1
|
Pratama AM, Sharma M, Naidu S, Bömmel H, Prabhuswamimath SC, Madhusudhan T, Wihadmadyatami H, Bachhuka A, Karnati S. Peroxisomes and PPARs: Emerging role as master regulators of cancer metabolism. Mol Metab 2024; 90:102044. [PMID: 39368612 DOI: 10.1016/j.molmet.2024.102044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/16/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024] Open
Abstract
Cancer is a disease characterized by the acquisition of a multitude of unique traits. It has long been understood that cancer cells divert significantly from normal cell metabolism. The most obvious of metabolic changes is that cancer cells strongly rely on glucose conversion by aerobic glycolysis. In addition, they also regularly develop mechanisms to use lipids and fatty acids for their energy needs. Peroxisomes lie central to these adaptive changes of lipid metabolism. Peroxisomes are metabolic organelles that take part in over 50 enzymatic reactions crucial for cellular functioning. Thus, they are essential for an effective and comprehensive use of lipids' energy supplied to cells. Cancer cells display a substantial increase in the biogenesis of peroxisomes and an increased expression of proteins necessary for the enzymatic functions provided by peroxisomes. Moreover, the enzymatic conversion of FAs in peroxisomes is a significant source of reactive oxygen and nitrogen species (ROS/RNS) that strongly impact cancer malignancy. Important regulators in peroxisomal FA oxidation and ROS/RNS generation are the transcription factors of the peroxisome proliferator-activated receptor (PPAR) family. This review describes the metabolic changes in tumorigenesis and cancer progression influenced by peroxisomes. We will highlight the ambivalent role that peroxisomes and PPARs play in the different stages of tumor development and summarize our current understanding of how to capitalize on the comprehension of peroxisomal biology for cancer treatment.
Collapse
Affiliation(s)
- Anggi Muhtar Pratama
- University of Würzburg, Institute of Anatomy and Cell Biology, Würzburg, Germany
| | - Mansi Sharma
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, India
| | - Srivatsava Naidu
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, India
| | - Heike Bömmel
- University of Würzburg, Institute of Anatomy and Cell Biology, Würzburg, Germany
| | - Samudyata C Prabhuswamimath
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, 570 015, Karnataka, India
| | - Thati Madhusudhan
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Hevi Wihadmadyatami
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Akash Bachhuka
- Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain.
| | - Srikanth Karnati
- University of Würzburg, Institute of Anatomy and Cell Biology, Würzburg, Germany.
| |
Collapse
|
2
|
Mazza T, Scalise M, Console L, Galluccio M, Giangregorio N, Tonazzi A, Pochini L, Indiveri C. Carnitine traffic and human fertility. Biochem Pharmacol 2024; 230:116565. [PMID: 39368751 DOI: 10.1016/j.bcp.2024.116565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/18/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Carnitine is a vital molecule in human metabolism, prominently involved in fatty acid β-oxidation within mitochondria. Predominantly sourced from dietary intake, carnitine also derives from endogenous synthesis. This review delves into the complex network of carnitine transport and distribution, emphasizing its pivotal role in human fertility. Together with its role in fatty acid oxidation, carnitine modulates the acety-CoA/CoA ratio, influencing carbohydrate metabolism, lipid biosynthesis, and gene expression. The intricate regulation of carnitine homeostasis involves a network of membrane transporters, notably OCTN2, which is central in its absorption, reabsorption, and distribution. OCTN2 dysfunction, results in Primary Carnitine Deficiency (PCD), characterized by systemic carnitine depletion and severe clinical manifestations, including fertility issues. In the male reproductive system, carnitine is crucial for sperm maturation and motility. In the female reproductive system, carnitine supports mitochondrial function necessary for oocyte quality, folliculogenesis, and embryonic development. Indeed, deficiencies in carnitine or its transporters have been linked to asthenozoospermia, reduced sperm quality, and suboptimal fertility outcomes in couples. Moreover, the antioxidant properties of carnitine protect spermatozoa from oxidative stress and help in managing conditions like polycystic ovary syndrome (PCOS) and endometriosis, enhancing sperm viability and fertilization potential of oocytes. This review summarizes the key role of membrane transporters in guaranteeing carnitine homeostasis with a special focus on the implications in fertility and possible treatments of infertility and other related disorders.
Collapse
Affiliation(s)
- Tiziano Mazza
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy
| | - Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy
| | - Lara Console
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy
| | - Michele Galluccio
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy
| | - Nicola Giangregorio
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), via Amendola 122/O, Bari 70126, Italy
| | - Annamaria Tonazzi
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), via Amendola 122/O, Bari 70126, Italy
| | - Lorena Pochini
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy; CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), via Amendola 122/O, Bari 70126, Italy.
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy; CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), via Amendola 122/O, Bari 70126, Italy.
| |
Collapse
|
3
|
Zimmermann JA, Lucht K, Stecher M, Badhan C, Glaser KM, Epple MW, Koch LR, Deboutte W, Manke T, Ebnet K, Brinkmann F, Fehler O, Vogl T, Schuster EM, Bremser A, Buescher JM, Rambold AS. Functional multi-organelle units control inflammatory lipid metabolism of macrophages. Nat Cell Biol 2024; 26:1261-1273. [PMID: 38969763 PMCID: PMC11321999 DOI: 10.1038/s41556-024-01457-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 06/05/2024] [Indexed: 07/07/2024]
Abstract
Eukaryotic cells contain several membrane-separated organelles to compartmentalize distinct metabolic reactions. However, it has remained unclear how these organelle systems are coordinated when cells adapt metabolic pathways to support their development, survival or effector functions. Here we present OrgaPlexing, a multi-spectral organelle imaging approach for the comprehensive mapping of six key metabolic organelles and their interactions. We use this analysis on macrophages, immune cells that undergo rapid metabolic switches upon sensing bacterial and inflammatory stimuli. Our results identify lipid droplets (LDs) as primary inflammatory responder organelle, which forms three- and four-way interactions with other organelles. While clusters with endoplasmic reticulum (ER) and mitochondria (mitochondria-ER-LD unit) help supply fatty acids for LD growth, the additional recruitment of peroxisomes (mitochondria-ER-peroxisome-LD unit) supports fatty acid efflux from LDs. Interference with individual components of these units has direct functional consequences for inflammatory lipid mediator synthesis. Together, we show that macrophages form functional multi-organellar units to support metabolic adaptation and provide an experimental strategy to identify organelle-metabolic signalling hubs.
Collapse
Affiliation(s)
- Julia A Zimmermann
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Center of Chronic Immunodeficiency, Medical Center University of Freiburg, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Kerstin Lucht
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Manuel Stecher
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Chahat Badhan
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Katharina M Glaser
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Maximilian W Epple
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Lena R Koch
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Ward Deboutte
- Bioinformatics Core Facility, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Thomas Manke
- Bioinformatics Core Facility, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Klaus Ebnet
- Institute-Associated Research Group: Cell Adhesion and Cell Polarity, Institute of Medical Biochemistry, ZMBE, University of Munster, Munster, Germany
| | - Frauke Brinkmann
- Institute-Associated Research Group: Cell Adhesion and Cell Polarity, Institute of Medical Biochemistry, ZMBE, University of Munster, Munster, Germany
| | - Olesja Fehler
- Institute of Immunology, University of Munster, Munster, Germany
| | - Thomas Vogl
- Institute of Immunology, University of Munster, Munster, Germany
| | - Ev-Marie Schuster
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Anna Bremser
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Joerg M Buescher
- Metabolomics Core Facility, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Angelika S Rambold
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
- Center of Chronic Immunodeficiency, Medical Center University of Freiburg, Freiburg, Germany.
| |
Collapse
|
4
|
Sun JT, Wang ZM, Zhou LH, Yang TT, Zhao D, Bao YL, Wang SB, Gu LF, Chen JW, Shan TK, Wei TW, Wang H, Wang QM, Kong XQ, Xie LP, Gu AH, Zhao Y, Chen F, Ji Y, Cui YQ, Wang LS. PEX3 promotes regenerative repair after myocardial injury in mice through facilitating plasma membrane localization of ITGB3. Commun Biol 2024; 7:795. [PMID: 38951640 PMCID: PMC11217276 DOI: 10.1038/s42003-024-06483-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/21/2024] [Indexed: 07/03/2024] Open
Abstract
The peroxisome is a versatile organelle that performs diverse metabolic functions. PEX3, a critical regulator of the peroxisome, participates in various biological processes associated with the peroxisome. Whether PEX3 is involved in peroxisome-related redox homeostasis and myocardial regenerative repair remains elusive. We investigate that cardiomyocyte-specific PEX3 knockout (Pex3-KO) results in an imbalance of redox homeostasis and disrupts the endogenous proliferation/development at different times and spatial locations. Using Pex3-KO mice and myocardium-targeted intervention approaches, the effects of PEX3 on myocardial regenerative repair during both physiological and pathological stages are explored. Mechanistically, lipid metabolomics reveals that PEX3 promotes myocardial regenerative repair by affecting plasmalogen metabolism. Further, we find that PEX3-regulated plasmalogen activates the AKT/GSK3β signaling pathway via the plasma membrane localization of ITGB3. Our study indicates that PEX3 may represent a novel therapeutic target for myocardial regenerative repair following injury.
Collapse
Affiliation(s)
- Jia-Teng Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zi-Mu Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Liu-Hua Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tong-Tong Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Di Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yu-Lin Bao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Si-Bo Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ling-Feng Gu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jia-Wen Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tian-Kai Shan
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tian-Wen Wei
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hao Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Qi-Ming Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiang-Qing Kong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Li-Ping Xie
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Ai-Hua Gu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yang Zhao
- Department of Biostatistics, School of Public Health, China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, 210029, China
| | - Feng Chen
- Department of Biostatistics, School of Public Health, China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, 210029, China
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Yi-Qiang Cui
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210029, China.
| | - Lian-Sheng Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
5
|
Palacio-Montoya MI, Herrera DA, Vargas SA, Castillo M. Alpha-methyl acetyl-coA racemase deficiency. Magnetic resonance imaging findings of three patients with encephalopathy, epilepsy, and stroke-like episodes. Neuroradiol J 2024; 37:351-356. [PMID: 37452652 PMCID: PMC11138336 DOI: 10.1177/19714009231187342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Alpha-methyl acyl-CoA racemase deficiency (AMACRD) is a rare peroxisomal disorder that results in the accumulation of pristanic acid and 16 cases have been reported in the literature. Here, we present three additional patients, two confirmed by genomic study and one suspected. Three siblings who were born to healthy unrelated parents developed recurrent episodes of encephalopathy, seizures, and behavioral disturbances. In all 3, brain MRI showed lesions in the thalami, cerebral peduncles, and mesencephalic tegmentum, as well as brain volume loss. In addition, one patient had a chronic hemispheric infarct and an acute contralateral infarct, and another had a subacute infarct involving multiple vascular territories without abnormalities on MR angiography.
Collapse
Affiliation(s)
| | - Diego A Herrera
- Department of Radiology, Universidad de Antioquia, Medellín, Colombia
| | - Sergio A Vargas
- Department of Radiology, Universidad de Antioquia, Medellín, Colombia
| | - Mauricio Castillo
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
6
|
Xu M, Wang W, Cheng J, Qu H, Xu M, Wang L. Effects of mitochondrial dysfunction on cellular function: Role in atherosclerosis. Biomed Pharmacother 2024; 174:116587. [PMID: 38636397 DOI: 10.1016/j.biopha.2024.116587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
Atherosclerosis, an immunoinflammatory disease of medium and large arteries, is associated with life-threatening clinical events, such as acute coronary syndromes and stroke. Chronic inflammation and impaired lipoprotein metabolism are considered to be among the leading causes of atherosclerosis, while numerous risk factors, including arterial hypertension, diabetes mellitus, obesity, and aging, can contribute to the development of the disease. In recent years, emerging evidence has underlined the key role of mitochondrial dysfunction in the pathogenesis of atherosclerosis. Mitochondrial dysfunction is believed to result in an increase in reactive oxygen species, leading to oxidative stress, chronic inflammation, and intracellular lipid deposition, all of which can contribute to the pathogenesis of atherosclerosis. Critical cells, including endothelial cells, vascular smooth muscle cells, and macrophages, play an important role in atherosclerosis. Mitochondrial function is also involved in maintaining the normal function of these cells. To better understand the relationship between mitochondrial dysfunction and atherosclerosis, this review summarizes the findings of recent studies and discusses the role of mitochondrial dysfunction in the risk factors and critical cells of atherosclerosis. FACTS: OPEN QUESTIONS.
Collapse
Affiliation(s)
- Minwen Xu
- Clinical Skills Center, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Wenjun Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jingpei Cheng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China; Basic Medical College, Gannan Medical University, Ganzhou 341000, China
| | - Hongen Qu
- Gannan Normal University, Ganzhou 341000, China.
| | - Minjuan Xu
- Department of Obstetrics and Gynecology, Ganzhou People's Hospital, Ganzhou 341000, China.
| | - Liefeng Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China; Basic Medical College, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
7
|
Vaz FM, Ferdinandusse S, Salomons GS, Wanders RJA. Disorders of fatty acid homeostasis. J Inherit Metab Dis 2024. [PMID: 38693715 DOI: 10.1002/jimd.12734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 05/03/2024]
Abstract
Humans derive fatty acids (FA) from exogenous dietary sources and/or endogenous synthesis from acetyl-CoA, although some FA are solely derived from exogenous sources ("essential FA"). Once inside cells, FA may undergo a wide variety of different modifications, which include their activation to their corresponding CoA ester, the introduction of double bonds, the 2- and ω-hydroxylation and chain elongation, thereby generating a cellular FA pool which can be used for the synthesis of more complex lipids. The biological properties of complex lipids are very much determined by their molecular composition in terms of the FA incorporated into these lipid species. This immediately explains the existence of a range of genetic diseases in man, often with severe clinical consequences caused by variants in one of the many genes coding for enzymes responsible for these FA modifications. It is the purpose of this review to describe the current state of knowledge about FA homeostasis and the genetic diseases involved. This includes the disorders of FA activation, desaturation, 2- and ω-hydroxylation, and chain elongation, but also the disorders of FA breakdown, including disorders of peroxisomal and mitochondrial α- and β-oxidation.
Collapse
Affiliation(s)
- Frédéric M Vaz
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Inborn Errors of Metabolism, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Sacha Ferdinandusse
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Inborn Errors of Metabolism, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Gajja S Salomons
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Inborn Errors of Metabolism, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Ronald J A Wanders
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Inborn Errors of Metabolism, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Dey P, Rajalaxmi S, Saha P, Thakur PS, Hashmi MA, Lal H, Saini N, Singh N, Ramanathan A. Cold-shock proteome of myoblasts reveals role of RBM3 in promotion of mitochondrial metabolism and myoblast differentiation. Commun Biol 2024; 7:515. [PMID: 38688991 PMCID: PMC11061143 DOI: 10.1038/s42003-024-06196-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Adaptation to hypothermia is important for skeletal muscle cells under physiological stress and is used for therapeutic hypothermia (mild hypothermia at 32 °C). We show that hypothermic preconditioning at 32 °C for 72 hours improves the differentiation of skeletal muscle myoblasts using both C2C12 and primary myoblasts isolated from 3 month and 18-month-old mice. We analyzed the cold-shock proteome of myoblasts exposed to hypothermia (32 °C for 6 and 48 h) and identified significant changes in pathways related to RNA processing and central carbon, fatty acid, and redox metabolism. The analysis revealed that levels of the cold-shock protein RBM3, an RNA-binding protein, increases with both acute and chronic exposure to hypothermic stress, and is necessary for the enhanced differentiation and maintenance of mitochondrial metabolism. We also show that overexpression of RBM3 at 37 °C is sufficient to promote mitochondrial metabolism, cellular proliferation, and differentiation of C2C12 and primary myoblasts. Proteomic analysis of C2C12 myoblasts overexpressing RBM3 show significant enrichment of pathways involved in fatty acid metabolism, RNA metabolism and the electron transport chain. Overall, we show that the cold-shock protein RBM3 is a critical factor that can be used for controlling the metabolic network of myoblasts.
Collapse
Affiliation(s)
- Paulami Dey
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK-Post, Bellary Rd, Bengaluru, 560065, Karnataka, India
- SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613401, Tamil Nadu, India
| | - Srujanika Rajalaxmi
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK-Post, Bellary Rd, Bengaluru, 560065, Karnataka, India
| | - Pushpita Saha
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK-Post, Bellary Rd, Bengaluru, 560065, Karnataka, India
| | - Purvi Singh Thakur
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK-Post, Bellary Rd, Bengaluru, 560065, Karnataka, India
| | - Maroof Athar Hashmi
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK-Post, Bellary Rd, Bengaluru, 560065, Karnataka, India
- Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Heera Lal
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK-Post, Bellary Rd, Bengaluru, 560065, Karnataka, India
- Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Nistha Saini
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK-Post, Bellary Rd, Bengaluru, 560065, Karnataka, India
| | - Nirpendra Singh
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK-Post, Bellary Rd, Bengaluru, 560065, Karnataka, India
| | - Arvind Ramanathan
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK-Post, Bellary Rd, Bengaluru, 560065, Karnataka, India.
| |
Collapse
|
9
|
Goetzman ES, Zhang BB, Zhang Y, Bharathi SS, Bons J, Rose J, Shah S, Solo KJ, Schmidt AV, Richert AC, Mullett SJ, Gelhaus SL, Rao KS, Shiva SS, Pfister KE, Silva Barbosa A, Sims-Lucas S, Dobrowolski SF, Schilling B. Dietary dicarboxylic acids provide a non-storable alternative fat source that protects mice against obesity. J Clin Invest 2024; 134:e174186. [PMID: 38687608 PMCID: PMC11178532 DOI: 10.1172/jci174186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
Dicarboxylic fatty acids are generated in the liver and kidney in a minor pathway called fatty acid ω-oxidation. The effects of consuming dicarboxylic fatty acids as an alternative source of dietary fat have not been explored. Here, we fed dodecanedioic acid, a 12-carbon dicarboxylic (DC12), to mice at 20% of daily caloric intake for nine weeks. DC12 increased metabolic rate, reduced body fat, reduced liver fat, and improved glucose tolerance. We observed DC12-specific breakdown products in liver, kidney, muscle, heart, and brain, indicating that oral DC12 escaped first-pass liver metabolism and was utilized by many tissues. In tissues expressing the "a" isoform of acyl-CoA oxidase-1 (ACOX1), a key peroxisomal fatty acid oxidation enzyme, DC12 was chain shortened to the TCA cycle intermediate succinyl-CoA. In tissues with low peroxisomal fatty acid oxidation capacity, DC12 was oxidized by mitochondria. In vitro, DC12 was catabolized even by adipose tissue and was not stored intracellularly. We conclude that DC12 and other dicarboxylic acids may be useful for combatting obesity and for treating metabolic disorders.
Collapse
Affiliation(s)
- Eric S. Goetzman
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Bob B. Zhang
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yuxun Zhang
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sivakama S. Bharathi
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Joanna Bons
- The Buck Institute for Research on Aging, Novato, California, USA
| | - Jacob Rose
- The Buck Institute for Research on Aging, Novato, California, USA
| | - Samah Shah
- The Buck Institute for Research on Aging, Novato, California, USA
| | - Keaton J. Solo
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Alexandra V. Schmidt
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Adam C. Richert
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Steven J. Mullett
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Health Sciences Mass Spectrometry Core, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Stacy L. Gelhaus
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Health Sciences Mass Spectrometry Core, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Krithika S. Rao
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Vascular Medicine Institute and
| | - Sruti S. Shiva
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Vascular Medicine Institute and
| | - Katherine E. Pfister
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Anne Silva Barbosa
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sunder Sims-Lucas
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Steven F. Dobrowolski
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Birgit Schilling
- The Buck Institute for Research on Aging, Novato, California, USA
| |
Collapse
|
10
|
Ali H, Yamanishi M, Sunagawa K, Kumon M, Hasi RY, Aihara M, Kawakami R, Tanaka T. Protective effect of oleic acid against very long-chain fatty acid-induced apoptosis in peroxisome-deficient CHO cells. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159452. [PMID: 38244676 DOI: 10.1016/j.bbalip.2024.159452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
Very long-chain fatty acids (VLCFAs) are degraded exclusively in peroxisomes, as evidenced by the accumulation of VLCFAs in patients with certain peroxisomal disorders. Although accumulation of VLCFAs is considered to be associated with health issues, including neuronal degeneration, the mechanisms underlying VLCFAs-induced tissue degeneration remain unclear. Here, we report the toxic effect of VLCFA and protective effect of C18: 1 FA in peroxisome-deficient CHO cells. We examined the cytotoxicity of saturated and monounsaturated VLCFAs with chain-length at C20-C26, and found that longer and saturated VLCFA showed potent cytotoxicity at lower accumulation levels. Furthermore, the extent of VLCFA-induced toxicity was found to be associated with a decrease in cellular C18:1 FA levels. Notably, supplementation with C18:1 FA effectively rescued the cells from VLCFA-induced apoptosis without reducing the cellular VLCFAs levels, implying that peroxisome-deficient cells can survive in the presence of accumulated VLCFA, as long as the cells keep sufficient levels of cellular C18:1 FA. These results suggest a therapeutic potential of C18:1 FA in peroxisome disease and may provide new insights into the pharmacological effect of Lorenzo's oil, a 4:1 mixture of C18:1 and C22:1 FA.
Collapse
Affiliation(s)
- Hanif Ali
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan
| | - Mone Yamanishi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan
| | - Keigo Sunagawa
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan
| | - Mizuki Kumon
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan
| | - Rumana Yesmin Hasi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan
| | - Mutsumi Aihara
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan
| | - Ryushi Kawakami
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan
| | - Tamotsu Tanaka
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan.
| |
Collapse
|
11
|
Costa CF, Lismont C, Chornyi S, Koster J, Li H, Hussein MAF, Van Veldhoven PP, Waterham HR, Fransen M. The solute carrier SLC25A17 sustains peroxisomal redox homeostasis in diverse mammalian cell lines. Free Radic Biol Med 2024; 212:241-254. [PMID: 38159891 DOI: 10.1016/j.freeradbiomed.2023.12.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/01/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Despite the crucial role of peroxisomes in cellular redox maintenance, little is known about how these organelles transport redox metabolites across their membrane. In this study, we sought to assess potential associations between the cellular redox landscape and the human peroxisomal solute carrier SLC25A17, also known as PMP34. This carrier has been reported to function as a counter-exchanger of adenine-containing cofactors such as coenzyme A (CoA), dephospho-CoA, flavin adenine dinucleotide, nicotinamide adenine dinucleotide (NAD+), adenosine 3',5'-diphosphate, flavin mononucleotide, and adenosine monophosphate. We found that inactivation of SLC25A17 resulted in a shift toward a more reductive state in the glutathione redox couple (GSSG/GSH) across HEK-293 cells, HeLa cells, and SV40-transformed mouse embryonic fibroblasts, with variable impact on the NADPH levels and the NAD+/NADH redox couple. This phenotype could be rescued by the expression of Candida boidinii Pmp47, a putative SLC25A17 orthologue reported to be essential for the metabolism of medium-chain fatty acids in yeast peroxisomes. In addition, we provide evidence that the alterations in the redox state are not caused by changes in peroxisomal antioxidant enzyme expression, catalase activity, H2O2 membrane permeability, or mitochondrial fitness. Furthermore, treating control and ΔSLC25A17 cells with dehydroepiandrosterone, a commonly used glucose-6-phosphate dehydrogenase inhibitor affecting NADPH regeneration, revealed a kinetic disconnection between the peroxisomal and cytosolic glutathione pools. Additionally, these experiments underscored the impact of SLC25A17 loss on peroxisomal NADPH metabolism. The relevance of these findings is discussed in the context of the still ambiguous substrate specificity of SLC25A17 and the recent observation that the mammalian peroxisomal membrane is readily permeable to both GSH and GSSG.
Collapse
Affiliation(s)
- Cláudio F Costa
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000, Leuven, Belgium
| | - Celien Lismont
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000, Leuven, Belgium
| | - Serhii Chornyi
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ, Amsterdam, the Netherlands
| | - Janet Koster
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ, Amsterdam, the Netherlands
| | - Hongli Li
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000, Leuven, Belgium
| | - Mohamed A F Hussein
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000, Leuven, Belgium; Department of Biochemistry, Faculty of Pharmacy, Assiut University, 71515, Asyut, Egypt
| | - Paul P Van Veldhoven
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000, Leuven, Belgium
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ, Amsterdam, the Netherlands
| | - Marc Fransen
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
12
|
Zhao H, Liu X, Amantai X, Bi J, Cao X, Yue X. Characterization and Comparison Analysis of Milk Fat Globule Membrane Proteins between Human and Porcine Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3210-3217. [PMID: 38291649 DOI: 10.1021/acs.jafc.3c06298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
This study aimed to explore the differences in milk fat globule membrane (MFGM) proteins between human milk (HM) and porcine milk (PM) using a label-free quantitative proteomic approach. A total of 3920 and 4001 MFGM proteins were identified between PM and HM, respectively. Among them, 3520 common MFGM proteins were detected, including 956 significant differentially expressed MFGM proteins (DEPs). Gene ontology (GO) enrichment analysis showed that the DEPs were highly enriched in the lipid metabolic process and intrinsic component of membrane. Kyoto Encyclopedia of Genes and Genomes pathways suggested that protein processing in the endoplasmic reticulum was the most highly enriched pathway, followed by peroxisome, complement, and coagulation cascades. This study reflects the difference in the composition of MFGM proteins between HM and PM and provides a scientific and systematic reference for the development of MFGM protein nutrition.
Collapse
Affiliation(s)
- Huiwen Zhao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaoyu Liu
- Department of Obstetrics and Gynaecology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Xiakouna Amantai
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Jiayang Bi
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Xueyan Cao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
13
|
Raas Q, Wood A, Stevenson TJ, Swartwood S, Liu S, Kannan RM, Kannan S, Bonkowsky JL. Generation and characterization of a zebrafish gain-of-function ACOX1 Mitchell disease model. Front Pediatr 2024; 12:1326886. [PMID: 38357503 PMCID: PMC10864527 DOI: 10.3389/fped.2024.1326886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/05/2024] [Indexed: 02/16/2024] Open
Abstract
Background Mitchell syndrome is a rare, neurodegenerative disease caused by an ACOX1 gain-of-function mutation (c.710A>G; p.N237S), with fewer than 20 reported cases. Affected patients present with leukodystrophy, seizures, and hearing loss. ACOX1 serves as the rate-limiting enzyme in peroxisomal beta-oxidation of very long-chain fatty acids. The N237S substitution has been shown to stabilize the active ACOX1 dimer, resulting in dysregulated enzymatic activity, increased oxidative stress, and glial damage. Mitchell syndrome lacks a vertebrate model, limiting insights into the pathophysiology of ACOX1-driven white matter damage and neuroinflammatory insults. Methods We report a patient presenting with rapidly progressive white matter damage and neurological decline, who was eventually diagnosed with an ACOX1 N237S mutation through whole genome sequencing. We developed a zebrafish model of Mitchell syndrome using transient ubiquitous overexpression of the human ACOX1 N237S variant tagged with GFP. We assayed zebrafish behavior, oligodendrocyte numbers, expression of white matter and inflammatory transcripts, and analysis of peroxisome counts. Results The patient experienced progressive leukodystrophy and died 2 years after presentation. The transgenic zebrafish showed a decreased swimming ability, which was restored with the reactive microglia-targeted antioxidant dendrimer-N-acetyl-cysteine conjugate. The mutants showed no effect on oligodendrocyte counts but did display activation of the integrated stress response (ISR). Using a novel SKL-targeted mCherry reporter, we found that mutants had reduced density of peroxisomes. Conclusions We developed a vertebrate (zebrafish) model of Mitchell syndrome using transient ubiquitous overexpression of the human ACOX1 N237S variant. The transgenic mutants exhibited motor impairment and showed signs of activated ISR, but interestingly, there were no changes in oligodendrocyte counts. However, the mutants exhibited a deficiency in the number of peroxisomes, suggesting a possible shared mechanism with the Zellweger spectrum disorders.
Collapse
Affiliation(s)
- Quentin Raas
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, United States
- Laboratory of Translational Research for Neurological Disorders, Imagine Institute, Université de Paris, INSERM UMR 1163, Paris, France
| | - Austin Wood
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Tamara J. Stevenson
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Shanna Swartwood
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Suzanne Liu
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Rangaramanujam M. Kannan
- Department of Ophthalmology, Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sujatha Kannan
- Department of Ophthalmology, Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Joshua L. Bonkowsky
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, United States
- Center for Personalized Medicine, Primary Children’s Hospital, Salt Lake City, UT, United States
| |
Collapse
|
14
|
Rashan EH, Bartlett AK, Khana DB, Zhang J, Jain R, Smith AJ, Baker ZN, Cook T, Caldwell A, Chevalier AR, Pfleger BF, Yuan P, Amador-Noguez D, Simcox JA, Pagliarini DJ. ACAD10 and ACAD11 enable mammalian 4-hydroxy acid lipid catabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574893. [PMID: 38260250 PMCID: PMC10802472 DOI: 10.1101/2024.01.09.574893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Fatty acid β-oxidation (FAO) is a central catabolic pathway with broad implications for organismal health. However, various fatty acids are largely incompatible with standard FAO machinery until they are modified by other enzymes. Included among these are the 4-hydroxy acids (4-HAs)-fatty acids hydroxylated at the 4 (γ) position-which can be provided from dietary intake, lipid peroxidation, and certain drugs of abuse. Here, we reveal that two atypical and poorly characterized acyl-CoA dehydrogenases (ACADs), ACAD10 and ACAD11, drive 4-HA catabolism in mice. Unlike other ACADs, ACAD10 and ACAD11 feature kinase domains N-terminal to their ACAD domains that phosphorylate the 4-OH position as a requisite step in the conversion of 4-hydroxyacyl-CoAs into 2-enoyl-CoAs-conventional FAO intermediates. Our ACAD11 cryo-EM structure and molecular modeling reveal a unique binding pocket capable of accommodating this phosphorylated intermediate. We further show that ACAD10 is mitochondrial and necessary for catabolizing shorter-chain 4-HAs, whereas ACAD11 is peroxisomal and enables longer-chain 4-HA catabolism. Mice lacking ACAD11 accumulate 4-HAs in their plasma while comparable 3- and 5-hydroxy acids remain unchanged. Collectively, this work defines ACAD10 and ACAD11 as the primary gatekeepers of mammalian 4-HA catabolism and sets the stage for broader investigations into the ramifications of aberrant 4-HA metabolism in human health and disease.
Collapse
Affiliation(s)
- Edrees H. Rashan
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Abigail K. Bartlett
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Daven B. Khana
- Department of Microbiology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jingying Zhang
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Raghav Jain
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Andrew J. Smith
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Zakery N. Baker
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Taylor Cook
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Alana Caldwell
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Autumn R. Chevalier
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Brian F. Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Peng Yuan
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Daniel Amador-Noguez
- Department of Microbiology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Judith A. Simcox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David J. Pagliarini
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
15
|
Zhang J, Chen Q, Zhang L, Shi B, Yu M, Huang Q, Tang H. Simultaneously quantifying hundreds of acylcarnitines in multiple biological matrices within ten minutes using ultrahigh-performance liquid-chromatography and tandem mass spectrometry. J Pharm Anal 2024; 14:140-148. [PMID: 38352947 PMCID: PMC10859589 DOI: 10.1016/j.jpha.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/28/2023] [Accepted: 10/14/2023] [Indexed: 02/16/2024] Open
Abstract
Acylcarnitines are metabolic intermediates of fatty acids and branched-chain amino acids having vital biofunctions and pathophysiological significances. Here, we developed a high-throughput method for quantifying hundreds of acylcarnitines in one run using ultrahigh performance liquid chromatography and tandem mass spectrometry (UPLC-MS/MS). This enabled simultaneous quantification of 1136 acylcarnitines (C0-C26) within 10-min with good sensitivity (limit of detection < 0.7 fmol), linearity (correlation coefficient > 0.992), accuracy (relative error < 20%), precision (coefficient of variation (CV), CV < 15%), stability (CV < 15%), and inter-technician consistency (CV < 20%, n = 6). We also established a quantitative structure-retention relationship (goodness of fit > 0.998) for predicting retention time (tR) of acylcarnitines with no standards and built a database of their multiple reaction monitoring parameters (tR, ion-pairs, and collision energy). Furthermore, we quantified 514 acylcarnitines in human plasma and urine, mouse kidney, liver, heart, lung, and muscle. This provides a rapid method for quantifying acylcarnitines in multiple biological matrices.
Collapse
Affiliation(s)
- Jingxian Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Qinsheng Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lianglong Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Biru Shi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Men Yu
- Wuhan Laboratory for Shanghai Metabolome Institute (SMI) Ltd., Wuhan, 430000, China
| | - Qingxia Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| |
Collapse
|
16
|
Morito K, Ali H, Kishino S, Tanaka T. Fatty Acid Metabolism in Peroxisomes and Related Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1470:31-55. [PMID: 38811487 DOI: 10.1007/5584_2024_802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
One of the functions of peroxisomes is the oxidation of fatty acids (FAs). The importance of this function in our lives is evidenced by the presence of peroxisomal disorders caused by the genetic deletion of proteins involved in these processes. Unlike mitochondrial oxidation, peroxisomal oxidation is not directly linked to ATP production. What is the role of FA oxidation in peroxisomes? Recent studies have revealed that peroxisomes supply the building blocks for lipid synthesis in the endoplasmic reticulum and facilitate intracellular carbon recycling for membrane quality control. Accumulation of very long-chain fatty acids (VLCFAs), which are peroxisomal substrates, is a diagnostic marker in many types of peroxisomal disorders. However, the relationship between VLCFA accumulation and various symptoms of these disorders remains unclear. Recently, we developed a method for solubilizing VLCFAs in aqueous media and found that VLCFA toxicity could be mitigated by oleic acid replenishment. In this chapter, we present the physiological role of peroxisomal FA oxidation and the knowledge obtained from VLCFA-accumulating peroxisome-deficient cells.
Collapse
Affiliation(s)
- Katsuya Morito
- Laboratory of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Hanif Ali
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
| | | | - Tamotsu Tanaka
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan.
| |
Collapse
|
17
|
Reis HBD, Carvalho ME, Espigolan R, Poleti MD, Ambrizi DR, Berton MP, Ferraz JBS, de Mattos Oliveira EC, Eler JP. Genome-Wide Association (GWAS) Applied to Carcass and Meat Traits of Nellore Cattle. Metabolites 2023; 14:6. [PMID: 38276296 PMCID: PMC10818672 DOI: 10.3390/metabo14010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 01/27/2024] Open
Abstract
The meat market has enormous importance for the world economy, and the quality of the product offered to the consumer is fundamental for the success of the sector. In this study, we analyzed a database which contained information on 2470 animals from a commercial farm in the state of São Paulo, Brazil. Of this total, 2181 animals were genotyped, using 777,962 single-nucleotide polymorphisms (SNPs). After quality control analysis, 468,321 SNPs provided information on the number of genotyped animals. Genome-wide association analyses (GWAS) were performed for the characteristics of the rib eye area (REA), subcutaneous fat thickness (SFT), shear force at 7 days' ageing (SF7), and intramuscular fat (IMF), with the aid of the single-step genomic best linear unbiased prediction (ssGBLUP) method, with the purpose of identifying possible genomic windows (~1 Mb) responsible for explaining at least 0.5% of the genetic variance of the traits under analysis (≥0.5%). These genomic regions were used in a gene search and enrichment analyses using MeSH terms. The distributed heritability coefficients were 0.14, 0.20, 0.18, and 0.21 for REA, SFT, SF7, and IMF, respectively. The GWAS results indicated significant genomic windows for the traits of interest in a total of 17 chromosomes. Enrichment analyses showed the following significant terms (FDR ≤ 0.05) associated with the characteristics under study: for the REA, heat stress disorders and life cycle stages; for SFT, insulin and nonesterified fatty acids; for SF7, apoptosis and heat shock proteins (HSP27); and for IMF, metalloproteinase 2. In addition, KEGG (Kyoto encyclopedia of genes and genomes) enrichment analysis allowed us to highlight important metabolic pathways related to the studied phenotypes, such as the growth hormone synthesis, insulin-signaling, fatty acid metabolism, and ABC transporter pathways. The results obtained provide a better understanding of the molecular processes involved in the expression of the studied characteristics and may contribute to the design of selection strategies and future studies aimed at improving the productivity of Nellore cattle.
Collapse
Affiliation(s)
- Hugo Borges Dos Reis
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (M.E.C.); (M.D.P.); (J.B.S.F.)
| | - Minos Esperândio Carvalho
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (M.E.C.); (M.D.P.); (J.B.S.F.)
| | - Rafael Espigolan
- Department of Animal Science and Biological Sciences, Federal University of Santa Maria (UFSM), Av. Independencia, 3751, Palmeira das Missões 98300-000, RS, Brazil
| | - Mirele Daiana Poleti
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (M.E.C.); (M.D.P.); (J.B.S.F.)
| | - Dewison Ricardo Ambrizi
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (M.E.C.); (M.D.P.); (J.B.S.F.)
| | - Mariana Piatto Berton
- School of Agricultural and Veterinary Studies (FCAV), São Paulo State University, Jaboticabal 14884-900, SP, Brazil;
| | - José Bento Sterman Ferraz
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (M.E.C.); (M.D.P.); (J.B.S.F.)
| | - Elisângela Chicaroni de Mattos Oliveira
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (M.E.C.); (M.D.P.); (J.B.S.F.)
| | - Joanir Pereira Eler
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (M.E.C.); (M.D.P.); (J.B.S.F.)
| |
Collapse
|
18
|
Kocherlakota S, Das Y, Swinkels D, Vanmunster M, Callens M, Vinckier S, Vaz FM, Sinha D, Van Veldhoven PP, Fransen M, Baes M. The murine retinal pigment epithelium requires peroxisomal β-oxidation to maintain lysosomal function and prevent dedifferentiation. Proc Natl Acad Sci U S A 2023; 120:e2301733120. [PMID: 37862382 PMCID: PMC10614831 DOI: 10.1073/pnas.2301733120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/14/2023] [Indexed: 10/22/2023] Open
Abstract
Retinal pigment epithelium (RPE) cells have to phagocytose shed photoreceptor outer segments (POS) on a daily basis over the lifetime of an organism, but the mechanisms involved in the digestion and recycling of POS lipids are poorly understood. Although it was frequently assumed that peroxisomes may play an essential role, this was never investigated. Here, we show that global as well as RPE-selective loss of peroxisomal β-oxidation in multifunctional protein 2 (MFP2) knockout mice impairs the digestive function of lysosomes in the RPE at a very early age, followed by RPE degeneration. This was accompanied by prolonged mammalian target of rapamycin activation, lipid deregulation, and mitochondrial structural anomalies without, however, causing oxidative stress or energy shortage. The RPE degeneration caused secondary photoreceptor death. Notably, the deterioration of the RPE did not occur in an Mfp2/rd1 mutant mouse line, characterized by absent POS shedding. Our findings prove that peroxisomal β-oxidation in the RPE is essential for handling the polyunsaturated fatty acids present in ingested POS and shed light on retinopathy in patients with peroxisomal disorders. Our data also have implications for gene therapy development as they highlight the importance of targeting the RPE in addition to the photoreceptor cells.
Collapse
Affiliation(s)
- Sai Kocherlakota
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, Leuven3000, Belgium
| | - Yannick Das
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, Leuven3000, Belgium
| | - Daniëlle Swinkels
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, Leuven3000, Belgium
| | - Maarten Vanmunster
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, Leuven3000, Belgium
| | - Manon Callens
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, Leuven3000, Belgium
| | - Stefan Vinckier
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, Vlaams Insituut voor Biotechnologie, Leuven3000, Belgium
- Department of Oncology, Leuven Cancer Institute, Katholieke Universiteit Leuven, Leuven3000, Belgium
| | - Frédéric M. Vaz
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam Gastroenterology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, Amsterdam1105AZ, The Netherlands
- Core Facility Metabolomics, Amsterdam University Medical Center, Amsterdam1105AZ, The Netherlands
| | - Debasish Sinha
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA15213
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Paul P. Van Veldhoven
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, Leuven3000, Belgium
| | - Marc Fransen
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, Leuven3000, Belgium
| | - Myriam Baes
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, Leuven3000, Belgium
| |
Collapse
|
19
|
Swinkels D, Baes M. The essential role of docosahexaenoic acid and its derivatives for retinal integrity. Pharmacol Ther 2023; 247:108440. [PMID: 37201739 DOI: 10.1016/j.pharmthera.2023.108440] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
The fatty acid composition of photoreceptor outer segment (POS) phospholipids diverges from other membranes, being highly enriched in polyunsaturated fatty acids (PUFAs). The most abundant PUFA is docosahexaenoic acid (DHA, C22:6n-3), an omega-3 PUFA that amounts to over 50% of the POS phospholipid fatty acid side chains. Interestingly, DHA is the precursor of other bioactive lipids such as elongated PUFAs and oxygenated derivatives. In this review, we present the current view on metabolism, trafficking and function of DHA and very long chain polyunsaturated fatty acids (VLC-PUFAs) in the retina. New insights on pathological features generated from PUFA deficient mouse models with enzyme or transporter defects and corresponding patients are discussed. Not only the neural retina, but also abnormalities in the retinal pigment epithelium are considered. Furthermore, the potential involvement of PUFAs in more common retinal degeneration diseases such as diabetic retinopathy, retinitis pigmentosa and age-related macular degeneration are evaluated. Supplementation treatment strategies and their outcome are summarized.
Collapse
Affiliation(s)
- Daniëlle Swinkels
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Myriam Baes
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
20
|
Kaya I, Schembri LS, Nilsson A, Shariatgorji R, Baijnath S, Zhang X, Bezard E, Svenningsson P, Odell LR, Andrén PE. On-Tissue Chemical Derivatization for Comprehensive Mapping of Brain Carboxyl and Aldehyde Metabolites by MALDI-MS Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:836-846. [PMID: 37052344 PMCID: PMC10161219 DOI: 10.1021/jasms.2c00336] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The visualization of small metabolites by MALDI mass spectrometry imaging in brain tissue sections is challenging due to low detection sensitivity and high background interference. We present an on-tissue chemical derivatization MALDI mass spectrometry imaging approach for the comprehensive mapping of carboxyls and aldehydes in brain tissue sections. In this approach, the AMPP (1-(4-(aminomethyl)phenyl)pyridin-1-ium chloride) derivatization reagent is used for the covalent charge-tagging of molecules containing carboxylic acid (in the presence of peptide coupling reagents) and aldehydes. This includes free fatty acids and the associated metabolites, fatty aldehydes, dipeptides, neurotoxic reactive aldehydes, amino acids, neurotransmitters and associated metabolites, as well as tricarboxylic acid cycle metabolites. We performed sensitive ultrahigh mass resolution MALDI-MS detection and imaging of various carboxyl- and aldehyde-containing endogenous metabolites simultaneously in rodent brain tissue sections. We verified the AMPP-derivatized metabolites by tandem MS for structural elucidation. This approach allowed us to image numerous aldehydes and carboxyls, including certain metabolites which had been undetectable in brain tissue sections. We also demonstrated the application of on-tissue derivatization to carboxyls and aldehydes in coronal brain tissue sections of a nonhuman primate Parkinson's disease model. Our methodology provides a powerful tool for the sensitive, simultaneous spatial molecular imaging of numerous aldehydes and carboxylic acids during pathological states, including neurodegeneration, in brain tissue.
Collapse
Affiliation(s)
- Ibrahim Kaya
- Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, SE-75124 Uppsala, Sweden
| | | | - Anna Nilsson
- Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, SE-75124 Uppsala, Sweden
| | - Reza Shariatgorji
- Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, SE-75124 Uppsala, Sweden
| | - Sooraj Baijnath
- Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, SE-75124 Uppsala, Sweden
| | - Xiaoqun Zhang
- Section of Neurology, Department of Clinical Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Erwan Bezard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, F-33000 Bordeaux, France
| | - Per Svenningsson
- Section of Neurology, Department of Clinical Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Luke R Odell
- Department of Medicinal Chemistry, Uppsala University, SE-75123 Uppsala, Sweden
| | - Per E Andrén
- Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, SE-75124 Uppsala, Sweden
| |
Collapse
|
21
|
Yamashima T, Mori Y, Seike T, Ahmed S, Boontem P, Li S, Oikawa S, Kobayashi H, Yamashita T, Kikuchi M, Kaneko S, Mizukoshi E. Vegetable Oil-Peroxidation Product 'Hydroxynonenal' Causes Hepatocyte Injury and Steatosis via Hsp70.1 and BHMT Disorders in the Monkey Liver. Nutrients 2023; 15:nu15081904. [PMID: 37111122 PMCID: PMC10145254 DOI: 10.3390/nu15081904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Hsp70.1 has a dual function as a chaperone protein and lysosomal stabilizer. In 2009, we reported that calpain-mediated cleavage of carbonylated Hsp70.1 causes neuronal death by inducing lysosomal rupture in the hippocampal CA1 neurons of monkeys after transient brain ischemia. Recently, we also reported that consecutive injections of the vegetable oil-peroxidation product 'hydroxynonenal' induce hepatocyte death via a similar cascade in monkeys. As Hsp70.1 is also related to fatty acid β-oxidation in the liver, its deficiency causes fat accumulation. The genetic deletion of betaine-homocysteine S-methyltransferase (BHMT) was reported to perturb choline metabolism, inducing a decrease in phosphatidylcholine and resulting in hepatic steatosis. Here, focusing on Hsp70.1 and BHMT disorders, we studied the mechanisms of hepatocyte degeneration and steatosis. Monkey liver tissues with and without hydroxynonenal injections were compared using proteomics, immunoblotting, immunohistochemical, and electron microscopy-based analyses. Western blotting showed that neither Hsp70.1 nor BHMT were upregulated, but an increased cleavage was observed in both. Proteomics showed a marked downregulation of Hsp70.1, albeit a two-fold increase in the carbonylated BHMT. Hsp70.1 carbonylation was negligible, in contrast to the ischemic hippocampus, which was associated with ~10-fold increments. Although histologically, the control liver showed very little lipid deposition, numerous tiny lipid droplets were seen within and around the degenerating/dying hepatocytes in monkeys after the hydroxynonenal injections. Electron microscopy showed permeabilization/rupture of lysosomal membranes, dissolution of the mitochondria and rough ER membranes, and proliferation of abnormal peroxisomes. It is probable that the disruption of the rough ER caused impaired synthesis of the Hsp70.1 and BHMT proteins, while impairment of the mitochondria and peroxisomes contributed to the sustained generation of reactive oxygen species. In addition, hydroxynonenal-induced disorders facilitated degeneration and steatosis in the hepatocytes.
Collapse
Affiliation(s)
- Tetsumori Yamashima
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
- Department of Cell Metabolism and Nutrition, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| | - Yurie Mori
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Takuya Seike
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| | - Sharif Ahmed
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Piyakarn Boontem
- Department of Cell Metabolism and Nutrition, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| | - Shihui Li
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| | - Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Hatasu Kobayashi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Tatsuya Yamashita
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
- Department of Cell Metabolism and Nutrition, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| | - Mitsuru Kikuchi
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| | - Eishiro Mizukoshi
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| |
Collapse
|
22
|
Dhingra A, Tobias JW, Philp NJ, Boesze-Battaglia K. Transcriptomic Changes Predict Metabolic Alterations in LC3 Associated Phagocytosis in Aged Mice. Int J Mol Sci 2023; 24:6716. [PMID: 37047689 PMCID: PMC10095460 DOI: 10.3390/ijms24076716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
LC3b (Map1lc3b) plays an essential role in canonical autophagy and is one of several components of the autophagy machinery that mediates non-canonical autophagic functions. Phagosomes are often associated with lipidated LC3b to promote phagosome maturation in a process called LC3-associated phagocytosis (LAP). Specialized phagocytes, such as mammary epithelial cells, retinal pigment epithelial (RPE) cells, and sertoli cells, utilize LAP for optimal degradation of phagocytosed material, including debris. In the visual system, LAP is critical to maintain retinal function, lipid homeostasis, and neuroprotection. In a mouse model of retinal lipid steatosis-mice lacking LC3b (LC3b-/-), we observed increased lipid deposition, metabolic dysregulation, and enhanced inflammation. Herein, we present a non-biased approach to determine if loss of LAP mediated processes modulate the expression of various genes related to metabolic homeostasis, lipid handling, and inflammation. A comparison of the RPE transcriptome of WT and LC3b-/- mice revealed 1533 DEGs, with ~73% upregulated and 27% downregulated. Enriched gene ontology (GO) terms included inflammatory response (upregulated DEGs), fatty acid metabolism, and vascular transport (downregulated DEGs). Gene set enrichment analysis (GSEA) identified 34 pathways; 28 were upregulated (dominated by inflammation/related pathways) and 6 were downregulated (dominated by metabolic pathways). Analysis of additional gene families identified significant differences for genes in the solute carrier family, RPE signature genes, and genes with a potential role in age-related macular degeneration. These data indicate that loss of LC3b induces robust changes in the RPE transcriptome contributing to lipid dysregulation and metabolic imbalance, RPE atrophy, inflammation, and disease pathophysiology.
Collapse
Affiliation(s)
- Anuradha Dhingra
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John W. Tobias
- Penn Genomics and Sequencing Core, Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nancy J. Philp
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Kathleen Boesze-Battaglia
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
23
|
Dhingra A, Tobias JW, Philp NJ, Boesze-Battaglia K. Transcriptomic changes predict metabolic alterations in LC3 associated phagocytosis in aged mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532586. [PMID: 36993501 PMCID: PMC10054970 DOI: 10.1101/2023.03.14.532586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
LC3b ( Map1lc3b ) plays an essential role in canonical autophagy and is one of several components of the autophagy machinery that mediates non-canonical autophagic functions. Phagosomes are often associated with lipidated LC3b, to pro-mote phagosome maturation in a process called LC3-associated phagocytosis (LAP). Specialized phagocytes such as mammary epithelial cells, retinal pigment epithelial (RPE) cells, and sertoli cells utilize LAP for optimal degradation of phagocytosed material, including debris. In the visual system, LAP is critical to maintain retinal function, lipid homeostasis and neuroprotection. In a mouse model of retinal lipid steatosis - mice lacking LC3b ( LC3b -/- ), we observed increased lipid deposition, metabolic dysregulation and enhanced inflammation. Herein we present a non-biased approach to determine if loss of LAP mediated processes modulate the expression of various genes related to metabolic homeostasis, lipid handling, and inflammation. A comparison of the RPE transcriptome of WT and LC3b -/- mice revealed 1533 DEGs, with ~73% upregulated and 27% down-regulated. Enriched gene ontology (GO) terms included inflammatory response (upregulated DEGs), fatty acid metabolism and vascular transport (downregulated DEGs). Gene set enrichment analysis (GSEA) identified 34 pathways; 28 were upregulated (dominated by inflammation/related pathways) and 6 were downregulated (dominated by metabolic pathways). Analysis of additional gene families identified significant differences for genes in the solute carrier family, RPE signature genes, and genes with potential role in age-related macular degeneration. These data indicate that loss of LC3b induces robust changes in the RPE transcriptome contributing to lipid dysregulation and metabolic imbalance, RPE atrophy, inflammation, and disease pathophysiology.
Collapse
|
24
|
Reprogramming of palmitic acid induced by dephosphorylation of ACOX1 promotes β-catenin palmitoylation to drive colorectal cancer progression. Cell Discov 2023; 9:26. [PMID: 36878899 PMCID: PMC9988979 DOI: 10.1038/s41421-022-00515-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 12/30/2022] [Indexed: 03/08/2023] Open
Abstract
Metabolic reprogramming is a hallmark of cancer. However, it is not well known how metabolism affects cancer progression. We identified that metabolic enzyme acyl-CoA oxidase 1 (ACOX1) suppresses colorectal cancer (CRC) progression by regulating palmitic acid (PA) reprogramming. ACOX1 is highly downregulated in CRC, which predicts poor clinical outcome in CRC patients. Functionally, ACOX1 depletion promotes CRC cell proliferation in vitro and colorectal tumorigenesis in mouse models, whereas ACOX1 overexpression inhibits patient-derived xenograft growth. Mechanistically, DUSP14 dephosphorylates ACOX1 at serine 26, promoting its polyubiquitination and proteasomal degradation, thereby leading to an increase of the ACOX1 substrate PA. Accumulated PA promotes β-catenin cysteine 466 palmitoylation, which inhibits CK1- and GSK3-directed phosphorylation of β-catenin and subsequent β-Trcp-mediated proteasomal degradation. In return, stabilized β-catenin directly represses ACOX1 transcription and indirectly activates DUSP14 transcription by upregulating c-Myc, a typical target of β-catenin. Finally, we confirmed that the DUSP14-ACOX1-PA-β-catenin axis is dysregulated in clinical CRC samples. Together, these results identify ACOX1 as a tumor suppressor, the downregulation of which increases PA-mediated β-catenin palmitoylation and stabilization and hyperactivates β-catenin signaling thus promoting CRC progression. Particularly, targeting β-catenin palmitoylation by 2-bromopalmitate (2-BP) can efficiently inhibit β-catenin-dependent tumor growth in vivo, and pharmacological inhibition of DUSP14-ACOX1-β-catenin axis by Nu-7441 reduced the viability of CRC cells. Our results reveal an unexpected role of PA reprogramming induced by dephosphorylation of ACOX1 in activating β-catenin signaling and promoting cancer progression, and propose the inhibition of the dephosphorylation of ACOX1 by DUSP14 or β-catenin palmitoylation as a viable option for CRC treatment.
Collapse
|
25
|
Chornyi S, Ofman R, Koster J, Waterham HR. The origin of long-chain fatty acids required for de novo ether lipid/plasmalogen synthesis. J Lipid Res 2023; 64:100364. [PMID: 36990386 PMCID: PMC10154978 DOI: 10.1016/j.jlr.2023.100364] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Peroxisomes are single-membrane bounded organelles, that in humans play a dual role in lipid metabolism, including the degradation of very long-chain fatty acids and the synthesis of ether lipids/plasmalogens. The first step in de novo ether lipid synthesis is mediated by the peroxisomal enzyme glyceronephosphate O-acyltransferase, which has a strict substrate specificity reacting only with the long-chain acyl-CoAs. The aim of this study was to determine the origin of these long-chain acyl-CoAs. To this end, we developed a sensitive method for the measurement of de novo ether phospholipid synthesis in cells and, by CRISPR/Cas9 genome editing, generated a series of HeLa cell lines with deficiencies of proteins involved in peroxisomal biogenesis, beta-oxidation, ether lipid synthesis, or metabolite transport. Our results show that the long-chain acyl-CoAs required for the first step of ether lipid synthesis can be imported from the cytosol by the peroxisomal ABCD proteins, in particular ABCD3. Furthermore, we show that these acyl-CoAs can be produced intraperoxisomally by chain shortening of CoA esters of very long-chain fatty acids via beta-oxidation. Our results demonstrate that peroxisomal beta-oxidation and ether lipid synthesis are intimately connected and that the peroxisomal ABC transporters play a crucial role in de novo ether lipid synthesis.
Collapse
|
26
|
Oruqaj G, Karnati S, Kotarkonda LK, Boateng E, Bartkuhn M, Zhang W, Ruppert C, Günther A, Bartholin L, Shi W, Baumgart-Vogt E. Transforming Growth Factor-β1 Regulates Peroxisomal Genes/Proteins via Smad Signaling in Idiopathic Pulmonary Fibrosis Fibroblasts and Transgenic Mouse Models. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:259-274. [PMID: 36521562 PMCID: PMC10013039 DOI: 10.1016/j.ajpath.2022.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/10/2022] [Accepted: 11/04/2022] [Indexed: 12/15/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic human disease with persistent destruction of lung parenchyma. Transforming growth factor-β1 (TGF-β1) signaling plays a pivotal role in the initiation and pathogenesis of IPF. As shown herein, TGF-β1 signaling down-regulated not only peroxisome biogenesis but also the metabolism of these organelles in human IPF fibroblasts. In vitro cell culture observations in human fibroblasts and human lung tissue indicated that peroxisomal biogenesis and metabolic proteins were significantly down-regulated in the lung of 1-month-old transgenic mice expressing a constitutively active TGF-β type I receptor kinase (ALK5). The peroxisome biogenesis protein peroxisomal membrane protein Pex13p (PEX13p) as well as the peroxisomal lipid metabolic enzyme peroxisomal acyl-coenzyme A oxidase 1 (ACOX1) and antioxidative enzyme catalase were highly up-regulated in TGF-β type II receptor and Smad3 knockout mice. This study reports a novel mechanism of peroxisome biogenesis and metabolic regulation via TGF-β1-Smad signaling: interaction of the Smad3 transcription factor with the PEX13 gene in chromatin immunoprecipitation-on-chip assay as well as in a bleomycin-induced pulmonary fibrosis model applied to TGF-β type II receptor knockout mice. Taken together, data from this study suggest that TGF-β1 participates in regulation of peroxisomal biogenesis and metabolism via Smad-dependent signaling, opening up novel strategies for the development of therapeutic approaches to inhibit progression of pulmonary fibrosis patients with IPF.
Collapse
Affiliation(s)
- Gani Oruqaj
- Institute for Anatomy and Cell Biology, Medical Cell Biology, and Biomedical Informatics and Systems Medicine, Giessen, Germany
| | - Srikanth Karnati
- Institute for Anatomy and Cell Biology, Medical Cell Biology, and Biomedical Informatics and Systems Medicine, Giessen, Germany
| | - Lakshmi Kanth Kotarkonda
- Institute for Anatomy and Cell Biology, Medical Cell Biology, and Biomedical Informatics and Systems Medicine, Giessen, Germany
| | - Eistine Boateng
- Institute for Anatomy and Cell Biology, Medical Cell Biology, and Biomedical Informatics and Systems Medicine, Giessen, Germany
| | - Marek Bartkuhn
- Institute for Lung Health, Justus Liebig University Giessen, Giessen, Germany
| | - Wenming Zhang
- Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - Clemens Ruppert
- Department of Internal Medicine, Medical Clinic II, German Center for Lung Research, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Andreas Günther
- Department of Internal Medicine, Medical Clinic II, German Center for Lung Research, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | | | - Wei Shi
- Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - Eveline Baumgart-Vogt
- Institute for Anatomy and Cell Biology, Medical Cell Biology, and Biomedical Informatics and Systems Medicine, Giessen, Germany.
| |
Collapse
|
27
|
Ali H, Kobayashi M, Morito K, Hasi RY, Aihara M, Hayashi J, Kawakami R, Tsuchiya K, Sango K, Tanaka T. Peroxisomes attenuate cytotoxicity of very long-chain fatty acids. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159259. [PMID: 36460260 DOI: 10.1016/j.bbalip.2022.159259] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/13/2022] [Accepted: 11/10/2022] [Indexed: 12/02/2022]
Abstract
One of the major functions of peroxisomes in mammals is oxidation of very long-chain fatty acids (VLCFAs). Genetic defects in peroxisomal β-oxidation result in the accumulation of VLCFAs and lead to a variety of health problems, such as demyelination of nervous tissues. However, the mechanisms by which VLCFAs cause tissue degeneration have not been fully elucidated. Recently, we found that the addition of small amounts of isopropanol can enhance the solubility of saturated VLCFAs in an aqueous medium. In this study, we characterized the biological effect of extracellular VLCFAs in peroxisome-deficient Chinese hamster ovary (CHO) cells, neural crest-derived pheochromocytoma cells (PC12), and immortalized adult Fischer rat Schwann cells (IFRS1) using this solubilizing technique. C20:0 FA was the most toxic of the C16-C26 FAs tested in all cells. The basis of the toxicity of C20:0 FA was apoptosis and was observed at 5 μM and 30 μM in peroxisome-deficient and wild-type CHO cells, respectively. The sensitivity of wild-type CHO cells to cytotoxic C20:0 FA was enhanced in the presence of a peroxisomal β-oxidation inhibitor. Further, a positive correlation was evident between cell toxicity and the extent of intracellular accumulation of toxic FA. These results suggest that peroxisomes are pivotal in the detoxification of apoptotic VLCFAs by preventing their accumulation.
Collapse
Affiliation(s)
- Hanif Ali
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8502, Japan; Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Miyu Kobayashi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8502, Japan
| | - Katsuya Morito
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Rumana Yesmin Hasi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8502, Japan
| | - Mutsumi Aihara
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8502, Japan
| | - Junji Hayashi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8502, Japan
| | - Ryushi Kawakami
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8502, Japan
| | - Koichiro Tsuchiya
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Kazunori Sango
- Diabetic Neuropathy Project, Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Tamotsu Tanaka
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8502, Japan.
| |
Collapse
|
28
|
Gaar-Humphreys KR, van den Brink A, Wekking M, Asselbergs FW, van Steenbeek FG, Harakalova M, Pei J. Targeting lipid metabolism as a new therapeutic strategy for inherited cardiomyopathies. Front Cardiovasc Med 2023; 10:1114459. [PMID: 36760574 PMCID: PMC9907444 DOI: 10.3389/fcvm.2023.1114459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
Inherited cardiomyopathies caused by pathological genetic variants include multiple subtypes of heart disease. Advances in next-generation sequencing (NGS) techniques have allowed for the identification of numerous genetic variants as pathological variants. However, the disease penetrance varies among mutated genes. Some can be associated with more than one disease subtype, leading to a complex genotype-phenotype relationship in inherited cardiomyopathies. Previous studies have demonstrated disrupted metabolism in inherited cardiomyopathies and the importance of metabolic adaptations in disease onset and progression. In addition, genotype- and phenotype-specific metabolic alterations, especially in lipid metabolism, have been revealed. In this mini-review, we describe the metabolic changes that are associated with dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM), which account for the largest proportion of inherited cardiomyopathies. We also summarize the affected expression of genes involved in fatty acid oxidation (FAO) in DCM and HCM, highlighting the potential of PPARA-targeting drugs as FAO modulators in treating patients with inherited cardiomyopathies.
Collapse
Affiliation(s)
- Karen R. Gaar-Humphreys
- Division Heart and Lungs, Department of Cardiology, Circulatory Health Research Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
| | - Alyssa van den Brink
- Division Heart and Lungs, Department of Cardiology, Circulatory Health Research Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
| | - Mark Wekking
- Division Heart and Lungs, Department of Cardiology, Circulatory Health Research Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
| | - Folkert W. Asselbergs
- Department of Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Health Data Research United Kingdom and Institute of Health Informatics, University College London, London, United Kingdom
| | - Frank G. van Steenbeek
- Division Heart and Lungs, Department of Cardiology, Circulatory Health Research Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Magdalena Harakalova
- Division Heart and Lungs, Department of Cardiology, Circulatory Health Research Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
- Netherlands Heart Institute, Utrecht, Netherlands
| | - Jiayi Pei
- Division Heart and Lungs, Department of Cardiology, Circulatory Health Research Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
- Netherlands Heart Institute, Utrecht, Netherlands
| |
Collapse
|
29
|
Gao L, Zhang C, Zheng Y, Wu D, Chen X, Lan H, Zheng X, Wu H, Li S. Glycine regulates lipid peroxidation promoting porcine oocyte maturation and early embryonic development. J Anim Sci 2023; 101:skac425. [PMID: 36573588 PMCID: PMC9904182 DOI: 10.1093/jas/skac425] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
In vitro-cultured oocytes are separated from the follicular micro-environment in vivo and are more vulnerable than in vivo oocytes to changes in the external environment. This vulnerability disrupts the homeostasis of the intracellular environment, affecting oocyte meiotic completion, and subsequent embryonic developmental competence in vitro. Glycine, one of the main components of glutathione (GSH), plays an important role in the protection of porcine oocytes in vitro. However, the protective mechanism of glycine needs to be further clarified. Our results showed that glycine supplementation promoted cumulus cell expansion and oocyte maturation. Detection of oocyte development ability showed that glycine significantly increased the cleavage rate and blastocyst rate during in vitro fertilization (IVF). SMART-seq revealed that this effect was related to glycine-mediated regulation of cell membrane structure and function. Exogenous addition of glycine significantly increased the levels of the anti-oxidant GSH and the expression of anti-oxidant-related genes (glutathione peroxidase 4 [GPX4], catalase [CAT], superoxide dismutase 1 [SOD1], superoxide dismutase 2 [SOD2], and mitochondrial solute carrier family 25, member 39 [SLC25A39]), decreased the lipid peroxidation caused by reactive oxygen species (ROS) and reduced the level of malondialdehyde (MDA) by enhancing the functions of mitochondria, peroxisomes and lipid droplets (LDs) and the levels of lipid metabolism-related factors (peroxisome proliferator activated receptor coactivator 1 alpha [PGC-1α], peroxisome proliferator-activated receptor γ [PPARγ], sterol regulatory element binding factor 1 [SREBF1], autocrine motility factor receptor [AMFR], and ATP). These effects further reduced ferroptosis and maintained the normal structure and function of the cell membrane. Our results suggest that glycine plays an important role in oocyte maturation and later development by regulating ROS-induced lipid metabolism, thereby protecting against biomembrane damage.
Collapse
Affiliation(s)
- Lepeng Gao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Chang Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yingying Zheng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Ministry of Education Laboratory of Animal Production and Quality Security, Changchun 130118, China
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Changchun 130118, China
| | - Deyi Wu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xinyuan Chen
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Hainan Lan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xin Zheng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Hao Wu
- COFCO Corporation, Beijing 100020, China
| | - Suo Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
30
|
Kocherlakota S, Swinkels D, Van Veldhoven PP, Baes M. Mouse Models to Study Peroxisomal Functions and Disorders: Overview, Caveats, and Recommendations. Methods Mol Biol 2023; 2643:469-500. [PMID: 36952207 DOI: 10.1007/978-1-0716-3048-8_34] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
During the last three decades many mouse lines were created or identified that are deficient in one or more peroxisomal functions. Different methodologies were applied to obtain global, hypomorph, cell type selective, inducible, and knockin mice. Whereas some models closely mimic pathologies in patients, others strongly deviate or no human counterpart has been reported. Often, mice, apparently endowed with a stronger transcriptional adaptation, have to be challenged with dietary additions or restrictions in order to trigger phenotypic changes. Depending on the inactivated peroxisomal protein, several approaches can be taken to validate the loss-of-function. Here, an overview is given of the available mouse models and their most important characteristics.
Collapse
Affiliation(s)
- Sai Kocherlakota
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Daniëlle Swinkels
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Paul P Van Veldhoven
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Myriam Baes
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
31
|
Wanders RJA, Baes M, Ribeiro D, Ferdinandusse S, Waterham HR. The physiological functions of human peroxisomes. Physiol Rev 2023; 103:957-1024. [PMID: 35951481 DOI: 10.1152/physrev.00051.2021] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Peroxisomes are subcellular organelles that play a central role in human physiology by catalyzing a range of unique metabolic functions. The importance of peroxisomes for human health is exemplified by the existence of a group of usually severe diseases caused by an impairment in one or more peroxisomal functions. Among others these include the Zellweger spectrum disorders, X-linked adrenoleukodystrophy, and Refsum disease. To fulfill their role in metabolism, peroxisomes require continued interaction with other subcellular organelles including lipid droplets, lysosomes, the endoplasmic reticulum, and mitochondria. In recent years it has become clear that the metabolic alliance between peroxisomes and other organelles requires the active participation of tethering proteins to bring the organelles physically closer together, thereby achieving efficient transfer of metabolites. This review intends to describe the current state of knowledge about the metabolic role of peroxisomes in humans, with particular emphasis on the metabolic partnership between peroxisomes and other organelles and the consequences of genetic defects in these processes. We also describe the biogenesis of peroxisomes and the consequences of the multiple genetic defects therein. In addition, we discuss the functional role of peroxisomes in different organs and tissues and include relevant information derived from model systems, notably peroxisomal mouse models. Finally, we pay particular attention to a hitherto underrated role of peroxisomes in viral infections.
Collapse
Affiliation(s)
- Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| | - Myriam Baes
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Daniela Ribeiro
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| |
Collapse
|
32
|
Enoyl-CoA hydratase/3-hydroxyacyl CoA dehydrogenase is essential for the production of DHA in zebrafish. J Lipid Res 2022; 64:100326. [PMID: 36592657 PMCID: PMC9974443 DOI: 10.1016/j.jlr.2022.100326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 01/01/2023] Open
Abstract
Compared with other species, freshwater fish are more capable of synthesizing DHA via same biosynthetic pathways. Freshwater fish have a "Sprecher" pathway to biosynthesize DHA in a peroxisome-dependent manner. Enoyl-CoA hydratase/3-hydroxyacyl CoA dehydrogenase (Ehhadh) is involved in the hydration and dehydrogenation reactions of fatty acid β-oxidation in peroxisomes. However, the role of Ehhadh in the synthesis of DHA in freshwater fish remains largely unclear. In this study, the knockout of Ehhadh significantly inhibited DHA synthesis in zebrafish. Liver transcriptome analysis showed that Ehhadh deletion significantly inhibited SREBF and PPAR signaling pathways and decreased the expression of PUFA synthesis-related genes. Our results from the analysis of transgenic zebrafish (Tg:Ehhadh) showed that Ehhadh overexpression significantly increased the DHA content in the liver and significantly upregulated the expression of genes related to PUFA synthesis. In addition, the DHA content in the liver of Tg:Ehhadh fed with linseed oil was significantly higher than that of wildtype, but the expression of PUFA synthesis-related genes fads2 and elovl2 were significantly lower, indicating that Ehhadh had a direct effect on DHA synthesis. In conclusion, our results showed that Ehhadh was essential for DHA synthesis in the "Sprecher" pathway, and Ehhadh overexpression could promote DHA synthesis. This study provides insight into the role of Ehhadh in freshwater fish.
Collapse
|
33
|
Shao G, He T, Mu Y, Mu P, Ao J, Lin X, Ruan L, Wang Y, Gao Y, Liu D, Zhang L, Chen X. The genome of a hadal sea cucumber reveals novel adaptive strategies to deep-sea environments. iScience 2022; 25:105545. [PMID: 36444293 PMCID: PMC9700323 DOI: 10.1016/j.isci.2022.105545] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/18/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
How organisms cope with coldness and high pressure in the hadal zone remains poorly understood. Here, we sequenced and assembled the genome of hadal sea cucumber Paelopatides sp. Yap with high quality and explored its potential mechanisms for deep-sea adaptation. First, the expansion of ACOX1 for rate-limiting enzyme in the DHA synthesis pathway, increased DHA content in the phospholipid bilayer, and positive selection of EPT1 may maintain cell membrane fluidity. Second, three genes for translation initiation factors and two for ribosomal proteins underwent expansion, and three ribosomal protein genes were positively selected, which may ameliorate the protein synthesis inhibition or ribosome dissociation in the hadal zone. Third, expansion and positive selection of genes associated with stalled replication fork recovery and DNA repair suggest improvements in DNA protection. This is the first genome sequence of a hadal invertebrate. Our results provide insights into the genetic adaptations used by invertebrate in deep oceans.
Collapse
Affiliation(s)
- Guangming Shao
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Tianliang He
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yinnan Mu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Pengfei Mu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jingqun Ao
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xihuang Lin
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian 361005, China
| | - Lingwei Ruan
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian 361005, China
| | - YuGuang Wang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian 361005, China
| | - Yuan Gao
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Dinggao Liu
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Liangsheng Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong 519000, China
| |
Collapse
|
34
|
Vickers SD, Shumar SA, Saporito DC, Kunovac A, Hathaway QA, Mintmier B, King JA, King RD, Rajendran VM, Infante AM, Hollander JM, Leonardi R. NUDT7 regulates total hepatic CoA levels and the composition of the intestinal bile acid pool in male mice fed a Western diet. J Biol Chem 2022; 299:102745. [PMID: 36436558 PMCID: PMC9792899 DOI: 10.1016/j.jbc.2022.102745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/25/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022] Open
Abstract
Nudix hydrolase 7 (NUDT7) is an enzyme that hydrolyzes CoA species, is highly expressed in the liver, and resides in the peroxisomes. Peroxisomes are organelles where the preferential oxidation of dicarboxylic fatty acids occurs and where the hepatic synthesis of the primary bile acids cholic acid and chenodeoxycholic acid is completed. We previously showed that liver-specific overexpression of NUDT7 affects peroxisomal lipid metabolism but does not prevent the increase in total liver CoA levels that occurs during fasting. We generated Nudt7-/- mice to further characterize the role that peroxisomal (acyl-)CoA degradation plays in the modulation of the size and composition of the acyl-CoA pool and in the regulation of hepatic lipid metabolism. Here, we show that deletion of Nudt7 alters the composition of the hepatic acyl-CoA pool in mice fed a low-fat diet, but only in males fed a Western diet does the lack of NUDT7 activity increase total liver CoA levels. This effect is driven by the male-specific accumulation of medium-chain dicarboxylic acyl-CoAs, which are produced from the β-oxidation of dicarboxylic fatty acids. We also show that, under conditions of elevated synthesis of chenodeoxycholic acid derivatives, Nudt7 deletion promotes the production of tauromuricholic acid, decreasing the hydrophobicity index of the intestinal bile acid pool and increasing fecal cholesterol excretion in male mice. These findings reveal that NUDT7-mediated hydrolysis of acyl-CoA pathway intermediates in liver peroxisomes contributes to the regulation of dicarboxylic fatty acid metabolism and the composition of the bile acid pool.
Collapse
Affiliation(s)
- Schuyler D Vickers
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Stephanie A Shumar
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Dominique C Saporito
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Amina Kunovac
- Division of Exercise Physiology, West Virginia University, Morgantown, West Virginia, USA
| | - Quincy A Hathaway
- Division of Exercise Physiology, West Virginia University, Morgantown, West Virginia, USA
| | - Breeanna Mintmier
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Judy A King
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, Shreveport, Louisiana, USA
| | - Rachel D King
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Vazhaikkurichi M Rajendran
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Aniello M Infante
- Genomics Core Facility, West Virginia University, Morgantown, West Virginia, USA
| | - John M Hollander
- Division of Exercise Physiology, West Virginia University, Morgantown, West Virginia, USA
| | - Roberta Leonardi
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA.
| |
Collapse
|
35
|
RNA-Seq revealed the effect of adding different proportions of wheat diet on fat metabolism of Tibetan lamb. Gene 2022; 851:147031. [DOI: 10.1016/j.gene.2022.147031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
36
|
Peroxisome Proliferator FpPEX11 Is Involved in the Development and Pathogenicity in Fusarium pseudograminearum. Int J Mol Sci 2022; 23:ijms232012184. [PMID: 36293041 PMCID: PMC9603656 DOI: 10.3390/ijms232012184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/01/2022] [Accepted: 10/06/2022] [Indexed: 11/30/2022] Open
Abstract
Fusarium crown rot (FCR) of wheat, an important soil-borne disease, presents a worsening trend year by year, posing a significant threat to wheat production. Fusarium pseudograminearum cv. b was reported to be the dominant pathogen of FCR in China. Peroxisomes are single-membrane organelles in eukaryotes that are involved in many important biochemical metabolic processes, including fatty acid β-oxidation. PEX11 is important proteins in peroxisome proliferation, while less is known in the fungus F. pseudograminearum. The functions of FpPEX11a, FpPEX11b, and FpPEX11c in F. pseudograminearum were studied using reverse genetics, and the results showed that FpPEX11a and FpPEX11b are involved in the regulation of vegetative growth and asexual reproduction. After deleting FpPEX11a and FpPEX11b, cell wall integrity was impaired, cellular metabolism processes including active oxygen metabolism and fatty acid β-oxidation were significantly blocked, and the production ability of deoxynivalenol (DON) decreased. In addition, the deletion of genes of FpPEX11a and FpPEX11b revealed a strongly decreased expression level of peroxisome-proliferation-associated genes and DON-synthesis-related genes. However, deletion of FpPEX11c did not significantly affect these metabolic processes. Deletion of the three protein-coding genes resulted in reduced pathogenicity of F. pseudograminearum. In summary, FpPEX11a and FpPEX11b play crucial roles in the growth and development, asexual reproduction, pathogenicity, active oxygen accumulation, and fatty acid utilization in F. pseudograminearum.
Collapse
|
37
|
Han M, Chen Z, He P, Li Z, Chen Q, Tong Z, Wang M, Du H, Zhang H. YgiM may act as a trigger in the sepsis caused by Klebsiella pneumoniae through the membrane-associated ceRNA network. Front Genet 2022; 13:973145. [PMID: 36212144 PMCID: PMC9537587 DOI: 10.3389/fgene.2022.973145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/07/2022] [Indexed: 11/27/2022] Open
Abstract
Sepsis is one of the diseases that can cause serious mortality. In E. coli, an inner membrane protein YgiM encoded by gene ygiM can target the eukaryotic peroxisome. Peroxisome is a membrane-enclosed organelle associated with the ROS metabolism and was reported to play the key role in immune responses and inflammation during the development of sepsis. Klebsiella pneumoniae (K. pneumoniae) is one of the important pathogens causing sepsis. However, the function of gene vk055_4013 which is highly homologous to ygiM of E. coli has not been demonstrated in K. pneumoniae. In this study, we prepared ΔygiM of K. pneumoniae ATCC43816, and found that the deletion of ygiM did not affect bacterial growth and mouse mortality in the mouse infection model. Interestingly, ΔygiM not only resulted in reduced bacterial resistance to macrophages, but also attenuated pathological manifestations in mouse organs. Furthermore, based on the data of Gene Expression Omnibus, the expression profiles of micro RNAs (miRNAs) and messenger RNAs (mRNAs) in the serum of 44 sepsis patients caused by K. pneumoniae infection were analyzed, and 11 differently expressed miRNAs and 8 DEmRNAs associated with the membrane function were found. Finally, the membrane-associated competing endogenous RNAs (ceRNAs) network was constructed. In this ceRNAs network, DEmiRNAs (hsa-miR-7108-5p, hsa-miR-6780a-5p, hsa-miR-6756-5p, hsa-miR-4433b-3p, hsa-miR-3652, hsa-miR-342-3p, hsa-miR-32-5p) and their potential downstream target DEmRNAs (VNN1, CEACAM8, PGLYRP1) were verified in the cell model infected by wild type and ΔygiM of K. pneumoniae, respectively. Taken together, YgiM may trigger the sepsis caused by K. pneumoniae via membrane-associated ceRNAs. This study provided new insights into the role of YgiM in the process of K. pneumoniae induced sepsis.
Collapse
Affiliation(s)
- Mingxiao Han
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhihao Chen
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Ping He
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Clinical Laboratory, Sichuan Province Science City Hospital, Chengdu, China
| | - Ziyuan Li
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qi Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zelei Tong
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Min Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong Du
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Haifang Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
38
|
Kim S, Coukos R, Gao F, Krainc D. Dysregulation of organelle membrane contact sites in neurological diseases. Neuron 2022; 110:2386-2408. [PMID: 35561676 PMCID: PMC9357093 DOI: 10.1016/j.neuron.2022.04.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/21/2022] [Accepted: 04/18/2022] [Indexed: 10/18/2022]
Abstract
The defining evolutionary feature of eukaryotic cells is the emergence of membrane-bound organelles. Compartmentalization allows each organelle to maintain a spatially, physically, and chemically distinct environment, which greatly bolsters individual organelle function. However, the activities of each organelle must be balanced and are interdependent for cellular homeostasis. Therefore, properly regulated interactions between organelles, either physically or functionally, remain critical for overall cellular health and behavior. In particular, neuronal homeostasis depends heavily on the proper regulation of organelle function and cross talk, and deficits in these functions are frequently associated with diseases. In this review, we examine the emerging role of organelle contacts in neurological diseases and discuss how the disruption of contacts contributes to disease pathogenesis. Understanding the molecular mechanisms underlying the formation and regulation of organelle contacts will broaden our knowledge of their role in health and disease, laying the groundwork for the development of new therapies targeting interorganelle cross talk and function.
Collapse
Affiliation(s)
- Soojin Kim
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, IL, 60611, USA
| | - Robert Coukos
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, IL, 60611, USA
| | - Fanding Gao
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, IL, 60611, USA
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, IL 60611, USA.
| |
Collapse
|
39
|
Li M, Wang Y, Tang Z, Wang H, Hu J, Bao Z, Hu X. Expression Plasticity of Peroxisomal Acyl-Coenzyme A Oxidase Genes Implies Their Involvement in Redox Regulation in Scallops Exposed to PST-Producing Alexandrium. Mar Drugs 2022; 20:md20080472. [PMID: 35892940 PMCID: PMC9332717 DOI: 10.3390/md20080472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 12/10/2022] Open
Abstract
Filter-feeding bivalves can accumulate paralytic shellfish toxins (PST) produced by toxic microalgae, which may induce oxidative stress and lipid peroxidation. Peroxisomal acyl-coenzyme A oxidases (ACOXs) are key enzymes functioning in maintaining redox and lipid homeostasis, but their roles in PST response in bivalves are less understood. Herein, a total of six and six ACOXs were identified in the Chlamys farreri and Patinopecten yessoensis genome, respectively, and the expansion of ACOX1s was observed. Gene expression analysis revealed an organ/tissue-specific expression pattern in both scallops, with all ACOXs being predominantly expressed in the two most toxic organs, digestive glands and kidneys. The regulation patterns of scallop ACOXs after exposure to different PST-producing algaes Alexandrium catenella (ACDH) and A. minutum (AM-1) were revealed. After ACDH exposure, more differentially expressed genes (DEGs) were identified in C. farreri digestive glands (three) and kidneys (five) than that in P. yessoensis (two), but the up-regulated DEGs showed similar expression patterns in both species. In C. farreri, three DEGs were found in both digestive glands and kidneys after AM-1 exposure, with two same CfACOX1s being acutely and chronically induced, respectively. Notably, these two CfACOX1s also showed different expression patterns in kidneys between ACDH (acute response) and AM-1 (chronic response) exposure. Moreover, inductive expression of CfACOXs after AM-1 exposure was observed in gills and mantles, and all DEGs in both tissues were up-regulated and their common DEGs exhibited both acute and chronic induction. These results indicate the involvement of scallop ACOXs in PST response, and their plasticity expression patterns between scallop species, among tissues, and between the exposure of different PST analogs.
Collapse
Affiliation(s)
- Moli Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.L.); (Y.W.); (Z.T.); (J.H.); (Z.B.); (X.H.)
| | - Yangrui Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.L.); (Y.W.); (Z.T.); (J.H.); (Z.B.); (X.H.)
| | - Zhihong Tang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.L.); (Y.W.); (Z.T.); (J.H.); (Z.B.); (X.H.)
| | - Huizhen Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.L.); (Y.W.); (Z.T.); (J.H.); (Z.B.); (X.H.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: ; Tel.: +86-0532-8203-1970
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.L.); (Y.W.); (Z.T.); (J.H.); (Z.B.); (X.H.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.L.); (Y.W.); (Z.T.); (J.H.); (Z.B.); (X.H.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Xiaoli Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.L.); (Y.W.); (Z.T.); (J.H.); (Z.B.); (X.H.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
40
|
Huang Y, Liu Y, Wu Y, Tang Y, Zhang M, Liu S, Xiao L, Tao S, Xie M, Dai M, Li M, Gui H, Wang Q. Patterns of Convergence and Divergence Between Bipolar Disorder Type I and Type II: Evidence From Integrative Genomic Analyses. Front Cell Dev Biol 2022; 10:956265. [PMID: 35912095 PMCID: PMC9334650 DOI: 10.3389/fcell.2022.956265] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/21/2022] [Indexed: 01/05/2023] Open
Abstract
Aim: Genome-wide association studies (GWAS) analyses have revealed genetic evidence of bipolar disorder (BD), but little is known about the genetic structure of BD subtypes. We aimed to investigate the genetic overlap and distinction of bipolar type I (BD I) & type II (BD II) by conducting integrative post-GWAS analyses. Methods: We utilized single nucleotide polymorphism (SNP)–level approaches to uncover correlated and distinct genetic loci. Transcriptome-wide association analyses (TWAS) were then approached to pinpoint functional genes expressed in specific brain tissues and blood. Next, we performed cross-phenotype analysis, including exploring the potential causal associations between two BD subtypes and lithium responses and comparing the difference in genetic structures among four different psychiatric traits. Results: SNP-level evidence revealed three genomic loci, SLC25A17, ZNF184, and RPL10AP3, shared by BD I and II, and one locus (MAD1L1) and significant gene sets involved in calcium channel activity, neural and synapsed signals that distinguished two subtypes. TWAS data implicated different genes affecting BD I and II through expression in specific brain regions (nucleus accumbens for BD I). Cross-phenotype analyses indicated that BD I and II share continuous genetic structures with schizophrenia and major depressive disorder, which help fill the gaps left by the dichotomy of mental disorders. Conclusion: These combined evidences illustrate genetic convergence and divergence between BD I and II and provide an underlying biological and trans-diagnostic insight into major psychiatric disorders.
Collapse
Affiliation(s)
- Yunqi Huang
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Yunjia Liu
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Yulu Wu
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Yiguo Tang
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Mengting Zhang
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Siyi Liu
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Liling Xiao
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Shiwan Tao
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Min Xie
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Minhan Dai
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Mingli Li
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Hongsheng Gui
- Center for Health Policy & Health Services Research, Henry Ford Health System, Detroit, MI, United States
- Behavioral Health Services, Henry Ford Health System, Detroit, MI, United States
- *Correspondence: Hongsheng Gui, ; Qiang Wang,
| | - Qiang Wang
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
- *Correspondence: Hongsheng Gui, ; Qiang Wang,
| |
Collapse
|
41
|
Zhu Z, Li X, Tang C, Shen J, Liu J, Ye Y. A derivatization strategy for comprehensive identification of 2- and 3-hydroxyl fatty acids by LC-MS. Anal Chim Acta 2022; 1216:339981. [DOI: 10.1016/j.aca.2022.339981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/10/2022] [Accepted: 05/21/2022] [Indexed: 11/01/2022]
|
42
|
PPAR Alpha as a Metabolic Modulator of the Liver: Role in the Pathogenesis of Nonalcoholic Steatohepatitis (NASH). BIOLOGY 2022; 11:biology11050792. [PMID: 35625520 PMCID: PMC9138523 DOI: 10.3390/biology11050792] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/31/2022]
Abstract
Simple Summary In the context of liver disease, one of the more growing public health problems is the transition from simple steatosis to non-alcoholic steatohepatitis. Profound metabolic dysregulations linked to inflammation and hepatic injury are features of non-alcoholic steatohepatitis. Since the peroxisomal-proliferator-activated receptor alpha has long been considered one of the key transcriptional factors in hepatic metabolism, its role in the pathogenesis of non-alcoholic steatohepatitis is discussed in this review. Abstract The strong relationship between metabolic alterations and non-alcoholic steatohepatitis (NASH) suggests a pathogenic interplay. However, many aspects have not yet been fully clarified. Nowadays, NASH is becoming the main cause of liver-associated morbidity and mortality. Therefore, an effort to understand the mechanisms underlying the pathogenesis of NASH is critical. Among the nuclear receptor transcription factors, peroxisome-proliferator-activated receptor alpha (PPARα) is highly expressed in the liver, where it works as a pivotal transcriptional regulator of the intermediary metabolism. In this context, PPARα’s function in regulating the lipid metabolism is essential for proper liver functioning. Here, we review metabolic liver genes under the control of PPARα and discuss how this aspect can impact the inflammatory condition and pathogenesis of NASH.
Collapse
|
43
|
Wang S, Yang C, Pan C, Feng X, Lei Z, Huang J, Wei X, Li F, Ma Y. Identification of key genes and functional enrichment pathways involved in fat deposition in Xinyang buffalo by WGCNA. Gene X 2022; 818:146225. [PMID: 35063576 DOI: 10.1016/j.gene.2022.146225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/06/2021] [Accepted: 01/13/2022] [Indexed: 01/02/2023] Open
Abstract
The Xinyang buffalo is a valuable and endangered domestic heritage resource in the Dabie Mountain region in China. With the increasing mechanization of agriculture, the Xinyang buffalo, mainly used for labor, faces unprecedented challenges. One of the feasible approaches to conserve and expand the species is to transfer Xinyang buffalo from service-use to meat-use, but the main hindrance to this transformation is the inferior meat quality of Xinyang buffalo, which is not popular with consumers. Based on the above, this study was conducted to evaluate the growth performance (n = 120) and slaughter performance (n = 3) of Xinyang buffalo and to measure the amino acid levels of the eye muscle (EM), and assess the meat quality. Later, transcriptome sequencing was performed on the subcutaneous fat of the back at six (n = 3) and 30 months of age (n = 3), together with the excavation of candidate genes associated with fat deposition using the weighted co-expression network analysis (WGCNA) method. The results showed that the slaughter rate of Xinyang buffalo was 43.09%, net meat percentage was 33.04%, the ocular area was 59.16 ± 7.58, the backfat thickness was 1.03 ± 0.16, and meat bone ratio was 3.29. The total amino acid contents were 0.63 g per gram of beef, which contained 0.05 g of essential amino acids, and the three most abundant amino acids were Ser (447.17 mg/g), Asp (29.8 mg/g), and Pro (27.24 mg/g). The WGCNA results showed that six phenotypes measured were significantly correlated with the turquoise module (r > 0.97, P < 0.001), and the genes in these modules were significantly enriched in the pathways related to substance metabolism and energy metabolisms, such as metabolic pathways, citrate cycle, and fatty acid metabolism. Meanwhile, six key candidate genes (FH, MECR, GPI, PANK3, ATP6V1A, PHYH) were identified, which were associated with growth and development, fat deposition, and intra-muscular amino acid levels (P < 0.05). In short, this study provides another feasible way to preserve buffalo and enriches the theory of its molecular genetic breeding.
Collapse
Affiliation(s)
- Shuzhe Wang
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China; College of Life Sciences, Xinyang Normal University, Xinyang 464000, Henan, China
| | - Chaoyun Yang
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
| | - Cuili Pan
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
| | - Xue Feng
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
| | - Zhaoxiong Lei
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
| | - Jieping Huang
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Xuefeng Wei
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China; College of Life Sciences, Xinyang Normal University, Xinyang 464000, Henan, China
| | - Fen Li
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
| | - Yun Ma
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China.
| |
Collapse
|
44
|
Li M, Yang X, Masoudi A, Xiao Q, Li N, Wang N, Chang G, Ren S, Li H, Liu J, Wang H. The regulatory strategy of proteins in the mouse kidney during Babesia microti infection. Exp Parasitol 2022; 235:108232. [DOI: 10.1016/j.exppara.2022.108232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/03/2022] [Accepted: 02/10/2022] [Indexed: 11/04/2022]
|
45
|
Molina-Molina E, Furtado GE, Jones JG, Portincasa P, Vieira-Pedrosa A, Teixeira AM, Barros MP, Bachi ALL, Sardão VA. The advantages of physical exercise as a preventive strategy against NAFLD in postmenopausal women. Eur J Clin Invest 2022; 52:e13731. [PMID: 34890043 DOI: 10.1111/eci.13731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND The prevalence and severity of nonalcoholic fatty liver disease (NAFLD) increase in women after menopause. This narrative review discusses the causes and consequences of NAFLD in postmenopausal women and describes how physical activity can contribute to its prevention. METHODS The authors followed the narrative review method to perform a critical and objective analysis of the current knowledge on the topic. The Medical Subject Heading keywords 'physical exercise', 'menopause', 'hormone replacement therapy', 'estradiol' and 'NAFLD' were used to establish a conceptual framework. The databases used to collect relevant references included Medline and specialized high-impact journals. RESULTS Higher visceral adiposity, higher rate of lipolysis in adipose tissue after oestrogen drop and changes in the expression of housekeeping proteins involved in hepatic lipid management are observed in women after menopause, contributing to NAFLD. Excessive liver steatosis leads to hepatic insulin resistance, oxidative stress and inflammation, accelerating NAFLD progression. Physical activity brings beneficial effects against several postmenopausal-associated complications, including NAFLD progression. Aerobic and resistance exercises partially counteract alterations induced by metabolic syndrome in sedentary postmenopausal women, impacting NAFLD progression and severity. CONCLUSIONS With the increased global obesity epidemic in developing countries, NAFLD is becoming a severe problem with increased prevalence in women after menopause. Evidence shows that physical activity may delay NAFLD development and severity in postmenopausal women, although the prescription of age-appropriate physical activity programmes is advisable to assure the health benefits.
Collapse
Affiliation(s)
- Emilio Molina-Molina
- Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Clinica Medica "A. Murri", Bari, Italy
| | - Guilherme Eustaquio Furtado
- Health Sciences Research Unit: Nursing (UICISA:E), Nursing School of Coimbra (ESEnfC), Coimbra, Portugal.,Research Unit for Sport and Physical Activity (CIDAF) Faculty of Sport Science and Physical Education, FCDEF-UC), University of Coimbra, Coimbra, Portugal
| | - John G Jones
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Piero Portincasa
- Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Clinica Medica "A. Murri", Bari, Italy
| | - Ana Vieira-Pedrosa
- Research Unit for Sport and Physical Activity (CIDAF) Faculty of Sport Science and Physical Education, FCDEF-UC), University of Coimbra, Coimbra, Portugal
| | - Ana Maria Teixeira
- Research Unit for Sport and Physical Activity (CIDAF) Faculty of Sport Science and Physical Education, FCDEF-UC), University of Coimbra, Coimbra, Portugal
| | - Marcelo Paes Barros
- Institute of Physical Activity Sciences and Sports (ICAFE), Interdisciplinary Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - André Luís Lacerda Bachi
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology, São Paulo, Brazil.,Department of Otorhinolaryngology, ENT Lab, Federal University of São Paulo (UNIFESP), São Paulo, Brazil.,Post-Graduation Program in Health Sciences, Santo Amaro University (UNISA), São Paulo, Brazil
| | - Vilma A Sardão
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Faculty of Sport Science and Physical Education, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
46
|
Kamoshita M, Kumar R, Anteghini M, Kunze M, Islinger M, Martins dos Santos V, Schrader M. Insights Into the Peroxisomal Protein Inventory of Zebrafish. Front Physiol 2022; 13:822509. [PMID: 35295584 PMCID: PMC8919083 DOI: 10.3389/fphys.2022.822509] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/07/2022] [Indexed: 12/19/2022] Open
Abstract
Peroxisomes are ubiquitous, oxidative subcellular organelles with important functions in cellular lipid metabolism and redox homeostasis. Loss of peroxisomal functions causes severe disorders with developmental and neurological abnormalities. Zebrafish are emerging as an attractive vertebrate model to study peroxisomal disorders as well as cellular lipid metabolism. Here, we combined bioinformatics analyses with molecular cell biology and reveal the first comprehensive inventory of Danio rerio peroxisomal proteins, which we systematically compared with those of human peroxisomes. Through bioinformatics analysis of all PTS1-carrying proteins, we demonstrate that D. rerio lacks two well-known mammalian peroxisomal proteins (BAAT and ZADH2/PTGR3), but possesses a putative peroxisomal malate synthase (Mlsl) and verified differences in the presence of purine degrading enzymes. Furthermore, we revealed novel candidate peroxisomal proteins in D. rerio, whose function and localisation is discussed. Our findings confirm the suitability of zebrafish as a vertebrate model for peroxisome research and open possibilities for the study of novel peroxisomal candidate proteins in zebrafish and humans.
Collapse
Affiliation(s)
- Maki Kamoshita
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, United Kingdom
| | - Rechal Kumar
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, United Kingdom
| | - Marco Anteghini
- LifeGlimmer GmbH, Berlin, Germany
- Systems and Synthetic Biology, Wageningen University & Research, Wageningen, Netherlands
| | - Markus Kunze
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Markus Islinger
- Institute of Neuroanatomy, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Vítor Martins dos Santos
- LifeGlimmer GmbH, Berlin, Germany
- Systems and Synthetic Biology, Wageningen University & Research, Wageningen, Netherlands
| | - Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, United Kingdom
- *Correspondence: Michael Schrader,
| |
Collapse
|
47
|
Ali H, Morito K, Hasi RY, Aihara M, Hayashi J, Kawakami R, Kanemaru K, Tsuchiya K, Sango K, Tanaka T. Characterization of uptake and metabolism of very long-chain fatty acids in peroxisome-deficient CHO cells. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159088. [PMID: 34848380 DOI: 10.1016/j.bbalip.2021.159088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/29/2021] [Accepted: 11/21/2021] [Indexed: 11/24/2022]
Abstract
Fatty acids (FAs) longer than C20 are classified as very long-chain fatty acids (VLCFAs). Although biosynthesis and degradation of VLCFAs are important for the development and integrity of the myelin sheath, knowledge on the incorporation of extracellular VLCFAs into the cells is limited due to the experimental difficulty of solubilizing them. In this study, we found that a small amount of isopropanol solubilized VLCFAs in aqueous medium by facilitating the formation of the VLCFA/albumin complex. Using this solubilizing technique, we examined the role of the peroxisome in the uptake and metabolism of VLCFAs in Chinese hamster ovary (CHO) cells. When wild-type CHO cells were incubated with saturated VLCFAs (S-VLCFAs), such as C23:0 FA, C24:0 FA, and C26:0 FA, extensive uptake was observed. Most of the incorporated S-VLCFAs were oxidatively degraded without acylation into cellular lipids. In contrast, in peroxisome-deficient CHO cells uptake of S-VLCFAs was marginal and oxidative metabolism was not observed. Extensive uptake and acylation of monounsaturated (MU)-VLCFAs, such as C24:1 FA and C22:1 FA, were observed in both types of CHO cells. However, oxidative metabolism was evident only in wild-type cells. Similar manners of uptake and metabolism of S-VLCFAs and MU-VLCFAs were observed in IFRS1, a Schwan cell-derived cell line. These results indicate that peroxisome-deficient cells limit intracellular S-VLCFAs at a low level by halting uptake, and as a result, peroxisome-deficient cells almost completely lose the clearance ability of S-VLCFAs accumulated outside of the cells.
Collapse
Affiliation(s)
- Hanif Ali
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Katsuya Morito
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Rumana Yesmin Hasi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8502, Japan
| | - Mutsumi Aihara
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8502, Japan
| | - Junji Hayashi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8502, Japan
| | - Ryushi Kawakami
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8502, Japan
| | - Kaori Kanemaru
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8502, Japan
| | - Koichiro Tsuchiya
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Kazunori Sango
- Diabetic Neuropathy Project, Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Tamotsu Tanaka
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8502, Japan.
| |
Collapse
|
48
|
Tserga A, Pouloudi D, Saulnier-Blache JS, Stroggilos R, Theochari I, Gakiopoulou H, Mischak H, Zoidakis J, Schanstra JP, Vlahou A, Makridakis M. Proteomic Analysis of Mouse Kidney Tissue Associates Peroxisomal Dysfunction with Early Diabetic Kidney Disease. Biomedicines 2022; 10:biomedicines10020216. [PMID: 35203426 PMCID: PMC8869654 DOI: 10.3390/biomedicines10020216] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
Background: The absence of efficient inhibitors for diabetic kidney disease (DKD) progression reflects the gaps in our understanding of DKD molecular pathogenesis. Methods: A comprehensive proteomic analysis was performed on the glomeruli and kidney cortex of diabetic mice with the subsequent validation of findings in human biopsies and omics datasets, aiming to better understand the underlying molecular biology of early DKD development and progression. Results: LC–MS/MS was employed to analyze the kidney proteome of 2 DKD models: Ins2Akita (early and late DKD) and db/db mice (late DKD). The abundance of detected proteins was defined. Pathway analysis of differentially expressed proteins in the early and late DKD versus the respective controls predicted dysregulation in DKD hallmarks (peroxisomal lipid metabolism and β-oxidation), supporting the functional relevance of the findings. Comparing the observed protein changes in early and late DKD, the consistent upregulation of 21 and downregulation of 18 proteins was detected. Among these were downregulated peroxisomal and upregulated mitochondrial proteins. Tissue sections from 16 DKD patients were analyzed by IHC confirming our results. Conclusion: Our study shows an extensive differential expression of peroxisomal proteins in the early stages of DKD that persists regardless of the disease severity, providing new perspectives and potential markers of diabetic kidney dysfunction.
Collapse
Affiliation(s)
- Aggeliki Tserga
- Department of Biotechnology, Biomedical Research Foundation, Academy of Athens, Soranou Efessiou 4, 11527 Athens, Greece; (A.T.); (R.S.); (J.Z.)
| | - Despoina Pouloudi
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.P.); (I.T.); (H.G.)
| | - Jean Sébastien Saulnier-Blache
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France;
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Rafael Stroggilos
- Department of Biotechnology, Biomedical Research Foundation, Academy of Athens, Soranou Efessiou 4, 11527 Athens, Greece; (A.T.); (R.S.); (J.Z.)
| | - Irene Theochari
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.P.); (I.T.); (H.G.)
| | - Harikleia Gakiopoulou
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.P.); (I.T.); (H.G.)
| | | | - Jerome Zoidakis
- Department of Biotechnology, Biomedical Research Foundation, Academy of Athens, Soranou Efessiou 4, 11527 Athens, Greece; (A.T.); (R.S.); (J.Z.)
| | - Joost Peter Schanstra
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France;
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
- Correspondence: (J.P.S.); (A.V.); (M.M.); Tel.: +33-5-31224078 (J.P.S.); +30-210-6597506 (A.V.); +30-210-6597485 (M.M.)
| | - Antonia Vlahou
- Department of Biotechnology, Biomedical Research Foundation, Academy of Athens, Soranou Efessiou 4, 11527 Athens, Greece; (A.T.); (R.S.); (J.Z.)
- Correspondence: (J.P.S.); (A.V.); (M.M.); Tel.: +33-5-31224078 (J.P.S.); +30-210-6597506 (A.V.); +30-210-6597485 (M.M.)
| | - Manousos Makridakis
- Department of Biotechnology, Biomedical Research Foundation, Academy of Athens, Soranou Efessiou 4, 11527 Athens, Greece; (A.T.); (R.S.); (J.Z.)
- Correspondence: (J.P.S.); (A.V.); (M.M.); Tel.: +33-5-31224078 (J.P.S.); +30-210-6597506 (A.V.); +30-210-6597485 (M.M.)
| |
Collapse
|
49
|
van Roermund CWT, IJlst L, Linka N, Wanders RJA, Waterham HR. Peroxisomal ATP Uptake Is Provided by Two Adenine Nucleotide Transporters and the ABCD Transporters. Front Cell Dev Biol 2022; 9:788921. [PMID: 35127709 PMCID: PMC8807639 DOI: 10.3389/fcell.2021.788921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Peroxisomes are essential organelles involved in various metabolic processes, including fatty acid β-oxidation. Their metabolic functions require a controlled exchange of metabolites and co-factors, including ATP, across the peroxisomal membrane. We investigated which proteins are involved in the peroxisomal uptake of ATP in the yeast Saccharomyces cerevisiae. Using wild-type and targeted deletion strains, we measured ATP-dependent peroxisomal octanoate β-oxidation, intra-peroxisomal ATP levels employing peroxisome-targeted ATP-sensing reporter proteins, and ATP uptake in proteoliposomes prepared from purified peroxisomes. We show that intra-peroxisomal ATP levels are maintained by different peroxisomal membrane proteins each with different modes of action: 1) the previously reported Ant1p protein, which catalyzes the exchange of ATP for AMP or ADP, 2) the ABC transporter protein complex Pxa1p/Pxa2p, which mediates both uni-directional acyl-CoA and ATP uptake, and 3) the mitochondrial Aac2p protein, which catalyzes ATP/ADP exchange and has a dual localization in both mitochondria and peroxisomes. Our results provide compelling evidence for a complementary system for the uptake of ATP in peroxisomes.
Collapse
Affiliation(s)
- Carlo W. T. van Roermund
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers—Location AMC, University of Amsterdam, Amsterdam, Netherlands
- *Correspondence: Carlo W. T. van Roermund, ; Hans R. Waterham,
| | - Lodewijk IJlst
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers—Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Nicole Linka
- Department of Plant Biochemistry, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Ronald J. A. Wanders
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers—Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hans R. Waterham
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers—Location AMC, University of Amsterdam, Amsterdam, Netherlands
- *Correspondence: Carlo W. T. van Roermund, ; Hans R. Waterham,
| |
Collapse
|
50
|
Cell Type-Selective Loss of Peroxisomal β-Oxidation Impairs Bipolar Cell but Not Photoreceptor Survival in the Retina. Cells 2022; 11:cells11010161. [PMID: 35011723 PMCID: PMC8750404 DOI: 10.3390/cells11010161] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Retinal degeneration is a common feature in peroxisomal disorders leading to blindness. Peroxisomes are present in the different cell types of the retina; however, their precise contribution to retinal integrity is still unclear. We previously showed that mice lacking the central peroxisomal β-oxidation enzyme, multifunctional protein 2 (MFP2), develop an early onset retinal decay including photoreceptor cell death. To decipher the function of peroxisomal β-oxidation in photoreceptors, we generated cell type selective Mfp2 knockout mice, using the Crx promotor targeting photoreceptors and bipolar cells. Surprisingly, Crx-Mfp2−/− mice maintained photoreceptor length and number until the age of 1 year. A negative electroretinogram was indicative of preserved photoreceptor phototransduction, but impaired downstream bipolar cell signaling from the age of 6 months. The photoreceptor ribbon synapse was affected, containing free-floating ribbons and vesicles with altered size and density. The bipolar cell interneurons sprouted into the ONL and died. Whereas docosahexaenoic acid levels were normal in the neural retina, levels of lipids containing very long chain polyunsaturated fatty acids were highly increased. Crx-Pex5−/− mice, in which all peroxisomal functions are inactivated in photoreceptors and bipolar cells, developed the same phenotype as Crx-Mfp2−/− mice. In conclusion, the early photoreceptor death in global Mfp2−/− mice is not driven cell autonomously. However, peroxisomal β-oxidation is essential for the integrity of photoreceptor ribbon synapses and of bipolar cells.
Collapse
|