated the role of plant sterols (PS) in the prevention of gallstone formation and the underlying mechanisms. Adult male mice were fed a lithogenic diet (LD) alone or supplemented with PS (LD-ps), phospholipids (LD-pl) or both PS and phospholipids (LD-ps/pl) for 8 weeks. Incidences of gallstone formation were compared among the groups. Lipids in the bile, liver and serum were analyzed. The expression of genes involved in cholesterol absorption, transport and metabolism in the liver and small intestine was determined. The incidences of gallstone formation were 100% (10/10), 20% (2/10), 100% (10/10) and 40% (4/10) in the LD, LD-ps, LD-pl and LD-ps/pl groups, respectively. Serum cholesterol and intestinal cholesterol absorption were decreased in PS-supplemented mice. The expression of genes related to cholesterol transport and metabolism in the liver was down-regulated by dietary PS. PS supplementation decreased Niemann-Pick C1-like 1 expression in the small intestine and reduced intestinal cholesterol absorption. Our results demonstrated that PS could inhibit intestinal cholesterol absorption and thus prevent cholesterol gallstone formation.
Collapse
Affiliation(s)
- Weiyi Shen
- Center of Gallstone Disease, Shanghai East Hospital, Institute of Gallstone Disease, Tongji University School of Medicine, Shanghai, 201200, China. .,Department of Internal Medicine of Traditional Chinese Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 201200, China
| | - Yixing Wang
- Department of Internal Medicine of Traditional Chinese Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 201200, China
| | - Wentao Shao
- Center of Gallstone Disease, Shanghai East Hospital, Institute of Gallstone Disease, Tongji University School of Medicine, Shanghai, 201200, China.
| | - Qihan Wang
- Center of Gallstone Disease, Shanghai East Hospital, Institute of Gallstone Disease, Tongji University School of Medicine, Shanghai, 201200, China.
| | - Zhaoyan Jiang
- Center of Gallstone Disease, Shanghai East Hospital, Institute of Gallstone Disease, Tongji University School of Medicine, Shanghai, 201200, China.
| | - Hai Hu
- Center of Gallstone Disease, Shanghai East Hospital, Institute of Gallstone Disease, Tongji University School of Medicine, Shanghai, 201200, China.
| |
Collapse
|
10
|
Gaillard D, Masson D, Garo E, Souidi M, Pais de Barros JP, Schoonjans K, Grober J, Besnard P, Thomas C. Muricholic Acids Promote Resistance to Hypercholesterolemia in Cholesterol-Fed Mice. Int J Mol Sci 2021; 22:7163. [PMID: 34281217 PMCID: PMC8269105 DOI: 10.3390/ijms22137163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND AIMS Hypercholesterolemia is a major risk factor for atherosclerosis and cardiovascular diseases. Although resistant to hypercholesterolemia, the mouse is a prominent model in cardiovascular research. To assess the contribution of bile acids to this protective phenotype, we explored the impact of a 2-week-long dietary cholesterol overload on cholesterol and bile acid metabolism in mice. METHODS Bile acid, oxysterol, and cholesterol metabolism and transport were assessed by quantitative real-time PCR, western blotting, GC-MS/MS, or enzymatic assays in the liver, the gut, the kidney, as well as in the feces, the blood, and the urine. RESULTS Plasma triglycerides and cholesterol levels were unchanged in mice fed a cholesterol-rich diet that contained 100-fold more cholesterol than the standard diet. In the liver, oxysterol-mediated LXR activation stimulated the synthesis of bile acids and in particular increased the levels of hydrophilic muricholic acids, which in turn reduced FXR signaling, as assessed in vivo with Fxr reporter mice. Consequently, biliary and basolateral excretions of bile acids and cholesterol were increased, whereas portal uptake was reduced. Furthermore, we observed a reduction in intestinal and renal bile acid absorption. CONCLUSIONS These coordinated events are mediated by increased muricholic acid levels which inhibit FXR signaling in favor of LXR and SREBP2 signaling to promote efficient fecal and urinary elimination of cholesterol and neo-synthesized bile acids. Therefore, our data suggest that enhancement of the hydrophilic bile acid pool following a cholesterol overload may contribute to the resistance to hypercholesterolemia in mice. This work paves the way for new therapeutic opportunities using hydrophilic bile acid supplementation to mitigate hypercholesterolemia.
Collapse
Affiliation(s)
- Dany Gaillard
- Center for Translational Medicine, UMR1231 INSERM-uB-AgroSupDijon, Université de Bourgogne Franche-Comté (UBFC), 21000 Dijon, France; (D.G.); (D.M.); (J.-P.P.d.B.); (J.G.)
- Department of Cell & Developmental Biology, and The Rocky Mountain Taste & Smell Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David Masson
- Center for Translational Medicine, UMR1231 INSERM-uB-AgroSupDijon, Université de Bourgogne Franche-Comté (UBFC), 21000 Dijon, France; (D.G.); (D.M.); (J.-P.P.d.B.); (J.G.)
- LipSTIC LabEx, Université de Bourgogne Franche-Comté (UBFC), 21000 Dijon, France
- Biochemistry Department, University Hospital François Mitterrand, 21000 Dijon, France
| | - Erwan Garo
- IGBMC, CNRS UMR 7104, INSERM U 1258, 67400 Illkirch, France;
| | - Maamar Souidi
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), 92260 Fontenay-aux-Roses, France;
| | - Jean-Paul Pais de Barros
- Center for Translational Medicine, UMR1231 INSERM-uB-AgroSupDijon, Université de Bourgogne Franche-Comté (UBFC), 21000 Dijon, France; (D.G.); (D.M.); (J.-P.P.d.B.); (J.G.)
- LipSTIC LabEx, Université de Bourgogne Franche-Comté (UBFC), 21000 Dijon, France
- Lipidomic Facility, Université de Bourgogne Franche-Comté (UBFC), 21078 Dijon, France
| | - Kristina Schoonjans
- Institute of Bioengineering, Life Science Faculty, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
| | - Jacques Grober
- Center for Translational Medicine, UMR1231 INSERM-uB-AgroSupDijon, Université de Bourgogne Franche-Comté (UBFC), 21000 Dijon, France; (D.G.); (D.M.); (J.-P.P.d.B.); (J.G.)
- LipSTIC LabEx, Université de Bourgogne Franche-Comté (UBFC), 21000 Dijon, France
| | - Philippe Besnard
- Center for Translational Medicine, UMR1231 INSERM-uB-AgroSupDijon, Université de Bourgogne Franche-Comté (UBFC), 21000 Dijon, France; (D.G.); (D.M.); (J.-P.P.d.B.); (J.G.)
- LipSTIC LabEx, Université de Bourgogne Franche-Comté (UBFC), 21000 Dijon, France
- Physiologie de la Nutrition, AgroSup Dijon, 21000 Dijon, France
| | - Charles Thomas
- Center for Translational Medicine, UMR1231 INSERM-uB-AgroSupDijon, Université de Bourgogne Franche-Comté (UBFC), 21000 Dijon, France; (D.G.); (D.M.); (J.-P.P.d.B.); (J.G.)
- LipSTIC LabEx, Université de Bourgogne Franche-Comté (UBFC), 21000 Dijon, France
| |
Collapse
|
11
|
Zhuang Q, Ye X, Shen S, Cheng J, Shi Y, Wu S, Xia J, Ning M, Dong Z, Wan X. Astragalus Polysaccharides Ameliorate Diet-Induced Gallstone Formation by Modulating Synthesis of Bile Acids and the Gut Microbiota. Front Pharmacol 2021; 12:701003. [PMID: 34276384 PMCID: PMC8281024 DOI: 10.3389/fphar.2021.701003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/21/2021] [Indexed: 01/04/2023] Open
Abstract
Cholesterol gallstone (CG) disease has relationships with several metabolic abnormalities. Astragalus polysaccharides (APS) have been shown to have multiple benefits against metabolic disorders. We attempted to uncover the effect and mechanism of action of APS on diet-induced CG formation in mice. Animals were fed a chow diet or lithogenic diet (LD) with or without APS supplementation. The effect of APS on CG formation was evaluated. The level of individual bile acids (BAs) in gallbladder bile and ileum were measured by liquid chromatography-tandem mass spectrometry. Real-time reverse transcription-quantitative polymerase chain reaction and western blotting were used to assess expression of the genes involved in BA metabolism and the enterohepatic circulation. Cecal contents were collected to characterize microbiota profiles. APS ameliorated LD-induced CG formation in mice. APS reduced the level of total cholesterol, bile acid hydrophobicity index and cholesterol saturation index in gallbladder bile. The protective effect of APS might result from reduced absorption of cholic acid in the intestine and increased hepatic BA synthesis. APS relieved the LD-induced activation of the intestinal farnesoid X receptor and decreased ileal expression of fibroblast growth factor 15. In the liver, expression of cytochrome P450 (Cyp) enzyme Cyp7a1 and Cyp7b1 was increased, whereas expression of adenosine triphosphate-binding cassette (Abc) transporters Abcg5 and Abcg8 was decreased by APS. APS improved the diversity of the gut microbiota and increased the relative abundance of the Bacteroidetes phylum. APS had demonstratable benefits against CG disease, which might be associated with enhanced BA synthesis and improved gut microbiota. Our results suggest that APS may be a potential strategy for the prevention of CG disease.
Collapse
Affiliation(s)
- Qian Zhuang
- Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xin Ye
- Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Shuang Shen
- Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jinnian Cheng
- Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yan Shi
- Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Shan Wu
- Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jie Xia
- Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Min Ning
- Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhixia Dong
- Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xinjian Wan
- Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
12
|
Kube I, Tardio LB, Hofmann U, Ghallab A, Hengstler JG, Führer D, Zwanziger D. Hypothyroidism Increases Cholesterol Gallstone Prevalence in Mice by Elevated Hydrophobicity of Primary Bile Acids. Thyroid 2021; 31:973-984. [PMID: 33231505 DOI: 10.1089/thy.2020.0636] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: Thyroid hormone (TH) deficiency has been associated with increased cholesterol gallstone prevalence. Hypothyroidism impacts hepatic lipid homeostasis, biliary secretion, gallbladder motility, and gallstone (LITH) gene expression, all potential factors contributing to cholesterol gallstone disease (CGD). However, how TH deficiency may lead to gallstone formation is still poorly understood. Therefore, we performed molecular studies in a CGD mouse model under lithogenic conditions and modulation of TH status. Methods: Male, three-month-old C57BL/6 mice were randomly divided into a control (euthyroid) group, a hypothyroid (hypo) group, a gallstone (litho) group, and a gallstone+hypothyroid (litho+hypo) group and were treated for 2, 4, and 6 weeks (n = 8/treatment period). Gallstone prevalence, biliary composition and cholesterol crystals, hepatic expression of genes participating in cholesterol, bile acid (BA), and phosphatidylcholine synthesis (Hmgcr, Cyp7a1, Pcyt1a), and canalicular transport (Abcg5, Bsep, Abcb4) were investigated. Results: Increased cholesterol gallstone prevalence was observed in hypothyroid mice under lithogenic diet after 4 and 6 weeks of treatment (4 weeks: 25% vs. 0%; 6 weeks: 75% vs. 37.5%). Interestingly, neither the composition of the three main biliary components, cholesterol, BAs, and phosphatidylcholine, nor the hepatic expression of genes involved in synthesis and transport could explain the differences in cholesterol gallstone formation in the mice. However, TH deficiency resulted in significantly increased hydrophobicity of primary BAs in bile. Furthermore, downregulation of hepatic sulfonation enzymes Papss2 and Sult2a8 as well as diminished biliary BA sulfate concentrations in mice were observed under hypothyroid conditions all contributing to a lithogenic biliary milieu as evidenced by microscopic cholesterol crystals and macroscopic gallstone formation. Conclusions: We describe a novel pathogenic link between TH deficiency and CGD and suggest that the increased hydrophobic character of biliary BAs due to the diminished expression of hepatic detoxification enzymes promotes cholesterol crystal precipitation and enhances cholesterol gallstone formation in the bile of hypothyroid mice.
Collapse
Affiliation(s)
- Irina Kube
- Department of Endocrinology, Diabetes and Metabolism and Clinical Chemistry, Division of Laboratory Research, University of Duisburg-Essen, Essen, Germany
| | - Luca Bartolomeo Tardio
- Department of Endocrinology, Diabetes and Metabolism and Clinical Chemistry, Division of Laboratory Research, University of Duisburg-Essen, Essen, Germany
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tübingen, Stuttgart, Germany
| | - Ahmed Ghallab
- Department of Toxicology/Systems Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Jan G Hengstler
- Department of Toxicology/Systems Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Dagmar Führer
- Department of Endocrinology, Diabetes and Metabolism and Clinical Chemistry, Division of Laboratory Research, University of Duisburg-Essen, Essen, Germany
| | - Denise Zwanziger
- Department of Endocrinology, Diabetes and Metabolism and Clinical Chemistry, Division of Laboratory Research, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
13
|
Russo-Savage L, Schulman IG. Liver X receptors and liver physiology. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166121. [PMID: 33713792 DOI: 10.1016/j.bbadis.2021.166121] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/29/2022]
Abstract
The liver x receptors LXRα (NR1H3) and LXRβ (NR1H2) are members of the nuclear hormone receptor superfamily of ligand dependent transcription factors that regulate transcription in response to the direct binding of cholesterol derivatives. Studies using genetic knockouts and synthetic ligands have defined the LXRs as important modulators of lipid homeostasis throughout the body. This review focuses on the control of cholesterol and fatty acid metabolism by LXRs in the liver and how modifying LXR activity can influence the pathology of liver diseases.
Collapse
Affiliation(s)
- Lillian Russo-Savage
- Department of Pharmacology, University of Virginia, School of Medicine, United States of America
| | - Ira G Schulman
- Department of Pharmacology, University of Virginia, School of Medicine, United States of America.
| |
Collapse
|
14
|
Wu J, Chao Y, Kankala RK, Lee C, Liu C, Hu Y. Gallstone formation analysis using the particle appearance, the particle binding to calcium ions, and the cholesterol nucleation with time in supersaturated taurocholate–lecithin–calcium ion solutions. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.201900543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jhih‐Ru Wu
- Institute of Biotechnology and Department of Life Science National Dong–Hwa University Hualien Taiwan
| | - Yu‐Liang Chao
- Institute of Biotechnology and Department of Life Science National Dong–Hwa University Hualien Taiwan
| | - Ranjith Kumar Kankala
- Institute of Biotechnology and Department of Life Science National Dong–Hwa University Hualien Taiwan
- College of Chemical Engineering Huaqiao University Xiamen China
| | - Chia‐Hung Lee
- Institute of Biotechnology and Department of Life Science National Dong–Hwa University Hualien Taiwan
| | - Chen‐Lun Liu
- Institute of Biotechnology and Department of Life Science National Dong–Hwa University Hualien Taiwan
| | - Yu‐Fang Hu
- Pharmaceutical Drug Delivery Division TTY Biopharm Company Limited Taipei Taiwan
| |
Collapse
|
15
|
Cai J, Wang Z, Chen G, Li D, Liu J, Hu H, Qin J. Reabsorption of bile acids regulated by FXR-OATP1A2 is the main factor for the formation of cholesterol gallstone. Am J Physiol Gastrointest Liver Physiol 2020; 319:G303-G308. [PMID: 32597704 DOI: 10.1152/ajpgi.00385.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The purpose of this study was to demonstrate the aberrant metabolism of bile acids in patients with cholesterol gallstone and explore for its underlying mechanisms. The composition of bile acids collected from the patients with cholelithiasis and the control individuals was analyzed by LC-MS. The expression of genes regulating the metabolism of bile acids was quantitatively determined by real-time PCR or Western blot analysis. Cholesterol saturation index of patients with gallstone was significantly higher than that of the controls. The concentrations of taurodeoxycholic acid and taurolithocholic acid in the bile of patients were significantly higher than that of the controls. When compared with the controls, it was remarkable in the patients that the mRNA expression of farnesoid X receptor (FXR) was lower, whereas that of organic anion transporting polypeptide (OATP1A2) was higher. However, the expressions of both mRNA and protein of cytochrome P-450 family 8 subfamily B member 1 (CYP8B1) did not differ between the patients and the controls. Although the protein level of CYP8B1 was significantly lower in the subjects with single nucleotide polymorphism (SNP) rs3732860(G), the composition of bile acids and the ratio of CA to CDCA remained unaltered in the patients with different SNP genotype of CYP8B1. In conclusion, the axis of FXR-OATP1A2 that physiologically regulated the reabsorption of bile acids might play an important role in the composition of bile acids and the development of gallstone. CYP8B1 gene was irrelevant to the altered composition of bile acids in patients with gallstone.NEW & NOTEWORTHY For the first time, our results indicate that the axis of farnesoid X receptor-organic anion transporter polypeptide 1A2 that physiologically regulates the reabsorption of bile acids might play an important role in the regulation of the composition of bile acids and make contribution to the development of cholelithiasis.
Collapse
Affiliation(s)
- Jingli Cai
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, Tongji University School of Medicine, Shanghai, China
| | - Zhaowen Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guiming Chen
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dapeng Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Liu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hai Hu
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, Tongji University School of Medicine, Shanghai, China
| | - Jian Qin
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Ghaffarzadegan T, Essén S, Verbrugghe P, Marungruang N, Hållenius FF, Nyman M, Sandahl M. Determination of free and conjugated bile acids in serum of Apoe(-/-) mice fed different lingonberry fractions by UHPLC-MS. Sci Rep 2019; 9:3800. [PMID: 30846721 PMCID: PMC6405994 DOI: 10.1038/s41598-019-40272-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/08/2019] [Indexed: 12/13/2022] Open
Abstract
Bile acids (BAs) are known to be involved in cholesterol metabolism but interactions between the diet, BA profiles, gut microbiota and lipid metabolism have not been extensively explored. In the present study, primary and secondary BAs including their glycine and taurine-conjugated forms were quantified in serum of Apoe−/− mice by protein precipitation followed by reversed phase ultra-high-performance liquid chromatography and QTOF mass spectrometry. The mice were fed different lingonberry fractions (whole, insoluble and soluble) in a high-fat setting or cellulose in a high and low-fat setting. Serum concentrations of BAs in mice fed cellulose were higher with the high-fat diet compared to the low-fat diet (20–70%). Among the lingonberry diets, the diet containing whole lingonberries had the highest concentration of chenodeoxycholic acid (CDCA), ursodeoxycholic acid (UDCA), tauro-ursodeoxycholic acid (T-UDCA), α and ω-muricholic acids (MCA) and tauro-α-MCA (T-α-MCA), and the lowest concentration of tauro-cholic acid (T-CA), deoxycholic acid (DCA) and tauro-deoxycholic acid (T-DCA). The glycine-conjugated BAs were very similar with all diets. CDCA, UDCA and α-MCA correlated positively with Bifidobacterium and Prevotella, and T-UDCA, T-α-MCA and ω-MCA with Bacteroides and Parabacteroides.
Collapse
Affiliation(s)
- Tannaz Ghaffarzadegan
- Food for Health Science Centre, Kemicentrum, Lund University, PO Box 124, SE-221 00, Lund, Sweden. .,Food Technology, Engineering and Nutrition, Kemicentrum, Lund University, PO Box 124, SE-221 00, Lund, Sweden.
| | - Sofia Essén
- Centre for Analysis and Synthesis, Department of Chemistry, Kemicentrum, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| | - Phebe Verbrugghe
- Food Technology, Engineering and Nutrition, Kemicentrum, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| | - Nittaya Marungruang
- Food for Health Science Centre, Kemicentrum, Lund University, PO Box 124, SE-221 00, Lund, Sweden.,Food Technology, Engineering and Nutrition, Kemicentrum, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| | - Frida Fåk Hållenius
- Food for Health Science Centre, Kemicentrum, Lund University, PO Box 124, SE-221 00, Lund, Sweden.,Food Technology, Engineering and Nutrition, Kemicentrum, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| | - Margareta Nyman
- Food for Health Science Centre, Kemicentrum, Lund University, PO Box 124, SE-221 00, Lund, Sweden.,Food Technology, Engineering and Nutrition, Kemicentrum, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| | - Margareta Sandahl
- Centre for Analysis and Synthesis, Department of Chemistry, Kemicentrum, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| |
Collapse
|
17
|
Yu J, He JQ, Chen DY, Pan QL, Yang JF, Cao HC, Li LJ. Dynamic changes of key metabolites during liver fibrosis in rats. World J Gastroenterol 2019; 25:941-954. [PMID: 30833800 PMCID: PMC6397726 DOI: 10.3748/wjg.v25.i8.941] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/10/2019] [Accepted: 01/28/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Fibrosis is the single most important predictor of significant morbidity and mortality in patients with chronic liver disease. Established non-invasive tests for monitoring fibrosis are lacking, and new biomarkers of liver fibrosis and function are needed.
AIM To depict the process of liver fibrosis and look for novel biomarkers for diagnosis and monitoring fibrosis progression.
METHODS CCl4 was used to establish the rat liver fibrosis model. Liver fibrosis process was measured by liver chemical tests, liver histopathology, and Masson’s trichrome staining. The expression levels of two fibrotic markers including α-smooth muscle actin and transforming growth factor β1 were assessed using immunohistochemistry and real-time polymerase chain reaction. Dynamic changes in metabolic profiles and biomarker concentrations in rat serum during liver fibrosis progression were investigated using ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. The discriminatory capability of potential biomarkers was evaluated by receiver operating characteristic (ROC) curve analysis.
RESULTS To investigate the dynamic changes of metabolites during the process of liver fibrosis, sera from control and fibrosis model rats based on pathological results were analyzed at five different time points. We investigated the association of liver fibrosis with 21 metabolites including hydroxyethyl glycine, L-threonine, indoleacrylic acid, β-muricholic acid (β-MCA), cervonoyl ethanolamide (CEA), phosphatidylcholines, and lysophosphatidylcholines. Two metabolites, CEA and β-MCA, differed significantly in the fibrosis model rats compared to controls (P < 0.05) and showed prognostic value for fibrosis. ROC curve analyses performed to calculate the area under the curve (AUC) revealed that CEA and β-MCA differed significantly in the fibrosis group compared to controls with AUC values exceeding 0.8, and can clearly differentiate early stage from late stage fibrosis or cirrhosis.
CONCLUSION This study identified two novel biomarkers of fibrosis, CEA and β-MCA, which were effective for diagnosing fibrosis in an animal model.
Collapse
Affiliation(s)
- Jiong Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, Zhejiang Province, China
| | - Jian-Qin He
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, Zhejiang Province, China
| | - De-Ying Chen
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, Zhejiang Province, China
| | - Qiao-Ling Pan
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, Zhejiang Province, China
| | - Jin-Feng Yang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, Zhejiang Province, China
| | - Hong-Cui Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, Zhejiang Province, China
| | - Lan-Juan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
18
|
Yamanashi Y, Takada T, Suzuki H. Associations between Lifestyle-Related Diseases and Transporters Involved in Intestinal Absorption and Biliary Excretion of Cholesterol. Biol Pharm Bull 2018; 41:1-10. [PMID: 29311470 DOI: 10.1248/bpb.b17-00690] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Westernization of dietary habits leads to an increase in lipid intake and is thought to be responsible for an increase in patients with dyslipidemia. It is a well-known fact that the impaired cholesterol homeostasis is closely related to the development of various lifestyle-related diseases such as fatty liver, diabetes, and gallstone as well as dyslipidemia leading to atherosclerosis and cardiovascular diseases such as heart attack and stroke. Therefore, appropriate management of cholesterol levels in the body is considered important in prevention and treatments of these lifestyle-related diseases and in addition, molecular mechanisms controlling plasma (and/or hepatic) cholesterol levels have been intensively studied. Due to its hydrophobicity, cholesterol was long believed to pass through cell membranes by passive diffusion. However, recent studies have identified a number of plasma membrane transporters that are responsible for the cellular uptake or efflux of cholesterol and involved in developments of lifestyle-related diseases. In this review, we focus on Niemann-Pick C1 Like 1 (NPC1L1) and a heterodimer of ATP-binding cassette transporter G5 and G8 (ABCG5/G8), both of which are responsible for intestinal cholesterol absorption and biliary cholesterol secretion, and discuss the relationship between these cholesterol transporters and lifestyle-related diseases. In addition, we also discuss the related uncertainties that need to be explored in future studies.
Collapse
Affiliation(s)
- Yoshihide Yamanashi
- Department of Pharmacy, the University of Tokyo Hospital, Faculty of Medicine, the University of Tokyo
| | - Tappei Takada
- Department of Pharmacy, the University of Tokyo Hospital, Faculty of Medicine, the University of Tokyo
| | - Hiroshi Suzuki
- Department of Pharmacy, the University of Tokyo Hospital, Faculty of Medicine, the University of Tokyo
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW The establishment of mouse models of gallstones, and the contribution of mouse models to genetic studies of gallstone disease, as well as the latest advances in the pathophysiology of gallstones from mouse experiments are summarized. RECENT FINDINGS The combined uses of genomic strategies and phenotypic studies in mice have successfully led to the identification of many Lith genes, which pave the way for the discovery of human LITH genes. The physical-chemical, genetic, and molecular biological studies of gallstone disease in mice with knockout or transgene of specific target genes have provided many novel insights into the complex pathophysiological mechanisms of this very common hepatobiliary disease worldwide, showing that interactions of five primary defects play a critical role in the pathogenesis of cholesterol gallstones. Based on mouse studies, a new concept has been proposed that hepatic hypersecretion of biliary cholesterol is induced by multiple Lith genes, with insulin resistance as part of the metabolic syndrome interacting with cholelithogenic environmental factors to cause the phenotype. SUMMARY The mouse model of gallstones is crucial for elucidating the physical-chemical and genetic mechanisms of cholesterol crystallization and gallstone formation, which greatly increase our understanding of the pathogenesis of this disease in humans.
Collapse
|
20
|
von Hardenberg S, Gnewuch C, Schmitz G, Borlak J. ApoE is a major determinant of hepatic bile acid homeostasis in mice. J Nutr Biochem 2018; 52:82-91. [DOI: 10.1016/j.jnutbio.2017.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/13/2017] [Accepted: 09/09/2017] [Indexed: 12/27/2022]
|
21
|
Ghaffarzadegan T, Zhong Y, Fåk Hållenius F, Nyman M. Effects of barley variety, dietary fiber and β-glucan content on bile acid composition in cecum of rats fed low- and high-fat diets. J Nutr Biochem 2017; 53:104-110. [PMID: 29202273 DOI: 10.1016/j.jnutbio.2017.10.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 10/16/2017] [Accepted: 10/16/2017] [Indexed: 12/11/2022]
Abstract
Diet-induced obesity and insulin resistance have been linked to changes in bile acid (BA) profiles, which in turn are highly dependent on the dietary composition and activity of the gut microbiota. The objective of the present study was to investigate whether the type and level of fiber had an effect on cecal BA composition when included in low- and high-fat diets. Groups of rats were fed two barley varieties, which resulted in three test diets containing three levels of β-glucans and two levels of dietary fiber. BAs were preconcentrated using hollow fiber liquid-phase microextraction and quantified by gas chromatography. The amount of the secondary BAs, lithocholic-, deoxycholic- and hyodexycholic acids was generally higher in groups fed high-fat diets compared with corresponding acids in groups fed low-fat diets (P<.05). In contrast, most of the primary and the secondary BAs, ursodeoxycholic acid and β- and ω-muricholic acids, were two to five times higher (P<.05) in groups fed low-fat diets than in groups fed high-fat diets. This was particularly true for groups fed the highest level of β-glucans and in some cases also the medium level. The BA profile in the gut was strongly dependent on the amount and type of dietary fiber in the diet, which may be useful in the prevention/treatment of diseases associated with changes in BA profiles.
Collapse
Affiliation(s)
- Tannaz Ghaffarzadegan
- Food for Health Science Centre, Kemicentrum, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| | - Yadong Zhong
- Food for Health Science Centre, Kemicentrum, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Frida Fåk Hållenius
- Food for Health Science Centre, Kemicentrum, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Margareta Nyman
- Food for Health Science Centre, Kemicentrum, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
22
|
Yamada S, Guo X, Wang K, Tanimoto A, Sasaguri Y. Novel function of histamine signaling via histamine receptors in cholesterol and bile acid metabolism: Histamine H2 receptor protects against nonalcoholic fatty liver disease. Pathol Int 2016; 66:376-85. [PMID: 27321390 DOI: 10.1111/pin.12423] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/11/2016] [Accepted: 05/18/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Sohsuke Yamada
- Department of Pathology, Field of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan
- Department of Pathology and Cell Biology School of Medicine, University of Occupational and Environmental Health Kitakyushu Japan
| | - Xin Guo
- Department of Pathology, Field of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan
- Department of Pathology and Cell Biology School of Medicine, University of Occupational and Environmental Health Kitakyushu Japan
- Laboratory of Pathology, Hebei Cancer Institute, the Fourth Hospital of Hebei Medical University Shijiazhuang China
| | - Ke‐Yong Wang
- Department of Pathology and Cell Biology School of Medicine, University of Occupational and Environmental Health Kitakyushu Japan
- Shared‐Use Research Center School of Medicine, University of Occupational and Environmental Health Kitakyushu Japan
| | - Akihide Tanimoto
- Department of Pathology, Field of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan
| | | |
Collapse
|
23
|
Li Y, Li M, Wu S, Tian Y. Combination of curcumin and piperine prevents formation of gallstones in C57BL6 mice fed on lithogenic diet: whether NPC1L1/SREBP2 participates in this process? Lipids Health Dis 2015; 14:100. [PMID: 26335572 PMCID: PMC4557223 DOI: 10.1186/s12944-015-0106-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 08/25/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A disruption of cholesterol homeostasis characterized by the physical-chemical imbalance of cholesterol solubility in bile often results in formation of cholesterol gallstones. Our earlier studies revealed that curcumin (1000 mg/kg) could prevent formation of gallstones. It has been proved that curcumin is poorly absorbed while piperine is a bioavailability-enhancer. Nevertheless, whether curcumin combined with piperine could enhance the effect of curcumin in preventing gallstones is still awaited. METHOD C57BL6 mice were fed on a lithogenic diet concomitant with curcumin at 500 or 1000 mg/kg and/or piperine at 20 mg/kg for 4 weeks. The ratio of gallbladder stone formation was recorded and samples of blood, bile, gallbladder, liver and small intestine were also collected. The volume of gallbladder and weight of liver were calculated, and blood and bile samples were analyzed through biochemical methods. Intestinal NPC1L1 and SREBP2 mRNA and protein expression were detected by real-time PCR and Western blot. RESULT Combining with piperine can significantly enhance the effect of curcumin, thus preventing the development of gallbladder stones, lowering the saturation of blood lipids and cholesterol in bile, as well as decreasing the expression of NPC1L1 and SREBP2 in both mRNA and protein levels. CONCLUSION Curcumin can prevent the formation of cholesterol gallstones induced by high fat diet in mice and SREBP2 and NPC1L1 may participate in this process. Piperine can increase curcumin's bioavailability, thereby enhancing the effect of curcumin.
Collapse
Affiliation(s)
- Yongnan Li
- Biliary & Vascular surgery, Shengjing Hospital of China Medical University, Shenyang City, 110004, PR China.
| | - Min Li
- Biliary & Vascular surgery, Shengjing Hospital of China Medical University, Shenyang City, 110004, PR China.
| | - Shuodong Wu
- Biliary & Vascular surgery, Shengjing Hospital of China Medical University, Shenyang City, 110004, PR China.
| | - Yu Tian
- Biliary & Vascular surgery, Shengjing Hospital of China Medical University, Shenyang City, 110004, PR China.
| |
Collapse
|
24
|
Rudling M, Bonde Y. Stimulation of apical sodium-dependent bile acid transporter expands the bile acid pool and generates bile acids with positive feedback properties. Dig Dis 2015; 33:376-81. [PMID: 26045272 DOI: 10.1159/000371690] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Bile acid synthesis has been considered a prototype for how a physiological process is controlled by end product feedback inhibition. By this feedback inhibition, bile acid concentrations are kept within safe ranges. However, careful examination of published rodent data strongly suggests that bile acid synthesis is also under potent positive feedback control by hydrophilic bile acids. KEY MESSAGES Current concepts on the regulation of bile acid synthesis are derived from mouse models. Recent data have shown that mice have farnesoid X receptor (FXR) antagonistic bile acids capable of quenching responses elicited by FXR agonistic bile acids. This is important to recognize to understand the regulation of bile acid synthesis in the mouse, and in particular to clarify if mouse model findings are valid also in the human situation. CONCLUSIONS In addition to classic end product feedback inhibition, regulation of bile acid synthesis in the mouse largely appears also to be driven by changes in hepatic levels of murine bile acids such as α- and β-muricholic acids. This has not been previously recognized. Stimulated bile acid synthesis or induction of the apical sodium-dependent bile acid transporter in the intestine, increase the availability of chenodeoxycholic acid in the liver, thereby promoting hepatic conversion of this bile acid into muricholic acids. Recognition of these mechanisms is essential for understanding the regulation of bile acid synthesis in the mouse, and for our awareness of important species differences in the regulation of bile acid synthesis in mice and humans.
Collapse
Affiliation(s)
- Mats Rudling
- Metabolism Unit, Department of Endocrinology, Metabolism and Diabetes, KI/AZ Integrated CardioMetabolic Center, Department of Medicine, and Molecular Nutrition Unit, Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
25
|
Jones RD, Lopez AM, Tong EY, Posey KS, Chuang JC, Repa JJ, Turley SD. Impact of physiological levels of chenodeoxycholic acid supplementation on intestinal and hepatic bile acid and cholesterol metabolism in Cyp7a1-deficient mice. Steroids 2015; 93:87-95. [PMID: 25447797 PMCID: PMC4297738 DOI: 10.1016/j.steroids.2014.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/07/2014] [Indexed: 01/07/2023]
Abstract
Mice deficient in cholesterol 7α-hydroxylase (Cyp7a1) have a diminished bile acid pool (BAP) and therefore represent a useful model for investigating the metabolic effects of restoring the pool with a specific BA. Previously we carried out such studies in Cyp7a1(-/-) mice fed physiological levels of cholic acid (CA) and achieved BAP restoration, along with an increased CA enrichment, at a dietary level of just 0.03% (w/w). Here we demonstrate that in Cyp7a1(-/-) mice fed chenodeoxycholic acid (CDCA) at a level of 0.06% (w/w), the BAP was restored to normal size and became substantially enriched with muricholic acid (MCA) (>70%), leaving the combined contribution of CA and CDCA to be <15%. This resulted in a partial to complete reversal of the main changes in cholesterol and BA metabolism associated with Cyp7a1 deficiency such as an elevated rate of intestinal sterol synthesis, an enhanced level of mRNA for Cyp8b1 in the liver, and depressed mRNA levels for Ibabp, Shp and Fgf15 in the distal small intestine. When Cyp7a1(-/-) and matching Cyp7a1(+/+) mice were fed a diet with added cholesterol (0.2%) (w/w), either alone, or also containing CDCA (0.06%) (w/w) or CA (0.03%) (w/w) for 18days, the hepatic total cholesterol concentrations (mg/g) in the Cyp7a1(-/-) mice were 26.9±3.7, 16.4±0.9 and 47.6±1.9, respectively, vs. 4.9±0.4, 5.0±0.7 and 6.4±1.9, respectively in the corresponding Cyp7a1(+/+) controls. These data affirm the importance of using moderate levels of dietary BA supplementation to elicit changes in hepatic cholesterol metabolism through shifts in BAP size and composition.
Collapse
Affiliation(s)
- Ryan D Jones
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, United States.
| | - Adam M Lopez
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, United States.
| | - Ernest Y Tong
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, United States.
| | - Kenneth S Posey
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, United States.
| | - Jen-Chieh Chuang
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, United States.
| | - Joyce J Repa
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, United States; Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, United States.
| | - Stephen D Turley
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, United States.
| |
Collapse
|
26
|
de Bari O, Wang TY, Liu M, Paik CN, Portincasa P, Wang DQH. Cholesterol cholelithiasis in pregnant women: pathogenesis, prevention and treatment. Ann Hepatol 2014. [PMID: 25332259 DOI: 10.1016/s1665-2681(19)30975-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Epidemiological and clinical studies have found that gallstone prevalence is twice as high in women as in men at all ages in every population studied. Hormonal changes occurring during pregnancy put women at higher risk. The incidence rates of biliary sludge (a precursor to gallstones) and gallstones are up to 30 and 12%, respectively, during pregnancy and postpartum, and 1-3% of pregnant women undergo cholecystectomy due to clinical symptoms or complications within the first year postpartum. Increased estrogen levels during pregnancy induce significant metabolic changes in the hepatobiliary system, including the formation of cholesterol-supersaturated bile and sluggish gallbladder motility, two factors enhancing cholelithogenesis. The therapeutic approaches are conservative during pregnancy because of the controversial frequency of biliary disorders. In the majority of pregnant women, biliary sludge and gallstones tend to dissolve spontaneously after parturition. In some situations, however, the conditions persist and require costly therapeutic interventions. When necessary, invasive procedures such as laparoscopic cholecystectomy are relatively well tolerated, preferably during the second trimester of pregnancy or postpartum. Although laparoscopic operation is recommended for its safety, the use of drugs such as ursodeoxycholic acid (UDCA) and the novel lipid-lowering compound, ezetimibe would also be considered. In this paper, we systematically review the incidence and natural history of pregnancy-related biliary sludge and gallstone formation and carefully discuss the molecular mechanisms underlying the lithogenic effect of estrogen on gallstone formation during pregnancy. We also summarize recent progress in the necessary strategies recommended for the prevention and the treatment of gallstones in pregnant women.
Collapse
Affiliation(s)
- Ornella de Bari
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Saint Louis University School of Medicine, St. Louis, USA
| | - Tony Y Wang
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Saint Louis University School of Medicine, St. Louis, USA; Department of Biomedical Engineering, Washington University, St. Louis, USA
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Chang-Nyol Paik
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Saint Louis University School of Medicine, St. Louis, USA
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - David Q-H Wang
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Saint Louis University School of Medicine, St. Louis, USA
| |
Collapse
|
27
|
Tazuma S, Kanno K, Sugiyama A, Kishikawa N. Nutritional factors (nutritional aspects) in biliary disorders: bile acid and lipid metabolism in gallstone diseases and pancreaticobiliary maljunction. J Gastroenterol Hepatol 2013; 28 Suppl 4:103-7. [PMID: 24251714 DOI: 10.1111/jgh.12241] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/19/2013] [Indexed: 01/11/2023]
Abstract
Nutritional factors play a key role in the pathogenesis of biliary diseases such as gallstones and pancreaticobiliary maljunction. Gallstones are primarily classified into cholesterol stone and pigment stone according to the major composition. Cholesterol gallstone formation is very likely based upon supersaturated bile formation, and pigment stones are formed in bile rich in bilirubin. Thus, defects of hepatic metabolism of lipids and organic anions lead to biliary stones. Here, the recent understanding of cholesterol gallstone pathogenesis is elaborated. On the other hand, there is another important link of biliary lipid degradation to serious biliary disease, namely pancreaticobiliary maljunction. Lysophosphatidylcholine (lysoPC), a derivative of phosphatidylcholine hydrolysis by phospholipase A2, is a highly abundant bioactive lipid mediator present in circulation as well as in bile. Increases in bile of lysoPC and phospholipase A2 have been reported in pancreaticobiliary maljunction and considered to be the major risk factor for biliary tract cancers. Further, oxidized fatty acids have been established as a potent ligand for G2A, a member of G protein-coupled receptor family that mediates a diverse array of biological processes including cell growth and apoptosis. Thus, both of lysoPC and free fatty acids are supposed to play an important role through G2A in biliary inflammation and carcinogenesis of pancreaticobiliary maljunction. Taken together, nutritional factors, especially lipid compounds, are seemingly crucial in the pathogenesis of biliary diseases, and such a causal relationship is reviewed by mainly authors' previous publications.
Collapse
Affiliation(s)
- Susumu Tazuma
- Programs of Applied Medicine, Clinical Pharmacotherapy, Department of General Internal Medicine, Hiroshima University Hospital, Graduate School of Medical Science, Hiroshima, Japan
| | | | | | | |
Collapse
|
28
|
Wang HH, Portincasa P, de Bari O, Liu KJ, Garruti G, Neuschwander-Tetri BA, Wang DQH. Prevention of cholesterol gallstones by inhibiting hepatic biosynthesis and intestinal absorption of cholesterol. Eur J Clin Invest 2013; 43:413-26. [PMID: 23419155 PMCID: PMC3996849 DOI: 10.1111/eci.12058] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 01/22/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cholesterol cholelithiasis is a multifactorial disease influenced by a complex interaction of genetic and environmental factors and represents a failure of biliary cholesterol homoeostasis in which the physical-chemical balance of cholesterol solubility in bile is disturbed. DESIGN The primary pathophysiologic event is persistent hepatic hypersecretion of biliary cholesterol, which has both hepatic and small intestinal components. The majority of the environmental factors are probably related to Western-type dietary habits, including excess cholesterol consumption. RESULTS Laparoscopic cholecystectomy, one of the most commonly performed surgical procedures in the United States, is nowadays a major treatment for gallstones. However, it is invasive and can cause surgical complications, and not all patients with symptomatic gallstones are candidates for surgery. The hydrophilic bile acid, ursodeoxycholic acid (UDCA), has been employed as first-line pharmacological therapy in a subgroup of symptomatic patients with small, radiolucent cholesterol gallstones. Long-term administration of UDCA can promote the dissolution of cholesterol gallstones. However, the optimal use of UDCA is not always achieved in clinical practice because of failure to titrate the dose adequately. CONCLUSIONS Therefore, the development of novel, effective and noninvasive therapies is crucial for reducing the costs of health care associated with gallstones. In this review, we summarize recent progress in investigating the inhibitory effects of ezetimibe and statins on intestinal absorption and hepatic biosynthesis of cholesterol, respectively, for the treatment of gallstones, as well as in elucidating their molecular mechanisms by which combination therapy could prevent this very common liver disease worldwide.
Collapse
Affiliation(s)
- Helen H Wang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Gardès C, Chaput E, Staempfli A, Blum D, Richter H, Benson GM. Differential regulation of bile acid and cholesterol metabolism by the farnesoid X receptor in Ldlr -/- mice versus hamsters. J Lipid Res 2013; 54:1283-99. [PMID: 23431047 DOI: 10.1194/jlr.m033423] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Modulating bile acid synthesis has long been considered a good strategy by which to improve cholesterol homeostasis in humans. The farnesoid X receptor (FXR), the key regulator of bile acid synthesis, was, therefore, identified as an interesting target for drug discovery. We compared the effect of four, structurally unrelated, synthetic FXR agonists in two fat-fed rodent species and observed that the three most potent and selective agonists decreased plasma cholesterol in LDL receptor-deficient (Ldlr (-/-)) mice, but none did so in hamsters. Detailed investigation revealed increases in the expression of small heterodimer partner (Shp) in their livers and of intestinal fibroblast growth factor 15 or 19 (Fgf15/19) in mice only. Cyp7a1 expression and fecal bile acid (BA) excretion were strongly reduced in mice and hamsters by all four FXR agonists, whereas bile acid pool sizes were reduced in both species by all but the X-Ceptor compound in hamsters. In Ldlr (-/-) mice, the predominant bile acid changed from cholate to the more hydrophilic β-muricholate due to a strong repression of Cyp8b1 and increase in Cyp3a11 expression. However, FXR agonists caused only minor changes in the expression of Cyp8b1 and in bile acid profiles in hamsters. In summary, FXR agonist-induced decreases in bile acid pool size and lipophilicity and in cholesterol absorption and synthesis could explain the decreased plasma cholesterol in Ldlr (-/-) mice. In hamsters, FXR agonists reduced bile acid pool size to a smaller extent with minor changes in bile acid profile and reductions in sterol absorption, and consequently, plasma cholesterol was unchanged.
Collapse
Affiliation(s)
- Christophe Gardès
- Cardiovascular and Metabolic Diseases DTA, F. Hoffmann-La Roche AG, Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
30
|
Stenman LK, Holma R, Eggert A, Korpela R. A novel mechanism for gut barrier dysfunction by dietary fat: epithelial disruption by hydrophobic bile acids. Am J Physiol Gastrointest Liver Physiol 2013. [PMID: 23203158 DOI: 10.1152/ajpgi.00267.2012] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Impairment of gut barrier is associated with a fat-rich diet, but mechanisms are unknown. We have earlier shown that dietary fat modifies fecal bile acids in mice, decreasing the proportion of ursodeoxycholic acid (UDCA) vs. deoxycholic acid (DCA). To clarify the potential role of bile acids in fat-induced barrier dysfunction, we here investigated how physiological concentrations of DCA and UDCA affect barrier function in mouse intestinal tissue. Bile acid experiments were conducted in vitro in Ussing chambers using 4- and 20-kDa FITC-labeled dextrans. Epithelial integrity and inflammation were assayed by histology and Western blot analysis for cyclooxygenase-2. LPS was studied in DCA-induced barrier dysfunction. Finally, we investigated in a 10-wk in vivo feeding trial in mice the barrier-disrupting effect of a diet containing 0.1% DCA. DCA disrupted epithelial integrity dose dependently at 1-3 mM, which correspond to physiological concentrations on a high-fat diet. Low-fat diet-related concentrations of DCA had no effect. In vivo, the DCA-containing diet increased intestinal permeability 1.5-fold compared with control (P = 0.016). Hematoxylin-eosin staining showed a clear disruption of the epithelial barrier by 3 mM DCA in vitro. A short-term treatment by DCA did not increase cyclooxygenase-2 content in colon preparations. UDCA did not affect barrier function itself, but it ameliorated DCA-induced barrier disruption at a 0.6 mM concentration. LPS had no significant effect on barrier function at 0.5-4.5 μg/ml concentrations. We suggest a novel mechanism for barrier dysfunction on a high-fat diet involving the effect of hydrophobic luminal bile acids.
Collapse
Affiliation(s)
- Lotta K Stenman
- Institute of Biomedicine, Pharmacology, Medical Nutrition Physiology, University of Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
31
|
Abstract
The circulating FGFs are a new group of proteins believed to function as classic hormones. With emphasis on human metabolism, we critically review current data, and propose that--although a number of questions remain--circulating FGF23 is pivotal in the control of phosphate and vitamin D metabolism, and may have additional systemic effects, particularly in chronic kidney disease; that FGF19 signaling is important for the regulation of bile acid metabolism, whereas its physiological role in promoting glucose and lipid metabolism is less well understood; and that the physiological role of circulating FGF21 in metabolic homeostasis warrants further investigation.
Collapse
|
32
|
Tauro-β-muricholic acid restricts bile acid-induced hepatocellular apoptosis by preserving the mitochondrial membrane potential. Biochem Biophys Res Commun 2012; 424:758-64. [DOI: 10.1016/j.bbrc.2012.07.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 07/08/2012] [Indexed: 11/23/2022]
|
33
|
Zhang Y, Breevoort SR, Angdisen J, Fu M, Schmidt DR, Holmstrom SR, Kliewer SA, Mangelsdorf DJ, Schulman IG. Liver LXRα expression is crucial for whole body cholesterol homeostasis and reverse cholesterol transport in mice. J Clin Invest 2012; 122:1688-99. [PMID: 22484817 DOI: 10.1172/jci59817] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 02/22/2012] [Indexed: 12/15/2022] Open
Abstract
Liver X receptors (LXRα and LXRβ) are important regulators of cholesterol and lipid metabolism, and their activation has been shown to inhibit cardiovascular disease and reduce atherosclerosis in animal models. Small molecule agonists of LXR activity are therefore of great therapeutic interest. However, the finding that such agonists also promote hepatic lipogenesis has led to the idea that hepatic LXR activity is undesirable from a therapeutic perspective. To investigate whether this might be true, we performed gene targeting to selectively delete LXRα in hepatocytes. Liver-specific deletion of LXRα in mice substantially decreased reverse cholesterol transport, cholesterol catabolism, and cholesterol excretion, revealing the essential importance of hepatic LXRα for whole body cholesterol homeostasis. Additionally, in a pro-atherogenic background, liver-specific deletion of LXRα increased atherosclerosis, uncovering an important function for hepatic LXR activity in limiting cardiovascular disease. Nevertheless, synthetic LXR agonists still elicited anti-atherogenic activity in the absence of hepatic LXRα, indicating that the ability of agonists to reduce cardiovascular disease did not require an increase in cholesterol excretion. Furthermore, when non-atherogenic mice were treated with synthetic LXR agonists, liver-specific deletion of LXRα eliminated the detrimental effect of increased plasma triglycerides, while the beneficial effect of increased plasma HDL was unaltered. In sum, these observations suggest that therapeutic strategies that bypass the liver or limit the activation of hepatic LXRs should still be beneficial for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Most asymptomatic gallstone carriers require no therapy. Laparoscopic cholecystectomy is the best definitive therapy for symptomatic gallstone disease. Selective laparoscopic cholecystectomy can provide secondary prevention of symptoms and complications in certain instances (in a complex clinical setting such as sickle cell disease or to prevent gallbladder carcinoma from developing in those at risk with large gallstones or with a calcified gallbladder). Primary prevention is unproven but focuses on early identification and risk alteration to decrease the possibility of developing gallstones. Ursodeoxycholic acid has a limited role for stone dissolution but can prevent stone development in severe obesity during rapid weight reduction with diet or after bariatric surgery. Endoscopic retrograde cholangiopancreatography with endoscopic sphincterotomy represents the therapeutic cornerstone for managing severe pancreatitis and cholangitis.
Collapse
|
35
|
Di Ciaula A, Wang DQH, Wang HH, Bonfrate L, Portincasa P. Targets for current pharmacologic therapy in cholesterol gallstone disease. Gastroenterol Clin North Am 2010; 39:245-64, viii-ix. [PMID: 20478485 PMCID: PMC2915454 DOI: 10.1016/j.gtc.2010.02.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gallstone disease is a frequent condition throughout the world and, cholesterol stones are the most frequent form in Western countries. The standard treatment of symptomatic gallstone subjects is laparoscopic cholecystectomy. The selection of patients amenable for nonsurgical, medical therapy is of key importance; a careful analysis should consider the natural history of the disease and the overall costs of therapy. Only patients with mild symptoms and small, uncalcified cholesterol gallstones in a functioning gallbladder with a patent cystic duct are considered for oral litholysis by hydrophilic ursodeoxycholic acid, in the hope of achieving cholesterol desaturation of bile and progressive stone dissolution. Recent studies have raised the possibility that cholesterol-lowering agents that inhibit hepatic cholesterol synthesis (statins) or intestinal cholesterol absorption (ezetimibe), or drugs acting on specific nuclear receptors involved in cholesterol and bile acid homeostasis, may offer, alone or in combination, additional medical therapeutic tools for treating cholesterol gallstones. Recent perspectives on medical treatment of cholesterol gallstone disease are discussed in this article.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Division of Internal Medicine, Hospital of Bisceglie, via Bovio 279 - 70052 - Bisceglie (Bari), Italy, +39-80-3363271, +39-80-3363232 (fax)
| | - David Q.-H. Wang
- Liver Center and Gastroenterology Division, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School and Harvard Digestive Diseases Center, 330 Brookline Avenue, DA 601, Boston, MA 02215, (617) 667-0561, (617) 975-5071 (fax)
| | - Helen H. Wang
- Department of Medicine, Liver Center and Gastroenterology Division, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, DA 601, Boston, MA 02215, (617) 667-5156, (617) 975-5071 (fax)
| | - Leonilde Bonfrate
- Clinica Medica “A. Murri”, Department of Internal and Public Medicine, University of Bari Medical School, Piazza Giulio Cesare 11, Policlinico, 70124 Bari, Italy. +39-80-5478227, +39-80-5478232 (fax)
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Internal Medicine and Public Medicine, University Medical School, Bari, Italy
| |
Collapse
|
36
|
Zúñiga S, Molina H, Azocar L, Amigo L, Nervi F, Pimentel F, Jarufe N, Arrese M, Lammert F, Miquel JF. Ezetimibe prevents cholesterol gallstone formation in mice. Liver Int 2008; 28:935-47. [PMID: 18783541 DOI: 10.1111/j.1478-3231.2008.01808.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Intestinal cholesterol absorption may influence gallstone formation and its modulation could be a useful therapeutic strategy for gallstone disease (GSD). Ezetimibe (EZET) is a cholesterol-lowering agent that specifically inhibits intestinal cholesterol absorption. AIMS To test whether EZET can prevent gallstone formation in mice. METHODS/RESULTS Gallstone-susceptible C57BL/6 inbred mice were fed control and lithogenic diets with or without simultaneous EZET administration. Lithogenic diet increased biliary cholesterol content and secretion, and induced sludge or gallstone formation in 100% of the animals. EZET administration reduced intestinal cholesterol absorption by 90% in control animals and by 35% in mice receiving the lithogenic diet. EZET prevented the appearance of cholesterol crystals and gallstones. In addition, mice fed the lithogenic diet plus EZET exhibited a 60% reduction in biliary cholesterol saturation index. Of note, EZET treatment caused a significant increase in bile flow (+50%, P<0.01) as well as bile salt, phospholipid and glutathione secretion rates (+60%, +44% and +100%, respectively, P<0.01), which was associated with a moderately increased expression of hepatic bile salt transporters. In addition, relative expression levels of Nieman-Pick C1 like 1 (NPC1L1) in the enterohepatic axis in humans were assessed. Expression levels of NPC1L1 were 15- to 30-fold higher in the duodenum compared with the liver at transcript and protein levels, respectively, suggesting preferential action of EZET on intestinal cholesterol absorption in humans. CONCLUSIONS In a murine model of GSD, EZET prevented gallstone formation by reducing intestinal cholesterol absorption and increasing bile salt-dependent and -independent bile flow. EZET could be useful in preventing GSD disease in susceptible patients.
Collapse
Affiliation(s)
- Silvia Zúñiga
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wang HH, Portincasa P, Mendez-Sanchez N, Uribe M, Wang DQH. Effect of ezetimibe on the prevention and dissolution of cholesterol gallstones. Gastroenterology 2008; 134:2101-10. [PMID: 18442485 PMCID: PMC2741499 DOI: 10.1053/j.gastro.2008.03.011] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 02/26/2008] [Accepted: 03/06/2008] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Cholesterol cholelithiasis is one of the most prevalent and most costly digestive diseases in developed countries and its incidence has increased markedly in Asian countries owing to the adoption of Western-type dietary habits. Because animal experiments showed that high efficiency of intestinal cholesterol absorption contributes to gallstone formation, we explored whether the potent cholesterol absorption inhibitor ezetimibe could prevent gallstones and promote gallstone dissolution in mice and reduce biliary cholesterol content in human beings. METHODS Male gallstone-susceptible C57L mice were fed a lithogenic diet and concomitantly administered with ezetimibe at 0, 0.8, 4, or 8 mg/kg/day for 8 or 12 weeks. Gallbladder biles and gallstones were examined by microscopy. Gallbladder emptying in response to cholecystokinin octapeptide was measured gravimetrically. Biliary lipid outputs were analyzed by physical-chemical methods. Cholesterol absorption efficiency was determined by fecal dual-isotope ratio and mass balance methods. Lipid changes in gallbladder biles of gallstone patients vs overweight subjects without gallstones were examined before (day 0) and at 30 days after ezetimibe treatment (20 mg/day). RESULTS Ezetimibe prevented gallstones by effectively reducing intestinal cholesterol absorption and biliary cholesterol secretion, and protected gallbladder motility function by desaturating bile in mice. Treatment with ezetimibe promoted the dissolution of gallstones by forming an abundance of unsaturated micelles. Furthermore, ezetimibe significantly reduced biliary cholesterol saturation and retarded cholesterol crystallization in biles of patients with gallstones. CONCLUSIONS Ezetimibe is a novel approach to reduce biliary cholesterol content and a promising strategy for preventing or treating cholesterol gallstones by inhibiting intestinal cholesterol absorption.
Collapse
Affiliation(s)
- Helen H. Wang
- Department of Medicine, Liver Center and Gastroenterology Division, Beth Israel Deaconess Medical Center, Harvard Medical School and Harvard Digestive Diseases Center, Boston, Massachusetts
| | - Piero Portincasa
- Department of Internal Medicine and Public Medicine, Section of Internal Medicine, University Medical School, Bari, Italy
| | - Nahum Mendez-Sanchez
- Departments of Biomedical Research, Gastroenterology and Liver Unit, Medica Sur Clinic and Foundation, Mexico City, Mexico
| | - Misael Uribe
- Departments of Biomedical Research, Gastroenterology and Liver Unit, Medica Sur Clinic and Foundation, Mexico City, Mexico
| | - David Q.-H. Wang
- Department of Medicine, Liver Center and Gastroenterology Division, Beth Israel Deaconess Medical Center, Harvard Medical School and Harvard Digestive Diseases Center, Boston, Massachusetts
| |
Collapse
|
38
|
Mataki C, Magnier BC, Houten SM, Annicotte JS, Argmann C, Thomas C, Overmars H, Kulik W, Metzger D, Auwerx J, Schoonjans K. Compromised intestinal lipid absorption in mice with a liver-specific deficiency of liver receptor homolog 1. Mol Cell Biol 2007; 27:8330-9. [PMID: 17908794 PMCID: PMC2169191 DOI: 10.1128/mcb.00852-07] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Bile acids (BAs) are water-soluble end products from cholesterol metabolism and are essential for efficient absorption of dietary lipids. By using targeted somatic mutagenesis of the nuclear receptor liver receptor homolog 1 (LRH-1) in mouse hepatocytes, we demonstrate here that LRH-1 critically regulates the physicochemical properties of BAs. The absence of LRH-1 and subsequent deficiency of Cyp8b1 eliminate the production of cholic acid and its amino acid conjugate taurocholic acid and increase the relative amounts of less amphipathic BA species. Intriguingly, while the expression of Cyp8b1 is almost extinguished in the livers of mice that lack LRH-1, the expression of the rate-limiting enzyme of BA synthesis, i.e., Cyp7a1, remains unchanged. The profound remodeling of the BA composition significantly reduces the efficacy of intestinal absorption of lipids and reuptake of BAs and facilitates the removal of lipids from the body. Our studies unequivocally demonstrate a pivotal role for LRH-1 in determining the composition of BAs, which, in turn has major consequences on whole-body lipid homeostasis.
Collapse
Affiliation(s)
- Chikage Mataki
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 67404 Illkirch, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Sehayek E, Hagey LR, Fung YY, Duncan EM, Yu HJ, Eggertsen G, Björkhem I, Hofmann AF, Breslow JL. Two loci on chromosome 9 control bile acid composition: evidence that a strong candidate gene, Cyp8b1, is not the culprit. J Lipid Res 2006; 47:2020-7. [PMID: 16763287 DOI: 10.1194/jlr.m600176-jlr200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An intercross between C57BL/6J and CASA/Rk mice was used to study the genetics of biliary bile acid composition. In parental strains, male C57BL/6J mice had significantly higher cholic acid (CA; 14%) and lower beta-muricholic acid (betaMC; 27%) than CASA/Rk mice, whereas females did not differ. However, quantitative trait locus analysis of F2 mice revealed no significant chromosome 9 loci in males but loci in females on chromosome 9 for percentage CA (%CA) at 72 centimorgan (cM) [logarithm of the odds (LOD) 5.89] and %betaMC at 54 cM (LOD 4.09). Chromosome 9 congenic and subcongenic strains representing CASA/Rk intervals 38-73 cM (9KK) and 68-73 cM (9DKK) on the C57BL/6J background were made. In 9KK and 9DKK males, %CA was increased and %betaMC was unchanged, whereas in 9KK but not 9DKK females, %CA was increased and %betaMC was decreased. Sterol 12alpha-hydroxylase (Cyp8b1) channels bile acid precursors into CA and maps at chromosome 9 (73 cM). However, there was no significant difference in Cyp8b1 mRNA or enzymatic activity between parental mice, parental-congenic-subcongenic mice, or high-low biliary %CA F2 mice. In summary, two chromosome 9 loci control sexually dimorphic effects on biliary bile acid composition: a distal (68-73 cM) major determinant in males, and a more proximal (38-68 cM) major determinant in females. In this intercross, Cyp8b1, a strong candidate, does not appear to be responsible.
Collapse
Affiliation(s)
- Ephraim Sehayek
- Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University, New York, NY, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Guitaoui M, Parquet M, Aubert C, Montet AM, Montet JC. Conjugation with taurine prevents side-chain desaturation of ursodeoxycholic and beta-muricholic acids in bile fistula rats. Fundam Clin Pharmacol 2004; 18:457-64. [PMID: 15312152 DOI: 10.1111/j.1472-8206.2004.00266.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The metabolism of intravenously infused bile salts, tauroursodeoxycholate, tauro-beta-muricholate and their corresponding unconjugated forms in the liver was investigated in bile salt-depleted bile fistula rats. The biliary bile salt composition was determined by gas chromatography-mass spectrometry using chemical positive ionization and electron-impact methods. For an infusion rate of 2 micromol/min/kg, all bile salts were efficiently secreted in bile, inducing similar choleresis. Only tauroconjugated bile salts were recovered; no glucuronide or glyco derivatives were detected. The infusion of free ursodeoxycholate led to the appearance of a metabolite identified as a Delta22 derivative (12%). A similar biotransformation rate (11%) was observed following free beta-muricholate infusion. In contrast, no metabolite was observed after infusion of the tauroconjugated form of ursodeoxycholate and beta-muricholate. The unsaturation process probably depends on the availability of the carboxyl group for the starting step of the beta-oxidation mechanism. In conclusion, the current in vivo study demonstrates a hepatic origin for Delta22 bile salts. It also shows that free bile salts were sensitive to Delta22 formation while conjugation with taurine totally prevented the side-chain oxidation of the two 7beta-hydroxylated bile salts.
Collapse
Affiliation(s)
- Mustapha Guitaoui
- Faculté de Pharmacie, UPRES EA 3286, 27 Boulevard Jean Moulin, 13385, Marseille Cedex 5, France
| | | | | | | | | |
Collapse
|
41
|
Wang DQH, Afdhal NH. Genetic analysis of cholesterol gallstone formation: searching for Lith (gallstone) genes. Curr Gastroenterol Rep 2004; 6:140-50. [PMID: 15191694 DOI: 10.1007/s11894-004-0042-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The genetics of cholesterol cholelithiasis is complex because a number of interacting genes regulate biliary cholesterol homeostasis. Quantitative trait locus (QTL) analysis is a powerful method for identifying primary rate-limiting genetic defects and discriminating them from secondary downstream lithogenic effects caused by mutations of the primary genes. The subsequent positional cloning of such genes responsible for QTLs may lead to the discovery of pathophysiologic functions of Lith (gallstone) genes. In this review, we present a map of candidate genes for Lith genes that may determine gallstone susceptibility in mice. The physical-chemical, pathophysiologic, and genetic studies of Lith genes in bile, liver, gallbladder, and intestine will be crucial for elucidating the genetic mechanisms of cholesterol gallstone disease in mice and in humans. Because exceptionally close homology exists between mouse and human genomes, the orthologous human LITH genes can often be recognized after mouse genes are identified.
Collapse
Affiliation(s)
- David Q-H Wang
- Liver Center, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, DA 601, Boston, MA 02215, USA
| | | |
Collapse
|
42
|
Lammert F, Wang DQH, Hillebrandt S, Geier A, Fickert P, Trauner M, Matern S, Paigen B, Carey MC. Spontaneous cholecysto- and hepatolithiasis in Mdr2-/- mice: a model for low phospholipid-associated cholelithiasis. Hepatology 2004; 39:117-28. [PMID: 14752830 DOI: 10.1002/hep.20022] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Previously, we identified needle-like and filamentous, putatively "anhydrous" cholesterol crystallization in vitro at very low phospholipid concentrations in model and native biles. Our aim now was to address whether spontaneous gallstone formation occurs in Mdr2 (Abcb4) knockout mice that are characterized by phospholipid-deficient bile. Biliary phenotypes and cholesterol crystallization sequences in fresh gallbladder biles and non-fixed liver sections were determined by direct and polarizing light microscopy. The physical chemical nature and composition of crystals and stones were determined by sucrose density centrifugation and before mass and infrared spectroscopy. Gallbladder biles of Mdr2(-/-) mice precipitate needle-like cholesterol crystals at 12 weeks of age on chow. After 15 weeks, more than 50% of Mdr2(-/-) mice develop gallbladder stones, with female mice displaying a markedly higher gallstone-susceptibility. Although gallbladder biles of Mdr2(-/-) mice contain only traces (</= 1.1 mM) of phospholipid and cholesterol, they become supersaturated with cholesterol and plot in the left 2-phase zone of the ternary phase diagram, consistent with "anhydrous" cholesterol crystallization. Furthermore, more than 40% of adult female Mdr2(-/-) mice show intra- and extrahepatic bile duct stones. In conclusion, spontaneous gallstone formation is a new consistent feature of the Mdr2(-/-) phenotype. The Mdr2(-/-) mouse is therefore a model for low phospholipid-associated cholelithiasis recently described in humans with a dysfunctional mutation in the orthologous ABCB4 gene. The mouse model supports the concept that this gene is a monogenic risk factor for cholesterol gallstones and a target for novel therapeutic strategies.
Collapse
Affiliation(s)
- Frank Lammert
- Department of Medicine III, University Hospital Aachen and Aachen University, Aachen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Dawson PA, Haywood J, Craddock AL, Wilson M, Tietjen M, Kluckman K, Maeda N, Parks JS. Targeted deletion of the ileal bile acid transporter eliminates enterohepatic cycling of bile acids in mice. J Biol Chem 2003; 278:33920-7. [PMID: 12819193 DOI: 10.1074/jbc.m306370200] [Citation(s) in RCA: 247] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The ileal apical sodium bile acid cotransporter participates in the enterohepatic circulation of bile acids. In patients with primary bile acid malabsorption, mutations in the ileal bile acid transporter gene (Slc10a2) lead to congenital diarrhea, steatorrhea, and reduced plasma cholesterol levels. To elucidate the quantitative role of Slc10a2 in intestinal bile acid absorption, the Slc10a2 gene was disrupted by homologous recombination in mice. Animals heterozygous (Slc10a2+/-) and homozygous (Slc10a2-/-) for this mutation were physically indistinguishable from wild type mice. In the Slc10a2-/- mice, fecal bile acid excretion was elevated 10- to 20-fold and was not further increased by feeding a bile acid binding resin. Despite increased bile acid synthesis, the bile acid pool size was decreased by 80% and selectively enriched in cholic acid in the Slc10a2-/- mice. On a low fat diet, the Slc10a2-/- mice did not have steatorrhea. Fecal neutral sterol excretion was increased only 3-fold, and intestinal cholesterol absorption was reduced only 20%, indicating that the smaller cholic acid-enriched bile acid pool was sufficient to facilitate intestinal lipid absorption. Liver cholesteryl ester content was reduced by 50% in Slc10a2-/- mice, and unexpectedly plasma high density lipoprotein cholesterol levels were slightly elevated. These data indicate that Slc10a2 is essential for efficient intestinal absorption of bile acids and that alternative absorptive mechanisms are unable to compensate for loss of Slc10a2 function.
Collapse
Affiliation(s)
- Paul A Dawson
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Wang DQH, Tazuma S, Cohen DE, Carey MC. Feeding natural hydrophilic bile acids inhibits intestinal cholesterol absorption: studies in the gallstone-susceptible mouse. Am J Physiol Gastrointest Liver Physiol 2003; 285:G494-502. [PMID: 12748061 DOI: 10.1152/ajpgi.00156.2003] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We explored the influence of the hydrophilic-hydrophobic balance of a series of natural bile acids on cholesterol absorption in the mouse. Male C57L/J mice were fed standard chow or chow supplemented with 0.5% cholic; chenodeoxycholic; deoxycholic; dehydrocholic; hyocholic; hyodeoxycholic; alpha-, beta-, or omega-muricholic; ursocholic; or ursodeoxycholic acids for 7 days. Biliary bile salts were measured by reverse-phase HPLC, and hydrophobicity indices were estimated by Heuman's method. Cholesterol absorption efficiency was determined by a plasma dual-isotope ratio method. In mice fed chow, natural proportions of tauro-beta-muricholate (42 +/- 6%) and taurocholate (50 +/- 7%) with a hydrophobicity index of -0.35 +/- 0.04 produced cholesterol absorption of 37 +/- 5%. Because bacterial and especially hepatic biotransformations of specific bile acids occurred, hydrophobicity indices of the resultant bile salt pools differed from fed bile acids. We observed a significant positive correlation between hydrophobicity indices of the bile salt pool and percent cholesterol absorption. The principal mechanism whereby hydrophilic bile acids inhibit cholesterol absorption appears to be diminution of intraluminal micellar cholesterol solubilization. Gene expression of intestinal sterol efflux transporters Abcg5 and Abcg8 was upregulated by feeding cholic acid but not by hydrophilic beta-muricholic acid nor by hydrophobic deoxycholic acid. We conclude that the hydrophobicity of the bile salt pool predicts the effects of individual fed bile acids on intestinal cholesterol absorption. Natural alpha- and beta-muricholic acids are the most powerful inhibitors of cholesterol absorption in mice and might act as potent cholesterol-lowering agents for prevention of cholesterol deposition diseases in humans.
Collapse
Affiliation(s)
- David Q-H Wang
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| | | | | | | |
Collapse
|
45
|
Wang DQH, Carey MC. Measurement of intestinal cholesterol absorption by plasma and fecal dual-isotope ratio, mass balance, and lymph fistula methods in the mouse: an analysis of direct versus indirect methodologies. J Lipid Res 2003; 44:1042-59. [PMID: 12588946 DOI: 10.1194/jlr.d200041-jlr200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rate of intestinal cholesterol (Ch) absorption is an important criterion for quantitation of Ch homeostasis. However, studies in the literature suggest that percent Ch absorption, measured usually by a fecal dual-isotope ratio method, spans a wide range, from 20% to 90%, in healthy inbred mice on a chow diet. In the present study, we adapted four standard methods, one direct (lymph collection) and three indirect (plasma and fecal dual-isotope ratio, and sterol balance) measurements of Ch absorption and applied them to mice. Our data establish that all methodologies can be valid in mice, with all methods supporting the concept that gallstone-susceptible C57L mice absorb significantly more Ch (37 +/- 5%) than gallstone-resistant AKR mice (24 +/- 4%). We ascertained that sources of error in the literature leading to marked differences in Ch absorption efficiencies between laboratories relate to a number of technical factors, most notably expertise in mouse surgery, complete solubilization and delivery of radioisotopes, appropriate collection periods for plasma and fecal samples, and total extraction of radioisotopes from feces. We find that all methods provide excellent interexperimental agreement, and the ranges obtained challenge previously held beliefs regarding the spread of intestinal Ch absorption efficiencies in mice. The approaches documented herein provide quantifiable methodologies for exploring genetic mechanisms of Ch absorption, and for investigating the assembly and secretion of chylomicrons, as well as intestinal lipoprotein metabolism in mice.
Collapse
Affiliation(s)
- David Q-H Wang
- Gastroenterology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | |
Collapse
|