1
|
Burr SD, Chen Y, Hartley CP, Zhao X, Liu J. Replacement of saturated fatty acids with linoleic acid in western diet attenuates atherosclerosis in a mouse model with inducible ablation of hepatic LDL receptor. Sci Rep 2023; 13:16832. [PMID: 37803087 PMCID: PMC10558454 DOI: 10.1038/s41598-023-44030-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023] Open
Abstract
Dietary saturate fatty acids (SFAs) have been consistently linked to atherosclerosis and obesity, both of which are characterized by chronic inflammation and impaired lipid metabolism. In comparison, the effects of linoleic acid (LA), the predominant polyunsaturated fatty acid in the Western diet, seem to diverge. Data from human studies suggest a positive association between high dietary intake of LA and the improvement of cardiovascular risk. However, excessive LA intake has been implicated in the development of obesity. Concerns have also been raised on the potential pro-inflammatory properties of LA metabolites. Herein, by utilizing a mouse model with liver-specific Ldlr knockdown, we directly determined the effects of replacing SFAs with LA in a Western diet on the development of obesity and atherosclerosis. Specifically, mice treated with a Ldlr ASO were placed on a Western diet containing either SFA-rich butter (WD-B) or LA-rich corn oil (WD-CO) for 12 weeks. Despite of showing no changes in body weight gain or adiposity, mice on WD-CO exhibited significantly less atherosclerotic lesions compared to those on WD-B diet. Reduced lesion formation in the WD-CO-fed mice corresponded with a reduction of plasma triglyceride and cholesterol content, especially in VLDL and LDL, and ApoB protein levels. Although it increased expression of proinflammatory cytokines TNF-α and IL-6 in the liver, WD-CO did not appear to affect hepatic injury or damage when compared to WD-B. Collectively, our results indicate that replacing SFAs with LA in a Western diet could reduce the development of atherosclerosis independently of obesity.
Collapse
Affiliation(s)
- Stephanie D Burr
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic in Rochester, Guggenheim Building 14-11A, 222 3Rd Avenue SW, Rochester, MN, 55905, USA
| | - Yongbin Chen
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Christopher P Hartley
- Department of Laboratory Medicine and Pathology, Mayo Clinic in Rochester, Rochester, MN, 55905, USA
| | - Xianda Zhao
- Department of Laboratory Medicine and Pathology, Mayo Clinic in Rochester, Rochester, MN, 55905, USA
| | - Jun Liu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA.
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic in Rochester, Guggenheim Building 14-11A, 222 3Rd Avenue SW, Rochester, MN, 55905, USA.
| |
Collapse
|
2
|
CREBH Systemically Regulates Lipid Metabolism by Modulating and Integrating Cellular Functions. Nutrients 2021; 13:nu13093204. [PMID: 34579081 PMCID: PMC8472586 DOI: 10.3390/nu13093204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022] Open
Abstract
Cyclic AMP-responsive element-binding protein H (CREBH, encoded by CREB3L3) is a membrane-bound transcriptional factor expressed in the liver and small intestine. The activity of CREBH is regulated not only at the transcriptional level but also at the posttranslational level. CREBH governs triglyceride metabolism in the liver by controlling gene expression, with effects including the oxidation of fatty acids, lipophagy, and the expression of apolipoproteins related to the lipoprotein lipase activation and suppression of lipogenesis. The activation and functions of CREBH are controlled in response to the circadian rhythm. On the other hand, intestinal CREBH downregulates the absorption of lipids from the diet. CREBH deficiency in mice leads to severe hypertriglyceridemia and fatty liver in the fasted state and while feeding a high-fat diet. Therefore, when crossing CREBH knockout (KO) mice with an atherosclerosis model, low-density lipoprotein receptor KO mice, these mice exhibit severe atherosclerosis. This phenotype is seen in both liver- and small intestine-specific CREBH KO mice, suggesting that CREBH controls lipid homeostasis in an enterohepatic interaction. This review highlights that CREBH has a crucial role in systemic lipid homeostasis to integrate cellular functions related to lipid metabolism.
Collapse
|
3
|
Trujillo‐Viera J, El‐Merahbi R, Schmidt V, Karwen T, Loza‐Valdes A, Strohmeyer A, Reuter S, Noh M, Wit M, Hawro I, Mocek S, Fey C, Mayer AE, Löffler MC, Wilhelmi I, Metzger M, Ishikawa E, Yamasaki S, Rau M, Geier A, Hankir M, Seyfried F, Klingenspor M, Sumara G. Protein Kinase D2 drives chylomicron-mediated lipid transport in the intestine and promotes obesity. EMBO Mol Med 2021; 13:e13548. [PMID: 33949105 PMCID: PMC8103097 DOI: 10.15252/emmm.202013548] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
Lipids are the most energy-dense components of the diet, and their overconsumption promotes obesity and diabetes. Dietary fat content has been linked to the lipid processing activity by the intestine and its overall capacity to absorb triglycerides (TG). However, the signaling cascades driving intestinal lipid absorption in response to elevated dietary fat are largely unknown. Here, we describe an unexpected role of the protein kinase D2 (PKD2) in lipid homeostasis. We demonstrate that PKD2 activity promotes chylomicron-mediated TG transfer in enterocytes. PKD2 increases chylomicron size to enhance the TG secretion on the basolateral side of the mouse and human enterocytes, which is associated with decreased abundance of APOA4. PKD2 activation in intestine also correlates positively with circulating TG in obese human patients. Importantly, deletion, inactivation, or inhibition of PKD2 ameliorates high-fat diet-induced obesity and diabetes and improves gut microbiota profile in mice. Taken together, our findings suggest that PKD2 represents a key signaling node promoting dietary fat absorption and may serve as an attractive target for the treatment of obesity.
Collapse
Affiliation(s)
- Jonathan Trujillo‐Viera
- Rudolf‐Virchow‐ZentrumCenter for Integrative and Translational BioimagingUniversity of WürzburgWürzburgGermany
| | - Rabih El‐Merahbi
- Rudolf‐Virchow‐ZentrumCenter for Integrative and Translational BioimagingUniversity of WürzburgWürzburgGermany
| | - Vanessa Schmidt
- Rudolf‐Virchow‐ZentrumCenter for Integrative and Translational BioimagingUniversity of WürzburgWürzburgGermany
| | - Till Karwen
- Rudolf‐Virchow‐ZentrumCenter for Integrative and Translational BioimagingUniversity of WürzburgWürzburgGermany
| | - Angel Loza‐Valdes
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| | - Akim Strohmeyer
- Chair for Molecular Nutritional MedicineTechnical University of MunichTUM School of Life Sciences WeihenstephanFreisingGermany
- EKFZ ‐ Else Kröner‐Fresenius‐Center for Nutritional MedicineTechnical University of MunichMunichGermany
- ZIEL ‐ Institute for Food & HealthTechnical University of MunichFreisingGermany
| | - Saskia Reuter
- Rudolf‐Virchow‐ZentrumCenter for Integrative and Translational BioimagingUniversity of WürzburgWürzburgGermany
| | - Minhee Noh
- Rudolf‐Virchow‐ZentrumCenter for Integrative and Translational BioimagingUniversity of WürzburgWürzburgGermany
| | - Magdalena Wit
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| | - Izabela Hawro
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| | - Sabine Mocek
- Chair for Molecular Nutritional MedicineTechnical University of MunichTUM School of Life Sciences WeihenstephanFreisingGermany
- EKFZ ‐ Else Kröner‐Fresenius‐Center for Nutritional MedicineTechnical University of MunichMunichGermany
- ZIEL ‐ Institute for Food & HealthTechnical University of MunichFreisingGermany
| | - Christina Fey
- Fraunhofer Institute for Silicate Research (ISC)Translational Center Regenerative Therapies (TLC‐RT)WürzburgGermany
| | - Alexander E Mayer
- Rudolf‐Virchow‐ZentrumCenter for Integrative and Translational BioimagingUniversity of WürzburgWürzburgGermany
| | - Mona C Löffler
- Rudolf‐Virchow‐ZentrumCenter for Integrative and Translational BioimagingUniversity of WürzburgWürzburgGermany
| | - Ilka Wilhelmi
- Department of Experimental DiabetologyGerman Institute of Human Nutrition Potsdam‐RehbrueckeNuthetalGermany
- German Center for Diabetes Research (DZD)München‐NeuherbergGermany
| | - Marco Metzger
- Fraunhofer Institute for Silicate Research (ISC)Translational Center Regenerative Therapies (TLC‐RT)WürzburgGermany
| | - Eri Ishikawa
- Molecular ImmunologyResearch Institute for Microbial Diseases (RIMD)Osaka UniversitySuitaJapan
- Molecular ImmunologyImmunology Frontier Research Center (IFReC)Osaka UniversitySuitaJapan
| | - Sho Yamasaki
- Molecular ImmunologyResearch Institute for Microbial Diseases (RIMD)Osaka UniversitySuitaJapan
- Molecular ImmunologyImmunology Frontier Research Center (IFReC)Osaka UniversitySuitaJapan
| | - Monika Rau
- Division of HepatologyUniversity Hospital WürzburgWürzburgGermany
| | - Andreas Geier
- Division of HepatologyUniversity Hospital WürzburgWürzburgGermany
| | - Mohammed Hankir
- Department of General, Visceral, Transplant, Vascular and Pediatric SurgeryUniversity Hospital WürzburgWürzburgGermany
| | - Florian Seyfried
- Department of General, Visceral, Transplant, Vascular and Pediatric SurgeryUniversity Hospital WürzburgWürzburgGermany
| | - Martin Klingenspor
- Chair for Molecular Nutritional MedicineTechnical University of MunichTUM School of Life Sciences WeihenstephanFreisingGermany
- EKFZ ‐ Else Kröner‐Fresenius‐Center for Nutritional MedicineTechnical University of MunichMunichGermany
- ZIEL ‐ Institute for Food & HealthTechnical University of MunichFreisingGermany
| | - Grzegorz Sumara
- Rudolf‐Virchow‐ZentrumCenter for Integrative and Translational BioimagingUniversity of WürzburgWürzburgGermany
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| |
Collapse
|
4
|
Motoi S, Uesugi M, Obara T, Moriya K, Arita Y, Ogasawara H, Soejima M, Imai T, Kawano T. Serum APOA4 Pharmacodynamically Represents Administered Recombinant Human Hepatocyte Growth Factor (E3112). Int J Mol Sci 2021; 22:4578. [PMID: 33925510 PMCID: PMC8123842 DOI: 10.3390/ijms22094578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Hepatocyte growth factor (HGF) is an endogenously induced bioactive molecule that has strong anti-apoptotic and tissue repair activities. In this research, we identified APOA4 as a novel pharmacodynamic (PD) marker of the recombinant human HGF (rh-HGF), E3112. METHODS rh-HGF was administered to mice, and their livers were investigated for the PD marker. Candidates were identified from soluble proteins and validated by using human hepatocytes in vitro and an animal disease model in vivo, in which its c-Met dependency was also ensured. RESULTS Among the genes induced or highly enhanced after rh-HGF exposure in vivo, a soluble apolipoprotein, Apoa4, was found to be induced by rh-HGF in the murine liver. By using primary cultured human hepatocytes, the significant induction of human APOA4 was observed at the mRNA and protein levels, and it was inhibited in the presence of a c-Met inhibitor. Although mice constitutively expressed Apoa4 mRNA in the small intestine and the liver, the liver was the primary organ affected by administered rh-HGF to strongly induce APOA4 in a dose- and c-Met-dependent manner. Serum APOA4 levels were increased after rh-HGF administration, not only in normal mice but also in anti-Fas-induced murine acute liver failure (ALF), which confirmed the pharmacodynamic nature of APOA4. CONCLUSIONS APOA4 was identified as a soluble PD marker of rh-HGF with c-Met dependency. It should be worthwhile to clinically validate its utility through clinical trials with healthy subjects and ALF patients.
Collapse
Affiliation(s)
- Sotaro Motoi
- Eisai Product Creation Systems, KAN Product Creation Unit, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 3002635, Japan; (S.M.); (M.S.)
- KAN Research Institute, Inc., 6-8-2 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo 6500047, Japan; (K.M.); (Y.A.); (H.O.); (T.I.)
| | - Mai Uesugi
- Medicine Creation, Neurology Business Group, Translational Medicine Department, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 3002635, Japan; (M.U.); (T.O.)
| | - Takashi Obara
- Medicine Creation, Neurology Business Group, Translational Medicine Department, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 3002635, Japan; (M.U.); (T.O.)
| | - Katsuhiro Moriya
- KAN Research Institute, Inc., 6-8-2 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo 6500047, Japan; (K.M.); (Y.A.); (H.O.); (T.I.)
| | - Yoshihisa Arita
- KAN Research Institute, Inc., 6-8-2 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo 6500047, Japan; (K.M.); (Y.A.); (H.O.); (T.I.)
| | - Hideaki Ogasawara
- KAN Research Institute, Inc., 6-8-2 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo 6500047, Japan; (K.M.); (Y.A.); (H.O.); (T.I.)
| | - Motohiro Soejima
- Eisai Product Creation Systems, KAN Product Creation Unit, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 3002635, Japan; (S.M.); (M.S.)
- KAN Research Institute, Inc., 6-8-2 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo 6500047, Japan; (K.M.); (Y.A.); (H.O.); (T.I.)
| | - Toshio Imai
- KAN Research Institute, Inc., 6-8-2 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo 6500047, Japan; (K.M.); (Y.A.); (H.O.); (T.I.)
| | - Tetsu Kawano
- KAN Research Institute, Inc., 6-8-2 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo 6500047, Japan; (K.M.); (Y.A.); (H.O.); (T.I.)
| |
Collapse
|
5
|
Seelan RS, Mukhopadhyay P, Philipose J, Greene RM, Pisano MM. Gestational folate deficiency alters embryonic gene expression and cell function. Differentiation 2020; 117:1-15. [PMID: 33302058 DOI: 10.1016/j.diff.2020.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 11/04/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022]
Abstract
Folic acid is a nutrient essential for embryonic development. Folate deficiency can cause embryonic lethality or neural tube defects and orofacial anomalies. Folate receptor 1 (Folr1) is a folate binding protein that facilitates the cellular uptake of dietary folate. To better understand the biological processes affected by folate deficiency, gene expression profiles of gestational day 9.5 (gd9.5) Folr1-/- embryos were compared to those of gd9.5 Folr1+/+ embryos. The expression of 837 genes/ESTs was found to be differentially altered in Folr1-/- embryos, relative to those observed in wild-type embryos. The 837 differentially expressed genes were subjected to Ingenuity Pathway Analysis. Among the major biological functions affected in Folr1-/- mice were those related to 'digestive system development/function', 'cardiovascular system development/function', 'tissue development', 'cellular development', and 'cell growth and differentiation', while the major canonical pathways affected were those associated with blood coagulation, embryonic stem cell transcription and cardiomyocyte differentiation (via BMP receptors). Cellular proliferation, apoptosis and migration were all significantly affected in the Folr1-/- embryos. Cranial neural crest cells (NCCs) and neural tube explants, grown under folate-deficient conditions, exhibited marked reduction in directed migration that can be attributed, in part, to an altered cytoskeleton caused by perturbations in F-actin formation and/or assembly. The present study revealed that several developmentally relevant biological processes were compromised in Folr1-/- embryos.
Collapse
Affiliation(s)
- R S Seelan
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development & Anomalies, University of Louisville Dental School, 501 S. Preston St., Louisville, KY, 40292, USA
| | - P Mukhopadhyay
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development & Anomalies, University of Louisville Dental School, 501 S. Preston St., Louisville, KY, 40292, USA
| | - J Philipose
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development & Anomalies, University of Louisville Dental School, 501 S. Preston St., Louisville, KY, 40292, USA
| | - R M Greene
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development & Anomalies, University of Louisville Dental School, 501 S. Preston St., Louisville, KY, 40292, USA.
| | - M M Pisano
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development & Anomalies, University of Louisville Dental School, 501 S. Preston St., Louisville, KY, 40292, USA
| |
Collapse
|
6
|
Su X, Peng D. The exchangeable apolipoproteins in lipid metabolism and obesity. Clin Chim Acta 2020; 503:128-135. [PMID: 31981585 DOI: 10.1016/j.cca.2020.01.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 12/29/2022]
Abstract
Dyslipidemia, characterized by increased plasma levels of low-density lipoprotein cholesterol (LDL-C), very low-density lipoprotein cholesterol (VLDL-C), triglyceride (TG), and reduced plasma levels of high-density lipoprotein cholesterol (HDL-C), is confirmed as a hallmark of obesity and cardiovascular diseases (CVD), posing serious risks to the future health of humans. Thus, it is important to understand the molecular metabolism of dyslipidemia, which could help reduce the morbidity and mortality of obesity and CVD. Currently, several exchangeable apolipoproteins, such as apolipoprotein A1 (ApoA1), apolipoprotein A5 (ApoA5), apolipoprotein E (ApoE), and apolipoprotein C3 (ApoC3), have been verified to exert vital effects on modulating lipid metabolism and homeostasis both in plasma and in cells, which consequently affect dyslipidemia. In the present review, we summarize the findings of the effect of exchangeable apolipoproteins on affecting lipid metabolism in adipocytes and hepatocytes. Furthermore, we also provide new insights into the mechanisms by which the exchangeable apolipoproteins influence the pathogenesis of dyslipidemia and its related cardio-metabolic disorders.
Collapse
Affiliation(s)
- Xin Su
- Department of Cardiovascular Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Daoquan Peng
- Department of Cardiovascular Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
7
|
Qu J, Ko CW, Tso P, Bhargava A. Apolipoprotein A-IV: A Multifunctional Protein Involved in Protection against Atherosclerosis and Diabetes. Cells 2019; 8:E319. [PMID: 30959835 PMCID: PMC6523623 DOI: 10.3390/cells8040319] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 03/31/2019] [Accepted: 04/02/2019] [Indexed: 12/19/2022] Open
Abstract
Apolipoprotein A-IV (apoA-IV) is a lipid-binding protein, which is primarily synthesized in the small intestine, packaged into chylomicrons, and secreted into intestinal lymph during fat absorption. In the circulation, apoA-IV is present on chylomicron remnants, high-density lipoproteins, and also in lipid-free form. ApoA-IV is involved in a myriad of physiological processes such as lipid absorption and metabolism, anti-atherosclerosis, platelet aggregation and thrombosis, glucose homeostasis, and food intake. ApoA-IV deficiency is associated with atherosclerosis and diabetes, which renders it as a potential therapeutic target for treatment of these diseases. While much has been learned about the physiological functions of apoA-IV using rodent models, the action of apoA-IV at the cellular and molecular levels is less understood, let alone apoA-IV-interacting partners. In this review, we will summarize the findings on the molecular function of apoA-IV and apoA-IV-interacting proteins. The information will shed light on the discovery of apoA-IV receptors and the understanding of the molecular mechanism underlying its mode of action.
Collapse
Affiliation(s)
- Jie Qu
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, 2180 E Galbraith Road, Cincinnati, OH 45237-0507, USA.
| | - Chih-Wei Ko
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, 2180 E Galbraith Road, Cincinnati, OH 45237-0507, USA.
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, 2180 E Galbraith Road, Cincinnati, OH 45237-0507, USA.
| | - Aditi Bhargava
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, 513 Parnassus Avenue, San Francisco, CA 94143-0556, USA.
| |
Collapse
|
8
|
CREBH Regulates Systemic Glucose and Lipid Metabolism. Int J Mol Sci 2018; 19:ijms19051396. [PMID: 29738435 PMCID: PMC5983805 DOI: 10.3390/ijms19051396] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/30/2018] [Accepted: 05/06/2018] [Indexed: 12/23/2022] Open
Abstract
The cyclic adenosine monophosphate (cAMP)-responsive element-binding protein H (CREBH, encoded by CREB3L3) is a membrane-bound transcriptional factor that primarily localizes in the liver and small intestine. CREBH governs triglyceride metabolism in the liver, which mediates the changes in gene expression governing fatty acid oxidation, ketogenesis, and apolipoproteins related to lipoprotein lipase (LPL) activation. CREBH in the small intestine reduces cholesterol transporter gene Npc1l1 and suppresses cholesterol absorption from diet. A deficiency of CREBH in mice leads to severe hypertriglyceridemia, fatty liver, and atherosclerosis. CREBH, in synergy with peroxisome proliferator-activated receptor α (PPARα), has a crucial role in upregulating Fgf21 expression, which is implicated in metabolic homeostasis including glucose and lipid metabolism. CREBH binds to and functions as a co-activator for both PPARα and liver X receptor alpha (LXRα) in regulating gene expression of lipid metabolism. Therefore, CREBH has a crucial role in glucose and lipid metabolism in the liver and small intestine.
Collapse
|
9
|
Cheng D, Xu X, Simon T, Boudyguina E, Deng Z, VerHague M, Lee AH, Shelness GS, Weinberg RB, Parks JS. Very Low Density Lipoprotein Assembly Is Required for cAMP-responsive Element-binding Protein H Processing and Hepatic Apolipoprotein A-IV Expression. J Biol Chem 2016; 291:23793-23803. [PMID: 27655915 DOI: 10.1074/jbc.m116.749283] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Indexed: 12/21/2022] Open
Abstract
Hepatic apolipoprotein A-IV (apoA-IV) expression is correlated with hepatic triglyceride (TG) content in mouse models of chronic hepatosteatosis, and steatosis-induced hepatic apoA-IV gene expression is regulated by nuclear transcription factor cAMP-responsive element-binding protein H (CREBH) processing. To define what aspects of TG homeostasis regulate hepatic CREBH processing and apoA-IV gene expression, several mouse models of attenuated VLDL particle assembly were subjected to acute hepatosteatosis induced by an overnight fast or short term ketogenic diet feeding. Compared with chow-fed C57BL/6 mice, fasted or ketogenic diet-fed mice displayed increased hepatic TG content, which was highly correlated (r2 = 0.95) with apoA-IV gene expression, and secretion of larger, TG-enriched VLDL, despite a lower rate of TG secretion and a similar or reduced rate of apoB100 secretion. When VLDL particle assembly and secretion was inhibited by hepatic shRNA-induced apoB silencing or genetic or pharmacologic reduction in microsomal triglyceride transfer protein (MTP) activity, hepatic TG content increased dramatically; however, CREBH processing and apoA-IV gene expression were attenuated compared with controls. Adenovirus-mediated reconstitution of MTP expression proportionately restored CREBH processing and apoA-IV expression in liver-specific MTP knock-out mice. These results reveal that hepatic TG content, per se, does not regulate CREBH processing. Instead, TG mobilization into the endoplasmic reticulum for nascent VLDL particle assembly activates CREBH processing and enhances apoA-IV gene expression in the setting of acute steatosis. We conclude that VLDL assembly and CREBH activation play key roles in the response to hepatic steatosis by up-regulating apoA-IV and promoting assembly and secretion of larger, more TG-enriched VLDL particles.
Collapse
Affiliation(s)
- Dongmei Cheng
- From the Departments of Internal Medicine-Section on Molecular Medicine
| | - Xu Xu
- the Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York 10065
| | - Trang Simon
- Internal Medicine-Section on Gastroenterology
| | - Elena Boudyguina
- From the Departments of Internal Medicine-Section on Molecular Medicine
| | | | - Melissa VerHague
- From the Departments of Internal Medicine-Section on Molecular Medicine
| | - Ann-Hwee Lee
- the Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York 10065
| | | | | | - John S Parks
- From the Departments of Internal Medicine-Section on Molecular Medicine, .,Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157 and
| |
Collapse
|
10
|
Kohan AB, Wang F, Lo CM, Liu M, Tso P. ApoA-IV: current and emerging roles in intestinal lipid metabolism, glucose homeostasis, and satiety. Am J Physiol Gastrointest Liver Physiol 2015; 308:G472-81. [PMID: 25591862 PMCID: PMC4360046 DOI: 10.1152/ajpgi.00098.2014] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Apolipoprotein A-IV (apoA-IV) is secreted by the small intestine on chylomicrons into intestinal lymph in response to fat absorption. Many physiological functions have been ascribed to apoA-IV, including a role in chylomicron assembly and lipid metabolism, a mediator of reverse-cholesterol transport, an acute satiety factor, a regulator of gastric function, and, finally, a modulator of blood glucose homeostasis. The purpose of this review is to update our current view of intestinal apoA-IV synthesis and secretion and the physiological roles of apoA-IV in lipid metabolism and energy homeostasis, and to underscore the potential for intestinal apoA-IV to serve as a therapeutic target for the treatment of diabetes and obesity-related disease.
Collapse
Affiliation(s)
- Alison B. Kohan
- 2Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut
| | - Fei Wang
- 1Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio; and
| | - Chun-Min Lo
- 1Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio; and
| | - Min Liu
- 1Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio; and
| | - Patrick Tso
- 1Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio; and
| |
Collapse
|
11
|
Liu M, Allegood J, Zhu X, Seo J, Gebre AK, Boudyguina E, Cheng D, Chuang CC, Shelness GS, Spiegel S, Parks JS. Uncleaved ApoM signal peptide is required for formation of large ApoM/sphingosine 1-phosphate (S1P)-enriched HDL particles. J Biol Chem 2015; 290:7861-70. [PMID: 25627684 DOI: 10.1074/jbc.m114.631101] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Apolipoprotein M (apoM), a plasma sphingosine 1-phosphate (S1P) carrier, associates with plasma HDL via its uncleaved signal peptide. Hepatocyte-specific apoM overexpression in mice stimulates formation of both larger nascent HDL in hepatocytes and larger mature apoM/S1P-enriched HDL particles in plasma by enhancing hepatic S1P synthesis and secretion. Mutagenesis of apoM glutamine 22 to alanine (apoM(Q22A)) introduces a functional signal peptidase cleavage site. Expression of apoM(Q22A) in ABCA1-expressing HEK293 cells resulted in the formation of smaller nascent HDL particles compared with wild type apoM (apoM(WT)). When apoM(Q22A) was expressed in vivo, using recombinant adenoviruses, smaller plasma HDL particles and decreased plasma S1P and apoM were observed relative to expression of apoM(WT). Hepatocytes isolated from both apoM(WT)- and apoM(Q22A)-expressing mice displayed an equivalent increase in cellular levels of S1P, relative to LacZ controls; however, relative to apoM(WT), apoM(Q22A) hepatocytes displayed more rapid apoM and S1P secretion but minimal apoM(Q22A) bound to nascent lipoproteins. Pharmacologic inhibition of ceramide synthesis increased cellular sphingosine and S1P but not medium S1P in both apoM(WT) and apoM(Q22A) hepatocytes. We conclude that apoM secretion is rate-limiting for hepatocyte S1P secretion and that its uncleaved signal peptide delays apoM trafficking out of the cell, promoting formation of larger nascent apoM- and S1P-enriched HDL particles that are probably precursors of larger apoM/S1P-enriched plasma HDL.
Collapse
Affiliation(s)
- Mingxia Liu
- From the Department of Internal Medicine, Section on Molecular Medicine, and
| | - Jeremy Allegood
- the Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298
| | - Xuewei Zhu
- From the Department of Internal Medicine, Section on Molecular Medicine, and
| | - Jeongmin Seo
- From the Department of Internal Medicine, Section on Molecular Medicine, and
| | - Abraham K Gebre
- From the Department of Internal Medicine, Section on Molecular Medicine, and
| | - Elena Boudyguina
- From the Department of Internal Medicine, Section on Molecular Medicine, and
| | - Dongmei Cheng
- From the Department of Internal Medicine, Section on Molecular Medicine, and
| | - Chia-Chi Chuang
- From the Department of Internal Medicine, Section on Molecular Medicine, and
| | - Gregory S Shelness
- From the Department of Internal Medicine, Section on Molecular Medicine, and the Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157 and
| | - Sarah Spiegel
- the Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298
| | - John S Parks
- From the Department of Internal Medicine, Section on Molecular Medicine, and the Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157 and
| |
Collapse
|
12
|
Wu CL, Zhao SP, Yu BL. Intracellular role of exchangeable apolipoproteins in energy homeostasis, obesity and non-alcoholic fatty liver disease. Biol Rev Camb Philos Soc 2014; 90:367-76. [PMID: 24834836 DOI: 10.1111/brv.12116] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 04/10/2014] [Accepted: 04/17/2014] [Indexed: 02/06/2023]
Affiliation(s)
- Chen-Lu Wu
- Department of Cardiology; The Second Xiangya Hospital, Central South University; Changsha Hunan 410011 China
| | - Shui-Ping Zhao
- Department of Cardiology; The Second Xiangya Hospital, Central South University; Changsha Hunan 410011 China
| | - Bi-Lian Yu
- Department of Cardiology; The Second Xiangya Hospital, Central South University; Changsha Hunan 410011 China
| |
Collapse
|
13
|
Walker RG, Deng X, Melchior JT, Morris J, Tso P, Jones MK, Segrest JP, Thompson TB, Davidson WS. The structure of human apolipoprotein A-IV as revealed by stable isotope-assisted cross-linking, molecular dynamics, and small angle x-ray scattering. J Biol Chem 2014; 289:5596-608. [PMID: 24425874 DOI: 10.1074/jbc.m113.541037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein (apo)A-IV plays important roles in dietary lipid and glucose metabolism, and knowledge of its structure is required to fully understand the molecular basis of these functions. However, typical of the entire class of exchangeable apolipoproteins, its dynamic nature and affinity for lipid has posed challenges to traditional high resolution structural approaches. We previously reported an x-ray crystal structure of a dimeric truncation mutant of apoA-IV, which showed a unique helix-swapping molecular interface. Unfortunately, the structures of the N and C termini that are important for lipid binding were not visualized. To build a more complete model, we used chemical cross-linking to derive distance constraints across the full-length protein. The approach was enhanced with stable isotope labeling to overcome ambiguities in determining molecular span of the cross-links given the remarkable similarities in the monomeric and dimeric apoA-IV structures. Using 51 distance constraints, we created a starting model for full-length monomeric apoA-IV and then subjected it to two modeling approaches: (i) molecular dynamics simulations and (ii) fitting to small angle x-ray scattering data. This resulted in the most detailed models yet for lipid-free monomeric or dimeric apoA-IV. Importantly, these models were of sufficient detail to direct the experimental identification of new functional residues that participate in a "clasp" mechanism to modulate apoA-IV lipid affinity. The isotope-assisted cross-linking approach should prove useful for further study of this family of apolipoproteins in both the lipid-free and -bound states.
Collapse
Affiliation(s)
- Ryan G Walker
- From the Departments of Molecular Genetics, Biochemistry and Microbiology and
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
VerHague MA, Cheng D, Weinberg RB, Shelness GS. Apolipoprotein A-IV Expression in Mouse Liver Enhances Triglyceride Secretion and Reduces Hepatic Lipid Content by Promoting Very Low Density Lipoprotein Particle Expansion. Arterioscler Thromb Vasc Biol 2013; 33:2501-8. [DOI: 10.1161/atvbaha.113.301948] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Melissa A. VerHague
- From the Department of Pathology (M.A.V., D.C., G.S.S.), Department of Internal Medicine (R.B.W.), and Department of Physiology & Pharmacology (R.B.W.), Wake Forest School of Medicine, Winston-Salem, NC
| | - Dongmei Cheng
- From the Department of Pathology (M.A.V., D.C., G.S.S.), Department of Internal Medicine (R.B.W.), and Department of Physiology & Pharmacology (R.B.W.), Wake Forest School of Medicine, Winston-Salem, NC
| | - Richard B. Weinberg
- From the Department of Pathology (M.A.V., D.C., G.S.S.), Department of Internal Medicine (R.B.W.), and Department of Physiology & Pharmacology (R.B.W.), Wake Forest School of Medicine, Winston-Salem, NC
| | - Gregory S. Shelness
- From the Department of Pathology (M.A.V., D.C., G.S.S.), Department of Internal Medicine (R.B.W.), and Department of Physiology & Pharmacology (R.B.W.), Wake Forest School of Medicine, Winston-Salem, NC
| |
Collapse
|
15
|
Lee JH, Park DY, Lee KJ, Kim YK, So YK, Ryu JS, Oh SH, Han YS, Ko K, Choo YK, Park SJ, Brodzik R, Lee KK, Oh DB, Hwang KA, Koprowski H, Lee YS, Ko K. Intracellular reprogramming of expression, glycosylation, and function of a plant-derived antiviral therapeutic monoclonal antibody. PLoS One 2013; 8:e68772. [PMID: 23967055 PMCID: PMC3744537 DOI: 10.1371/journal.pone.0068772] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 06/03/2013] [Indexed: 01/19/2023] Open
Abstract
Plant genetic engineering, which has led to the production of plant-derived monoclonal antibodies (mAb(P)s), provides a safe and economically effective alternative to conventional antibody expression methods. In this study, the expression levels and biological properties of the anti-rabies virus mAb(P) SO57 with or without an endoplasmic reticulum (ER)-retention peptide signal (Lys-Asp-Glu-Leu; KDEL) in transgenic tobacco plants (Nicotiana tabacum) were analyzed. The expression levels of mAb(P) SO57 with KDEL (mAb(P)K) were significantly higher than those of mAb(P) SO57 without KDEL (mAb(P)) regardless of the transcription level. The Fc domains of both purified mAb(P) and mAb(P)K and hybridoma-derived mAb (mAb(H)) had similar levels of binding activity to the FcγRI receptor (CD64). The mAb(P)K had glycan profiles of both oligomannose (OM) type (91.7%) and Golgi type (8.3%), whereas the mAb(P) had mainly Golgi type glycans (96.8%) similar to those seen with mAb(H). Confocal analysis showed that the mAb(P)K was co-localized to ER-tracker signal and cellular areas surrounding the nucleus indicating accumulation of the mAb(P) with KDEL in the ER. Both mAb(P) and mAb(P)K disappeared with similar trends to mAb(H) in BALB/c mice. In addition, mAb(P)K was as effective as mAb(H) at neutralizing the activity of the rabies virus CVS-11. These results suggest that the ER localization of the recombinant mAb(P) by KDEL reprograms OM glycosylation and enhances the production of the functional antivirus therapeutic antibody in the plant.
Collapse
Affiliation(s)
- Jeong-Hwan Lee
- Department of Medicine, Medical Research Institute, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Da-Young Park
- Department of Medicine, Medical Research Institute, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Kyung-Jin Lee
- Department of Medicine, Medical Research Institute, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Young-Kwan Kim
- Department of Herbology, School of Oriental Medicine, Wonkwang University, Iksan, Korea
| | - Yang-Kang So
- Department of Medicine, Medical Research Institute, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Jae-Sung Ryu
- Department of Biological Science, Biotechnology Institute, College of Natural Science, Wonkwang University, Iksan, Korea
| | - Seung-Han Oh
- Department of Agricultural Biology, College of Agriculture and Life Science, Chonnam National University, Gwangju, Korea
| | - Yeon-Soo Han
- Department of Agricultural Biology, College of Agriculture and Life Science, Chonnam National University, Gwangju, Korea
| | - Kinarm Ko
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul, Korea
| | - Young-Kug Choo
- Department of Biological Science, Biotechnology Institute, College of Natural Science, Wonkwang University, Iksan, Korea
| | - Sung-Joo Park
- Department of Herbology, School of Oriental Medicine, Wonkwang University, Iksan, Korea
| | - Robert Brodzik
- Biotechnology Foundation Laboratories, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Kyoung-Ki Lee
- National Veterinary Research and Quarantine Service, Anyang, Korea
| | - Doo-Byoung Oh
- Korean Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Kyung-A Hwang
- Department of Agrofood Resources, National Academy of Agricultural Science, RDA, Suwon, Korea
| | - Hilary Koprowski
- Biotechnology Foundation Laboratories, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Yong Seong Lee
- Department of Urology, College of Medicine, Kangnam Sacred Heart Hospital, Hallym University, Seoul, Korea
| | - Kisung Ko
- Department of Medicine, Medical Research Institute, College of Medicine, Chung-Ang University, Seoul, Korea
| |
Collapse
|
16
|
Kohan AB, Wang F, Li X, Vandersall AE, Huesman S, Xu M, Yang Q, Lou D, Tso P. Is apolipoprotein A-IV rate limiting in the intestinal transport and absorption of triglyceride? Am J Physiol Gastrointest Liver Physiol 2013; 304:G1128-35. [PMID: 23599044 PMCID: PMC3680714 DOI: 10.1152/ajpgi.00409.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 04/16/2013] [Indexed: 01/31/2023]
Abstract
Apolipoprotein A-IV (apoA-IV) is synthesized by the intestine and secreted when dietary fat is absorbed and transported into lymph associated with chylomicrons. We have recently demonstrated that loss of apoA-IV increases chylomicron size and delays its clearance from the blood. There is still uncertainty, however, about the precise role of apoA-IV on the transport of dietary fat from the intestine into the lymph. ApoA-IV knockout (KO) mice do not have a gross defect in dietary lipid absorption, as measured by oral fat tolerance and fecal fat measurements. Here, using the in vivo lymph fistula mouse model, we show that the cumulative secretion of triglyceride (TG) into lymph in apoA-IV KO mice is very similar to that of wild-type (WT) mice. However, the apoA-IV KO mice do have subtle changes in TG accumulation in the intestinal mucosa during a 6-h continuous, but not bolus, infusion of lipid. There are no changes in the ratio of esterified to free fatty acids in the intestinal mucosa of the apoA-IV KO, however. When we extended these findings, by giving a higher dose of lipid (6 μmol/h) and for a longer infusion period (8 h), we found no effect of apoA-IV KO on intestinal TG absorption. This higher lipid infusion most certainly stresses the intestine, as we see a drastically lower absorption of TG (in both WT and KO mice); however, the loss of A-IV does not exacerbate this effect. This supports our hypothesis that apoA-IV is not required for TG absorption in the intestine. Our data suggest that the mechanisms by which the apoA-IV KO intestine responds to intestinal lipid may not be different from their WT counterparts. We conclude that apoA-IV is not required for normal lymphatic transport of TG.
Collapse
Affiliation(s)
- Alison B Kohan
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Sundaram M, Yao Z. Intrahepatic role of exchangeable apolipoproteins in lipoprotein assembly and secretion. Arterioscler Thromb Vasc Biol 2012; 32:1073-8. [PMID: 22517365 DOI: 10.1161/atvbaha.111.241455] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Exchangeable apolipoproteins, composed mainly of amphipathic α-helices, are associated with various plasma lipoproteins and play an important role in the metabolism of those lipoproteins to which they bind. Accumulating experimental evidence suggests that exchangeable apolipoproteins, such as apoE, apoA-IV, and apoC-III, also play a role intracellularly in facilitating lipid recruitment at different stages of very low-density lipoprotein assembly and trafficking through the endoplasmic reticulum-Golgi secretory compartments. Experimental evidence also suggests that apoA-I may become lipidated intracellularly through mechanisms dependent on or independent of ATP-binding cassette transporter A1. Thus, expression of these secretory proteins may exert an impact on hepatic triglyceride and cholesterol homeostasis during their transit from the endoplasmic reticulum through the Golgi apparatus. This review summarizes findings related to the modulation of intracellular assembly of very low-density lipoprotein and high-density lipoprotein by exchangeable apolipoproteins.
Collapse
Affiliation(s)
- Meenakshi Sundaram
- Department of Biochemistry, Microbiology, and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ontario, Canada
| | | |
Collapse
|
18
|
Kohan AB, Wang F, Li X, Bradshaw S, Yang Q, Caldwell JL, Bullock TM, Tso P. Apolipoprotein A-IV regulates chylomicron metabolism-mechanism and function. Am J Physiol Gastrointest Liver Physiol 2012; 302:G628-36. [PMID: 22207575 PMCID: PMC3311309 DOI: 10.1152/ajpgi.00225.2011] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Dietary fat is an important mediator of atherosclerosis and obesity. Despite its importance in mediating metabolic disease, there is still much unknown about dietary fat absorption in the intestine and especially the detailed biological roles of intestinal apolipoproteins involved in that process. We were specifically interested in determining the physiological role of the intestinal apolipoprotein A-IV (A-IV) using A-IV knockout (KO) mice. A-IV is stimulated by fat absorption in the intestine and is secreted on nascent chylomicrons into intestinal lymph. We found that A-IV KO mice had reduced plasma triglyceride (TG) and cholesterol levels and that this hypolipidemia persisted on a high-fat diet. A-IV KO did not cause abnormal intestinal lipid absorption, food intake, or adiposity. Additionally, A-IV KO did not cause abnormal liver TG and cholesterol metabolism, as assessed by measuring hepatic lipid content, lipogenic and cholesterol synthetic gene expression, and in vivo VLDL secretion. Instead, A-IV KO resulted in the secretion of larger chylomicrons from the intestine into the lymph, and those chylomicrons were cleared from the plasma more slowly than wild-type chylomicrons. These data suggest that A-IV has a previously unknown role in mediating the metabolism of chylomicrons, and therefore may be important in regulating plasma lipid metabolism.
Collapse
Affiliation(s)
- Alison B. Kohan
- 1Department of Pathology and Laboratory Medicine, University of Cincinnati; and
| | - Fei Wang
- 1Department of Pathology and Laboratory Medicine, University of Cincinnati; and
| | - Xiaoming Li
- 1Department of Pathology and Laboratory Medicine, University of Cincinnati; and
| | - Suzanne Bradshaw
- 2Department of Biology, University of Cincinnati, Blue Ash College, Cincinnati, Ohio
| | - Qing Yang
- 1Department of Pathology and Laboratory Medicine, University of Cincinnati; and
| | - Jody L. Caldwell
- 1Department of Pathology and Laboratory Medicine, University of Cincinnati; and
| | - Tera M. Bullock
- 1Department of Pathology and Laboratory Medicine, University of Cincinnati; and
| | - Patrick Tso
- 1Department of Pathology and Laboratory Medicine, University of Cincinnati; and
| |
Collapse
|
19
|
The proteome of cytosolic lipid droplets isolated from differentiated Caco-2/TC7 enterocytes reveals cell-specific characteristics. Biol Cell 2012; 103:499-517. [PMID: 21787361 PMCID: PMC3181828 DOI: 10.1042/bc20110024] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background information. Intestinal absorption of alimentary lipids is a complex process ensured by enterocytes and leading to TRL [TAG (triacylglycerol)-rich lipoprotein] assembly and secretion. The accumulation of circulating intestine-derived TRL is associated with atherosclerosis, stressing the importance of the control of postprandial hypertriglyceridaemia. During the postprandial period, TAGs are also transiently stored as CLDs (cytosolic lipid droplets) in enterocytes. As a first step for determining whether CLDs could play a role in the control of enterocyte TRL secretion, we analysed the protein endowment of CLDs isolated by sucrose-gradient centrifugation from differentiated Caco-2/TC7 enterocytes, the only human model able to secrete TRL in culture and to store transiently TAGs as CLDs when supplied with lipids. Cells were analysed after a 24 h incubation with lipid micelles and thus in a state of CLD-associated TAG mobilization. Results. Among the 105 proteins identified in the CLD fraction by LC-MS/MS (liquid chromatography coupled with tandem MS), 27 were directly involved in lipid metabolism pathways potentially relevant to enterocyte-specific functions. The transient feature of CLDs was consistent with the presence of proteins necessary for fatty acid activation (acyl-CoA synthetases) and for TAG hydrolysis. In differentiated Caco-2/TC7 enterocytes, we identified for the first time LPCAT2 (lysophosphatidylcholine acyltransferase 2), involved in PC (phosphatidylcholine) synthesis, and 3BHS1 (3-β-hydroxysteroid dehydrogenase 1), involved in steroid metabolism, and confirmed their partial CLD localization by immunofluorescence. In enterocytes, LPCAT2 may provide an economical source of PC, necessary for membrane synthesis and lipoprotein assembly, from the lysoPC present in the intestinal lumen. We also identified proteins involved in lipoprotein metabolism, such as ApoA-IV (apolipoprotein A-IV), which is specifically expressed by enterocytes and has been proposed to play many functions in vivo, including the formation of lipoproteins and the control of their size. The association of ApoA-IV with CLD was confirmed by confocal and immunoelectron microscopy and validated in vivo in the jejunum of mice fed with a high-fat diet. Conclusions. We report for the first time the protein endowment of Caco-2/TC7 enterocyte CLDs. Our results suggest that their formation and mobilization may participate in the control of enterocyte TRL secretion in a cell-specific manner.
Collapse
|
20
|
Weinberg RB, Gallagher JW, Fabritius MA, Shelness GS. ApoA-IV modulates the secretory trafficking of apoB and the size of triglyceride-rich lipoproteins. J Lipid Res 2012; 53:736-43. [PMID: 22257482 DOI: 10.1194/jlr.m019992] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Although the evidence linking apoA-IV expression and triglyceride (TG)-rich lipoprotein assembly and secretion is compelling, the intracellular mechanisms by which apoA-IV could modulate these processes remain poorly understood. We therefore examined the functional impact of apoA-IV expression on endogenous apoB, TG, and VLDL secretion in stably transfected McA-RH7777 rat hepatoma cells. Expression of apoA-IV modified with the endoplasmic reticulum (ER) retention signal KDEL (apoA-IV-KDEL) dramatically decreased both the rate and efficiency of endogenous apoB secretion, suggesting a presecretory interaction between apoA-IV-KDEL and apoB or apoB-containing lipoproteins. Expression of native apoA-IV using either a constitutive or tetracycline-inducible promoter delayed the initial rate of apoB secretion and reduced the final secretion efficiency by ∼40%. However, whereas apoA-IV-KDEL reduced TG secretion by 75%, expression of native apoA-IV caused a 20-35% increase in TG secretion, accompanied by a ∼55% increase in VLDL-associated apoB, an increase in the TG:phospholipid ratio of secreted d < 1.006 lipoproteins, and a 10.1 nm increase in peak VLDL(1) particle diameter. Native apoA-IV expression had a negligible impact on expression of the MTP gene. These data suggest that by interacting with apoB in the secretory pathway, apoA-IV alters the trafficking kinetics of apoB-containing TG-rich lipoproteins through cellular lipidation compartments, which in turn, enhances particle expansion and increases TG secretion.
Collapse
Affiliation(s)
- Richard B Weinberg
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | |
Collapse
|
21
|
Simon T, Cook VR, Rao A, Weinberg RB. Impact of murine intestinal apolipoprotein A-IV expression on regional lipid absorption, gene expression, and growth. J Lipid Res 2011; 52:1984-94. [PMID: 21840868 DOI: 10.1194/jlr.m017418] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Apolipoprotein A-IV (apoA-IV) is synthesized by intestinal enterocytes during lipid absorption and secreted into lymph on the surface of nascent chylomicrons. A compelling body of evidence supports a central role of apoA-IV in facilitating intestinal lipid absorption and in regulating satiety, yet a longstanding conundrum is that no abnormalities in fat absorption, feeding behavior, or weight gain were observed in chow-fed apoA-IV knockout (A4KO) mice. Herein we reevaluated the impact of apoA-IV expression in C57BL6 and A4KO mice fed a high-fat diet. Fat balance and lymph cannulation studies found no effect of intestinal apoA-IV gene expression on the efficiency of fatty acid absorption, but gut sac transport studies revealed that apoA-IV differentially modulates lipid transport and the number and size of secreted triglyceride-rich lipoproteins in different anatomic regions of the small bowel. ApoA-IV gene deletion increased expression of other genes involved in chylomicron assembly, impaired the ability of A4KO mice to gain weight and increase adipose tissue mass, and increased the distal gut hormone response to a high-fat diet. Together these findings suggest that apoA-IV may play a unique role in integrating feeding behavior, intestinal lipid absorption, and energy storage.
Collapse
Affiliation(s)
- Trang Simon
- Departments of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | | | | |
Collapse
|
22
|
Rogi T, Tomimori N, Ono Y, Kiso Y. The mechanism underlying the synergetic hypocholesterolemic effect of sesamin and α-tocopherol in rats fed a high-cholesterol diet. J Pharmacol Sci 2011; 115:408-16. [PMID: 21372506 DOI: 10.1254/jphs.10287fp] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sesamin is a major lignan in sesame seed. We confirmed that ingestion of sesamin and α-tocopherol synergistically reduced the concentration of blood cholesterol in rats given a high-cholesterol diet. To elucidate the molecular mechanism behind this effect, we analyzed the gene-expression profiles in rat liver after co-ingestion of sesamin and α-tocopherol. Six-week-old male Sprague-Dawley rats were fed a 1% cholesterol diet (HC) or HC containing 0.2% sesamin, 1% α-tocopherol or sesamin + α-tocopherol for 10 days. Blood samples were collected on days 1, 3, 7, and 10 and livers were excised on day 10. The gene expressions of ATP-binding cassette, sub-family G (WHITE), members 5 (ABCG5) and 8 (ABCG8) were significantly increased, while the gene expression of apolipoprotein (Apo) A4 was significantly decreased. ABCG5 and ABCG8 form a functional heterodimer that acts as a cholesterol efflux transporter, which contributes to the excretion of cholesterol from the liver. ApoA4 controls the secretion of ApoB, which is a component of low-density-lipoprotein cholesterol. These studies indicate that the cholesterol-lowering mechanism underlying the effects of co-ingestion of sesamin and α-tocopherol might be attributable to increased biliary excretion of cholesterol and reduced ApoB secretion into the bloodstream.
Collapse
Affiliation(s)
- Tomohiro Rogi
- Institute for Health Care Science, Suntory Wellness Limited, Osaka, Japan.
| | | | | | | |
Collapse
|
23
|
Yao Y, Lu S, Huang Y, Beeman-Black CC, Lu R, Pan X, Hussain MM, Black DD. Regulation of microsomal triglyceride transfer protein by apolipoprotein A-IV in newborn swine intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2011; 300:G357-63. [PMID: 21127258 PMCID: PMC3043654 DOI: 10.1152/ajpgi.00353.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Apolipoprotein (apo) A-IV overexpression enhances chylomicron (CM) assembly and secretion in newborn swine intestinal epithelial cells by producing larger particles (Lu S, Yao Y, Cheng X, Mitchell S, Leng S, Meng S, Gallagher JW, Shelness GS, Morris GS, Mahan J, Frase S, Mansbach CM, Weinberg RB, Black DD. J Biol Chem 281: 3473-3483, 2006). To determine the impact of apo A-IV on microsomal triglyceride transfer protein (MTTP), IPEC-1 cell lines containing a tetracycline-regulatable expression system were used to overexpress native swine apo A-IV and "piglike" human apo A-IV, a mutant human apo A-IV with deletion of the EQQQ-rich COOH-terminus, previously shown to upregulate basolateral triglyceride (TG) secretion 5-fold and 25-fold, respectively. Cells were incubated 24 h with and without doxycycline and oleic acid (OA, 0.8 mM). Overexpression of the native swine apo A-IV and piglike human apo A-IV increased MTTP lipid transfer activity by 39.7% (P = 0.006) and 53.6% (P = 0.0001), respectively, compared with controls. Changes in mRNA and protein levels generally paralleled changes in activity. Interestingly, native swine apo A-IV overexpression also increased MTTP large subunit mRNA, protein levels, and lipid transfer activity in the absence of OA, suggesting a mechanism not mediated by lipid absorption. Overexpression of piglike human apo A-IV significantly increased partitioning of radiolabeled OA from endoplasmic reticulum (ER) membrane to lumen, suggesting increased net transfer of membrane TG to luminal particles. These results suggest that the increased packaging of TG into nascent CMs in the ER lumen, induced by apo A-IV, is associated with upregulation of MTTP activity at the pretranslational level. Thus MTTP is regulated by apo A-IV in a manner to promote increased packaging of TG into the CM core, which may be important in neonatal fat absorption.
Collapse
Affiliation(s)
- Ying Yao
- 1Children's Foundation Research Center at Le Bonheur Children's Medical Center, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee; and
| | - Song Lu
- 1Children's Foundation Research Center at Le Bonheur Children's Medical Center, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee; and
| | - Yue Huang
- 1Children's Foundation Research Center at Le Bonheur Children's Medical Center, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee; and
| | - Casey C. Beeman-Black
- 1Children's Foundation Research Center at Le Bonheur Children's Medical Center, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee; and
| | - Rena Lu
- 1Children's Foundation Research Center at Le Bonheur Children's Medical Center, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee; and
| | - Xiaoyue Pan
- 2Departments of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, New York
| | - M. Mahmood Hussain
- 2Departments of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, New York
| | - Dennis D. Black
- 1Children's Foundation Research Center at Le Bonheur Children's Medical Center, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee; and
| |
Collapse
|
24
|
Iqbal J, Li X, Chang BHJ, Chan L, Schwartz GJ, Chua SC, Hussain MM. An intrinsic gut leptin-melanocortin pathway modulates intestinal microsomal triglyceride transfer protein and lipid absorption. J Lipid Res 2010; 51:1929-42. [PMID: 20164094 DOI: 10.1194/jlr.m005744] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Fat is delivered to tissues by apoB-containing lipoproteins synthesized in the liver and intestine with the help of an intracellular chaperone, microsomal triglyceride transfer protein (MTP). Leptin, a hormone secreted by adipose tissue, acts in the brain and on peripheral tissues to regulate fat storage and metabolism. Our aim was to identify the role of leptin signaling in MTP regulation and lipid absorption using several mouse models deficient in leptin receptor (LEPR) signaling and downstream effectors. Mice with spontaneous LEPR B mutations or targeted ablation of LEPR B in proopiomelanocortin (POMC) or agouti gene related peptide (AGRP) expressing cells had increased triglyceride in plasma, liver, and intestine. Furthermore, melanocortin 4 receptor (MC4R) knockout mice expressed a similar triglyceride phenotype, suggesting that leptin might regulate intestinal MTP expression through the melanocortin pathway. Mechanistic studies revealed that the accumulation of triglyceride in the intestine might be secondary to decreased expression of MTP and lipid absorption in these mice. Surgical and chemical blockade of vagal efferent outflow to the intestine in wild-type mice failed to alter the triglyceride phenotype, demonstrating that central neural control mechanisms were likely not involved in the observed regulation of intestinal MTP. Instead, we found that enterocytes express LEPR, POMC, AGRP, and MC4R. We propose that a peripheral, local gut signaling mechanism involving LEPR B and MC4R regulates intestinal MTP and controls intestinal lipid absorption.
Collapse
Affiliation(s)
- Jahangir Iqbal
- Department of Cell Biology and Pediatrics, State University of New York Health Science Center at Brooklyn (SUNY Downstate Medical Center), Brooklyn, NY, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Mailhot G, Ravid Z, Barchi S, Moreau A, Rabasa-Lhoret R, Levy E. CFTR knockdown stimulates lipid synthesis and transport in intestinal Caco-2/15 cells. Am J Physiol Gastrointest Liver Physiol 2009; 297:G1239-49. [PMID: 19808659 DOI: 10.1152/ajpgi.00206.2009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel highly expressed in epithelial cells of the gastrointestinal tract. Mutations in the CFTR gene cause cystic fibrosis (CF), a disease characterized by pancreatic insufficiency, fat malabsorption, and steatorrhea. Despite the administration of pancreatic enzymes to normalize malabsorption, CF patients still experienced lipid fecal loss, nutritional deficiencies, and abnormalities in serum lipid profile, suggesting the presence of intrinsic defects in the intestinal handling of nutrients. The objective of the present study was to assess the impact of CFTR gene knockdown on intracellular lipid metabolism of the intestinal Caco-2/15 cell line. Partial CFTR gene inactivation led to cellular lipid accretion of phospholipids, triglycerides, and cholesteryl esters. Likewise, secretion of these lipid fractions was significantly increased following CFTR gene manipulation. As expected from these findings, the output of triglyceride-rich lipoproteins showed the same increasing pattern. Investigation of the mechanisms underlying these changes revealed that CFTR knockdown resulted in raised levels of apolipoproteins in cells and media and microsomal transfer protein activity, two important factors for the efficient assembly and secretion of lipoproteins. Similarly, scrutiny of the enzymatic monoacylglycerol acyltransferase and diacylglycerol acyltransferase, which exhibit dynamic function in triacylglycerol resynthesis and chylomicron formation in enterocytes, revealed a significant augmentation in their activity. Conversely, cholesterol uptake mediated by Niemann-Pick C1 like 1, Scavenger Receptor Class B Type I, and ATP-binding cassette G8 remains unaffected by genetic modification of CFTR. Collectively, these results highlight the role played by CFTR in intestinal handling of lipids and may suggest that factors other than defective CFTR are responsible for the abnormal intracellular events leading to fat malabsorption in CF patients.
Collapse
Affiliation(s)
- Geneviève Mailhot
- Research Centre, CHU Sainte-Justine, Université de Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
26
|
Brüsehaber E, Böttcher D, Bornscheuer UT. Insights into the physiological role of pig liver esterase: isoenzymes show differences in the demethylation of prenylated proteins. Bioorg Med Chem 2009; 17:7878-83. [PMID: 19884014 DOI: 10.1016/j.bmc.2009.10.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2009] [Revised: 10/07/2009] [Accepted: 10/15/2009] [Indexed: 10/20/2022]
Abstract
The possible physiological role of PLE (E.C. 3.1.1.1) located in the endoplasmic reticulum (ER) of pig liver cells in the conversion of endogenous compounds was investigated as it was reported, that PLE acts as prenylated methylated protein methyl esterase (PMPMEase) hydrolysing methylesters of prenylated proteins. Using the specific PMPMEase substrate benzoyl-glycyl-farnesyl-cysteine methyl ester (BzGFCM), six different PLE isoenzymes expressed recombinantly in the yeast Pichia pastoris were found active. Activities ranged from 1.6-15.6mU per mg protein and it is suggested that Pro285 has a major influence on high activity. In addition, the role of the C-terminal HAEL retention signal for translocation of pig liver esterase (PLE) in the endoplasmic reticulum (ER) of eukaryotic cells was studied using the gamma-isoenzyme of PLE expressed in Pichia pastoris. Using truncated versions (HAE, HA, H and without retention signal) of the enzyme it was found that in contrast to earlier reports no influence of the signal peptide on the expression rate of PLE was found. However, higher enzyme activities were obtained in the periplasmatic fraction compared to the supernatant irrespective of the presence or absence of HAEL and the trimeric formation seems to occur in the supernatant of P. pastoris X33 enabling an easier transition of monomeric forms through cell membranes.
Collapse
Affiliation(s)
- Elke Brüsehaber
- Institute of Biochemistry, Department of Biotechnology, Greifswald University, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| | | | | |
Collapse
|
27
|
Tubb MR, Silva RAGD, Fang J, Tso P, Davidson WS. A three-dimensional homology model of lipid-free apolipoprotein A-IV using cross-linking and mass spectrometry. J Biol Chem 2008; 283:17314-23. [PMID: 18430727 PMCID: PMC2427326 DOI: 10.1074/jbc.m800036200] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 04/10/2008] [Indexed: 11/06/2022] Open
Abstract
Human apolipoprotein A-IV (apoA-IV) is a 46-kDa exchangeable plasma protein with many proposed functions. It is involved in chylomicron assembly and secretion, protection from atherosclerosis through a variety of mechanisms, and inhibition of food intake. There is little structural basis for these proposed functions due to the lack of a solved three-dimensional structure of the protein by x-ray crystallography or NMR. Based on previous studies, we hypothesized that lipid-free apoA-IV exists in a helical bundle, like other apolipoprotein family members and that regions near the N and C termini may interact. Utilizing a homobifunctional lysine cross-linking agent, we identified 21 intramolecular cross-links by mass spectrometry. These cross-links were used to constrain the building of a sequence threaded homology model using the I-TASSER server. Our results indicate that lipid-free apoA-IV does indeed exist as a complex helical bundle with the N and C termini in close proximity. This first structural model of lipid-free apoA-IV should prove useful for designing studies aimed at understanding how apoA-IV interacts with lipids and possibly with unknown protein partners.
Collapse
Affiliation(s)
- Matthew R Tubb
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45237, USA
| | | | | | | | | |
Collapse
|
28
|
Black DD. Development and physiological regulation of intestinal lipid absorption. I. Development of intestinal lipid absorption: cellular events in chylomicron assembly and secretion. Am J Physiol Gastrointest Liver Physiol 2007; 293:G519-24. [PMID: 17495031 DOI: 10.1152/ajpgi.00189.2007] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The newborn mammal must efficiently absorb dietary fat, predominantly as triacylglycerol, and produce chylomicrons to deliver this lipid to peripheral tissues. The cellular mechanisms involved in enterocyte chylomicron assembly have recently been elucidated, and data on their regulation in the immature gut are beginning to emerge. This review focuses on key proteins involved in chylomicron assembly: apolipoprotein B-48, microsomal triglyceride transfer protein, and apolipoprotein A-IV. Recent studies support a role for apolipoprotein A-IV in enhancing chylomicron secretion by promoting production of larger particles. These proteins are regulated in a manner to maximize the lipid absorptive capacity of the newborn intestine.
Collapse
Affiliation(s)
- Dennis D Black
- Children's Foundation Research Center of Memphis, Le Bonheur Children's Medical Center, 50 N. Dunlap Street, Memphis, TN 38103, USA.
| |
Collapse
|
29
|
Tubb MR, Silva RAGD, Pearson KJ, Tso P, Liu M, Davidson WS. Modulation of apolipoprotein A-IV lipid binding by an interaction between the N and C termini. J Biol Chem 2007; 282:28385-28394. [PMID: 17686771 DOI: 10.1074/jbc.m704070200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein A-IV (apoA-IV) is a 376-amino acid exchangeable apolipoprotein made in the small intestine of humans. Although it has many proposed roles in vascular disease, satiety, and chylomicron metabolism, there is no known structural basis for these functions. The ability to associate with lipids may be a key step in apoA-IV functionality. We recently identified a single amino acid, Phe(334), which seems to inhibit the lipid binding capability of apoA-IV. We also found that an intact N terminus was necessary for increased lipid binding of Phe(334) mutants. Here, we identify Trp(12) and Phe(15) as the N-terminal amino acids required for the fast lipid binding seen with the F334A mutant. Furthermore, we found that individual disruption of putative amphipathic alpha-helices 3-11 had little effect on lipid binding, suggesting that the N terminus of apoA-IV may be the operational site for initial lipid binding. We also provide three independent pieces of experimental evidence supporting a direct intramolecular interaction between sequences near amino acids 12/15 and 334. This interaction could represent a unique "switch" mechanism by which apoA-IV changes lipid avidity in vivo.
Collapse
Affiliation(s)
- Matthew R Tubb
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45237
| | - R A Gangani D Silva
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45237
| | - Kevin J Pearson
- Laboratory of Experimental Gerontology, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45237
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45237
| | - W Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45237.
| |
Collapse
|
30
|
Lu S, Yao Y, Cheng X, Mitchell S, Leng S, Meng S, Gallagher JW, Shelness GS, Morris GS, Mahan J, Frase S, Mansbach CM, Weinberg RB, Black DD. Overexpression of apolipoprotein A-IV enhances lipid secretion in IPEC-1 cells by increasing chylomicron size. J Biol Chem 2005; 281:3473-83. [PMID: 16338933 DOI: 10.1074/jbc.m502501200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intestinal apolipoprotein A-IV expression is highly regulated by dietary lipid in newborn swine, suggesting a role in lipid absorption. Constitutive overexpression of apoA-IV in newborn swine enterocytes enhances basolateral secretion of triacylglycerol (TG) in TG-rich lipoproteins 4.9-fold (Lu, S., Yao, Y., Meng, S., Cheng, X., and Black, D. D. (2002) J. Biol. Chem. 277, 31929-31937). To investigate the mechanism of this enhancement, IPEC-1 cells were transfected with a tetracycline-regulatable expression system (Tet-On). In cells incubated with oleic acid, a dose response relationship was observed between medium doxycycline concentration and basolateral apoA-IV and TG secretion. Similarly regulated expression of apoA-I did not enhance lipid secretion. The mean diameter of TG-rich lipoproteins secreted from doxycycline-treated cells was larger than from untreated cells (87.0 nm versus 53.4 nm). Basolateral apoB secretion decreased. Using the same expression system, full-length human apoA-IV (376 amino acids); a "pig-like" human apoA-IV, lacking the C-terminal EQQQ repeats (361 amino acids); and a "chicken-like" apoA-IV, further truncated to 343 amino acids, were expressed in IPEC-1 cells. With increasing protein secretion, cells expressing the full-length human apoA-IV displayed a 2-fold increase in TG secretion; in sharp contrast, cells expressing the pig-like human apoA-IV displayed a 25-fold increase in TG secretion and a 27-fold increase in lipoprotein diameter. When human apoA-IV was further truncated to yield a chicken-like protein, TG secretion was inhibited. We conclude that overexpression of swine apoA-IV enhances basolateral TG secretion in a dose-dependent manner by increasing the size of secreted lipoproteins. These data suggest that the region in the human apoA-IV protein from residues 344 to 354 is critical to its ability to enhance lipid secretion, perhaps by enabling the packaging of additional core TG into chylomicron particles. The EQQQ-rich region may play an inhibitory or modulatory role in chylomicron packaging in humans.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Animals, Newborn
- Apolipoproteins/chemistry
- Apolipoproteins A/biosynthesis
- Apolipoproteins A/physiology
- Blotting, Western
- Cell Line
- Chickens
- Chylomicrons/chemistry
- Cloning, Molecular
- DNA, Complementary/metabolism
- Dose-Response Relationship, Drug
- Doxycycline/metabolism
- Doxycycline/pharmacology
- Electrophoresis, Polyacrylamide Gel
- Humans
- Immunoprecipitation
- Intestinal Mucosa/metabolism
- Intestines/cytology
- Lipid Metabolism
- Lipids/chemistry
- Lipoproteins/metabolism
- Microscopy, Electron
- Microscopy, Electron, Transmission
- Molecular Sequence Data
- Mutation
- Oleic Acid/chemistry
- Oleic Acid/metabolism
- Protein Structure, Tertiary
- RNA/metabolism
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Swine
- Tetracycline/pharmacology
- Transcriptional Activation
- Triglycerides/metabolism
Collapse
Affiliation(s)
- Song Lu
- Children's Foundation Research Center at Le Bonheur Children's Medical Center and Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee 38103, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW Apolipoprotein B-containing lipoprotein assembly and secretion is critical for lipid absorption and triglyceride homeostasis, and plays a role in atherogenesis and the pathobiology of type 2 diabetes and obesity. This review highlights recent insights into the evolutionary, structural, and cell biology of hepatic and intestinal pathways for lipid mobilization, and the mechanisms and regulation of lipoprotein assembly and secretion. RECENT FINDINGS Until recently it was assumed that microsomal triglyceride transfer protein-dependent apolipoprotein B-containing lipoprotein assembly was a unique adaptation associated with vertebrate lipid homeostasis. However, it is now clear that microsomal triglyceride transfer protein (MTP) exists in species whose last common ancestor diverged over 550 million years ago. In its long evolutionary history, the MTP gene has given rise to a series of paralogous lipid transport proteins, all of which require MTP for their biogenesis. During its evolution, MTP has acquired new functions, enabling it to participate in a disparate array of lipid mobilization and transport pathways, ranging from primitive lipoprotein assembly to antigenic lipid presentation. In addition to the complex and multifunctional role of MTP in apolipoprotein B assembly, other factors responsible for the generation of secretion-coupled lipids and the modulation of apolipoprotein B production are emerging. SUMMARY The phylogenic dissection of MTP and apolipoprotein B function, coupled with ongoing structural and biochemical analyses, provide significant insights into the mechanisms of lipid mobilization and secretion. Some of these factors and processes may be targeted therapeutically to modulate the quantitative and qualitative aspects of apolipoprotein B production.
Collapse
Affiliation(s)
- Gregory S Shelness
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1040, USA
| | | |
Collapse
|