1
|
Singh N, Cunnington RH, Bhagirath A, Vaishampayan A, Khan MW, Gupte T, Duan K, Gounni AS, Dakshisnamurti S, Hanrahan JW, Chelikani P. Bitter taste receptor T2R14-Gαi coupling mediates innate immune responses to microbial quorum sensing molecules in cystic fibrosis. iScience 2024; 27:111286. [PMID: 39628561 PMCID: PMC11613190 DOI: 10.1016/j.isci.2024.111286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/30/2024] [Accepted: 10/28/2024] [Indexed: 12/06/2024] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease characterized by microbial infection and progressive decline in lung function, leading to significant morbidity and mortality. The bitter taste receptor T2R14 is a chemosensory receptor that is significantly expressed in airways. Using a combination of cell-based assays and T2R14 knockdown in bronchial epithelial cells from CF and non-CF individuals, we observed that T2R14 plays a crucial role in the detection of bacterial and fungal signals and enhances host innate immune responses. Expression of Gαi protein is enhanced in CF bronchial epithelial cells and T2R14-Gαi specific signaling leads to increased calcium mobilization. Knockdown of T2R14 leads to reduced innate immune activation by bacterial strains deficient in quorum sensing. The results demonstrate that T2R14 helps protect against microbial infection and thus may play an important role in the innate immune defense of the CF airway epithelium.
Collapse
Affiliation(s)
- Nisha Singh
- Manitoba Chemosensory Biology (MCSB) research group, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Ryan H. Cunnington
- Manitoba Chemosensory Biology (MCSB) research group, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Anjali Bhagirath
- Manitoba Chemosensory Biology (MCSB) research group, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Dalhousie University, Faculty of Dentistry, Halifax, NS, Canada
| | - Ankita Vaishampayan
- Manitoba Chemosensory Biology (MCSB) research group, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Mohd Wasif Khan
- Manitoba Chemosensory Biology (MCSB) research group, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Tejas Gupte
- Manitoba Chemosensory Biology (MCSB) research group, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Kangmin Duan
- Manitoba Chemosensory Biology (MCSB) research group, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Abdelilah S. Gounni
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Shyamala Dakshisnamurti
- Manitoba Chemosensory Biology (MCSB) research group, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - John W. Hanrahan
- Department of Physiology, McGill University, Montréal, QC, Canada
| | - Prashen Chelikani
- Manitoba Chemosensory Biology (MCSB) research group, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
2
|
Amoakon JP, Lee J, Liyanage P, Arora K, Karlstaedt A, Mylavarapu G, Amin R, Naren AP. Defective CFTR modulates mechanosensitive channels TRPV4 and PIEZO1 and drives endothelial barrier failure. iScience 2024; 27:110703. [PMID: 39252977 PMCID: PMC11382128 DOI: 10.1016/j.isci.2024.110703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/25/2024] [Accepted: 08/06/2024] [Indexed: 09/11/2024] Open
Abstract
Cystic fibrosis (CF) is a genetic disease caused by a mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Despite reports of CFTR expression on endothelial cells, pulmonary vascular perturbations, and perfusion deficits in CF patients, the mechanism of pulmonary vascular disease in CF remains unclear. Here, our pilot study of 40 CF patients reveals a loss of small pulmonary blood vessels in patients with severe lung disease. Using a vessel-on-a-chip model, we establish a shear-stress-dependent mechanism of endothelial barrier failure in CF involving TRPV4, a mechanosensitive channel. Furthermore, we demonstrate that CFTR deficiency downregulates the function of PIEZO1, another mechanosensitive channel involved in angiogenesis and wound repair, and exacerbates loss of small pulmonary blood vessel. We also show that CFTR directly interacts with PIEZO1 and enhances its function. Our study identifies key cellular targets to mitigate loss of small pulmonary blood vessels in CF.
Collapse
Affiliation(s)
- Jean-Pierre Amoakon
- Department of Systems Biology and Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Pulmonary Medicine and Critical Care, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jesun Lee
- Division of Pulmonary Medicine and Critical Care, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Pramodha Liyanage
- Division of Pulmonary Medicine and Critical Care, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kavisha Arora
- Division of Pulmonary Medicine and Critical Care, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Anja Karlstaedt
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Goutham Mylavarapu
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Raouf Amin
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Anjaparavanda P Naren
- Department of Systems Biology and Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Pulmonary Medicine and Critical Care, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
3
|
D'Orazio S, Mattoscio D. Dysregulation of the Arachidonic Acid Pathway in Cystic Fibrosis: Implications for Chronic Inflammation and Disease Progression. Pharmaceuticals (Basel) 2024; 17:1185. [PMID: 39338347 PMCID: PMC11434829 DOI: 10.3390/ph17091185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
Cystic fibrosis (CF) is the most common fatal genetic disease among Caucasian people, with over 2000 mutations in the CFTR gene. Although highly effective modulators have been developed to rescue the mutant CFTR protein, unresolved inflammation and persistent infections still threaten the lives of patients. While the central role of arachidonic acid (AA) and its metabolites in the inflammatory response is widely recognized, less is known about their impact on immunomodulation and metabolic implications in CF. To this end, here we provided a comprehensive analysis of the AA metabolism in CF. In this context, CFTR dysfunction appeared to complexly disrupt normal lipid processing, worsening the chronic airway inflammation, and compromising the immune responses to bacterial infections. As such, potential strategies targeting AA and its inflammatory mediators are being investigated as a promising approach to balance the inflammatory response while mitigating disease progression. Thus, a deeper understanding of the AA pathway dysfunction in CF may open innovative avenues for designing more effective therapeutic interventions.
Collapse
Affiliation(s)
- Simona D'Orazio
- Department of Medical, Oral and Biotechnology Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy
| | - Domenico Mattoscio
- Department of Medical, Oral and Biotechnology Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
4
|
Schnitker F, Liu Y, Keitsch S, Soddemann M, Verhasselt HL, Kehrmann J, Grassmé H, Kamler M, Gulbins E, Wu Y. Reduced Sphingosine in Cystic Fibrosis Increases Susceptibility to Mycobacterium abscessus Infections. Int J Mol Sci 2023; 24:14004. [PMID: 37762308 PMCID: PMC10530875 DOI: 10.3390/ijms241814004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disorder caused by the deficiency of the cystic fibrosis transmembrane conductance regulator (CFTR) and often leads to pulmonary infections caused by various pathogens, including Staphylococcus aureus, Pseudomonas aeruginosa, and nontuberculous mycobacteria, particularly Mycobacterium abscessus. Unfortunately, M. abscessus infections are increasing in prevalence and are associated with the rapid deterioration of CF patients. The treatment options for M. abscessus infections are limited, requiring the urgent need to comprehend infectious pathogenesis and develop new therapeutic interventions targeting affected CF patients. Here, we show that the deficiency of CFTR reduces sphingosine levels in bronchial and alveolar epithelial cells and macrophages from CF mice and humans. Decreased sphingosine contributes to the susceptibility of CF tissues to M. abscessus infection, resulting in a higher incidence of infections in CF mice. Notably, treatment of M. abscessus with sphingosine demonstrated potent bactericidal activity against the pathogen. Most importantly, restoration of sphingosine levels in CF cells, whether human or mouse, and in the lungs of CF mice, provided protection against M. abscessus infections. Our findings demonstrate that pulmonary sphingosine levels are important in controlling M. abscessus infection. These results offer a promising therapeutic avenue for CF patients with pulmonary M. abscessus infections.
Collapse
Affiliation(s)
- Fabian Schnitker
- Department of Molecular Biology, Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (F.S.); (Y.L.); (S.K.); (M.S.); (H.G.); (E.G.)
| | - Yongjie Liu
- Department of Molecular Biology, Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (F.S.); (Y.L.); (S.K.); (M.S.); (H.G.); (E.G.)
- West German Heart and Vascular Center, Thoracic Transplantation, Department of Thoracic and Cardiovascular Surgery, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany;
| | - Simone Keitsch
- Department of Molecular Biology, Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (F.S.); (Y.L.); (S.K.); (M.S.); (H.G.); (E.G.)
| | - Matthias Soddemann
- Department of Molecular Biology, Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (F.S.); (Y.L.); (S.K.); (M.S.); (H.G.); (E.G.)
| | - Hedda Luise Verhasselt
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (H.L.V.); (J.K.)
| | - Jan Kehrmann
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (H.L.V.); (J.K.)
| | - Heike Grassmé
- Department of Molecular Biology, Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (F.S.); (Y.L.); (S.K.); (M.S.); (H.G.); (E.G.)
| | - Markus Kamler
- West German Heart and Vascular Center, Thoracic Transplantation, Department of Thoracic and Cardiovascular Surgery, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany;
| | - Erich Gulbins
- Department of Molecular Biology, Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (F.S.); (Y.L.); (S.K.); (M.S.); (H.G.); (E.G.)
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Yuqing Wu
- Department of Molecular Biology, Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (F.S.); (Y.L.); (S.K.); (M.S.); (H.G.); (E.G.)
| |
Collapse
|
5
|
Ayats-Vidal R, Bosque-García M, Cordobilla B, Asensio-De la Cruz O, García-González M, Castro-Marrero J, López-Rico I, Domingo JC. Changes of Erythrocyte Fatty Acids after Supplementation with Highly Concentrated Docosahexaenoic Acid (DHA) in Pediatric Cystic Fibrosis: A Randomized Double-Blind Controlled Trial. J Clin Med 2023; 12:jcm12113704. [PMID: 37297899 DOI: 10.3390/jcm12113704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
We characterized the fatty acid profiles in the erythrocyte membrane of pediatric patients with cystic fibrosis (CF) receiving highly concentrated docosahexaenoic acid (DHA) supplementation (Tridocosahexanoin-AOX® 70%) at 50 mg/kg/day (n = 11) or matching placebo (n = 11) for 12 months. The mean age was 11.7 years. The DHA group showed a statistically significant improvement in n-3 polyunsaturated fatty acids (PUFAs), which was observed as early as 6 months and further increased at 12 months. Among the n-3 PUFAs, there was a significant increase in DHA and eicosapentaenoic acid (EPA). Additionally, a statistically significant decrease in n-6 PUFAs was found, primarily due to a decrease in arachidonic acid (AA) levels and elongase 5 activity. However, we did not observe any changes in linoleic acid levels. The long-term administration of DHA over one year was safe and well tolerated. In summary, the administration of a high-rich DHA supplement at a dose of 50 mg/kg/day for one year can correct erythrocyte AA/DHA imbalance and reduce fatty acid inflammatory markers. However, it is important to note that essential fatty acid alterations cannot be fully normalized with this treatment. These data provide timely information of essential fatty acid profile for future comparative research.
Collapse
Affiliation(s)
- Roser Ayats-Vidal
- Pediatric Allergies, Immunology and Pneumology Unit, Pediatric Medicine Service, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Parc Taulí Hospital Universitari, Universitat Autònoma de Barcelona, Parc Taulí 1, E-08208 Sabadell, Spain
| | - Montserrat Bosque-García
- Pediatric Allergies, Immunology and Pneumology Unit, Pediatric Medicine Service, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Parc Taulí Hospital Universitari, Universitat Autònoma de Barcelona, Parc Taulí 1, E-08208 Sabadell, Spain
| | - Begoña Cordobilla
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, E-08028 Barcelona, Spain
| | - Oscar Asensio-De la Cruz
- Pediatric Allergies, Immunology and Pneumology Unit, Pediatric Medicine Service, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Parc Taulí Hospital Universitari, Universitat Autònoma de Barcelona, Parc Taulí 1, E-08208 Sabadell, Spain
| | - Miguel García-González
- Pediatric Allergies, Immunology and Pneumology Unit, Pediatric Medicine Service, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Parc Taulí Hospital Universitari, Universitat Autònoma de Barcelona, Parc Taulí 1, E-08208 Sabadell, Spain
| | - Jesús Castro-Marrero
- ME/CFS Research Unit, Division of Rheumatology, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, E-08035 Barcelona, Spain
| | - Irene López-Rico
- Pharmacy Department, Institut d'Investigació I Innovació Parc Taulí (I3PT-CERCA), Parc Taulí Hospital Universitari, Universitat Autònoma de Barcelona, E-08208 Sabadell, Spain
| | - Joan Carles Domingo
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, E-08028 Barcelona, Spain
| |
Collapse
|
6
|
Shrestha N, Rout-Pitt N, McCarron A, Jackson CA, Bulmer AC, McAinch AJ, Donnelley M, Parsons DW, Hryciw DH. Changes in Essential Fatty Acids and Ileal Genes Associated with Metabolizing Enzymes and Fatty Acid Transporters in Rodent Models of Cystic Fibrosis. Int J Mol Sci 2023; 24:ijms24087194. [PMID: 37108362 PMCID: PMC10138779 DOI: 10.3390/ijms24087194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Cystic fibrosis (CF), the result of mutations in the CF transmembrane conductance regulator (CFTR), causes essential fatty acid deficiency. The aim of this study was to characterize fatty acid handling in two rodent models of CF; one strain which harbors the loss of phenylalanine at position 508 (Phe508del) in CFTR and the other lacks functional CFTR (510X). Fatty acid concentrations were determined using gas chromatography in serum from Phe508del and 510X rats. The relative expression of genes responsible for fatty acid transport and metabolism were quantified using real-time PCR. Ileal tissue morphology was assessed histologically. There was an age-dependent decrease in eicosapentaenoic acid and the linoleic acid:α-linolenic acid ratio, a genotype-dependent decrease in docosapentaenoic acid (n-3) and an increase in the arachidonic acid:docosahexaenoic acid ratio in Phe508del rat serum, which was not observed in 510X rats. In the ileum, Cftr mRNA was increased in Phe508del rats but decreased in 510X rats. Further, Elvol2, Slc27a1, Slc27a2 and Got2 mRNA were increased in Phe508del rats only. As assessed by Sirius Red staining, collagen was increased in Phe508del and 510X ileum. Thus, CF rat models exhibit alterations in the concentration of circulating fatty acids, which may be due to altered transport and metabolism, in addition to fibrosis and microscopic structural changes in the ileum.
Collapse
Affiliation(s)
- Nirajan Shrestha
- School of Pharmacy and Medical Sciences, Griffith University, Southport, QLD 4215, Australia
| | - Nathan Rout-Pitt
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5001, Australia
- Respiratory and Sleep Medicine, Women's and Children's Hospital, 72 King William Road, North Adelaide, SA 5006, Australia
| | - Alexandra McCarron
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5001, Australia
- Respiratory and Sleep Medicine, Women's and Children's Hospital, 72 King William Road, North Adelaide, SA 5006, Australia
| | - Courtney A Jackson
- School of Environment and Science, Griffith University, Nathan, QLD 4215, Australia
| | - Andrew C Bulmer
- School of Pharmacy and Medical Sciences, Griffith University, Southport, QLD 4215, Australia
| | - Andrew J McAinch
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3000, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St. Albans, VIC 3021, Australia
| | - Martin Donnelley
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5001, Australia
- Respiratory and Sleep Medicine, Women's and Children's Hospital, 72 King William Road, North Adelaide, SA 5006, Australia
- School of Environment and Science, Griffith University, Nathan, QLD 4215, Australia
| | - David W Parsons
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5001, Australia
- Respiratory and Sleep Medicine, Women's and Children's Hospital, 72 King William Road, North Adelaide, SA 5006, Australia
- School of Environment and Science, Griffith University, Nathan, QLD 4215, Australia
| | - Deanne H Hryciw
- School of Environment and Science, Griffith University, Nathan, QLD 4215, Australia
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3000, Australia
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| |
Collapse
|
7
|
Uc A, Strandvik B, Yao J, Liu X, Yi Y, Sun X, Welti R, Engelhardt J, Norris A. The fatty acid imbalance of cystic fibrosis exists at birth independent of feeding in pig and ferret models. Clin Sci (Lond) 2022; 136:1773-1791. [PMID: 36416119 PMCID: PMC9747517 DOI: 10.1042/cs20220450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
Persons with cystic fibrosis (CF) exhibit a unique alteration of fatty acid composition, marked especially among polyunsaturates by relative deficiency of linoleic acid and excess of Mead acid. Relative deficiency of docosahexaenoic acid is variably found. However, the initial development of these abnormalities is not understood. We examined fatty acid composition in young CF ferrets and pigs, finding abnormalities from the day of birth onward including relative deficiency of linoleic acid in both species. Fatty acid composition abnormalities were present in both liver and serum phospholipids of newborn CF piglets even prior to feeding, including reduced linoleic acid and increased Mead acid. Serum fatty acid composition evolved over the first weeks of life in both non-CF and CF ferrets, though differences between CF and non-CF persisted. Although red blood cell phospholipid fatty acid composition was normal in newborn animals, it became perturbed in juvenile CF ferrets including relative deficiencies of linoleic and docosahexaenoic acids and excess of Mead acid. In summary, fatty acid composition abnormalities in CF pigs and ferrets exist from a young age including at birth independent of feeding and overlap extensively with the abnormalities found in humans with CF. That the abnormalities exist prior to feeding implies that dietary measures alone will not address the mechanisms of imbalance.
Collapse
Affiliation(s)
- Aliye Uc
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, U.S.A
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, U.S.A
| | - Birgitta Strandvik
- Department of Biosciences and Nutrition, Karolinska Institutet NEO, Flemingsberg, Stockholm 14183, Sweden
| | - Jianrong Yao
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, U.S.A
| | - Xiaoming Liu
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, U.S.A
| | - Yaling Yi
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, U.S.A
| | - Xingshen Sun
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, U.S.A
| | - Ruth Welti
- Kansas Lipidomics Research Center, Kansas State University, Manhattan, KS 66506, U.S.A
| | - John F. Engelhardt
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, U.S.A
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, U.S.A
| | - Andrew W. Norris
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, U.S.A
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, U.S.A
| |
Collapse
|
8
|
Centorame A, Dumut DC, Youssef M, Ondra M, Kianicka I, Shah J, Paun RA, Ozdian T, Hanrahan JW, Gusev E, Petrof B, Hajduch M, Pislariu R, De Sanctis JB, Radzioch D. Treatment With LAU-7b Complements CFTR Modulator Therapy by Improving Lung Physiology and Normalizing Lipid Imbalance Associated With CF Lung Disease. Front Pharmacol 2022; 13:876842. [PMID: 35668939 PMCID: PMC9163687 DOI: 10.3389/fphar.2022.876842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Cystic fibrosis (CF) is the most common autosomal recessive genetic disease in Caucasians, affecting more than 100,000 individuals worldwide. It is caused by pathogenic variants in the gene encoding CFTR, an anion channel at the plasma membrane of epithelial and other cells. Many CF pathogenic variants disrupt the biosynthesis and trafficking of CFTR or reduce its ion channel function. The most frequent mutation, loss of a phenylalanine at position 508 (F508del), leads to misfolding, retention in the endoplasmic reticulum, and premature degradation of the protein. The therapeutics available for treating CF lung disease include antibiotics, mucolytics, bronchodilators, physiotherapy, and most recently CFTR modulators. To date, no cure for this life shortening disease has been found. Treatment with the Triple combination drug therapy, TRIKAFTA®, is composed of three drugs: Elexacaftor (VX-445), Tezacaftor (VX-661) and Ivacaftor (VX-770). This therapy, benefits persons with CF, improving their weight, lung function, energy levels (as defined by reduced fatigue), and overall quality of life. We examined the effect of combining LAU-7b oral treatment and Triple therapy combination on lung function in a F508deltm1EUR mouse model that displays lung abnormalities relevant to human CF. We assessed lung function, lung histopathology, protein oxidation, lipid oxidation, and fatty acid and lipid profiles in F508deltm1EUR mice.
Collapse
Affiliation(s)
- Amanda Centorame
- Faculty of Medicine, McGill University, Montreal, QC, Canada
- Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Daciana Catalina Dumut
- Faculty of Medicine, McGill University, Montreal, QC, Canada
- Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Mina Youssef
- Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Martin Ondra
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
- Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czechia
| | | | - Juhi Shah
- Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Radu Alexandru Paun
- Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Tomas Ozdian
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
| | - John W. Hanrahan
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Ekaterina Gusev
- Meakins-Christie Laboratories, The Centre for Respiratory Research at McGill University and the Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Basil Petrof
- Meakins-Christie Laboratories, The Centre for Respiratory Research at McGill University and the Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
- Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czechia
| | | | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
- Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czechia
| | - Danuta Radzioch
- Faculty of Medicine, McGill University, Montreal, QC, Canada
- Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
- Laurent Pharmaceuticals, Montreal, QC, Canada
| |
Collapse
|
9
|
Massip-Copiz MM, Valdivieso ÁG, Clauzure M, Mori C, Asensio CJA, Aguilar MÁ, Santa-Coloma TA. Epidermal growth factor receptor activity upregulates lactate dehydrogenase A expression, lactate dehydrogenase activity, and lactate secretion in cultured IB3-1 cystic fibrosis lung epithelial cells. Biochem Cell Biol 2021; 99:476-487. [PMID: 33481676 DOI: 10.1139/bcb-2020-0522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. It has been postulated that reduced HCO3- transport through CFTR may lead to a decreased airway surface liquid pH. In contrast, others have reported no changes in the extracellular pH (pHe). We have recently reported that in carcinoma Caco-2/pRS26 cells (transfected with short hairpin RNA for CFTR) or CF lung epithelial IB3-1 cells, the mutation in CFTR decreased mitochondrial complex I activity and increased lactic acid production, owing to an autocrine IL-1β loop. The secreted lactate accounted for the reduced pHe, because oxamate fully restored the pHe. These effects were attributed to the IL-1β autocrine loop and the downstream signaling kinases c-Src and JNK. Here we show that the pHe of IB3-1 cells can be restored to normal values (∼7.4) by incubation with the epidermal growth factor receptor (EGFR, HER1, ErbB1) inhibitors AG1478 and PD168393. PD168393 fully restored the pHe values of IB3-1 cells, suggesting that the reduced pHe is mainly due to increased EGFR activity and lactate. Also, in IB3-1 cells, lactate dehydrogenase A mRNA, protein expression, and activity are downregulated when EGFR is inhibited. Thus, a constitutive EGFR activation seems to be responsible for the reduced pHe in IB3-1 cells.
Collapse
Affiliation(s)
- María Macarena Massip-Copiz
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina.,Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina
| | - Ángel G Valdivieso
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina.,Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina
| | - Mariángeles Clauzure
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina.,Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina
| | - Consuelo Mori
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina.,Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina
| | - Cristian J A Asensio
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina.,Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina
| | - María Á Aguilar
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina.,Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina
| | - Tomás A Santa-Coloma
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina.,Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina
| |
Collapse
|
10
|
Jiménez DG, García CB, Martín JJD. Uses and Applications of Docosahexaenoic Acid (DHA) in Pediatric Gastroenterology: Current Evidence and New Perspective. Curr Pediatr Rev 2021; 17:329-335. [PMID: 33655869 DOI: 10.2174/1573396317666210303151947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/05/2020] [Accepted: 02/01/2021] [Indexed: 11/22/2022]
Abstract
In this paper, we will review the dietary allowances of these fatty acids in the paediatric population, and also the indications in different pathologies within the field of pediatric gastroenterology. Finally, we will try to explain the reasons that may justify the difficulty in translating good results in experimental studies to the usual clinical practice. This "good results" may be too little to be detected or there may be other causes but misinterpreted as effects of DHA.
Collapse
Affiliation(s)
| | - Carlos Bousoño García
- Pediatric Gastroenterology and Nutrition, Hospital Universitario Central de Asturias, University of Oviedo, Oviedo,Spain
| | - Juan Jose Diaz Martín
- Pediatric Gastroenterology and Nutrition, Hospital Universitario Central de Asturias, University of Oviedo, Oviedo,Spain
| |
Collapse
|
11
|
Garić D, Dumut DC, Shah J, De Sanctis JB, Radzioch D. The role of essential fatty acids in cystic fibrosis and normalizing effect of fenretinide. Cell Mol Life Sci 2020; 77:4255-4267. [PMID: 32394023 PMCID: PMC11105061 DOI: 10.1007/s00018-020-03530-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 02/28/2020] [Accepted: 04/15/2020] [Indexed: 12/26/2022]
Abstract
Cystic fibrosis (CF) is the most common autosomal-recessive disease in Caucasians caused by mutations in the CF transmembrane regulator (CFTR) gene. Patients are usually diagnosed in infancy and are burdened with extensive medical treatments throughout their lives. One of the first documented biochemical defects in CF, which predates the cloning of CFTR gene for almost three decades, is an imbalance in the levels of polyunsaturated fatty acids (PUFAs). The principal hallmarks of this imbalance are increased levels of arachidonic acid and decreased levels of docosahexaenoic acids (DHA) in CF. This pro-inflammatory profile of PUFAs is an important component of sterile inflammation in CF, which is known to be detrimental, rather than protective for the patients. Despite decades of intensive research, the mechanistic basis of this phenomenon remains unclear. In this review we summarized the current knowledge on the biochemistry of PUFAs, with a focus on the metabolism of AA and DHA in CF. Finally, a synthetic retinoid called fenretinide (N-(4-hydroxy-phenyl) retinamide) was shown to be able to correct the pro-inflammatory imbalance of PUFAs in CF. Therefore, its pharmacological actions and clinical potential are briefly discussed as well.
Collapse
Affiliation(s)
- Dušan Garić
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, 1001 Decarie Boulevard, Room EM3-3211, Montreal, QC, H4A 3J1, Canada
| | - Daciana Catalina Dumut
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC, Canada
- Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, 1001 Decarie Boulevard, Room EM3-3211, Montreal, QC, H4A 3J1, Canada
| | - Juhi Shah
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
- Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, 1001 Decarie Boulevard, Room EM3-3211, Montreal, QC, H4A 3J1, Canada
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Danuta Radzioch
- Department of Human Genetics, McGill University, Montreal, QC, Canada.
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC, Canada.
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic.
- Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, 1001 Decarie Boulevard, Room EM3-3211, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
12
|
López-Neyra A, Suárez L, Muñoz M, de Blas A, Ruiz de Valbuena M, Garriga M, Calvo J, Ribes C, Girón Moreno R, Máiz L, González D, Bousoño C, Manzanares J, Pastor Ó, Martínez-Botas J, Del Campo R, Cantón R, Roy G, Menacho M, Arroyo D, Zamora J, Soriano JB, Lamas A. Long-term docosahexaenoic acid (DHA) supplementation in cystic fibrosis patients: a randomized, multi-center, double-blind, placebo-controlled trial. Prostaglandins Leukot Essent Fatty Acids 2020; 162:102186. [PMID: 33038833 DOI: 10.1016/j.plefa.2020.102186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Cystic fibrosis (CF) patients have an alteration in fatty acid (FA) metabolism, associated with increased omega-6 and low omega-3 FA. Previous studies on supplementation with omega-3 FA in CF had contradictory results, and to date there is no evidence to recommend routine use of omega-3 supplements in CF patients. We hypothesized that long-term supplementation with docosahexaenoic acid (DHA) will have beneficial effects in these patients, by reducing pulmonary, systemic and intestinal inflammation. METHODS This was a randomized, double-blind, parallel, placebo-controlled trial. CF patients (age >2 months) were randomized to receive a seaweed DHA oil solution (50 mg/Kg/day) or matching placebo for 48 weeks. Primary outcomes were pulmonary (interleukin [IL]-8), systemic (IL-8) and intestinal (calprotectin) inflammatory biomarkers. Secondary outcomes included other pulmonary (IL-1β, IL-6, neutrophil elastase, lactate and calprotectin) and systemic (serum-IL-1β, IL-6) inflammatory biomarkers, as well as clinical outcomes (FEV1, pulmonary exacerbations, antibiotic use, nutritional status and quality of life). RESULTS Ninety six CF patients, 44 female, age 14.6±11.9 years (48 DHA and 48 placebo) were included. At trial completion, there were no differences in all primary outcomes [serum-IL-8 (p=0.909), respiratory-IL-8 (p=0.384) or fecal calprotectin (p=0.948)], all secondary inflammatory biomarkers, or in any of the clinical outcomes evaluated. There were few adverse events, with similar incidence in both study groups. CONCLUSION In this study, long-term DHA supplementation in CF patients was safe, but did not offer any benefit on inflammatory biomarkers, or in clinical outcomes compared with placebo. (NCT01783613).
Collapse
Affiliation(s)
- Alejandro López-Neyra
- Unidad de Fibrosis Quística. Servicio de Pediatría. Hospital Universitario Ramón y Cajal. Cª Colmenar Km. 9,1. 28034-Madrid. Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS). Cª Colmenar Km. 9,1. 28034-Madrid. Spain.
| | - Lucrecia Suárez
- Unidad de Fibrosis Quística. Servicio de Pediatría. Hospital Universitario Ramón y Cajal. Cª Colmenar Km. 9,1. 28034-Madrid. Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS). Cª Colmenar Km. 9,1. 28034-Madrid. Spain
| | - Marta Muñoz
- Unidad de Fibrosis Quística. Servicio de Pediatría. Hospital Universitario Ramón y Cajal. Cª Colmenar Km. 9,1. 28034-Madrid. Spain
| | - Ana de Blas
- Unidad de Fibrosis Quística. Servicio de Pediatría. Hospital Universitario Ramón y Cajal. Cª Colmenar Km. 9,1. 28034-Madrid. Spain
| | - Marta Ruiz de Valbuena
- Unidad de Fibrosis Quística. Servicio de Pediatría. Hospital Universitario Ramón y Cajal. Cª Colmenar Km. 9,1. 28034-Madrid. Spain
| | - María Garriga
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS). Cª Colmenar Km. 9,1. 28034-Madrid. Spain; Unidad de Fibrosis Quística. Servicio de Endocrinología. Hospital Universitario Ramón y Cajal. Cª Colmenar Km. 9,1. 28034-Madrid. Spain
| | - Joaquim Calvo
- Unidad de Fibrosis Quística. Servicio de Pediatría. Hospital Universitario La Fe. Avinguda de Fernando Abril Martorell, 106. 46026-Valencia. Spain
| | - Carmen Ribes
- Unidad de Fibrosis Quística. Servicio de Pediatría. Hospital Universitario La Fe. Avinguda de Fernando Abril Martorell, 106. 46026-Valencia. Spain
| | - Rosa Girón Moreno
- Unidad de Fibrosis Quística. Servicio de Neumología. Hospital Universitario La Princesa. Instituto de Investigación Sanitaria La Princesa. Calle de Diego de León, 62. 28006-Madrid. Spain
| | - Luis Máiz
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS). Cª Colmenar Km. 9,1. 28034-Madrid. Spain; Unidad de Fibrosis Quística. Servicio de Neumología. Hospital Universitario Ramón y Cajal. Cª Colmenar Km. 9,1. 28034-Madrid. Spain
| | - David González
- Unidad de Fibrosis Quística. Servicio de Pediatría. Hospital Universitario Central de Asturias. Av. Roma. 33011-Oviedo. Spain
| | - Carlos Bousoño
- Unidad de Fibrosis Quística. Servicio de Pediatría. Hospital Universitario Central de Asturias. Av. Roma. 33011-Oviedo. Spain
| | - Javier Manzanares
- Unidad de Fibrosis Quística. Servicio de Pediatría. Hospital Universitario Doce de Octubre. Avda. de Córdoba. 28041-Madrid. Spain
| | - Óscar Pastor
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS). Cª Colmenar Km. 9,1. 28034-Madrid. Spain; Servicio de Bioquímica Clínica, UCA-CCM. Hospital Universitario Ramón y Cajal. Cª Colmenar Km. 9,1. 28034-Madrid. Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III. Av. Monforte de Lemos, 3-5. 28029-Madrid. Spain
| | - Javier Martínez-Botas
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS). Cª Colmenar Km. 9,1. 28034-Madrid. Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III. Av. Monforte de Lemos, 3-5. 28029-Madrid. Spain; Servicio de Bioquímica-Investigación. Hospital Universitario Ramón y Cajal. Cª Colmenar Km. 9,1. 28034-Madrid. Spain
| | - Rosa Del Campo
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS). Cª Colmenar Km. 9,1. 28034-Madrid. Spain; Servicio de Microbiología, Hospital Universitario Ramón y Cajal. Cª Colmenar Km. 9,1. 28034-Madrid. Spain
| | - Rafael Cantón
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS). Cª Colmenar Km. 9,1. 28034-Madrid. Spain; Servicio de Microbiología, Hospital Universitario Ramón y Cajal. Cª Colmenar Km. 9,1. 28034-Madrid. Spain
| | - Garbiñe Roy
- Servicio de Inmunología, Hospital Universitario Ramón y Cajal. Cª Colmenar Km. 9,1. 28034-Madrid. Spain
| | - Miriam Menacho
- Servicio de Bioquímica Clínica, Hospital Universitario Ramón y Cajal. Cª Colmenar Km. 9,1. 28034-Madrid. Spain
| | - David Arroyo
- Unidad de Bioestadística Clínica, Hospital Universitario Ramón y Cajal. Cª Colmenar Km. 9,1. 28034-Madrid. Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III. Av. Monforte de Lemos, 3-5. 28029-Madrid. Spain
| | - Javier Zamora
- Unidad de Bioestadística Clínica, Hospital Universitario Ramón y Cajal. Cª Colmenar Km. 9,1. 28034-Madrid. Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III. Av. Monforte de Lemos, 3-5. 28029-Madrid. Spain
| | - Joan B Soriano
- Hospital Universitario La Princesa. Universidad Autónoma de Madrid. Calle de Diego de León, 62. 28006-Madrid. Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III. Av. Monforte de Lemos, 3-5. 28029-Madrid. Spain
| | - Adelaida Lamas
- Unidad de Fibrosis Quística. Servicio de Pediatría. Hospital Universitario Ramón y Cajal. Cª Colmenar Km. 9,1. 28034-Madrid. Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS). Cª Colmenar Km. 9,1. 28034-Madrid. Spain
| |
Collapse
|
13
|
Vandebrouck C, Ferreira T. Glued in lipids: Lipointoxication in cystic fibrosis. EBioMedicine 2020; 61:103038. [PMID: 33038767 PMCID: PMC7648119 DOI: 10.1016/j.ebiom.2020.103038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/27/2020] [Accepted: 09/14/2020] [Indexed: 01/14/2023] Open
Abstract
Cystic Fibrosis (CF) is an autosomal recessive disease caused by mutations in the CF transmembrane regulator (CFTR) gene, which encodes a chloride channel located at the apical surface of epithelial cells. Unsaturated Fatty Acid (UFA) deficiency has been a persistent observation in tissues from patients with CF. However, the impacts of such deficiencies on the etiology of the disease have been the object of intense debates. The aim of the present review is first to highlight the general consensus on fatty acid dysregulations that emerges from, sometimes apparently contradictory, studies. In a second step, a unifying mechanism for the potential impacts of these fatty acid dysregulations in CF cells, based on alterations of membrane biophysical properties (known as lipointoxication), is proposed. Finally, the contribution of lipointoxication to the progression of the CF disease and how it could affect the efficacy of current treatments is also discussed.
Collapse
Affiliation(s)
- Clarisse Vandebrouck
- Laboratoire "Lipointoxication and Channelopathies (LiTch) - ConicMeds", Université de Poitiers, 1, rue Georges Bonnet, Poitiers, France; Laboratoire "Signalisation et Transports Ioniques Membranaires (STIM; EA 7349)", Université de Poitiers, 1, rue Georges Bonnet, Poitiers, France
| | - Thierry Ferreira
- Laboratoire "Lipointoxication and Channelopathies (LiTch) - ConicMeds", Université de Poitiers, 1, rue Georges Bonnet, Poitiers, France.
| |
Collapse
|
14
|
Cottrill KA, Farinha CM, McCarty NA. The bidirectional relationship between CFTR and lipids. Commun Biol 2020; 3:179. [PMID: 32313074 PMCID: PMC7170930 DOI: 10.1038/s42003-020-0909-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 03/23/2020] [Indexed: 02/08/2023] Open
Abstract
Cystic Fibrosis (CF) is the most common life-shortening genetic disease among Caucasians, resulting from mutations in the gene encoding the Cystic Fibrosis Transmembrane conductance Regulator (CFTR). While work to understand this protein has resulted in new treatment strategies, it is important to emphasize that CFTR exists within a complex lipid bilayer - a concept largely overlooked when performing structural and functional studies. In this review we discuss cellular lipid imbalances in CF, mechanisms by which lipids affect membrane protein activity, and the specific impact of detergents and lipids on CFTR function.
Collapse
Affiliation(s)
- Kirsten A Cottrill
- Molecular and Systems Pharmacology PhD Program, Emory University, Atlanta, GA, USA
| | - Carlos M Farinha
- Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Nael A McCarty
- Molecular and Systems Pharmacology PhD Program, Emory University, Atlanta, GA, USA.
- Department of Pediatrics and Children's Healthcare of Atlanta, Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
15
|
Garić D, De Sanctis JB, Dumut DC, Shah J, Peña MJ, Youssef M, Petrof BJ, Kopriva F, Hanrahan JW, Hajduch M, Radzioch D. Fenretinide favorably affects mucins (MUC5AC/MUC5B) and fatty acid imbalance in a manner mimicking CFTR-induced correction. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158538. [PMID: 31678518 DOI: 10.1016/j.bbalip.2019.158538] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/28/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
Cystic fibrosis (CF) is the most common genetic disease in Caucasians. CF is manifested by abnormal accumulation of mucus in the lungs, which serves as fertile ground for the growth of microorganisms leading to recurrent infections and ultimately, lung failure. Mucus in CF patients consists of DNA from dead neutrophils as well as mucins produced by goblet cells. MUC5AC mucin leads to pathological plugging of the airways whereas MUC5B has a protective role against bacterial infection. Therefore, decreasing the level of MUC5AC while maintaining MUC5B intact would in principle be a desirable mucoregulatory treatment outcome. Fenretinide prevented the lipopolysaccharide-induced increase of MUC5AC gene expression, without affecting the level of MUC5B, in a lung goblet cell line. Additionally, fenretinide treatment reversed the pro-inflammatory imbalance of fatty acids by increasing docosahexaenoic acid and decreasing the levels of arachidonic acid in a lung epithelial cell line and primary leukocytes derived from CF patients. Furthermore, for the first time we also demonstrate the effect of fenretinide on multiple unsaturated fatty acids, as well as differential effects on the levels of long- compared to very-long-chain saturated fatty acids which are important substrates of complex phospholipids. Finally, we demonstrate that pre-treating mice with fenretinide in a chronic model of P. aeruginosa lung infection efficiently decreases the accumulation of mucus. These findings suggest that fenretinide may offer a new approach to therapeutic modulation of pathological mucus production in CF.
Collapse
Affiliation(s)
- Dušan Garić
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada
| | - Juan B De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic; Institute of Immunology, Faculty of Medicine, Universidad Central de Venezuela, Bolivarian Republic of Venezuela
| | - Daciana Catalina Dumut
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada
| | - Juhi Shah
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada
| | - Maria Johanna Peña
- Institute of Immunology, Faculty of Medicine, Universidad Central de Venezuela, Bolivarian Republic of Venezuela
| | - Mina Youssef
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada
| | - Basil J Petrof
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - Francisek Kopriva
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - John W Hanrahan
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Danuta Radzioch
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic; Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada.
| |
Collapse
|
16
|
Kadri L, Ferru-Clément R, Bacle A, Payet LA, Cantereau A, Hélye R, Becq F, Jayle C, Vandebrouck C, Ferreira T. Modulation of cellular membrane properties as a potential therapeutic strategy to counter lipointoxication in obstructive pulmonary diseases. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3069-3084. [PMID: 29960042 DOI: 10.1016/j.bbadis.2018.06.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/04/2018] [Accepted: 06/25/2018] [Indexed: 02/08/2023]
Abstract
Maintaining the equilibrium between saturated and unsaturated fatty acids within membrane phospholipids (PLs) is crucial to sustain the optimal membrane biophysical properties, compatible with selective organelle-based processes. Lipointoxication is a pathological condition under which saturated PLs tend to accumulate within the cell at the expense of unsaturated species, with major impacts on organelle function. Here, we show that human bronchial epithelial cells extracted from lungs of patients with Obstructive Pulmonary Diseases (OPDs), i. e. Cystic Fibrosis (CF) individuals and Smokers, display a characteristic lipointoxication signature, with excessive amounts of saturated PLs. Reconstitution of this signature in cellulo and in silico revealed that such an imbalance results in altered membrane properties and in a dramatic disorganization of the intracellular network of bronchial epithelial cells, in a process which can account for several OPD traits. Such features include Endoplasmic Reticulum-stress, constitutive IL8 secretion, bronchoconstriction and, ultimately, epithelial cell death by apoptosis. We also demonstrate that a recently-identified lipid-like molecule, which has been shown to behave as a "membrane-reshaper", counters all the lipointoxication hallmarks tested. Altogether, these insights highlight the modulation of membrane properties as a potential new strategy to heal and prevent highly detrimental symptoms associated with OPDs.
Collapse
Affiliation(s)
- Linette Kadri
- Laboratoire Coopératif "Lipotoxicity and Channelopathies - ConicMeds", Université de Poitiers, 1, rue Georges Bonnet, Poitiers, France
| | - Romain Ferru-Clément
- Laboratoire Coopératif "Lipotoxicity and Channelopathies - ConicMeds", Université de Poitiers, 1, rue Georges Bonnet, Poitiers, France
| | - Amélie Bacle
- Laboratoire Coopératif "Lipotoxicity and Channelopathies - ConicMeds", Université de Poitiers, 1, rue Georges Bonnet, Poitiers, France
| | - Laurie-Anne Payet
- Laboratoire "Signalisation et Transports Ioniques Membranaires (STIM)", Université de Poitiers, 1, rue Georges Bonnet, Poitiers, France
| | - Anne Cantereau
- Laboratoire "Signalisation et Transports Ioniques Membranaires (STIM)", Université de Poitiers, 1, rue Georges Bonnet, Poitiers, France
| | - Reynald Hélye
- Laboratoire Coopératif "Lipotoxicity and Channelopathies - ConicMeds", Université de Poitiers, 1, rue Georges Bonnet, Poitiers, France
| | - Frédéric Becq
- Laboratoire "Signalisation et Transports Ioniques Membranaires (STIM)", Université de Poitiers, 1, rue Georges Bonnet, Poitiers, France
| | - Christophe Jayle
- Service de Chirurgie Cardiothoracique, CHU Poitiers, Poitiers, France
| | - Clarisse Vandebrouck
- Laboratoire "Signalisation et Transports Ioniques Membranaires (STIM)", Université de Poitiers, 1, rue Georges Bonnet, Poitiers, France
| | - Thierry Ferreira
- Laboratoire Coopératif "Lipotoxicity and Channelopathies - ConicMeds", Université de Poitiers, 1, rue Georges Bonnet, Poitiers, France.
| |
Collapse
|
17
|
Strandvik B, O´ Neal WK, Ali MA, Hammar U. Low linoleic and high docosahexaenoic acids in a severe phenotype of transgenic cystic fibrosis mice. Exp Biol Med (Maywood) 2018; 243:496-503. [PMID: 29513100 PMCID: PMC5882031 DOI: 10.1177/1535370218758605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/21/2018] [Indexed: 12/29/2022] Open
Abstract
Low linoleic acid concentration is a common finding in patients with cystic fibrosis and associated with severe clinical phenotype. Low docosahexaenoic and arachidonic acids are more inconsistently found in patients, but arachidonic/docosahexaenoic ratio is usually high. In animal models with cftr mutations or KO animals for the cftr gene, linoleic acid deficiency has not been consistently reported and some report docosahexaenoic deficiency as the major fatty acid abnormality. We hereby describe fatty acid profile in a severe clinical cystic fibrosis phenotype in mice with a duplication of exon 3 generated in the cystic fibrosis gene of C57B1/6J mice ( cftrm1Bay allele). In 43/50 animals, plasma phospholipid fatty acids were repeatedly analyzed (mean three times/animal) covering ages between 7 and 235 days. Linoleic acid concentrations were significantly lower in cftr-/- mice compared to heterozygotes ( P = 0.03) and wild type mice ( P < 0.001). Females had significantly lower linoleic acid than males, not related to age. Arachidonic acid did not differ but docosahexaenoic acid was higher in cftr-/- than in wild type mice ( P < 0.001). The arachidonic/docosahexaenoic acid ratio did not differ but arachidonic/linoleic acid ratio was higher in cftr-/- mice compared to wild type mice ( P = 0.007). Similar to clinical studies, type of mutation is important for lipid abnormality with low linoleic acid most consistently found in the animals. Rodents differ in metabolism by synthesizing docosahexaenoic acid more efficiently comparing to humans, suggesting greater influence by diet. Precaution seems important when comparing animal and humans. Impact statement In translational research, animal models are important to investigate the effect of genetic mutations in specific diseases and their metabolism. Special attention has to be given to differences in physiology and metabolism between species and humans, which otherwise can hazard the conclusions. Our work illustrates that the different synthesis capacity in mice and humans for DHA would explain different results in different models for cystic fibrosis and different influences of diets. To avoid disappointing clinical results, these facts have to be considered before extensive clinical studies are started based on results from single animal studies.
Collapse
Affiliation(s)
- Birgitta Strandvik
- Department of Biosciences and Nutrition, Karolinska Institutet,
Huddinge, Stockholm 14183, Sweden
| | - Wanda K O´ Neal
- Department of Marsico, Lung Institute/Cystic Fibrosis Center,
University of North Carolina at Chapel Hill, NC 27599, USA
- Baylor College of Medicine, Houston, TX 77030, USA
| | - Mohamed A Ali
- Department of Biosciences and Nutrition, Karolinska Institutet,
Huddinge, Stockholm 14183, Sweden
| | - Ulf Hammar
- Department of Biostatistics, Karolinska Institutet, Stockholm
17177, Sweden
| |
Collapse
|
18
|
Host-derived fatty acids activate type VII secretion in Staphylococcus aureus. Proc Natl Acad Sci U S A 2017; 114:11223-11228. [PMID: 28973946 DOI: 10.1073/pnas.1700627114] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The type VII secretion system (T7SS) of Staphylococcus aureus is a multiprotein complex dedicated to the export of several virulence factors during host infection. This virulence pathway plays a key role in promoting bacterial survival and the long-term persistence of staphylococcal abscess communities. The expression of the T7SS is activated by bacterial interaction with host tissues including blood serum, nasal secretions, and pulmonary surfactant. In this work we identify the major stimulatory factors as host-specific cis-unsaturated fatty acids. Increased T7SS expression requires host fatty acid incorporation into bacterial biosynthetic pathways by the Saureus fatty acid kinase (FAK) complex, and FakA is required for virulence. The incorporated cis-unsaturated fatty acids decrease Saureus membrane fluidity, and these altered membrane dynamics are partially responsible for T7SS activation. These data define a molecular mechanism by which Saureus cells sense the host environment and implement appropriate virulence pathways.
Collapse
|
19
|
Complex Relation Between Diet and Phospholipid Fatty Acids in Children With Cystic Fibrosis. J Pediatr Gastroenterol Nutr 2017; 64:598-604. [PMID: 28333826 DOI: 10.1097/mpg.0000000000001356] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVES Altered total plasma n-6 and n-3 fatty acids are common in cystic fibrosis (CF). Whether alterations extend to plasma phosphatidylcholine (PC) and phosphatidylethanolamine (PE) and are explained by diet is unclear. The present study was to describe the dietary intake of a large group of children with CF and to determine whether dietary fat composition explains differences in plasma PC and PE fatty acids between children with and without CF. METHODS Dietary intake was assessed using a food frequency questionnaire. Venous blood was collected. Plasma PC and PE were separately analyzed for fatty acids. RESULTS Children with CF, n = 74, consumed more calories and fat (g/day and % energy), with significantly more saturates mainly from dairy foods and less polyunsaturates including linoleic acid (LA), arachidonic acid (ARA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) (% fat) than reference children, n = 71. A subset of children with CF, not differing in dietary intake from the larger group, had significantly lower LA and DHA, but higher EPA in plasma PC and had higher LA and lower ARA and DHA in plasma PE, compared to a subset of reference children. In both groups, LA intake and LA in plasma PC and PE were not associated. EPA and DHA intakes were positively associated with EPA and DHA, respectively, in plasma PC, but not PE, in reference children only. CONCLUSIONS The fatty acid composition of plasma PC and PE is altered in CF. Fatty acid differences between children with and without CF are inconsistent between PC and PE and are not explained by dietary fat.
Collapse
|
20
|
Drzymała-Czyż S, Krzyżanowska P, Koletzko B, Nowak J, Miśkiewicz-Chotnicka A, Moczko JA, Lisowska A, Walkowiak J. Determinants of Serum Glycerophospholipid Fatty Acids in Cystic Fibrosis. Int J Mol Sci 2017; 18:ijms18010185. [PMID: 28106773 PMCID: PMC5297817 DOI: 10.3390/ijms18010185] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 12/29/2016] [Accepted: 01/04/2017] [Indexed: 02/07/2023] Open
Abstract
The etiology of altered blood fatty acid (FA) composition in cystic fibrosis (CF) is understood only partially. We aimed to investigate the determinants of serum glycerophospholipids’ FAs in CF with regard to the highest number of FAs and in the largest cohort to date. The study comprised 172 CF patients and 30 healthy subjects (HS). We assessed Fas’ profile (gas chromatography/mass spectrometry), CF transmembrane conductance regulator (CFTR) genotype, spirometry, fecal elastase-1, body height and weight Z-scores, liver disease, diabetes and colonization by Pseudomonas aeruginosa. The amounts of saturated FAs (C14:0, C16:0) and monounsaturated FAs (C16:1n-7, C18:1n-9, C20:1n-9, C20:3n-9) were significantly higher in CF patients than in HS. C18:3n-6, C20:3n-6 and C22:4n-6 levels were also higher in CF, but C18:2n-6, C20:2n-6 and C20:4n-6, as well as C22:6n-3, were lower. In a multiple regression analysis, levels of seven FAs were predicted by various sets of factors that included age, genotype, forced expiratory volume in one second, pancreatic status and diabetes. FA composition abnormalities are highly prevalent in CF patients. They seem to be caused by both metabolic disturbances and independent clinical risk factors. Further research into the influence of CFTR mutations on fat metabolism and desaturases’ activity is warranted.
Collapse
Affiliation(s)
- Sławomira Drzymała-Czyż
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznań, Poland.
| | - Patrycja Krzyżanowska
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznań, Poland.
| | - Berthold Koletzko
- Ludwig-Maximilians-Universität München, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Center, Lindwurmstr. 4, D-80337 Munich, Germany.
| | - Jan Nowak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznań, Poland.
| | - Anna Miśkiewicz-Chotnicka
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznań, Poland.
| | - Jerzy A Moczko
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, Dąbrowskiego 79, 60-529 Poznań, Poland.
| | - Aleksandra Lisowska
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznań, Poland.
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznań, Poland.
| |
Collapse
|
21
|
Cacabelos D, Ayala V, Granado-Serrano AB, Jové M, Torres P, Boada J, Cabré R, Ramírez-Núñez O, Gonzalo H, Soler-Cantero A, Serrano JCE, Bellmunt MJ, Romero MP, Motilva MJ, Nonaka T, Hasegawa M, Ferrer I, Pamplona R, Portero-Otín M. Interplay between TDP-43 and docosahexaenoic acid-related processes in amyotrophic lateral sclerosis. Neurobiol Dis 2016; 88:148-60. [PMID: 26805387 DOI: 10.1016/j.nbd.2016.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 12/09/2015] [Accepted: 01/09/2016] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Docosahexaenoic acid (DHA), a key lipid in nervous system homeostasis, is depleted in the spinal cord of sporadic amyotrophic lateral sclerosis (sALS) patients. However, the basis for such loss was unknown. METHODS DHA synthetic machinery was evaluated in spinal cord samples from ALS patients and controls by immunohistochemistry and western blot. Further, lipid composition was measured in organotypic spinal cord cultures by gas chromatography and liquid chromatography coupled to mass spectrometry. In these samples, mitochondrial respiratory functions were measured by high resolution respirometry. Finally, Neuro2-A and stem cell-derived human neurons were used for evaluating mechanistic relationships between TDP-43 aggregation, oxidative stress and cellular changes in DHA-related proteins. RESULTS ALS is associated to changes in the spinal cord distribution of DHA synthesis enzymatic machinery comparing ten ALS cases and eight controls. We found increased levels of desaturases (ca 95% increase, p<0.001), but decreased amounts of DHA-related β-oxidation enzymes in ALS samples (40% decrease, p<0.05). Further, drebrin, a DHA-dependent synaptic protein, is depleted in spinal cord samples from ALS patients (around 40% loss, p<0.05). In contrast, chronic excitotoxicity in spinal cord increases DHA acid amount, with both enhanced concentrations of neuroprotective docosahexaenoic acid-derived resolvin D, and higher lipid peroxidation-derived molecules such as 8-iso-prostaglandin-F2-α (8-iso-PGF2α) levels. Since α-tocopherol improved mitochondrial respiratory function and motor neuron survival in these conditions, it is suggested that oxidative stress could boost motor neuron loss. Cell culture and metabolic flux experiments, showing enhanced expression of desaturases (FADS2) and β-oxidation enzymes after H2O2 challenge suggest that DHA production can be an initial response to oxidative stress, driven by TDP-43 aggregation and drebrin loss. Interestingly, these changes were dependent on cell type used, since human neurons exhibited losses of FADS2 and drebrin after oxidative stress. These features (drebrin loss and FADS2 alterations) were also produced by transfection by aggregation prone C-terminal fragments of TDP-43. CONCLUSIONS sALS is associated with tissue-specific DHA-dependent synthetic machinery alteration. Furthermore, excitotoxicity sinergizes with oxidative stress to increase DHA levels, which could act as a response over stress, involving the expression of DHA synthetic enzymes. Later on, this allostatic overload could exacerbate cell stress by contributing to TDP-43 aggregation. This, at its turn, could blunt this protective response, overall leading to DHA depletion and neuronal dysfunction.
Collapse
Affiliation(s)
- Daniel Cacabelos
- Departament de Medicina Experimental, Facultat de Medicina, IRBLLEIDA-UDL, Avda Rovira Roure, 44, 25008 Lleida, Spain.
| | - Victòria Ayala
- Departament de Medicina Experimental, Facultat de Medicina, IRBLLEIDA-UDL, Avda Rovira Roure, 44, 25008 Lleida, Spain.
| | - Ana Belén Granado-Serrano
- Departament de Medicina Experimental, Facultat de Medicina, IRBLLEIDA-UDL, Avda Rovira Roure, 44, 25008 Lleida, Spain.
| | - Mariona Jové
- Departament de Medicina Experimental, Facultat de Medicina, IRBLLEIDA-UDL, Avda Rovira Roure, 44, 25008 Lleida, Spain.
| | - Pascual Torres
- Departament de Medicina Experimental, Facultat de Medicina, IRBLLEIDA-UDL, Avda Rovira Roure, 44, 25008 Lleida, Spain.
| | - Jordi Boada
- Departament de Medicina Experimental, Facultat de Medicina, IRBLLEIDA-UDL, Avda Rovira Roure, 44, 25008 Lleida, Spain.
| | - Rosanna Cabré
- Departament de Medicina Experimental, Facultat de Medicina, IRBLLEIDA-UDL, Avda Rovira Roure, 44, 25008 Lleida, Spain.
| | - Omar Ramírez-Núñez
- Departament de Medicina Experimental, Facultat de Medicina, IRBLLEIDA-UDL, Avda Rovira Roure, 44, 25008 Lleida, Spain.
| | - Hugo Gonzalo
- Departament de Medicina Experimental, Facultat de Medicina, IRBLLEIDA-UDL, Avda Rovira Roure, 44, 25008 Lleida, Spain.
| | - Aranzazu Soler-Cantero
- Departament de Tecnologia d'Aliments, XaRTA-TPV, Escola Tècnica Superior d' Enginyeria Agrària, UdL, Avda Rovira Roure, 85, 25008 Lleida, Spain.
| | - José Carlos Enrique Serrano
- Departament de Medicina Experimental, Facultat de Medicina, IRBLLEIDA-UDL, Avda Rovira Roure, 44, 25008 Lleida, Spain.
| | - Maria Josep Bellmunt
- Departament de Medicina Experimental, Facultat de Medicina, IRBLLEIDA-UDL, Avda Rovira Roure, 44, 25008 Lleida, Spain.
| | - María Paz Romero
- Departament de Tecnologia d'Aliments, XaRTA-TPV, Escola Tècnica Superior d' Enginyeria Agrària, UdL, Avda Rovira Roure, 85, 25008 Lleida, Spain.
| | - María José Motilva
- Departament de Tecnologia d'Aliments, XaRTA-TPV, Escola Tècnica Superior d' Enginyeria Agrària, UdL, Avda Rovira Roure, 85, 25008 Lleida, Spain.
| | - Takashi Nonaka
- Department of Neuropathology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan.
| | - Masato Hasegawa
- Departament de Tecnologia d'Aliments, XaRTA-TPV, Escola Tècnica Superior d' Enginyeria Agrària, UdL, Avda Rovira Roure, 85, 25008 Lleida, Spain.
| | - Isidre Ferrer
- Institut de Neuropatologia, Hospital Universitari de Bellvitge - IDIBELL, Universitat de Barcelona, Spain; CIBERNED (Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas), Instituto Carlos III, Spanish Ministry of Health, Spain. L'Hospitalet de Llobregat, c/La Feixa Llarga, S/N 08908 Hospitalet de Llobregat, Barcelona, Spain.
| | - Reinald Pamplona
- Departament de Medicina Experimental, Facultat de Medicina, IRBLLEIDA-UDL, Avda Rovira Roure, 44, 25008 Lleida, Spain.
| | - Manuel Portero-Otín
- Departament de Medicina Experimental, Facultat de Medicina, IRBLLEIDA-UDL, Avda Rovira Roure, 44, 25008 Lleida, Spain.
| |
Collapse
|
22
|
Synthetic dendrimeric peptide active against biofilm and persister cells of Pseudomonas aeruginosa. Appl Microbiol Biotechnol 2015; 99:8125-35. [DOI: 10.1007/s00253-015-6645-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/23/2015] [Accepted: 04/25/2015] [Indexed: 01/03/2023]
|
23
|
Polyunsaturated fatty acid supplementation reverses cystic fibrosis-related fatty acid abnormalities in CFTR−/− mice by suppressing fatty acid desaturases. J Nutr Biochem 2015; 26:36-43. [DOI: 10.1016/j.jnutbio.2014.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 08/07/2014] [Accepted: 09/02/2014] [Indexed: 01/23/2023]
|
24
|
Seegmiller AC. Abnormal unsaturated fatty acid metabolism in cystic fibrosis: biochemical mechanisms and clinical implications. Int J Mol Sci 2014; 15:16083-99. [PMID: 25216340 PMCID: PMC4200767 DOI: 10.3390/ijms150916083] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/25/2014] [Accepted: 08/27/2014] [Indexed: 02/06/2023] Open
Abstract
Cystic fibrosis is an inherited multi-organ disorder caused by mutations in the CFTR gene. Patients with this disease exhibit characteristic abnormalities in the levels of unsaturated fatty acids in blood and tissue. Recent studies have uncovered an underlying biochemical mechanism for some of these changes, namely increased expression and activity of fatty acid desaturases. Among other effects, this drives metabolism of linoeate to arachidonate. Increased desaturase expression appears to be linked to cystic fibrosis mutations via stimulation of the AMP-activated protein kinase in the absence of functional CFTR protein. There is evidence that these abnormalities may contribute to disease pathophysiology by increasing production of eicosanoids, such as prostaglandins and leukotrienes, of which arachidonate is a key substrate. Understanding these underlying mechanisms provides key insights that could potentially impact the diagnosis, clinical monitoring, nutrition, and therapy of patients suffering from this deadly disease.
Collapse
Affiliation(s)
- Adam C Seegmiller
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, 4918B TVC, 1301 Medical Center Dr., Nashville, TN 37027, USA.
| |
Collapse
|
25
|
Desbenoit N, Saussereau E, Bich C, Bourderioux M, Fritsch J, Edelman A, Brunelle A, Ollero M. Localized lipidomics in cystic fibrosis: TOF-SIMS imaging of lungs from Pseudomonas aeruginosa-infected mice. Int J Biochem Cell Biol 2014; 52:77-82. [DOI: 10.1016/j.biocel.2014.01.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/24/2014] [Accepted: 01/30/2014] [Indexed: 12/31/2022]
|
26
|
Umunakwe OC, Seegmiller AC. Abnormal n-6 fatty acid metabolism in cystic fibrosis is caused by activation of AMP-activated protein kinase. J Lipid Res 2014; 55:1489-97. [PMID: 24859760 DOI: 10.1194/jlr.m050369] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Indexed: 12/14/2022] Open
Abstract
Cystic fibrosis (CF) patients and model systems exhibit consistent abnormalities in PUFA metabolism, including increased metabolism of linoleate to arachidonate. Recent studies have connected these abnormalities to increased expression and activity of the Δ6- and Δ5-desaturase enzymes. However, the mechanism connecting these changes to the CF transmembrane conductance regulator (CFTR) mutations responsible for CF is unknown. This study tests the hypothesis that increased activity of AMP-activated protein kinase (AMPK), previously described in CF bronchial epithelial cells, causes these changes in fatty acid metabolism by driving desaturase expression. Using CF bronchial epithelial cell culture models, we confirm elevated activity of AMPK in CF cells and show that it is due to increased phosphorylation of AMPK by Ca(2+)/calmodulin-dependent protein kinase kinase β (CaMKKβ). We also show that inhibition of AMPK or CaMKKβ reduces desaturase expression and reverses the metabolic alterations seen in CF cells. These results signify a novel AMPK-dependent mechanism linking the genetic defect in CF to alterations in PUFA metabolism.
Collapse
Affiliation(s)
- Obi C Umunakwe
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN
| | - Adam C Seegmiller
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
27
|
Payet LA, Kadri L, Giraud S, Norez C, Berjeaud JM, Jayle C, Mirval S, Becq F, Vandebrouck C, Ferreira T. Cystic fibrosis bronchial epithelial cells are lipointoxicated by membrane palmitate accumulation. PLoS One 2014; 9:e89044. [PMID: 24586495 PMCID: PMC3929646 DOI: 10.1371/journal.pone.0089044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/14/2014] [Indexed: 12/11/2022] Open
Abstract
The F508del-CFTR mutation, responsible for Cystic Fibrosis (CF), leads to the retention of the protein in the endoplasmic reticulum (ER). The mistrafficking of this mutant form can be corrected by pharmacological chaperones, but these molecules showed limitations in clinical trials. We therefore hypothesized that important factors in CF patients may have not been considered in the in vitro assays. CF has also been associated with an altered lipid homeostasis, i. e. a decrease in polyunsaturated fatty acid levels in plasma and tissues. However, the precise fatty acyl content of membrane phospholipids from human CF bronchial epithelial cells had not been studied to date. Since the saturation level of phospholipids can modulate crucial membrane properties, with potential impacts on membrane protein folding/trafficking, we analyzed this parameter for freshly isolated bronchial epithelial cells from CF patients. Interestingly, we could show that Palmitate, a saturated fatty acid, accumulates within Phosphatidylcholine (PC) in CF freshly isolated cells, in a process that could result from hypoxia. The observed PC pattern can be recapitulated in the CFBE41o(-) cell line by incubation with 100 µM Palmitate. At this concentration, Palmitate induces an ER stress, impacts calcium homeostasis and leads to a decrease in the activity of the corrected F508del-CFTR. Overall, these data suggest that bronchial epithelial cells are lipointoxicated by hypoxia-related Palmitate accumulation in CF patients. We propose that this phenomenon could be an important bottleneck for F508del-CFTR trafficking correction by pharmacological agents in clinical trials.
Collapse
Affiliation(s)
- Laurie-Anne Payet
- Signalisation et Transports Ioniques Membranaires, ERL CNRS 7368, Université de Poitiers, Poitiers, France
| | - Linette Kadri
- Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Sébastien Giraud
- Service de Biochimie, CHU Poitiers, Poitiers, France
- Inserm U1082, Poitiers, France
- Faculté de Médecine et de Pharmacie Université de Poitiers, Poitiers, France
| | - Caroline Norez
- Signalisation et Transports Ioniques Membranaires, ERL CNRS 7368, Université de Poitiers, Poitiers, France
| | - Jean Marc Berjeaud
- Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Christophe Jayle
- Service de Chirurgie Cardiothoracique, CHU Poitiers, Poitiers, France
| | - Sandra Mirval
- Signalisation et Transports Ioniques Membranaires, ERL CNRS 7368, Université de Poitiers, Poitiers, France
| | - Frédéric Becq
- Signalisation et Transports Ioniques Membranaires, ERL CNRS 7368, Université de Poitiers, Poitiers, France
| | - Clarisse Vandebrouck
- Signalisation et Transports Ioniques Membranaires, ERL CNRS 7368, Université de Poitiers, Poitiers, France
| | - Thierry Ferreira
- Signalisation et Transports Ioniques Membranaires, ERL CNRS 7368, Université de Poitiers, Poitiers, France
- * E-mail:
| |
Collapse
|
28
|
Tsuda K, Kawahara-Miki R, Sano S, Imai M, Noguchi T, Inayoshi Y, Kono T. Abundant sequence divergence in the native Japanese cattle Mishima-Ushi (Bos taurus) detected using whole-genome sequencing. Genomics 2013; 102:372-8. [PMID: 23938316 DOI: 10.1016/j.ygeno.2013.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 07/06/2013] [Accepted: 08/02/2013] [Indexed: 12/30/2022]
Abstract
The native Japanese cattle Mishima-Ushi, a designated national natural treasure, are bred on a remote island, which has resulted in the conservation of their genealogy. We examined the genetic characteristics of 8 Mishima-Ushi individuals by using single nucleotide polymorphisms (SNPs), insertions, and deletions obtained by whole-genome sequencing. Mapping analysis with various criteria showed that predicted heterozygous SNPs were more prevalent than predicted homozygous SNPs in the exonic region, especially non-synonymous SNPs. From the identified 6.54 million polymorphisms, we found 400 non-synonymous SNPs in 313 genes specific to each of the 8 Mishima-Ushi individuals. Additionally, 3,170,833 polymorphisms were found between the 8 Mishima-Ushi individuals. Phylogenetic analysis confirmed that the Mishima-Ushi population diverged from another strain of Japanese cattle. This study provides a framework for further genetic studies of Mishima-Ushi and research on the function of SNP-containing genes as well as understanding the genetic relationship between the domestic and native Japanese cattle breeds.
Collapse
Affiliation(s)
- Kaoru Tsuda
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Ferreri C, Chatgilialoglu C. Role of fatty acid-based functional lipidomics in the development of molecular diagnostic tools. Expert Rev Mol Diagn 2013; 12:767-80. [PMID: 23153242 DOI: 10.1586/erm.12.73] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Lipids are molecules with different structures which have the feature of water insolubility in common. They have very important biological roles within structural, functional and signaling activities that have recently received renewed attention from life science research. Lipidomics considers the structural and functional roles played by lipids, but also their in vivo changes due to metabolic or degradation pathways, as well as their biological consequences. In this context, the dynamic vision of phospholipid metabolism and, in particular, fatty acid transformations combine with nutritional aspects and health consequences, providing important information for molecular medicine. Fatty acid-based functional lipidomics can be successfully applied to the follow-up of human lipid profiles under normal and pathological conditions, and this review provides several examples of this powerful molecular diagnostic tool, which is expected to have a strong influence on biomedical research in the 21st century.
Collapse
Affiliation(s)
- Carla Ferreri
- ISOF, Consiglio Nazionale delle Ricerche, Via Piero Gobetti 101, 40129 Bologna, Italy
| | | |
Collapse
|
30
|
Katrangi W, Lawrenz J, Seegmiller AC, Laposata M. Interactions of linoleic and alpha-linolenic acids in the development of fatty acid alterations in cystic fibrosis. Lipids 2013; 48:333-42. [PMID: 23440519 DOI: 10.1007/s11745-013-3768-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 01/22/2013] [Indexed: 01/13/2023]
Abstract
Patients with cystic fibrosis (CF) exhibit characteristic polyunsaturated fatty acid abnormalities, including low linoleic acid and high arachidonic acid levels that are thought to contribute to the pathophysiology of this disease. Recent studies indicate that changes in fatty acid metabolism are responsible for these abnormalities. This study examines the role of fatty acid substrate concentrations in the development of these alterations in a cultured cell model of CF. By incubating cells with varying concentrations of exogenous fatty acids, it shows that increasing the concentration of substrates from the parallel n-3 and n-6 polyunsaturated fatty acid pathways (linoleic acid and alpha-linolenic acid, respectively) not only increases formation of the products in that pathway, but also reduces metabolism in the parallel pathway. In particular, we demonstrate that high levels of linoleic acid and low levels of alpha-linolenic acid are required to observe the typical fatty acid alterations of cystic fibrosis. These results shed light on the mechanisms of fatty acid metabolic abnormalities in cystic fibrosis. They also have implications for the nutritional therapy of CF, highlighting the importance of specific fatty acid content, and in understanding the anti-inflammatory effects of n-3 fatty acids.
Collapse
Affiliation(s)
- Waddah Katrangi
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | |
Collapse
|
31
|
Wahl DR, Byersdorfer CA, Ferrara JLM, Opipari AW, Glick GD. Distinct metabolic programs in activated T cells: opportunities for selective immunomodulation. Immunol Rev 2013; 249:104-15. [PMID: 22889218 DOI: 10.1111/j.1600-065x.2012.01148.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
For several decades, it has been known that T-cell activation in vitro leads to increased glycolytic metabolism that fuels proliferation and effector function. Recently, this simple model has been complicated by the observation that different T-cell subsets differentially regulate fundamental metabolic pathways under the control of distinct molecular regulators. Although the majority of these data have been generated in vitro, several recent studies have documented the metabolism of T cells activated in vivo. Here, we review the recent data surrounding the differential regulation of metabolism by distinct T-cell subsets in vitro and in vivo and discuss how differential metabolic regulation might facilitate T-cell function vis-à-vis proliferation, survival, and energy production. We further discuss the important therapeutic implications of differential metabolism across T-cell subsets and review recent successes in exploiting lymphocyte metabolism to treat immune-mediated diseases.
Collapse
Affiliation(s)
- Daniel R Wahl
- Chemical Biology Doctoral Program, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | | | | | | | |
Collapse
|
32
|
De Lisle RC, Meldi L, Mueller R. Intestinal smooth muscle dysfunction develops postnatally in cystic fibrosis mice. J Pediatr Gastroenterol Nutr 2012; 55:689-94. [PMID: 22699839 PMCID: PMC3504652 DOI: 10.1097/mpg.0b013e3182638bf4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Intestinal dysmotility is one of the effects of cystic fibrosis (CF), but when and how this develops is not well understood. The goal of the present study was to use the Cftr knockout mouse to determine when in development circular smooth muscle of the small intestine becomes dysfunctional. METHODS Wild-type (WT) and CF mice were used at postnatal day 5 (P5) through adult. Pieces of small intestine were used to measure contractile activity of the circular muscle. Bacterial overgrowth was measured by quantitative polymerase chain reaction (PCR) of the bacterial 16S gene. Intestinal gene expression was determined by quantitative reverse transcription polymerase chain reaction (RT-PCR). Prostaglandin E2 (PGE2) and its metabolites were measured by enzyme immunoassay. RESULTS CF circular muscle response to cholinergic stimulation was similar to WT at P5, became somewhat impaired at P7, and was severely impaired by P14. In the CF intestine, bacterial overgrowth occurred by P4 and was maintained into adulthood. Eicosanoid metabolic gene expression in the CF intestine did not differ from WT shortly after birth. The phospholipase A2 genes, Pla2g4c and Pla2g5 exhibited increased expression in CF mice at P24. Prostaglandin degradative genes, Hpgd and Ptgr1, showed lower expression in CF as compared with WT at P16 and P24, respectively. PGE2 levels were significantly greater in CF mice at most ages from P7 through adulthood. CONCLUSIONS The results clearly demonstrate that lack of CFTR itself does not cause smooth muscle dysfunction, because the circular muscle from P5 CF mice had normal activity and dysfunction developed between P7 and P14.
Collapse
Affiliation(s)
- Robert C De Lisle
- University of Kansas School of Medicine, Anatomy and Cell Biology, Kansas City, KS 66160, USA.
| | | | | |
Collapse
|
33
|
Witters P, Dupont L, Vermeulen F, Proesmans M, Cassiman D, Wallemacq P, De Boeck K. Lung transplantation in cystic fibrosis normalizes essential fatty acid profiles. J Cyst Fibros 2012; 12:222-8. [PMID: 23102588 DOI: 10.1016/j.jcf.2012.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 09/22/2012] [Accepted: 09/23/2012] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cystic fibrosis (CF) can be a devastating disease. Disorders in essential fatty acid state are increasingly reported and various supplementation trials have been performed in an attempt to improve outcomes. However, the mechanisms leading to these disturbances remain elusive. We wanted to investigate the role of the diseased CF lung on fatty acid profiles. METHODS We compared fatty acid profiles in patients with CF after lung transplantation (n=11) to age-matched healthy controls and homozygous F508del patients (n=22 each). RESULTS Compared to healthy controls, in patients with CF, there are decreased levels of docosahexaenoic, linoleic and arachidonic acid and increased levels of mead acid. In patients that underwent a lung transplantation, levels of docosahexaenoic, linoleic and arachidonic acid were normal. Mead acid did not decrease significantly. CONCLUSIONS The diseased CFTR deficient lung is a major determinant in the disturbed fatty acid profile in CF.
Collapse
Affiliation(s)
- Peter Witters
- Department of Paediatrics, University hospitals Leuven, Kathollieke Universiteit Leuven, Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
34
|
Long-chain PUFA in granulocytes, mononuclear cells, and RBC in patients with cystic fibrosis: relation to liver disease. J Pediatr Gastroenterol Nutr 2012; 55:76-81. [PMID: 22241510 DOI: 10.1097/mpg.0b013e318249438c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
BACKGROUND AND AIM Patients with cystic fibrosis (CF) have low levels of n-3 long-chain polyunsaturated fatty acids (n-3 LCPUFA) in plasma or red blood cells (RBC), as also seen in other chronic and acute liver diseases. The differences may be more pronounced in CF transmembrane conductance regulator protein (CFTR)-regulated tissues such as granulocytes, monocytes, and lymphocytes. The aim of the present study was to investigate whether patients with CF-related liver disease have lower n-3 LCPUFA level than patients with CF without liver disease. METHODS Twenty patients with known CF-related liver disease were matched with 20 CF patients without. Blood samples were analysed for liver biochemistry and haematology. Granulocytes, mononuclear cells, and RBC were separated by density gradient centrifugation, and fatty acid composition was measured by gas chromatography. Hepatic ultrasound was scored according to Williams et al. Hepatic transit time (HTT) was measured with the ultrasound contrast agent SonoVue. RESULTS No significant differences were seen in either n-6 or n-3 LCPUFAs in any cell line when the 2 groups were compared. In a multiple regression analysis including HTT, age, Pseudomonas aeruginosa infection, diabetes mellitus, treatment with ursodeoxycholic acid, forced expiratory volume in 1 second (% of predicted value), and Williams' ultrasound scoring scale, only n-3 LCPUFA docosahexaenoic acid in mononuclear cell membranes was positively associated with HTT (P = 0.02). The arachidonic acid/docosahexaenoic acid ratio within the mononuclear cells was negatively associated with both HTT (P = 0.003) and Williams' ultrasound scoring scale (P = 0.03). For RBC-LCPUFAs, no significant associations were seen. CONCLUSIONS These findings indicate that in patients with CF, the degree of liver disease was negatively associated with LCPUFA n-3 levels in CFTR-expressing white blood cells but unrelated to those levels in CFTR-negative RBC.
Collapse
|
35
|
Njoroge SW, Laposata M, Katrangi W, Seegmiller AC. DHA and EPA reverse cystic fibrosis-related FA abnormalities by suppressing FA desaturase expression and activity. J Lipid Res 2011; 53:257-65. [PMID: 22095831 DOI: 10.1194/jlr.m018101] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Patients and models of cystic fibrosis (CF) exhibit consistent abnormalities of polyunsaturated fatty acid composition, including decreased linoleate (LA) and docosahexaenoate (DHA) and variably increased arachidonate (AA), related in part to increased expression and activity of fatty acid desaturases. These abnormalities and the consequent CF-related pathologic manifestations can be reversed in CF mouse models by dietary supplementation with DHA. However, the mechanism is unknown. This study investigates this mechanism by measuring the effect of exogenous DHA and eicosapentaenoate (EPA) supplementation on fatty acid composition and metabolism, as well as on metabolic enzyme expression, in a cell culture model of CF. We found that both DHA and EPA suppress the expression and activity of Δ5- and Δ6-desaturases, leading to decreased flux through the n-3 and n-6 PUFA metabolic pathways and decreased production of AA. The findings also uncover other metabolic abnormalities, including increased fatty acid uptake and markedly increased retroconversion of DHA to EPA, in CF cells. These results indicate that the fatty acid abnormalities of CF are related to intrinsic alterations of PUFA metabolism and that they may be reversed by supplementation with DHA and EPA.
Collapse
Affiliation(s)
- Sarah W Njoroge
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | |
Collapse
|
36
|
Strigun A, Wahrheit J, Niklas J, Heinzle E, Noor F. Doxorubicin increases oxidative metabolism in HL-1 cardiomyocytes as shown by 13C metabolic flux analysis. Toxicol Sci 2011; 125:595-606. [PMID: 22048646 DOI: 10.1093/toxsci/kfr298] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Doxorubicin (DXR), an anticancer drug, is limited in its use due to severe cardiotoxic effects. These effects are partly caused by disturbed myocardial energy metabolism. We analyzed the effects of therapeutically relevant but nontoxic DXR concentrations for their effects on metabolic fluxes, cell respiration, and intracellular ATP. (13)C isotope labeling studies using [U-(13)C(6)]glucose, [1,2-(13)C(2)]glucose, and [U-(13)C(5)]glutamine were carried out on HL-1 cardiomyocytes exposed to 0.01 and 0.02 μM DXR and compared with the untreated control. Metabolic fluxes were calculated by integrating production and uptake rates of extracellular metabolites (glucose, lactate, pyruvate, and amino acids) as well as (13)C-labeling in secreted lactate derived from the respective (13)C-labeled substrates into a metabolic network model. The investigated DXR concentrations (0.01 and 0.02 μM) had no effect on cell viability and beating of the HL-1 cardiomyocytes. Glycolytic fluxes were significantly reduced in treated cells at tested DXR concentrations. Oxidative metabolism was significantly increased (higher glucose oxidation, oxidative decarboxylation, TCA cycle rates, and respiration) suggesting a more efficient use of glucose carbon. These changes were accompanied by decrease of intracellular ATP. We conclude that DXR in nanomolar range significantly changes central carbon metabolism in HL-1 cardiomyocytes, which results in a higher coupling of glycolysis and TCA cycle. The myocytes probably try to compensate for decreased intracellular ATP, which in turn may be the result of a loss of NADH electrons via either formation of reactive oxygen species or electron shunting.
Collapse
Affiliation(s)
- Alexander Strigun
- Biochemical Engineering Institute, Saarland University, Saarbruecken, Germany
| | | | | | | | | |
Collapse
|
37
|
Lundström SL, Levänen B, Nording M, Klepczynska-Nyström A, Sköld M, Haeggström JZ, Grunewald J, Svartengren M, Hammock BD, Larsson BM, Eklund A, Wheelock ÅM, Wheelock CE. Asthmatics exhibit altered oxylipin profiles compared to healthy individuals after subway air exposure. PLoS One 2011; 6:e23864. [PMID: 21897859 PMCID: PMC3163588 DOI: 10.1371/journal.pone.0023864] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 07/26/2011] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Asthma is a chronic inflammatory lung disease that causes significant morbidity and mortality worldwide. Air pollutants such as particulate matter (PM) and oxidants are important factors in causing exacerbations in asthmatics, and the source and composition of pollutants greatly affects pathological implications. OBJECTIVES This randomized crossover study investigated responses of the respiratory system to Stockholm subway air in asthmatics and healthy individuals. Eicosanoids and other oxylipins were quantified in the distal lung to provide a measure of shifts in lipid mediators in association with exposure to subway air relative to ambient air. METHODS Sixty-four oxylipins representing the cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P450 (CYP) metabolic pathways were screened using liquid chromatography-tandem mass spectrometry (LC-MS/MS) of bronchoalveolar lavage (BAL)-fluid. Validations through immunocytochemistry staining of BAL-cells were performed for 15-LOX-1, COX-1, COX-2 and peroxisome proliferator-activated receptor gamma (PPARγ). Multivariate statistics were employed to interrogate acquired oxylipin and immunocytochemistry data in combination with patient clinical information. RESULTS Asthmatics and healthy individuals exhibited divergent oxylipin profiles following exposure to ambient and subway air. Significant changes were observed in 8 metabolites of linoleic- and α-linolenic acid synthesized via the 15-LOX pathway, and of the COX product prostaglandin E(2) (PGE(2)). Oxylipin levels were increased in healthy individuals following exposure to subway air, whereas asthmatics evidenced decreases or no change. CONCLUSIONS Several of the altered oxylipins have known or suspected bronchoprotective or anti-inflammatory effects, suggesting a possible reduced anti-inflammatory response in asthmatics following exposure to subway air. These observations may have ramifications for sensitive subpopulations in urban areas.
Collapse
Affiliation(s)
- Susanna L. Lundström
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, Stockholm, Sweden
| | - Bettina Levänen
- Division of Respiratory Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Malin Nording
- Department of Entomology and Cancer Research Center, University of California Davis, Davis, California, United States of America
- Department of Public Health and Clinical Medicine, Respiratory Medicine and Allergy, Umeå University, Umeå, Sweden
| | - Anna Klepczynska-Nyström
- Division of Occupational and Environmental Medicine, Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Sköld
- Division of Respiratory Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jesper Z. Haeggström
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, Stockholm, Sweden
| | - Johan Grunewald
- Division of Respiratory Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Svartengren
- Division of Occupational and Environmental Medicine, Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
| | - Bruce D. Hammock
- Department of Entomology and Cancer Research Center, University of California Davis, Davis, California, United States of America
| | - Britt-Marie Larsson
- Division of Occupational and Environmental Medicine, Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
| | - Anders Eklund
- Division of Respiratory Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Åsa M. Wheelock
- Division of Respiratory Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (CEW); (AMW)
| | - Craig E. Wheelock
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (CEW); (AMW)
| |
Collapse
|
38
|
Njoroge SW, Seegmiller AC, Katrangi W, Laposata M. Increased Δ5- and Δ6-desaturase, cyclooxygenase-2, and lipoxygenase-5 expression and activity are associated with fatty acid and eicosanoid changes in cystic fibrosis. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:431-40. [DOI: 10.1016/j.bbalip.2011.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 03/28/2011] [Accepted: 05/05/2011] [Indexed: 10/18/2022]
|
39
|
Bregman T, Fride E. Treatment with tetrahydrocannabinol (THC) prevents infertility in male cystic fibrosis mice. J Basic Clin Physiol Pharmacol 2011; 22:29-32. [PMID: 22865360 DOI: 10.1515/jbcpp.2011.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Cystic fibrosis (CF) is a hereditary disease caused by mutations of the gene encoding a channel protein CFTR, conducting Cl- and HCO3 - ions. The disease is characterized by disturbances in most physiological systems, and more than 95% of men are infertile. The mechanism underlying the etiology of CF is associated with an imbalance of fatty acids. It has been suggested that the function of the endocannabinoid system is also disturbed in CF, because endocannabinoids are derivatives of fatty acids. We assumed, therefore, that endocannabinoid activity, which plays an important role in fertility, is disrupted in CF and could be one of the causes of infertility. The aim of the present study was to test the hypothesis that stimulation of endocannabinoid receptors in infancy would normalize their function and prevent infertility in adulthood. METHODS Knockout male mice (cftr-/-) were treated with tetrahydrocannabinol (THC), endocannabinoid receptors agonist, in infancy from days 7 until 28, daily. RESULTS CF males treated with THC were fully fertile, producing offspring comparable by the number of litters and the number of pups with wild-type mice. CF males that were not treated with THC were completely infertile. CONCLUSIONS The present study shows that (i) endocannabinoid function is impaired in CF mice, as evidenced by the regenerating effect of its stimulation on the fertility of otherwise infertile males, (ii) endocannabinoid system dysfunction is apparently the determining factor causing infertility in CF, and (iii) mild stimulation of the endocannabinoid system in infancy and adolescence appears to normalize many reproductive processes and thereby prevent infertility in CF males.
Collapse
Affiliation(s)
- Tatiana Bregman
- Department of Behavioral Sciences, Ariel University Center of Samaria, Ariel, Israel.
| | | |
Collapse
|
40
|
Thomsen KF, Laposata M, Njoroge SW, Umunakwe OC, Katrangi W, Seegmiller AC. Increased elongase 6 and Δ9-desaturase activity are associated with n-7 and n-9 fatty acid changes in cystic fibrosis. Lipids 2011; 46:669-77. [PMID: 21544602 DOI: 10.1007/s11745-011-3563-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 04/12/2011] [Indexed: 11/24/2022]
Abstract
Patients with cystic fibrosis, caused by mutations in CFTR, exhibit specific and consistent alterations in the levels of particular unsaturated fatty acids compared with healthy controls. Evidence suggests that these changes may play a role in the pathogenesis of this disease. Among these abnormalities are increases in the levels of n-7 and n-9 fatty acids, particularly palmitoleate (16:1n-7), oleate (18:1n-9), and eicosatrienoate or mead acid (20:3n-9). The underlying mechanisms of these particular changes are unknown, but similar changes in the n-3 and n-6 fatty acid families have been correlated with increased expression of fatty acid metabolic enzymes. This study demonstrated that cystic fibrosis cells in culture exhibit increased metabolism along the metabolic pathways leading to 16:1n-7, 18:1n-9, and 20:3n-9 compared with wild-type cells. Furthermore, these changes are accompanied by increased expression of the enzymes that produce these fatty acids, namely Δ5, Δ6, and Δ9 desaturases and elongases 5 and 6. Taken together, these findings suggest that fatty acid abnormalities of the n-7 and n-9 series in cystic fibrosis are as a result, at least in part, of increased expression and activity of these metabolic enzymes in CFTR-mutated cells.
Collapse
Affiliation(s)
- Kelly F Thomsen
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | | | | |
Collapse
|
41
|
Persistent fat malabsorption in cystic fibrosis; lessons from patients and mice. J Cyst Fibros 2011; 10:150-8. [PMID: 21459688 DOI: 10.1016/j.jcf.2011.03.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 02/07/2011] [Accepted: 03/08/2011] [Indexed: 12/13/2022]
Abstract
Fat malabsorption in pancreatic insufficient cystic fibrosis (CF) patients is classically treated with pancreatic enzyme replacement therapy (PERT). Despite PERT, intestinal fat absorption remains insufficient in most CF patients. Several factors have been suggested to contribute to the persistent fat malabsorption in CF (CFPFM). We reviewed the current insights concerning the proposed causes of CFPFM and the corresponding intervention studies. Most data are obtained from studies in CF patients and CF mice. Based on the reviewed literature, we conclude that alterations in intestinal pH and intestinal mucosal abnormalities are most likely to contribute to CFPFM. The presently available data indicate that acid suppressive drugs and broad spectrum antibiotics could be helpful in individual CF patients for optimizing fat absorption and/or nutritional status.
Collapse
|
42
|
Ollero M, Astarita G, Guerrera IC, Sermet-Gaudelus I, Trudel S, Piomelli D, Edelman A. Plasma lipidomics reveals potential prognostic signatures within a cohort of cystic fibrosis patients. J Lipid Res 2011; 52:1011-22. [PMID: 21335323 DOI: 10.1194/jlr.p013722] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cystic fibrosis (CF) is associated with abnormal lipid metabolism. We have recently shown variations in plasma levels of several phosphatidylcholine (PC) and lysophopshatidylcholine (LPC) species related to disease severity in CF patients. Here our goal was to search for blood plasma lipid signatures characteristic of CF patients bearing the same mutation (F508del) and different phenotypes, and to study their correlation with forced expiratory volume in 1 s (FEV1) and Pseudomonas aeruginosa chronic infection, evaluated at the time of testing (t = 0) and three years later (t = 3). Samples from 44 F508del homozygotes were subjected to a lipidomic approach based on LC-ESI-MS. Twelve free fatty acids were positively correlated with FEV1 at t = 0 (n = 29). Four of them (C20:3n-9, C20:5n-3, C22:5n-3, and C22:6n-3) were also positively correlated with FEV1 three years later, along with PC(32:2) and PC(36:4) (n = 31). Oleoylethanolamide (OEA) was negatively correlated with FEV1 progression (n = 17). Chronically infected patients at t = 0 showed lower PC(32:2), PC(38:5), and C18:3n-3 and higher cholesterol, cholesterol esters, and triacylglycerols (TAG). Chronically infected patients at t = 3 showed significantly lower levels of LPC(18:0). These results suggest a potential prognostic value for some lipid signatures in, to our knowledge, the first longitudinal study aimed at identifying lipid biomarkers for CF.
Collapse
Affiliation(s)
- Mario Ollero
- Inserm U845, Faculté de Médecine Paris Descartes, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
43
|
Deguil J, Pineau L, Rowland Snyder EC, Dupont S, Beney L, Gil A, Frapper G, Ferreira T. Modulation of lipid-induced ER stress by fatty acid shape. Traffic 2011; 12:349-62. [PMID: 21143717 DOI: 10.1111/j.1600-0854.2010.01150.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Exposure of pancreatic β cells to long-chain saturated fatty acids (SFA) induces a so-called endoplasmic reticulum (ER) stress that can ultimately lead to cell death. This process is believed to participate in insulin deficiency associated with type 2 diabetes, via a decrease in β-cell mass. By contrast, some unsaturated fatty acid species appear less toxic to the cells and can even alleviate SFA-induced ER stress. In the present study, we took advantage of a simple yeast-based model, which brings together most of the trademarks of lipotoxicity in human cells, to screen fatty acids of various structures for their capacity to counter ER stress. Here we demonstrate that the tendency of a free fatty acid (FFA) to reduce SFA toxicity depends on a complex conjunction of parameters, including chain length, level of unsaturation, position of the double bonds and nature of the isomers (cis or trans). Interestingly, potent FFA act as building blocks for phospholipid synthesis and help to restore an optimal membrane organization, compatible with ER function and normal protein trafficking.
Collapse
Affiliation(s)
- Julie Deguil
- Institut de Physiologie et Biologie Cellulaires, Université de POITIERS, CNRS UMR 6187, 40 Avenue du Recteur Pineau, 86022 Poitiers, France
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Vij N. Linoleic acid supplement in cystic fibrosis: friend or foe? Am J Physiol Lung Cell Mol Physiol 2010; 299:L597-8. [PMID: 20709729 DOI: 10.1152/ajplung.00257.2010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
45
|
Zaman MM, Martin CR, Andersson C, Bhutta AQ, Cluette-Brown JE, Laposata M, Freedman SD. Linoleic acid supplementation results in increased arachidonic acid and eicosanoid production in CF airway cells and in cftr-/- transgenic mice. Am J Physiol Lung Cell Mol Physiol 2010; 299:L599-606. [PMID: 20656894 DOI: 10.1152/ajplung.00346.2009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cystic fibrosis (CF) patients display a fatty acid imbalance characterized by low linoleic acid levels and variable changes in arachidonic acid. This led to the recommendation that CF patients consume a high-fat diet containing >6% linoleic acid. We hypothesized that increased conversion of linoleic acid to arachidonic acid in CF leads to increased levels of arachidonate-derived proinflammatory metabolites and that this process is exacerbated by increasing linoleic acid levels in the diet. To test this hypothesis, we determined the effect of linoleic acid supplementation on downstream proinflammatory biomarkers in two CF models: 1) in vitro cell culture model using 16HBE14o(-) sense [wild-type (WT)] and antisense (CF) human airway epithelial cells; and 2) in an in vivo model using cftr(-/-) transgenic mice. Fatty acids were analyzed by gas chromatography-mass spectrometry (GC/MS), and IL-8 and eicosanoids were measured by ELISA. Neutrophils were quantified in bronchoalveolar lavage fluid from knockout mice following linoleic acid supplementation and exposure to aerosolized Pseudomonas LPS. Linoleic acid supplementation increased arachidonic acid levels in CF but not WT cells. IL-8, PGE(2), and PGF(2α) secretion were increased in CF compared with WT cells, with a further increase following linoleic acid supplementation. cftr(-/-) Mice supplemented with 100 mg of linoleic acid had increased arachidonic acid levels in lung tissue associated with increased neutrophil infiltration into the airway compared with control mice. These findings support the hypothesis that increasing linoleic acid levels in the setting of loss of cystic fibrosis transmembrane conductance regulator (CFTR) function leads to increased arachidonic acid levels and proinflammatory mediators.
Collapse
|
46
|
Brulet M, Seyer A, Edelman A, Brunelle A, Fritsch J, Ollero M, Laprévote O. Lipid mapping of colonic mucosa by cluster TOF-SIMS imaging and multivariate analysis in cftr knockout mice. J Lipid Res 2010; 51:3034-45. [PMID: 20616379 DOI: 10.1194/jlr.m008870] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cftr knockout mouse model of cystic fibrosis (CF) shows intestinal obstruction; malabsorption and inflammation; and a fatty acid imbalance in intestinal mucosa. We performed a lipid mapping of colon sections from CF and control (WT) mice by cluster time of flight secondary-ion mass spectrometry (TOF-SIMS) imaging to localize lipid alterations. Data were processed either manually or by multivariate statistical methods. TOF-SIMS analysis showed a particular localization for cholesteryl sulfate at the epithelial border, C16:1 fatty acid in Lieberkühn glands, and C18:0 fatty acid in lamina propria and submucosa. Significant increases in vitamin E (vE) and C16:0 fatty acid in the epithelial border of CF colon were detected. Principal component analysis (PCA) and partitioning clustering allowed us to characterize different structural regions of colonic mucosa according to variations in C14:0, C16:0, C16:1, C18:0, C18:1, C18:2, C20:3, C20:4, and C22:6 fatty acids; phosphatidylethanolamine, phosphatidylcholine, and phosphatidylinositol glycerolipids; cholesterol; vitamin E; and cholesteryl sulfate. PCA on spectra from Lieberkühn glands led to separation of CF and WT individuals. This study shows for the first time the spatial distribution of lipids in colonic mucosa and suggests TOF-SIMS plus multivariate analyses as a powerful tool to investigate disease-related tissue spatial lipid signatures.
Collapse
Affiliation(s)
- Marc Brulet
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, Gif-sur-Yvette, France
| | | | | | | | | | | | | |
Collapse
|
47
|
Mailhot G, Rabasa-Lhoret R, Moreau A, Berthiaume Y, Levy E. CFTR depletion results in changes in fatty acid composition and promotes lipogenesis in intestinal Caco 2/15 cells. PLoS One 2010; 5:e10446. [PMID: 20463919 PMCID: PMC2864762 DOI: 10.1371/journal.pone.0010446] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2010] [Accepted: 04/11/2010] [Indexed: 12/24/2022] Open
Abstract
Background Abnormal fatty acid composition (FA) in plasma and tissue lipids frequently occurs in homozygous and even in heterozygous carriers of cystic fibrosis transmembrane conductance regulator (CFTR) mutations. The mechanism(s) underlying these abnormalities remained, however, poorly understood despite the potentially CFTR contributing role. Methodology/Principal Findings The aim of the present study was to investigate the impact of CFTR depletion on FA uptake, composition and metabolism using the intestinal Caco-2/15 cell line. shRNA-mediated cftr gene silencing induced qualitative and quantitative modifications in FA composition in differentiated enterocytes as determined by gas-liquid chromatography. With the cftr gene disruption, there was a 1,5 fold increase in the total FA amount, largely attributable to monounsaturated and saturated FA compared to controls. The activity of delta-7 desaturase, estimated by the 16:1(n-7)/16:0, was significantly higher in knockdown cells and consistent with the striking elevation of the n-7 FA family. When incubated with [14C]-oleic acid, CFTR-depleted cells were capable of quick incorporation and export to the medium concomitantly with the high protein expression of L-FABP known to promote intracellular FA trafficking. Accordingly, lipoprotein vehicles (CM, VLDL, LDL and HDL), isolated from CFTR knockdown cells, exhibited higher levels of radiolabeled FA. Moreover, in the presence of [14C]-acetate, knockdown cells exhibited enhanced secretion of newly synthesized phospholipids, triglycerides, cholesteryl esters and free FA, thereby suggesting a stimulation of the lipogenic pathway. Conformably, gene expression of SREBP-1c, a key lipogenic transcription factor, was increased while protein expression of the phosphorylated and inactive form of acetylCoA carboxylase was reduced, confirming lipogenesis induction. Finally, CFTR-depleted cells exhibited lower gene expression of transcription factors (PPARα, LXRα, LXRβ and RXRα). Conclusions/Significance Collectively, our results indicate that CFTR depletion may disrupt FA homeostasis in intestinal cells through alterations in FA uptake and transport combined with stimulation of lipogenesis that occurs by an LXR/RXR-independent mechanism. These findings exclude a contributing role of CFTR in CF-associated fat malabsorption.
Collapse
Affiliation(s)
- Geneviève Mailhot
- Research Centre, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
- Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Rémi Rabasa-Lhoret
- Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
- Diabetes and Metabolic Diseases Research Group, Institut de Recherches Cliniques and Centre Hospitalier de l'Université de Montréal (CHUM)-Hôtel-Dieu, Université de Montréal, Montreal, Quebec, Canada
| | - Alain Moreau
- Research Centre, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
- Department of Pediatrics, Université de Montréal, Montreal, Quebec, Canada
| | - Yves Berthiaume
- Cystic Fibrosis Clinic, Centre Hospitalier de l'Université de Montréal (CHUM)-Hôtel-Dieu, Montreal, Quebec, Canada
| | - Emile Levy
- Research Centre, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
- Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
48
|
Aldámiz-Echevarría L, Prieto JA, Andrade F, Elorz J, Sojo A, Lage S, Sanjurjo P, Vázquez C, Rodríguez-Soriano J. Persistence of essential fatty acid deficiency in cystic fibrosis despite nutritional therapy. Pediatr Res 2009; 66:585-9. [PMID: 19851226 DOI: 10.1203/pdr.0b013e3181b4e8d3] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To study the evolution of plasma fatty acid composition of patients with cystic fibrosis (CF) in relation to nutritional status, pancreatic function, and development of CF-related liver disease (CFRLD) and diabetes mellitus, 24 CF pediatric patients with stable pulmonary disease were studied before and after an approximate period of 8 y. Nutritional status, pulmonary function, pancreatic function, and presence of CFRLD or diabetes mellitus were recorded. Results were compared with data obtained in 83 healthy children. Patients with CF have significantly lower linoleic acid (LA), docosahexaenoic acid (DHA), lignoceric acid, and LA x DHA product and higher oleic acid, mead acid, dihomo-gamma-linoleic acid, and docosapentaenoic acid (DPA). Comparison of samples taken at first and second studies revealed a significant decrease in LA levels and lignoceric acid associated with a significant increase in dihomo-gamma-linoleic acid levels. Patients with CFRLD showed significantly higher mead acid/arachidonic acid ratio and lower total omega6 polyunsaturated fatty acids content. There was no relation of plasma fatty acids composition with pancreatic function, pulmonary function, or diabetes mellitus. Follow-up of patients with CF shows that essential fatty acids deficiency, particularly in LA and DHA content, persisted unmodified along time despite an adequate nutritional therapy. Future studies after supplementation with omega3 polyunsaturated fatty acids should be undertaken.
Collapse
Affiliation(s)
- Luis Aldámiz-Echevarría
- Department of Pediatrics, Cruces Hospital and Basque University School of Medicine, Basque Country, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Iuliano L, Monticolo R, Straface G, Zullo S, Galli F, Boaz M, Quattrucci S. Association of cholesterol oxidation and abnormalities in fatty acid metabolism in cystic fibrosis. Am J Clin Nutr 2009; 90:477-84. [PMID: 19587087 DOI: 10.3945/ajcn.2009.27757] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Disarrangement in fatty acids and oxidative stress are features of cystic fibrosis. Cholesterol is very sensitive to oxidative stress. OBJECTIVES The objectives were to examine whether cholesterol oxidation products are altered in cystic fibrosis and whether they are associated with fatty acids and with characteristics of the disease state. DESIGN 7-Ketocholesterol and 7beta-hydroxycholesterol (prototype molecules of free radical-mediated cholesterol oxidation) and the fatty acid profile were assessed by mass spectrometry in patients and in sex- and age-matched control subjects. RESULTS In a comparison with control subjects, mean (+/-SD) cholesterol oxidation was higher (7-ketocholesterol: 11.31 +/- 5.1 compared with 8.33 +/- 5.5 ng/mL, P = 0.03; 7beta-hydroxycholesterol: 14.5 +/- 6.8 compared with 9.7 +/- 4.1 ng/mL, P = 0.004), total saturated fatty acids were higher (31.90 +/- 1.93% compared with 30.31 +/- 0.98%, P < 0.001), monounsaturated fatty acids were higher (29.14 +/- 3.85% compared with 25.88 +/- 2.94%, P = 0.004), omega-6 (n-6) polyunsaturated fatty acids were lower (34.84 +/- 4.77 compared with 39.68 +/- 2.98%, P < 0.0001), and omega-3 (n-3) polyunsaturated fatty acids were comparable in patients with cystic fibrosis. Oxysterols were inversely associated with 24:0 and 18:2 omega-6 fatty acids but did not correlate with the increased oleic acid or with any of the omega-3 fatty acids. CONCLUSIONS Cystic fibrosis is characterized by relevant cholesterol oxidation that is associated with an abnormal fatty acid profile. The interplay between oxysterols and fatty acids potentially provides insight into the biological mechanisms that underlie this complex disease.
Collapse
Affiliation(s)
- Luigi Iuliano
- Department of Experimental Medicine, Sapienza University of Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|