1
|
Wang S, Yin J, Liu Z, Liu X, Tian G, Xin X, Qin Y, Feng X. Metabolic disorders, inter-organ crosstalk, and inflammation in the progression of metabolic dysfunction-associated steatotic liver disease. Life Sci 2024; 359:123211. [PMID: 39491769 DOI: 10.1016/j.lfs.2024.123211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/20/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a global health concern, affecting over 30 % of adults. It is a principal driver in the development of cirrhosis and hepatocellular carcinoma. The complex pathogenesis of MASLD involves an excessive accumulation of lipids, subsequently disrupting lipid metabolism and prompting inflammation within the liver. This review synthesizes the recent research progress in understanding the mechanisms contributing to MASLD progression, with particular emphasis on metabolic disorders and interorgan crosstalk. We highlight the molecular mechanisms linked to these factors and explore their potential as novel targets for pharmacological intervention. The insights gleaned from this article have important implications for both the prevention and therapeutic management of MASLD.
Collapse
Affiliation(s)
- Shendong Wang
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Junhao Yin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Zhaojun Liu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xin Liu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Ge Tian
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Xijian Xin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Yiming Qin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xiujing Feng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.
| |
Collapse
|
2
|
Lee MH, Nuccio SP, Mohanty I, Hagey LR, Dorrestein PC, Chu H, Raffatellu M. How bile acids and the microbiota interact to shape host immunity. Nat Rev Immunol 2024; 24:798-809. [PMID: 39009868 DOI: 10.1038/s41577-024-01057-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 07/17/2024]
Abstract
Bile acids are increasingly appearing in the spotlight owing to their novel impacts on various host processes. Similarly, there is growing attention on members of the microbiota that are responsible for bile acid modifications. With recent advances in technology enabling the discovery and continued identification of microbially conjugated bile acids, the chemical complexity of the bile acid landscape in the body is increasing at a rapid pace. In this Review, we summarize our current understanding of how bile acids and the gut microbiota interact to modulate immune responses during homeostasis and disease, with a particular focus on the gut.
Collapse
Affiliation(s)
- Michael H Lee
- Division of Host-Microbe Systems and Therapeutics, Department of Paediatrics, University of California San Diego, La Jolla, CA, USA
| | - Sean-Paul Nuccio
- Division of Host-Microbe Systems and Therapeutics, Department of Paediatrics, University of California San Diego, La Jolla, CA, USA
| | - Ipsita Mohanty
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Lee R Hagey
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Hiutung Chu
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Chiba University-UC San Diego Center for Mucosal Immunology, Allergy and Vaccines (CU-UCSD cMAV), La Jolla, CA, USA
| | - Manuela Raffatellu
- Division of Host-Microbe Systems and Therapeutics, Department of Paediatrics, University of California San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA.
- Chiba University-UC San Diego Center for Mucosal Immunology, Allergy and Vaccines (CU-UCSD cMAV), La Jolla, CA, USA.
| |
Collapse
|
3
|
Zeng F, He S, Sun Y, Li X, Chen K, Wang H, Man S, Lu F. Abnormal enterohepatic circulation of bile acids caused by fructooligosaccharide supplementation along with a high-fat diet. Food Funct 2024. [PMID: 39450588 DOI: 10.1039/d4fo03353a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Fructooligosaccharide (FOS) is a widely used prebiotic and health food ingredient, but few reports have focused on its risk to specific populations. Recently, it has been shown that the intake of inulin, whose main component is FOS, can lead to cholestasis and induce hepatocellular carcinoma in mice fed a high-fat diet (HFD); however, the molecular mechanism behind this is not clear. This study found that FOS supplementation induced abnormal enterohepatic circulation of bile acids in HFD-fed mice, which showed a significant increase in bile acid levels in the blood and liver, especially the secondary bile acids with high cytotoxicity, such as deoxycholic acid. The abundance of Clostridium, Bacteroides, and other bacteria in the gut microbiota also increased significantly. The analysis of the signaling pathway involved in regulating the enterohepatic circulation of bile acids showed that the weakening of the feedback inhibition of FXR-FGF15 and FXR-SHP signalling pathways possibly induced the enhancement of CYP7A1 activity and bile acid reabsorption in the blood and liver and led to an increase in bile acid synthesis and accumulation in the liver, increasing the risk of cholestasis. This study showed the risk of health damage caused by FOS supplementation in HFD-fed mice, which is caused by gut microbiota dysfunction and abnormal enterohepatic circulation of bile acids. Therefore, the application of FOS should be standardized to avoid the health risks of unreasonable FOS use in specific populations.
Collapse
Affiliation(s)
- Fang Zeng
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| | - Shi He
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| | - Ying Sun
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| | - Xue Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| | - Kaiyang Chen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| | - Hongbin Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| | - Shuli Man
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| |
Collapse
|
4
|
Antelo-Cea DA, Martínez-Rojas L, Cabrerizo-Ibáñez I, Roudi Rashtabady A, Hernández-Alvarez MI. Regulation of Mitochondrial and Peroxisomal Metabolism in Female Obesity and Type 2 Diabetes. Int J Mol Sci 2024; 25:11237. [PMID: 39457018 PMCID: PMC11508381 DOI: 10.3390/ijms252011237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Obesity and type 2 diabetes (T2D) are widespread metabolic disorders that significantly impact global health today, affecting approximately 17% of adults worldwide with obesity and 9.3% with T2D. Both conditions are closely linked to disruptions in lipid metabolism, where peroxisomes play a pivotal role. Mitochondria and peroxisomes are vital organelles responsible for lipid and energy regulation, including the β-oxidation and oxidation of very long-chain fatty acids (VLCFAs), cholesterol biosynthesis, and bile acid metabolism. These processes are significantly influenced by estrogens, highlighting the interplay between these organelles' function and hormonal regulation in the development and progression of metabolic diseases, such as obesity, metabolic dysfunction-associated fatty liver disease (MAFLD), and T2D. Estrogens modulate lipid metabolism through interactions with nuclear receptors, like peroxisome proliferator-activated receptors (PPARs), which are crucial for maintaining metabolic balance. Estrogen deficiency, such as in postmenopausal women, impairs PPAR regulation, leading to lipid accumulation and increased risk of metabolic disorders. The disruption of peroxisomal-mitochondrial function and estrogen regulation exacerbates lipid imbalances, contributing to insulin resistance and ROS accumulation. This review emphasizes the critical role of these organelles and estrogens in lipid metabolism and their implications for metabolic health, suggesting that therapeutic strategies, including hormone replacement therapy, may offer potential benefits in treating and preventing metabolic diseases.
Collapse
Affiliation(s)
- Damián A. Antelo-Cea
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (D.A.A.-C.); (L.M.-R.); (I.C.-I.); (A.R.R.)
- IBUB Universitat de Barcelona—Institut de Biomedicina de la Universitat de Barcelona, 08028 Barcelona, Spain
| | - Laura Martínez-Rojas
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (D.A.A.-C.); (L.M.-R.); (I.C.-I.); (A.R.R.)
| | - Izan Cabrerizo-Ibáñez
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (D.A.A.-C.); (L.M.-R.); (I.C.-I.); (A.R.R.)
| | - Ayda Roudi Rashtabady
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (D.A.A.-C.); (L.M.-R.); (I.C.-I.); (A.R.R.)
- IBUB Universitat de Barcelona—Institut de Biomedicina de la Universitat de Barcelona, 08028 Barcelona, Spain
| | - María Isabel Hernández-Alvarez
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (D.A.A.-C.); (L.M.-R.); (I.C.-I.); (A.R.R.)
- IBUB Universitat de Barcelona—Institut de Biomedicina de la Universitat de Barcelona, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
5
|
Song L, Hou Y, Xu D, Dai X, Luo J, Liu Y, Huang Z, Yang M, Chen J, Hu Y, Chen C, Tang Y, Rao Z, Ma J, Zheng M, Shi K, Cai C, Lu M, Tang R, Ma X, Xie C, Luo Y, Li X, Huang Z. Hepatic FXR-FGF4 is required for bile acid homeostasis via an FGFR4-LRH-1 signal node under cholestatic stress. Cell Metab 2024:S1550-4131(24)00372-3. [PMID: 39393353 DOI: 10.1016/j.cmet.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/31/2024] [Accepted: 09/12/2024] [Indexed: 10/13/2024]
Abstract
Bile acid (BA) homeostasis is vital for various physiological processes, whereas its disruption underlies cholestasis. The farnesoid X receptor (FXR) is a master regulator of BA homeostasis via the ileal fibroblast growth factor (FGF)15/19 endocrine pathway, responding to postprandial or abnormal transintestinal BA flux. However, the de novo paracrine signal mediator of hepatic FXR, which governs the extent of BA synthesis within the liver in non-postprandial or intrahepatic cholestatic conditions, remains unknown. We identified hepatic Fgf4 as a direct FXR target that paracrinally signals to downregulate Cyp7a1 and Cyp8b1. The effect of FXR-FGF4 is mediated by an uncharted intracellular FGF receptor 4 (FGFR4)-LRH-1 signaling node. This liver-centric pathway acts as a first-line checkpoint for intrahepatic and transhepatic BA flux upstream of the peripheral FXR-FGF15/19 pathway, which together constitutes an integral hepatoenteric control mechanism that fine-tunes BA homeostasis, counteracting cholestasis and hepatobiliary damage. Our findings shed light on potential therapeutic strategies for cholestatic diseases.
Collapse
Affiliation(s)
- Lintao Song
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Yushu Hou
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Da Xu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xijia Dai
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jianya Luo
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yi Liu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhuobing Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Miaomiao Yang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jie Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yue Hu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chuchu Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yuli Tang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhiheng Rao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jianjia Ma
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Minghua Zheng
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Keqing Shi
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chao Cai
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Mingqin Lu
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ruqi Tang
- Division of Gastroenterology and Hepatology, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yongde Luo
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaokun Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Zhifeng Huang
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
6
|
Baptista LC, Wilson L, Barnes S, Anton SD, Buford TW. Effects of resveratrol on changes in trimethylamine-N-oxide and circulating cardiovascular factors following exercise training among older adults. Exp Gerontol 2024; 194:112479. [PMID: 38871236 DOI: 10.1016/j.exger.2024.112479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/21/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
PURPOSE Trimethylamine-N-oxide (TMAO) is a gut-derived metabolite associated with cardiovascular disease (CVD). In preclinical and observational studies, resveratrol and exercise training have been suggested as potential strategies to reduce the systemic levels of TMAO. However, evidence from experimental studies in humans remains unknown. This project examined the dose-dependent effects of a combined resveratrol intervention with exercise training on circulating TMAO and other related metabolite signatures in older adults with high CVD risk. METHODS Forty-one older adults [mean (±SD) age of 72.1 (6.8) years] participated in a 12-week supervised center-based, multi-component exercise training intervention [2×/week; 80 min/session] and were randomized to one of two resveratrol dosages [Low: 500 vs. High:1000 mg/day] or a cellulose-based placebo. Serum/plasma were collected at baseline and post-intervention and evaluated for TMAO and associated analytes. RESULTS After the 12-week intervention, TMAO concentration increased over time, regardless of treatment [mean (±SD) Placebo: 11262 (±3970); Low:13252 (±1193); High: 12661(±3359) AUC; p = 0.04]. Each resveratrol dose produced different changes in metabolite signatures. Low dose resveratrol upregulated metabolites associated with bile acids biosynthesis (i.e., glycochenodeoxycholic acid, glycoursodeoxycholic acid, and glycocholic acid). High dose resveratrol modulated metabolites enriched for glycolysis, and pyruvate, propanoate, β-alanine, and tryptophan metabolism. Different communities tightly correlated to TMAO and resveratrol metabolites were associated with the lipid and vascular inflammatory clinical markers [|r| > 0.4, p < 0.05]. CONCLUSION These findings suggest a distinct dose-dependent adaptation response to resveratrol supplementation on circulating metabolite signatures but not on TMAO among high-risk CVD older adults when combined with an exercise training intervention.
Collapse
Affiliation(s)
- Liliana C Baptista
- University of Coimbra, Faculty of Sport Sciences and Physical Education, Coimbra, Portugal; Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, University of Alabama at Birmingham, Birmingham, AL; USA.
| | - Landon Wilson
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA; Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stephen Barnes
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA; Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stephen D Anton
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
| | - Thomas W Buford
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, University of Alabama at Birmingham, Birmingham, AL; USA; Birmingham/Atlanta VA GRECC, Birmingham VA Medical Center; Birmingham, AL, USA.
| |
Collapse
|
7
|
Chen Y, Chaudhari SN, Harris DA, Roberts CF, Moscalu A, Mathur V, Zhao L, Tavakkoli A, Devlin AS, Sheu EG. A small intestinal bile acid modulates the gut microbiome to improve host metabolic phenotypes following bariatric surgery. Cell Host Microbe 2024; 32:1315-1330.e5. [PMID: 39043190 PMCID: PMC11332993 DOI: 10.1016/j.chom.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/27/2024] [Accepted: 06/20/2024] [Indexed: 07/25/2024]
Abstract
Bariatric surgical procedures such as sleeve gastrectomy (SG) provide effective type 2 diabetes (T2D) remission in human patients. Previous work demonstrated that gastrointestinal levels of the bacterial metabolite lithocholic acid (LCA) are decreased after SG in mice and humans. Here, we show that LCA worsens glucose tolerance and impairs whole-body metabolism. We also show that taurodeoxycholic acid (TDCA), which is the only bile acid whose concentration increases in the murine small intestine post-SG, suppresses the bacterial bile acid-inducible (bai) operon and production of LCA both in vitro and in vivo. Treatment of diet-induced obese mice with TDCA reduces LCA levels and leads to microbiome-dependent improvements in glucose handling. Moreover, TDCA abundance is decreased in small intestinal tissue from T2D patients. This work reveals that TDCA is an endogenous inhibitor of LCA production and suggests that TDCA may contribute to the glucoregulatory effects of bariatric surgery.
Collapse
Affiliation(s)
- Yingjia Chen
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Snehal N Chaudhari
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David A Harris
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Cullen F Roberts
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Andrei Moscalu
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Vasundhara Mathur
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Lei Zhao
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Ali Tavakkoli
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - A Sloan Devlin
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Eric G Sheu
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
8
|
Baars DP, Fondevila MF, Meijnikman AS, Nieuwdorp M. The central role of the gut microbiota in the pathophysiology and management of type 2 diabetes. Cell Host Microbe 2024; 32:1280-1300. [PMID: 39146799 DOI: 10.1016/j.chom.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024]
Abstract
The inhabitants of our intestines, collectively called the gut microbiome, comprise fungi, viruses, and bacterial strains. These microorganisms are involved in the fermentation of dietary compounds and the regulation of our adaptive and innate immune systems. Less known is the reciprocal interaction between the gut microbiota and type 2 diabetes mellitus (T2DM), as well as their role in modifying therapies to reduce associated morbidity and mortality. In this review, we aim to discuss the existing literature on gut microbial strains and their diet-derived metabolites involved in T2DM. We also explore the potential diagnostics and therapeutic avenues the gut microbiota presents for targeted T2DM management. Personalized treatment plans, driven by diet and medication based on the patient's microbiome and clinical markers, could optimize therapy.
Collapse
Affiliation(s)
- Daniel P Baars
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Marcos F Fondevila
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Abraham S Meijnikman
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Max Nieuwdorp
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands; Diabetes Center Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
9
|
Levy C, Caldwell S, Mantry P, Luketic V, Landis CS, Huang J, Mena E, Maheshwari R, Rank K, Xu J, Malkov VA, Billin AN, Liu X, Lu X, Barchuk WT, Watkins TR, Chung C, Myers RP, Kowdley KV. Cilofexor in Patients With Compensated Cirrhosis Due to Primary Sclerosing Cholangitis: An Open-Label Phase 1B Study. Clin Transl Gastroenterol 2024; 15:e00744. [PMID: 38976363 PMCID: PMC11346858 DOI: 10.14309/ctg.0000000000000744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/10/2024] Open
Abstract
INTRODUCTION This proof-of-concept, open-label phase 1b study evaluated the safety and efficacy of cilofexor, a potent selective farnesoid X receptor agonist, in patients with compensated cirrhosis due to primary sclerosing cholangitis. METHODS Escalating doses of cilofexor (30 mg [weeks 1-4], 60 mg [weeks 5-8], 100 mg [weeks 9-12]) were administered orally once daily over 12 weeks. The primary endpoint was safety. Exploratory measures included cholestasis and fibrosis markers and pharmacodynamic biomarkers of bile acid homeostasis. RESULTS Eleven patients were enrolled (median age: 48 years; 55% men). The most common treatment-emergent adverse events (TEAEs) were pruritus (8/11 [72.7%]), fatigue, headache, nausea, and upper respiratory tract infection (2/11 [18.2%] each). Seven patients experienced a pruritus TEAE (one grade 3) considered drug-related. One patient temporarily discontinued cilofexor owing to peripheral edema. There were no deaths, serious TEAEs, or TEAEs leading to permanent discontinuation. Median changes (interquartile ranges) from baseline to week 12 (predose, fasting) were -24.8% (-35.7 to -7.4) for alanine transaminase, -13.0% (-21.9 to -8.6) for alkaline phosphatase, -43.5% (-52.1 to -30.8) for γ-glutamyl transferase, -12.7% (-25.0 to 0.0) for total bilirubin, and -21.2% (-40.0 to 0.0) for direct bilirubin. Least-squares mean percentage change (95% confidence interval) from baseline to week 12 at trough was -55.3% (-70.8 to -31.6) for C4 and -60.5% (-81.8 to -14.2) for cholic acid. Fasting fibroblast growth factor 19 levels transiently increased after cilofexor administration. DISCUSSION Escalating doses of cilofexor over 12 weeks were well tolerated and improved cholestasis markers in patients with compensated cirrhosis due to primary sclerosing cholangitis (NCT04060147).
Collapse
Affiliation(s)
- Cynthia Levy
- Division of Digestive Health and Liver Diseases, University of Miami Miller School of Medicine, Miami, Florida, USA
- Schiff Center for Liver Diseases, University of Miami, Miami, Florida, USA;
| | - Stephen Caldwell
- University of Virginia School of Medicine, Charlottesville, Virginia, USA;
| | - Parvez Mantry
- Methodist Transplant Specialists, Dallas, Texas, USA;
| | - Velimir Luketic
- Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA;
| | - Charles S. Landis
- Univerisity of Washington School of Medicine, Seattle, Washington, USA;
| | - Jonathan Huang
- University of Rochester School of Medicine and Dentistry, Rochester, New York, USA;
| | - Edward Mena
- Pasadena Liver Center, Pasadena, California, USA;
| | | | - Kevin Rank
- MNGI Digestive Health, Minneapolis, Minnesota, USA;
| | - Jun Xu
- Gilead Sciences, Inc., Foster City, California, USA;
| | | | | | - Xiangyu Liu
- Gilead Sciences, Inc., Foster City, California, USA;
| | - Xiaomin Lu
- Gilead Sciences, Inc., Foster City, California, USA;
| | | | | | - Chuhan Chung
- Gilead Sciences, Inc., Foster City, California, USA;
| | | | | |
Collapse
|
10
|
Fukasawa H, Hashimoto R, Hagihara K, Takahashi I, Sugiyama M, Yoshioka K. Histological species differences among chickens, rats, and mice in experimental cholestasis by bile duct ligation. Res Vet Sci 2024; 176:105343. [PMID: 38970869 DOI: 10.1016/j.rvsc.2024.105343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/22/2024] [Accepted: 06/30/2024] [Indexed: 07/08/2024]
Abstract
Cholestasis is a hepatic disease reported in humans, dogs, and chickens and is characterized by various signs. Bile duct ligation (BDL) is a standard model for research in cholestasis in male rats and mice. However, the timing and degree of structural changes in BDL-subjected liver differ in the two animal species. This study focused on chickens as a choice model for cholestasis. Specifically, we aimed to evaluate the features of BDL in hens and compare them with those in rats and mice. Eighteen hens, 19 female ICR mice, and 18 female SD rats were randomly divided into the sham-operated and BDL groups. At 2, 4, and 6 weeks after BDL, and 4 weeks after the sham operation, liver and blood samples were collected and analyzed histologically and biochemically. Histologically, bile duct proliferation in BDL-subjected livers was first observed in the chickens and then the rats and mice, whereas CD44-positive small hepatocytes were observed only in chickens in the BDL group. Biochemically, the mRNA expression of the hepatocyte growth factor was higher in BDL-subjected chickens, while Interleukin 6 expression was higher in the BDL-subjected rats and mice than in animals in the sham group. In addition, farnesoid X receptor mRNA expression was lower in the BDL-subjected chickens than in the sham chickens. The BDL group had significantly higher total bile acid blood concentration than the sham group. In conclusion, the signs of hepatopathy caused by BDL differ among animal species. Furthermore, we propose that compared to BDL-subjected mice and rats, BDL-subjected chickens are a novel cholestasis animal model that demonstrates severe hepatopathy and liver restructuring.
Collapse
Affiliation(s)
- Hanae Fukasawa
- Laboratory of Veterinary Anatomy, School of Veterinary Medicine, Kitasato University, Aomori, Japan.
| | - Ryunosuke Hashimoto
- Laboratory of Veterinary Anatomy, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Kodai Hagihara
- Laboratory of Veterinary Anatomy, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Ikumi Takahashi
- Laboratory of Veterinary Anatomy, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Makoto Sugiyama
- Laboratory of Veterinary Anatomy, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Kazuki Yoshioka
- Laboratory of Veterinary Anatomy, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| |
Collapse
|
11
|
Zhao Y, Xiang Z, Pan H, Huang X, Chen W, Huang Z. FGL2 improves experimental colitis related to gut microbiota structure and bile acid metabolism by regulating macrophage autophagy and apoptosis. Heliyon 2024; 10:e34349. [PMID: 39104498 PMCID: PMC11298944 DOI: 10.1016/j.heliyon.2024.e34349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a refractory disease with immune abnormalities and pathological changes. Intestinal macrophages are considered to be the main factor in establishing and maintaining intestinal homeostasis. The immunoregulatory and anti-inflammatory activity of fibrinogen-like protein 2 (FGL2) can regulate macrophage polarization. However, its function in IBD is unclear. In this study, we explored the effect of FGL2 on macrophage polarization, autophagy, and apoptosis in bone marrow-derived macrophages (BMDMs) treated with lipopolysaccharide (LPS) and further investigated changes in the intestinal barrier, flora, and bile acid in dextran sodium sulfate (DSS)-treated mice. Our results demonstrated that FGL2-/- weakened ERK signaling to promote M1 polarization and upregulate inflammation, autophagy, and apoptosis in LPS-stimulated BMDMs. rFGL2 treatment reversed these effects. FGL2-/- mice exhibited higher sensitivity to DSS exposure, with faster body weight loss, shorter colon lengths, and higher disease activity index (DAI) values. rFGL2 treatment protected against experimental ulcerative colitis (UC), restrained excessive autophagy, apoptosis, and improved gut barrier impairment. Gut microbiota structure and bile acid homeostasis were more unbalanced in FGL2-/- DSS mice than in wild-type (WT) DSS mice. rFGL2 treatment improved gut microbiota structure and bile acid homeostasis. Altogether, our results established that FGL2 is a potential therapeutic target for IBD.
Collapse
Affiliation(s)
- Yuan Zhao
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zheng Xiang
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Haoran Pan
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xielin Huang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Weizhen Chen
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhiming Huang
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| |
Collapse
|
12
|
Sun D, Xie C, Zhao Y, Liao J, Li S, Zhang Y, Wang D, Hua K, Gu Y, Du J, Huang G, Huang J. The gut microbiota-bile acid axis in cholestatic liver disease. Mol Med 2024; 30:104. [PMID: 39030473 PMCID: PMC11265038 DOI: 10.1186/s10020-024-00830-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/07/2024] [Indexed: 07/21/2024] Open
Abstract
Cholestatic liver diseases (CLD) are characterized by impaired normal bile flow, culminating in excessive accumulation of toxic bile acids. The majority of patients with CLD ultimately progress to liver cirrhosis and hepatic failure, necessitating liver transplantation due to the lack of effective treatment. Recent investigations have underscored the pivotal role of the gut microbiota-bile acid axis in the progression of hepatic fibrosis via various pathways. The obstruction of bile drainage can induce gut microbiota dysbiosis and disrupt the intestinal mucosal barrier, leading to bacteria translocation. The microbial translocation activates the immune response and promotes liver fibrosis progression. The identification of therapeutic targets for modulating the gut microbiota-bile acid axis represents a promising strategy to ameliorate or perhaps reverse liver fibrosis in CLD. This review focuses on the mechanisms in the gut microbiota-bile acids axis in CLD and highlights potential therapeutic targets, aiming to lay a foundation for innovative treatment approaches.
Collapse
Affiliation(s)
- Dayan Sun
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nalishi Road, Xicheng District, Beijing, 100045, China
| | - Chuanping Xie
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nalishi Road, Xicheng District, Beijing, 100045, China
| | - Yong Zhao
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nalishi Road, Xicheng District, Beijing, 100045, China
| | - Junmin Liao
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nalishi Road, Xicheng District, Beijing, 100045, China
| | - Shuangshuang Li
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nalishi Road, Xicheng District, Beijing, 100045, China
| | - Yanan Zhang
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nalishi Road, Xicheng District, Beijing, 100045, China
| | - Dingding Wang
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nalishi Road, Xicheng District, Beijing, 100045, China
| | - Kaiyun Hua
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nalishi Road, Xicheng District, Beijing, 100045, China
| | - Yichao Gu
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nalishi Road, Xicheng District, Beijing, 100045, China
| | - Jingbin Du
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nalishi Road, Xicheng District, Beijing, 100045, China
| | - Guoxian Huang
- Department of Pediatric Surgery, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
| | - Jinshi Huang
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nalishi Road, Xicheng District, Beijing, 100045, China.
| |
Collapse
|
13
|
Duan W, Liu F, Ren Y, Zhang X, Shi JS, Xue Y, Xu ZH, Geng Y. Differences in the Ability of Lactic Acid Bacteria To Prevent Acute Alcohol-Induced Liver Injury via the Gut Microbiota-Bile Acid-Liver Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15265-15275. [PMID: 38918075 DOI: 10.1021/acs.jafc.4c01353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Probiotics can regulate gut microbiota and protect against acute alcohol-induced liver injury through the gut-liver axis. However, efficacy is strain-dependent, and their mechanism remains unclear. This study investigated the effect of lactic acid bacteria (LAB), including Lacticaseibacillus paracasei E10 (E10), Lactiplantibacillus plantarum M (M), Lacticaseibacillus rhamnosus LGG (LGG), Lacticaseibacillus paracasei JN-1 (JN-1), and Lacticaseibacillus paracasei JN-8 (JN-8), on the prevention of acute alcoholic liver injury in mice. We found that LAB pretreatment reduced serum alanine transaminase (ALT) and aspartate transaminase (AST) and reduced hepatic total cholesterol (TC) and triglyceride (TG). JN-8 pretreatment exhibited superior efficacy in improving hepatic antioxidation. LGG and JN-8 pretreatment significantly attenuated hepatic and colonic inflammation by decreasing the expression of interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) and increasing the expression of interleukin 10 (IL-10). JN-1 and JN-8 pretreatments have better preventive effects than other LAB pretreatment on intestinal barrier dysfunction. In addition, the LAB pretreatment improved gut microbial dysbiosis and bile acid (BA) metabolic abnormality. All of the strains were confirmed to have bile salt deconjugation capacities in vitro, where M and JN-8 displayed higher activities. This study provides new insights into the prevention and mechanism of LAB strains in preventing acute alcoholic liver injury.
Collapse
Affiliation(s)
- Wenhui Duan
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Fei Liu
- Wuxi Hospital of Traditional Chinese Medicine, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yilin Ren
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Xiaojuan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Jin-Song Shi
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yuzheng Xue
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Zheng-Hong Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Advanced Brewing Technology Innovation Center, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Yan Geng
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
14
|
Gioiello A, Rosatelli E, Cerra B. Patented Farnesoid X receptor modulators: a review (2019 - present). Expert Opin Ther Pat 2024; 34:547-564. [PMID: 38308658 DOI: 10.1080/13543776.2024.2314296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
INTRODUCTION The Farnesoid X receptor (FXR) is a key transcription factor that is involved in the bile acid signaling network. The modulation of the FXR activity influences glucose and lipid homeostasis, reduces obesity and insulin resistance, as well as it regulates the pathogenesis of inflammatory and metabolic disorders. FXR ligands have therefore emerged in drug discovery as promising therapeutic agents for the prevention and treatment of gastrointestinal and liver diseases, including cancer. AREAS COVERED Recent advances in the field of FXR modulators are reviewed, with a particular attention on patent applications filed in the past 5 years related to both the discovery and development of FXR targeting drugs. EXPERT OPINION FXR agonists have proven their efficacy and safety in humans and have shown a significant potential as clinical agents to treat metabolic and inflammatory associated conditions. However, several challenges, including adverse events such as pruritus, remain to be solved. Current studies aim to gain insights into the pathophysiological mechanisms by which FXR regulates metabolism and inflammation in terms of tissue/organ/isoform-specificity, post-translational modifications and coregulatory proteins, on the route of novel, improved FXR modulators.
Collapse
Affiliation(s)
- Antimo Gioiello
- Laboratory of Medicinal and Advanced Synthetic Chemistry (Lab MASC), Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | | | - Bruno Cerra
- Laboratory of Medicinal and Advanced Synthetic Chemistry (Lab MASC), Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
15
|
Karakus E, Proksch AL, Moritz A, Geyer J. Quantitative bile acid profiling in healthy adult dogs and pups from serum, plasma, urine, and feces using LC-MS/MS. Front Vet Sci 2024; 11:1380920. [PMID: 38948668 PMCID: PMC11211631 DOI: 10.3389/fvets.2024.1380920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/29/2024] [Indexed: 07/02/2024] Open
Abstract
Synthesis and secretion of bile acids (BA) is a key physiological function of the liver. In pathological conditions like portosystemic shunt, hepatic insufficiency, hepatitis, or cirrhosis BA metabolism and secretion are disturbed. Quantification of total serum BA is an established diagnostic method to assess the general liver function and allows early detection of abnormalities, liver disease progression and guidance of treatment decisions. To date, data on comparative BA profiles in dogs are limited. However, BA profiles might be even better diagnostic parameters than total BA concentrations. On this background, the present study analyzed and compared individual BA profiles in serum, plasma, urine, and feces of 10 healthy pups and 40 adult healthy dogs using ultra-high performance liquid chromatography coupled to electrospray ionization mass spectrometry. Sample preparation was performed by solid-phase extraction for serum, plasma, and urine samples or by protein precipitation with methanol for the feces samples. For each dog, 22 different BA, including unconjugated BA and their glycine and taurine conjugates, were analyzed. In general, there was a great interindividual variation for the concentrations of single BA, mostly exemplified by the fact that cholic acid (CA) was by far the most prominent BA in blood and urine samples of some of the dogs (adults and pups), while in others, CA was under the detection limit. There were no significant age-related differences in the BA profiles, but pups showed generally lower absolute BA concentrations in serum, plasma, and urine. Taurine-conjugated BA were predominant in the serum and plasma of both pups (68%) and adults (74-75%), while unconjugated BA were predominant in the urine and feces of pups (64 and 95%, respectively) and adults (68 and 99%, respectively). The primary BA chenodeoxycholic acid and taurocholic acid and the secondary BA deoxycholic acid and lithocholic acid were the most robust analytes for potential diagnostic purpose. In conclusion, this study reports simultaneous BA profiling in dog serum, plasma, urine, and feces and provides valuable diagnostic data for subsequent clinical studies in dogs with different kinds of liver diseases.
Collapse
Affiliation(s)
- Emre Karakus
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Anna-Lena Proksch
- Clinic of Small Animals—Internal Medicine, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Andreas Moritz
- Clinic of Small Animals—Internal Medicine, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Joachim Geyer
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
16
|
Wei M, Tu W, Huang G. Regulating bile acids signaling for NAFLD: molecular insights and novel therapeutic interventions. Front Microbiol 2024; 15:1341938. [PMID: 38887706 PMCID: PMC11180741 DOI: 10.3389/fmicb.2024.1341938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) emerges as the most predominant cause of liver disease, tightly linked to metabolic dysfunction. Bile acids (BAs), initially synthesized from cholesterol in the liver, undergo further metabolism by gut bacteria. Increasingly acknowledged as critical modulators of metabolic processes, BAs have been implicated as important signaling molecules. In this review, we will focus on the mechanism of BAs signaling involved in glucose homeostasis, lipid metabolism, energy expenditure, and immune regulation and summarize their roles in the pathogenesis of NAFLD. Furthermore, gut microbiota dysbiosis plays a key role in the development of NAFLD, and the interactions between BAs and intestinal microbiota is elucidated. In addition, we also discuss potential therapeutic strategies for NAFLD, including drugs targeting BA receptors, modulation of intestinal microbiota, and metabolic surgery.
Collapse
Affiliation(s)
- Meilin Wei
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Tu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Genhua Huang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
17
|
Akepati PR, Gochanour EM. Investigational farnesoid X receptor agonists for the treatment of primary biliary cholangitis. Expert Opin Investig Drugs 2024; 33:627-638. [PMID: 38676426 DOI: 10.1080/13543784.2024.2348743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/24/2024] [Indexed: 04/28/2024]
Abstract
INTRODUCTION Up to 40% of Primary biliary cholangitis (PBC) patients have a suboptimal response to Ursodeoxycholic acid (UDCA). Close to half of such patients show a remarkable improvement when additionally treated with Obeticholic acid (OCA) but have a dose-dependent increase of pruritus. This relative success of OCA, a first-in-class Farnesoid receptor (FXR) agonist, has positioned FXR as an attractive target for drug development. Novel candidates have since emerged, providing hope for this subgroup of patients who lack effective and safe treatments. AREAS COVERED We discussed the role of bile acids in PBC pathogenesis and how the FXR agonists provide therapeutic value by affecting bile acid synthesis and transport. Novel FXR agonists undergoing pre-clinical and clinical trials for PBC were enlisted via literature search by including the terms 'FXR agonists,' 'FXR PBC,' 'PBC clinical trials' on PubMed, MEDLINE via Ovid, and Clinicaltrials.gov. EXPERT OPINION Novel FXR agonists currently under investigation for PBC improve the disease surrogate markers in early trials. However, as with OCA, pruritus remains a concern with the newer drugs despite targeted chemical modifications to increase FXR specificity. Directing future resources toward studying the molecular mechanisms behind pruritus may lead to better drug design and efficacious yet safer drugs.
Collapse
Affiliation(s)
- Prithvi Reddy Akepati
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Eric M Gochanour
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA
- The Gastroenterology Center, Valley View Hospital, Glenwood Springs, CO, USA
| |
Collapse
|
18
|
Chow MD, Otersen K, Wassef A, Kong B, Yamarthy S, Rizzolo D, Yang I, Buckley B, Lu A, Crook N, Lee M, Gao J, Naganand S, Stofan MF, Armstrong L, Schumacher J, Taylor R, Henry Z, Basaly V, Yang Z, Zhang M, Huang M, Kagan L, Brunetti L, Sadek R, Lee YH, Guo GL. Effects of intestine-specific deletion of FGF15 on the development of fatty liver disease with vertical sleeve gastrectomy. Hepatol Commun 2024; 8:e0444. [PMID: 38780301 PMCID: PMC11124683 DOI: 10.1097/hc9.0000000000000444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/27/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Vertical sleeve gastrectomy (SGx) is a type of bariatric surgery to treat morbid obesity and metabolic dysfunction-associated steatotic liver disease (MASLD). The molecular mechanisms of SGx to improve MASLD are unclear, but increased bile acids (BAs) and FGF19 (mouse FGF15) were observed. FGF15/19 is expressed in the ileum in response to BAs and is critical in not only suppressing BA synthesis in the liver but also promoting energy expenditure. We hypothesized the reduction of obesity and resolution of MASLD by SGx may be mediated by FGF15/19. METHODS First, we conducted hepatic gene expression analysis in obese patients undergoing SGx, with the results showing increased expression of FGF19 in obese patients' livers. Next, we used wild-type and intestine-specific Fgf15 knockout mice (Fgf15ile-/-) to determine the effects of FGF15 deficiency on improving the metabolic effects. RESULTS SGx improved metabolic endpoints in both genotypes, evidenced by decreased obesity, improved glucose tolerance, and reduced MASLD progression. However, Fgf15ile-/- mice showed better improvement compared to wild-type mice after SGx, suggesting that other mediators than FGF15 are also responsible for the beneficial effects of FGF15 deficiency. Further gene expression analysis in brown adipose tissue suggests increased thermogenesis. CONCLUSIONS FGF15 deficiency, the larger BA pool and higher levels of secondary BAs may increase energy expenditure in extrahepatic tissues, which may be responsible for improved metabolic functions following SGx.
Collapse
Affiliation(s)
- Monica D. Chow
- Department of Surgery, Division of Pediatric Surgery, Rutgers Robert Wood Johnson Medical Center School, New Brunswick, New Jersey, USA
| | - Katherine Otersen
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Andrew Wassef
- Department of Pharmaceutics, Ernest Mario School of Pharmacy-Rutgers University, Piscataway, New Jersey, USA
- Center of Excellence for Pharmaceutical Translational Research and Education, Rutgers University, Piscataway, New Jersey, USA
- Center of Excellence for Metabolic and Bariatric Surgery, Robert Wood Johnson Barnabas University Hospital, New Brunswick, New Jersey, USA
- Advanced Surgical & Bariatrics of NJ, Somerset, New Jersey, USA
| | - Bo Kong
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Sowmya Yamarthy
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Daniel Rizzolo
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Ill Yang
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Brian Buckley
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Alexander Lu
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Naomi Crook
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Matthew Lee
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Judy Gao
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Sareena Naganand
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Mary F. Stofan
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Laura Armstrong
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Justin Schumacher
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Rulaiha Taylor
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Zakiyah Henry
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Veronia Basaly
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Zhenning Yang
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Min Zhang
- Children’s Liver Disease Center, 302 Military Hospital, Beijing, China
| | - Mingxing Huang
- Department of Infectious Diseases, the Fifth Affiliated Hospital of Sun Yat-Sen University (SYSU), Zhuhai, Guangdong, China
| | - Leonid Kagan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy-Rutgers University, Piscataway, New Jersey, USA
- Center of Excellence for Pharmaceutical Translational Research and Education, Rutgers University, Piscataway, New Jersey, USA
| | - Luigi Brunetti
- Department of Pharmaceutics, Ernest Mario School of Pharmacy-Rutgers University, Piscataway, New Jersey, USA
- Center of Excellence for Pharmaceutical Translational Research and Education, Rutgers University, Piscataway, New Jersey, USA
| | - Ragui Sadek
- Center of Excellence for Metabolic and Bariatric Surgery, Robert Wood Johnson Barnabas University Hospital, New Brunswick, New Jersey, USA
- Advanced Surgical & Bariatrics of NJ, Somerset, New Jersey, USA
| | - Yi-Horng Lee
- Department of Surgery, Division of Pediatric Surgery, Rutgers Robert Wood Johnson Medical Center School, New Brunswick, New Jersey, USA
| | - Grace L. Guo
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey, USA
- Department of Veterans Affairs New Jersey Health Care System, East Orange, New Jersey, USA
- Rutgers Center for Lipid Research, New Brunswick, New Jersey, USA
| |
Collapse
|
19
|
Fleishman JS, Kumar S. Bile acid metabolism and signaling in health and disease: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:97. [PMID: 38664391 PMCID: PMC11045871 DOI: 10.1038/s41392-024-01811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
Bile acids, once considered mere dietary surfactants, now emerge as critical modulators of macronutrient (lipid, carbohydrate, protein) metabolism and the systemic pro-inflammatory/anti-inflammatory balance. Bile acid metabolism and signaling pathways play a crucial role in protecting against, or if aberrant, inducing cardiometabolic, inflammatory, and neoplastic conditions, strongly influencing health and disease. No curative treatment exists for any bile acid influenced disease, while the most promising and well-developed bile acid therapeutic was recently rejected by the FDA. Here, we provide a bottom-up approach on bile acids, mechanistically explaining their biochemistry, physiology, and pharmacology at canonical and non-canonical receptors. Using this mechanistic model of bile acids, we explain how abnormal bile acid physiology drives disease pathogenesis, emphasizing how ceramide synthesis may serve as a unifying pathogenic feature for cardiometabolic diseases. We provide an in-depth summary on pre-existing bile acid receptor modulators, explain their shortcomings, and propose solutions for how they may be remedied. Lastly, we rationalize novel targets for further translational drug discovery and provide future perspectives. Rather than dismissing bile acid therapeutics due to recent setbacks, we believe that there is immense clinical potential and a high likelihood for the future success of bile acid therapeutics.
Collapse
Affiliation(s)
- Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
20
|
Guo Z, He K, Pang K, Yang D, Lyu C, Xu H, Wu D. Exploring Advanced Therapies for Primary Biliary Cholangitis: Insights from the Gut Microbiota-Bile Acid-Immunity Network. Int J Mol Sci 2024; 25:4321. [PMID: 38673905 PMCID: PMC11050225 DOI: 10.3390/ijms25084321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Primary biliary cholangitis (PBC) is a cholestatic liver disease characterized by immune-mediated injury to small bile ducts. Although PBC is an autoimmune disease, the effectiveness of conventional immunosuppressive therapy is disappointing. Nearly 40% of PBC patients do not respond to the first-line drug UDCA. Without appropriate intervention, PBC patients eventually progress to liver cirrhosis and even death. There is an urgent need to develop new therapies. The gut-liver axis emphasizes the interconnection between the gut and the liver, and evidence is increasing that gut microbiota and bile acids play an important role in the pathogenesis of cholestatic diseases. Dysbiosis of gut microbiota, imbalance of bile acids, and immune-mediated bile duct injury constitute the triad of pathophysiology in PBC. Autoimmune cholangitis has the potential to be improved through immune system modulation. Considering the failure of conventional immunotherapies and the involvement of gut microbiota and bile acids in the pathogenesis, targeting immune factors associated with them, such as bile acid receptors, microbial-derived molecules, and related specific immune cells, may offer breakthroughs. Understanding the gut microbiota-bile acid network and related immune dysfunctions in PBC provides a new perspective on therapeutic strategies. Therefore, we summarize the latest advances in research of gut microbiota and bile acids in PBC and, for the first time, explore the possibility of related immune factors as novel immunotherapy targets. This article discusses potential therapeutic approaches focusing on regulating gut microbiota, maintaining bile acid homeostasis, their interactions, and related immune factors.
Collapse
Affiliation(s)
- Ziqi Guo
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Z.G.); (K.P.); (D.Y.)
| | - Kun He
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (K.H.); (C.L.)
| | - Ke Pang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Z.G.); (K.P.); (D.Y.)
| | - Daiyu Yang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Z.G.); (K.P.); (D.Y.)
| | - Chengzhen Lyu
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (K.H.); (C.L.)
| | - Haifeng Xu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Dong Wu
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (K.H.); (C.L.)
| |
Collapse
|
21
|
Bozadjieva-Kramer N, Shin JH, Li Z, Rupp AC, Miller N, Kernodle S, Lanthier N, Henry P, Seshadri N, Myronovych A, MacDougald OA, O’Rourke RW, Kohli R, Burant CF, Rothberg AE, Seeley RJ. Intestinal FGF15 regulates bile acid and cholesterol metabolism but not glucose and energy balance. JCI Insight 2024; 9:e174164. [PMID: 38587078 PMCID: PMC11128213 DOI: 10.1172/jci.insight.174164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/21/2024] [Indexed: 04/09/2024] Open
Abstract
Fibroblast growth factor 15/19 (FGF15/19, mouse/human ortholog) is expressed in the ileal enterocytes of the small intestine and released postprandially in response to bile acid absorption. Previous reports of FGF15-/- mice have limited our understanding of gut-specific FGF15's role in metabolism. Therefore, we studied the role of endogenous gut-derived FGF15 in bile acid, cholesterol, glucose, and energy balance. We found that circulating levels of FGF19 were reduced in individuals with obesity and comorbidities, such as type 2 diabetes and metabolic dysfunction-associated fatty liver disease. Gene expression analysis of ileal FGF15-positive cells revealed differential expression during the obesogenic state. We fed standard chow or a high-fat metabolic dysfunction-associated steatohepatitis-inducing diet to control and intestine-derived FGF15-knockout (FGF15INT-KO) mice. Control and FGF15INT-KO mice gained similar body weight and adiposity and did not show genotype-specific differences in glucose, mixed meal, pyruvate, and glycerol tolerance. FGF15INT-KO mice had increased systemic bile acid levels but decreased cholesterol levels, pointing to a primary role for gut-derived FGF15 in regulating bile acid and cholesterol metabolism when exposed to obesogenic diet. These studies show that intestinal FGF15 plays a specific role in bile acid and cholesterol metabolism regulation but is not essential for energy and glucose balance.
Collapse
Affiliation(s)
- Nadejda Bozadjieva-Kramer
- Research Service, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
- Department of Surgery and
| | | | - Ziru Li
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, Maine, USA
| | - Alan C. Rupp
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicole Miller
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Nicolas Lanthier
- Hepato-Gastroenterology Department, Saint-Luc University Clinics, and
- Laboratory of Hepatology and Gastroenterology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - Paulina Henry
- Pathological Anatomy Department, Institute of Pathology and Genetics, Gosselies, Belgium
| | | | | | - Ormond A. MacDougald
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Robert W. O’Rourke
- Research Service, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
- Department of Surgery and
| | - Rohit Kohli
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Charles F. Burant
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Amy E. Rothberg
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
22
|
Laddha AP, Dzielak L, Lewis C, Xue R, Manautou JE. Impact of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) on the expression and function of hepatobiliary transporters: A comprehensive mechanistic review. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167037. [PMID: 38295624 DOI: 10.1016/j.bbadis.2024.167037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/11/2024] [Accepted: 01/20/2024] [Indexed: 02/02/2024]
Abstract
The liver plays a central role in the biotransformation and disposition of endogenous molecules and xenobiotics. In addition to drug-metabolizing enzymes, transporter proteins are key determinants of drug hepatic clearance. Hepatic transporters are transmembrane proteins that facilitate the movement of chemicals between sinusoidal blood and hepatocytes. Other drug transporters translocate molecules from hepatocytes into bile canaliculi for biliary excretion. The formers are known as basolateral, while the latter are known as canalicular transporters. Also, these transporters are classified into two super-families, the solute carrier transporter (SLC) and the adenosine triphosphate (ATP)-binding cassette (ABC) transporter. The expression and function of transporters involve complex regulatory mechanisms, which are contributing factors to interindividual variability in drug pharmacokinetics and disposition. A considerable number of liver diseases are known to alter the expression and function of drug transporters. Among them, non-alcoholic fatty liver disease (NAFLD) is a chronic condition with a rapidly increasing incidence worldwide. NAFLD, recently reclassified as metabolic dysfunction-associated steatotic liver disease (MASLD), is a disease continuum that includes steatosis with or without mild inflammation (NASH), and potentially neuroinflammatory pathology. NASH is additionally characterized by the presence of hepatocellular injury. During NAFLD and NASH, drug transporters exhibit altered expression and function, leading to altered drug pharmacokinetics and pharmacodynamics, thus increasing the risk of adverse drug reactions. The purpose of the present review is to provide comprehensive mechanistic information on the expression and function of hepatic transporters under fatty liver conditions and hence, the impact on the pharmacokinetic profiles of certain drugs from the available pre-clinical and clinical literature.
Collapse
Affiliation(s)
- Ankit P Laddha
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Lindsey Dzielak
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA; Non-Clinical Drug Safety (NDS) Department, Boehringer Ingelheim Pharmaceutical Co., Ridgefield, CT, USA
| | - Cedric Lewis
- Non-Clinical Drug Safety (NDS) Department, Boehringer Ingelheim Pharmaceutical Co., Ridgefield, CT, USA
| | - Raymond Xue
- Charles River Laboratories, Inc., Shrewsbury, MA, USA
| | - José E Manautou
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
23
|
Mio K, Iida-Tanaka N, Togo-Ohno M, Tadenuma N, Yamanaka C, Aoe S. Barley consumption under a high-fat diet suppresses lipogenic genes through altered intestinal bile acid composition. J Nutr Biochem 2024; 125:109547. [PMID: 38081474 DOI: 10.1016/j.jnutbio.2023.109547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/31/2023] [Accepted: 12/06/2023] [Indexed: 12/31/2023]
Abstract
We evaluated whether barley flour consumption in a high-fat environment affects lipid metabolism through signals mediated by bile acids. Four-week-old mice were fed a high-fat diet supplemented with cellulose (HC) or β-glucan-rich barley flour (HB) for 12 weeks. Bile acid composition in the intestinal tract and feces was measured by GC/MS. Gene expression levels involved in bile acid metabolism in the liver and intestinal tract were determined by RT-PCR. Similar parameters were measured in mice treated with antibiotics (antibiotics-cellulose [AC] and antibiotics-barley [AB]) to reduce the activity of intestinal bacteria. The Results showed that the HB group had lower liver blood cholesterol and triglyceride levels than the HC group. The HB group showed a significant decrease in primary bile acids in the gastrointestinal tract compared to the HC group. On the other hand, the concentration of secondary bile acids relatively increased in the cecum and feces. In the liver, Fxr activation suppressed gene expression levels in synthesizing bile acids and lipids. Furthermore, in the gastrointestinal tract, Tgr5 was activated by increased secondary bile acids. Correspondingly, AMP levels were increased in the HB group compared to the HC group, AMPK was phosphorylated in the liver, and gene expression involved in lipid synthesis was downregulated. A comparison of the AC and AB groups treated with antibiotics did not confirm these effects of barley intake. In summary, our results suggest that the prevention of lipid accumulation by barley consumption involves signaling through changes in bile acid composition in the intestinal tract.
Collapse
Affiliation(s)
- Kento Mio
- Graduate School of Studies in Human Culture, Otsuma Women's University, Tokyo, Japan; Research and Development Department, Hakubaku Co., Ltd., Yamanashi, Japan
| | - Naoko Iida-Tanaka
- Graduate School of Studies in Human Culture, Otsuma Women's University, Tokyo, Japan; The Institute of Human Culture Studies, Otsuma Women's University, Tokyo, Japan
| | - Marina Togo-Ohno
- Research and Development Department, Hakubaku Co., Ltd., Yamanashi, Japan
| | - Natsuki Tadenuma
- Graduate School of Studies in Human Culture, Otsuma Women's University, Tokyo, Japan
| | - Chiemi Yamanaka
- The Institute of Human Culture Studies, Otsuma Women's University, Tokyo, Japan
| | - Seiichiro Aoe
- Graduate School of Studies in Human Culture, Otsuma Women's University, Tokyo, Japan; The Institute of Human Culture Studies, Otsuma Women's University, Tokyo, Japan.
| |
Collapse
|
24
|
Gay MD, Drda JC, Chen W, Huang Y, Yassin AA, Duka T, Fang H, Shivapurkar N, Smith JP. Implicating the cholecystokinin B receptor in liver stem cell oncogenesis. Am J Physiol Gastrointest Liver Physiol 2024; 326:G291-G309. [PMID: 38252699 PMCID: PMC11211039 DOI: 10.1152/ajpgi.00208.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024]
Abstract
Hepatocellular carcinoma (HCC) is the fastest-growing cause of cancer-related deaths worldwide. Chronic inflammation and fibrosis are the greatest risk factors for the development of HCC. Although the cell of origin for HCC is uncertain, many theories believe this cancer may arise from liver progenitor cells or stem cells. Here, we describe the activation of hepatic stem cells that overexpress the cholecystokinin-B receptor (CCK-BR) after liver injury with either a DDC diet (0.1% 3, 5-diethoxy-carbonyl 1,4-dihydrocollidine) or a NASH-inducing CDE diet (choline-deficient ethionine) in murine models. Pharmacologic blockade of the CCK-BR with a receptor antagonist proglumide or knockout of the CCK-BR in genetically engineered mice during the injury diet reduces the expression of hepatic stem cells and prevents the formation of three-dimensional tumorspheres in culture. RNA sequencing of livers from DDC-fed mice treated with proglumide or DDC-fed CCK-BR knockout mice showed downregulation of differentially expressed genes involved in cell proliferation and oncogenesis and upregulation of tumor suppressor genes compared with controls. Inhibition of the CCK-BR decreases hepatic transaminases, fibrosis, cytokine expression, and alters the hepatic immune cell signature rendering the liver microenvironment less oncogenic. Furthermore, proglumide hastened recovery after liver injury by reversing fibrosis and improving markers of synthetic function. Proglumide is an older drug that is orally bioavailable and being repurposed for liver conditions. These findings support a promising therapeutic intervention applicable to patients to prevent the development of HCC and decrease hepatic fibrosis.NEW & NOTEWORTHY This investigation identified a novel pathway involving the activation of hepatic stem cells and liver oncogenesis. Receptor blockade or genetic disruption of the cholecystokinin-B receptor (CCK-BR) signaling pathway decreased the activation and proliferation of hepatic stem cells after liver injury without eliminating the regenerative capacity of healthy hepatocytes.
Collapse
Affiliation(s)
- Martha D Gay
- Department of Medicine, Georgetown University, Washington, District of Columbia, United States
| | - Jack C Drda
- Department of Medicine, Georgetown University, Washington, District of Columbia, United States
| | - Wenqiang Chen
- Department of Medicine, Georgetown University, Washington, District of Columbia, United States
| | - Yimeng Huang
- Department of Oncology, Georgetown University, Washington, District of Columbia, United States
| | - Amal A Yassin
- Department of Oncology, Georgetown University, Washington, District of Columbia, United States
| | - Tetyana Duka
- Department of Medicine, Georgetown University, Washington, District of Columbia, United States
| | - Hongbin Fang
- Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University, Washington, District of Columbia, United States
| | - Narayan Shivapurkar
- Department of Medicine, Georgetown University, Washington, District of Columbia, United States
| | - Jill P Smith
- Department of Medicine, Georgetown University, Washington, District of Columbia, United States
- Department of Oncology, Georgetown University, Washington, District of Columbia, United States
| |
Collapse
|
25
|
Cai H, Zhang J, Liu C, Le TN, Lu Y, Feng F, Zhao M. High-Fat Diet-Induced Decreased Circulating Bile Acids Contribute to Obesity Associated with Gut Microbiota in Mice. Foods 2024; 13:699. [PMID: 38472812 DOI: 10.3390/foods13050699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/18/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
The altered circulating bile acids (BAs) modulate gut microbiota, energy metabolism and various physiological functions. BA profiles in liver, serum, ileum and feces of HFD-fed mice were analyzed with normal chow diet (NCD)-fed mice after 16-week feeding. Furthermore, gut microbiota was analyzed and its correlation analysis with BA was performed. The result showed that long-term HFD feeding significantly decreased hepatic and serum BA levels, mainly attributed to the inhibition of hepatic BA synthesis and the reduced reabsorption efficiency of BAs in enterohepatic circulation. It also significantly impaired glucose and lipid homeostasis and gut microbiota in mice. We found significantly higher bile salt hydrolase activity in ileal microbes and a higher ratio of free BAs to conjugated BA content in ileal contents in HFD groups compared with NCD group mice, which might account for the activated intestinal farnesoid X receptor signaling on liver BA synthesis inhibition and reduced ileal reabsorption. The decreased circulating BAs were associated with the dysregulation of the lipid metabolism according to the decreased TGR5 signaling in the ileum and BAT. In addition, it is astonishing to find extremely high percentages of taurocholate and 12-OH BAs in liver and serum BA profiles of both groups, which was mainly attributed to the high substrate selectivity for 12-OH BAs of the intestinal BAs transporter during the ileal reabsorption of enterohepatic circulation. This study revealed a significant effect of long-term HFD feeding on the decreased circulating BA pool in mice, which impaired lipid homeostasis and gut microbiota, and collectively resulted in metabolic disorders and obesity.
Collapse
Affiliation(s)
- Haiying Cai
- School of Biological and Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou 310023, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore
| | - Junhui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Chang Liu
- School of Biological and Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou 310023, China
| | - Thanh Ninh Le
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore
| | - Yuyun Lu
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore
| | - Fengqin Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Minjie Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
26
|
Tang M, Xiong L, Cai J, Fu J, Liu H, Ye Y, Yang L, Xing S, Yang X. Intrahepatic cholestasis of pregnancy: insights into pathogenesis and advances in omics studies. Hepatol Int 2024; 18:50-62. [PMID: 37957532 DOI: 10.1007/s12072-023-10604-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/28/2023] [Indexed: 11/15/2023]
Abstract
Intrahepatic cholestasis of pregnancy (ICP) is the most common pregnancy-specific liver disease. It is characterized by pruritus, abnormal liver function and elevated total bile acid (TBA) levels, increasing the risk of maternal and fetal adverse outcomes. Its etiology remains poorly elucidated. Over the years, various omics techniques, including metabolomics, microbiome, genomics, etc., have emerged with the advancement of bioinformatics, providing a new direction for exploring the pathogenesis, diagnosis and treatment of ICP. In this review, we first summarize the role of bile acids and related components in the pathogenesis of ICP and then further illustrate the results of omics studies.
Collapse
Affiliation(s)
- Mi Tang
- GCP Institution, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Liling Xiong
- Obstetrics Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Jianghui Cai
- Department of Pharmacy, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jinzhu Fu
- Obstetrics Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Hong Liu
- Operating Theater, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Ying Ye
- Operating Theater, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Li Yang
- Obstetrics Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - ShaSha Xing
- GCP Institution, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Xiao Yang
- Obstetrics Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
27
|
Zhang Z, Zhang Q, Zhang Y, Lou Y, Ge L, Zhang W, Zhang W, Song F, Huang P. Role of sodium taurocholate cotransporting polypeptide (NTCP) in HBV-induced hepatitis: Opportunities for developing novel therapeutics. Biochem Pharmacol 2024; 219:115956. [PMID: 38049009 DOI: 10.1016/j.bcp.2023.115956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
Hepatitis B is an infectious disease caused by the HBV virus. It presents a significant challenge for treatment due to its chronic nature and the potential for developing severe complications, including hepatocirrhosis and hepatocellular carcinoma. These complications not only cause physical and psychological distress to patients but also impose substantial economic and social burdens on both individuals and society as a whole. The internalization of HBV relies on endocytosis and necessitates the involvement of various proteins, including heparin sulfate proteoglycans, epidermal growth factor receptors, and NTCP. Among these proteins, NTCP is pivotal in HBV internalization and is primarily located in the liver's basement membrane. As a transporter of bile acids, NTCP also serves as a receptor facilitating HBV entry into cells. Numerous molecules have been identified to thwart HBV infection by stifling NTCP activity, although only a handful exhibit low IC50 values. In this systematic review, our primary focus dwells on the structure and regulation of NTCP, as well as the mechanism involved in HBV internalization. We underscore recent drug breakthroughs that specifically target NTCP to combat HBV infection. By shedding light on these advances, this review contributes novel insights into developing effective anti-HBV medications.
Collapse
Affiliation(s)
- Zhentao Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Qi Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yiwen Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Yutao Lou
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Luqi Ge
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Wanli Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Wen Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Feifeng Song
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China.
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
28
|
Cifuentes-Silva E, Cabello-Verrugio C. Bile Acids as Signaling Molecules: Role of Ursodeoxycholic Acid in Cholestatic Liver Disease. Curr Protein Pept Sci 2024; 25:206-214. [PMID: 37594109 DOI: 10.2174/1389203724666230818092800] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/05/2023] [Accepted: 07/18/2023] [Indexed: 08/19/2023]
Abstract
Ursodeoxycholic acid (UDCA) is a natural substance physiologically produced in the liver. Initially used to dissolve gallstones, it is now successfully used in treating primary biliary cirrhosis and as adjuvant therapy for various hepatobiliary cholestatic diseases. However, the mechanisms underlying its beneficial effects still need to be clarified. Evidence suggests three mechanisms of action for UDCA that could benefit humans with cholestatic liver disease (CLD): protection of cholangiocytes against hydrophobic bile acid (BA) cytotoxicity, stimulation of hepatobiliary excretion, and protection of hepatocytes against BA-induced apoptosis. These mechanisms may act individually or together to potentiate them. At the molecular level, it has been observed that UDCA can generate modifications in the transcription and translation of proteins essential in the transport of BA, correcting the deficit in BA secretion in CLD, in addition to activating signaling pathways to translocate these transporters to the sites where they should fulfill their function. Inhibition of BA-induced hepatocyte apoptosis may play a role in CLD, characterized by BA retention in the hepatocyte. Thus, different mechanisms of action contribute to the improvement after UDCA administration in CLD. On the other hand, the effects of UDCA on tissues that possess receptors that may interact with BAs in pathological contexts, such as skeletal muscle, are still unclear. This work aims to describe the main molecular mechanisms by which UDCA acts in the human body, emphasizing the interaction in tissues other than the liver.
Collapse
Affiliation(s)
- Eduardo Cifuentes-Silva
- Laboratory of Muscle Pathology, Fragility, and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility, and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
29
|
Kugler BA, Cao X, Wenger M, Franczak E, McCoin CS, Von Schulze A, Morris EM, Thyfault JP. Divergence in aerobic capacity influences hepatic and systemic metabolic adaptations to bile acid sequestrant and short-term high-fat/sucrose feeding in rats. Am J Physiol Regul Integr Comp Physiol 2023; 325:R712-R724. [PMID: 37811712 PMCID: PMC11178297 DOI: 10.1152/ajpregu.00133.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
High versus low aerobic capacity significantly impacts the risk for metabolic diseases. Rats selectively bred for high or low intrinsic aerobic capacity differently modify hepatic bile acid metabolism in response to high-fat diets (HFDs). Here we tested if a bile acid sequestrant would alter hepatic and whole body metabolism differently in rats with high and low aerobic capacity fed a 1-wk HFD. Male rats (8 mo of age) that were artificially selected to be high (HCR) and low-capacity runners (LCR) with divergent intrinsic aerobic capacities were transitioned from a low-fat diet (LFD, 10% fat) to an HFD (45% fat) with or without a bile acid sequestrant (BA-Seq, 2% cholestyramine resin) for 7 days while maintained in an indirect calorimetry system. HFD + BA-Seq increased fecal excretion of lipids and bile acids and prevented weight and fat mass gain in both strains. Interestingly, HCR rats had increased adaptability to enhance fecal bile acid and lipid loss, resulting in more significant energy loss than their LCR counterpart. In addition, BA-Seq induced a greater expression of hepatic CYP7A1 gene expression, the rate-limiting enzyme of bile acid synthesis in HCR rats both on HFD and HFD + BA-Seq diets. HCR displayed a more significant reduction of RQ in response to HFD than LCR, but HFD + BA-Seq lowered RQ in both groups compared with HFD alone, demonstrating a pronounced impact on metabolic flexibility. In conclusion, BA-Seq provides uniform metabolic benefits for metabolic flexibility and adiposity, but rats with higher aerobic capacity display adaptability for hepatic bile acid metabolism.NEW & NOTEWORTHY The administration of bile acid sequestrant (BA-Seq) has uniform metabolic benefits in terms of metabolic flexibility and adiposity in rats with high and low aerobic capacity. However, rats with higher aerobic capacity demonstrate greater adaptability in hepatic bile acid metabolism, resulting in increased fecal bile acid and lipid loss, as well as enhanced fecal energy loss.
Collapse
Affiliation(s)
- Benjamin A Kugler
- Department of Cell Biology and Physiology, The University of Kansas Medical Center, Kansas City, Kansas, United States
- Kansas Center for Metabolism and Obesity Research, Kansas City, Missouri, United States
- Department of Internal Medicine, Division of Endocrinology and Metabolism, KU Diabetes Institute, The University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Xin Cao
- Department of Cell Biology and Physiology, The University of Kansas Medical Center, Kansas City, Kansas, United States
- Kansas Center for Metabolism and Obesity Research, Kansas City, Missouri, United States
- Department of Internal Medicine, Division of Endocrinology and Metabolism, KU Diabetes Institute, The University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Madi Wenger
- Department of Cell Biology and Physiology, The University of Kansas Medical Center, Kansas City, Kansas, United States
- Kansas Center for Metabolism and Obesity Research, Kansas City, Missouri, United States
- Department of Internal Medicine, Division of Endocrinology and Metabolism, KU Diabetes Institute, The University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Edziu Franczak
- Department of Cell Biology and Physiology, The University of Kansas Medical Center, Kansas City, Kansas, United States
- Kansas Center for Metabolism and Obesity Research, Kansas City, Missouri, United States
- Department of Internal Medicine, Division of Endocrinology and Metabolism, KU Diabetes Institute, The University of Kansas Medical Center, Kansas City, Kansas, United States
- Kansas City Veterans Affairs Medical Center, Kansas City, Missouri, United States
| | - Colin S McCoin
- Department of Cell Biology and Physiology, The University of Kansas Medical Center, Kansas City, Kansas, United States
- Kansas Center for Metabolism and Obesity Research, Kansas City, Missouri, United States
- Center for Children's Healthy Lifestyles and Nutrition, Kansas City, Missouri, United States
- Department of Internal Medicine, Division of Endocrinology and Metabolism, KU Diabetes Institute, The University of Kansas Medical Center, Kansas City, Kansas, United States
- Kansas City Veterans Affairs Medical Center, Kansas City, Missouri, United States
| | - Alex Von Schulze
- Stowers Research Institute, Kansas City, Missouri, United States
| | - E Matthew Morris
- Department of Cell Biology and Physiology, The University of Kansas Medical Center, Kansas City, Kansas, United States
- Kansas Center for Metabolism and Obesity Research, Kansas City, Missouri, United States
- Center for Children's Healthy Lifestyles and Nutrition, Kansas City, Missouri, United States
- Department of Internal Medicine, Division of Endocrinology and Metabolism, KU Diabetes Institute, The University of Kansas Medical Center, Kansas City, Kansas, United States
| | - John P Thyfault
- Department of Cell Biology and Physiology, The University of Kansas Medical Center, Kansas City, Kansas, United States
- Kansas Center for Metabolism and Obesity Research, Kansas City, Missouri, United States
- Center for Children's Healthy Lifestyles and Nutrition, Kansas City, Missouri, United States
- Department of Internal Medicine, Division of Endocrinology and Metabolism, KU Diabetes Institute, The University of Kansas Medical Center, Kansas City, Kansas, United States
- Kansas City Veterans Affairs Medical Center, Kansas City, Missouri, United States
| |
Collapse
|
30
|
Xiang D, Yang J, Liu L, Yu H, Gong X, Liu D. The regulation of tissue-specific farnesoid X receptor on genes and diseases involved in bile acid homeostasis. Biomed Pharmacother 2023; 168:115606. [PMID: 37812893 DOI: 10.1016/j.biopha.2023.115606] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023] Open
Abstract
Bile acids (BAs) facilitate the absorption of dietary lipids and vitamins and have also been identified as signaling molecules involved in regulating their own metabolism, glucose and lipid metabolism, as well as immunity. Disturbances in BA homeostasis are associated with various enterohepatic and metabolic diseases, such as cholestasis, nonalcoholic steatohepatitis, inflammatory bowel disease, and obesity. As a key regulator, the nuclear orphan receptor farnesoid X receptor (FXR, NR1H4) precisely regulates BA homeostasis by transcriptional regulation of genes involved in BA synthesis, metabolism, and enterohepatic circulation. FXR is widely regarded as the most potential therapeutic target. Obeticholic acid is the only FXR agonist approved to treat patients with primary biliary cholangitis, but its non-specific activation of systemic FXR also causes high-frequency side effects. In recent years, developing tissue-specific FXR-targeting drugs has become a research highlight. This article provides a comprehensive overview of the role of tissue-specific intestine/liver FXR in regulating genes involved in BA homeostasis and briefly discusses tissue-specific FXR as a therapeutic target for treating diseases. These findings provide the basis for the development of tissue-specific FXR modulators for the treatment of enterohepatic and metabolic diseases associated with BA dysfunction.
Collapse
Affiliation(s)
- Dong Xiang
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Jinyu Yang
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lu Liu
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hengyi Yu
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xuepeng Gong
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Dong Liu
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
31
|
Verkade E, Shen W, Hovingh M, Mulder N, de Bruyn K, Koehorst M, de Vries H, Bloks V, Kuipers F, de Boer J. Gut microbiota depletion aggravates bile acid-induced liver pathology in mice with a human-like bile acid composition. Clin Sci (Lond) 2023; 137:1637-1650. [PMID: 37910096 PMCID: PMC10643054 DOI: 10.1042/cs20230812] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/20/2023] [Accepted: 11/01/2023] [Indexed: 11/03/2023]
Abstract
Cyp2c70-deficient mice have a human-like bile acid (BA) composition due to their inability to convert chenodeoxycholic acid (CDCA) into rodent-specific muricholic acids (MCAs). However, the hydrophobic BA composition in these animals is associated with liver pathology. Although Cyp2c70-ablation has been shown to alter gut microbiome composition, the impact of gut bacteria on liver pathology in Cyp2c70-/- mice remains to be established. Therefore, we treated young-adult male and female wild-type (WT) and Cyp2c70-/- mice with antibiotics (AB) with broad specificity to deplete the gut microbiota and assessed the consequences on BA metabolism and liver pathology. Female Cyp2c70-/- mice did not tolerate AB treatment, necessitating premature termination of the experiment. Male Cyp2c70-/- mice did tolerate AB but showed markedly augmented liver pathology after 6 weeks of treatment. Dramatic downregulation of hepatic Cyp8b1 expression (-99%) caused a reduction in the proportions of 12α-hydroxylated BAs in the circulating BA pools of AB-treated male Cyp2c70-/- mice. Interestingly, the resulting increased BA hydrophobicity strongly correlated with various indicators of liver pathology. Moreover, genetic inactivation of Cyp8b1 in livers of male Cyp2c70-/- mice increased liver pathology, while addition of ursodeoxycholic acid to the diet prevented weight loss and liver pathology in AB-treated female Cyp2c70-/- mice. In conclusion, depletion of gut microbiota in Cyp2c70-/- mice aggravates liver pathology at least in part by increasing the hydrophobicity of the circulating BA pool. These findings highlight that the potential implications of AB administration to cholestatic patients should be evaluated in a systematic manner.
Collapse
Affiliation(s)
- Esther Verkade
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Wenqiang Shen
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Milaine V. Hovingh
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Niels L. Mulder
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Krisztina de Bruyn
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Martijn Koehorst
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hilde D. de Vries
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Vincent W. Bloks
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Folkert Kuipers
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jan Freark de Boer
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
32
|
Wooton-Kee CR. Therapeutic implications of impaired nuclear receptor function and dysregulated metabolism in Wilson's disease. Pharmacol Ther 2023; 251:108529. [PMID: 37741465 PMCID: PMC10841433 DOI: 10.1016/j.pharmthera.2023.108529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/29/2023] [Accepted: 09/08/2023] [Indexed: 09/25/2023]
Abstract
Copper is an essential trace element that is required for the activity of many enzymes and cellular processes, including energy homeostasis and neurotransmitter biosynthesis; however, excess copper accumulation results in significant cellular toxicity. The liver is the major organ for maintaining copper homeostasis. Inactivating mutations of the copper-transporting P-type ATPase, ATP7B, result in Wilson's disease, an autosomal recessive disorder that requires life-long medicinal therapy or liver transplantation. Current treatment protocols are limited to either sequestration of copper via chelation or reduction of copper absorption in the gut (zinc therapy). The goal of these strategies is to reduce free copper, redox stress, and cellular toxicity. Several lines of evidence in Wilson's disease animal models and patients have revealed altered hepatic metabolism and impaired hepatic nuclear receptor activity. Nuclear receptors are transcription factors that coordinate hepatic metabolism in normal and diseased livers, and several hepatic nuclear receptors have decreased activity in Wilson's disease and Atp7b-/- models. In this review, we summarize the basic physiology that underlies Wilson's disease pathology, Wilson's disease animal models, and the possibility of targeting nuclear receptor activity in Wilson's disease patients.
Collapse
Affiliation(s)
- Clavia Ruth Wooton-Kee
- Baylor College of Medicine, Department of Pediatrics-Nutrition, Children's Nutrition Research Center, Houston, TX, United States of America.
| |
Collapse
|
33
|
Pal SC, Castillo-Castañeda SM, Díaz-Orozco LE, Ramírez-Mejía MM, Dorantes-Heredia R, Alonso-Morales R, Eslam M, Lammert F, Méndez-Sánchez N. Molecular Mechanisms Involved in MAFLD in Cholecystectomized Patients: A Cohort Study. Genes (Basel) 2023; 14:1935. [PMID: 37895284 PMCID: PMC10606482 DOI: 10.3390/genes14101935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Gallstone disease and metabolic dysfunction-associated fatty liver disease (MAFLD) share numerous common risk factors and progression determinants in that they both manifest as organ-specific consequences of metabolic dysfunction. Nevertheless, the precise molecular mechanisms underlying fibrosis development in cholecystectomized MAFLD patients remain inadequately defined. This study aimed to investigate the involvement of farnesoid X receptor 1 (FXR1) and fibroblast growth factor receptor 4 (FGFR4) in the progression of fibrosis in cholecystectomized MAFLD patients. A meticulously characterized cohort of 12 patients diagnosed with MAFLD, who had undergone liver biopsies during programmed cholecystectomies, participated in this study. All enrolled patients underwent a follow-up regimen at 1, 3, and 6 months post-cholecystectomy, during which metabolic biochemical markers were assessed, along with elastography, which served as indirect indicators of fibrosis. Additionally, the hepatic expression levels of FGFR4 and FXR1 were quantified using quantitative polymerase chain reaction (qPCR). Our findings revealed a robust correlation between hepatic FGFR4 expression and various histological features, including the steatosis degree (r = 0.779, p = 0.023), ballooning degeneration (r = 0.764, p = 0.027), interphase inflammation (r = 0.756, p = 0.030), and steatosis activity score (SAS) (r = 0.779, p = 0.023). Conversely, hepatic FXR1 expression did not exhibit any significant correlations with these histological features. In conclusion, our study highlights a substantial correlation between FGFR4 expression and histological liver damage, emphasizing its potential role in lipid and glucose metabolism. These findings suggest that FGFR4 may play a crucial role in the progression of fibrosis in cholecystectomized MAFLD patients. Further research is warranted to elucidate the exact mechanisms through which FGFR4 influences metabolic dysfunction and fibrosis in this patient population.
Collapse
Affiliation(s)
- Shreya C. Pal
- Faculty of Medicine, National Autonomous University of Mexico, Tlalpan, Mexico City 04510, Mexico; (S.C.P.); (L.E.D.-O.)
| | - Stephany M. Castillo-Castañeda
- Medical, Dental and Health Sciences Master and Doctorate Program, National Autonomous University of Mexico, Tlalpan, Mexico City 04510, Mexico;
- Liver Research Unit, Medica Sur Clinic & Foundation, Tlalpan, Mexico City 14050, Mexico; (M.M.R.-M.); (R.D.-H.)
| | - Luis E. Díaz-Orozco
- Faculty of Medicine, National Autonomous University of Mexico, Tlalpan, Mexico City 04510, Mexico; (S.C.P.); (L.E.D.-O.)
| | - Mariana M. Ramírez-Mejía
- Liver Research Unit, Medica Sur Clinic & Foundation, Tlalpan, Mexico City 14050, Mexico; (M.M.R.-M.); (R.D.-H.)
- Plan of Combined Studies in Medicine, Faculty of Medicine, National Autonomous University of Mexico, Tlalpan, Mexico City 04510, Mexico
| | - Rita Dorantes-Heredia
- Liver Research Unit, Medica Sur Clinic & Foundation, Tlalpan, Mexico City 14050, Mexico; (M.M.R.-M.); (R.D.-H.)
| | - Rogelio Alonso-Morales
- Genetic and Molecular Biology Laboratory, Faculty of Veterinary, National Autonomous University of Mexico, Tlalpan, Mexico City 04510, Mexico;
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital, University of Sydney, Sydney, NSW 2145, Australia;
| | - Frank Lammert
- Health Sciences, Hannover Medical School (MHH), 30625 Hannover, Germany;
| | - Nahum Méndez-Sánchez
- Faculty of Medicine, National Autonomous University of Mexico, Tlalpan, Mexico City 04510, Mexico; (S.C.P.); (L.E.D.-O.)
- Liver Research Unit, Medica Sur Clinic & Foundation, Tlalpan, Mexico City 14050, Mexico; (M.M.R.-M.); (R.D.-H.)
| |
Collapse
|
34
|
Li X, Xie H, Chao JJ, Jia YH, Zuo J, An YP, Bao YR, Jiang X, Ying H. Profiles and integration of the gut microbiome and fecal metabolites in severe intrahepatic cholestasis of pregnancy. BMC Microbiol 2023; 23:282. [PMID: 37784030 PMCID: PMC10546765 DOI: 10.1186/s12866-023-02983-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/17/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND The pathogenesis of intrahepatic cholestasis of pregnancy (ICP) remains unknown. The gut microbiome and its metabolites play important roles in bile acid metabolism, and previous studies have indicated the association of the gut microbiome with ICP. METHODS We recruited a cohort of 5100 participants, and 20 participants were enrolled in the severe ICP group, matched with 20 participants in the mild ICP group and 20 controls. 16S rRNA sequencing and nontargeting metabolomics were adapted to explore the gut microbiome and fecal metabolites. RESULTS An increase in richness and a dramatic deviation in composition were found in the gut microbiome in ICP. Decreased Firmicutes and Bacteroidetes abundances and increased Proteobacteria abundances were found in women with severe but not mild ICP compared to healthy pregnant women. Escherichia-Shigella and Lachnoclostridium abundances increased, whereas Ruminococcaceae abundance decreased in ICP group, especially in severe ICP group. The fecal metabolite composition and diversity presented typical variation in severe ICP. A significant increase in bile acid, formate and succinate levels and a decrease in butyrate and hypoxanthine levels were found in women with severe ICP. The MIMOSA model indicated that genera Ruminococcus gnavus group, Lachnospiraceae FCS020 group, and Lachnospiraceae NK4A136 group contributed significantly to the metabolism of hypoxanthine, which was significantly depleted in subjects with severe ICP. Genus Acinetobacter contributed significantly to formate metabolism, which was significantly enriched in subjects with severe ICP. CONCLUSIONS Women with severe but not mild ICP harbored a unique gut microbiome and fecal metabolites compared to healthy controls. Based on these profiles, we hypothesized that the gut microbiome was involved in bile acid metabolism through metabolites, affecting ICP pathogenesis and development, especially severe ICP.
Collapse
Affiliation(s)
- Xiang Li
- Shanghai Key Laboratory of Maternal Fetal Medicine Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, 200040, China
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, No. 2699, West Gaoke Road, Shanghai, 200040, People's Republic of China
| | - Han Xie
- Shanghai Key Laboratory of Maternal Fetal Medicine Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, 200040, China
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, No. 2699, West Gaoke Road, Shanghai, 200040, People's Republic of China
| | - Jia-Jing Chao
- Shanghai Key Laboratory of Maternal Fetal Medicine Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, 200040, China
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, No. 2699, West Gaoke Road, Shanghai, 200040, People's Republic of China
| | - Yuan-Hui Jia
- Shanghai Key Laboratory of Maternal Fetal Medicine Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, 200040, China
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China
| | - Jia Zuo
- Shanghai Key Laboratory of Maternal Fetal Medicine Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, 200040, China
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, No. 2699, West Gaoke Road, Shanghai, 200040, People's Republic of China
| | - Yan-Peng An
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yi-Rong Bao
- Shanghai Key Laboratory of Maternal Fetal Medicine Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, 200040, China
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, No. 2699, West Gaoke Road, Shanghai, 200040, People's Republic of China
| | - Xiang Jiang
- Shanghai Key Laboratory of Maternal Fetal Medicine Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, 200040, China.
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, No. 2699, West Gaoke Road, Shanghai, 200040, People's Republic of China.
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China.
| | - Hao Ying
- Shanghai Key Laboratory of Maternal Fetal Medicine Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, 200040, China.
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, No. 2699, West Gaoke Road, Shanghai, 200040, People's Republic of China.
| |
Collapse
|
35
|
Chan AP, Rostas S, Rogers S, Martin CR, Calkins KL. Parenteral Nutrition in the Neonatal Intensive Care Unit: Intravenous Lipid Emulsions. Clin Perinatol 2023; 50:575-589. [PMID: 37536765 DOI: 10.1016/j.clp.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Intravenous lipid emulsions (ILEs) are a source of nonprotein calories and fatty acids and help promote growth in preterm infants and infants with intestinal failure. An ILE dose and oil source determines its fatty acid, phytosterol, and vitamin E delivery. These factors play a role in the infant's risk for essential fatty acid deficiency and cholestasis, and help modulate inflammation, immunity, and organ development. This article reviews different ILEs and their constituents and their relationship with neonatal health.
Collapse
Affiliation(s)
- Alvin P Chan
- Division of Gastroenterology, Department of Pediatrics, David Geffen School of Medicine UCLA, 10833 Le Conte Avenue, MDCC 12-383, Los Angeles, CA 90095, USA
| | - Sara Rostas
- New York-Presbyterian Department of Pharmacy, New York-Presbyterian Hospital/Komansky Children's Hospital, 1283 York Avenue, FL15, New York, NY 10065, USA
| | - Samantha Rogers
- New York-Presbyterian Food & Nutrition Services, New York-Presbyterian Hospital/Weill Cornell Medical Center, 1283 York Avenue, FL15, New York, NY 10065, USA
| | - Camilia R Martin
- Division of Neonatology, Department of Pediatrics, Weill Cornell Medicine, 1283 York Avenue, FL15, New York, NY 10065, USA
| | - Kara L Calkins
- Division of Neonatology & Developmental Biology, Department of Pediatrics, Neonatal Research Center of the UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine UCLA, 1088 Le Conte Avenue, Room B2-375 MDCC, Los Angeles, CA 90095, USA.
| |
Collapse
|
36
|
Medford A, Childs J, Little A, Chakraborty S, Baiocchi L, Alpini G, Glaser S. Emerging Therapeutic Strategies in The Fight Against Primary Biliary Cholangitis. J Clin Transl Hepatol 2023; 11:949-957. [PMID: 37408803 PMCID: PMC10318288 DOI: 10.14218/jcth.2022.00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/29/2022] [Accepted: 01/04/2023] [Indexed: 07/03/2023] Open
Abstract
The liver has a vital role in many metabolic and regulatory processes in the body. Primary biliary cholangitis (PBC), previously known as primary biliary cirrhosis, is a chronic cholestatic autoimmune disease of the intrahepatic bile ducts associated with loss of tolerance to mitochondrial antigens. At this time there is no definitive cure for PBC; however, ursodeoxycholic acid (UDCA) has been shown to reduce injury when administered as the first line of treatment. Additional therapeutics can be given concurrently or as an alternative to UDCA to manage the symptoms and further curb disease progression. Currently, a liver transplant is the only potentially curative option when the patient has developed end-stage liver disease or intractable pruritus. This review aims to delineate the pathogenesis of primary biliary cholangitis and shed light on current therapeutic strategies in the treatment of PBC.
Collapse
Affiliation(s)
- Abigail Medford
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX, USA
| | - Jonathan Childs
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX, USA
| | - Ashleigh Little
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX, USA
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX, USA
| | | | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX, USA
| |
Collapse
|
37
|
Lee SM, Jun DW, Yoon EL, Oh JH, Roh YJ, Lee EJ, Shin JH, Nam YD, Kim HS. Discovery biomarker to optimize obeticholic acid treatment for non-alcoholic fatty liver disease. Biol Direct 2023; 18:50. [PMID: 37626369 PMCID: PMC10463927 DOI: 10.1186/s13062-023-00407-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
The response rate to obeticholic acid (OCA), a potential therapeutic agent for non-alcoholic fatty liver disease, is limited. This study demonstrated that upregulation of the alternative bile acid synthesis pathway increases the OCA treatment response rate. The hepatic transcriptome and bile acid metabolite profile analyses revealed that the alternative bile acid synthesis pathway (Cyp7b1 and muricholic acid) in the OCA-responder group were upregulated compared with those in the OCA-non-responder group. Intestinal microbiome analysis also revealed that the abundances of Bacteroidaceae, Parabacteroides, and Bacteroides, which were positively correlated with the alternative bile acid synthesis pathway, were higher in the OCA-responder group than in the non-responder group. Pre-study hepatic mRNA levels of Cyp8b1 (classic pathway) were downregulated in the OCA-responder group. The OCA response rate increased up to 80% in cases with a hepatic Cyp7b1/Cyp8b1 ratio ≥ 5.0. Therefore, the OCA therapeutic response can be evaluated based on the Cyp7b1/Cyp8b1 ratio or the alternative/classic bile acid synthesis pathway activity.
Collapse
Affiliation(s)
- Seung Min Lee
- Department of Translational Medicine, Graduate School of Biomedical Science & Engineering, Hanyang University, Seoul, Republic of Korea
| | - Dae Won Jun
- Department of Translational Medicine, Graduate School of Biomedical Science & Engineering, Hanyang University, Seoul, Republic of Korea.
- Department of Internal Medicine, Hanyang University Hospital, Hanyang University College of Medicine, 17 Haengdang-dong, Sungdong-gu, Seoul, 133-792, Republic of Korea.
| | - Eileen Laurel Yoon
- Department of Internal Medicine, Hanyang University Hospital, Hanyang University College of Medicine, 17 Haengdang-dong, Sungdong-gu, Seoul, 133-792, Republic of Korea.
| | - Ju Hee Oh
- Department of Obstetrics and Gynecology, Institute of Women's Medical Life Science, Severance Hospital, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoon Jin Roh
- Department of Dermatology, Chung-Ang University Hospital, Seoul, Republic of Korea
| | - Eun Jeoung Lee
- Department of Translational Medicine, Graduate School of Biomedical Science & Engineering, Hanyang University, Seoul, Republic of Korea
| | - Ji-Hee Shin
- Research Group of Personalized Diet, Korea Food Research Institute, Wanju-gun, 55365, Republic of Korea
| | - Young-Do Nam
- Research Group of Personalized Diet, Korea Food Research Institute, Wanju-gun, 55365, Republic of Korea
| | - Hyun Sung Kim
- Pathology, Medical genetic, Hanyang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
38
|
Xu L, Xu K, Xiong P, Zhong C, Zhang X, Gao R, Zhou X, Shen T. Zhuyu Pill Alleviates Nonalcoholic Fatty Liver Disease by Regulating Bile Acid Metabolism through the Gut-Liver Axis. ACS OMEGA 2023; 8:29033-29045. [PMID: 37599938 PMCID: PMC10433349 DOI: 10.1021/acsomega.3c01955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023]
Abstract
AIM The prevalence of nonalcoholic fatty liver disease (NAFLD) is increasing worldwide, but there are currently limited treatment options available. Therefore, it is necessary to research new treatment strategies. Zhuyu Pill (ZYP) is a well-known herbal recipe consisting of Huanglian (Coptidis rhizoma) and Wuzhuyu (Evodiae Fructus) that has been clinically used to treat NAFLD. This study aimed to investigate the impact of ZYP on NAFLD induced by a high-fat diet (HFD) and to identify its potential mechanism. METHODS In this investigation, we used ZYP to treat a mouse model of NAFLD induced by an HFD. We conducted various analyses including assessment of serum biochemical indices, histological evaluation, fecal metabonomics analysis, western blot, and quantitative real-time polymerase chain reaction. RESULTS ZYP effectively improved blood lipid levels and reduced inflammatory response in HFD mice, while also alleviating liver cell damage and lipid accumulation. Additionally, ZYP influenced the fecal bile acid (BA) metabolism profiles of HFD mice by inhibiting the signal transduction of ileal farnesoid X receptor (FXR) fibroblast growth factor 15 (FGF15), enhancing the expression of cytochrome P450 family 7 subfamily A member 1(CYP7A1), promoting BA synthesis and increasing the metabolic elimination of cholesterol. CONCLUSION ZYP shows promise as a potential treatment for alleviating NAFLD by modulating BA metabolism through the FXR-FGF15-CYP7A1 pathway.
Collapse
Affiliation(s)
- Lu Xu
- School
of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Kunhe Xu
- School
of Basic Medicine, Chengdu University of
Traditional Chinese Medicine, Chengdu 611137, China
| | - Peiyu Xiong
- School
of Basic Medicine, Chengdu University of
Traditional Chinese Medicine, Chengdu 611137, China
| | - Chun Zhong
- Sichuan
Second Hospital of Traditional Chinese Medicine, Chengdu 610014, China
| | - Xiaobo Zhang
- School
of Basic Medicine, Chengdu University of
Traditional Chinese Medicine, Chengdu 611137, China
| | - Rui Gao
- School
of Basic Medicine, Chengdu University of
Traditional Chinese Medicine, Chengdu 611137, China
| | - Xin Zhou
- School
of Basic Medicine, Chengdu University of
Traditional Chinese Medicine, Chengdu 611137, China
| | - Tao Shen
- School
of Basic Medicine, Chengdu University of
Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
39
|
Mezhibovsky E, Tveter KM, Villa-Rodriguez JA, Bacalia K, Kshatriya D, Desai N, Cabales A, Wu Y, Sui K, Duran RM, Bello NT, Roopchand DE. Grape Polyphenols May Prevent High-Fat Diet-Induced Dampening of the Hypothalamic-Pituitary-Adrenal Axis in Male Mice. J Endocr Soc 2023; 7:bvad095. [PMID: 37538101 PMCID: PMC10396072 DOI: 10.1210/jendso/bvad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Indexed: 08/05/2023] Open
Abstract
Context Chronic high-fat diet (HFD) consumption causes obesity associated with retention of bile acids (BAs) that suppress important regulatory axes, such as the hypothalamic-pituitary-adrenal axis (HPAA). HFD impairs nutrient sensing and energy balance due to a dampening of the HPAA and reduced production and peripheral metabolism of corticosterone (CORT). Objective We assessed whether proanthocyanidin-rich grape polyphenol (GP) extract can prevent HFD-induced energy imbalance and HPAA dysregulation. Methods Male C57BL6/J mice were fed HFD or HFD supplemented with 0.5% w/w GPs (HFD-GP) for 17 weeks. Results GP supplementation reduced body weight gain and liver fat while increasing circadian rhythms of energy expenditure and HPAA-regulating hormones, CORT, leptin, and PYY. GP-induced improvements were accompanied by reduced mRNA levels of Il6, Il1b, and Tnfa in ileal or hepatic tissues and lower cecal abundance of Firmicutes, including known BA metabolizers. GP-supplemented mice had lower concentrations of circulating BAs, including hydrophobic and HPAA-inhibiting BAs, but higher cecal levels of taurine-conjugated BAs antagonistic to farnesoid X receptor (FXR). Compared with HFD-fed mice, GP-supplemented mice had increased mRNA levels of hepatic Cyp7a1 and Cyp27a1, suggesting reduced FXR activation and more BA synthesis. GP-supplemented mice also had reduced hepatic Abcc3 and ileal Ibabp and Ostβ, indicative of less BA transfer into enterocytes and circulation. Relative to HFD-fed mice, CORT and BA metabolizing enzymes (Akr1d1 and Srd5a1) were increased, and Hsd11b1 was decreased in GP supplemented mice. Conclusion GPs may attenuate HFD-induced weight gain by improving hormonal control of the HPAA and inducing a BA profile with less cytotoxicity and HPAA inhibition, but greater FXR antagonism.
Collapse
Affiliation(s)
- Esther Mezhibovsky
- Department of Food Science and NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research; Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Department of Nutritional Sciences Graduate Program, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Kevin M Tveter
- Department of Food Science and NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research; Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Jose A Villa-Rodriguez
- Department of Food Science and NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research; Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Karen Bacalia
- Department of Food Science and NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research; Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Department of Nutritional Sciences Graduate Program, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Dushyant Kshatriya
- Department of Nutritional Sciences Graduate Program, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Nikhil Desai
- Department of Food Science and NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research; Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Alrick Cabales
- Department of Food Science and NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research; Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Yue Wu
- Department of Food Science and NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research; Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Ke Sui
- Department of Food Science and NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research; Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Rocio M Duran
- Department of Food Science and NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research; Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Nicholas T Bello
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Diana E Roopchand
- Department of Food Science and NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research; Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Department of Nutritional Sciences Graduate Program, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
40
|
Meadows V, Yang Z, Basaly V, Guo GL. FXR Friend-ChIPs in the Enterohepatic System. Semin Liver Dis 2023; 43:267-278. [PMID: 37442156 PMCID: PMC10620036 DOI: 10.1055/a-2128-5538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Chronic liver diseases encompass a wide spectrum of hepatic maladies that often result in cholestasis or altered bile acid secretion and regulation. Incidence and cost of care for many chronic liver diseases are rising in the United States with few Food and Drug Administration-approved drugs available for patient treatment. Farnesoid X receptor (FXR) is the master regulator of bile acid homeostasis with an important role in lipid and glucose metabolism and inflammation. FXR has served as an attractive target for management of cholestasis and fibrosis; however, global FXR agonism results in adverse effects in liver disease patients, severely affecting quality of life. In this review, we highlight seminal studies and recent updates on the FXR proteome and identify gaps in knowledge that are essential for tissue-specific FXR modulation. In conclusion, one of the greatest unmet needs in the field is understanding the underlying mechanism of intestinal versus hepatic FXR function.
Collapse
Affiliation(s)
- Vik Meadows
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey
| | - Zhenning Yang
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey
| | - Veronia Basaly
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey
| | - Grace L. Guo
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey
- Department of Veterans Affairs, New Jersey Health Care System, East Orange, New Jersey
| |
Collapse
|
41
|
Zafirovska M, Zafirovski A, Rotovnik Kozjek N. Current Insights Regarding Intestinal Failure-Associated Liver Disease (IFALD): A Narrative Review. Nutrients 2023; 15:3169. [PMID: 37513587 PMCID: PMC10385050 DOI: 10.3390/nu15143169] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Intestinal failure-associated liver disease (IFALD) is a spectrum of liver disease including cholestasis, biliary cirrhosis, steatohepatitis, and gallbladder disease in patients with intestinal failure (IF). The prevalence of IFALD varies considerably, with ranges of 40-60% in the pediatric population, up to 85% in neonates, and between 15-40% in the adult population. IFALD has a complex and multifactorial etiology; the risk factors can be parenteral nutrition-related or patient-related. Because of this, the approach to managing IFALD is multidisciplinary and tailored to each patient based on the etiology. This review summarizes the current knowledge on the etiology and pathophysiology of IFALD and examines the latest evidence regarding preventative measures, diagnostic approaches, and treatment strategies for IFALD and its associated complications.
Collapse
Affiliation(s)
- Marija Zafirovska
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
- Association of General Practice/Family Medicine of South-East Europe (AGP/FM SEE), St. Vladimir Komarov No. 40/6, 1000 Skopje, North Macedonia
| | - Aleksandar Zafirovski
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
- General Hospital Jesenice, Cesta Maršala Tita 112, 4270 Jesenice, Slovenia
- Clinical Institute of Radiology, University Medical Centre Ljubljana, Zaloška Cesta 7, 1000 Ljubljana, Slovenia
| | - Nada Rotovnik Kozjek
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
- Department for Clinical Nutrition, Institute of Oncology Ljubljana, Zaloška Cesta 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
42
|
Cossiga V, Guarino M, Capasso M, Morisco F. Relevance of Bile Acids in Cholangiocarcinoma Pathogenesis: Critical Revision and Future Directions. Cells 2023; 12:1576. [PMID: 37371045 PMCID: PMC10296882 DOI: 10.3390/cells12121576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/28/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Cholangiocarcinoma (CCA), a highly heterogeneous cancer, is the second most common type of primary liver cancer. It is characterized by resistance to therapy and poor prognosis, with a 5-year survival rate lower than 20%. The pathogenesis of CCA is complex and multifactorial, and in recent years, bile acids (BAs) have been implicated in CCA development and prognosis. BAs belong to a category of amphipathic compounds that hold significant importance as signaling molecules and inflammatory agents. They possess the ability to activate transcriptional factors and cellular signaling pathways, thereby governing the regulation of lipid, glucose, and energy metabolism in diverse human disorders. These disorders encompass chronic liver diseases among other conditions. In this review, we provided an update on the current knowledge on the molecular mechanisms involving BAs in cholangiocarcinogenesis. Additionally, we analyzed the role of gut and biliary microbiota in CCA pathogenesis. Future research is required to better understand how to modulate BA activity and, possibly, identify new therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - Filomena Morisco
- Diseases of the Liver and Biliary System Unit, Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (V.C.); (M.G.); (M.C.)
| |
Collapse
|
43
|
Zhang S, Chen A, Jiang L, Liu X, Chai L. Copper-mediated shifts in transcriptomic responses of intestines in Bufo gargarizans tadpoles to lead stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:50144-50161. [PMID: 36790706 DOI: 10.1007/s11356-023-25801-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/04/2023] [Indexed: 04/16/2023]
Abstract
The differential transcriptomic responses of intestines in Bufo gargarizans tadpoles to Pb alone or in the presence of Cu were evaluated. Tadpoles were exposed to 30 μg/L Pb individually and in combination with Cu at 16 or 64 μg/L from Gosner stage (Gs) 26 to Gs 38. After de novo assembly, 105,107 unigenes were generated. Compared to the control group, 7387, 6937, and 11139 differentially expressed genes (DEGs) were identified in the treatment of Pb + Cu0, Pb + Cu16, and Pb + Cu64, respectively. In addition, functional annotation and enrichment analysis of DEGs revealed substantial transcriptional reprogramming of diverse molecular and biological pathways were induced in all heavy metal treatments. The relative expression levels of genes associated with intestinal epithelial barrier and bile acids (BAs) metabolism, such as mucin2, claudin5, ZO-1, Asbt, and Ost-β, were validated by qPCR. This study demonstrated that Pb exposure induced transcriptional responses in tadpoles, and the responses could be modulated by Cu.
Collapse
Affiliation(s)
- Siliang Zhang
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, People's Republic of China
| | - Aixia Chen
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, People's Republic of China
| | - Ling Jiang
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, People's Republic of China
| | - Xiaoli Liu
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, People's Republic of China
| | - Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China.
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, People's Republic of China.
| |
Collapse
|
44
|
Repurposing FDA-approved drugs as FXR agonists: a structure based in silico pharmacological study. Biosci Rep 2023; 43:231090. [PMID: 35348180 PMCID: PMC9977715 DOI: 10.1042/bsr20212791] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/10/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022] Open
Abstract
Farnesoid X receptor (FXR) modulates the expression of genes involved in lipid and carbohydrate homeostasis and inflammatory processes. This nuclear receptor is likely a tumor suppressor in several cancers, but its molecular mechanism of suppression is still under study. Several studies reported that FXR agonism increases the survival of colorectal, biliary tract, and liver cancer patients. In addition, FXR expression was shown to be down-regulated in many diseases such as obesity, irritable bowel syndrome, glomerular inflammation, diabetes, proteinuria, and ulcerative colitis. Therefore, development of novel FXR agonists may have significant potential in the prevention and treatment of these diseases. In this scenario, computer-aided drug design procedures can be resourcefully applied for the rapid identification of promising drug candidates. In the present study, we applied the molecular docking method in conjunction with molecular dynamics (MD) simulations to find out potential agonists for FXR based on structural similarity with the drug that is currently used as FXR agonist, obeticholic acid. Our results showed that alvimopan and montelukast could be used as potent FXR activators and outperform the binding affinity of obeticholic acid by forming stable conformation with the protein in silico. However, further investigational studies and validations of the selected drugs are essential to figure out their suitability for preclinical and clinical trials.
Collapse
|
45
|
Yang J, van Dijk TH, Koehorst M, Havinga R, de Boer JF, Kuipers F, van Zutphen T. Intestinal Farnesoid X Receptor Modulates Duodenal Surface Area but Does Not Control Glucose Absorption in Mice. Int J Mol Sci 2023; 24:ijms24044132. [PMID: 36835544 PMCID: PMC9961586 DOI: 10.3390/ijms24044132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/18/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
Bile acids facilitate the intestinal absorption of dietary lipids and act as signalling molecules in the maintenance of metabolic homeostasis. Farnesoid X receptor (FXR) is a bile acid-responsive nuclear receptor involved in bile acid metabolism, as well as lipid and glucose homeostasis. Several studies have suggested a role of FXR in the control of genes regulating intestinal glucose handling. We applied a novel dual-label glucose kinetic approach in intestine-specific FXR-/- mice (iFXR-KO) to directly assess the role of intestinal FXR in glucose absorption. Although iFXR-KO mice showed decreased duodenal expression of hexokinase 1 (Hk1) under obesogenic conditions, the assessment of glucose fluxes in these mice did not show a role for intestinal FXR in glucose absorption. FXR activation with the specific agonist GS3972 induced Hk1, yet the glucose absorption rate remained unaffected. FXR activation increased the duodenal villus length in mice treated with GS3972, while stem cell proliferation remained unaffected. Accordingly, iFXR-KO mice on either chow, short or long-term HFD feeding displayed a shorter villus length in the duodenum compared to wild-type mice. These findings indicate that delayed glucose absorption reported in whole-body FXR-/- mice is not due to the absence of intestinal FXR. Yet, intestinal FXR does have a role in the small intestinal surface area.
Collapse
Affiliation(s)
- Jiufang Yang
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9700RB Groningen, The Netherlands
| | - Theo H. van Dijk
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9700RB Groningen, The Netherlands
| | - Martijn Koehorst
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, 9700RB Groningen, The Netherlands
| | - Rick Havinga
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9700RB Groningen, The Netherlands
| | - Jan Freark de Boer
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9700RB Groningen, The Netherlands
| | - Folkert Kuipers
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9700RB Groningen, The Netherlands
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, 9700RB Groningen, The Netherlands
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, 9700RB Groningen, The Netherlands
- Correspondence: (F.K.); (T.v.Z.); Tel.: +31-58-288-2132 (F.K.)
| | - Tim van Zutphen
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9700RB Groningen, The Netherlands
- Faculty Campus Fryslân, University of Groningen, 8911CE Leeuwarden, The Netherlands
- Correspondence: (F.K.); (T.v.Z.); Tel.: +31-58-288-2132 (F.K.)
| |
Collapse
|
46
|
Refat M, Zhang G, Ahmed A Saad A, Baldi S, Zheng F, Wu X. 7, 8-Dihydroxy-4-methyl coumarin alleviates cholestasis via activation of the Farnesoid X receptor in vitro and in vivo. Chem Biol Interact 2023; 370:110331. [PMID: 36581201 DOI: 10.1016/j.cbi.2022.110331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/17/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
Cholestasis is primarily caused by bile acid homeostasis dysregulation, resulting in retention, aggregation, and accumulation of the toxic cholate in the hepatocytes. Existing therapies for cholestasis are limited, demanding the urgent development of novel drugs. As a result, targeting FXR specifically promises a unique treatment strategy for cholestasis. The current study aims to evaluate the influence of 7, 8-dihydroxy-4-methyl coumarin (DMC) against alpha-naphthyl isothiocyanate (ANIT)-induced liver injury in mice. The "Computer-Aided Drug Design" (CADD) and molecular docking study anticipated that DMC would proficiently bind and activate the FXR. Accordingly, the hepatoprotective activity of DMC against ANIT-induced hepatotoxicity and cholestasis was investigated in ANIT-treated HepaRG cells and the ANIT-induced cholestatic mouse model. Outcomes indicated the protective effects of DMC against ANIT toxicity in HepaRG cells after 24 h of intervention and animals after seven days of treatment. DMC partially blocks ANIT-induced increases in serum markers of hepatocellular injury, liver and gall bladder enlargement, and hepatic necrosis. Western blotting revealed that DMC alleviates ANIT-induced hepatotoxicity and cholestasis via activating the FXR receptor and regulating CYP7A1, the enzyme responsible for bile acid synthesis. DMC exhibited protective activity against cholestasis through activating FXR, suggesting it might be a promising strategy for preventing and treating cholestatic liver disease.
Collapse
Affiliation(s)
- Moath Refat
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, 730000, China; School of Pharmacy, Lanzhou University, Lanzhou, Lanzhou, 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Gansu Province, China; Department of Biochemistry and Molecular Biology, The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Guoqiang Zhang
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Gansu Province, China
| | - Abdulaziz Ahmed A Saad
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, 730000, China; School of Pharmacy, Lanzhou University, Lanzhou, Lanzhou, 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Gansu Province, China; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Salem Baldi
- Research Center of Molecular Diagnostics and Sequencing, Axbio Biotechnology (Shenzhen) Co., Ltd., Shenzhen, Guangdong, 518057, China
| | - Fang Zheng
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xin'an Wu
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Gansu Province, China.
| |
Collapse
|
47
|
Carson MD, Warner AJ, Hathaway-Schrader JD, Geiser VL, Kim J, Gerasco JE, Hill WD, Lemasters JJ, Alekseyenko AV, Wu Y, Yao H, Aguirre JI, Westwater C, Novince CM. Minocycline-induced disruption of the intestinal FXR/FGF15 axis impairs osteogenesis in mice. JCI Insight 2023; 8:160578. [PMID: 36413391 PMCID: PMC9870091 DOI: 10.1172/jci.insight.160578] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
Antibiotic-induced shifts in the indigenous gut microbiota influence normal skeletal maturation. Current theory implies that gut microbiota actions on bone occur through a direct gut/bone signaling axis. However, our prior work supports that a gut/liver signaling axis contributes to gut microbiota effects on bone. Our purpose was to investigate the effects of minocycline, a systemic antibiotic treatment for adolescent acne, on pubertal/postpubertal skeletal maturation. Sex-matched specific pathogen-free (SPF) and germ-free (GF) C57BL/6T mice were administered a clinically relevant minocycline dose from age 6-12 weeks. Minocycline caused dysbiotic shifts in the gut bacteriome and impaired skeletal maturation in SPF mice but did not alter the skeletal phenotype in GF mice. Minocycline administration in SPF mice disrupted the intestinal farnesoid X receptor/fibroblast growth factor 15 axis, a gut/liver endocrine axis supporting systemic bile acid homeostasis. Minocycline-treated SPF mice had increased serum conjugated bile acids that were farnesoid X receptor (FXR) antagonists, suppressed osteoblast function, decreased bone mass, and impaired bone microarchitecture and fracture resistance. Stimulating osteoblasts with the serum bile acid profile from minocycline-treated SPF mice recapitulated the suppressed osteogenic phenotype found in vivo, which was mediated through attenuated FXR signaling. This work introduces bile acids as a potentially novel mediator of gut/liver signaling actions contributing to gut microbiota effects on bone.
Collapse
Affiliation(s)
- Matthew D Carson
- Department of Oral Health Sciences, College of Dental Medicine.,Department of Pediatrics, Division of Endocrinology, College of Medicine.,Department of Stomatology, Division of Periodontics, College of Dental Medicine
| | - Amy J Warner
- Department of Oral Health Sciences, College of Dental Medicine.,Department of Pediatrics, Division of Endocrinology, College of Medicine.,Department of Stomatology, Division of Periodontics, College of Dental Medicine
| | - Jessica D Hathaway-Schrader
- Department of Oral Health Sciences, College of Dental Medicine.,Department of Pediatrics, Division of Endocrinology, College of Medicine.,Department of Stomatology, Division of Periodontics, College of Dental Medicine
| | - Vincenza L Geiser
- Department of Oral Health Sciences, College of Dental Medicine.,Department of Pediatrics, Division of Endocrinology, College of Medicine.,Department of Stomatology, Division of Periodontics, College of Dental Medicine
| | - Joseph Kim
- Department of Oral Health Sciences, College of Dental Medicine.,Department of Pediatrics, Division of Endocrinology, College of Medicine.,Department of Stomatology, Division of Periodontics, College of Dental Medicine
| | - Joy E Gerasco
- Department of Oral Health Sciences, College of Dental Medicine.,Department of Drug Discovery & Biomedical Sciences, College of Pharmacy
| | - William D Hill
- Department of Pathology and Laboratory Medicine, College of Medicine
| | - John J Lemasters
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy.,Department of Biochemistry & Molecular Biology, College of Medicine
| | - Alexander V Alekseyenko
- Department of Oral Health Sciences, College of Dental Medicine.,Biomedical Informatics Center, Program for Human Microbiome Research, Department of Public Health Sciences, College of Medicine.,Department of Healthcare Leadership and Management, College of Health Professions; and
| | - Yongren Wu
- Department of Orthopedics & Physical Medicine, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA.,Department of Bioengineering, College of Engineering, Clemson University, Clemson, South Carolina, USA
| | - Hai Yao
- Department of Oral Health Sciences, College of Dental Medicine.,Department of Bioengineering, College of Engineering, Clemson University, Clemson, South Carolina, USA
| | - J Ignacio Aguirre
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Caroline Westwater
- Department of Oral Health Sciences, College of Dental Medicine.,Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Chad M Novince
- Department of Oral Health Sciences, College of Dental Medicine.,Department of Pediatrics, Division of Endocrinology, College of Medicine.,Department of Stomatology, Division of Periodontics, College of Dental Medicine
| |
Collapse
|
48
|
Yu L, Liu Y, Wang S, Zhang Q, Zhao J, Zhang H, Narbad A, Tian F, Zhai Q, Chen W. Cholestasis: exploring the triangular relationship of gut microbiota-bile acid-cholestasis and the potential probiotic strategies. Gut Microbes 2023; 15:2181930. [PMID: 36864554 PMCID: PMC9988349 DOI: 10.1080/19490976.2023.2181930] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/09/2023] [Indexed: 03/04/2023] Open
Abstract
Cholestasis is a condition characterized by the abnormal production or excretion of bile, and it can be induced by a variety of causes, the factors of which are extremely complex. Although great progress has been made in understanding cholestasis pathogenesis, the specific mechanisms remain unclear. Therefore, it is important to understand and distinguish cholestasis from different etiologies, which will also provide indispensable theoretical support for the development of corresponding therapeutic drugs. At present, the treatment of cholestasis mainly involves several bile acids (BAs) and their derivatives, most of which are in the clinical stage of development. Multiple lines of evidence indicate that ecological disorders of the gut microbiota are strongly related to the occurrence of cholestasis, in which BAs also play a pivotal role. Recent studies indicate that probiotics seem to have certain effects on cholestasis, but further confirmation from clinical trials is required. This paper reviews the etiology of and therapeutic strategies for cholestasis; summarizes the similarities and differences in inducement, symptoms, and mechanisms of related diseases; and provides information about the latest pharmacological therapies currently available and those under research for cholestasis. We also reviewed the highly intertwined relationship between gut microbiota-BA-cholestasis, revealing the potential role and possible mechanism of probiotics in the treatment of cholestasis.
Collapse
Affiliation(s)
- Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
| | - Yaru Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shunhe Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qingsong Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Arjan Narbad
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
- Gut Health and Microbiome Institute Strategic Programme, Quadram Institute Bioscience, Norwich, UK
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
49
|
Zhong XC, Liu YM, Gao XX, Krausz KW, Niu B, Gonzalez FJ, Xie C. Caffeic acid phenethyl ester suppresses intestinal FXR signaling and ameliorates nonalcoholic fatty liver disease by inhibiting bacterial bile salt hydrolase activity. Acta Pharmacol Sin 2023; 44:145-156. [PMID: 35655096 PMCID: PMC9813015 DOI: 10.1038/s41401-022-00921-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/10/2022] [Indexed: 01/18/2023] Open
Abstract
Propolis is commonly used in traditional Chinese medicine. Studies have demonstrated the therapeutic effects of propolis extracts and its major bioactive compound caffeic acid phenethyl ester (CAPE) on obesity and diabetes. Herein, CAPE was found to have pharmacological activity against nonalcoholic fatty liver disease (NAFLD) in diet-induced obese mice. CAPE, previously reported as an inhibitor of bacterial bile salt hydrolase (BSH), inhibited BSH enzymatic activity in the gut microbiota when administered to mice. Upon BSH inhibition by CAPE, levels of tauro-β-muricholic acid were increased in the intestine and selectively suppressed intestinal farnesoid X receptor (FXR) signaling. This resulted in lowering of the ceramides in the intestine that resulted from increased diet-induced obesity. Elevated intestinal ceramides are transported to the liver where they promoted fat production. Lowering FXR signaling was also accompanied by increased GLP-1 secretion. In support of this pathway, the therapeutic effects of CAPE on NAFLD were absent in intestinal FXR-deficient mice, and supplementation of mice with C16-ceramide significantly exacerbated hepatic steatosis. Treatment of mice with an antibiotic cocktail to deplete BSH-producing bacteria also abrogated the therapeutic activity of CAPE against NAFLD. These findings demonstrate that CAPE ameliorates obesity-related steatosis at least partly through the gut microbiota-bile acid-FXR pathway via inhibiting bacterial BSH activity and suggests that propolis enriched with CAPE might serve as a promising therapeutic agent for the treatment of NAFLD.
Collapse
Affiliation(s)
- Xian-Chun Zhong
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ya-Meng Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiao-Xia Gao
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, 20892, Maryland, USA
| | - Kristopher W Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, 20892, Maryland, USA
| | - Bing Niu
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, 20892, Maryland, USA.
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, 20892, Maryland, USA.
| |
Collapse
|
50
|
Chen Y, Zhao Y, Shen X, Zhao F, Qi J, Zhong Z, Li D. Bifidobacterium lactis Probio-M8 ameliorated the symptoms of type 2 diabetes mellitus mice by changing ileum FXR-CYP7A1. Open Med (Wars) 2022. [DOI: 10.1515/med-2022-0576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract
The aim of this study was to investigate the effect of Bifidobacterium lactis Probio-M8 on glucolipid metabolism and gut microbiota (GM) composition in type 2 diabetes mellitus (T2DM) mice. The glucolipid metabolic profiles were analyzed. The 16S rRNA gene sequencing was employed to investigate GM. The levels of farnesyl X receptor (FXR) and cytochrome p450 7A1 (CYP7A1) were detected by quantitative polymerase chain reaction and western blot assays. The total bile acids (TBAs), ceramide (CE), glucagon-like peptide-1 (GLP-1), and fibroblast growth factor (FGF)-15 were also detected. The morphological features of liver and pancreas were also analyzed. Compared with the model group, Probio-M8 restored body weight, food intake and water intake, as well as improved hyperglycemia symptoms, serum glucolipid parameters, and the composition of intestinal microbes in T2DM diabetic mice. Moreover, the reduced level of FXR and the increased level of CYP7A1 in T2DM mice were reversed by Probio-M8 treatment. The increased levels of TBA and CE and the reduced levels of GLP-1 and FGF-15 in T2DM mice were altered after Probio-M8 stimulation. Besides, the altered morphology of liver and ileum in T2DM mice was alleviated by Probio-M8 treatment. Taken together, we suggested that the symptoms of T2DM could be ameliorated by Probio-M8 in T2DM mice.
Collapse
Affiliation(s)
- Ye Chen
- Department of Endocrinology, Inner Mongolia People’s Hospital , Hohhot , 010017, Inner Mongolia , P. R. China
| | - Yaxin Zhao
- Department of Endocrinology, Inner Mongolia People’s Hospital , Hohhot , 010017, Inner Mongolia , P. R. China
| | - Xin Shen
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University , Hohhot , 010018, Inner Mongolia , P. R. China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University , Hohhot , 010018, Inner Mongolia , P. R. China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University , Hohhot , 010018, Inner Mongolia , P. R. China
| | - Feiyan Zhao
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University , Hohhot , 010018, Inner Mongolia , P. R. China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University , Hohhot , 010018, Inner Mongolia , P. R. China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University , Hohhot , 010018, Inner Mongolia , P. R. China
| | - Jinxin Qi
- Department of Rheumatology and Immunology, Bayannur Hospital , Bayannur , 015000, Inner Mongolia , P. R. China
| | - Zhi Zhong
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University , Hohhot , 010018, Inner Mongolia , P. R. China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University , Hohhot , 010018, Inner Mongolia , P. R. China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University , Hohhot , 010018, Inner Mongolia , P. R. China
| | - Dongmei Li
- Department of Endocrinology, Inner Mongolia People’s Hospital , Hohhot , 010017, Inner Mongolia , P. R. China
| |
Collapse
|