1
|
Santos DF, Simão S, Nóbrega C, Bragança J, Castelo-Branco P, Araújo IM. Oxidative stress and aging: synergies for age related diseases. FEBS Lett 2024; 598:2074-2091. [PMID: 39112436 DOI: 10.1002/1873-3468.14995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/03/2024] [Accepted: 06/24/2024] [Indexed: 10/04/2024]
Abstract
Aging is characterized by a progressive decline in physiological function and underlies several disabilities, including the increased sensitivity of cells and tissues to undergo pathological oxidative stress. In recent years, efforts have been made to better understand the relationship between age and oxidative stress and further develop therapeutic strategies to minimize the impact of both events on age-related diseases. In this work, we review the impact of the oxidant and antioxidant systems during aging and disease development and discuss the crosstalk of oxidative stress and other aging processes, with a focus on studies conducted in elderly populations.
Collapse
Affiliation(s)
- Daniela F Santos
- Algarve Biomedical Center (ABC), University of Algarve, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Faro, Portugal
| | - Sónia Simão
- Algarve Biomedical Center (ABC), University of Algarve, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
| | - Clévio Nóbrega
- Algarve Biomedical Center (ABC), University of Algarve, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), Loulé, Portugal
| | - José Bragança
- Algarve Biomedical Center (ABC), University of Algarve, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), Loulé, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Pedro Castelo-Branco
- Algarve Biomedical Center (ABC), University of Algarve, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), Loulé, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Inês M Araújo
- Algarve Biomedical Center (ABC), University of Algarve, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), Loulé, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|
2
|
Aschner M, Skalny AV, Paoliello MMB, Tinkova MN, Martins AC, Santamaria A, Lee E, Rocha JBT, Farsky SHP, Tinkov AA. Retinal toxicity of heavy metals and its involvement in retinal pathology. Food Chem Toxicol 2024; 188:114685. [PMID: 38663763 DOI: 10.1016/j.fct.2024.114685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 05/04/2024]
Abstract
The objective of the present review is to discuss epidemiological evidence demonstrating the association between toxic metal (Cd, Pb, Hg, As, Sn, Ti, Tl) exposure and retinal pathology, along with the potential underlying molecular mechanisms. Epidemiological studies demonstrate that Cd, and to a lesser extent Pb exposure, are associated with age-related macular degeneration (AMD), while the existing evidence on the levels of these metals in patients with diabetic retinopathy is scarce. Epidemiological data on the association between other toxic metals and metalloids including mercury (Hg) and arsenic (As), are limited. Clinical reports and laboratory in vivo studies have shown structural alterations in different layers of retina following metal exposure. Examination of retina samples demonstrate that toxic metals can accumulate in the retina, and the rate of accumulation appears to increase with age. Experimental studies in vivo and in vitro studies in APRE-19 and D407 cells demonstrate that toxic metal exposure may cause retinal damage through oxidative stress, apoptosis, DNA damage, mitochondrial dysfunction, endoplasmic reticulum stress, impaired retinogenesis, and retinal inflammation. However, further epidemiological as well as laboratory studies are required for understanding the underlying molecular mechanisms and identifying of the potential therapeutic targets and estimation of the dose-response effects.
Collapse
Affiliation(s)
- Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Anatoly V Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, 150003, Russia; Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435, Russia
| | - Monica M B Paoliello
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | | | - Airton C Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Abel Santamaria
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico; Laboratorio de Nanotecnología y Nanomedicina, Departamento de Cuidado de La Salud, Universidad Autónoma Metropolitana-Xochimilco, Mexico City 04960, Mexico
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Joao B T Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Sandra H P Farsky
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo 05508-000, SP, Brazil
| | - Alexey A Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, 150003, Russia; Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435, Russia.
| |
Collapse
|
3
|
Yammine A, Ghzaiel I, Pires V, Zarrouk A, Kharoubi O, Greige-Gerges H, Auezova L, Lizard G, Vejux A. Cytoprotective effects of α-linolenic acid, eicosapentaenoic acid, docosahexaenoic acid, oleic acid and α-tocopherol on 7-ketocholesterol - Induced oxiapoptophagy: Major roles of PI3-K / PDK-1 / Akt signaling pathway and glutathione peroxidase activity in cell rescue. Curr Res Toxicol 2024; 6:100153. [PMID: 38379847 PMCID: PMC10877125 DOI: 10.1016/j.crtox.2024.100153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
On murine N2a cells, 7-ketocholesterol induced an oxiapotophagic mode of cell death characterized by oxidative stress (reactive oxygen species overproduction on whole cells and at the mitochondrial level; lipid peroxidation), apoptosis induction (caspase-9, -3 and -7 cleavage, PARP degradation) and autophagy (increased ratio LC3-II / LC3-I). Oxidative stress was strongly attenuated by diphenyleneiodonium chloride which inhibits NAD(P)H oxidase. Mitochondrial and peroxisomal morphological and functional changes were also observed. Down regulation of PDK1 / Akt signaling pathways as well as of GSK3 / Mcl-1 and Nrf2 pathways were simultaneously observed in 7-ketocholesterol-induced oxiapoptophagy. These events were prevented by α-linolenic acid, eicosapentaenoic acid, docosahexaenoic acid, oleic acid and α-tocopherol. The inhibition of the cytoprotection by LY-294002, a PI3-K inhibitor, demonstrated an essential role of PI3-K in cell rescue. The rupture of oxidative stress in 7-ketocholesterol-induced oxiapoptophagy was also associated with important modifications of glutathione peroxidase, superoxide dismutase and catalase activities as well as of glutathione peroxidase-1, superoxide dismutase-1 and catalase level and expression. These events were also counteracted by α-linolenic acid, eicosapentaenoic acid, docosahexaenoic acid, oleic acid and α-tocopherol. The inhibition of the cytoprotection by mercaptosuccinic acid, a glutathione peroxidase inhibitor, showed an essential role of this enzyme in cell rescue. Altogether, our data support that the reactivation of PI3-K and glutathione peroxidase activities by α-linolenic acid, eicosapentaenoic acid, docosahexaenoic acid, oleic acid and α-tocopherol are essential to prevent 7KC-induced oxiapoptophagy.
Collapse
Affiliation(s)
- Aline Yammine
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270 / Inserm, University of Bourgogne, 21000 Dijon, France
- Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Lebanese University, Fanar, Jdeidet P.O. Box 90656, Lebanon
| | - Imen Ghzaiel
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270 / Inserm, University of Bourgogne, 21000 Dijon, France
- Lab-NAFS 'Nutrition-Functional Food & Vascular Health', Faculty of Medicine, University of Monastir, LR12ES05, Monastir 5000, Tunisia
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Vivien Pires
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270 / Inserm, University of Bourgogne, 21000 Dijon, France
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, F-21000 Dijon, France
| | - Amira Zarrouk
- Lab-NAFS 'Nutrition-Functional Food & Vascular Health', Faculty of Medicine, University of Monastir, LR12ES05, Monastir 5000, Tunisia
- Faculty of Medicine, University of Sousse, Sousse 4000, Tunisia
| | - Omar Kharoubi
- University Oran 1 ABB: Laboratory of Experimental Biotoxicology, Biodepollution and Phytoremediation, Faculty of Life and Natural Sciences, Oran, Algeria
| | - Hélène Greige-Gerges
- Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Lebanese University, Fanar, Jdeidet P.O. Box 90656, Lebanon
| | - Lizette Auezova
- Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Lebanese University, Fanar, Jdeidet P.O. Box 90656, Lebanon
| | - Gérard Lizard
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270 / Inserm, University of Bourgogne, 21000 Dijon, France
| | - Anne Vejux
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270 / Inserm, University of Bourgogne, 21000 Dijon, France
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, F-21000 Dijon, France
| |
Collapse
|
4
|
Masson EAY, Serrano J, Leger-Charnay E, Acar N. Cholesterol and oxysterols in retinal neuron-glia interactions: relevance for glaucoma. FRONTIERS IN OPHTHALMOLOGY 2024; 3:1303649. [PMID: 38983043 PMCID: PMC11182186 DOI: 10.3389/fopht.2023.1303649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/04/2023] [Indexed: 07/11/2024]
Abstract
Cholesterol is an essential component of cellular membranes, crucial for maintaining their structural and functional integrity. It is especially important for nervous tissues, including the retina, which rely on high amounts of plasma membranes for the transmission of the nervous signal. While cholesterol is by far the most abundant sterol, the retina also contains cholesterol precursors and metabolites, especially oxysterols, which are bioactive molecules. Cholesterol lack or excess is deleterious and some oxysterols are known for their effect on neuron survival. Cholesterol homeostasis must therefore be maintained. Retinal glial cells, especially Müller cells, the principal glial cells of the vertebrate retina, provide mechanical, nutritional, and metabolic support for the neighboring neurons. Several pieces of evidence indicate that Müller cells are major actors of cholesterol homeostasis in the retina, as it is known for other glial cells in the brain. This process is based on a close cooperation with neurons, and sterols can be signaling molecules participating in glia-neuron interactions. While some implication of cholesterol in age-related macular degeneration is now recognized, based on epidemiological and laboratory data, evidence for its role in glaucoma is still scarce. The association between cholesterolemia and glaucoma is controversial, but experimental data suggest that sterols could take part in the pathological processes. It has been demonstrated that Müller glial cells are implicated in the development of glaucoma through an ambivalent reactive retinal gliosis process. The early steps contribute to maintaining retinal homeostasis and favor the survival of ganglion cells, which are targeted during glaucoma. If gliosis persists, dysregulation of the neuroprotective functions, cytotoxic effects of gliotic Müller cells and disruption of glia-neuron interactions lead to an acceleration of ganglion cell death. Sterols could play a role in the glial cell response to glaucomatous injury. This represents an understudied but attractive topic to better understand glaucoma and conceive novel preventive or curative strategies. The present review describes the current knowledge on i) sterol metabolism in retinal glial cells, ii) the potential role of cholesterol in glaucoma, and iii) the possible relationships between cholesterol and oxysterols, glial cells and glaucoma. Focus is put on glia-neuron interactions.
Collapse
Affiliation(s)
- Elodie A Y Masson
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France
| | - Jeanne Serrano
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France
- Sensory Perception, Glia/Neuron Interaction Research Group, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France
| | - Elise Leger-Charnay
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France
| | - Niyazi Acar
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France
| |
Collapse
|
5
|
Ksila M, Ghzaiel I, Sassi K, Zarrouk A, Leoni V, Poli G, Rezig L, Pires V, Meziane S, Atanasov AG, Hammami S, Hammami M, Masmoudi-Kouki O, Hamdi O, Jouanny P, Samadi M, Vejux A, Ghrairi T, Lizard G. Therapeutic Applications of Oxysterols and Derivatives in Age-Related Diseases, Infectious and Inflammatory Diseases, and Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:379-400. [PMID: 38036890 DOI: 10.1007/978-3-031-43883-7_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Oxysterols, resulting from the oxidation of cholesterol, are formed either by autoxidation, enzymatically, or by both processes. These molecules, which are provided in more or less important quantities depending on the type of diet, are also formed in the body and their presence is associated with a normal physiological activity. Their increase and decrease at the cellular level and in biological fluids can have significant consequences on health due or not to the interaction of some of these molecules with different types of receptors but also because oxysterols are involved in the regulation of RedOx balance, cytokinic and non-cytokinic inflammation, lipid metabolism, and induction of cell death. Currently, various pathologies such as age-related diseases, inflammatory and infectious diseases, and several cancers are associated with abnormal levels of oxysterols. Due to the important biological activities of oxysterols, their interaction with several receptors and their very likely implications in several diseases, this review focuses on these molecules and on oxysterol derivatives, which are often more efficient, in a therapeutic context. Currently, several oxysterol derivatives are developed and are attracting a lot of interest.
Collapse
Affiliation(s)
- Mohamed Ksila
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
- Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis, Tunisia
| | - Imen Ghzaiel
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
- Laboratory of Rangeland Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms (LR16IRA03), Arid Regions Institute, University of Gabes, Medenine, Tunisia
| | - Khouloud Sassi
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
| | - Amira Zarrouk
- Laboratory of Rangeland Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms (LR16IRA03), Arid Regions Institute, University of Gabes, Medenine, Tunisia
- Faculty of Medicine, University of Sousse, Laboratory of Biochemistry, Sousse, Tunisia
| | - Valerio Leoni
- Department of Laboratory Medicine, University of Milano-Bicocca, Azienda Socio Sanitaria Territoriale Brianza ASST-Brianza, Desio Hospital, Desio, Italy
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, Turin, Italy
| | - Leila Rezig
- University of Carthage, National Institute of Applied Sciences and Technology, LR11ES26, LIP-MB 'Laboratory of Protein Engineering and Bioactive Molecules', Tunis, Tunisia
- University of Carthage, High Institute of Food Industries, El Khadra City, Tunis, Tunisia
| | - Vivien Pires
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
| | - Smail Meziane
- Institut Européen des Antioxydants (IEA), Neuves-Maisons, France
| | - Atanas G Atanasov
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Magdalenka, Poland
| | - Sonia Hammami
- Laboratory of Rangeland Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms (LR16IRA03), Arid Regions Institute, University of Gabes, Medenine, Tunisia
- University Hospital Fattouma Bourguiba, Monastir, Tunisia
| | - Mohamed Hammami
- Laboratory of Rangeland Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms (LR16IRA03), Arid Regions Institute, University of Gabes, Medenine, Tunisia
| | - Olfa Masmoudi-Kouki
- Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis, Tunisia
| | - Oumaima Hamdi
- University Hospital Fattouma Bourguiba, Monastir, Tunisia
- Pôle Personnes Agées, CHU de Dijon, Centre de Champmaillot, Dijon Cedex, France
| | - Pierre Jouanny
- Pôle Personnes Agées, CHU de Dijon, Centre de Champmaillot, Dijon Cedex, France
| | - Mohammad Samadi
- Laboratory of Chemistry and Physics Multi-Scale Approach to Complex Environments, Department of Chemistry, University Lorraine, Metz, France
| | - Anne Vejux
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
| | - Taoufik Ghrairi
- Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis, Tunisia
| | - Gérard Lizard
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France.
| |
Collapse
|
6
|
Olivier E, Rat P. Role of Oxysterols in Ocular Degeneration Mechanisms and Involvement of P2X7 Receptor. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:277-292. [PMID: 38036885 DOI: 10.1007/978-3-031-43883-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Ocular degeneration, including cataracts, glaucoma, macular degeneration, and diabetic retinopathy, is a major public health challenge, as it affects the quality of life of millions of people worldwide and, in its advanced stages, leads to blindness. Ocular degeneration, although it can affect different parts of the eye, shares common characteristics such as oxysterols and the P2X7 receptor. Indeed, oxysterols, which are cholesterol derivatives, are associated with ocular degeneration pathogenesis and trigger inflammation and cell death pathways. Activation of the P2X7 receptor is also linked to ocular degeneration and triggers the same pathways. In age-related macular degeneration, these two key players have been associated, but further studies are needed to extrapolate this interrelationship to other ocular degenerations.
Collapse
Affiliation(s)
| | - Patrice Rat
- Université Paris Cité, CNRS, CiTCoM, Paris, France
| |
Collapse
|
7
|
Hu Y, Gu X, Zhang Y, Ma W, Sun L, Wang C, Ren B. Adrenomedullin, transcriptionally regulated by vitamin D receptors, alleviates atherosclerosis in mice through suppressing AMPK-mediated endothelial ferroptosis. ENVIRONMENTAL TOXICOLOGY 2024; 39:199-211. [PMID: 37688783 DOI: 10.1002/tox.23958] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/31/2023] [Accepted: 08/20/2023] [Indexed: 09/11/2023]
Abstract
PURPOSE Vitamin D receptors (VDR) play important roles in cardiovascular, immune, metabolic and other functions. Activation of VDR may help improve endothelial dysfunction, atherosclerosis, vascular calcification, and cardiac hypertrophy. However, the specific target genes and mechanisms of VDR in improving Human Umbilical Vein Endothelial Cell (HUVEC) functions remain unclear. This study aims to investigate the function and mechanism of VDR in HUVECs. METHODS Endothelial dysfunction cell model was constructed by oxidized low-density lipoprotein (ox-LDL). An animal model of atherosclerosis was established in male homozygous Apoe-/- mice (6 weeks) on a high fat diet for 6 weeks. The relationship between VDR and adrenomedullin (ADM) was studied by bioinformatics analysis, ChIP, and luciferase reporter gene analysis. Endothelial cell function was evaluated by Transwell migration and Tube Formation tests. Ferroptosis was detected by measuring intracellular iron content, levels of oxidative stress markers, and ferroptosis related proteins. RESULTS Overexpression of VDR in HUVECs inhibits ox-LDL-induced endothelial dysfunction and ferroptosis. VDR binds to the ADM promoter sequence and regulates the transcription of ADM. Inhibition of ADM promotes ox-LDL-induced endothelial dysfunction and ferroptosis. ADM regulates ox-LDL-induced endothelial dysfunction and ferroptosis through the AMPK signaling pathway. Overexpression of VDR in Apoe-/- mice inhibited lipid deposition and plaque area in atherosclerotic mice. CONCLUSION VDR inhibits ox-LDL-induced endothelial dysfunction and ferroptosis by regulating ADM transcription and acting on AMPK signaling pathway. Overexpression of VDR in Apoe-/- mice reduced lipid deposition and plaque area in the thoracic aorta of atherosclerotic mice.
Collapse
Affiliation(s)
- Yanchao Hu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, China
| | - Xu Gu
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Xi'an Jiaotong University, China
| | - Yan Zhang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, China
| | - Weidong Ma
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, China
| | - Lijun Sun
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, China
| | - Congxia Wang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, China
| | - Bincheng Ren
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Xi'an Jiaotong University, China
| |
Collapse
|
8
|
Deng C, Li M, Liu Y, Yan C, He Z, Chen ZY, Zhu H. Cholesterol Oxidation Products: Potential Adverse Effect and Prevention of Their Production in Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18645-18659. [PMID: 38011512 DOI: 10.1021/acs.jafc.3c05158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Cholesterol oxidation products (COPs) are a group of substances formed during food processing. COPs in diet is a health concern because they may affect human health in association with the risk of various diseases including atherosclerosis, Alzheimer's disease, age-related macular degeneration, diabetes, and chronic gastrointestinal inflammatory colitis. Production of COPs in foods can be affected by many factors such as temperature, pH, light, oxygen, water, carbohydrates, fatty acids, proteins, and metal cations. The key issue is preventing its generation in foods. Some COPs can also be produced in vivo by both nonenzymatic and enzymatic-catalyzed oxidation reactions. Currently, a number of natural antioxidants such as catechins, flavonoids, and other polyphenols have been proven to inhibit the generation of COPs. In addition, measures taken during food processing can also minimize the production of COPs, such as the Maillard reaction and marinating food with plant polyphenol-rich seasonings. In conclusion, a comprehensive approach encompassing the suppression on COPs generation and implementation of processing measures is imperative to safeguard human health against the production of COPs in the food chain.
Collapse
Affiliation(s)
- Chuanling Deng
- School of Food Science and Engineering/Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing/National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products (CAQS-GAP-KZZX043), Foshan University, Foshan 528000, Guangdong China
| | - Mingxuan Li
- School of Food Science and Engineering/Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing/National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products (CAQS-GAP-KZZX043), Foshan University, Foshan 528000, Guangdong China
- School of Life Sciences, South China Agricultural University, Guangzhou 510000, Guangdong China
| | - Yang Liu
- School of Food Science and Engineering/Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing/National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products (CAQS-GAP-KZZX043), Foshan University, Foshan 528000, Guangdong China
| | - Chi Yan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT 999077, Hong Kong China
| | - Zouyan He
- School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi China
| | - Zhen-Yu Chen
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT 999077, Hong Kong China
| | - Hanyue Zhu
- School of Food Science and Engineering/Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing/National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products (CAQS-GAP-KZZX043), Foshan University, Foshan 528000, Guangdong China
| |
Collapse
|
9
|
Wang H, Ramshekar A, Cung T, Wallace-Carrete C, Zaugg C, Nguyen J, Stoddard GJ, Hartnett ME. 7-Ketocholesterol Promotes Retinal Pigment Epithelium Senescence and Fibrosis of Choroidal Neovascularization via IQGAP1 Phosphorylation-Dependent Signaling. Int J Mol Sci 2023; 24:10276. [PMID: 37373423 PMCID: PMC10299509 DOI: 10.3390/ijms241210276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/04/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Accumulation of 7-ketocholesterol (7KC) occurs in age-related macular degeneration (AMD) and was found previously to promote fibrosis, an untreatable cause of vision loss, partly through induction of endothelial-mesenchymal transition. To address the hypothesis that 7KC causes mesenchymal transition of retinal pigment epithelial cells (RPE), we exposed human primary RPE (hRPE) to 7KC or a control. 7KC-treated hRPE did not manifest increased mesenchymal markers, but instead maintained RPE-specific proteins and exhibited signs of senescence with increased serine phosphorylation of histone H3, serine/threonine phosphorylation of mammalian target of rapamycin (p-mTOR), p16 and p21, β-galactosidase labeling, and reduced LaminB1, suggesting senescence. The cells also developed senescence-associated secretory phenotype (SASP) determined by increased IL-1β, IL-6, and VEGF through mTOR-mediated NF-κB signaling, and reduced barrier integrity that was restored by the mTOR inhibitor, rapamycin. 7KC-induced p21, VEGF, and IL-1β were inhibited by an inhibitor of protein kinase C. The kinase regulates IQGAP1 serine phosphorylation. Furthermore, after 7KC injection and laser-induced injury, mice with an IQGAP1 serine 1441-point mutation had significantly reduced fibrosis compared to littermate control mice. Our results provide evidence that age-related accumulation of 7KC in drusen mediates senescence and SASP in RPE, and IQGAP1 serine phosphorylation is important in causing fibrosis in AMD.
Collapse
Affiliation(s)
- Haibo Wang
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA; (H.W.); (A.R.); (T.C.); (C.W.-C.); (C.Z.); (J.N.)
- Department of Pathology, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | - Aniket Ramshekar
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA; (H.W.); (A.R.); (T.C.); (C.W.-C.); (C.Z.); (J.N.)
| | - Thaonhi Cung
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA; (H.W.); (A.R.); (T.C.); (C.W.-C.); (C.Z.); (J.N.)
| | - Chris Wallace-Carrete
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA; (H.W.); (A.R.); (T.C.); (C.W.-C.); (C.Z.); (J.N.)
| | - Chandler Zaugg
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA; (H.W.); (A.R.); (T.C.); (C.W.-C.); (C.Z.); (J.N.)
| | - Jasmine Nguyen
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA; (H.W.); (A.R.); (T.C.); (C.W.-C.); (C.Z.); (J.N.)
| | - Gregory J. Stoddard
- Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA;
| | - M. Elizabeth Hartnett
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA; (H.W.); (A.R.); (T.C.); (C.W.-C.); (C.Z.); (J.N.)
- Byers Eye Institute, Stanford University, Palo Alto, CA 94304, USA
| |
Collapse
|
10
|
Ejam SS, Saleh RO, Catalan Opulencia MJ, Najm MA, Makhmudova A, Jalil AT, Abdelbasset WK, Al-Gazally ME, Hammid AT, Mustafa YF, Sergeevna SE, Karampoor S, Mirzaei R. Pathogenic role of 25-hydroxycholesterol in cancer development and progression. Future Oncol 2022; 18:4415-4442. [PMID: 36651359 DOI: 10.2217/fon-2022-0819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cholesterol is an essential lipid that serves several important functions, including maintaining the homeostasis of cells, acting as a precursor to bile acid and steroid hormones and preserving the stability of membrane lipid rafts. 25-hydroxycholesterol (25-HC) is a cholesterol derivative that may be formed from cholesterol. 25-HC is a crucial component in various biological activities, including cholesterol metabolism. In recent years, growing evidence has shown that 25-HC performs a critical function in the etiology of cancer, infectious diseases and autoimmune disorders. This review will summarize the latest findings regarding 25-HC, including its biogenesis, immunomodulatory properties and role in innate/adaptive immunity, inflammation and the development of various types of cancer.
Collapse
Affiliation(s)
| | - Raed Obaid Saleh
- Department of Pharmacy, Al-Maarif University College, Al-Anbar, Iraq
| | | | - Mazin Aa Najm
- Pharmaceutical Chemistry Department, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Aziza Makhmudova
- Department of Social Sciences & Humanities, Samarkand State Medical Institute, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, Makhtumkuli Street 103, Tashkent, 100047, Uzbekistan
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | - Walid Kamal Abdelbasset
- Department of Health & Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | | | - Ali Thaeer Hammid
- Computer Engineering Techniques Department, Faculty of Information Technology, Imam Ja'afar Al-Sadiq University, Baghdad, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Sergushina Elena Sergeevna
- National Research Ogarev Mordovia State University, 68 Bolshevitskaya Street, Republic of Mordovia, Saransk, 430005, Russia
| | - Sajad Karampoor
- Gastrointestinal & Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Venom & Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
11
|
Rezig L, Ghzaiel I, Ksila M, Yammine A, Nury T, Zarrouk A, Samadi M, Chouaibi M, Vejux A, Lizard G. Cytoprotective activities of representative nutrients from the Mediterranean diet and of Mediterranean oils against 7-ketocholesterol- and 7β-hydroxycholesterol-induced cytotoxicity: Application to age-related diseases and civilization diseases. Steroids 2022; 187:109093. [PMID: 36029811 DOI: 10.1016/j.steroids.2022.109093] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 12/17/2022]
Abstract
7-ketocholesterol and 7β-hydroxycholesterol are two oxysterols mainly formed by the autoxidation of cholesterol. These two molecules are interconvertible via specific enzymes. These two oxysterols are often observed at increased amounts in biological fluids as well as tissues and organs affected during age-related diseases and in diseases of civilization such as cardiovascular, neurodegenerative, and ocular diseases as well as type 2 diabetes and metabolic syndrome. Noteworthy, 7-ketocholesterol and 7β-hydroxycholesterol induce oxidative stress and inflammation, which are frequently observed in patients with age-related and civilization diseases. For this reason, the involvement of these two oxysterols in the pathophysiology of these diseases is widely suspected. In addition, the toxicity of these oxysterols can lead to death by oxiapoptophagy characterized by oxidative stress, apoptosis induction and autophagy criteria. To prevent, or even treat, certain age-related or civilization diseases associated with increased levels of 7-ketocholesterol and 7β-hydroxycholesterol, the identification of molecules or mixtures of molecules attenuating or inhibiting the toxic effects of these oxysterols allows to consider new treatments. In this context, many nutrients present in significant amounts in the Mediterranean diet, especially tocopherols, fatty acids, and polyphenols, have shown cytoprotective activities as well as several Mediterranean oils (argan and olive oils, milk thistle seed oil, and pistacia lentiscus seed oil). Consequently, a nutraceutical approach, rich in nutrients present in the Mediterranean diet, could thus make it possible to counteract certain age-related and civilization diseases associated with increased levels of 7-ketocholesterol and 7β-hydroxycholesterol.
Collapse
Affiliation(s)
- Leila Rezig
- University of Carthage, National Institute of Applied Sciences and Technology, LR11ES26, LIP-MB 'Laboratory of Protein Engineering and Bioactive Molecules', Tunis 1080, Tunisia; University of Carthage, High Institute of Food Industries, 58 Alain Savary Street, El Khadra City, Tunis 1003, Tunisia.
| | - Imen Ghzaiel
- Team Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism (EA7270), University of Bourgogne/Inserm, Dijon 21000, France; University of Monastir, Faculty of Medicine, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', Monastir 5000, Tunisia; University Tunis-El Manar, Faculty of Sciences of Tunis, Tunis 2092, Tunisia
| | - Mohamed Ksila
- Team Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism (EA7270), University of Bourgogne/Inserm, Dijon 21000, France; Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis 2092, Tunisia
| | - Aline Yammine
- Team Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism (EA7270), University of Bourgogne/Inserm, Dijon 21000, France; Institut Européen des Antioxydants (IEA), 1B, rue Victor de Lespinats, Neuves-Maisons 54230, France
| | - Thomas Nury
- Team Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism (EA7270), University of Bourgogne/Inserm, Dijon 21000, France
| | - Amira Zarrouk
- University of Monastir, Faculty of Medicine, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', Monastir 5000, Tunisia; Laboratory of Biochemistry, Faculty of Medicine, University of Sousse, Sousse 4000, Tunisia
| | - Mohammad Samadi
- LCPMC-A2, ICPM, Department of Chemistry, University Lorraine, Metz Technopôle, Metz 57070, France
| | - Moncef Chouaibi
- University of Carthage, High Institute of Food Industries, 58 Alain Savary Street, El Khadra City, Tunis 1003, Tunisia; University of Carthage, Bio-preservation and Valorization of Agricultural Products UR13-AGR 02, High Institute of Food Industries, 58 Alain Savary Street, El Khadra City, Tunis 1003, Tunisia
| | - Anne Vejux
- Team Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism (EA7270), University of Bourgogne/Inserm, Dijon 21000, France
| | - Gérard Lizard
- Team Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism (EA7270), University of Bourgogne/Inserm, Dijon 21000, France.
| |
Collapse
|
12
|
Stradiotto E, Allegrini D, Fossati G, Raimondi R, Sorrentino T, Tripepi D, Barone G, Inforzato A, Romano MR. Genetic Aspects of Age-Related Macular Degeneration and Their Therapeutic Potential. Int J Mol Sci 2022; 23:13280. [PMID: 36362067 PMCID: PMC9653831 DOI: 10.3390/ijms232113280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/05/2022] [Accepted: 10/28/2022] [Indexed: 08/27/2023] Open
Abstract
Age-related macular degeneration (AMD) is a complex and multifactorial disease, resulting from the interaction of environmental and genetic factors. The continuous discovery of associations between genetic polymorphisms and AMD gives reason for the pivotal role attributed to the genetic component to its development. In that light, genetic tests and polygenic scores have been created to predict the risk of development and response to therapy. Still, none of them have yet been validated. Furthermore, there is no evidence from a clinical trial that the determination of the individual genetic structure can improve treatment outcomes. In this comprehensive review, we summarize the polymorphisms of the main pathogenetic ways involved in AMD development to identify which of them constitutes a potential therapeutic target. As complement overactivation plays a major role, the modulation of targeted complement proteins seems to be a promising therapeutic approach. Herein, we summarize the complement-modulating molecules now undergoing clinical trials, enlightening those in an advanced phase of trial. Gene therapy is a potential innovative one-time treatment, and its relevance is quickly evolving in the field of retinal diseases. We describe the state of the art of gene therapies now undergoing clinical trials both in the field of complement-suppressors and that of anti-VEGF.
Collapse
Affiliation(s)
- Elisa Stradiotto
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Department of Ophthalmology, Eye Unit Humanitas Gavazzeni-Castelli, Via Mazzini 11, 24128 Bergamo, Italy
| | - Davide Allegrini
- Department of Ophthalmology, Eye Unit Humanitas Gavazzeni-Castelli, Via Mazzini 11, 24128 Bergamo, Italy
| | - Giovanni Fossati
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Department of Ophthalmology, Eye Unit Humanitas Gavazzeni-Castelli, Via Mazzini 11, 24128 Bergamo, Italy
| | - Raffaele Raimondi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Department of Ophthalmology, Eye Unit Humanitas Gavazzeni-Castelli, Via Mazzini 11, 24128 Bergamo, Italy
| | - Tania Sorrentino
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Department of Ophthalmology, Eye Unit Humanitas Gavazzeni-Castelli, Via Mazzini 11, 24128 Bergamo, Italy
| | - Domenico Tripepi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Department of Ophthalmology, Eye Unit Humanitas Gavazzeni-Castelli, Via Mazzini 11, 24128 Bergamo, Italy
| | - Gianmaria Barone
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Department of Ophthalmology, Eye Unit Humanitas Gavazzeni-Castelli, Via Mazzini 11, 24128 Bergamo, Italy
| | - Antonio Inforzato
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano-Milan, Italy
| | - Mario R. Romano
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Department of Ophthalmology, Eye Unit Humanitas Gavazzeni-Castelli, Via Mazzini 11, 24128 Bergamo, Italy
| |
Collapse
|
13
|
Lewandowski D, Sander CL, Tworak A, Gao F, Xu Q, Skowronska-Krawczyk D. Dynamic lipid turnover in photoreceptors and retinal pigment epithelium throughout life. Prog Retin Eye Res 2022; 89:101037. [PMID: 34971765 PMCID: PMC10361839 DOI: 10.1016/j.preteyeres.2021.101037] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022]
Abstract
The retinal pigment epithelium-photoreceptor interphase is renewed each day in a stunning display of cellular interdependence. While photoreceptors use photosensitive pigments to convert light into electrical signals, the RPE supports photoreceptors in their function by phagocytizing shed photoreceptor tips, regulating the blood retina barrier, and modulating inflammatory responses, as well as regenerating the 11-cis-retinal chromophore via the classical visual cycle. These processes involve multiple protein complexes, tightly regulated ligand-receptors interactions, and a plethora of lipids and protein-lipids interactions. The role of lipids in maintaining a healthy interplay between the RPE and photoreceptors has not been fully delineated. In recent years, novel technologies have resulted in major advancements in understanding several facets of this interplay, including the involvement of lipids in phagocytosis and phagolysosome function, nutrient recycling, and the metabolic dependence between the two cell types. In this review, we aim to integrate the complex role of lipids in photoreceptor and RPE function, emphasizing the dynamic exchange between the cells as well as discuss how these processes are affected in aging and retinal diseases.
Collapse
Affiliation(s)
- Dominik Lewandowski
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Christopher L Sander
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Aleksander Tworak
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Fangyuan Gao
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Qianlan Xu
- Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Dorota Skowronska-Krawczyk
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA.
| |
Collapse
|
14
|
Edwards G, Olson CG, Euritt CP, Koulen P. Molecular Mechanisms Underlying the Therapeutic Role of Vitamin E in Age-Related Macular Degeneration. Front Neurosci 2022; 16:890021. [PMID: 35600628 PMCID: PMC9114494 DOI: 10.3389/fnins.2022.890021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 03/21/2022] [Indexed: 12/31/2022] Open
Abstract
The eye is particularly susceptible to oxidative stress and disruption of the delicate balance between oxygen-derived free radicals and antioxidants leading to many degenerative diseases. Attention has been called to all isoforms of vitamin E, with α-tocopherol being the most common form. Though similar in structure, each is diverse in antioxidant activity. Preclinical reports highlight vitamin E’s influence on cell physiology and survival through several signaling pathways by activating kinases and transcription factors relevant for uptake, transport, metabolism, and cellular action to promote neuroprotective effects. In the clinical setting, population-based studies on vitamin E supplementation have been inconsistent at times and follow-up studies are needed. Nonetheless, vitamin E’s health benefits outweigh the controversies. The goal of this review is to recognize the importance of vitamin E’s role in guarding against gradual central vision loss observed in age-related macular degeneration (AMD). The therapeutic role and molecular mechanisms of vitamin E’s function in the retina, clinical implications, and possible toxicity are collectively described in the present review.
Collapse
|
15
|
Oxysterols are potential physiological regulators of ageing. Ageing Res Rev 2022; 77:101615. [PMID: 35351610 DOI: 10.1016/j.arr.2022.101615] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/18/2022] [Accepted: 03/24/2022] [Indexed: 12/24/2022]
Abstract
Delaying and even reversing ageing is a major public health challenge with a tremendous potential to postpone a plethora of diseases including cancer, metabolic syndromes and neurodegenerative disorders. A better understanding of ageing as well as the development of innovative anti-ageing strategies are therefore an increasingly important field of research. Several biological processes including inflammation, proteostasis, epigenetic, oxidative stress, stem cell exhaustion, senescence and stress adaptive response have been reported for their key role in ageing. In this review, we describe the relationships that have been established between cholesterol homeostasis, in particular at the level of oxysterols, and ageing. Initially considered as harmful pro-inflammatory and cytotoxic metabolites, oxysterols are currently emerging as an expanding family of fine regulators of various biological processes involved in ageing. Indeed, depending of their chemical structure and their concentration, oxysterols exhibit deleterious or beneficial effects on inflammation, oxidative stress and cell survival. In addition, stem cell differentiation, epigenetics, cellular senescence and proteostasis are also modulated by oxysterols. Altogether, these data support the fact that ageing is influenced by an oxysterol profile. Further studies are thus required to explore more deeply the impact of the "oxysterome" on ageing and therefore this cholesterol metabolic pathway constitutes a promising target for future anti-ageing interventions.
Collapse
|
16
|
Biomarkers as Predictive Factors of Anti-VEGF Response. Biomedicines 2022; 10:biomedicines10051003. [PMID: 35625740 PMCID: PMC9139112 DOI: 10.3390/biomedicines10051003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
Age-related macular degeneration is the main cause of irreversible vision in developed countries, and intravitreal anti-vascular endothelial growth factor (anti-VEGF) injections are the current gold standard treatment today. Although anti-VEGF treatment results in important improvements in the course of this disease, there is a considerable number of patients not responding to the standardized protocols. The knowledge of how a patient will respond or how frequently retreatment might be required would be vital in planning treatment schedules, saving both resource utilization and financial costs, but today, there is not an ideal biomarker to use as a predictive response to ranibizumab therapy. Whole blood and blood mononuclear cells are the samples most studied; however, few reports are available on other important biofluid samples for studying this disease, such as aqueous humor. Moreover, the great majority of studies carried out to date were focused on the search for SNPs in genes related to AMD risk factors, but miRNAs, proteomic and metabolomics studies have rarely been conducted in anti-VEGF-treated samples. Here, we propose that genomic, proteomic and/or metabolomic markers could be used not alone but in combination with other methods, such as specific clinic characteristics, to identify patients with a poor response to anti-VEGF treatment to establish patient-specific treatment plans.
Collapse
|
17
|
Yang L, Yu P, Chen M, Lei B. Mammalian Target of Rapamycin Inhibitor Rapamycin Alleviates 7-Ketocholesterol Induced Inflammatory Responses and Vascular Endothelial Growth Factor Elevation by Regulating MAPK Pathway in Human Retinal Pigment Epithelium Cells. J Ocul Pharmacol Ther 2021; 38:189-200. [PMID: 34936813 DOI: 10.1089/jop.2021.0082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose: To validate the protective effect of a mammalian target of rapamycin (mTOR) inhibitor on human retinal pigment epithelium (RPE) cells challenged with 7-ketocholesterol (7-KC) and explored the underlying mechanisms. Methods: Human primary RPE (hRPE) cells and ARPE-19 cells were cultured with or without 10 nM of rapamycin for 6 h before being exposed to 10 μM of 7-KC for 24 h. The transcriptome of 7-KC challenged ARPE-19 cells was investigated by RNA sequencing (RNA-seq). The effects of 7-KC and rapamycin on the viability of ARPE-19 cells were measured with CCK-8. Gene expression was verified by real-time PCR, and protein levels were determined by ELISA or Western blotting. Results: The expression of IL-6, IL-8, and vascular endothelial growth factor (VEGF) in RPE cells was markedly increased after stimulation with 7-KC for 12/24 h compared with the controls. RNA-seq showed that a total of 10,243 genes were differentially expressed, with 5,518 genes upregulated and 4,725 genes downregulated between the 7-KC treated and the control group. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis showed that 7-KC stimulation activated mTOR signaling and other pathways, including adherent junction, MAPK, and Wnt signalings. mTOR inhibitor rapamycin significantly suppressed the elevation of IL-6, IL-8, and VEGF stimulated by 7-KC. Rapamycin not only decreased the level of phosphorylated mTOR, P70S6K, 4EBP1 but also inhibited the activation of MAPK pathway. Conclusions: Inhibition of mTOR signaling pathway suppressed the elevation of inflammatory cytokines IL-6, IL-8, and the angiogenic agent VEGF induced by 7-KC. The protective effect of rapamycin was associated with its downregulation on MAPK pathway.
Collapse
Affiliation(s)
- Lin Yang
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Peng Yu
- Department of Ophthalmology, People's Hospital of Changshou District, Chongqing, China
| | - Mei Chen
- Centre for Experimental Medicine, Queen's University, Belfast, United Kingdom
| | - Bo Lei
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
18
|
Almarhoun M, Biswas L, Alhasani RH, Wong A, Tchivelekete GM, Zhou X, Patterson S, Bartholomew C, Shu X. Overexpression of STARD3 attenuates oxidized LDL-induced oxidative stress and inflammation in retinal pigment epithelial cells. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158927. [PMID: 33771709 DOI: 10.1016/j.bbalip.2021.158927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/26/2021] [Accepted: 03/20/2021] [Indexed: 01/23/2023]
Abstract
Age-related macular degeneration (AMD) is the most common cause of visual disorder in aged people and may lead to complete blindness with ageing. The major clinical feature of AMD is the presence of cholesterol enriched deposits underneath the retinal pigment epithelium (RPE) cells. The deposits can induce oxidative stress and inflammation. It has been suggested that abnormal cholesterol homeostasis contributes to the pathogenesis of AMD. However, the functional role of defective cholesterol homeostasis in AMD remains elusive. STARD proteins are a family of proteins that contain a steroidogenic acute regulatory protein-related lipid transfer domain. There are fifteen STARD proteins in mammals and some, such as STARD3, are responsible for cholesterol trafficking. Previously there was no study of STARD proteins in retinal cholesterol metabolism and trafficking. Here we examined expression of the Stard3 gene in mouse retinal and RPE cells at ages of 2 and 20 months. We found that expression of Stard 3 gene transcripts in both mouse RPE and retina was significantly decreased at age of 20 months when compared to that of age 2 months old. We created a stable ARPE-19 cell line overexpressing STARD3 and found this resulted in increased cholesterol efflux, reduced accumulation of intracellular oxidized LDL, increased antioxidant capacity and lower levels of inflammatory cytokines. The data suggested that STARD3 is a potential target for AMD through promoting the removal of intracellular cholesterol and slowing the disease progression.
Collapse
Affiliation(s)
- Mohammad Almarhoun
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Lincoln Biswas
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Reem Hasaballah Alhasani
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom; Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Aileen Wong
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Gabriel Mbuta Tchivelekete
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Xinzhi Zhou
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Steven Patterson
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Chris Bartholomew
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Xinhua Shu
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom; Department of Vision Science, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom; School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan 422000, PR China.
| |
Collapse
|
19
|
Abstract
Cholesterol is a quantitatively and biologically significant constituent of all mammalian cell membrane, including those that comprise the retina. Retinal cholesterol homeostasis entails the interplay between de novo synthesis, uptake, intraretinal sterol transport, metabolism, and efflux. Defects in these complex processes are associated with several congenital and age-related disorders of the visual system. Herein, we provide an overview of the following topics: (a) cholesterol synthesis in the neural retina; (b) lipoprotein uptake and intraretinal sterol transport in the neural retina and the retinal pigment epithelium (RPE); (c) cholesterol efflux from the neural retina and the RPE; and (d) biology and pathobiology of defects in sterol synthesis and sterol oxidation in the neural retina and the RPE. We focus, in particular, on studies involving animal models of monogenic disorders pertinent to the above topics, as well as in vitro models using biochemical, metabolic, and omic approaches. We also identify current knowledge gaps and opportunities in the field that beg further research in this topic area.
Collapse
Affiliation(s)
- Sriganesh Ramachandra Rao
- Departments of Ophthalmology and Biochemistry and Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York- University at Buffalo, Buffalo, NY, USA; Research Service, VA Western NY Healthcare System, Buffalo, NY, USA
| | - Steven J Fliesler
- Departments of Ophthalmology and Biochemistry and Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York- University at Buffalo, Buffalo, NY, USA; Research Service, VA Western NY Healthcare System, Buffalo, NY, USA.
| |
Collapse
|
20
|
Wang H, Ramshekar A, Kunz E, Hartnett ME. 7-ketocholesterol induces endothelial-mesenchymal transition and promotes fibrosis: implications in neovascular age-related macular degeneration and treatment. Angiogenesis 2021; 24:583-595. [PMID: 33646466 DOI: 10.1007/s10456-021-09770-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/30/2021] [Indexed: 02/07/2023]
Abstract
Oxidized cholesterols and lipids accumulate in Bruch's membrane in age-related macular degeneration (AMD). It remains unknown what causal relationship exists between these substances and AMD pathophysiology. We addressed the hypothesis that a prevalent form, 7-ketocholesterol (7KC), promotes choroidal endothelial cell (CEC) migration and macular neovascularization in AMD. Compared to control, 7KC injection caused 40% larger lectin-stained lesions, but 70% larger lesions measured by optical coherence tomography one week after laser-injury. At two weeks, 7KC-injected eyes had 86% larger alpha smooth muscle actin (αSMA)-labeled lesions and more collagen-labeling than control. There was no difference in cell death. 7KC-treated RPE/choroids had increased αSMA but decreased VE-cadherin. Compared to control-treated CECs, 7KC unexpectedly reduced endothelial VE-cadherin, CD31 and VEGFR2 and increased αSMA, fibroblast activation protein (FAP) and transforming growth factor beta (TGFβ). Inhibition of TGFβ receptor-mediated signaling by SB431542 abrogated 7KC-induced loss of endothelial and increase in mesenchymal proteins in association with decreased transcription factor, SMAD3. Knockdown of SMAD3 partially inhibited 7KC-mediated loss of endothelial proteins and increase in αSMA and FAP. Compared to control, 7KC-treatment of CECs increased Rac1GTP and migration, and both were inhibited by the Rac1 inhibitor; however, CECs treated with 7KC had reduced tube formation. These findings suggest that 7KC, which increases in AMD and with age, induces mesenchymal transition in CECs making them invasive and migratory, and causing fibrosis in macular neovascularization. Further studies to interfere with this process may reduce fibrosis and improve responsiveness to anti-VEGF treatment in non-responsive macular neovascularization in AMD.
Collapse
Affiliation(s)
- Haibo Wang
- The John A Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT, USA
| | - Aniket Ramshekar
- The John A Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT, USA
| | - Eric Kunz
- The John A Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT, USA
| | - M Elizabeth Hartnett
- The John A Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT, USA.
| |
Collapse
|
21
|
Transcriptomic Changes Associated with Loss of Cell Viability Induced by Oxysterol Treatment of a Retinal Photoreceptor-Derived Cell Line: An In Vitro Model of Smith-Lemli-Opitz Syndrome. Int J Mol Sci 2021; 22:ijms22052339. [PMID: 33652836 PMCID: PMC7956713 DOI: 10.3390/ijms22052339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 11/17/2022] Open
Abstract
Smith–Lemli–Opitz Syndrome (SLOS) results from mutations in the gene encoding the enzyme DHCR7, which catalyzes conversion of 7-dehydrocholesterol (7DHC) to cholesterol (CHOL). Rats treated with a DHCR7 inhibitor serve as a SLOS animal model, and exhibit progressive photoreceptor-specific cell death, with accumulation of 7DHC and oxidized sterols. To understand the basis of this cell type specificity, we performed transcriptomic analyses on a photoreceptor-derived cell line (661W), treating cells with two 7DHC-derived oxysterols, which accumulate in tissues and bodily fluids of SLOS patients and in the rat SLOS model, as well as with CHOL (negative control), and evaluated differentially expressed genes (DEGs) for each treatment. Gene enrichment analysis and compilation of DEG sets indicated that endoplasmic reticulum stress, oxidative stress, DNA damage and repair, and autophagy were all highly up-regulated pathways in oxysterol-treated cells. Detailed analysis indicated that the two oxysterols exert their effects via different molecular mechanisms. Changes in expression of key genes in highlighted pathways (Hmox1, Ddit3, Trib3, and Herpud1) were validated by immunofluorescence confocal microscopy. The results extend our understanding of the pathobiology of retinal degeneration and SLOS, identifying potential new druggable targets for therapeutic intervention into these and other related orphan diseases.
Collapse
|
22
|
Edwards M, Lutty GA. Bruch's Membrane and the Choroid in Age-Related Macular Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1256:89-119. [PMID: 33847999 DOI: 10.1007/978-3-030-66014-7_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A healthy choroidal vasculature is necessary to support the retinal pigment epithelium (RPE) and photoreceptors, because there is a mutualistic symbiotic relationship between the components of the photoreceptor/retinal pigment epithelium (RPE)/Bruch's membrane (BrMb)/choriocapillaris (CC) complex. This relationship is compromised in age-related macular degeneration (AMD) by the dysfunction or death of the choroidal vasculature. This chapter will provide a basic description of the human Bruch's membrane and choroidal anatomy and physiology and how they change in AMD.The choriocapillaris is the lobular, fenestrated capillary system of choroid. It lies immediately posterior to the pentalaminar Bruch's membrane (BrMb). The blood supply for this system is the intermediate blood vessels of Sattler's layer and the large blood vessels in Haller's layer.In geographic atrophy (GA), an advanced form of dry AMD, large confluent drusen form on BrMb, and hyperpigmentation (presumably dysfunction in RPE) appears to be the initial insult. The resorption of these drusen and loss of RPE (hypopigmentation) can be predictive for progression of GA. The death and dysfunction of CC and photoreceptors appear to be secondary events to loss in RPE. The loss of choroidal vasculature may be the initial insult in neovascular AMD (nAMD). We have observed a loss of CC with an intact RPE monolayer in nAMD, by making RPE hypoxic. These hypoxic cells then produce angiogenic substances like vascular endothelial growth factor (VEGF), which stimulate growth of new vessels from CC, resulting in choroidal neovascularization (CNV). Reduction in blood supply to the CC, often stenosis of intermediate and large blood vessels, is associated with CC loss.The polymorphisms in the complement system components are associated with AMD. In addition, the environment of the CC, basement membrane and intercapillary septa, is a proinflammatory milieu with accumulation of proinflammatory molecules like CRP and complement components during AMD. In this toxic milieu, CC die or become dysfunctional even early in AMD. The loss of CC might be a stimulus for drusen formation since the disposal system for retinal debris and exocytosed material from RPE would be limited. Ultimately, the photoreceptors die of lack of nutrients, leakage of serum components from the neovascularization, and scar formation.Therefore, the mutualistic symbiotic relationship of the photoreceptor/RPE/BrMb/CC complex is lost in both forms of AMD. Loss of this functionally integrated relationship results in death and dysfunction of all of the components in the complex.
Collapse
Affiliation(s)
- Malia Edwards
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Gerard A Lutty
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, MD, USA.
| |
Collapse
|
23
|
Koirala D, Beranova-Giorgianni S, Giorgianni F. Early Transcriptomic Response to OxLDL in Human Retinal Pigment Epithelial Cells. Int J Mol Sci 2020; 21:E8818. [PMID: 33233417 PMCID: PMC7700619 DOI: 10.3390/ijms21228818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 12/18/2022] Open
Abstract
In the sub-retinal pigment epithelium (sub-RPE) space of the aging macula, deposits of oxidized phospholipids, oxidized derivatives of cholesterol and associated oxidized low-density lipoproteins (OxLDL) are considered contributors to the onset and development of age-related macular degeneration (AMD). We investigated the gene expression response of a human-derived RPE cell line exposed for short periods of time to non-cytotoxic levels of OxLDL or LDL. In our cell model, treatment with OxLDL, but not LDL, generated an early gene expression response which affected more than 400 genes. Gene pathway analysis unveiled gene networks involved in the regulation of various cellular functions, including acute response to oxidative stress via up-regulation of antioxidative gene transcripts controlled by nuclear factor erythroid-2 related factor 2 (NRF2), and up-regulation of aryl hydrocarbon receptor-controlled detoxifying gene transcripts. In contrast, circadian rhythm-controlling genes and genes involved in lipid metabolism were strongly down-regulated. Treatment with low-density lipoprotein (LDL) did not induce the regulation of these pathways. These findings show that RPE cells are able to selectively respond to the oxidized forms of LDL via the up-regulation of gene pathways involved in molecular mechanisms that minimize cellular oxidative damage, and the down-regulation of the expression of genes that regulate the intracellular levels of lipids and lipid derivatives. The effect on genes that control the cellular circadian rhythm suggests that OxLDL might also disrupt the circadian clock-dependent phagocytic activity of the RPE. The data reveal a complex cellular response to a highly heterogeneous oxidative stress-causing agent such as OxLDL commonly present in drusen formations.
Collapse
Affiliation(s)
| | - Sarka Beranova-Giorgianni
- Department of Pharmaceutical Sciences; The University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Francesco Giorgianni
- Department of Pharmaceutical Sciences; The University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| |
Collapse
|
24
|
Neekhra A, Tran J, Esfahani PR, Schneider K, Pham K, Sharma A, Chwa M, Luthra S, Gramajo AL, Mansoor S, Kuppermann BD, Kenney MC. Memantine, Simvastatin, and Epicatechin Inhibit 7-Ketocholesterol-induced Apoptosis in Retinal Pigment Epithelial Cells But Not Neurosensory Retinal Cells In Vitro. J Ophthalmic Vis Res 2020; 15:470-480. [PMID: 33133437 PMCID: PMC7591846 DOI: 10.18502/jovr.v15i4.7781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/21/2020] [Indexed: 11/27/2022] Open
Abstract
Purpose 7-ketocholesterol (7kCh), a natural byproduct of oxidation in lipoprotein deposits is implicated in the pathogenesis of diabetic retinopathy and age-related macular degeneration (AMD). This study was performed to investigate whether several clinical drugs can inhibit 7kCh-induced caspase activation and mitigate its apoptotic effects on retinal cells in vitro. Methods Two populations of retinal cells, human retinal pigment epithelial cells (ARPE-19) and rat neuroretinal cells (R28) were exposed to 7kCh in the presence of the following inhibitors: Z-VAD-FMK (pan-caspase inhibitor), simvastatin, memantine, epicatechin, and Z-IETD-FMK (caspase-8 inhibitor) or Z-ATAD-FMK (caspase-12 inhibitor). Caspase-3/7, -8, and -12 activity levels were measured by fluorochrome caspase assays to quantify cell death. IncuCyte live-cell microscopic images were obtained to quantify cell counts. Results Exposure to 7kCh for 24 hours significantly increased caspase activities for both ARPE-19 and R28 cells (P< 0.05). In ARPE cells, pretreatment with various drugs had significantly lower caspase-3/7, -8, and -12 activities, reported in % change in mean signal intensity (msi): Z-VAD-FMK (48% decrease, P< 0.01), memantine (decreased 47.8% at 1 µM, P = 0.0039 and 81.9% at 1 mM, P< 0.001), simvastatin (decreased 85.3% at 0.01 µM, P< 0.001 and 84.8% at 0.05 µM, P< 0.001) or epicatechin (83.6% decrease, P< 0.05), Z-IETD-FMK (68.1% decrease, P< 0.01), and Z-ATAD-FMK (47.7% decrease, P = 0.0017). In contrast, R28 cells exposed to 7kCh continued to have elevated caspase-3/7, -8, and -12 activities (between 25.7% decrease and 17.5% increase in msi, P> 0.05) regardless of the pretreatment. Conclusion Several current drugs protect ARPE-19 cells but not R28 cells from 7kCh-induced apoptosis, suggesting that a multiple-drug approach is needed to protect both cells types in various retinal diseases.
Collapse
Affiliation(s)
- Aneesh Neekhra
- Gavin Herbert Eye Institute, University of California, Irvine, California
| | - Julia Tran
- Gavin Herbert Eye Institute, University of California, Irvine, California
| | - Parsa R Esfahani
- Gavin Herbert Eye Institute, University of California, Irvine, California
| | - Kevin Schneider
- Gavin Herbert Eye Institute, University of California, Irvine, California
| | - Khoa Pham
- Gavin Herbert Eye Institute, University of California, Irvine, California
| | - Ashish Sharma
- Gavin Herbert Eye Institute, University of California, Irvine, California
| | - Marilyn Chwa
- Gavin Herbert Eye Institute, University of California, Irvine, California
| | - Saurabh Luthra
- Gavin Herbert Eye Institute, University of California, Irvine, California
| | - Ana L Gramajo
- Gavin Herbert Eye Institute, University of California, Irvine, California
| | - Saffar Mansoor
- Gavin Herbert Eye Institute, University of California, Irvine, California
| | | | - M Cristina Kenney
- Gavin Herbert Eye Institute, University of California, Irvine, California.,Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
25
|
Cholesterol Regulation in Age-Related Macular Degeneration: A Framework for Mathematical Modelling of Drusen Biogenesis. Bull Math Biol 2020; 82:135. [PMID: 33044644 DOI: 10.1007/s11538-020-00812-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 09/25/2020] [Indexed: 10/23/2022]
Abstract
In age-related macular degeneration (AMD), there is, in common with many other age-related diseases, the need to distinguish between changes in the ageing eye that lead to disease and those changes that are considered part of a healthy, ageing eye. Various studies investigating the multitude of mechanisms involved in the aetiology of AMD exist within the field of ophthalmology and related medical fields, yet many aspects of it remain poorly understood and only a limited number of therapies are available. A recent study relates drusen's topographically cellular characteristics to the neural retina's metabolic needs and associated cholesterol involvement within the retina. In particular, there is a need to fully understand the maintenance of cholesterol homeostasis in the retina to prevent normal ageing processes from being perturbed towards maculopathy. Here, we present an extensive review of the clinical and physiological features of the ageing retina, as well as mechanisms implicated in pathology, synthesised from a vast body of the published literature. We use this novel synthesis to construct a comprehensive process schematic, encompassing all key species and physiological processes such as nutrients, waste and lipoprotein management. We are therefore able to express these processes in a mathematical language via a comprehensive modelling framework, comprising a set of twenty-three equations spanning three distinct biological compartments. This very general modelling framework may now be adapted to more focused studies on individual mechanisms, processes or components underlying of the many facets of AMD. As an example of such a focused application, we conclude this article with a one-compartment, four-species model of the retinal pigment epithelium, which considers the parametric conditions under which either cholesterol homeostasis or unregulated accumulation of cholesterol may obtain in the ageing eye.
Collapse
|
26
|
Choi C, Finlay DK. Diverse Immunoregulatory Roles of Oxysterols-The Oxidized Cholesterol Metabolites. Metabolites 2020; 10:metabo10100384. [PMID: 32998240 PMCID: PMC7601797 DOI: 10.3390/metabo10100384] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/14/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022] Open
Abstract
Intermediates of both cholesterol synthesis and cholesterol metabolism can have diverse roles in the control of cellular processes that go beyond the control of cholesterol homeostasis. For example, oxidized forms of cholesterol, called oxysterols have functions ranging from the control of gene expression, signal transduction and cell migration. This is of particular interest in the context of immunology and immunometabolism where we now know that metabolic processes are key towards shaping the nature of immune responses. Equally, aberrant metabolic processes including altered cholesterol homeostasis contribute to immune dysregulation and dysfunction in pathological situations. This review article brings together our current understanding of how oxysterols affect the control of immune responses in diverse immunological settings.
Collapse
Affiliation(s)
- Chloe Choi
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street 152-160, Dublin 2, Ireland
- Correspondence: (C.C.); (D.K.F.); Tel.: +353-1-896-3564 (D.K.F.)
| | - David K. Finlay
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street 152-160, Dublin 2, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street 152-160, Dublin 2, Ireland
- Correspondence: (C.C.); (D.K.F.); Tel.: +353-1-896-3564 (D.K.F.)
| |
Collapse
|
27
|
Nury T, Zarrouk A, Yammine A, Mackrill JJ, Vejux A, Lizard G. Oxiapoptophagy: A type of cell death induced by some oxysterols. Br J Pharmacol 2020; 178:3115-3123. [PMID: 32579703 DOI: 10.1111/bph.15173] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/02/2020] [Accepted: 06/10/2020] [Indexed: 12/18/2022] Open
Abstract
Oxysterols are oxidized forms of cholesterol generated from cholesterol by auto-oxidation, enzymatic processes, or both. Some of them (7-ketocholesterol, 7β-hydroxycholesterol and 24(S)-hydroxycholesterol), when used at cytotoxic concentrations on different cell types from different species (mesenchymal bone marrow cells, monocytic cells and nerve cells), induce a type of cell death associated with OXIdative stress and several characteristics of APOPTOsis and autoPHAGY, defined as oxiapoptophagy. Oxidative stress is associated with overproduction of ROS, increased antioxidant enzyme activities, lipid peroxidation and protein carbonylation. Apoptosis is associated with activation of the mitochondrial pathway, opening of the mitochondrial permeability pore, loss of mitochondrial membrane potential, caspase-3 activation, PARP degradation, nuclear condensation and/or fragmentation. Autophagy is characterized by autophagic vacuoles revealed by monodansylcadaverine staining and transmission electron microscopy, plus increased ratio of LC-3II/LC-3I. In addition, morphological, topographical and functional changes of the peroxisome are observed. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
Collapse
Affiliation(s)
- Thomas Nury
- Team "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" EA 7270/Inserm, University Bourgogne Franche-Comté, Dijon, France
| | - Amira Zarrouk
- Faculty of Medicine, LR12ES05, Lab-NAFS "Nutrition - Functional Food & Vascular Health", University of Monastir, Monastir, Tunisia.,Laboratory of Biochemistry, Faculty of Medicine, University of Sousse, Sousse, Tunisia
| | - Aline Yammine
- Team "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" EA 7270/Inserm, University Bourgogne Franche-Comté, Dijon, France.,Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Lebanese University, Beirut, Lebanon
| | - John J Mackrill
- Department of Physiology, School of Medicine, University College Cork, Cork, Ireland
| | - Anne Vejux
- Team "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" EA 7270/Inserm, University Bourgogne Franche-Comté, Dijon, France
| | - Gérard Lizard
- Team "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" EA 7270/Inserm, University Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
28
|
Reactive Sterol Electrophiles: Mechanisms of Formation and Reactions with Proteins and Amino Acid Nucleophiles. CHEMISTRY (BASEL, SWITZERLAND) 2020; 2:390-417. [PMID: 35372835 PMCID: PMC8976181 DOI: 10.3390/chemistry2020025] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Radical-mediated lipid oxidation and the formation of lipid hydroperoxides has been a focal point in the investigation of a number of human pathologies. Lipid peroxidation has long been linked to the inflammatory response and more recently, has been identified as the central tenet of the oxidative cell death mechanism known as ferroptosis. The formation of lipid electrophile-protein adducts has been associated with many of the disorders that involve perturbations of the cellular redox status, but the identities of adducted proteins and the effects of adduction on protein function are mostly unknown. Both cholesterol and 7-dehydrocholesterol (7-DHC), which is the immediate biosynthetic precursor to cholesterol, are oxidizable by species such as ozone and oxygen-centered free radicals. Product mixtures from radical chain processes are particularly complex, with recent studies having expanded the sets of electrophilic compounds formed. Here, we describe recent developments related to the formation of sterol-derived electrophiles and the adduction of these electrophiles to proteins. A framework for understanding sterol peroxidation mechanisms, which has significantly advanced in recent years, as well as the methods for the study of sterol electrophile-protein adduction, are presented in this review.
Collapse
|
29
|
Pariente A, Pérez-Sala Á, Ochoa R, Peláez R, Larráyoz IM. Genome-Wide Transcriptomic Analysis Identifies Pathways Regulated by Sterculic Acid in Retinal Pigmented Epithelium Cells. Cells 2020; 9:cells9051187. [PMID: 32403229 PMCID: PMC7290791 DOI: 10.3390/cells9051187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/03/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
In addition to its predominant role in lipid metabolism and body weight control, SCD1 has emerged recently as a potential new target for the treatment of various diseases. Sterculic acid (SA) is a cyclopropene fatty acid with numerous biological activities, generally attributed to its Stearoyl-CoA desaturase (SCD) inhibitory properties. Additional effects exerted by SA, independently of SCD inhibition, may be mediating anti-inflammatory and protective roles in retinal diseases such as age-related macular degeneration (AMD), but the mechanisms involved are poorly understood. In order to provide insights into those mechanisms, genome-wide transcriptomic analyses were carried out in mRPE cells exposed to SA for 24 h. Integrative functional enrichment analysis of genome-wide expression data provided biological insight about the protective mechanisms induced by SA. On the one hand, pivotal genes related to fatty acid biosynthesis, steroid biosynthesis, cell death, actin-cytoskeleton reorganization and extracellular matrix-receptor interaction were significantly downregulated by exposition to SA. On the other hand, genes related to fatty acid degradation and beta-oxidation were significantly upregulated. In conclusion, SA administration to RPE cells regulates crucial pathways related to cell proliferation, inflammation and cell death that may be of interest for the treatment of ocular diseases.
Collapse
|
30
|
Fernández‐Vega B, García M, Olivares L, Álvarez L, González‐Fernández A, Artime E, Fernández‐Vega Cueto A, Cobo T, Coca‐Prados M, Vega JA, González‐Iglesias H. The association study of lipid metabolism gene polymorphisms with AMD identifies a protective role for APOE-E2 allele in the wet form in a Northern Spanish population. Acta Ophthalmol 2020; 98:e282-e291. [PMID: 31654486 DOI: 10.1111/aos.14280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/28/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE To elucidate the potential role of eleven single nucleotide polymorphisms (SNPs) in the most relevant lipid metabolism genes in Northern Spanish patients with age-related macular degeneration (AMD). METHODS A case-control study of 228 unrelated native Northern Spanish patients diagnosed with AMD (73 dry and 155 wet) and 95 healthy controls was performed. DNA was isolated from peripheral blood and genotyped for the SNPs APOE rs429358 and rs7412; CTEP rs3764261; LIPC rs10468017 and rs493258; LPL rs12678919; ABCA1 rs1883025; ABCA4 rs76157638, rs3112831 and rs1800555; and SCARB1 rs5888, using TaqMan probes. An additional association study of ε2, ε3 and ε4 major isoforms of APOE gene with AMD has been carried out. RESULTS The allele and genotype frequencies for each of the eleven sequence variants in the lipid metabolism genes did not show significant differences when comparing AMD cases and controls. Statistical analysis revealed that APOE-ε2 carrier genotypes were less frequently observed in patients with wet AMD compared to controls (5.8% versus 13.7%, respectively: p = 3.28 × 10-2 ; OR = 0.42, 95% CI: 0.19-0.95). The frequency of the allele T of rs10468017 (LIPC gene) was lower in dry AMD cases compared to controls (15.8 versus 27.9%, respectively: p = 8.4 × 10-3 OR = 0.57, 95% CI: 0.33-0.98). CONCLUSIONS Our results suggest a protective role for APOE-ε2 allele to wet AMD in the Northern Spanish population.
Collapse
Affiliation(s)
- Beatriz Fernández‐Vega
- Instituto Oftalmológico Fernández‐Vega Oviedo Spain
- Instituto Universitario Fernández‐Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo) Oviedo Spain
- Departamento de Morfología y Biología Celular Grupo SINPOS Universidad de Oviedo Oviedo Spain
| | - Montserrat García
- Instituto Oftalmológico Fernández‐Vega Oviedo Spain
- Instituto Universitario Fernández‐Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo) Oviedo Spain
| | - Lorena Olivares
- Instituto Universitario Fernández‐Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo) Oviedo Spain
| | - Lydia Álvarez
- Instituto Universitario Fernández‐Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo) Oviedo Spain
| | - Adrián González‐Fernández
- Instituto Universitario Fernández‐Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo) Oviedo Spain
| | - Enol Artime
- Instituto Universitario Fernández‐Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo) Oviedo Spain
| | - Andrés Fernández‐Vega Cueto
- Instituto Oftalmológico Fernández‐Vega Oviedo Spain
- Instituto Universitario Fernández‐Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo) Oviedo Spain
| | - Teresa Cobo
- Departamento de Cirugía y Especialidades Médico‐Quirúrgicas Universidad de Oviedo Oviedo Spain
| | - Miguel Coca‐Prados
- Department of Ophthalmology and Visual Science Yale University School of Medicine New Haven CT USA
| | - José A. Vega
- Departamento de Morfología y Biología Celular Grupo SINPOS Universidad de Oviedo Oviedo Spain
- Facultad de Ciencias de la Salud Universidad Autónoma de Chile Santiago de Chile Chile
| | - Héctor González‐Iglesias
- Instituto Oftalmológico Fernández‐Vega Oviedo Spain
- Instituto Universitario Fernández‐Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo) Oviedo Spain
| |
Collapse
|
31
|
Vejux A, Abed-Vieillard D, Hajji K, Zarrouk A, Mackrill JJ, Ghosh S, Nury T, Yammine A, Zaibi M, Mihoubi W, Bouchab H, Nasser B, Grosjean Y, Lizard G. 7-Ketocholesterol and 7β-hydroxycholesterol: In vitro and animal models used to characterize their activities and to identify molecules preventing their toxicity. Biochem Pharmacol 2020; 173:113648. [DOI: 10.1016/j.bcp.2019.113648] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022]
|
32
|
Kulas JA, Weigel TK, Ferris HA. Insulin resistance and impaired lipid metabolism as a potential link between diabetes and Alzheimer's disease. Drug Dev Res 2020; 81:194-205. [PMID: 32022298 DOI: 10.1002/ddr.21643] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/20/2019] [Accepted: 01/23/2020] [Indexed: 12/13/2022]
Abstract
Diabetes disrupts organs throughout the body including the brain. Evidence suggests diabetes is a risk factor for Alzheimer's disease (AD) and neurodegeneration. In this review, we focus on understanding how diabetes contributes to the progression of neurodegeneration by influencing several aspects of the disease process. We emphasize the potential roles of brain insulin resistance, as well as cholesterol and lipid disruption, as factors which worsen AD.
Collapse
Affiliation(s)
- Joshua A Kulas
- Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, Virginia
| | - Thaddeus K Weigel
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia
| | - Heather A Ferris
- Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, Virginia.,Department of Neuroscience, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
33
|
Biswas L, Zeng Z, Graham A, Shu X. Gypenosides mediate cholesterol efflux and suppress oxidized LDL induced inflammation in retinal pigment epithelium cells. Exp Eye Res 2020; 191:107931. [DOI: 10.1016/j.exer.2020.107931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 12/16/2019] [Accepted: 01/08/2020] [Indexed: 02/07/2023]
|
34
|
Sterculic Acid: The Mechanisms of Action beyond Stearoyl-CoA Desaturase Inhibition and Therapeutic Opportunities in Human Diseases. Cells 2020; 9:cells9010140. [PMID: 31936134 PMCID: PMC7016617 DOI: 10.3390/cells9010140] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/04/2020] [Accepted: 01/05/2020] [Indexed: 12/12/2022] Open
Abstract
In many tissues, stearoyl-CoA desaturase 1 (SCD1) catalyzes the biosynthesis of monounsaturated fatty acids (MUFAS), (i.e., palmitoleate and oleate) from their saturated fatty acid (SFA) precursors (i.e., palmitate and stearate), influencing cellular membrane physiology and signaling, leading to broad effects on human physiology. In addition to its predominant role in lipid metabolism and body weight control, SCD1 has emerged recently as a potential new target for the treatment for various diseases, such as nonalcoholic steatohepatitis, Alzheimer’s disease, cancer, and skin disorders. Sterculic acid (SA) is a cyclopropene fatty acid originally found in the seeds of the plant Sterculia foetida with numerous biological activities. On the one hand, its ability to inhibit stearoyl-CoA desaturase (SCD) allows its use as a coadjuvant of several pathologies where this enzyme has been associated. On the other hand, additional effects independently of its SCD inhibitory properties, involve anti-inflammatory and protective roles in retinal diseases such as age-related macular degeneration (AMD). This review aims to summarize the mechanisms by which SA exerts its actions and to highlight the emerging areas where this natural compound may be of help for the development of new therapies for human diseases.
Collapse
|
35
|
Xu N, Xu H, Zhao M, Xu Y, Huang L. Associations of systemic, serum lipid and lipoprotein metabolic pathway gene variations with polypoidal choroidal vasculopathy in China. PLoS One 2019; 14:e0226763. [PMID: 31877157 PMCID: PMC6932770 DOI: 10.1371/journal.pone.0226763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND To investigate the association of systemic, serum lipids and genetic variants in the high-density lipoprotein (HDL) metabolic pathway with polypoidal choroidal vasculopathy (PCV) in China. METHODS The case-control study was included 150 controls and 66 cases with PCV. Serum levels of total cholesterol (TC), low-density lipoprotein (LDL), HDL, triglycerides (TG), apolipoprotein A1 (APOA1), apolipoprotein B (APOB) together with systemic risk factors including gender, hyperlipidemia, diabetes mellitus (DM), hypertension, coronary artery disease (CAD) and asthma were identified. All subjects were genotyped for four single nucleotide polymorphisms (SNPs) from three genes in the HDL metabolic pathway: rs10468017 of hepatic lipase (LIPC), rs12678919 of lipoprotein lipase (LPL), rs3764261 and rs173539 of cholesterol ester transfer protein (CETP) with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Student's t-tests, chi-square tests, anova and logistic regression were used to evaluate associations. RESULTS Hyperlipidemia was a risk factor (odds ratio (OR) = 1.19, P = 0.001) for PCV. HDL, LDL and APOB levels were associated with PCV (OR = 0.001, P = 0.004; OR = 0.099, P = 0.010; OR = 0.839, P = 0.018). Higher level of TC was potently associated with increased risk of PCV (OR = 109.8, P = 0.000). LIPC rs10468017 was a risk factor for PCV (OR = 11.68, P = 0.000). CETP rs3764261 conferred a decreased risk for PCV (OR = 0.08, P = 0.000). No associations of LPL rs12678919 or CETP rs173539 with PCV were found. Mean level of HDL increased with T allele of the CETP gene (p = 0.026): 1.24 mmol/L (±0.31) for the GG genotype and 1.66 mmol/L (±0.54) for the TT genotype. Additionally, T allele was associated with the following increase in APOA1: 136.78 mg/dl (±20.53) for the CC genotype and 149.57 mg/dl (±22.67) for the TT genotype of LIPC and 137.91 mg/dl (±20.36) for the GG genotype and 162.67 mg/dl (±22.50) for the TT genotype of CETP gene. CONCLUSION Our study suggested that the significant association was found between hyperlipidemia, the serum levels of TC, HDL, LDL and APOB and PCV. The result of present study also showed that the association of LIPC rs10468017 and CETP rs3764261 with PCV.
Collapse
Affiliation(s)
- Ningda Xu
- Department of Ophthalmology, Peking University People’s Hospital Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center; Beijing,China
| | - Hui Xu
- Department of Ophthalmology, Peking University People’s Hospital Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center; Beijing,China
| | - Mingwei Zhao
- Department of Ophthalmology, Peking University People’s Hospital Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center; Beijing,China
| | - Yongsheng Xu
- Department of Ophthalmology, Peking University People’s Hospital Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center; Beijing,China
| | - Lvzhen Huang
- Department of Ophthalmology, Peking University People’s Hospital Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center; Beijing,China
| |
Collapse
|
36
|
Yang C, Xie L, Gu Q, Qiu Q, Wu X, Yin L. 7-Ketocholesterol disturbs RPE cells phagocytosis of the outer segment of photoreceptor and induces inflammation through ERK signaling pathway. Exp Eye Res 2019; 189:107849. [DOI: 10.1016/j.exer.2019.107849] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 10/13/2019] [Accepted: 10/18/2019] [Indexed: 10/25/2022]
|
37
|
Pariente A, Peláez R, Pérez-Sala Á, Larráyoz IM. Inflammatory and cell death mechanisms induced by 7-ketocholesterol in the retina. Implications for age-related macular degeneration. Exp Eye Res 2019; 187:107746. [DOI: 10.1016/j.exer.2019.107746] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 12/16/2022]
|
38
|
Wali H, Rehman FU, Umar A, Ahmed S. Cholesterol Degradation and Production of Extracellular Cholesterol Oxidase from Bacillus pumilus W1 and Serratia marcescens W8. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1359528. [PMID: 31183360 PMCID: PMC6512041 DOI: 10.1155/2019/1359528] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/13/2022]
Abstract
Cholesterol is a waxy substance present in all types of the body cells. The presence of higher concentration of low density lipoprotein (LDL) is characterized by abnormal cholesterol level and is associated with cardiovascular diseases which lead to the development of atheroma in arteries known as atherosclerosis. The transformation of cholesterol by bacterial cholesterol oxidase can provide a key solution for the treatment of diseases related to cholesterol and its oxidized derivatives. Previously isolated bacteria from oil-contaminated soil were screened for cholesterol degradation. Among fourteen, five isolates were able to utilize cholesterol. Two strains Serratia marcescens W1 and Bacillus pumilus W8 using cholesterol as only carbon and energy source were selected for degradation studies. Several parameters (incubation time, substrate concentration, pH, temperature, and different metal ions) for cholesterol decomposition by the selected bacterial strains were evaluated. Maximum cholesterol reduction was achieved on the 5th day of incubation, 1g/L of substrate concentration, pH 7, in the presence of Mg2+ and Ca2+ ions, and at 35°C. Cholesterol degradation was analyzed by enzymatic colorimetric method, thin layer chromatography (TLC), and high-performance liquid chromatography (HPLC). Under optimized conditions 50% and 84% cholesterol reduction were recorded with Serratia marcescens W1 and Bacillus pumilus W8, respectively. Cholesterol oxidase activity was assayed qualitatively and quantitatively. The results revealed that Serratia marcescens W1 and Bacillus pumilus W8 have great potential for cholesterol degradation and would be regarded as a source for cholesterol oxidase (CHO).
Collapse
Affiliation(s)
- Hasina Wali
- Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Department of Microbiology, University of Balochistan, Quetta 87300, Pakistan
| | - Fazal Ur Rehman
- Department of Microbiology, University of Balochistan, Quetta 87300, Pakistan
| | - Aiman Umar
- Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Safia Ahmed
- Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
39
|
Deletion of TSPO Resulted in Change of Metabolomic Profile in Retinal Pigment Epithelial Cells. Int J Mol Sci 2019; 20:ijms20061387. [PMID: 30893912 PMCID: PMC6470938 DOI: 10.3390/ijms20061387] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/11/2019] [Accepted: 03/15/2019] [Indexed: 12/21/2022] Open
Abstract
Age-related macular degeneration is the main cause of vision loss in the aged population worldwide. Drusen, extracellular lesions formed underneath the retinal pigment epithelial (RPE) cells, are a clinical feature of AMD and associated with AMD progression. RPE cells support photoreceptor function by providing nutrition, phagocytosing outer segments and removing metabolic waste. Dysfunction and death of RPE cells are early features of AMD. The translocator protein, TSPO, plays an important role in RPE cholesterol efflux and loss of TSPO results in increased intracellular lipid accumulation and reactive oxygen species (ROS) production. This study aimed to investigate the impact of TSPO knockout on RPE cellular metabolism by identifying the metabolic differences between wildtype and knockout RPE cells, with or without treatment with oxidized low density lipoprotein (oxLDL). Using liquid chromatography mass spectrometry (LC/MS), we differentiated several metabolic pathways among wildtype and knockout cells. Lipids amongst other intracellular metabolites were the most influenced by loss of TSPO and/or oxLDL treatment. Glucose, amino acid and nucleotide metabolism was also affected. TSPO deletion led to up-regulation of fatty acids and glycerophospholipids, which in turn possibly affected the cell membrane fluidity and stability. Higher levels of glutathione disulphide (GSSG) were found in TSPO knockout RPE cells, suggesting TSPO regulates mitochondrial-mediated oxidative stress. These data provide biochemical insights into TSPO-associated function in RPE cells and may shed light on disease mechanisms in AMD.
Collapse
|
40
|
Zarrouk A, Martine L, Grégoire S, Nury T, Meddeb W, Camus E, Badreddine A, Durand P, Namsi A, Yammine A, Nasser B, Mejri M, Bretillon L, Mackrill JJ, Cherkaoui-Malki M, Hammami M, Lizard G. Profile of Fatty Acids, Tocopherols, Phytosterols and Polyphenols in Mediterranean Oils (Argan Oils, Olive Oils, Milk Thistle Seed Oils and Nigella Seed Oil) and Evaluation of their Antioxidant and Cytoprotective Activities. Curr Pharm Des 2019; 25:1791-1805. [PMID: 31298157 DOI: 10.2174/1381612825666190705192902] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 06/23/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND The effects of vegetable oils on human health depend on their components. Therefore, their profiles of lipid nutrients and polyphenols were determined. OBJECTIVE To establish and compare the fatty acid, tocopherol, phytosterol and polyphenol profiles of Mediterranean oils: cosmetic and dietary argan oils (AO; Morocco: Agadir, Berkane); olive oils (OO; Morocco, Spain, Tunisia); milk thistle seed oils (MTSO; Tunisia: Bizerte, Sousse, Zaghouane); nigella seed oil (NSO). METHODS The biochemical profiles were determined by gas chromatography-flame ionization, high performance liquid chromatography and gas chromatography, coupled with mass spectrometry as required. The antioxidant and cytoprotective activities were evaluated with the KRL (Kit Radicaux Libres) and the fluorescein diacetate tests on nerve cells treated with 7-ketocholesterol (7KC). RESULTS The fatty acid profile revealed high linoleic acid (C18:2 n-6) content in AO, OO, MTSO and NSO. The highest levels of oleic acid (C18:1 n-9) were found in AO and OO. The tocopherol profile showed that Agadir AO contained the highest amount of α-tocopherol, also present at high level in MTSO and Tunisian OO; Berkane AO was rich in γ-tocopherol. The phytosterol profile indicated that β-sitosterol was predominant in the oils, except AO; spinasterol was only present in AO. Polyphenol profiles underlined that OO was the richest in polyphenols; hydroxytyrosol was only found in OO; few polyphenols were detected in AO. The oils studied have antioxidant activities, and all of them, except NSO, prevented 7KC-induced cell death. The antioxidant characteristics of AO were positively correlated with procatechic acid and compestanol levels. CONCLUSION Based on their biochemical profiles, antioxidant and cytoprotective characteristics, AO, OO, and MTSO are potentially beneficial to human health.
Collapse
Affiliation(s)
- Amira Zarrouk
- Laboratoire 'Nutrition, Aliments Fonctionnels et Sante Vasculaire', UR12ES05 Universite de Monastir, Monastir, Tunisia
- Equipe 'Biochimie du Peroxysome, Inflammation et Metabolisme Lipidique' EA 7270 / Universite de Bourgogne Franche-Comte / Inserm, Dijon, France
- Laboratoire de Biochimie, Faculté de Médecine, Sousse, Tunisia
| | - Lucy Martine
- Eye and Nutrition Research Group, Centre des Sciences du Gout et de l'Alimentation, UMR 1324 INRA, 6265 CNRS, Universite de Bourgogne Franche-Comte, Dijon, France
| | - Stéphane Grégoire
- Eye and Nutrition Research Group, Centre des Sciences du Gout et de l'Alimentation, UMR 1324 INRA, 6265 CNRS, Universite de Bourgogne Franche-Comte, Dijon, France
| | - Thomas Nury
- Equipe 'Biochimie du Peroxysome, Inflammation et Metabolisme Lipidique' EA 7270 / Universite de Bourgogne Franche-Comte / Inserm, Dijon, France
| | - Wiem Meddeb
- Institut Superieur de Biotechnologie, Beja, Tunisia
| | | | - Asmaa Badreddine
- Laboratory of 'Biochemistry of Neuroscience', University Hassan 1er, Settat, Morocco
| | | | - Amira Namsi
- Equipe 'Biochimie du Peroxysome, Inflammation et Metabolisme Lipidique' EA 7270 / Universite de Bourgogne Franche-Comte / Inserm, Dijon, France
| | - Aline Yammine
- Equipe 'Biochimie du Peroxysome, Inflammation et Metabolisme Lipidique' EA 7270 / Universite de Bourgogne Franche-Comte / Inserm, Dijon, France
| | - Boubker Nasser
- Laboratory of 'Biochemistry of Neuroscience', University Hassan 1er, Settat, Morocco
| | | | - Lionel Bretillon
- Eye and Nutrition Research Group, Centre des Sciences du Gout et de l'Alimentation, UMR 1324 INRA, 6265 CNRS, Universite de Bourgogne Franche-Comte, Dijon, France
| | - John J Mackrill
- Department of Physiology, BioSciences Institute, Univ. College Cork, Cork, Ireland
| | - Mustapha Cherkaoui-Malki
- Equipe 'Biochimie du Peroxysome, Inflammation et Metabolisme Lipidique' EA 7270 / Universite de Bourgogne Franche-Comte / Inserm, Dijon, France
| | - Mohamed Hammami
- Laboratoire 'Nutrition, Aliments Fonctionnels et Sante Vasculaire', UR12ES05 Universite de Monastir, Monastir, Tunisia
| | - Gérard Lizard
- Equipe 'Biochimie du Peroxysome, Inflammation et Metabolisme Lipidique' EA 7270 / Universite de Bourgogne Franche-Comte / Inserm, Dijon, France
| |
Collapse
|
41
|
The Oxysterol 7-Ketocholesterol Reduces Zika Virus Titers in Vero Cells and Human Neurons. Viruses 2018; 11:v11010020. [PMID: 30598036 PMCID: PMC6356585 DOI: 10.3390/v11010020] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/22/2018] [Accepted: 12/29/2018] [Indexed: 01/19/2023] Open
Abstract
Zika virus (ZIKV) is an emerging flavivirus responsible for a major epidemic in the Americas beginning in 2015. ZIKV associated with maternal infection can lead to neurological disorders in newborns, including microcephaly. Although there is an abundance of research examining the neurotropism of ZIKV, we still do not completely understand the mechanism by which ZIKV targets neural cells or how to limit neural cell infection. Recent research suggests that flaviviruses, including ZIKV, may hijack the cellular autophagy pathway to benefit their replication. Therefore, we hypothesized that ZIKV replication would be impacted when infected cells were treated with compounds that target the autophagy pathway. We screened a library of 94 compounds known to affect autophagy in both mammalian and insect cell lines. A subset of compounds that inhibited ZIKV replication without affecting cellular viability were tested for their ability to limit ZIKV replication in human neurons. From this second screen, we identified one compound, 7-ketocholesterol (7-KC), which inhibited ZIKV replication in neurons without significantly affecting neuron viability. Interestingly, 7-KC induces autophagy, which would be hypothesized to increase ZIKV replication, yet it decreased virus production. Time-of-addition experiments suggest 7-KC inhibits ZIKV replication late in the replication cycle. While 7-KC did not inhibit RNA replication, it decreased the number of particles in the supernatant and the relative infectivity of the released particles, suggesting it interferes with particle budding, release from the host cell, and particle integrity.
Collapse
|
42
|
Brahmi F, Vejux A, Sghaier R, Zarrouk A, Nury T, Meddeb W, Rezig L, Namsi A, Sassi K, Yammine A, Badreddine I, Vervandier-Fasseur D, Madani K, Boulekbache-Makhlouf L, Nasser B, Lizard G. Prevention of 7-ketocholesterol-induced side effects by natural compounds. Crit Rev Food Sci Nutr 2018; 59:3179-3198. [DOI: 10.1080/10408398.2018.1491828] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Fatiha Brahmi
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, Lab. Bio-PeroxIL, Université de Bourgogne Franche-Comté, Dijon, France
- Lab. Biomathématique, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
| | - Anne Vejux
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, Lab. Bio-PeroxIL, Université de Bourgogne Franche-Comté, Dijon, France
| | - Randa Sghaier
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, Lab. Bio-PeroxIL, Université de Bourgogne Franche-Comté, Dijon, France
- Lab-NAFS ‘Nutrition - Functional Food & Vascular Health’, LR12ES05, Université de Monastir, Monastir, Tunisia
- Faculty of Medicine, Lab. Biochemistry, Sousse, Tunisia
| | - Amira Zarrouk
- Lab-NAFS ‘Nutrition - Functional Food & Vascular Health’, LR12ES05, Université de Monastir, Monastir, Tunisia
- Faculty of Medicine, Lab. Biochemistry, Sousse, Tunisia
| | - Thomas Nury
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, Lab. Bio-PeroxIL, Université de Bourgogne Franche-Comté, Dijon, France
| | - Wiem Meddeb
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, Lab. Bio-PeroxIL, Université de Bourgogne Franche-Comté, Dijon, France
- LMMA/IPEST, Faculty of Science, University of Carthage, Bizerte, Tunisia
| | - Leila Rezig
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, Lab. Bio-PeroxIL, Université de Bourgogne Franche-Comté, Dijon, France
- ESIAT, Lab. Conservation et Valorisation des Aliments, Tunis, Tunisia
| | - Amira Namsi
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, Lab. Bio-PeroxIL, Université de Bourgogne Franche-Comté, Dijon, France
- University Tunis El Manar, Faculty of Science of Tunis, Laboratory of Functional Neurophysiology and Pathology, Tunis, Tunisia
| | - Khouloud Sassi
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, Lab. Bio-PeroxIL, Université de Bourgogne Franche-Comté, Dijon, France
- Lab. Onco-Hematology, Faculty de Medicine of Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Aline Yammine
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, Lab. Bio-PeroxIL, Université de Bourgogne Franche-Comté, Dijon, France
- Bioactive Molecules Research Lab, Faculty of Sciences, Lebanese University, Beirut, Lebanon
| | - Iham Badreddine
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, Lab. Bio-PeroxIL, Université de Bourgogne Franche-Comté, Dijon, France
- Lab. ‘Valorisation des Ressources Naturelles et Environnement’, Université Ibn Zohr, Taroudant, Morocco
| | | | - Khodir Madani
- Lab. Biomathématique, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
| | - Lila Boulekbache-Makhlouf
- Lab. Biomathématique, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
| | - Boubker Nasser
- Lab. Neuroscience and Biochemistry, Université Hassan 1er, Settat, Morocco
| | - Gérard Lizard
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, Lab. Bio-PeroxIL, Université de Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
43
|
Luthert PJ, Serrano L, Kiel C. Opportunities and Challenges of Whole-Cell and -Tissue Simulations of the Outer Retina in Health and Disease. Annu Rev Biomed Data Sci 2018. [DOI: 10.1146/annurev-biodatasci-080917-013356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Visual processing starts in the outer retina, where photoreceptor cells sense photons that trigger electrical responses. Retinal pigment epithelial cells are located external to the photoreceptor layer and have critical functions in supporting cell and tissue homeostasis and thus sustaining a healthy retina. The high level of specialization makes the retina vulnerable to alterations that promote retinal degeneration. In this review, we discuss opportunities and challenges in proposing whole-cell and -tissue simulations of the human outer retina. An implicit position taken throughout this review is that mapping diverse data sets onto integrative computational models is likely to be a pivotal approach to understanding complex disease and developing novel interventions.
Collapse
Affiliation(s)
- Philip J. Luthert
- Institute of Ophthalmology and National Institute for Health Research (NIHR) Biomedical Research Centre, University College London, London EC1V 9EL, United Kingdom
| | - Luis Serrano
- European Molecular Biology Laboratory (EMBL)/Centre for Genomic Regulation (CRG) Systems Biology Research Unit, Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Christina Kiel
- European Molecular Biology Laboratory (EMBL)/Centre for Genomic Regulation (CRG) Systems Biology Research Unit, Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Systems Biology Ireland, Charles Institute of Dermatology, and School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
44
|
Association of Genes in the High-Density Lipoprotein Metabolic Pathway with Polypoidal Choroidal Vasculopathy in Asian Population: A Systematic Review and Meta-Analysis. J Ophthalmol 2018; 2018:9538671. [PMID: 29977615 PMCID: PMC6011074 DOI: 10.1155/2018/9538671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 03/29/2018] [Indexed: 11/18/2022] Open
Abstract
Purpose To assess the association of genes in the high-density lipoprotein metabolic pathway (HDLMP) with polypoidal choroidal vasculopathy (PCV) and the genetic difference in the HDLMP between PCV and age-related macular degeneration (AMD). Methods We performed a literature search in EMBASE, PubMed, and Web of Science for genetic studies on 7 single nucleotide polymorphisms (SNPs) from 5 genes in the HDLMP including cholesteryl ester transfer protein (CETP), hepatic lipase (LIPC), lipoprotein lipase (LPL), ATP-binding cassette transporter A1 (ABCA1), and ATP-binding cassette transporter G1 (ABCG1) in PCV. All studies were published before September 30, 2017, without language restriction. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) of each polymorphism were estimated. We also compared the association profiles between PCV and AMD and performed a sensitivity analysis. Results Our result is based on 43 articles. After excluding duplicates and articles without complete information, 7 studies were applicable to meta-analysis. 7 polymorphisms were meta-analyzed: CETP rs2303790/rs3764261, LIPC rs10468017/rs493258, LPL rs12678919, ABCA1 rs1883025, and ABCG1 rs57137919. We found that in Asian population, CETP rs3764261 (T allele; OR = 1.46; 95% CI: 1.28–1.665, P < 0.01), CETP rs2303790 (G allele; OR = 1.57; 95% CI: 1.258–1.96, P < 0.01), and ABCG1 rs57137919 (A allele; OR = 1.168; 95% CI: 1.016–1.343, P < 0.01) were significantly associated with PCV, and ABCG1 rs57137919 (A allele; OR = 1.208, 95% CI: 1.035–1.411, P < 0.01) has different effects in PCV and AMD. The other 4 polymorphisms in LIPC/LPL/ABCA1 had no significant association with PCV (P > 0.05). The sensitivity analysis validated the significance of our analysis. Conclusions Our study revealed 7 polymorphisms in 5 genes. Among them, CETP (rs3764261/rs2303790) and ABCG1 (rs57137919) were the major susceptibility genes for PCV in Asian population and ABCG1 (rs57137919) showed allelic diversity between PCV and AMD. Since the size for PCV and AMD was small, we need to study these genes genotyping in larger samples.
Collapse
|
45
|
Perveen I, Raza MA, Sehar S, Naz I, Memon MI, Ahmed S. Studies on Degradation of 7-ketocholesterol by Environmental Bacterial Isolates. APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s0003683818030110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Petty HR. Frontiers of Complex Disease Mechanisms: Membrane Surface Tension May Link Genotype to Phenotype in Glaucoma. Front Cell Dev Biol 2018; 6:32. [PMID: 29682502 PMCID: PMC5897435 DOI: 10.3389/fcell.2018.00032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/13/2018] [Indexed: 12/19/2022] Open
Abstract
Although many monogenic diseases are understood based upon structural changes of gene products, less progress has been made concerning polygenic disease mechanisms. This article presents a new interdisciplinary approach to understand complex diseases, especially their genetic polymorphisms. I focus upon primary open angle glaucoma (POAG). Although elevated intraocular pressure (IOP) and oxidative stress are glaucoma hallmarks, the linkages between these factors and cell death are obscure. Reactive oxygen species (ROS) promote the formation of oxidatively truncated phosphoglycerides (OTP), free fatty acids, lysophosphoglycerides, oxysterols, and other chemical species that promote membrane disruption and decrease membrane surface tension. Several POAG-linked gene polymorphisms identify proteins that manage damaged lipids and/or influence membrane surface tension. POAG-related genes expected to participate in these processes include: ELOVL5, ABCA1, APOE4, GST, CYP46A1, MYOC, and CAV. POAG-related gene products are expected to influence membrane surface tension, strength, and repair. I propose that heightened IOP overcomes retinal ganglion cell (RGC) membrane compressive strength, weakened by damaged lipid accumulation, to form pores. The ensuing structural failure promotes apoptosis and blindness. The linkage between glaucoma genotype and phenotype is mediated by physical events. Force balancing between the IOP and compressive strength regulates pore nucleation; force balancing between pore line tension and membrane surface tension regulates pore growth. Similar events may contribute to traumatic brain injury, Alzheimer's disease, and macular degeneration.
Collapse
Affiliation(s)
- Howard R Petty
- Department of Ophthalmology and Visual Sciences, The University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
47
|
Chang MC, Chen YJ, Liou EJW, Tseng WY, Chan CP, Lin HJ, Liao WC, Chang YC, Jeng PY, Jeng JH. 7-Ketocholesterol induces ATM/ATR, Chk1/Chk2, PI3K/Akt signalings, cytotoxicity and IL-8 production in endothelial cells. Oncotarget 2018; 7:74473-74483. [PMID: 27740938 PMCID: PMC5342680 DOI: 10.18632/oncotarget.12578] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/06/2016] [Indexed: 01/01/2023] Open
Abstract
Cardiovascular diseases (atherosclerosis, stroke, myocardiac infarction etc.) are the major systemic diseases of elder peoples in the world. This is possibly due to increased levels of oxidized low-density lipoproteins (oxLDLs) such as 7-ketocholesterol (7-KC) and lysophosphatidylcholine (LPC) that damage vascular endothelial cells, induce inflammatory responses, to elevate the risk of cardiovascular diseases, Alzheimer's disease, and age-related macular degeneration. However the toxic effects of 7-KC on endothelial cells are not known. In this study, 7-KC showed cytotoxicity to endothelial cells at concentrations higher than 10 µg/ml. 7-KC stimulated ATM/Chk2, ATR-Chk1 and p53 signaling pathways in endothelial cells. 7-KC also induced G0/G1 cell cycle arrest and apoptosis with an inhibition of Cyclin dependent kinase 1 (Cdk1) and cyclin B1 expression. Secretion and expression of IL-8 in endothelial cells were stimulated by 7-KC. 7-KC further induced intracellular ROS production as shown by increase in DCF fluorescence and Akt phosphorylation. LY294002 attenuated the 7-KC-induced apoptosis and IL-8 mRNA expression of endothelial cells. These results indicate that oxLDLs such as 7-KC may contribute to the pathogenesis of atherosclerosis, thrombosis and cardiovascular diseases by induction of endothelial damage, apoptosis and inflammatory responses. These events are associated with ROS production, activation of ATM/Chk2, ATR/Chk1, p53 and PI3K/Akt signaling pathways.
Collapse
Affiliation(s)
- Mei-Chi Chang
- Biomedical Science Team, Chang Gung University of Science and Technology, Kwei-Shan, Taoyuan, Taiwan.,Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Yi-Jane Chen
- School of Dentistry and Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital, Taipei, Taiwan
| | | | - Wan-Yu Tseng
- School of Dentistry and Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital, Taipei, Taiwan
| | - Chiu-Po Chan
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Hseuh-Jen Lin
- Department of Dentistry, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Wan-Chuen Liao
- School of Dentistry and Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital, Taipei, Taiwan
| | - Ya-Ching Chang
- Department of Dentistry, Mackey Memorial Hospital, Taipei, Taiwan
| | - Po-Yuan Jeng
- School of Dentistry and Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital, Taipei, Taiwan
| | - Jiiang-Huei Jeng
- School of Dentistry and Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
48
|
Mashima R, Maekawa M. Lipid biomarkers for the peroxisomal and lysosomal disorders: their formation, metabolism and measurement. Biomark Med 2018; 12:83-95. [DOI: 10.2217/bmm-2017-0225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Lipid biomarkers play important roles in the diagnosis of and monitoring of treatment in peroxisomal disorders and lysosomal storage disorders. Today, a variety of lipids, including very long chain fatty acids, glycolipids, bile acids and the oxidation products of cholesterol, have been considered as biomarkers for these disorders. In this brief review, the authors summarized the recent advances regarding these lipid biomarkers in terms of their formation, metabolism and measurement in these disorders. An understanding of these biomarkers will offer a key to the development of novel diagnoses and help create more effective therapies in the future.
Collapse
Affiliation(s)
- Ryuichi Mashima
- Department of Clinical Laboratory Medicine, National Center for Child Health & Development, 2–10–1 Okura, Setagaya-ku, Tokyo 157–8535, Japan
| | - Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1–1 Seiryo-machi, Aoba-ku, Sendai 980–8574, Japan
| |
Collapse
|
49
|
Abstract
Signaling pathways direct organogenesis, often through concentration-dependent effects on cells. The hedgehog pathway enables cells to sense and respond to hedgehog ligands, of which the best studied is sonic hedgehog. Hedgehog signaling is essential for development, proliferation, and stem cell maintenance, and it is a driver of certain cancers. Lipid metabolism has a profound influence on both hedgehog signal transduction and the properties of the ligands themselves, leading to changes in the strength of hedgehog signaling and cellular functions. Here we review the evolving understanding of the relationship between lipids and hedgehog signaling.
Collapse
Affiliation(s)
- Robert Blassberg
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - John Jacob
- Nuffield Department of Clinical Neurosciences (NDCN), Level 6, West Wing, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK. .,Department of Neurology, West Wing, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK. .,Milton Keynes University Hospital, Standing Way, Eaglestone, Milton Keynes, MK6 5LD, UK.
| |
Collapse
|
50
|
Olivier E, Dutot M, Regazzetti A, Laprévote O, Rat P. 25-Hydroxycholesterol induces both P2X7-dependent pyroptosis and caspase-dependent apoptosis in human skin model: New insights into degenerative pathways. Chem Phys Lipids 2017; 207:171-178. [DOI: 10.1016/j.chemphyslip.2017.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/02/2017] [Accepted: 06/05/2017] [Indexed: 02/06/2023]
|