1
|
Revol-Cavalier J, Quaranta A, Newman JW, Brash AR, Hamberg M, Wheelock CE. The Octadecanoids: Synthesis and Bioactivity of 18-Carbon Oxygenated Fatty Acids in Mammals, Bacteria, and Fungi. Chem Rev 2024. [PMID: 39680864 DOI: 10.1021/acs.chemrev.3c00520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The octadecanoids are a broad class of lipids consisting of the oxygenated products of 18-carbon fatty acids. Originally referring to production of the phytohormone jasmonic acid, the octadecanoid pathway has been expanded to include products of all 18-carbon fatty acids. Octadecanoids are formed biosynthetically in mammals via cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) activity, as well as nonenzymatically by photo- and autoxidation mechanisms. While octadecanoids are well-known mediators in plants, their role in the regulation of mammalian biological processes has been generally neglected. However, there have been significant advancements in recognizing the importance of these compounds in mammals and their involvement in the mediation of inflammation, nociception, and cell proliferation, as well as in immuno- and tissue modulation, coagulation processes, hormone regulation, and skin barrier formation. More recently, the gut microbiome has been shown to be a significant source of octadecanoid biosynthesis, providing additional biosynthetic routes including hydratase activity (e.g., CLA-HY, FA-HY1, FA-HY2). In this review, we summarize the current field of octadecanoids, propose standardized nomenclature, provide details of octadecanoid preparation and measurement, summarize the phase-I metabolic pathway of octadecanoid formation in mammals, bacteria, and fungi, and describe their biological activity in relation to mammalian pathophysiology as well as their potential use as biomarkers of health and disease.
Collapse
Affiliation(s)
- Johanna Revol-Cavalier
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Larodan Research Laboratory, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Alessandro Quaranta
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - John W Newman
- Western Human Nutrition Research Center, Agricultural Research Service, USDA, Davis, California 95616, United States
- Department of Nutrition, University of California, Davis, Davis, California 95616, United States
- West Coast Metabolomics Center, Genome Center, University of California, Davis, Davis, California 95616, United States
| | - Alan R Brash
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Mats Hamberg
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Larodan Research Laboratory, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Craig E Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm SE-141-86, Sweden
| |
Collapse
|
2
|
Guengerich FP. Roles of Individual Human Cytochrome P450 Enzymes in Drug Metabolism. Pharmacol Rev 2024; 76:1104-1132. [PMID: 39054072 PMCID: PMC11549934 DOI: 10.1124/pharmrev.124.001173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/28/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
Our knowledge of the roles of individual cytochrome P450 (P450) enzymes in drug metabolism has developed considerably in the past 30 years, and this base has been of considerable use in avoiding serious issues with drug interactions and issues due to variations. Some newer approaches are being considered for "phenotyping" metabolism reactions with new drug candidates. Endogenous biomarkers are being used for noninvasive estimation of levels of individual P450 enzymes. There is also the matter of some remaining "orphan" P450s, which have yet to be assigned reactions. Practical problems that continue in drug development include predicting drug-drug interactions, predicting the effects of polymorphic and other P450 variations, and evaluating interspecies differences in drug metabolism, particularly in the context of "metabolism in safety testing" regulatory issues ["disproportionate (human) metabolites"]. SIGNIFICANCE STATEMENT: Cytochrome P450 enzymes are the major catalysts involved in drug metabolism. The characterization of their individual roles has major implications in drug development and clinical practice.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
3
|
Leahy C, Osborne N, Shirota L, Rote P, Lee YK, Song BJ, Yin L, Zhang Y, Garcia V, Hardwick JP. The fatty acid omega hydroxylase genes (CYP4 family) in the progression of metabolic dysfunction-associated steatotic liver disease (MASLD): An RNA sequence database analysis and review. Biochem Pharmacol 2024; 228:116241. [PMID: 38697309 DOI: 10.1016/j.bcp.2024.116241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/21/2024] [Accepted: 04/25/2024] [Indexed: 05/04/2024]
Abstract
Fatty acid omega hydroxylase P450s consist of enzymes that hydroxylate various chain-length saturated and unsaturated fatty acids (FAs) and bioactive eicosanoid lipids. The human cytochrome P450 gene 4 family (CYP4) consists of 12 members that are associated with several human diseases. However, their role in the progression of metabolic dysfunction-associated fatty liver disease (MASLD) remains largely unknown. It has long been thought that the induction of CYP4 family P450 during fasting and starvation prevents FA-related lipotoxicity through FA metabolism to dicarboxylic acids that are chain-shortened in peroxisomes and then transported to the mitochondria for complete oxidation. Several studies have revealed that peroxisome succinate transported to the mitochondria is used for gluconeogenesis during fasting and starvation, and recent evidence suggests that peroxisome acetate can be utilized for lipogenesis and lipid droplet formation as well as epigenetic modification of gene transcription. In addition, omega hydroxylation of the bioactive eicosanoid arachidonic acid to 20-Hydroxyeicosatetraenoic acid (20-HETE) is essential for activating the GPR75 receptor, leading to vasoconstriction and cell proliferation. Several mouse models of diet-induced MASLD have revealed the induction of selective CYP4A members and the suppression of CYP4F during steatosis and steatohepatitis, suggesting a critical metabolic role in the progression of fatty liver disease. Thus, to further investigate the functional roles of CYP4 genes, we analyzed the differential gene expression of 12 members of CYP4 gene family in datasets from the Gene Expression Omnibus (GEO) from patients with steatosis, steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. We also observed the differential expression of various CYP4 genes in the progression of MASLD, indicating that different CYP4 members may have unique functional roles in the metabolism of specific FAs and eicosanoids at various stages of fatty liver disease. These results suggest that targeting selective members of the CYP4A family is a viable therapeutic approach for treating and managing MASLD.
Collapse
Affiliation(s)
- Charles Leahy
- Department of Integrative Medical Sciences Liver focus group, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA
| | - Nicholas Osborne
- Department of Integrative Medical Sciences Liver focus group, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA
| | - Leticia Shirota
- Department of Integrative Medical Sciences Liver focus group, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA
| | - Paula Rote
- Department of Integrative Medical Sciences Liver focus group, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA
| | - Yoon-Kwang Lee
- Department of Integrative Medical Sciences Liver focus group, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Liya Yin
- Department of Integrative Medical Sciences Liver focus group, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA
| | - Yanqiao Zhang
- Department of Integrative Medical Sciences Liver focus group, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA
| | - Victor Garcia
- Department of Pharmacology, New York Medical College, 15 Dana Road Science Building, Rm. 530, Valhalla, NY 10595, USA
| | - James P Hardwick
- Department of Integrative Medical Sciences Liver focus group, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA.
| |
Collapse
|
4
|
Jia H, Brixius B, Bocianoski C, Ray S, Koes DR, Brixius-Anderko S. Deciphering the Role of Fatty Acid-Metabolizing CYP4F11 in Lung Cancer and Its Potential As a Drug Target. Drug Metab Dispos 2024; 52:69-79. [PMID: 37973374 DOI: 10.1124/dmd.123.001463] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/25/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
Lung cancer is the leading cause of cancer deaths worldwide. We found that the cytochrome P450 isoform CYP4F11 is significantly overexpressed in patients with lung squamous cell carcinoma. CYP4F11 is a fatty acid ω-hydroxylase and catalyzes the production of the lipid mediator 20-hydroxyeicosatetraenoic acid (20-HETE) from arachidonic acid. 20-HETE promotes cell proliferation and migration in cancer. Inhibition of 20-HETE-generating cytochrome P450 enzymes has been implicated as novel cancer therapy for more than a decade. However, the exact role of CYP4F11 and its potential as drug target for lung cancer therapy has not been established yet. Thus, we performed a transient knockdown of CYP4F11 in the lung cancer cell line NCI-H460. Knockdown of CYP4F11 significantly inhibits lung cancer cell proliferation and migration while the 20-HETE production is significantly reduced. For biochemical characterization of CYP4F11-inhibitor interactions, we generated recombinant human CYP4F11. Spectroscopic ligand binding assays were conducted to evaluate CYP4F11 binding to the unselective CYP4A/F inhibitor HET0016. HET0016 shows high affinity to recombinant CYP4F11 and inhibits CYP4F11-mediated 20-HETE production in vitro with a nanomolar IC 50 Cross evaluation of HET0016 in NCI-H460 cells shows that lung cancer cell proliferation is significantly reduced together with 20-HETE production. However, HET0016 also displays antiproliferative effects that are not 20-HETE mediated. Future studies aim to establish the role of CYP4F11 in lung cancer and the underlying mechanism and investigate the potential of CYP4F11 as a therapeutic target for lung cancer. SIGNIFICANCE STATEMENT: Lung cancer is a deadly cancer with limited treatment options. Cytochrome P450 4F11 (CYP4F11) is significantly upregulated in lung squamous cell carcinoma. Knockdown of CYP4F11 in a lung cancer cell line significantly attenuates cell proliferation and migration with reduced production of the lipid mediator 20-hydroxyeicosatetraenoic acid (20-HETE). Studies with the unselective inhibitor HET0016 show a high inhibitory potency of CYP4F11-mediated 20-HETE production using recombinant enzyme. Overall, our studies demonstrate the potential of targeting CYP4F11 for new transformative lung cancer treatment.
Collapse
Affiliation(s)
- Huiting Jia
- Department of Pharmaceutical Sciences, Center for Pharmacogenetics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania (H.J., B.B., S.R., S.B.-A.); Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (D.R.K.); and Elizabeth Forward High School, Elizabeth, Pennsylvania (C.B.)
| | - Bjoern Brixius
- Department of Pharmaceutical Sciences, Center for Pharmacogenetics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania (H.J., B.B., S.R., S.B.-A.); Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (D.R.K.); and Elizabeth Forward High School, Elizabeth, Pennsylvania (C.B.)
| | - Caleb Bocianoski
- Department of Pharmaceutical Sciences, Center for Pharmacogenetics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania (H.J., B.B., S.R., S.B.-A.); Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (D.R.K.); and Elizabeth Forward High School, Elizabeth, Pennsylvania (C.B.)
| | - Sutapa Ray
- Department of Pharmaceutical Sciences, Center for Pharmacogenetics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania (H.J., B.B., S.R., S.B.-A.); Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (D.R.K.); and Elizabeth Forward High School, Elizabeth, Pennsylvania (C.B.)
| | - David R Koes
- Department of Pharmaceutical Sciences, Center for Pharmacogenetics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania (H.J., B.B., S.R., S.B.-A.); Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (D.R.K.); and Elizabeth Forward High School, Elizabeth, Pennsylvania (C.B.)
| | - Simone Brixius-Anderko
- Department of Pharmaceutical Sciences, Center for Pharmacogenetics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania (H.J., B.B., S.R., S.B.-A.); Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (D.R.K.); and Elizabeth Forward High School, Elizabeth, Pennsylvania (C.B.)
| |
Collapse
|
5
|
Shi Y, Li J, Wolf CA, Liu S, Sharma SS, Wolber G, Bureik M, Clark BR. Expected and Unexpected Products from the Biochemical Oxidation of Bacterial Alkylquinolones with CYP4F11. JOURNAL OF NATURAL PRODUCTS 2023; 86:2502-2513. [PMID: 37939299 DOI: 10.1021/acs.jnatprod.3c00689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
2-Alkylquinolones are a class of microbial natural products primarily produced in the Pseudomonas and Burkholderia genera that play a key role in modulating quorum sensing. Bacterial alkylquinolones were synthesized and then subjected to oxidative biotransformation using human cytochrome P450 enzyme CYP4F11, heterologously expressed in the fission yeast Schizosaccharomyces pombe. This yielded a range of hydroxylated and carboxylic acid derivatives which had undergone ω-oxidation of the 2-alkyl chain, the structures of which were determined by analysis of NMR and MS data. Oxidation efficiency depended on chain length, with a chain length of eight or nine carbon atoms proving optimal for high yields. Homology modeling suggested that Glu233 was relevant for binding, due to the formation of a hydrogen bond from the quinolone nitrogen to Glu233, and in this position only the longer alkyl chains could come close enough to the heme moiety for effective oxidation. In addition to the direct oxidation products, a number of esters were also isolated, which was attributed to the action of endogenous yeast enzymes on the newly formed ω-hydroxy-alkylquinolones. ω-Oxidation of the alkyl chain significantly reduced the antimicrobial and antibiofilm activity of the quinolones.
Collapse
Affiliation(s)
- Yue Shi
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, People's Republic of China
| | - Jianye Li
- Hebei Key Laboratory of Heterocyclic Compounds, College of Chemical Engineering and Materials, Handan University, Handan 056005, Hebei Province, People's Republic of China
| | - Clemens Alexander Wolf
- Molecular Design Lab, Freie Universität Berlin, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Königin-Luise-Straße 2 + 4, 14195 Berlin, Germany
| | - Sijie Liu
- Molecular Design Lab, Freie Universität Berlin, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Königin-Luise-Straße 2 + 4, 14195 Berlin, Germany
| | - Sangeeta S Sharma
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, People's Republic of China
| | - Gerhard Wolber
- Molecular Design Lab, Freie Universität Berlin, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Königin-Luise-Straße 2 + 4, 14195 Berlin, Germany
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, People's Republic of China
| | - Benjamin R Clark
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, People's Republic of China
| |
Collapse
|
6
|
Shi Y, Wolf CA, Lotfy R, Sharma SS, Tesfa AF, Wolber G, Bureik M, Clark BR. Deciphering the biotransformation mechanism of dialkylresorcinols by CYP4F11. Bioorg Chem 2023; 131:106330. [PMID: 36565673 DOI: 10.1016/j.bioorg.2022.106330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/15/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Cytochrome P450 enzymes (CYPs) are one of the most important classes of oxidative enzymes in the human body, carrying out metabolism of various exogenous and endogenous substrates. In order to expand the knowledge of these enzymes' specificity and to obtain new natural product derivatives, CYP4F11, a cytochrome P450 monooxygenase, was used in the biotransformation of dialkylresorcinols 1 and 2, a pair of antibiotic microbial natural products. This investigation resulted in four biotransformation products including two oxidative products: a hydroxylated derivative (3) and a carboxylic acid derivative (4). In addition, acetylated (5) and esterified products (6) were isolated, formed by further metabolism by endogenous yeast enzymes. Oxidative transformations were highly regioselective, and took place exclusively at the ω-position of the C-5 alkyl chain. Homology modeling studies revealed that optimal hydrogen bonding between 2 and the enzyme can only be established with the C-5 alkyl chain pointing towards the heme. The closely-related CYP4F12 was not capable of oxidizing the dialkylresorcinol 2. Modeling experiments rationalize these differences by the different shapes of the binding pockets with respect to the non-oxidized alkyl chain. Antimicrobial testing indicated that the presence of polar groups on the side-chains reduces the antibiotic activity of the dialkylresorcinols.
Collapse
Affiliation(s)
- Yue Shi
- School of Pharmaceutical Science and Technology, Tianjin University, 92, Weijin Road, Tianjin 300092, People's Republic of China
| | - Clemens A Wolf
- Molecular Design Lab, Freie Universität Berlin, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Königin-Luise-Straße, 2 + 4, 14195 Berlin, Germany
| | - Rowaa Lotfy
- Molecular Design Lab, Freie Universität Berlin, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Königin-Luise-Straße, 2 + 4, 14195 Berlin, Germany
| | - Sangeeta S Sharma
- School of Pharmaceutical Science and Technology, Tianjin University, 92, Weijin Road, Tianjin 300092, People's Republic of China
| | - Abel Fekadu Tesfa
- School of Pharmaceutical Science and Technology, Tianjin University, 92, Weijin Road, Tianjin 300092, People's Republic of China
| | - Gerhard Wolber
- Molecular Design Lab, Freie Universität Berlin, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Königin-Luise-Straße, 2 + 4, 14195 Berlin, Germany
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Tianjin University, 92, Weijin Road, Tianjin 300092, People's Republic of China
| | - Benjamin R Clark
- School of Pharmaceutical Science and Technology, Tianjin University, 92, Weijin Road, Tianjin 300092, People's Republic of China.
| |
Collapse
|
7
|
Lu Y, Liu X, Lotfy R, Liu S, Tesfa AF, Wolber G, Bureik M, Clark BR. Experimental and Computational Studies on the Biotransformation of Pseudopyronines with Human Cytochrome P450 CYP4F2. JOURNAL OF NATURAL PRODUCTS 2022; 85:2603-2609. [PMID: 36327116 DOI: 10.1021/acs.jnatprod.2c00616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The secondary metabolite pseudopyronine B, isolated from Pseudomonas mosselii P33, was biotransformed by human P450 enzymes, heterologously expressed in the fission yeast Schizosaccharomyces pombe. Small-scale studies confirmed that both CYP4F2 and CYP4F3A were capable of oxidizing the substrate, with the former achieving a higher yield. In larger-scale studies using CYP4F2, three new oxidation products were obtained, the structures of which were elucidated by UV-vis, 1D and 2D NMR, and HR-MS spectroscopy. These corresponded to hydroxylated, carboxylated, and ester derivatives (1-3) of pseudopyronine B, all of which had been oxidized exclusively at the ω-position of the C-6 alkyl chain. In silico homology modeling experiments highlighted key interactions between oxygen atoms of the pyrone ring and two serine residues and a histidine residue of CYP4F2, which hold the substrate in a suitable orientation for oxidation at the terminus of the C-6 alkyl chain. Additional modeling studies with all three pseudopyronines revealed that the seven-carbon alkyl chain of pseudopyronine B was the perfect length for oxidation, with the terminal carbon lying close to the heme iron. The antibacterial activity of the substrates and three oxidation products was also assessed, revealing that oxidation at the ω-position removes all antimicrobial activity. This study both increases the range of known substrates for human CYF4F2 and CYP4F3A enzymes and demonstrates their utility in producing additional natural product derivatives.
Collapse
Affiliation(s)
- Ya Lu
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300092, People's Republic of China
| | - Xueling Liu
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300092, People's Republic of China
- The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou 450008, People's Republic of China
| | - Rowaa Lotfy
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Freie Universität Berlin, Berlin 14195, Germany
| | - Sijie Liu
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Freie Universität Berlin, Berlin 14195, Germany
| | - Abel Fekadu Tesfa
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300092, People's Republic of China
| | - Gerhard Wolber
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Freie Universität Berlin, Berlin 14195, Germany
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300092, People's Republic of China
| | - Benjamin R Clark
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300092, People's Republic of China
| |
Collapse
|
8
|
Sato A, Fukase T, Ebina K. 10-Hydroxy-2-decenoic acid-derived aldehydes attenuate anaphylactic hypothermia in vivo. PHARMANUTRITION 2022. [DOI: 10.1016/j.phanu.2022.100301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
The methyltransferase METTL3-mediated fatty acid metabolism revealed the mechanism of cinnamaldehyde on alleviating steatosis. Biomed Pharmacother 2022; 153:113367. [PMID: 35780619 DOI: 10.1016/j.biopha.2022.113367] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND As a primarily N6-methyladenosine methyltransferase, methyltransferase 3 (METTL3) plays a crucial role in nonalcoholic fatty liver disease. However, its regulatory mechanism in steatosis remains unknown. METHODS Alpha mouse liver 12 (AML12) cells were induced by free fatty acids (FFA). Triglycerides, lipid droplet assay, and Oil Red O staining were performed to evaluate steatosis. The expression of METTL3 and cytochrome P450 family 4 subfamily f polypeptide 40 (CYP4F40) was measured using Western blotting, real-time quantitative polymerase chain reaction, and dual-luciferase reporter assay. Triglycerides, total cholesterol, almandine aminotransferase, and aspartate aminotransferase were assayed after cinnamaldehyde treatment. Transcriptomics and metabolomics were performed to determine how METTL3 and cinnamaldehyde regulate steatosis. RESULTS METTL3 protein level was reduced in FFA-induced steatosis in AML12 cells, and METTL3 knockdown aggravated the steatosis. Cinnamaldehyde alleviated steatosis by increasing METTL3 expression. A combined transcriptomics and metabolomics analysis revealed that METTL3 knockdown reduced CYP4F40 expression and reduced the level of capric acid, gamma-linolenic acid, arachidonic acid, and docosapentaenoic acid. Cinnamaldehyde promoted CYP4F40 expression by increasing METTL3 and increased the levels of capric acid, gamma-linolenic acid, arachidonic acid, and docosapentaenoic acid. Finally, the beneficial effects of cinnamaldehyde on steatosis were reversed after METTL3 knockdown. CONCLUSIONS METTL3 knockdown aggravated steatosis in AML12 cells through CYP4F40-mediated fatty acid metabolism, and cinnamaldehyde alleviated steatosis via the METTL3-CYP4F40 pathway.
Collapse
|
10
|
Chen Y, He B, Liu Y, Aung MT, Rosario-Pabón Z, Vélez-Vega CM, Alshawabkeh A, Cordero JF, Meeker JD, Garmire LX. Maternal plasma lipids are involved in the pathogenesis of preterm birth. Gigascience 2022; 11:giac004. [PMID: 35166340 PMCID: PMC8847704 DOI: 10.1093/gigascience/giac004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/20/2021] [Accepted: 01/12/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Preterm birth is defined by the onset of labor at a gestational age shorter than 37 weeks, and it can lead to premature birth and impose a threat to newborns' health. The Puerto Rico PROTECT cohort is a well-characterized prospective birth cohort that was designed to investigate environmental and social contributors to preterm birth in Puerto Rico, where preterm birth rates have been elevated in recent decades. To elucidate possible relationships between metabolites and preterm birth in this cohort, we conducted a nested case-control study to conduct untargeted metabolomic characterization of maternal plasma of 31 women who experienced preterm birth and 69 controls who underwent full-term labor at 24-28 gestational weeks. RESULTS A total of 333 metabolites were identified and annotated with liquid chromatography/mass spectrometry. Subsequent weighted gene correlation network analysis shows that the fatty acid and carene-enriched module has a significant positive association (P = 8e-04, FDR = 0.006) with preterm birth. After controlling for potential clinical confounders, a total of 38 metabolites demonstrated significant changes uniquely associated with preterm birth, where 17 of them were preterm biomarkers. Among 7 machine-learning classifiers, the application of random forest achieved a highly accurate and specific prediction (AUC = 0.92) for preterm birth in testing data, demonstrating their strong potential as biomarkers for preterm births. The 17 preterm biomarkers are involved in cell signaling, lipid metabolism, and lipid peroxidation functions. Additional modeling using only the 19 spontaneous preterm births (sPTB) and controls identifies 16 sPTB markers, with an AUC of 0.89 in testing data. Half of the sPTB overlap with those markers for preterm births. Further causality analysis infers that suberic acid upregulates several fatty acids to promote preterm birth. CONCLUSIONS Altogether, this study demonstrates the involvement of lipids, particularly fatty acids, in the pathogenesis of preterm birth.
Collapse
Affiliation(s)
- Yile Chen
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48105, USA
| | - Bing He
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48105, USA
| | - Yu Liu
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48105, USA
| | - Max T Aung
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, School of Medicine, San Francisco, CA 94158, USA
| | - Zaira Rosario-Pabón
- University of Puerto Rico Graduate School of Public Health, UPR Medical Sciences Campus, San Juan, Puerto Rico 365067, Spain
| | - Carmen M Vélez-Vega
- University of Puerto Rico Graduate School of Public Health, UPR Medical Sciences Campus, San Juan, Puerto Rico 365067, Spain
| | - Akram Alshawabkeh
- College of Engineering, Northeastern University, Boston, MA 02115, USA
| | - José F Cordero
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA 30602, USA
| | - John D Meeker
- Department of Environmental and Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lana X Garmire
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
11
|
Molina-Ortiz D, Torres-Zárate C, Santes-Palacios R. Human Orphan Cytochromes P450: An Update. Curr Drug Metab 2022; 23:942-963. [PMID: 36503398 DOI: 10.2174/1389200224666221209153032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/25/2022] [Accepted: 11/11/2022] [Indexed: 12/14/2022]
Abstract
Orphan cytochromes P450 (CYP) are enzymes whose biological functions and substrates are unknown. However, the use of new experimental strategies has allowed obtaining more information about their relevance in the metabolism of endogenous and exogenous compounds. Likewise, the modulation of their expression and activity has been associated with pathogenesis and prognosis in different diseases. In this work, we review the regulatory pathways and the possible role of orphan CYP to provide evidence that allow us to stop considering some of them as orphan enzymes and to propose them as possible therapeutic targets in the design of new strategies for the treatment of diseases associated with CYP-mediated metabolism.
Collapse
Affiliation(s)
- Dora Molina-Ortiz
- Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría, Coyoacán 04530, Mexico City, México
| | - Carmen Torres-Zárate
- Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría, Coyoacán 04530, Mexico City, México
| | - Rebeca Santes-Palacios
- Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría, Coyoacán 04530, Mexico City, México
| |
Collapse
|
12
|
Riecan M, Paluchova V, Lopes M, Brejchova K, Kuda O. Branched and linear fatty acid esters of hydroxy fatty acids (FAHFA) relevant to human health. Pharmacol Ther 2021; 231:107972. [PMID: 34453998 DOI: 10.1016/j.pharmthera.2021.107972] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
Fatty acid esters of hydroxy fatty acids (FAHFAs) represent a complex lipid class that contains both signaling mediators and structural components of lipid biofilms in humans. The majority of endogenous FAHFAs share a common chemical architecture, characterized by an estolide bond that links the hydroxy fatty acid (HFA) backbone and the fatty acid (FA). Two structurally and functionally distinct FAHFA superfamilies are recognized based on the position of the estolide bond: omega-FAHFAs and in-chain branched FAHFAs. The existing variety of possible HFAs and FAs combined with the position of the estolide bond generates a vast quantity of unique structures identified in FAHFA families. In this review, we discuss the anti-diabetic and anti-inflammatory effects of branched FAHFAs and the role of omega-FAHFA-derived lipids as surfactants in the tear film lipid layer and dry eye disease. To emphasize potential pharmacological targets, we recapitulate the biosynthesis of the HFA backbone within the superfamilies together with the degradation pathways and the FAHFA regioisomer distribution in human and mouse adipose tissue. We propose a theoretical involvement of cytochrome P450 enzymes in the generation and degradation of saturated HFA backbones and present an overview of small-molecule inhibitors used in FAHFA research. The FAHFA lipid class is huge and largely unexplored. Besides the unknown biological effects of individual FAHFAs, also the enigmatic enzymatic machinery behind their synthesis could provide new therapeutic approaches for inflammatory metabolic or eye diseases. Therefore, understanding the mechanisms of (FA)HFA synthesis at the molecular level should be the next step in FAHFA research.
Collapse
Affiliation(s)
- Martin Riecan
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague 4, Czech Republic
| | - Veronika Paluchova
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague 4, Czech Republic
| | - Magno Lopes
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague 4, Czech Republic
| | - Kristyna Brejchova
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague 4, Czech Republic
| | - Ondrej Kuda
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague 4, Czech Republic.
| |
Collapse
|
13
|
Perrelli A, Retta SF. Polymorphisms in genes related to oxidative stress and inflammation: Emerging links with the pathogenesis and severity of Cerebral Cavernous Malformation disease. Free Radic Biol Med 2021; 172:403-417. [PMID: 34175437 DOI: 10.1016/j.freeradbiomed.2021.06.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/03/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023]
Abstract
Cerebral Cavernous Malformation (CCM) is a cerebrovascular disease of genetic origin affecting 0.5% of the population and characterized by abnormally enlarged and leaky capillaries that predispose to seizures, neurological deficits, and intracerebral hemorrhage (ICH). CCM occurs sporadically or is inherited as dominant condition with incomplete penetrance and highly variable expressivity. Three disease genes have been identified: KRIT1 (CCM1), CCM2 and CCM3. Previous results demonstrated that loss-of-function mutations of CCM genes cause pleiotropic effects, including defective autophagy, altered reactive oxygen species (ROS) homeostasis, and enhanced sensitivity to oxidative stress and inflammatory events, suggesting a novel unifying pathogenetic mechanism, and raising the possibility that CCM disease onset and severity are influenced by the presence of susceptibility and modifier genes. Consistently, genome-wide association studies (GWAS) in large and homogeneous cohorts of patients sharing the familial form of CCM disease and identical mutations in CCM genes have led to the discovery of distinct genetic modifiers of major disease severity phenotypes, such as development of numerous and large CCM lesions, and susceptibility to ICH. This review deals with the identification of genetic modifiers with a significant impact on inter-individual variability in CCM disease onset and severity, including highly polymorphic genes involved in oxidative stress, inflammatory and immune responses, such as cytochrome P450 monooxygenases (CYP), matrix metalloproteinases (MMP), and Toll-like receptors (TLR), pointing to their emerging prognostic value, and opening up new perspectives for risk stratification and personalized medicine strategies.
Collapse
Affiliation(s)
- Andrea Perrelli
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy; CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy.
| | - Saverio Francesco Retta
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy; CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy.
| |
Collapse
|
14
|
Chong CS, Limviphuvadh V, Maurer-Stroh S. Global spectrum of population-specific common missense variation in cytochrome P450 pharmacogenes. Hum Mutat 2021; 42:1107-1123. [PMID: 34153149 DOI: 10.1002/humu.24243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/12/2021] [Accepted: 06/08/2021] [Indexed: 11/06/2022]
Abstract
Next-generation sequencing technology has afforded the discovery of many novel variants that are of significance to inheritable pharmacogenomics (PGx) traits but a large proportion of them have unknown consequences. These include missense variants resulting in single amino acid substitutions in cytochrome P450 (CYP) proteins that can impair enzyme function, leading to altered drug efficacy and toxicity. While most unknown variants are rare, an overlooked minority are variants that are collectively rare but enriched in specific populations. Here, we analyzed sequence variation data in 141,456 individuals from across eight study populations in gnomAD for 38 CYP genes to identify such variants in addition to common variants. By further comparison with data from two PGx-specific databases (PharmVar and PharmGKB) and ClinVar, we identified 234 missense variants in 35 CYP genes, of which 107 were unknown to these databases. Most unknown variants (n = 83) were population-specific common variants and several (n = 7) were found in important CYP pharmacogenes (CYP2D6, CYP4F2, and CYP2C19). Overall, 29% (n = 31) of 107 unknown variants were predicted to affect CYP enzyme function although further biochemical characterization is necessary. These variants may elucidate part of the unexplained interpopulation differences observed in drug response.
Collapse
Affiliation(s)
- Cheng-Shoong Chong
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Innovations in Food and Chemical Safety Programme (IFCS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,National University of Singapore Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, Singapore, Singapore
| | - Vachiranee Limviphuvadh
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Innovations in Food and Chemical Safety Programme (IFCS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Innovations in Food and Chemical Safety Programme (IFCS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,National University of Singapore Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
15
|
Kozaczek M, Bottje W, Albataineh D, Hakkak R. Effects of Short- and Long-Term Soy Protein Feeding on Hepatic Cytochrome P450 Expression in Obese Nonalcoholic Fatty Liver Disease Rat Model. Front Nutr 2021; 8:699620. [PMID: 34262928 PMCID: PMC8273275 DOI: 10.3389/fnut.2021.699620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
Obesity can lead to chronic health complications such as nonalcoholic fatty liver disease (NAFLD). NAFLD is characterized by lipid aggregation in the hepatocytes and inflammation of the liver tissue as a consequence that can contribute to the development of cirrhosis and hepatocellular carcinoma (HCC). Previously, we reported that feeding obese Zucker rats with soy protein isolate (SPI) can reduce liver steatosis when compared with a casein (CAS) diet as a control. However, the effects of SPI on cytochrome P450 (CYP) in an obese rat model are less known. In addition, there is a lack of information concerning the consumption of soy protein in adolescents and its effect in reducing the early onset of NAFLD in this group. Our main goal was to understand if the SPI diet had any impact on the hepatic CYP gene expression when compared with the CAS diet. For this purpose, we used the transcriptomic data obtained in a previous study in which liver samples were collected from obese rats after short-term (eight-week) and long-term (16-week) feeding of SPI (n = 8 per group). To analyze this RNAseq data, we used Ingenuity Pathway Analysis (IPA) software. Comparing short- vs long-term feeding revealed an increase in the number of downregulated CYP genes from three at 8 weeks of SPI diet to five at 16 weeks of the same diet (P ≤ 0.05). On the other hand, upregulated CYP gene numbers showed a small increase in the long-term SPI diet compared to the short-term SPI diet, from 14 genes at 8 weeks to 17 genes at 16 weeks (P ≤ 0.05). The observed changes may have an important role in the attenuation of liver steatosis.
Collapse
Affiliation(s)
- Melisa Kozaczek
- Department of Dietetics and Nutrition, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Poultry Science and The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States.,Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Walter Bottje
- Department of Poultry Science and The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Diyana Albataineh
- Department of Poultry Science and The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Reza Hakkak
- Department of Dietetics and Nutrition, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Arkansas Children's Research Institute, Little Rock, AR, United States.,Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital, Little Rock, AR, United States
| |
Collapse
|
16
|
Das A, Weigle AT, Arnold WR, Kim JS, Carnevale LN, Huff HC. CYP2J2 Molecular Recognition: A New Axis for Therapeutic Design. Pharmacol Ther 2020; 215:107601. [PMID: 32534953 PMCID: PMC7773148 DOI: 10.1016/j.pharmthera.2020.107601] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/28/2020] [Indexed: 12/11/2022]
Abstract
Cytochrome P450 (CYP) epoxygenases are a special subset of heme-containing CYP enzymes capable of performing the epoxidation of polyunsaturated fatty acids (PUFA) and the metabolism of xenobiotics. This dual functionality positions epoxygenases along a metabolic crossroad. Therefore, structure-function studies are critical for understanding their role in bioactive oxy-lipid synthesis, drug-PUFA interactions, and for designing therapeutics that directly target the epoxygenases. To better exploit CYP epoxygenases as therapeutic targets, there is a need for improved understanding of epoxygenase structure-function. Of the characterized epoxygenases, human CYP2J2 stands out as a potential target because of its role in cardiovascular physiology. In this review, the early research on the discovery and activity of epoxygenases is contextualized to more recent advances in CYP epoxygenase enzymology with respect to PUFA and drug metabolism. Additionally, this review employs CYP2J2 epoxygenase as a model system to highlight both the seminal works and recent advances in epoxygenase enzymology. Herein we cover CYP2J2's interactions with PUFAs and xenobiotics, its tissue-specific physiological roles in diseased states, and its structural features that enable epoxygenase function. Additionally, the enumeration of research on CYP2J2 identifies the future needs for the molecular characterization of CYP2J2 to enable a new axis of therapeutic design.
Collapse
Affiliation(s)
- Aditi Das
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Computational Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Department of Bioengineering, Neuroscience Program, Beckman Institute for Advanced Science and Technology, Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| | - Austin T Weigle
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - William R Arnold
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Justin S Kim
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Lauren N Carnevale
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Hannah C Huff
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
17
|
Chaubey P, Momin M, Sawarkar S. Significance of Ligand-Anchored Polymers for Drug Targeting in the Treatment of Colonic Disorders. Front Pharmacol 2020; 10:1628. [PMID: 32161536 PMCID: PMC7052366 DOI: 10.3389/fphar.2019.01628] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/13/2019] [Indexed: 12/26/2022] Open
Abstract
Treatment of a variety of bowel diseases like Crohn's disease, ulcerative colitis, colonic cancers, colonic pathologies, and systemic delivery of drugs at the target sites can be done with the help of targeted drug delivery technique. Conventional colon specific drug delivery systems lack specificity and release significant amount of drug prior reaching the target site. Hence, efficient drug delivery system that ensures effective release of the drug at the colon is still a sought after research arena. Ligand anchored therapy is a strong and effective approach to execute drug delivery in selective target cells, for both, diagnostic, as well as therapeutic reasons. Compared to the regular drugs, such ligand anchored therapy provides added benefit of minimum toxicity and few side effects. Discovery of overexpressed receptors on diseased cells, as compared to healthy cells led to the emergence of active drug targeting. Further, drug resistance constitutes one of the major reasons of the failure of chemotherapy and presents a major obstacle for the effective treatment. The reason behind drug resistance is exposure of pathological cells/pathogens to sub-therapeutic levels of drugs due lack of specificity of therapeutics. Active targeting, specifically taken up by the target cells, can warrant exposure of pathological cells/pathogens to high drug load at the target and sparing non-target cells hence minimal damage to normal cells and least chance of drug resistance. Many ligands like antibodies, aptamers, peptides, folate, and transferrin have been discovered in the past few years. The design of nanocarriers can be incorporated with many different functions which enables functions like imaging and triggered intracellular drug release. The present review article focuses on advances in ligand anchored therapy and its significance on the progress of targeted nanocarriers. It will also establish novel concepts like multi-targeting and multi-functional nanocarriers for the treatment of colonic disorders.
Collapse
Affiliation(s)
- Pramila Chaubey
- Department of Pharmaceutics, College of Pharmacy, Shaqra University, Al-Dawadmi, Saudi Arabia
| | - Munira Momin
- Department of Pharmaceutics, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Sujata Sawarkar
- Department of Pharmaceutics, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
18
|
Yang S, Hu J, Li Y, Zhao Z. CYP2J2 is the major enzyme in human liver microsomes responsible for hydroxylation of SYL-927, a novel and selective sphingosine 1-phosphate receptor 1 (S1P 1 ) agonist. Biopharm Drug Dispos 2018; 39:431-436. [PMID: 30362120 DOI: 10.1002/bdd.2161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/10/2018] [Accepted: 10/20/2018] [Indexed: 01/20/2023]
Abstract
SYL-927, a novel and selective S1P1 agonist, is transferred to its active phosphate for the regulation of lymphocyte recirculation. This in vitro metabolism study is to elucidate the P450-mediated oxidation pathway of SYL-927 in human liver microsomes (HLMs). The results demonstrated that the ω-1 hydroxylated metabolite SYL-927-M was formed after incubation of SYL-927 with HLMs. Recombinant human CYP1A1 and CYP2J2 can efficiently catalyse SYL-927-M formation, followed by markedly less substrate conversion with CYP1A2, CYP2C19 and CYP2D6. Inhibition studies with chemical inhibitors and antibodies suggested that arachidonic acid, the substrate of CYP2J2, and CYP2J2-specific antibody effectively inhibited the formation of SYL-927-M in HLMs whereas no significant inhibition was observed with the inhibitors for CYP1A1, CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A4, demonstrating that CYP2J2 was primarily responsible for the formation of SYL-927-M.
Collapse
Affiliation(s)
- Shu Yang
- Department of Drug Metabolism of Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, 6 TiantanXili, Dongcheng District, Beijing, China
| | - Jinping Hu
- Department of Drug Metabolism of Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yan Li
- Department of Drug Metabolism of Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhigang Zhao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, 6 TiantanXili, Dongcheng District, Beijing, China
| |
Collapse
|
19
|
Zhou P, Chen Y, Lu Q, Qin H, Ou H, He B, Ye J. Cellular metabolism network of Bacillus thuringiensis related to erythromycin stress and degradation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 160:328-341. [PMID: 29857237 DOI: 10.1016/j.ecoenv.2018.05.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/15/2018] [Accepted: 05/20/2018] [Indexed: 06/08/2023]
Abstract
Erythromycin is one of the most widely used macrolide antibiotics. To present a system-level understanding of erythromycin stress and degradation, proteome, phospholipids and membrane potentials were investigated after the erythromycin degradation. Bacillus thuringiensis could effectively remove 77% and degrade 53% of 1 µM erythromycin within 24 h. The 36 up-regulated and 22 down-regulated proteins were mainly involved in spore germination, chaperone and nucleic acid binding. Up-regulated ribose-phosphate pyrophosphokinase and ribosomal proteins confirmed that the synthesis of protein, DNA and RNA were enhanced after the erythromycin degradation. The reaction network of glycolysis/gluconeogenesis was activated, whereas, the activity of spore germination was decreased. The increased synthesis of phospholipids, especially, palmitoleic acid and oleic acid, altered the membrane permeability for erythromycin transport. Ribose-phosphate pyrophosphokinase and palmitoleic acid could be biomarkers to reflect erythromycin exposure. Lipids, disease, pyruvate metabolism and citrate cycle in human cells could be the target pathways influenced by erythromycin. The findings presented novel insights to the interaction among erythromycin stress, protein interaction and metabolism network, and provided a useful protocol for investigating cellular metabolism responses under pollutant stress.
Collapse
Affiliation(s)
- Pulin Zhou
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, Guangdong, China
| | - Ya Chen
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, Guangdong, China
| | - Qiying Lu
- College of Biology and Food Engineering, Guangdong University of Education, Guangzhou 510303, Guangdong, China
| | - Huaming Qin
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, Guangdong, China
| | - Huase Ou
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, Guangdong, China
| | - Baoyan He
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, Guangdong, China
| | - Jinshao Ye
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, Guangdong, China.
| |
Collapse
|
20
|
Wang C, Chen F, Liu Y, Xu Q, Guo L, Zhang X, Ruan Y, Shi Y, Shen L, Li M, Du H, Sun X, Ma J, He L, Qin S. Genetic Association of Drug Response to Erlotinib in Chinese Advanced Non-small Cell Lung Cancer Patients. Front Pharmacol 2018; 9:360. [PMID: 29695969 PMCID: PMC5904969 DOI: 10.3389/fphar.2018.00360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/27/2018] [Indexed: 01/17/2023] Open
Abstract
The efficacy of erlotinib treatment for advanced non-small cell lung cancer (NSCLC) is due to its action as an epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI). Patients treated with erlotinib experience different drug responses. The effect of germline mutations on therapeutic responses and adverse drug responses (ADRs) to erlotinib in Chinese patients requires elucidation. Sixty Han Chinese advanced non-small cell lung cancer patients received erlotinib monotherapy and, for each participant, 76 candidate genes (related to EGFR signaling, drug metabolism and drug transport pathways) were sequenced and analyzed. The single-nucleotide polymorphisms (SNPs) rs1042640 in UGT1A10, rs1060463, and rs1064796 in CYP4F11, and rs2074900 in CYP4F2 were significantly associated with therapeutic responses to erlotinib. Rs1064796 in CYP4F11 and rs10045685 in UGT3A1 were significantly associated with adverse drug reaction. Moreover, analysis of a validation cohort confirmed the significant association between rs10045685 in UGT3A1 and erlotinib adverse drug response(unadjusted p = 0.015). This study provides comprehensive, systematic analyses of genetic variants associated with responses to erlotinib in Chinese advanced non-small cell lung cancer patients. Newly-identified SNPs may serve as promising markers to predict responses and safety in erlotinib-treated advanced non-small cell lung cancer patients after chemotherapy doublet.
Collapse
Affiliation(s)
- Cong Wang
- Life Science College, Anhui Medical University, Hefei, China.,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Fang Chen
- Life Science College, Anhui Medical University, Hefei, China.,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Yichen Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Qingqing Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Liang Guo
- The Fourth Hospital of Jinan City, Taishan Medical College, Jinan, China
| | - Xiaoqing Zhang
- Department of Pharmacy, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yunfeng Ruan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Ye Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Lu Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Mo Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Huihui Du
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Xiaofang Sun
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jingsong Ma
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Shengying Qin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.,The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Shanghai Center for Women and Children's Health, Shanghai, China
| |
Collapse
|
21
|
Natarajan SK, Ibdah JA. Role of 3-Hydroxy Fatty Acid-Induced Hepatic Lipotoxicity in Acute Fatty Liver of Pregnancy. Int J Mol Sci 2018; 19:ijms19010322. [PMID: 29361796 PMCID: PMC5796265 DOI: 10.3390/ijms19010322] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 12/16/2022] Open
Abstract
Acute fatty liver of pregnancy (AFLP), a catastrophic illness for both the mother and the unborn offspring, develops in the last trimester of pregnancy with significant maternal and perinatal mortality. AFLP is also recognized as an obstetric and medical emergency. Maternal AFLP is highly associated with a fetal homozygous mutation (1528G>C) in the gene that encodes for mitochondrial long-chain hydroxy acyl-CoA dehydrogenase (LCHAD). The mutation in LCHAD results in the accumulation of 3-hydroxy fatty acids, such as 3-hydroxy myristic acid, 3-hydroxy palmitic acid and 3-hydroxy dicarboxylic acid in the placenta, which are then shunted to the maternal circulation leading to the development of acute liver injury observed in patients with AFLP. In this review, we will discuss the mechanistic role of increased 3-hydroxy fatty acid in causing lipotoxicity to the liver and in inducing oxidative stress, mitochondrial dysfunction and hepatocyte lipoapoptosis. Further, we also review the role of 3-hydroxy fatty acids in causing placental damage, pancreatic islet β-cell glucolipotoxicity, brain damage, and retinal epithelial cells lipoapoptosis in patients with LCHAD deficiency.
Collapse
Affiliation(s)
- Sathish Kumar Natarajan
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583-0806, USA.
| | - Jamal A Ibdah
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA.
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA.
- Harry S. Truman Memorial Veterans Medical Center, Columbia, MO 65201, USA.
| |
Collapse
|
22
|
Alnabulsi A, Swan R, Cash B, Alnabulsi A, Murray GI. The differential expression of omega-3 and omega-6 fatty acid metabolising enzymes in colorectal cancer and its prognostic significance. Br J Cancer 2017; 116:1612-1620. [PMID: 28557975 PMCID: PMC5518862 DOI: 10.1038/bjc.2017.135] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/13/2017] [Accepted: 04/24/2017] [Indexed: 12/28/2022] Open
Abstract
Background: Colorectal cancer is a common malignancy and one of the leading causes of cancer-related deaths. The metabolism of omega fatty acids has been implicated in tumour growth and metastasis. Methods: This study has characterised the expression of omega fatty acid metabolising enzymes CYP4A11, CYP4F11, CYP4V2 and CYP4Z1 using monoclonal antibodies we have developed. Immunohistochemistry was performed on a tissue microarray containing 650 primary colorectal cancers, 285 lymph node metastasis and 50 normal colonic mucosa. Results: The differential expression of CYP4A11 and CYP4F11 showed a strong association with survival in both the whole patient cohort (hazard ratio (HR)=1.203, 95% CI=1.092–1.324, χ2=14.968, P=0.001) and in mismatch repair-proficient tumours (HR=1.276, 95% CI=1.095–1.488, χ2=9.988, P=0.007). Multivariate analysis revealed that the differential expression of CYP4A11 and CYP4F11 was independently prognostic in both the whole patient cohort (P=0.019) and in mismatch repair proficient tumours (P=0.046). Conclusions: A significant and independent association has been identified between overall survival and the differential expression of CYP4A11 and CYP4F11 in the whole patient cohort and in mismatch repair-proficient tumours.
Collapse
Affiliation(s)
- Abdo Alnabulsi
- Department of Pathology, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25, 2ZD, UK.,Vertebrate Antibodies, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Rebecca Swan
- Department of Pathology, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25, 2ZD, UK
| | - Beatriz Cash
- Vertebrate Antibodies, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Ayham Alnabulsi
- Vertebrate Antibodies, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Graeme I Murray
- Department of Pathology, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25, 2ZD, UK
| |
Collapse
|
23
|
Yi M, Cho SA, Min J, Kim DH, Shin JG, Lee SJ. Functional characterization of a common CYP4F11 genetic variant and identification of functionally defective CYP4F11 variants in erythromycin metabolism and 20-HETE synthesis. Arch Biochem Biophys 2017; 620:43-51. [DOI: 10.1016/j.abb.2017.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/08/2017] [Accepted: 03/19/2017] [Indexed: 12/31/2022]
|
24
|
Pathak VM, Navneet. Review on the current status of polymer degradation: a microbial approach. BIORESOUR BIOPROCESS 2017. [DOI: 10.1186/s40643-017-0145-9] [Citation(s) in RCA: 308] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
25
|
Arnold WR, Baylon JL, Tajkhorshid E, Das A. Asymmetric Binding and Metabolism of Polyunsaturated Fatty Acids (PUFAs) by CYP2J2 Epoxygenase. Biochemistry 2016; 55:6969-6980. [PMID: 27992998 DOI: 10.1021/acs.biochem.6b01037] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cytochrome P450 (CYP) 2J2 is the primary epoxygenase in the heart and is responsible for the epoxidation of arachidonic acid (AA), an ω-6 polyunsaturated fatty acid (PUFA), into anti-inflammatory epoxide metabolites. It also epoxidizes other PUFAs such as docosahexaenoic acid (DHA), linoleic acid (LA), and eicosapentaenoic acid (EPA). Herein, we have performed detailed thermodynamic and kinetic analyses to determine how DHA, LA, and EPA modulate the metabolism of AA by CYP2J2. We use the Nanodisc system to stabilize CYP2J2 and its redox partner, CYP reductase (CPR). We observe that DHA strongly inhibits CYP2J2-mediated AA metabolism, LA only moderately inhibits AA metabolism, and EPA exhibits insignificant inhibition. We also characterized the binding of these molecules using ebastine competitive binding assays and show that DHA binds significantly tighter to CYP2J2 than AA, EPA, or LA. Furthermore, we utilize a combined approach of molecular dynamics (MD) simulations and docking to predict key residues mediating the tight binding of DHA. We show that although all the tested fatty acids form similar contacts to the active site residues, the affinity of DHA for CYP2J2 is tighter because of the interaction of DHA with residues Arg-321, Thr-318, and Ser-493. To demonstrate the importance of these residues in binding, we mutated these residues to make two mutant variants, CYP2J2-T318A and CYP2J2-T318V/S493A. Both mutant variants showed weaker binding than the wild type (WT) to DHA and AA; DHA inhibition of AA was also mitigated in the mutants compared to the WT. Therefore, using a combined experimental and MD simulation approach, we establish that CYP2J2 inhibition of AA metabolism by DHA, EPA, and LA is asymmetric because of tighter binding of DHA to select residues in the active site.
Collapse
Affiliation(s)
- William R Arnold
- Department of Comparative Biosciences, ‡Department of Biochemistry, §Center for Biophysics and Quantitative Biology, ∥Beckman Institute for Advanced Science and Technology, and ⊥Neuroscience Program, Department of Bioengineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Javier L Baylon
- Department of Comparative Biosciences, ‡Department of Biochemistry, §Center for Biophysics and Quantitative Biology, ∥Beckman Institute for Advanced Science and Technology, and ⊥Neuroscience Program, Department of Bioengineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Emad Tajkhorshid
- Department of Comparative Biosciences, ‡Department of Biochemistry, §Center for Biophysics and Quantitative Biology, ∥Beckman Institute for Advanced Science and Technology, and ⊥Neuroscience Program, Department of Bioengineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Aditi Das
- Department of Comparative Biosciences, ‡Department of Biochemistry, §Center for Biophysics and Quantitative Biology, ∥Beckman Institute for Advanced Science and Technology, and ⊥Neuroscience Program, Department of Bioengineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|
26
|
Theodoropoulos PC, Gonzales SS, Winterton SE, Rodriguez-Navas C, McKnight JS, Morlock LK, Hanson JM, Cross B, Owen AE, Duan Y, Moreno JR, Lemoff A, Mirzaei H, Posner BA, Williams NS, Ready JM, Nijhawan D. Discovery of tumor-specific irreversible inhibitors of stearoyl CoA desaturase. Nat Chem Biol 2016; 12:218-25. [PMID: 26829472 PMCID: PMC4798879 DOI: 10.1038/nchembio.2016] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 12/09/2015] [Indexed: 01/09/2023]
Abstract
A hallmark of targeted cancer therapies is selective toxicity among cancer cell lines. We evaluated results from a viability screen of over 200,000 small molecules to identify two chemical series, oxalamides and benzothiazoles, that were selectively toxic at low nanomolar concentrations to the same 4 of 12 human lung cancer cell lines. Sensitive cell lines expressed cytochrome P450 (CYP) 4F11, which metabolized the compounds into irreversible inhibitors of stearoyl CoA desaturase (SCD). SCD is recognized as a promising biological target in cancer and metabolic disease. However, SCD is essential to sebocytes, and accordingly SCD inhibitors cause skin toxicity. Mouse sebocytes did not activate the benzothiazoles or oxalamides into SCD inhibitors, providing a therapeutic window for inhibiting SCD in vivo. We thus offer a strategy to target SCD in cancer by taking advantage of high CYP expression in a subset of tumors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bethany Cross
- Department of Biochemistry, UT Southwestern Medical Center
| | - Amy E. Owen
- Department of Internal Medicine, UT Southwestern Medical Center
| | - Yingli Duan
- Department of Internal Medicine, UT Southwestern Medical Center
| | - Jose R. Moreno
- Department of Biochemistry, UT Southwestern Medical Center
| | - Andrew Lemoff
- Department of Biochemistry, UT Southwestern Medical Center
| | - Hamid Mirzaei
- Department of Biochemistry, UT Southwestern Medical Center
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center
| | - Bruce A. Posner
- Department of Biochemistry, UT Southwestern Medical Center
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center
| | - Noelle S. Williams
- Department of Biochemistry, UT Southwestern Medical Center
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center
| | - Joseph M. Ready
- Department of Biochemistry, UT Southwestern Medical Center
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center
| | - Deepak Nijhawan
- Department of Biochemistry, UT Southwestern Medical Center
- Department of Internal Medicine, UT Southwestern Medical Center
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center
| |
Collapse
|
27
|
Selwyn FP, Cheng SL, Klaassen CD, Cui JY. Regulation of Hepatic Drug-Metabolizing Enzymes in Germ-Free Mice by Conventionalization and Probiotics. ACTA ACUST UNITED AC 2015; 44:262-74. [PMID: 26586378 DOI: 10.1124/dmd.115.067504] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/18/2015] [Indexed: 01/26/2023]
Abstract
Little is known regarding the effect of intestinal microbiota modifiers, such as probiotics and conventionalization with exogenous bacteria, on host hepatic drug metabolism. Therefore, the goal of this study was to determine the effect of these modifiers on the expression of various drug-metabolizing enzymes of the host liver. VSL3 is a probiotic that contains eight live strains of bacteria. Five groups of mice were used: 1) conventional mice (CV), 2) conventional mice treated with VSL3 in drinking water, 3) germ-free (GF) mice, 4) GF mice treated with VSL3, and 5) GF mice exposed to the conventional environment for 2 months. All mice were 3 months old at tissue collection. GF conditions markedly downregulated the cytochrome P450 (P450) 3a gene cluster, but upregulated the Cyp4a cluster, whereas conventionalization normalized their expression to conventional levels [reverse-transcription quantitative polymerase chain reaction (qPCR) and western blot]. Changes in the Cyp3a and 4a gene expression correlated with alterations in the pregnane X receptor and peroxisome proliferator-activated receptor α-DNA binding, respectively (chromatin immunoprecipitation-qPCR). VSL3 increased each bacterial component in the large intestinal content of the CV mice, and increased these bacteria even more in GF mice, likely due to less competition for growth in the GF environment. VSL3 given to conventional mice increased the mRNAs of Cyp4v3, alcohol dehydrogenase 1, and carboxyesterase 2a, but decreased the mRNAs of multiple phase II glutathione-S-transferases. VSL3 given to germ-free mice decreased the mRNAs of UDP-glucuronosyltransferases 1a9 and 2a3. In conclusion, conventionalization and VSL3 alter the expression of many drug-metabolizing enzyme s in the liver, suggesting the importance of considering "bacteria-drug" interactions for various adverse drug reactions in patients.
Collapse
Affiliation(s)
- Felcy Pavithra Selwyn
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Sunny Lihua Cheng
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Curtis D Klaassen
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| |
Collapse
|
28
|
Johnson AL, Edson KZ, Totah RA, Rettie AE. Cytochrome P450 ω-Hydroxylases in Inflammation and Cancer. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2015; 74:223-62. [PMID: 26233909 DOI: 10.1016/bs.apha.2015.05.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cytochrome P450-dependent ω-hydroxylation is a prototypic metabolic reaction of CYP4 family members that is important for the elimination and bioactivation of not only therapeutic drugs, but also endogenous compounds, principally fatty acids. Eicosanoids, derived from arachidonic acid, are key substrates in the latter category. Human CYP4 enzymes, mainly CYP4A11, CYP4F2, and CYP4F3B, hydroxylate arachidonic acid at the omega position to form 20-HETE, which has important effects in tumor progression and on angiogenesis and blood pressure regulation in the vasculature and kidney. CYP4F3A in myeloid tissue catalyzes the ω-hydroxylation of leukotriene B4 to 20-hydroxy leukotriene B4, an inactivation process that is critical for the regulation of the inflammatory response. Here, we review the enzymology, tissue distribution, and substrate selectivity of human CYP4 ω-hydroxylases and their roles as catalysts for the formation and termination of the biological effects of key eicosanoid metabolites in inflammation and cancer progression.
Collapse
Affiliation(s)
- Amanda L Johnson
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Katheryne Z Edson
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, Washington, USA; Amgen Inc., Thousand Oaks, California, USA
| | - Rheem A Totah
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Allan E Rettie
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
29
|
Essential role of the cytochrome P450 CYP4F22 in the production of acylceramide, the key lipid for skin permeability barrier formation. Proc Natl Acad Sci U S A 2015; 112:7707-12. [PMID: 26056268 DOI: 10.1073/pnas.1503491112] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A skin permeability barrier is essential for terrestrial animals, and its impairment causes several cutaneous disorders such as ichthyosis and atopic dermatitis. Although acylceramide is an important lipid for the skin permeability barrier, details of its production have yet to be determined, leaving the molecular mechanism of skin permeability barrier formation unclear. Here we identified the cytochrome P450 gene CYP4F22 (cytochrome P450, family 4, subfamily F, polypeptide 22) as the long-sought fatty acid ω-hydroxylase gene required for acylceramide production. CYP4F22 has been identified as one of the autosomal recessive congenital ichthyosis-causative genes. Ichthyosis-mutant proteins exhibited reduced enzyme activity, indicating correlation between activity and pathology. Furthermore, lipid analysis of a patient with ichthyosis showed a drastic decrease in acylceramide production. We determined that CYP4F22 was a type I membrane protein that locates in the endoplasmic reticulum (ER), suggesting that the ω-hydroxylation occurs on the cytoplasmic side of the ER. The preferred substrate of the CYP4F22 was fatty acids with a carbon chain length of 28 or more (≥C28). In conclusion, our findings demonstrate that CYP4F22 is an ultra-long-chain fatty acid ω-hydroxylase responsible for acylceramide production and provide important insights into the molecular mechanisms of skin permeability barrier formation. Furthermore, based on the results obtained here, we proposed a detailed reaction series for acylceramide production.
Collapse
|
30
|
Wu CL, Zhao SP, Yu BL. Microarray analysis provides new insights into the function of apolipoprotein O in HepG2 cell line. Lipids Health Dis 2013; 12:186. [PMID: 24341743 PMCID: PMC3878747 DOI: 10.1186/1476-511x-12-186] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 12/13/2013] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Apolipoprotein O (apoO) is a new member of the apolipoprotein family. However, data on its physiological functions are limited and inconsistent. Using a microarray expression analysis, this study explored the function of apoO in liver cells. METHODS HepG2 cells were treated either with oleic acid or tumor necrosis factor-α for 24 h. mRNA and protein expression of apoO were assessed by quantitative real-time PCR (qRT-PCR) and Western blot respectively. An efficient lentiviral siRNA vector targeting the human apoO gene was designed and constructed. The gene expression profile of HepG2 human hepatocellular carcinoma cells transfected with the apoO silencing vector was investigated using a whole-genome oligonucleotide microarray. The expression levels of some altered genes were validated using qRT-PCR. RESULTS ApoO expression in HepG2 cells was dramatically affected by lipid and inflammatory stimuli. A total of 282 differentially expressed genes in apoO-silenced HepG2 cells were identified by microarray analysis. These genes included those participating in fatty acid metabolism, such as ACSL4, RGS16, CROT and CYP4F11, and genes participating in the inflammatory response, such as NFKBIZ, TNFSF15, USP2, IL-17, CCL23, NOTCH2, APH-1B and N2N. The gene Uncoupling protein 2 (UCP2), which is involved in both these metabolic pathways, demonstrated significant changes in mRNA level after transfection. CONCLUSIONS It is likely that apoO participates in fatty acid metabolism and the inflammatory response in HepG2 cells, and UCP2 may act as a mediator between lipid metabolism and inflammation in apoO-silenced HepG2 cells.
Collapse
Affiliation(s)
- Chen-Lu Wu
- Department of Cardiology, the Second Xiangya Hospital of Central South University, Middle Ren-Min Road No.139, Changsha, Hunan, 410011, PR China
| | - Shui-Ping Zhao
- Department of Cardiology, the Second Xiangya Hospital of Central South University, Middle Ren-Min Road No.139, Changsha, Hunan, 410011, PR China
| | - Bi-Lian Yu
- Department of Cardiology, the Second Xiangya Hospital of Central South University, Middle Ren-Min Road No.139, Changsha, Hunan, 410011, PR China
| |
Collapse
|
31
|
Madanayake TW, Lindquist IE, Devitt NP, Mudge J, Rowland AM. A transcriptomic approach to elucidate the physiological significance of human cytochrome P450 2S1 in bronchial epithelial cells. BMC Genomics 2013; 14:833. [PMID: 24279958 PMCID: PMC3884200 DOI: 10.1186/1471-2164-14-833] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 11/21/2013] [Indexed: 12/14/2022] Open
Abstract
Background Cytochrome P450 2S1 (CYP2S1) is an orphan P450 with an unknown biological function. Data from our laboratory and others suggest that CYP2S1 may have an important physiological role in modulating the synthesis and metabolism of bioactive lipids including prostaglandins and retinoids. CYP2S1 expression is elevated in multiple epithelial-derived cancers as well as in the chronic hyperproliferative disease psoriasis. Whether CYP2S1 expression in proliferative disease is protective, detrimental, or neutral to disease progression remains to be determined. Two human bronchial epithelial cells (BEAS-2B) were constructed to represent chronic depletion of CYP2S1 using short-hairpin RNA (shRNA) silencing directed toward the 3’UTR (759) and exon 3 (984) of the CYP2S1 gene and compared with a non-targeting shRNA control (SCRAM). Both CYP2S1 mRNA and protein were depleted by approximately 75% in stable cell lines derived from both targeted shRNA constructs (759 and 984). To elucidate the biological significance of CYP2S1, we analyzed transcriptome alterations in response to CYP2S1 depletion in human lung cells. Results RNA-sequencing (RNA-seq) analysis was performed to compare the transcriptome of the control (SCRAM) and the CYP2S1-depleted (759) BEAS-2B cell lines. Transcriptomes of the replicates from the two cell lines were found to be distinct populations as determined using Principal Component Analysis and hierarchical clustering. Approximately 1000 genes were differentially expressed in response to CYP2S1 depletion. Consistent with our previous phenotypes, DAVID analysis revealed altered regulation in key pathways implicated in cell proliferation and migration. Transcriptomic profiles were also consistent with the metabolism of proposed endogenous substrates. Pathway analysis also revealed significant expression changes within mTOR signaling, a critical pathway in cell growth. To determine whether these changes manifest as altered cell size, cell diameter and volume were calculated, revealing that CYP2S1 depletion promotes cell growth in BEAS-2B cells. Conclusions These data suggest that pathway analysis of sequence-based gene expression is a powerful method to identify pathways and phenotypic alterations in response to changes in orphan enzyme expression. Our results suggest a novel role for CYP2S1-mediated metabolism in modulating BEAS-2B cell size. These findings warrant further studies on CYP2S1 regulated pathways to elucidate potential substrates of CYP2S1.
Collapse
Affiliation(s)
- Thushara W Madanayake
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003, USA.
| | | | | | | | | |
Collapse
|
32
|
Lee HJ, Jang M, Kim H, Kwak W, Park W, Hwang JY, Lee CK, Jang GW, Park MN, Kim HC, Jeong JY, Seo KS, Kim H, Cho S, Lee BY. Comparative Transcriptome Analysis of Adipose Tissues Reveals that ECM-Receptor Interaction Is Involved in the Depot-Specific Adipogenesis in Cattle. PLoS One 2013; 8:e66267. [PMID: 23805208 PMCID: PMC3689780 DOI: 10.1371/journal.pone.0066267] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 05/02/2013] [Indexed: 11/23/2022] Open
Abstract
Adipocytes mainly function as energy storage and endocrine cells. Adipose tissues showed the biological and genetic difference based on their depots. The difference of adipocytes between depots might be influenced by the inherent genetic programing for adipogenesis. We used RNA-seq technique to investigate the transcriptomes in 3 adipose tissues of omental (O), subcutaneous (S) and intramuscular (I) fats in cattle. Sequence reads were obtained from Illumina HiSeq2000 and mapped to the bovine genome using Tophat2. Differentially expressed genes (DEG) between adipose tissues were detected by EdgeR. We identified 5797, 2156, and 5455 DEGs in the comparison between OI, OS, and IS respectively and also found 5657 DEGs in the comparison between the intramuscular and the combined omental and subcutaneous fats (C) (FDR<0.01). Depot specifically up- and down- regulated DEGs were 853 in S, 48 in I, and 979 in O. The numbers of DEGs and functional annotation studies suggested that I had the different genetic profile compared to other two adipose tissues. In I, DEGs involved in the developmental process (eg. EGR2, FAS, and KLF7) were up-regulated and those in the immune system process were down-regulated. Many DEGs from the adipose tissues were enriched in the various GO terms of developmental process and KEGG pathway analysis showed that the ECM-receptor interaction was one of commonly enriched pathways in all of the 3 adipose tissues and also functioned as a sub-pathway of other enriched pathways. However, genes involved in the ECM-receptor interaction were differentially regulated depending on the depots. Collagens, main ECM constituents, were significantly up-regulated in S and integrins, transmembrane receptors, were up-regulated in I. Different laminins were up-regulated in the different depots. This comparative transcriptome analysis of three adipose tissues suggested that the interactions between ECM components and transmembrane receptors of fat cells depend on the depot specific adipogenesis.
Collapse
Affiliation(s)
- Hyun-Jeong Lee
- Division of Animal Genomics and Bioinformatics, National Institute of Animal science, Rural Development Administration, Suwon, Republic of Korea
| | - Mi Jang
- Division of Animal Genomics and Bioinformatics, National Institute of Animal science, Rural Development Administration, Suwon, Republic of Korea
- Department of Animal Science and Technology, College of Life Science and Natural Resources, Sunchon National University, Jeollanam-do, Republic of Korea
| | - Hyeongmin Kim
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Woori Kwak
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
- C&K genomics, Seoul National University Research Park, Seoul, Republic of Korea
| | - WonCheoul Park
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Jae Yeon Hwang
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Chang-Kyu Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Gul Won Jang
- Division of Animal Genomics and Bioinformatics, National Institute of Animal science, Rural Development Administration, Suwon, Republic of Korea
| | - Mi Na Park
- Division of Animal Genomics and Bioinformatics, National Institute of Animal science, Rural Development Administration, Suwon, Republic of Korea
| | - Hyeong-Cheol Kim
- Division of Animal Genomics and Bioinformatics, National Institute of Animal science, Rural Development Administration, Suwon, Republic of Korea
| | - Jin Young Jeong
- Division of Animal Genomics and Bioinformatics, National Institute of Animal science, Rural Development Administration, Suwon, Republic of Korea
| | - Kang Seok Seo
- Department of Animal Science and Technology, College of Life Science and Natural Resources, Sunchon National University, Jeollanam-do, Republic of Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Seoae Cho
- C&K genomics, Seoul National University Research Park, Seoul, Republic of Korea
| | - Bo-Young Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
33
|
Jensen PD, Zhang Y, Wiggins BE, Petrick JS, Zhu J, Kerstetter RA, Heck GR, Ivashuta SI. Computational sequence analysis of predicted long dsRNA transcriptomes of major crops reveals sequence complementarity with human genes. GM CROPS & FOOD 2013; 4:90-7. [PMID: 23787988 DOI: 10.4161/gmcr.25285] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Long double-stranded RNAs (long dsRNAs) are precursors for the effector molecules of sequence-specific RNA-based gene silencing in eukaryotes. Plant cells can contain numerous endogenous long dsRNAs. This study demonstrates that such endogenous long dsRNAs in plants have sequence complementarity to human genes. Many of these complementary long dsRNAs have perfect sequence complementarity of at least 21 nucleotides to human genes; enough complementarity to potentially trigger gene silencing in targeted human cells if delivered in functional form. However, the number and diversity of long dsRNA molecules in plant tissue from crops such as lettuce, tomato, corn, soy and rice with complementarity to human genes that have a long history of safe consumption supports a conclusion that long dsRNAs do not present a significant dietary risk.
Collapse
|
34
|
Bandala C, Floriano-Sánchez E, Cárdenas-Rodríguez N, López-Cruz J, Lara-Padilla E. RNA expression of cytochrome P450 in Mexican women with breast cancer. Asian Pac J Cancer Prev 2013; 13:2647-53. [PMID: 22938436 DOI: 10.7314/apjcp.2012.13.6.2647] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Involvement of cytochrome P450 genes (CYPs) in breast cancer (BCa) may differ between populations, with expression patterns affected by tumorigenesis. This may have an important role in the metabolism of anticancer drugs and in the progression of cancer. The aim of this study was to determine the mRNA expression patterns of four cytochrome P450 genes (CYP2W1, 3A5, 4F11 and 8A1) in Mexican women with breast cancer. Real- time PCR analyses were conducted on 32 sets of human breast tumors and adjacent non-tumor tissues, as well as 20 normal breast tissues. Expression levels were tested for association with clinical and pathological data of patients. We found higher gene expression of CYP2W1, CYP3A5, CYP4F11 in BCa than in adjacent tissues and only low in normal mammary glands in our Mexican population while CYP8A1 was only expressed in BCa and adjacent tissues. We found that Ki67 protein expression was associated with clinicopathological features as well as with CYP2W1, CYP4F11 and CYP8A1 but not with CYP3A5. The results indicated that breast cancer tissues may be better able to metabolize carcinogens and other xenobiotics to active species than normal or adjacent non-tumor tissues.
Collapse
Affiliation(s)
- Cindy Bandala
- Section of Research and Graduate Studies, Instituto Politecnico Nacional, SEDENA, Mexico
| | | | | | | | | |
Collapse
|
35
|
Israni AK, Leduc R, Jacobson PA, Wildebush W, Guan W, Schladt D, Matas AJ, Oetting WS. Inflammation in the setting of chronic allograft dysfunction post-kidney transplant: phenotype and genotype. Clin Transplant 2013; 27:348-58. [PMID: 23350966 DOI: 10.1111/ctr.12074] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2012] [Indexed: 01/05/2023]
Abstract
BACKGROUND Chronic allograft dysfunction (CGD) is a common outcome in kidney transplants, but its pathogenesis is unclear. We investigated the CGD phenotype and single-nucleotide polymorphisms (SNPs) associated with CGD. METHOD This prospective study enrolled 2336 transplants from seven transplant centers in North America. CGD was defined as a >25% rise in serum creatinine relative to a three-month post-transplant baseline, requiring a kidney biopsy. We genotyped 2724 SNPs in the initial 979 transplants, which form the test cohort. RESULTS CGD occurred 11.2 times per 100 person-years at a median of 509 ± 387 days from the three-month baseline. CGD was independently associated with death-censored, allograft failure, in an adjusted analysis [HR=20.6 (11.8-35.8, p < 0.001)]. Among 366 transplant recipients with CGD, 91% had inflammation on biopsy scores. 94 (26%) had inflammatory changes consistent with a diagnosis of concomitant acute rejection. SNPs in FM06 and FM03, potential drug metabolism genes, were associated with CGD, after accounting for multiple testing. CONCLUSION CGD phenotype with concomitant inflammation is associated with increased risk of allograft failure. SNPs associated with CGD in novel drug metabolism and transport genes, will be validated in subsequent transplants.
Collapse
Affiliation(s)
- Ajay K Israni
- Nephrology Division, Department of Medicine, Hennepin County Medical Center, University of Minnesota, Minneapolis, MN 55415-1829, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Guengerich FP, Cheng Q. Orphans in the human cytochrome P450 superfamily: approaches to discovering functions and relevance in pharmacology. Pharmacol Rev 2011; 63:684-99. [PMID: 21737533 DOI: 10.1124/pr.110.003525] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
As a result of technical advances in recombinant DNA technology and nucleotide sequencing, entire genome sequences have become available in the past decade and offer potential in understanding diseases. However, a central problem in the biochemical sciences is that the functions of only a fraction of the genes/proteins are known, and this is also an issue in pharmacology. This review is focused on issues related to the functions of cytochrome P450 (P450) enzymes. P450 functions can be categorized in several groups: 1) Some P450s have critical roles in the metabolism of endogenous substrates (e.g., sterols and fat-soluble vitamins). 2) Some P450s are not generally critical to normal physiology but function in relatively nonselective protection from the many xenobiotic chemicals to which mammals (including humans) are exposed in their diets [as well as more anthropomorphic chemicals (e.g., drugs, pesticides)]. 3) Some P450s have not been extensively studied and are termed "orphans" here. With regard to elucidation of any physiological functions of the orphan P450s, the major subject of this review, it is clear that simple trial-and-error approaches with individual substrate candidates will not be very productive in addressing questions about function. A series of liquid chromatography/mass spectrometry/informatics approaches are discussed, along with some successes with both human and bacterial P450s. Current information on what are still considered "orphan" P450s is presented. The potential for application of some of these approaches to other enzyme systems is also discussed.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, 638 Robinson Research Building, 2200 Pierce Avenue, Nashville, Tennessee 37232-0146, USA.
| | | |
Collapse
|
37
|
Hsu MH, Savas U, Lasker JM, Johnson EF. Genistein, resveratrol, and 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside induce cytochrome P450 4F2 expression through an AMP-activated protein kinase-dependent pathway. J Pharmacol Exp Ther 2011; 337:125-36. [PMID: 21205922 DOI: 10.1124/jpet.110.175851] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Activators of AMP-activated protein kinase (AMPK) increase the expression of the human microsomal fatty acid ω-hydroxylase CYP4F2. A 24-h treatment of either primary human hepatocytes or the human hepatoma cell line HepG2 with 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR), which is converted to 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranosyl 5'-monophosphate, an activator of AMPK, caused an average 2.5- or 7-fold increase, respectively, of CYP4F2 mRNA expression but not of CYP4A11 or CYP4F3, CYP4F11, and CYP4F12 mRNA. Activation of CYP4F2 expression by AICAR was significantly reduced in HepG2 cells by an AMPK inhibitor, 6-[4-(2-piperidin-1-yl-ethoxy)-phenyl)]-3-pyridin-4-yl-pyrrazolo[1,5-a]-pyrimidine (compound C) or by transfection with small interfering RNAs for AMPKα isoforms α1 and α2. A 2.5-fold increase in CYP4F2 mRNA expression was observed upon treatment of HepG2 cells with 6,7-dihydro-4-hydroxy-3-(2'-hydroxy[1,1'-biphenyl]-4-yl)-6-oxo-thieno[2,3-b]pyridine-5-carbonitrile (A-769662), a direct activator for AMPK. In addition, the indirect activators of AMPK, genistein and resveratrol increased CYP4F2 mRNA expression in HepG2 cells. Pretreatment with compound C or 1,2-dihydro-3H-naphtho[2,1-b]pyran-3-one (splitomicin), an inhibitor of the NAD(+) activated deacetylase SIRT1, only partially blocked activation of CYP4F2 expression by resveratrol, suggesting that a SIRT1/AMPK-independent pathway also contributes to increased CYP4F2 expression. Compound C greatly diminished genistein activation of CYP4F2 expression. 7H-benz[de]benzimidazo[2,1-a]isoquinoline-7-one-3-carboxylic acid acetate (STO-609), a calmodulin kinase kinase (CaMKK) inhibitor, reduced the level of expression of CYP4F2 elicited by genistein, suggesting that CaMKK activation contributed to AMPK activation by genistein. Transient transfection studies in HepG2 cells with reporter constructs containing the CYP4F2 proximal promoter demonstrated that AICAR, genistein, and resveratrol stimulated transcription of the reporter gene. These results suggest that activation of AMPK by cellular stress and endocrine or pharmacologic stimulation is likely to activate CYP4F2 gene expression.
Collapse
Affiliation(s)
- Mei-Hui Hsu
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
38
|
Yamaura Y, Yoshinari K, Yamazoe Y. Predicting Oxidation Sites with Order of Occurrence among Multiple Sites for CYP4A-mediated Reactions. Drug Metab Pharmacokinet 2011; 26:351-63. [DOI: 10.2133/dmpk.dmpk-11-rg-004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Van Veldhoven PP. Biochemistry and genetics of inherited disorders of peroxisomal fatty acid metabolism. J Lipid Res 2010; 51:2863-95. [PMID: 20558530 DOI: 10.1194/jlr.r005959] [Citation(s) in RCA: 247] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In humans, peroxisomes harbor a complex set of enzymes acting on various lipophilic carboxylic acids, organized in two basic pathways, alpha-oxidation and beta-oxidation; the latter pathway can also handle omega-oxidized compounds. Some oxidation products are crucial to human health (primary bile acids and polyunsaturated FAs), whereas other substrates have to be degraded in order to avoid neuropathology at a later age (very long-chain FAs and xenobiotic phytanic acid and pristanic acid). Whereas total absence of peroxisomes is lethal, single peroxisomal protein deficiencies can present with a mild or severe phenotype and are more informative to understand the pathogenic factors. The currently known single protein deficiencies equal about one-fourth of the number of proteins involved in peroxisomal FA metabolism. The biochemical properties of these proteins are highlighted, followed by an overview of the known diseases.
Collapse
Affiliation(s)
- Paul P Van Veldhoven
- Katholieke Universiteit Leuven, Department of Molecular Cell Biology, LIPIT, Campus Gasthuisberg, Herestraat, Leuven, Belgium.
| |
Collapse
|
40
|
Guengerich FP, Tang Z, Salamanca-Pinzón SG, Cheng Q. Characterizing proteins of unknown function: orphan cytochrome p450 enzymes as a paradigm. Mol Interv 2010; 10:153-63. [PMID: 20539034 PMCID: PMC2895278 DOI: 10.1124/mi.10.3.6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
With the rapid completion of genomic sequences of organisms today, we have far more gene products than functions we can ascribe. A number of experimental strategies have been developed and applied, both in vitro and in vivo, to put functions to these orphan proteins. The "deorphanization" of human and Streptomyces cytochrome P450 enzymes is considered quite important for pharmacology, with ramifications for the use of clinical therapeutics. The myriad of possibilities is too enormous to screen one reaction at a time, thus metabolomic or proteomic screens with complex biological samples are promising current strategies.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA.
| | | | | | | |
Collapse
|
41
|
Guengerich FP, Tang Z, Cheng Q, Salamanca-Pinzón SG. Approaches to deorphanization of human and microbial cytochrome P450 enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:139-45. [PMID: 20493973 DOI: 10.1016/j.bbapap.2010.05.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Revised: 04/30/2010] [Accepted: 05/09/2010] [Indexed: 12/30/2022]
Abstract
One of the general problems in biology today is that we are characterizing genomic sequences much faster than identifying the functions of the gene products, and the same problem exists with cytochromes P450 (P450). One fourth of the human P450s are not well-characterized and therefore considered "orphans." A number of approaches to deorphanization are discussed generally. Several liquid chromatography-mass spectrometry approaches have been applied to some of the human and Streptomyces coelicolor P450s. One current limitation is that too many fatty acid oxidations have been identified and we are probably missing more relevant substrates, possibly due to limits of sensitivity.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA.
| | | | | | | |
Collapse
|
42
|
PPAR/RXR Regulation of Fatty Acid Metabolism and Fatty Acid omega-Hydroxylase (CYP4) Isozymes: Implications for Prevention of Lipotoxicity in Fatty Liver Disease. PPAR Res 2010; 2009:952734. [PMID: 20300478 PMCID: PMC2840373 DOI: 10.1155/2009/952734] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 12/30/2009] [Indexed: 02/08/2023] Open
Abstract
Fatty liver disease is a common lipid metabolism disorder influenced by the combination of individual genetic makeup, drug exposure, and life-style choices that are frequently associated with metabolic syndrome, which encompasses obesity, dyslipidemia, hypertension, hypertriglyceridemia, and insulin resistant diabetes. Common to obesity related dyslipidemia is the excessive storage of hepatic fatty acids (steatosis), due to a decrease in mitochondria β-oxidation with an increase in both peroxisomal β-oxidation, and microsomal ω-oxidation of fatty acids through peroxisome proliferator activated receptors (PPARs). How steatosis increases PPARα activated gene expression of fatty acid transport proteins, peroxisomal and mitochondrial fatty acid β-oxidation and ω-oxidation of fatty acids genes regardless of whether dietary fatty acids are polyunsaturated (PUFA), monounsaturated (MUFA), or saturated (SFA) may be determined by the interplay of PPARs and HNF4α with the fatty acid transport proteins L-FABP and ACBP. In hepatic steatosis and steatohepatitis, the ω-oxidation cytochrome P450 CYP4A gene expression is increased even with reduced hepatic levels of PPARα. Although numerous studies have suggested the role ethanol-inducible CYP2E1 in contributing to increased oxidative stress, Cyp2e1-null mice still develop steatohepatitis with a dramatic increase in CYP4A gene expression. This strongly implies that CYP4A fatty acid ω-hydroxylase P450s may play an important role in the development of steatohepatitis. In this review and tutorial, we briefly describe how fatty acids are partitioned by fatty acid transport proteins to either anabolic or catabolic pathways regulated by PPARs, and we explore how medium-chain fatty acid (MCFA) CYP4A and long-chain fatty acid (LCFA) CYP4Fω-hydroxylase genes are regulated in fatty liver. We finally propose a hypothesis that increased CYP4A expression with a decrease in CYP4F genes may promote the progression of steatosis to steatohepatitis.
Collapse
|
43
|
Tang Z, Salamanca-Pinzón SG, Wu ZL, Xiao Y, Guengerich FP. Human cytochrome P450 4F11: heterologous expression in bacteria, purification, and characterization of catalytic function. Arch Biochem Biophys 2010; 494:86-93. [PMID: 19932081 PMCID: PMC2812615 DOI: 10.1016/j.abb.2009.11.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 11/13/2009] [Accepted: 11/17/2009] [Indexed: 12/19/2022]
Abstract
Human cytochrome P450 (P450) 4F11 is still considered an "orphan" because its function is not well characterized. A bacterial expression system was developed for human P450 4F11, producing approximately 230nmol P450 from a 3-l culture of Escherichia coli. P450 4F11 was purified and utilized for untargeted substrate searches in human liver extract using a liquid chromatography/mass spectrometry-based metabolomic and isotopic labeling approach (Tang et al., 2009 [19]). Four fatty acids-palmitic, oleic, arachidonic, and docosahexaenoic-were identified in human liver and verified as substrates of P450 4F11. The products were characterized as omega-hydroxylated fatty acids by gas chromatography-mass spectrometry analysis of their trimethylsilyl derivatives. Kinetic analysis of the oxidation products confirmed that the fatty acids are substrates oxidized by P450 4F11. P450 4F11 also exhibited low activity for some drug N-demethylation reactions but none for activation of several pro-carcinogens.
Collapse
Affiliation(s)
- Zhongmei Tang
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Sandra Giovanna Salamanca-Pinzón
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | | | - Yi Xiao
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - F. Peter Guengerich
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| |
Collapse
|
44
|
Expression of CYP4F2 in human liver and kidney: assessment using targeted peptide antibodies. Arch Biochem Biophys 2008; 478:59-68. [PMID: 18662666 DOI: 10.1016/j.abb.2008.06.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 06/21/2008] [Accepted: 06/24/2008] [Indexed: 02/01/2023]
Abstract
P450 enzymes comprising the human CYP4F gene subfamily are catalysts of eicosanoid (e.g., 20-HETE and leukotriene B4) formation and degradation, although the role that individual CYP4F proteins play in these metabolic processes is not well defined. Thus, we developed antibodies to assess the tissue-specific expression and function of CYP4F2, one of four CYP4F P450s found in human liver and kidney. Peptide antibodies elicited in rabbits to CYP4F2 amino acid residues 61-74 (WGHQGMVNPTEEG) and 65-77 (GMVNPTEEGMRVL) recognized on immunoblots only CYP4F2 and not CYP4F3b, CYP4F11 or CYP4F12. Immunoquantitation with anti-CYP4F2 peptide IgG showed highly variable CYP4F2 expression in liver (16.4+/-18.6pmol/mg microsomal protein; n=29) and kidney cortex (3.9+/-3.8 pmol/mg; n=10), with two subjects lacking the hepatic or renal enzyme entirely. CYP4F2 content in liver microsomes was significantly correlated (r> or =0.63; p<0.05) with leukotriene B4 and arachidonate omega-hydroxylase activities, which are both CYP4F2-catalyzed. Our study provides the first example of a peptide antibody that recognizes a single CYP4F P450 expressed in human liver and kidney, namely CYP4F2. Immunoquantitation and correlation analyses performed with this antibody suggest that CYP4F2 functions as a predominant LTB4 and arachidonate omega-hydroxylase in human liver.
Collapse
|
45
|
Fer M, Corcos L, Dréano Y, Plée-Gautier E, Salaün JP, Berthou F, Amet Y. Cytochromes P450 from family 4 are the main omega hydroxylating enzymes in humans: CYP4F3B is the prominent player in PUFA metabolism. J Lipid Res 2008; 49:2379-89. [PMID: 18577768 DOI: 10.1194/jlr.m800199-jlr200] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Human CYP450 omega-hydroxylases of the CYP4 family are known to convert arachidonic acid (AA) to its metabolite 20-hydroxyeicosatetraenoic acid (20-HETE). This study deals with hydroxylations of four PUFAs, eicosatrienoic acid (ETA), AA, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) by either human recombinant CYP4s enzymes or human liver microsomal preparations. CYP4F3A and CYP4F3B were the most efficient omega-hydroxylases of these PUFAs. Moreover, the differences in the number of unsaturations of ETA, AA, and EPA allowed us to demonstrate a rise in the metabolic rate of hydroxylation when the double bond in 14-15 or 17-18 was missing. With the CYP4F enzymes, the main pathway was always the omega-hydroxylation of PUFAs, whereas it was the (omega-1)-hydroxylation with CYP1A1, CYP2C19, and CYP2E1. Finally, we demonstrated that the omega9 and omega3 PUFAs (ETA, EPA, and DHA) could all be used as alternative substrates in AA metabolism by human CYP4F2 and -4F3B. Thus, they decreased the ability of these enzymes to convert AA to 20-HETE. However, although ETA was the most hydroxylated substrate, EPA and DHA were the most potent inhibitors of the conversion of AA to 20-HETE. These findings suggest that some physiological effects of omega3 FAs could partly result from a shift in the generation of active hydroxylated metabolites of AA through a CYP-mediated catalysis.
Collapse
Affiliation(s)
- Maude Fer
- Laboratoire de Biochimie EA 948, Faculté de Médecine, Université de Bretagne Occidentale, Brest, France
| | | | | | | | | | | | | |
Collapse
|