1
|
Lamontagne-Kam DM, Davari S, Aristizabal-Henao JJ, Cho S, Chalil D, Mielke JG, Stark KD. Sex differences in hippocampal-dependent memory and the hippocampal lipidome in adolescent rats raised on diets with or without DHA. Prostaglandins Leukot Essent Fatty Acids 2023; 192:102569. [PMID: 36966673 DOI: 10.1016/j.plefa.2023.102569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023]
Abstract
Recent studies suggest the effects of DHA supplementation on human memory may differ between females and males during infancy, adolescence, and early adulthood, but the underlying mechanisms are not clear. As a result, this study sought to examine the spatial memory and brain lipidomic profiles in female and male adolescent rats with or without a DHA-enriched diet that began perinatally with the supplementation of dams. Spatial learning and memory were examined in adolescent rats using the Morris Water Maze beginning at 6 weeks of age and animals were sacrificed at 7 weeks of age to permit isolation of brain tissue and blood samples. Behavioral testing showed that there was a significant diet x sex interaction for two key measures of spatial memory (distance to zone and time spent in the correct quadrant during the probe test), with female rats benefiting the most from DHA supplementation. Lipidomic analyses suggest levels of arachidonic acid (ARA) and n-6 docosapentaenoic acid (DPA) containing phospholipid species were lower in the hippocampus of DHA supplemented compared with control animals, and principal component analyses revealed a potential dietary treatment effect for hippocampal PUFA. Females fed DHA had slightly more PE P-18:0_22:6 and maintained levels of PE 18:0_20:4 in the hippocampus in contrast with males fed DHA. Understanding how DHA supplementation during the perinatal and adolescent periods changes cognitive function in a sex-specific manner has important implications for determining the dietary requirements of DHA. This study adds to previous work highlighting the importance of DHA for spatial memory and provides evidence that further research needs to consider how DHA supplementation can cause sex-specific changes.
Collapse
Affiliation(s)
- Daniel M Lamontagne-Kam
- Department of Kinesiology and Health Sciences, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Saeideh Davari
- School of Public Health Sciences, University of Waterloo, 200 University Avenue, Waterloo, ON, N2L 3G1, Canada
| | - Juan J Aristizabal-Henao
- Department of Kinesiology and Health Sciences, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada; BPGbio Inc., 500 Old Connecticut Path Building B, Framingham, MA, 01701, USA
| | - Seungjae Cho
- Department of Kinesiology and Health Sciences, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Dan Chalil
- Department of Kinesiology and Health Sciences, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - John G Mielke
- School of Public Health Sciences, University of Waterloo, 200 University Avenue, Waterloo, ON, N2L 3G1, Canada
| | - Ken D Stark
- Department of Kinesiology and Health Sciences, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
2
|
Chalil D, Aristizabal-Henao JJ, Chalil A, Stark KD. Evidence of multiple hepatic mechanisms to mobilize docosahexaenoic acid into dam plasma during pregnancy in chow-fed sprague dawley rats. Prostaglandins Leukot Essent Fatty Acids 2021; 171:102317. [PMID: 34245972 DOI: 10.1016/j.plefa.2021.102317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022]
Abstract
Fetal brain growth requires considerable amounts of docosahexaenoic acid (DHA) during late pregnancy that is associated with increased maternal/dam plasma levels of PC 16:0_22:6 (palmitoyl docosahexaenoyl phosphatidylcholine). While biosynthesis of DHA during pregnancy is upregulated, the mechanisms responsible for the incorporation of dam DHA into PC 16:0_22:6 are not understood. The present study used a discovery approach combining untargeted lipidomics of plasma and liver (n = 3/group) with semi-targeted qPCR of hepatic gene products (n = 6/group) to identify metabolic pathways related to DHA metabolism, with a hypothesis that an upregulated acyltransferase involved in PC remodeling would be identified. Sprague Dawley rats were fed a commercial rodent chow throughout the study and samples were collected before pregnancy (baseline), at 15 and 20 days of pregnancy, and 7 days postpartum. Plasma and hepatic PC 16:0_22:6 was significantly increased (by 79% and 194%, respectively) at day 20 of pregnancy. An increase in hepatic DG (diacylglycerol) 16:0_22:6 (by 243%) and significant decreases in Pla2G15 (0.4-fold) and Pla2G16 (0.6-fold) at day 20 of pregnancy, no changes in Lpcat1-4, and an abundant pool of hepatic pool PE (phosphatidylethanolamine) 16:0_22:6 suggest that plasma PC 16:0_22:6 is not being produced by fatty acyl remodeling during pregnancy. The increase in plasma PC 16:0_22:6 during pregnancy appears to be due to an increase in de novo synthesis of PC and both the CDP-choline and phosphatidylcholine methyltransferase pathways are implicated. There was also evidence suggesting channeling of DHA into PC and lipoprotein assembly may be occurring. Targeted research is necessary to confirm these findings, but the results of this study indicate metabolic adaptions to enable maternal/dam resiliency towards meeting the fetal/pup demand for DHA during pregnancy.
Collapse
Affiliation(s)
- Dan Chalil
- Department of Kinesiology, University of Waterloo, 200 University Avenue, Waterloo, ON, Canada, N2L 3G1
| | - Juan J Aristizabal-Henao
- Department of Kinesiology, University of Waterloo, 200 University Avenue, Waterloo, ON, Canada, N2L 3G1
| | - Alan Chalil
- Department of Kinesiology, University of Waterloo, 200 University Avenue, Waterloo, ON, Canada, N2L 3G1
| | - Ken D Stark
- Department of Kinesiology, University of Waterloo, 200 University Avenue, Waterloo, ON, Canada, N2L 3G1.
| |
Collapse
|
3
|
Qiu C, He Y, Huang Z, Qiu W, Huang J, Wang M, Chen B. Biosafety evaluation of Nannochloropsis oculata and Schizochytrium sp. oils as novel human milk fat substitutes. Food Funct 2021; 12:2972-2984. [PMID: 33690766 DOI: 10.1039/d0fo03000g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The biosafety assessment of novel human milk fat substitutes (HMFs) from microalgae oils of Nannochloropsis oculata and Schizochytrium sp. was evaluated by testing the cytotoxic activity using IEC-6 cells, and by conducting a sub-chronic 28-day dietary study using Sprague-Dawley (SD) suckling rats in this study. The results of the cytotoxic activity of IEC-6 cells treated with HMFs showed no apparent effect on cell viability at the tested concentrations (0-1000 μg mL-1). For the 28-day sub-chronic study, five rat dietary feeds with 7.5% fat were designed to have the DHA content in the range from 0 to 2.0% using corn oil as a basal oil. After the 28-day treatment, SD rats fed HMFs did not show toxicity signs and adverse effects, based on the results of clinical observation, body weight, food consumption, behavior, hematology, clinical chemistry, and necropsy findings. These results could lead to the conclusion that the inclusion of the new synthesized HMFs into the pre-weaning SD rat diet was acceptable for SD rats and did not exhibit toxic characteristics and adverse features, indicating that the HMFs from microalgal oils were safe and had the potential to be used as a promising feedstock in infant formula.
Collapse
Affiliation(s)
- Changyang Qiu
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| | | | | | | | | | | | | |
Collapse
|
4
|
Madore C, Leyrolle Q, Morel L, Rossitto M, Greenhalgh AD, Delpech JC, Martinat M, Bosch-Bouju C, Bourel J, Rani B, Lacabanne C, Thomazeau A, Hopperton KE, Beccari S, Sere A, Aubert A, De Smedt-Peyrusse V, Lecours C, Bisht K, Fourgeaud L, Gregoire S, Bretillon L, Acar N, Grant NJ, Badaut J, Gressens P, Sierra A, Butovsky O, Tremblay ME, Bazinet RP, Joffre C, Nadjar A, Layé S. Essential omega-3 fatty acids tune microglial phagocytosis of synaptic elements in the mouse developing brain. Nat Commun 2020; 11:6133. [PMID: 33257673 PMCID: PMC7704669 DOI: 10.1038/s41467-020-19861-z] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/03/2020] [Indexed: 12/23/2022] Open
Abstract
Omega-3 fatty acids (n-3 PUFAs) are essential for the functional maturation of the brain. Westernization of dietary habits in both developed and developing countries is accompanied by a progressive reduction in dietary intake of n-3 PUFAs. Low maternal intake of n-3 PUFAs has been linked to neurodevelopmental diseases in Humans. However, the n-3 PUFAs deficiency-mediated mechanisms affecting the development of the central nervous system are poorly understood. Active microglial engulfment of synapses regulates brain development. Impaired synaptic pruning is associated with several neurodevelopmental disorders. Here, we identify a molecular mechanism for detrimental effects of low maternal n-3 PUFA intake on hippocampal development in mice. Our results show that maternal dietary n-3 PUFA deficiency increases microglia-mediated phagocytosis of synaptic elements in the rodent developing hippocampus, partly through the activation of 12/15-lipoxygenase (LOX)/12-HETE signaling, altering neuronal morphology and affecting cognitive performance of the offspring. These findings provide a mechanistic insight into neurodevelopmental defects caused by maternal n-3 PUFAs dietary deficiency.
Collapse
Affiliation(s)
- C Madore
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women´s Hospital, Harvard Medical School, Boston, MA, USA
| | - Q Leyrolle
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
- NeuroDiderot, Inserm, Université de Paris Diderot, F-75019, Paris, France
| | - L Morel
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - M Rossitto
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - A D Greenhalgh
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - J C Delpech
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - M Martinat
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - C Bosch-Bouju
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - J Bourel
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - B Rani
- Department of Health Sciences, University of Florence, Florence, Italy
| | - C Lacabanne
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - A Thomazeau
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - K E Hopperton
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, M5S 3E2, Canada
| | - S Beccari
- Achucarro Basque Center for Neuroscience, University of the Basque Country and Ikerbasque Foundation, 48940, Leioa, Spain
| | - A Sere
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - A Aubert
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - V De Smedt-Peyrusse
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - C Lecours
- Neurosciences Axis, CRCHU de Québec-Université Laval, Québec City, QC, Canada
| | - K Bisht
- Neurosciences Axis, CRCHU de Québec-Université Laval, Québec City, QC, Canada
| | - L Fourgeaud
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - S Gregoire
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - L Bretillon
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - N Acar
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - N J Grant
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - J Badaut
- CNRS UMR5287, University of Bordeaux, Bordeaux, France
| | - P Gressens
- NeuroDiderot, Inserm, Université de Paris Diderot, F-75019, Paris, France
- Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| | - A Sierra
- Achucarro Basque Center for Neuroscience, University of the Basque Country and Ikerbasque Foundation, 48940, Leioa, Spain
| | - O Butovsky
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women´s Hospital, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - M E Tremblay
- Neurosciences Axis, CRCHU de Québec-Université Laval, Québec City, QC, Canada
| | - R P Bazinet
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, M5S 3E2, Canada
| | - C Joffre
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - A Nadjar
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France.
| | - S Layé
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France.
| |
Collapse
|
5
|
Zhao H, Chong J, Tang R, Li L, Xia J, Li D. Metabolomics investigation of dietary effects on flesh quality in grass carp (Ctenopharyngodon idellus). Gigascience 2018; 7:5091802. [PMID: 30192945 PMCID: PMC6176498 DOI: 10.1093/gigascience/giy111] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/24/2018] [Indexed: 12/13/2022] Open
Abstract
Background The ultrahigh density intensive farming model of grass carp (Ctenopharyngodon idellus) may elicit growth inhibition, decrease flesh quality, and increase disease susceptibility of fish. The degradation in quality and excessive fat accumulation in cultured C. idellus have long been attributed to possible alterations in the lipid metabolism of fish muscle tissues as a result of overnutrition from artificial diets. To investigate the effects of different diets on fish muscle quality, a large-scale metabolomics study was performed on 250 tails of C. idellus. Findings The experimental fish were divided into four groups based on sex and diet—female artificial feed (FAF), female grass feed, male artificial feed (MAF), and male grass feed (MGF). After a 113-day rearing period, the artificial feed (AF) group showed a significantly higher total mass of muscle fat (P < 0.01), with the FAF group being the highest. Metabolomics profiling based on liquid chromatography-mass spectrometry revealed distinctive patterns of clustering according to the four groups. Overall, artificial feeding was associated with higher concentrations of docosapentaenoic acid, dihomo-gamma-linolenic acid, and arachidonic acid, whereas grass feeding was associated with elevated n-3 unsaturated fatty acids (UFAs) such as eicosapentaenoic acid, alpha-linolenic acid, and gamma-linolenic acid. Artificial feeding also resulted in significant increased docosahexaenoic acid in MAF muscle than in MGF fish, whereas there was no significance in the comparison of female samples. Metabolic pathway analyses using both targeted and untargeted approaches consistently revealed that arachidonic acid metabolism and steroid hormone biosynthesis pathways were significantly different between AF and grass fed groups. Conclusions Our results suggest that grass is a better source of dietary fatty acid and protein when compared to artificial feed. Grass feeding could effectively lower triglycerides in serum, reduce fat accumulation, and alter lipid compositions in fish muscle by increasing the concentrations of n-3 UFAs, leading to better nutrition and health.
Collapse
Affiliation(s)
- Honghao Zhao
- College of Fisheries, Hubei Provincial Engineering Laboratory for Pond Aquaculture, National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan 430070, China.,Institute of Parasitology, McGill University, Saint-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Jasmine Chong
- Institute of Parasitology, McGill University, Saint-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Rong Tang
- College of Fisheries, Hubei Provincial Engineering Laboratory for Pond Aquaculture, National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Li
- College of Fisheries, Hubei Provincial Engineering Laboratory for Pond Aquaculture, National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianguo Xia
- Institute of Parasitology, McGill University, Saint-Anne-de-Bellevue, QC H9X 3V9, Canada.,Department of Animal Science, McGill University, Saint-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Dapeng Li
- College of Fisheries, Hubei Provincial Engineering Laboratory for Pond Aquaculture, National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
6
|
Chalil A, Kitson AP, Aristizabal Henao JJ, Marks KA, Elzinga JL, Lamontagne-Kam DME, Chalil D, Badoud F, Mutch DM, Stark KD. PEMT, Δ6 desaturase, and palmitoyldocosahexaenoyl phosphatidylcholine are increased in rats during pregnancy. J Lipid Res 2017; 59:123-136. [PMID: 29167412 DOI: 10.1194/jlr.m080309] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/07/2017] [Indexed: 01/14/2023] Open
Abstract
DHA is important for fetal neurodevelopment. During pregnancy, maternal plasma DHA increases, but the mechanism is not fully understood. Using rats fed a fixed-formula diet (DHA as 0.07% total energy), plasma and liver were collected for fatty acid profiling before pregnancy, at 15 and 20 days of pregnancy, and 7 days postpartum. Phosphatidylethanolamine methyltransferase (PEMT) and enzymes involved in PUFA synthesis were examined in liver. Ad hoc transcriptomic and lipidomic analyses were also performed. With pregnancy, DHA increased in liver and plasma lipids, with a large increase in plasma DHA between day 15 and day 20 that was mainly attributed to an increase in 16:0/DHA phosphatidylcholine (PC) in liver (2.6-fold) and plasma (3.9-fold). Increased protein levels of Δ6 desaturase (FADS2) and PEMT at day 20 and increased Pemt expression and PEMT activity at day 15 suggest that during pregnancy, both DHA synthesis and 16:0/DHA PC synthesis are upregulated. Transcriptomic analysis revealed minor changes in the expression of genes related to phospholipid synthesis, but little insight on DHA metabolism. Hepatic PEMT appears to be the mechanism for increased plasma 16:0/DHA PC, which is supported by increased DHA biosynthesis based on increased FADS2 protein levels.
Collapse
Affiliation(s)
- Alan Chalil
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Alex P Kitson
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | | | - Kristin A Marks
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Jason L Elzinga
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | | | - Daniel Chalil
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Flavia Badoud
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - David M Mutch
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Ken D Stark
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
7
|
Su H, Zhou D, Pan YX, Wang X, Nakamura MT. Compensatory induction of Fads1 gene expression in heterozygous Fads2-null mice and by diet with a high n-6/n-3 PUFA ratio. J Lipid Res 2016; 57:1995-2004. [PMID: 27613800 DOI: 10.1194/jlr.m064956] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Indexed: 01/07/2023] Open
Abstract
In mammals, because they share a single synthetic pathway, n-6/n-3 ratios of dietary PUFAs impact tissue arachidonic acid (ARA) and DHA content. Likewise, SNPs in the human fatty acid desaturase (FADS) gene cluster impact tissue ARA and DHA. Here we tested the feasibility of using heterozygous Fads2-null-mice (HET) as an animal model of human FADS polymorphisms. WT and HET mice were fed diets with linoleate/α-linolenate ratios of 1:1, 7:1, and 44:1 at 7% of diet. In WT liver, ARA and DHA in phospholipids varied >2× among dietary groups, reflecting precursor ratios. Unexpectedly, ARA content was only <10% lower in HET than in WT livers, when fed the 44:1 diet, likely due to increased Fads1 mRNA in response to reduced Fads2 mRNA in HET. Consistent with the RNA data, C20:3n-6, which is elevated in minor FADS haplotypes in humans, was lower in HET than WT. Diet and genotype had little effect on brain PUFAs even though brain Fads2 mRNA was low in HET. No differences in cytokine mRNA were found among groups under unstimulated conditions. In conclusion, differential PUFA profiles between HET mice and human FADS SNPs suggest low expression of both FADS1 and 2 genes in human minor haplotypes.
Collapse
Affiliation(s)
- Hang Su
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.,Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Dan Zhou
- Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Yuan-Xiang Pan
- Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Xingguo Wang
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Manabu T Nakamura
- Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
8
|
Salem NM, Lin YH, Moriguchi T, Lim SY, Salem N, Hibbeln JR. Distribution of omega-6 and omega-3 polyunsaturated fatty acids in the whole rat body and 25 compartments. Prostaglandins Leukot Essent Fatty Acids 2015; 100:13-20. [PMID: 26120061 PMCID: PMC4555191 DOI: 10.1016/j.plefa.2015.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 05/29/2015] [Accepted: 06/04/2015] [Indexed: 10/23/2022]
Abstract
The steady state compositions of omega-6 and omega-3 polyunsaturated fatty acids (PUFA) throughout the various viscera and tissues within the whole body of rats have not previously been described in a comprehensive manner. Dams consumed diets containing 10wt% fat (15% linoleate and 3% α-linolenate). Male offspring (n=9) at 7-week of age were euthanized and dissected into 25 compartments. Total lipid fatty acids for each compartment were quantified by GC/FID and summed for the rat whole body; total n-6 PUFA was 12wt% and total n-3 PUFA was 2.1% of total fatty acids. 18:2n-6 accounted for 84% of the total n-6 PUFA, 20:4n-6 was 12%, 18:3n-3 was 59% of the total n-3 PUFA, 20:5n-3 was 2.1%, and 22:6n-3 was 32%. The white adipose tissue contained the greatest amounts of 18:2n-6 (1.5g) and 18:3n-3 (0.2g). 20:4n-6 was highest in muscle (60mg) and liver (57mg), while 22:6n-3 was greatest in muscle (46mg), followed by liver (27mg) and carcass (20mg). In terms of fatty acid composition expressed as a percentage, 18:2n-6 was the highest in the heart (13wt%), while 18:3n-3 was about 1.3wt% for skin, white adipose tissue and fur. 20:4n-6 was highest (21-25wt%) in the circulation, kidney, and spleen, while 22:6n-3 was highest in the brain (12wt%), followed by the heart (7.9wt%), liver (5.9wt%), and spinal cord (5.1wt%). Selectivity was greatest when comparing 22:6n-3 in brain (12%) to white adipose (0.08%) (68-fold) and 22:5n-6 in testes (15.6%) compared to white adipose (0.02%), 780-fold.
Collapse
Affiliation(s)
- N M Salem
- Section of Nutritional Neuroscience Laboratory of Membrane Biochemistry & Biophysics, NIAAA, NIH, Bethesda, MD, United States
| | - Y H Lin
- Section of Nutritional Neuroscience Laboratory of Membrane Biochemistry & Biophysics, NIAAA, NIH, Bethesda, MD, United States.
| | - T Moriguchi
- Department of Food and Life Science, Azabu University, Kanagawa, Japan
| | - S Y Lim
- Division of Marine Environment & Bioscience, Korea Maritime and Ocean University, Busan, Republic of Korea
| | - N Salem
- Nutritional Lipids, DSM Nutritional Products Inc., Columbia, MD, United States
| | - J R Hibbeln
- Section of Nutritional Neuroscience Laboratory of Membrane Biochemistry & Biophysics, NIAAA, NIH, Bethesda, MD, United States
| |
Collapse
|
9
|
Chen CT, Bazinet RP. β-oxidation and rapid metabolism, but not uptake regulate brain eicosapentaenoic acid levels. Prostaglandins Leukot Essent Fatty Acids 2015; 92:33-40. [PMID: 24986271 DOI: 10.1016/j.plefa.2014.05.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The brain has a unique polyunsaturated fatty acid composition, with high levels of arachidonic and docosahexaenoic acids (DHA) while levels of eicosapentaenoic acid (EPA) are several orders of magnitude lower. As evidence accumulated that fatty acid entry into the brain was not selective and, in fact, that DHA and EPA enter the brain at similar rates, new mechanisms were required to explain their large concentration differences in the brain. Here we summarize recent research demonstrating that EPA is rapidly and extensively β-oxidized upon entry into the brain. Although the ATP generated from the β-oxidation of EPA is low compared to the use of glucose, fatty acid β-oxidation may serve to regulate brain fatty acid levels in the absence of selective transportation. Furthermore, when β-oxidation of EPA is blocked, desaturation of EPA increases and Land׳s recycling decreases to maintain low EPA levels.
Collapse
Affiliation(s)
- Chuck T Chen
- Department of Nutritional Sciences, University of Toronto, Fitzgerald Building, 150 College St. Room 306, Ontario, Toronto, M5S 3E2 Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, University of Toronto, Fitzgerald Building, 150 College St. Room 306, Ontario, Toronto, M5S 3E2 Canada.
| |
Collapse
|
10
|
Shewchuk BM. Prostaglandins and n-3 polyunsaturated fatty acids in the regulation of the hypothalamic-pituitary axis. Prostaglandins Leukot Essent Fatty Acids 2014; 91:277-87. [PMID: 25287609 DOI: 10.1016/j.plefa.2014.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 08/23/2014] [Accepted: 09/11/2014] [Indexed: 12/26/2022]
Abstract
The hypothalamic-pituitary (H-P) axis integrates complex physiological and environmental signals and responds to these cues by modulating the synthesis and secretion of multiple pituitary hormones to regulate peripheral tissues. Prostaglandins are a component of this regulatory system, affecting multiple hormone synthesis and secretion pathways in the H-P axis. The implications of these actions are that physiological processes or disease states that alter prostaglandin levels in the hypothalamus or pituitary can impinge on H-P axis function. Considering the role of prostaglandins in mediating inflammation, the potential for neuroinflammation to affect H-P axis function in this manner may be significant. In addition, the mitigating effects of n-3 polyunsaturated fatty acids (n-3 PUFA) on the inflammation-associated synthesis of prostaglandins and their role as substrates for pro-resolving lipid mediators may also include effects in the H-P axis. One context in which neuroinflammation may play a role is in the etiology of diet-induced obesity, which also correlates with altered pituitary hormone levels. This review will survey evidence for the actions of prostaglandins and other lipid mediators in the H-P axis, and will address the potential for obesity-associated inflammation and n-3 PUFA to impinge on these mechanisms.
Collapse
Affiliation(s)
- Brian M Shewchuk
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States.
| |
Collapse
|
11
|
Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat Rev Neurosci 2014; 15:771-85. [PMID: 25387473 DOI: 10.1038/nrn3820] [Citation(s) in RCA: 959] [Impact Index Per Article: 87.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The brain is highly enriched with fatty acids. These include the polyunsaturated fatty acids (PUFAs) arachidonic acid and docosahexaenoic acid, which are largely esterified to the phospholipid cell membrane. Once PUFAs are released from the membrane, they can participate in signal transduction, either directly or after enzymatic conversion to a variety of bioactive derivatives ('mediators'). PUFAs and their mediators regulate several processes within the brain, such as neurotransmission, cell survival and neuroinflammation, and thereby mood and cognition. PUFA levels and the signalling pathways that they regulate are altered in various neurological disorders, including Alzheimer's disease and major depression. Diet and drugs targeting PUFAs may lead to novel therapeutic approaches for the prevention and treatment of brain disorders.
Collapse
|
12
|
Kitson AP, Marks KA, Shaw B, Mutch DM, Stark KD. Treatment of ovariectomized rats with 17β-estradiol increases hepatic delta-6 desaturase enzyme expression and docosahexaenoic acid levels in hepatic and plasma phospholipids. Prostaglandins Leukot Essent Fatty Acids 2013; 89:81-8. [PMID: 23764042 DOI: 10.1016/j.plefa.2013.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/10/2013] [Accepted: 05/17/2013] [Indexed: 01/25/2023]
Abstract
Higher docosahexaenoic acid (DHA) in females compared with males suggests ovarian hormones increase DHA production. Eight-week old rats were ovariectomized or sham operated (SHAM), and ovariectomized rats were treated with implanted pellets providing 17β-estradiol (OVX+E), progesterone (OVX+P), both (OVX+PE) or neither (OVX) for 14 days. Immunoblot and fatty acid analysis were performed on all samples, and microarray analysis was performed on OVX and SHAM groups. Increased Δ6-desaturase in OVX relative to SHAM was observed by microarray (12% higher) and immunoblot (31% higher). OVX+E and OVX+PE rats had 39% and 42% higher Δ6-desaturase content, respectively, compared with OVX. OVX+E and OVX+PE also increased phospholipid DHA concentrations in liver (increase of 34% and 40%, respectively) and plasma (increase of 70% and 74%, respectively) relative to OVX. Progesterone exerted no effect on Δ6-desaturase or DHA. These results indicate that 17β-estradiol increases DHA through increased Δ6-desaturase, possibly explaining sex differences in DHA.
Collapse
Affiliation(s)
- Alex P Kitson
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada N2L 3G1
| | | | | | | | | |
Collapse
|
13
|
Igarashi M, Kim HW, Gao F, Chang L, Ma K, Rapoport SI. Fifteen weeks of dietary n-3 polyunsaturated fatty acid deprivation increase turnover of n-6 docosapentaenoic acid in rat-brain phospholipids. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1821:1235-43. [PMID: 22142872 PMCID: PMC3348251 DOI: 10.1016/j.bbalip.2011.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 10/25/2011] [Accepted: 11/02/2011] [Indexed: 11/23/2022]
Abstract
Docosapentaenoic acid (DPAn-6, 22:5n-6) is an n-6 polyunsaturated fatty acid (PUFA) whose brain concentration can be increased in rodents by dietary n-3 PUFA deficiency, which may contribute to their behavioral dysfunction. We used our in vivo intravenous infusion method to see if brain DPAn-6 turnover and metabolism also were altered with deprivation. We studied male rats that had been fed for 15 weeks post-weaning an n-3 PUFA adequate diet containing 4.6% alpha-linolenic acid (α-LNA, 18:3n-3) or a deficient diet (0.2% α-LNA), each lacking docosahexaenoic acid (22:6n-3) and arachidonic acid (AA, 20:4n-6). [1-(14)C]DPAn-6 was infused intravenously for 5min in unanesthetized rats, after which the brain underwent high-energy microwaving, and then was analyzed. The n-3 PUFA deficient compared with adequate diet increased DPAn-6 and decreased DHA concentrations in plasma and brain, while minimally changing brain AA concentration. Incorporation rates of unesterified DPAn-6 from plasma into individual brain phospholipids were increased 5.2-7.7 fold, while turnover rates were increased 2.1-4.7 fold. The observations suggest that increased metabolism and brain concentrations of DPAn-6 and its metabolites, together with a reduced brain DHA concentration, contribute to behavioral and functional abnormalities reported with dietary n-3 PUFA deprivation in rodents. (196 words).
Collapse
Affiliation(s)
- Miki Igarashi
- National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Stark KD, Patterson AC. EPA and DHA--protein, not fat is "where it's at"? Prostaglandins Leukot Essent Fatty Acids 2012; 87:49-51. [PMID: 22673845 DOI: 10.1016/j.plefa.2012.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 05/09/2012] [Indexed: 10/28/2022]
Abstract
Guidelines and recommendations for the dietary intake of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are topics of debate. Recently, EPA and DHA intakes have been demonstrated to be associated with dietary protein intakes and not dietary fat intakes that are distinct from α-linolenic acid. We presently confirm these observations in a secondary analysis of baseline dietary intake data for the validation of a food frequency questionnaire (n=99). DHA intakes measured by both 3 d dietary record and food frequency questionnaire and EPA intakes measured by food frequency questionnaire were positively correlated with protein intakes. EPA and DHA were not associated with fat intakes in either assessment, while ?-linolenic acid was positively correlated with fat intakes. Future recommendations regarding the intake of omega-3 polyunsaturated fatty acids, and EPA and DHA specifically, should consider these associations that provide insight on dietary sources of EPA and DHA in the food supply.
Collapse
Affiliation(s)
- K D Stark
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada N2L 3G1.
| | | |
Collapse
|
15
|
Kitson AP, Stark KD, Duncan RE. Enzymes in brain phospholipid docosahexaenoic acid accretion: a PL-ethora of potential PL-ayers. Prostaglandins Leukot Essent Fatty Acids 2012; 87:1-10. [PMID: 22749739 DOI: 10.1016/j.plefa.2012.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 05/30/2012] [Accepted: 06/01/2012] [Indexed: 10/28/2022]
Abstract
Neural tissue is highly enriched in docosahexaenoic acid (DHA) that is primarily found in the sn-2 position of ethanolamine-containing phospholipids and plasmalogens. Current knowledge on the activity of enzymes in brain phospholipid synthesis does not fully explain this composition and stereospecificity. It is likely that a host of enzyme-mediated processes play roles in brain DHA accumulation to develop this unique enrichment and phospholipid profile. This review examines current knowledge on the spectrum of enzymes that may be involved in brain DHA uptake and utilization in the synthesis and remodeling of phospholipids. It also highlights gaps in that knowledge, including missing information on the activity of known brain enzymes towards DHA as a substrate, and missing identities of brain enzymes that catalyze orphan reactions utilizing DHA for phospholipid formation.
Collapse
Affiliation(s)
- Alex P Kitson
- University of Waterloo, Department of Kinesiology, Faculty of Applied Health Sciences, Waterloo, Ontario, Canada N2L 3G1
| | | | | |
Collapse
|
16
|
Kim HW, Rao JS, Rapoport SI, Igarashi M. Regulation of rat brain polyunsaturated fatty acid (PUFA) metabolism during graded dietary n-3 PUFA deprivation. Prostaglandins Leukot Essent Fatty Acids 2011; 85:361-8. [PMID: 21880477 PMCID: PMC3208751 DOI: 10.1016/j.plefa.2011.08.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 08/03/2011] [Accepted: 08/09/2011] [Indexed: 02/06/2023]
Abstract
Knowing threshold changes in brain lipids and lipid enzymes during dietary n-3 polyunsaturated fatty acid deprivation may elucidate dietary regulation of brain lipid metabolism. To determine thresholds, rats were fed for 15 weeks DHA-free diets having graded reductions of α-linolenic acid (α-LNA). Compared with control diet (4.6% α-LNA), plasma DHA fell significantly at 1.7% dietary α-LNA while brain DHA remained unchanged down to 0.8% α-LNA, when plasma and brain docosapentaenoic acid (DPAn-6) were increased and DHA-selective iPLA(2) and COX-1 activities were downregulated. Brain AA was unchanged by deprivation, but AA selective-cPLA(2), sPLA(2) and COX-2 activities were increased at or below 0.8% dietary α-LNA, possibly in response to elevated brain DPAn-6. In summary, homeostatic mechanisms appear to maintain a control brain DHA concentration down to 0.8% dietary DHA despite reduced plasma DHA, when DPAn-6 replaces DHA. At extreme deprivation, decreased brain iPLA(2) and COX-1 activities may reduce brain DHA loss.
Collapse
Affiliation(s)
- Hyung-Wook Kim
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bldg. 9, Room 1S126, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
17
|
Levant B, Zarcone TJ, Fowler SC. Developmental effects of dietary n-3 fatty acids on activity and response to novelty. Physiol Behav 2010; 101:176-83. [PMID: 20457171 PMCID: PMC2923479 DOI: 10.1016/j.physbeh.2010.04.038] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 04/16/2010] [Accepted: 04/29/2010] [Indexed: 02/05/2023]
Abstract
Insufficient availability of n-3 polyunsaturated fatty acids (PUFA) during pre- and neonatal development decreases accretion of docosahexaenoic acid (DHA, 22:6n-3) in the developing brain. Low tissue levels of DHA are associated with neurodevelopmental disorders including attention deficit hyperactivity disorder (ADHD). In this study, 1st- and 2nd-litter male Long-Evans rats were raised from conception on a Control diet containing alpha-linolenic acid (4.20 g/kg diet), the dietarily essential fatty acid precursor of DHA, or a diet Deficient in alpha-linolenic acid (0.38 g/kg diet). The Deficient diet resulted in a decrease in brain phospholipid DHA of 48% in 1st-litter pups and 65% in 2nd-litter pups. Activity, habituation, and response to spatial change in a familiar environment were assessed in a single-session behavioral paradigm at postnatal days 28 and 70, inclusive. Activity and habituation varied by age with younger rats exhibiting higher activity, less habituation, and less stimulation of activity induced by spatial novelty. During the first and second exposures to the test chamber, 2nd-litter Deficient pups exhibited higher levels of activity than Control rats or 1st-litter Deficient pups, and less habituation during the first exposure, but were not more active after introduction of a novel spatial stimulus. The higher level of activity in a familiar environment, but not after introduction of a novel stimulus is consistent with clinical observations in ADHD. The observation of this effect only in 2nd-litter rats fed the Deficient diet suggests that brain DHA content, rather than dietary n-3 PUFA content, likely underlies these effects.
Collapse
Affiliation(s)
- Beth Levant
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | | | |
Collapse
|
18
|
Bone mineral content is positively correlated to n-3 fatty acids in the femur of growing rats. Br J Nutr 2010; 104:674-85. [PMID: 20420751 DOI: 10.1017/s0007114510001133] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The present study was conducted to determine whether provision of preformed dietary docosapentaenoic acid (DPAn-6) can replace DHA for normal long bone growth as assessed by dual-energy X-ray absorptiometry for mineral content (BMC). A newly modified artificial rearing method was employed to generate n-3 fatty acid-deficient rats. Except the dam-reared (DR; 3.1 % alpha-linolenic acid) group, newborn pups were separated from their mothers at age 2 d and given artificial rat milk containing linoleic acid (LA), or LA supplemented with 1 % DHA (22 : 6n-3; DHA), 1 % DPAn-6 (DPA), or 1 % DHA plus 0.4 % DPAn-6 (DHA/DPA). The rats were later weaned onto similar pelleted diets. At adulthood, the rats were euthanised and bones (femur, tibia, and lumbar vertebrae) collected for tissue fatty acid analysis and bone mineral density (BMD) determination. The analyses showed that long bones such as femur and tibia in DPAn-6-treated rats contained higher DPAn-6 content and generally had the lowest BMC and BMD values. Hence, DPAn-6 did not replace DHA for normal bone growth and maximal BMC in femur, indicating an indispensible role of DHA in bone health. In conclusion, DHA accumulates in the osteoblast-rich and nerve-abundant periosteum of femur; DHA but not EPA appears to be a vital constituent of marrow and periosteum of healthy modelling bone; and both DHA and total n-3 PUFA strongly correlate to BMC.
Collapse
|
19
|
The Fat-1 Mouse has Brain Docosahexaenoic Acid Levels Achievable Through Fish Oil Feeding. Neurochem Res 2010; 35:811-9. [DOI: 10.1007/s11064-010-0139-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2010] [Indexed: 01/30/2023]
|
20
|
Stark KD. The percentage of n-3 highly unsaturated fatty acids in total HUFA as a biomarker for omega-3 fatty acid status in tissues. Lipids 2007; 43:45-53. [PMID: 17985169 DOI: 10.1007/s11745-007-3128-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Accepted: 10/16/2007] [Indexed: 11/25/2022]
Abstract
A blood biomarker of omega-3 fatty acid intake and tissue status could serve as a modifiable risk factor for cardiovascular disease. The percentage of omega-3 highly unsaturated fatty acid (HUFA > or = 20 carbons and > or =3 double bonds) in the total HUFA pool (the n-3 HUFA score) was examined as a potential blood biomarker of omega-3 fatty acids in tissues. The fatty acid composition of total lipid extracts (TLE) and phospholipid (PL) fractions were determined for plasma and erythrocytes samples of human subjects (n = 20) and the n-3 HUFA score and the sum of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were compared. Omega-3 fatty acids in blood and tissues of rats (n = 31) and pigs (n = 48) were also determined and the associations were compared. The n-3 HUFA score is more consistent across plasma and erythrocytes, with strong correlations between TLE and PL in plasma (r = 0.93) and erythrocytes (r = 0.94). The n-3 HUFA score was less variable and blood levels correlated strongly with various animal tissues. The n-3 HUFA score is a useful blood biomarker that does not require the isolation of the PL class thereby supporting high throughput analyses. The strength of association between the n-3 HUFA score and disease risk needs to be examined.
Collapse
Affiliation(s)
- Ken D Stark
- The Laboratory of Nutritional and Nutraceutical Research, Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada N2L 3G1.
| |
Collapse
|