1
|
He YH, Ou LL, Jiang JL, Chen YF, Abudukeremu A, Xue Y, Mu MY, Zhong WW, Xu DL, Meng XY, Guan YQ. Bletilla striata polysaccharides alleviate metabolic dysfunction-associated steatotic liver disease through enhancing hepatocyte RelA/ HNF1α signaling. World J Gastroenterol 2025; 31:93179. [DOI: 10.3748/wjg.v31.i4.93179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 10/15/2024] [Accepted: 11/14/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Bletilla striata polysaccharides (BSP) have antioxidant, immune regulation, and anti-fibrotic activities. However, the therapeutic effect and mechanisms underlying the action of BSP in metabolic dysfunction-associated steatotic liver disease (MASLD) have not been fully understood.
AIM To investigate the therapeutic effects and mechanisms of BSP on MASLD by centering on the hepatocyte nuclear factor kappa B p65 (RelA)/hepatocyte nuclear factor-1 alpha (HNF1α) signaling.
METHODS A mouse model of MASLD was induced by feeding with a high-fat-diet (HFD) and a hepatocyte model of steatosis was induced by treatment with sodium oleate (SO) and sodium palmitate (SP). The therapeutic effects of BSP on MASLD were examined in vivo and in vitro. The mechanisms underlying the action of BSP were analyzed for their effect on lipid metabolism disorder, endoplasmic reticulum (ER) stress, and the RelA/HNF1α signaling.
RESULTS HFD feeding reduced hepatocyte RelA and HNF1α expression, induced ER stress, lipid metabolism disorder, and necroptosis in mice, which were significantly mitigated by treatment with BSP. Furthermore, treatment with BSP or BSP-containing conditional rat serum significantly attenuated the sodium oleate/sodium palmitate (SO/SP)-induced hepatocyte steatosis by decreasing lipid accumulation, and lipid peroxidation, and enhancing the expression of RelA, and HNF1α. The therapeutic effects of BSP on MASLD were partially abrogated by RELA silencing in mice and RELA knockout in hepatocytes. RELA silencing or knockout significantly down-regulated HNF1α expression, and remodeled ER stress and oxidative stress responses during hepatic steatosis.
CONCLUSION Treatment with BSP ameliorates MASLD, associated with enhancing the RelA/HNF1α signaling, remodeling ER stress and oxidative stress responses in hepatocytes.
Collapse
Affiliation(s)
- Yi-Huai He
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830000, Xinjiang Uyghur Autonomous Region, China
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Li-Li Ou
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Jin-Lian Jiang
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Yun-Fen Chen
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Aikedaimu Abudukeremu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830000, Xinjiang Uyghur Autonomous Region, China
| | - Yuan Xue
- Department of Liver Diseases, Third People’s Hospital of Changzhou, Changzhou 213000, Jiangsu Province, China
| | - Mao-Yuan Mu
- Department of Intervention Radiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Wei-Wei Zhong
- Department of Infectious Diseases, Jingmen Central Hospital, Jingmen 448000, Hubei Province, China
| | - De-Lin Xu
- Department of Cell Biology, Zunyi Medical University, Zunyi 563099, Guizhou Province, China
| | - Xuan-Yu Meng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830000, Xinjiang Uyghur Autonomous Region, China
| | - Ya-Qun Guan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830000, Xinjiang Uyghur Autonomous Region, China
- Xinjiang Second Medical College, Karamay 834000, Xinjiang Uyghur Autonomous Region, China
| |
Collapse
|
2
|
Xu W, Zhu Y, Wang S, Liu J, Li H. From Adipose to Ailing Kidneys: The Role of Lipid Metabolism in Obesity-Related Chronic Kidney Disease. Antioxidants (Basel) 2024; 13:1540. [DOI: 10.3390/antiox13121540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Obesity has emerged as a significant public health crisis, closely linked to the pathogenesis and progression of chronic kidney disease (CKD). This review explores the intricate relationship between obesity-induced lipid metabolism disorders and renal health. We discuss how excessive free fatty acids (FFAs) lead to lipid accumulation in renal tissues, resulting in cellular lipotoxicity, oxidative stress, and inflammation, ultimately contributing to renal injury. Key molecular mechanisms, including the roles of transcriptional regulators like PPARs and SREBP-1, are examined for their implications in lipid metabolism dysregulation. The review also highlights the impact of glomerular and tubular lipid overload on kidney pathology, emphasizing the roles of podocytes and tubular cells in maintaining kidney function. Various therapeutic strategies targeting lipid metabolism, including pharmacological agents such as statins and SGLT2 inhibitors, as well as lifestyle modifications, are discussed for their potential to mitigate CKD progression in obese individuals. Future research directions are suggested to better understand the mechanisms linking lipid metabolism to kidney disease and to develop personalized therapeutic approaches. Ultimately, addressing obesity-related lipid metabolism disorders may enhance kidney health and improve outcomes for individuals suffering from CKD.
Collapse
Affiliation(s)
- Wenchao Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuting Zhu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Siyuan Wang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hao Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
3
|
Bataglioli I, Vieira J, da Siva J, Andrade L, Faria V, Corcoba R, de Almeida R, Zara L, Buzalaf M, Adamec J, Padilha P. Metallomic Approach to Mercury and Selenium in the Liver Tissue of Psectrogaster amazonica and Raphiodon vulpinus from the Brazilian Amazon. Int J Mol Sci 2024; 25:11946. [PMID: 39596016 PMCID: PMC11594490 DOI: 10.3390/ijms252211946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
This paper reports the results of a mercury (Hg) and selenium (Se) metallomic study in the liver tissues of Psectrogaster amazonica and Raphiodon vulpinus from the Brazilian Amazon. Two-dimensional electrophoresis, graphite furnace atomic absorption spectrometry, and liquid chromatography-tandem mass spectrometry were performed. Hg and Se determinations allowed the calculation of Hg:Se and Se:Hg molar ratio and Se values for health benefits (Se HBVs). The Se:Hg values were >1 for both fish species, whereas the Se HBVs were >5 for P. amazonica and >10 for R. vulpinus, indicating that both possess Se reserves to control Hg toxicity. The metallomic data allowed the identification of 11 Hg/Se-associated protein spots in the two fish species, with concentrations in the range of 9.70 ± 0.14 and 28.44 ± 0.31 mg kg-1 of Hg and 16.15 ± 0.21 and 43.12 ± 0.51 mg kg-1 of Se. Five metal binding proteins (MBP) in the Hg/Se-associated protein spots in the liver proteome of P. amazonica and eight in R. vulpinus were identified, indicating the possible formation of Hg/Se complexes on the MBP structures. The activities analysis of catalase, superoxide dismutase, GPx enzymes, and lipoperoxide concentrations demonstrated that Hg-induced oxidative stress did not occur, possibly because both fish species possess Se reserves necessary to inhibit the Hg's deleterious effects.
Collapse
Affiliation(s)
- Izabela Bataglioli
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (I.B.); (J.d.S.); (L.A.); (R.C.)
| | - José Vieira
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-693, SP, Brazil; (J.V.); (V.F.)
| | - Joyce da Siva
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (I.B.); (J.d.S.); (L.A.); (R.C.)
| | - Luane Andrade
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (I.B.); (J.d.S.); (L.A.); (R.C.)
| | - Victor Faria
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-693, SP, Brazil; (J.V.); (V.F.)
| | - Rebeca Corcoba
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (I.B.); (J.d.S.); (L.A.); (R.C.)
| | - Ronaldo de Almeida
- Wolfgang C. Pfeiffer Environmental Biogeochemistry Laboratory, Federal University of Rondônia, Porto Velho 76801-974, RO, Brazil;
| | - Luiz Zara
- College of Planaltina, University of Brasília (UNB), Planaltina 70842-970, DF, Brazil
| | - Marília Buzalaf
- Department of Biochemistry, Bauru School of Dentistry, University of São Paulo (USP), Bauru 17012-901, SP, Brazil;
| | - Jiri Adamec
- School of Medicine, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA;
| | - Pedro Padilha
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (I.B.); (J.d.S.); (L.A.); (R.C.)
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-693, SP, Brazil; (J.V.); (V.F.)
| |
Collapse
|
4
|
An K, Shi B, Lv X, Liu Y, Xia Z. T-2 toxin triggers lipid metabolism disorder and oxidative stress in liver of ducks. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117169. [PMID: 39405967 DOI: 10.1016/j.ecoenv.2024.117169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024]
Abstract
T-2 toxin (T-2) is a highly toxic mycotoxin that threatens organism health, yet its hepatoxicity on ducks remains unknown. The present study aimed to assess the hepatoxicity and redox reactions induced by T-2 in ducks. Sixty 7-day-old ducklings were divided into 4 groups and exposed to 0, 200, 400 and 800 μg/kg bodyweight of T-2 through oral gavage for 2 weeks. The growth performance, liver histopathology, biochemical indicators, antioxidant capacity and hepatic damage-related genes of ducks were analyzed. The results revealed that 800 µg/kg T-2 inhibited the growth and feed intake of ducks, whereas liver index increased with the elevation of T-2 concentration. Histological examinations exhibited that T-2 caused hepatic cord disappeared and severe steatosis. Moreover, serum AST, ALT and TG were substantially higher in 400 μg/kg group, while γ-GT and ALB were reduced under 800 μg/kg T-2 exposure. In addition, significant increase of malondialdehyde (MDA) in liver, decrease of hepatic total antioxidant capacity (T-AOC) and serum glutathione peroxidase (GPx) were observed in all T-2 groups. Furthermore, T-2 disrupted lipid metabolism and oxidative stress-related genes expression in liver. The transcript level of fatty acid binding protein 1 (FABP1) was markedly raised in all T-2 groups, and hepatic acyl-CoA oxidase 1 (ACOX1) was significantly raised in 200 and 400 μg/kg T-2 groups. Under 800 μg/kg T-2, significant induction of hypoxia inducible factor-1 alpha (HIF-1α), and downregulated peroxisome proliferator-activated receptor (PPAR)-alpha, carnitine palmitoyl transferase 1A (CPT1A), peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC-1α), GPx1, catalase (CAT) mRNA levels were observed. Therefore, we conclude that T-2 caused liver injury through lipid metabolism disruption and oxidative stress in ducks, which reinforces understanding about the hepatoxicity mechanisms of T-2 and provides new targets for detoxication and prevention.
Collapse
Affiliation(s)
- Keying An
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Bozhi Shi
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xueze Lv
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Beijing General Station of Animal Husbandry, Beijing 100107, China
| | - Yanhan Liu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Shandong Provincial Center for Animal Disease Control, Jinan 250100, China
| | - Zhaofei Xia
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
5
|
Chen F, Hao T, Chen Q, Sun Y, Shen Y, Zhao Z, Du J, Li Y, Mai K, Ai Q. FABP1 induces lipogenesis by regulating the processing of SREBP1 in hepatocytes of large yellow croaker (Larimichthys crocea). FASEB J 2024; 38:e70036. [PMID: 39275940 DOI: 10.1096/fj.202401087rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024]
Abstract
Fatty acid-binding protein 1 (FABP1) plays an important role in regulating fatty acid metabolism in liver, which is a potential therapeutic target for diseases such as non-alcoholic fatty liver disease (NAFLD). However, the underlying mechanisms are not well defined. Using complementary experimental models, we discovered FABP1 induction in hepatocytes as a primary mediator of lipogenesis when exposed to fatty acids, especially saturated fatty acids (SFAs). In the feeding trial, palm oil led to excess lipid accumulation in the liver of large yellow croaker (Larimichthys crocea), accompanied by significant induction of FABP1. In cultured cells, palmitic acid (PA), a kind of SFA, triggered the fabp1 expression and increased triglyceride (TG) contents. Knockdown of FABP1 dampened PA-induced TG accumulation through mitigated lipogenesis. The overexpression of FABP1 showed the opposite result. Furthermore, the inactivation of FABP1 led to induction in insulin-induced gene 1 (INSIG1) expression, which attenuated the processing of sterol regulatory element-binding protein 1 (SREBP1) by down-regulating the nuclear-localized SREBP1. These results revealed a previously unrecognized function of FABP1 in response to PA, providing additional evidence for targeting FABP1 in the treatment of NAFLD caused by SFA.
Collapse
Affiliation(s)
- Fan Chen
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, People's Republic of China
| | - Tingting Hao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, People's Republic of China
| | - Qiang Chen
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, People's Republic of China
| | - Yuning Sun
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, People's Republic of China
| | - Yanan Shen
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, People's Republic of China
| | - Zengqi Zhao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, People's Republic of China
| | - Jianlong Du
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, People's Republic of China
| | - Yueru Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, People's Republic of China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, People's Republic of China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, People's Republic of China
| |
Collapse
|
6
|
Feng J, Chen X, Li R, Xie Y, Zhang X, Guo X, Zhao L, Xu Z, Song Y, Song J, Bi H. Lactylome analysis reveals potential target modified proteins in the retina of form-deprivation myopia. iScience 2024; 27:110606. [PMID: 39246443 PMCID: PMC11379675 DOI: 10.1016/j.isci.2024.110606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/19/2024] [Accepted: 07/25/2024] [Indexed: 09/10/2024] Open
Abstract
The biological mechanisms underlying the development of myopia have not yet been completely elucidated. The retina is critical for visual signal processing, which primarily utilizes aerobic glycolysis to produce lactate as a metabolic end product. Lactate facilitates lysine lactylation (Kla), a posttranslational modification essential for transcriptional regulation. This study found increased glycolytic flux and lactate accumulation in the retinas of form-deprived myopic guinea pigs. Subsequently, a comprehensive analysis of Kla levels in retinal proteins revealed that Kla was upregulated at 124 sites in 92 proteins and downregulated at three sites in three proteins. Functional enrichment and protein interaction analyses showed significant enrichment in pathways related to energy metabolism, including glutathione metabolism, glycolysis, and the hypoxia-inducible factor-1 signaling pathway. Parallel-reaction monitoring confirmed data reliability. These findings suggest a connection between myopia and retinal energy metabolism imbalance, providing new insights into the pathogenesis of myopia.
Collapse
Affiliation(s)
- Jiaojiao Feng
- Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Xiaoniao Chen
- Department of Ophthalmology, Chinese PLA General Hospital, Beijing 100853, China
| | - Runkuan Li
- Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yunxiao Xie
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, China
- Shandong Academy of Eye Disease Prevention and Therapy, Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Jinan 250002, China
| | - Xiuyan Zhang
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, China
- Shandong Academy of Eye Disease Prevention and Therapy, Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Jinan 250002, China
| | - Xiaoxiao Guo
- Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Lianghui Zhao
- Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Zhe Xu
- Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yifan Song
- Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Jike Song
- Shandong University of Traditional Chinese Medicine, Jinan 250014, China
- Shandong Academy of Eye Disease Prevention and Therapy, Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Jinan 250002, China
| | - Hongsheng Bi
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, China
- Shandong Academy of Eye Disease Prevention and Therapy, Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Jinan 250002, China
| |
Collapse
|
7
|
Jin Z, Wang X. Traditional Chinese medicine and plant-derived natural products in regulating triglyceride metabolism: Mechanisms and therapeutic potential. Pharmacol Res 2024; 208:107387. [PMID: 39216839 DOI: 10.1016/j.phrs.2024.107387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The incidence of cardiometabolic disease is increasing globally, with a trend toward younger age of onset. Among these, atherosclerotic cardiovascular disease is a leading cause of mortality worldwide. Despite the efficacy of traditional lipid-lowering drugs, such as statins, in reducing low-density lipoprotein cholesterol levels, a significant residual risk of cardiovascular events remains, which is closely related to unmet triglyceride (TG) targets. The clinical application of current TG-lowering Western medicines has certain limitations, necessitating alternative or complementary therapeutic strategies. Traditional Chinese medicine (TCM) and plant-derived natural products, known for their safety owing to their natural origins and diverse biological activities, offer promising avenues for TG regulation with potentially fewer side effects. This review systematically summarises the mechanisms of TG metabolism and subsequently reviews the regulatory effects of TCM and plant-derived natural products on TG metabolism, including the inhibition of TG synthesis (via endogenous and exogenous pathways), promotion of TG catabolism, regulation of fatty acid absorption and transport, enhancement of lipophagy, modulation of the gut microbiota, and other mechanisms. In conclusion, through a comprehensive analysis of recent studies, this review consolidates the multifaceted regulatory roles of TCM and plant-derived natural products in TG metabolism and elucidates their potential as safer, multi-target therapeutic agents in managing hypertriglyceridemia and mitigating cardiovascular risk, thereby providing a basis for new drug development.
Collapse
Affiliation(s)
- Zhou Jin
- Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaolong Wang
- Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
8
|
Zhang B, Bu C, Wang Q, Chen Q, Shi D, Qiu H, Wang Z, Liu J, Wang Z, Zhang Q, Chi L. Low molecular weight heparin promotes the PPAR pathway by protecting the glycocalyx of cells to delay the progression of diabetic nephropathy. J Biol Chem 2024; 300:107493. [PMID: 38925330 PMCID: PMC11301383 DOI: 10.1016/j.jbc.2024.107493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/03/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Diabetic nephropathy (DN) is one of the most important comorbidities for diabetic patients, which is the main factor leading to end-stage renal disease. Heparin analogs can delay the progression of DN, but the mechanism is not fully understood. In this study, we found that low molecular weight heparin therapy significantly upregulated some downstream proteins of the peroxisome proliferator-activated receptor (PPAR) signaling pathway by label-free quantification of the mouse kidney proteome. Through cell model verification, low molecular weight heparin can protect the heparan sulfate of renal tubular epithelial cells from being degraded by heparanase that is highly expressed in a high-glucose environment, enhance the endocytic recruitment of fatty acid-binding protein 1, a coactivator of the PPAR pathway, and then regulate the activation level of intracellular PPAR. In addition, we have elucidated for the first time the molecular mechanism of heparan sulfate and fatty acid-binding protein 1 interaction. These findings provide new insights into understanding the role of heparin in the pathogenesis of DN and developing corresponding treatments.
Collapse
Affiliation(s)
- Bin Zhang
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, China
| | - Changkai Bu
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, China
| | - Qingchi Wang
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, China
| | - Qingqing Chen
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, China
| | - Deling Shi
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, China
| | - Hongyan Qiu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Zhangjie Wang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Zhe Wang
- Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Department of Endocrinology & Geriatrics, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Qunye Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Jinan, Shandong, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, Shandong, China; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Lianli Chi
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, China.
| |
Collapse
|
9
|
Pelletier AN, Sanchez GP, Izmirly A, Watson M, Di Pucchio T, Carvalho KI, Filali-Mouhim A, Paramithiotis E, Timenetsky MDCST, Precioso AR, Kalil J, Diamond MS, Haddad EK, Kallas EG, Sekaly RP. A pre-vaccination immune metabolic interplay determines the protective antibody response to a dengue virus vaccine. Cell Rep 2024; 43:114370. [PMID: 38900640 PMCID: PMC11404042 DOI: 10.1016/j.celrep.2024.114370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/05/2024] [Accepted: 05/31/2024] [Indexed: 06/22/2024] Open
Abstract
Protective immunity to dengue virus (DENV) requires antibody response to all four serotypes. Systems vaccinology identifies a multi-OMICs pre-vaccination signature and mechanisms predictive of broad antibody responses after immunization with a tetravalent live attenuated DENV vaccine candidate (Butantan-DV/TV003). Anti-inflammatory pathways, including TGF-β signaling expressed by CD68low monocytes, and the metabolites phosphatidylcholine (PC) and phosphatidylethanolamine (PE) positively correlate with broadly neutralizing antibody responses against DENV. In contrast, expression of pro-inflammatory pathways and cytokines (IFN and IL-1) in CD68hi monocytes and primary and secondary bile acids negatively correlates with broad DENV-specific antibody responses. Induction of TGF-β and IFNs is done respectively by PC/PE and bile acids in CD68low and CD68hi monocytes. The inhibition of viral sensing by PC/PE-induced TGF-β is confirmed in vitro. Our studies show that the balance between metabolites and the pro- or anti-inflammatory state of innate immune cells drives broad and protective B cell response to a live attenuated dengue vaccine.
Collapse
Affiliation(s)
- Adam-Nicolas Pelletier
- RPM Bioinfo Solutions, Sainte-Thérèse, QC, Canada; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Gabriela Pacheco Sanchez
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Abdullah Izmirly
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Tiziana Di Pucchio
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Karina Inacio Carvalho
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Abdelali Filali-Mouhim
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | | | | | | | - Jorge Kalil
- Laboratory of Immunology, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil; Institute for Investigation in Immunology-Instituto Nacional de Ciência e Tecnologia-iii-INCT, São Paulo, SP, Brazil
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, and Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Elias K Haddad
- Department of Medicine and Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Esper G Kallas
- Instituto Butantan, São Paulo, Brazil; Department of Infectious and Parasitic Diseases, Hospital das Clínicas, School of Medicine, University of Sao Paulo, São Paulo 01246-903, Brazil
| | - Rafick Pierre Sekaly
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
10
|
Marigorta UM, Millet O, Lu SC, Mato JM. Dysfunctional VLDL metabolism in MASLD. NPJ METABOLIC HEALTH AND DISEASE 2024; 2:16. [PMID: 39049993 PMCID: PMC11263124 DOI: 10.1038/s44324-024-00018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/22/2024] [Indexed: 07/27/2024]
Abstract
Lipidomics has unveiled the intricate human lipidome, emphasizing the extensive diversity within lipid classes in mammalian tissues critical for cellular functions. This diversity poses a challenge in maintaining a delicate balance between adaptability to recurring physiological changes and overall stability. Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD), linked to factors such as obesity and diabetes, stems from a compromise in the structural and functional stability of the liver within the complexities of lipid metabolism. This compromise inaccurately senses an increase in energy status, such as during fasting-feeding cycles or an upsurge in lipogenesis. Serum lipidomic studies have delineated three distinct metabolic phenotypes, or "metabotypes" in MASLD. MASLD-A is characterized by lower very low-density lipoprotein (VLDL) secretion and triglyceride (TG) levels, associated with a reduced risk of cardiovascular disease (CVD). In contrast, MASLD-C exhibits increased VLDL secretion and TG levels, correlating with elevated CVD risk. An intermediate subtype, with a blend of features, is designated as the MASLD-B metabotype. In this perspective, we examine into recent findings that show the multifaceted regulation of VLDL secretion by S-adenosylmethionine, the primary cellular methyl donor. Furthermore, we explore the differential CVD and hepatic cancer risk across MASLD metabotypes and discuss the context and potential paths forward to gear the findings from genetic studies towards a better understanding of the observed heterogeneity in MASLD.
Collapse
Affiliation(s)
- Urko M. Marigorta
- Integrative Genomics Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Oscar Millet
- Precision Medicine and Metabolism Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, 48160 Derio, Spain
| | - Shelly C. Lu
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048 USA
| | - José M. Mato
- Precision Medicine and Metabolism Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, 48160 Derio, Spain
| |
Collapse
|
11
|
Şen İ, Dumlu Ş. Liver Fatty Acid-binding Protein Is a More Reliable Biomarker for Liver Injury in Nonalcoholic Steatohepatitis than Other Etiologies of Hepatitis. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2024; 35:568-576. [PMID: 39128054 PMCID: PMC11363397 DOI: 10.5152/tjg.2024.23444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 02/15/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND/AIMS Liver fatty acid-binding protein (LFABP) controls hepatocyte lipid metabolism and can be a biomarker in liver diseases. We compared the correlation of LFABP levels with liver histology in viral hepatitis and nonalcoholic fatty liver disease (NAFLD) and investigated the utility of serum LFABP as a biomarker for liver damage. MATERIALS AND METHODS We included 142 patients (60 chronic viral hepatitis B [CHB], 35 chronic viral hepatitis C [CHC], 47 NAFLD) and 40 healthy controls. LFABP levels were determined in all participants, and a liver biopsy was performed on patients. The nonalcoholic steatohepatitis (NASH) activity score (NAS), hepatosteatosis, liver inflammation, and fibrosis were evaluated for NAFLD patients. Ishak's histological scores were used for viral hepatitis. The correlation between LFABP levels and histologic scores was assessed in each group. RESULTS Serum LFABP levels in CHB, CHC, NAFLD, and control groups were 2.2, 3.5, 7.6, and 2.1 ng/mL, respectively. LFABP levels were significantly higher in the NAFLD group compared to the control, CHC, and CHB groups. LFABP was significantly higher in the NASH group than in nonalcoholic steatohepatitis, 8 ng/mL and 5.4 ng/mL, respectively (P = .001). In the NAFLD group, LFABP levels showed a moderate positive correlation with NAS score (r = 0.58, P <.001), ballooning degeneration (r = 0.67, P <.001), and lobular inflammation (r = 0.62, P <.001). A logistic regression study showed that the level of LFABP was predictive of NASH independent of age, gender, homeostasis model of IR, body mass index, aspartate aminotransferase, and alanine aminotransferase (OR = 1.869, P = .01). CONCLUSION LFABP specifically correlates with liver histology in NAFLD compared to viral hepatitis. Additionally, it can distinguish NASH from simple steatosis. LFABP may be a valuable biomarker for hepatocyte injury in NASH.
Collapse
Affiliation(s)
- İlker Şen
- Department of Gastroenterology, Şişli Hamidiye Etfal Education and Research Hospital, İstanbul, Türkiye
| | - Şükrü Dumlu
- Department of Gastroenterology, Gazi University Faculty of Medicine, Ankara, Türkiye
| |
Collapse
|
12
|
He J, Liu H, Li Z, Xu M, Zhang Y, Jiang T, Mo L. Integrated transcriptomic and metabolomic analysis of the hepatotoxicity of dichloroacetonitrile. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172237. [PMID: 38582105 DOI: 10.1016/j.scitotenv.2024.172237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/11/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Dichloroacetonitrile (DCAN), an emerged nitrogenous disinfection by-product (N-DBP) in drinking water, has garnered attention owing to its strong cytotoxicity, genotoxicity, and carcinogenicity. However, there are limited studies on its potential hepatotoxicity mechanisms. Understanding hepatotoxicity is essential in order to identify and assess the potential risks posed by environmental pollutants on liver health and to safeguard public health. Here, we investigated the viability, reactive oxygen species (ROS) levels, and cell cycle profile of DCAN-exposed HepG2 cells and analyzed the mechanism of DCAN-induced hepatotoxicity using both transcriptomic and metabolomic techniques. The study revealed that there was a decrease in cell viability, increase in ROS production, and increase in the number of cells in the G2/M phase with an increase in the concentration of DCAN. Omics analyses showed that DCAN exposure increased cellular ROS levels, leading to oxidative damage in hepatocytes, which further induced DNA damage, cell cycle arrest, and cell growth impairment. Thus, DCAN has significant toxic effects on hepatocytes. Integrated analysis of transcriptomics and metabolomics offers new insights into the mechanisms of DCAN-induced hepatoxicity.
Collapse
Affiliation(s)
- Jinfeng He
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China
| | - Hongyan Liu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China.
| | - Zemeng Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China
| | - Minhua Xu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China
| | - Yong Zhang
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Tiemin Jiang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China
| | - Lingyun Mo
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
| |
Collapse
|
13
|
Tao YF, Pan YF, Zhong CY, Wang QC, Hua JX, Lu SQ, Li Y, Dong YL, Xu P, Jiang BJ, Qiang J. Silencing the fatty acid elongase gene elovl6 induces reprogramming of nutrient metabolism in male Oreochromis niloticus. Int J Biol Macromol 2024; 271:132666. [PMID: 38806081 DOI: 10.1016/j.ijbiomac.2024.132666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/05/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024]
Abstract
Elongation of very long-chain fatty acids protein 6 (ELOVL6) plays a pivotal role in the synthesis of endogenous fatty acids, influencing energy balance and metabolic diseases. The primary objective of this study was to discover the molecular attributes and regulatory roles of ELOVL6 in male Nile tilapia, Oreochromis niloticus. The full-length cDNA of elovl6 was cloned from male Nile tilapia, and was determined to be 2255-bp long, including a 5'-untranslated region of 193 bp, a 3'-untranslated region of 1252 bp, and an open reading frame of 810 bp encoding 269 amino acids. The putative protein had typical features of ELOVL proteins. The transcript levels of elovl6 differed among various tissues and among fish fed with different dietary lipid sources. Knockdown of elovl6 in Nile tilapia using antisense RNA technology resulted in significant alterations in hepatic morphology, long-chain fatty acid synthesis, and fatty acid oxidation, and led to increased fat deposition in the liver and disrupted glucose/lipid metabolism. A comparative transcriptomic analysis (elovl6 knockdown vs. the negative control) identified 5877 differentially expressed genes with significant involvement in key signaling pathways including the peroxisome proliferator-activated receptor signaling pathway, fatty acid degradation, glycolysis/gluconeogenesis, and the insulin signaling pathway, all of which are crucial for lipid and glucose metabolism. qRT-PCR analyses verified the transcript levels of 13 differentially expressed genes within these pathways. Our findings indicate that elovl6 knockdown in male tilapia impedes oleic acid synthesis, culminating in aberrant nutrient metabolism.
Collapse
Affiliation(s)
- Yi-Fan Tao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Yi-Fan Pan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Chun-Yi Zhong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Qing-Chun Wang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Ji-Xiang Hua
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Si-Qi Lu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yan Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Ya-Lun Dong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Bing-Jie Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Jun Qiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China.
| |
Collapse
|
14
|
Ma K, Chu J, Liu Y, Sun L, Zhou S, Li X, Ji C, Zhang N, Guo X, Liang S, Cui T, Hu Q, Wang J, Liu Y, Liu L. Hepatocellular Carcinoma LINC01116 Outcompetes T Cells for Linoleic Acid and Accelerates Tumor Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400676. [PMID: 38460179 PMCID: PMC11151013 DOI: 10.1002/advs.202400676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Indexed: 03/11/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer with a highly immunosuppressive tumor microenvironment and a typical pattern of disturbances in hepatic lipid metabolism. Long non-coding RNAs are shown to play an important role in the regulation of gene expression, but much remains unknown between tumor microenvironment and lipid metabolism as a bridging molecule. Here, long intergenic nonprotein coding RNA 01116 (LINC01116) acts as this molecular which is frequently upregulated in HCC patients and associated with HCC progression in vitro and in vivo is identified. Mechanistically, LINC01116 stabilizes EWS RNA-binding protein 1 (EWSR1) by preventing RAD18 E3 Ubiquitin Protein Ligase (RAD18) -mediated ubiquitination. The enhanced EWSR1 protein upregulates peroxisome proliferator activated receptor alpha (PPARA) and fatty acid binding protein1 (FABP1) expression, a long-chain fatty acid (LCFA) transporter, and thus cancer cells outcompete T cells for LCFAs, especially linoleic acid, for seeding their own growth, leading to T cell malfunction and HCC malignant progression. In a preclinical animal model, the blockade of LINC01116 leads to enhanced efficacy of anti-PD1 treatment accompanied by increased cytotoxic T cell and decreased exhausted T cell infiltration. Collectively, LINC01116 is an immunometabolic lncRNA and the LINC01116-EWSR1-PPARA-FABP1 axis may be targetable for cancer immunotherapy.
Collapse
Affiliation(s)
- Kun Ma
- Department of General SurgeryKey Laboratory of Hepatosplenic SurgeryMinistry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbin150001China
| | - Junhui Chu
- Department of Hepatobiliary SurgeryCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Anhui Province Key Laboratory of Hepatopancreatobiliary SurgeryHefeiAnhui230001China
- Anhui Provincial Clinical Research Center for Hepatobiliary DiseasesHefeiAnhui230001China
| | - Yufeng Liu
- Department of Hepatobiliary SurgeryCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Anhui Province Key Laboratory of Hepatopancreatobiliary SurgeryHefeiAnhui230001China
- Anhui Provincial Clinical Research Center for Hepatobiliary DiseasesHefeiAnhui230001China
| | - Linmao Sun
- Department of Hepatobiliary SurgeryCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Anhui Province Key Laboratory of Hepatopancreatobiliary SurgeryHefeiAnhui230001China
- Anhui Provincial Clinical Research Center for Hepatobiliary DiseasesHefeiAnhui230001China
| | - Shuo Zhou
- Department of Hepatobiliary SurgeryCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Anhui Province Key Laboratory of Hepatopancreatobiliary SurgeryHefeiAnhui230001China
- Anhui Provincial Clinical Research Center for Hepatobiliary DiseasesHefeiAnhui230001China
| | - Xianying Li
- Department of Hepatobiliary SurgeryCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Anhui Province Key Laboratory of Hepatopancreatobiliary SurgeryHefeiAnhui230001China
- Anhui Provincial Clinical Research Center for Hepatobiliary DiseasesHefeiAnhui230001China
| | - Changyong Ji
- Department of Hepatobiliary SurgeryCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Anhui Province Key Laboratory of Hepatopancreatobiliary SurgeryHefeiAnhui230001China
- Anhui Provincial Clinical Research Center for Hepatobiliary DiseasesHefeiAnhui230001China
| | - Ning Zhang
- Department of General SurgeryKey Laboratory of Hepatosplenic SurgeryMinistry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbin150001China
| | - Xinyu Guo
- Department of General SurgeryKey Laboratory of Hepatosplenic SurgeryMinistry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbin150001China
| | - Shuhang Liang
- Department of Gastrointestinal SurgeryAnhui Province Key Laboratory of Hepatopancreatobiliary SurgeryThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
| | - Tianming Cui
- Department of Hepatobiliary SurgeryCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Anhui Province Key Laboratory of Hepatopancreatobiliary SurgeryHefeiAnhui230001China
- Anhui Provincial Clinical Research Center for Hepatobiliary DiseasesHefeiAnhui230001China
| | - Qingsong Hu
- Department of Hepatobiliary SurgeryCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Anhui Province Key Laboratory of Hepatopancreatobiliary SurgeryHefeiAnhui230001China
- Anhui Provincial Clinical Research Center for Hepatobiliary DiseasesHefeiAnhui230001China
| | - Jiabei Wang
- Department of Hepatobiliary SurgeryCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Anhui Province Key Laboratory of Hepatopancreatobiliary SurgeryHefeiAnhui230001China
- Anhui Provincial Clinical Research Center for Hepatobiliary DiseasesHefeiAnhui230001China
| | - Yao Liu
- Department of Hepatobiliary SurgeryCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Anhui Province Key Laboratory of Hepatopancreatobiliary SurgeryHefeiAnhui230001China
- Anhui Provincial Clinical Research Center for Hepatobiliary DiseasesHefeiAnhui230001China
| | - Lianxin Liu
- Department of General SurgeryKey Laboratory of Hepatosplenic SurgeryMinistry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbin150001China
| |
Collapse
|
15
|
Yabut KCB, Martynova A, Nath A, Zercher BP, Bush MF, Isoherranen N. Drugs Form Ternary Complexes with Human Liver Fatty Acid Binding Protein 1 (FABP1) and FABP1 Binding Alters Drug Metabolism. Mol Pharmacol 2024; 105:395-410. [PMID: 38580446 PMCID: PMC11114116 DOI: 10.1124/molpharm.124.000878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/07/2024] Open
Abstract
Liver fatty acid binding protein 1 (FABP1) binds diverse endogenous lipids and is highly expressed in the human liver. Binding to FABP1 alters the metabolism and homeostasis of endogenous lipids in the liver. Drugs have also been shown to bind to rat FABP1, but limited data are available for human FABP1 (hFABP1). FABP1 has a large binding pocket, and up to two fatty acids can bind to FABP1 simultaneously. We hypothesized that drug binding to hFABP1 results in formation of ternary complexes and that FABP1 binding alters drug metabolism. To test these hypotheses, native protein mass spectrometry (MS) and fluorescent 11-(dansylamino)undecanoic acid (DAUDA) displacement assays were used to characterize drug binding to hFABP1, and diclofenac oxidation by cytochrome P450 2C9 (CYP2C9) was studied in the presence and absence of hFABP1. DAUDA binding to hFABP1 involved high (Kd,1 = 0.2 μM) and low (Kd,2 > 10 μM) affinity binding sites. Nine drugs bound to hFABP1 with equilibrium dissociation constant (Kd) values ranging from 1 to 20 μM. None of the tested drugs completely displaced DAUDA from hFABP1, and fluorescence spectra showed evidence of ternary complex formation. Formation of DAUDA-hFABP1-diclofenac ternary complex was verified with native MS. Docking predicted diclofenac binding in the portal region of FABP1 with DAUDA in the binding cavity. The catalytic rate constant of diclofenac hydroxylation by CYP2C9 was decreased by ∼50% (P < 0.01) in the presence of FABP1. Together, these results suggest that drugs form ternary complexes with hFABP1 and that hFABP1 binding in the liver will alter drug metabolism and clearance. SIGNIFICANCE STATEMENT: Many commonly prescribed drugs bind fatty acid binding protein 1 (FABP1), forming ternary complexes with FABP1 and the fluorescent fatty acid 11-(dansylamino)undecanoic acid. These findings suggest that drugs will bind to apo-FABP1 and fatty acid-bound FABP1 in the human liver. The high expression of FABP1 in the liver, together with drug binding to FABP1, may alter drug disposition processes in vivo.
Collapse
Affiliation(s)
- King Clyde B Yabut
- Department of Pharmaceutics, School of Pharmacy (K.C.B.Y., N.I.), Department of Chemistry (A.M., B.P.Z., M.F.B.), and Department of Medicinal Chemistry (A.N.), University of Washington, Seattle, Washington
| | - Alice Martynova
- Department of Pharmaceutics, School of Pharmacy (K.C.B.Y., N.I.), Department of Chemistry (A.M., B.P.Z., M.F.B.), and Department of Medicinal Chemistry (A.N.), University of Washington, Seattle, Washington
| | - Abhinav Nath
- Department of Pharmaceutics, School of Pharmacy (K.C.B.Y., N.I.), Department of Chemistry (A.M., B.P.Z., M.F.B.), and Department of Medicinal Chemistry (A.N.), University of Washington, Seattle, Washington
| | - Benjamin P Zercher
- Department of Pharmaceutics, School of Pharmacy (K.C.B.Y., N.I.), Department of Chemistry (A.M., B.P.Z., M.F.B.), and Department of Medicinal Chemistry (A.N.), University of Washington, Seattle, Washington
| | - Matthew F Bush
- Department of Pharmaceutics, School of Pharmacy (K.C.B.Y., N.I.), Department of Chemistry (A.M., B.P.Z., M.F.B.), and Department of Medicinal Chemistry (A.N.), University of Washington, Seattle, Washington
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy (K.C.B.Y., N.I.), Department of Chemistry (A.M., B.P.Z., M.F.B.), and Department of Medicinal Chemistry (A.N.), University of Washington, Seattle, Washington
| |
Collapse
|
16
|
Jiang J, Li H, Tang M, Lei L, Li HY, Dong B, Li JR, Wang XK, Sun H, Li JY, Xu JC, Gong Y, Jiang JD, Peng ZG. Upregulation of Hepatic Glutathione S-Transferase Alpha 1 Ameliorates Metabolic Dysfunction-Associated Steatosis by Degrading Fatty Acid Binding Protein 1. Int J Mol Sci 2024; 25:5086. [PMID: 38791126 PMCID: PMC11120891 DOI: 10.3390/ijms25105086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common metabolic disease of the liver, characterized by hepatic steatosis in more than 5% of hepatocytes. However, despite the recent approval of the first drug, resmetirom, for the management of metabolic dysfunction-associated steatohepatitis, decades of target exploration and hundreds of clinical trials have failed, highlighting the urgent need to find new druggable targets for the discovery of innovative drug candidates against MASLD. Here, we found that glutathione S-transferase alpha 1 (GSTA1) expression was negatively associated with lipid droplet accumulation in vitro and in vivo. Overexpression of GSTA1 significantly attenuated oleic acid-induced steatosis in hepatocytes or high-fat diet-induced steatosis in the mouse liver. The hepatoprotective and anti-inflammatory drug bicyclol also attenuated steatosis by upregulating GSTA1 expression. A detailed mechanism showed that GSTA1 directly interacts with fatty acid binding protein 1 (FABP1) and facilitates the degradation of FABP1, thereby inhibiting intracellular triglyceride synthesis by impeding the uptake and transportation of free fatty acids. Conclusion: GSTA1 may be a good target for the discovery of innovative drug candidates as GSTA1 stabilizers or enhancers against MASLD.
Collapse
Affiliation(s)
- Jing Jiang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
| | - Hu Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Mei Tang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
| | - Lei Lei
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
| | - Hong-Ying Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
| | - Biao Dong
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jian-Rui Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xue-Kai Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
| | - Han Sun
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
| | - Jia-Yu Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
| | - Jing-Chen Xu
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
| | - Yue Gong
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
| | - Jian-Dong Jiang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zong-Gen Peng
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
17
|
Liu J, Chang X, Qian L, Chen S, Xue Z, Wu J, Luo D, Huang B, Fan J, Guo T, Nie X. Proteomics-Derived Biomarker Panel Facilitates Distinguishing Primary Lung Adenocarcinomas With Intestinal or Mucinous Differentiation From Lung Metastatic Colorectal Cancer. Mol Cell Proteomics 2024; 23:100766. [PMID: 38608841 PMCID: PMC11092395 DOI: 10.1016/j.mcpro.2024.100766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/07/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024] Open
Abstract
The diagnosis of primary lung adenocarcinomas with intestinal or mucinous differentiation (PAIM) remains challenging due to the overlapping histomorphological, immunohistochemical (IHC), and genetic characteristics with lung metastatic colorectal cancer (lmCRC). This study aimed to explore the protein biomarkers that could distinguish between PAIM and lmCRC. To uncover differences between the two diseases, we used tandem mass tagging-based shotgun proteomics to characterize proteomes of formalin-fixed, paraffin-embedded tumor samples of PAIM (n = 22) and lmCRC (n = 17).Then three machine learning algorithms, namely support vector machine (SVM), random forest, and the Least Absolute Shrinkage and Selection Operator, were utilized to select protein features with diagnostic significance. These candidate proteins were further validated in an independent cohort (PAIM, n = 11; lmCRC, n = 19) by IHC to confirm their diagnostic performance. In total, 105 proteins out of 7871 proteins were significantly dysregulated between PAIM and lmCRC samples and well-separated two groups by Uniform Manifold Approximation and Projection. The upregulated proteins in PAIM were involved in actin cytoskeleton organization, platelet degranulation, and regulation of leukocyte chemotaxis, while downregulated ones were involved in mitochondrial transmembrane transport, vasculature development, and stem cell proliferation. A set of ten candidate proteins (high-level expression in lmCRC: CDH17, ATP1B3, GLB1, OXNAD1, LYST, FABP1; high-level expression in PAIM: CK7 (an established marker), NARR, MLPH, S100A14) was ultimately selected to distinguish PAIM from lmCRC by machine learning algorithms. We further confirmed using IHC that the five protein biomarkers including CDH17, CK7, MLPH, FABP1 and NARR were effective biomarkers for distinguishing PAIM from lmCRC. Our study depicts PAIM-specific proteomic characteristics and demonstrates the potential utility of new protein biomarkers for the differential diagnosis of PAIM and lmCRC. These findings may contribute to improving the diagnostic accuracy and guide appropriate treatments for these patients.
Collapse
Affiliation(s)
- Jiaying Liu
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaona Chang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liujia Qian
- Center for ProtTalks, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Shuo Chen
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhangzhi Xue
- Center for ProtTalks, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Junhua Wu
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danju Luo
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Huang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Fan
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tiannan Guo
- Center for ProtTalks, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China.
| | - Xiu Nie
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
18
|
Chen Y, Yu M, Chen L, Mao J, Wang W, Yang Z, Cao Z, Liu Y, Wei M, Zhang L, Li Z. Design, synthesis, and biological evaluation of first-in-class FABP1 inhibitors for the treatment of NASH. Eur J Med Chem 2024; 270:116358. [PMID: 38574638 DOI: 10.1016/j.ejmech.2024.116358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/11/2024] [Accepted: 03/24/2024] [Indexed: 04/06/2024]
Abstract
The fatty acid-binding protein 1 (FABP1) is a fatty acid transporter protein that is considered as an emerging target for metabolic diseases. Despite forceful evidence that the inhibition of FABP1 is essential for ameliorating NASH, pharmacological control and validation of FABP1 are hindered by a lack of relevant inhibitors as pharmacological tool. Therefore, the development of effective FABP1 inhibitors is a current focus of research. Herein, we firstly reported the comprehensive structure-activity relationship (SAR) study of novel FABP1 inhibitors derived from high throughput screening of our in-house library, which resulting in the identification of the optimal compound 44 (IC50 = 4.46 ± 0.54 μM). Molecular docking studies revealed that 44 forms stable hydrogen bonds with amino acids around the active pocket of FABP1. Moreover, 44 alleviated the typical histological features of fatty liver in NASH mice, including steatosis, lobular inflammation, ballooning and fibrosis. Additionally, 44 has been demonstrated to have lipid metabolism regulating, anti-oxidative stress and hepatoprotective properties. This study might be provided a promising insight into the field of NASH and inspiration for the development of FABP1 inhibitors.
Collapse
Affiliation(s)
- Ya Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Mingyang Yu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Lianru Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Jianming Mao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Wenxin Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Zhongcheng Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Zhijun Cao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Yuxia Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Min Wei
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Luyong Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, 510006, PR China.
| |
Collapse
|
19
|
Liang Y, Zhang R, Biswas S, Bu Q, Xu Z, Qiao L, Zhou Y, Tang J, Zhou J, Zhou H, Lu L. Integrated single-cell transcriptomics reveals the hypoxia-induced inflammation-cancer transformation in NASH-derived hepatocellular carcinoma. Cell Prolif 2024; 57:e13576. [PMID: 37994257 PMCID: PMC10984103 DOI: 10.1111/cpr.13576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/16/2023] [Accepted: 11/01/2023] [Indexed: 11/24/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged as the primary risk factor for hepatocellular carcinoma (HCC), owing to improved vaccination rates of Hepatitis B and the increasing prevalence of metabolic syndrome related to obesity. Although the importance of innate and adaptive immune cells has been emphasized, the malignant transformation of hepatocytes and their intricate cellular network with the immune system remain unclear. The study incorporated four single-cell transcriptomic datasets of liver tissues covering healthy and NAFLD-related disease status. To identify the subsets and functions of hepatocytes and macrophages, we employed differential composition analysis, functional enrichment analysis, pseudotime analysis, and scenic analysis. Furthermore, an experimental mouse model for the transformation of nonalcoholic steatohepatitis into hepatocellular carcinoma was established for validation purposes. We defined CYP7A1+ hepatocytes enriched in precancerous lesions as 'Transitional Cells' in the progression from NAFLD to HCC. CYP7A1+ hepatocytes upregulated genes associated with stress response, inflammation and cancer-associated pathways and downregulated the normal hepatocyte signature. We observed that hypoxia activation accompanied the entire process of inflammation-cancer transformation. Hepatocyte-derived HIF1A was gradually activated during the progression of NAFLD disease to adapt to the hypoxic microenvironment and hepatocytes under hypoxic environment led to changes in the metabolism, proliferation and angiogenesis, promoting the occurrence of tumours. Meanwhile, hypoxia induced the polarization of RACK1+ macrophages that enriched in the liver tissues of NASH towards immunosuppressed TREM2+ macrophages. Moreover, immunosuppressive TREM2+ macrophages were recruited by tumour cells through the CCL15-CCR1 axis to enhance immunosuppressive microenvironment and promote NAFLD-related HCC progression. The study provides a deep understanding of the development mechanism of NAFLD-related HCC and offers theoretical support and experimental basis for biological targets, drug research, and clinical application.
Collapse
Affiliation(s)
- Yuan Liang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical SciencesNanjing Medical UniversityNanjingChina
- School of Biological Science & Medical EngineeringSoutheast UniversityNanjingChina
| | - Rui Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical SciencesNanjing Medical UniversityNanjingChina
| | - Siddhartha Biswas
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical SciencesNanjing Medical UniversityNanjingChina
| | - Qingfa Bu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical SciencesNanjing Medical UniversityNanjingChina
| | - Zibo Xu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical SciencesNanjing Medical UniversityNanjingChina
| | - Lei Qiao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical SciencesNanjing Medical UniversityNanjingChina
- Department of BioinformaticsNanjing Medical UniversityNanjingChina
| | - Yan Zhou
- Department of Pancreatic Surgery, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Jiaqi Tang
- Department of BioinformaticsNanjing Medical UniversityNanjingChina
| | - Jinren Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical SciencesNanjing Medical UniversityNanjingChina
| | - Haoming Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical SciencesNanjing Medical UniversityNanjingChina
| | - Ling Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical SciencesNanjing Medical UniversityNanjingChina
- Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| |
Collapse
|
20
|
Boran T, Zengin OS, Seker Z, Akyildiz AG, Kara M, Oztas E, Özhan G. An evaluation of a hepatotoxicity risk induced by the microplastic polymethyl methacrylate (PMMA) using HepG2/THP-1 co-culture model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28890-28904. [PMID: 38564126 PMCID: PMC11058773 DOI: 10.1007/s11356-024-33086-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Inappropriate disposal of plastic wastes and their durability in nature cause uncontrolled accumulation of plastic in land/marine ecosystems, also causing destructive effects by bioaccumulating along the food chain. Microplastics may cause chronic inflammation in relation to their permanent structures, especially through oxidative stress and cytotoxic cellular damage, which could increase the risk of cancer development. The accumulation of microplastics in the liver is a major concern, and therefore, the identification of the mechanisms of their hepatotoxic effects is of great importance. Polymethyl methacrylate (PMMA) is a widely used thermoplastic. It has been determined that PMMA disrupts lipid metabolism in the liver in various aquatic organisms and causes reproductive and developmental toxicity. PMMA-induced hepatotoxic effects in humans have not yet been clarified. In our study, the toxic effects of PMMA (in the range of 3-10 μm) on the human liver were investigated using the HepG2/THP-1 macrophage co-culture model, which is a sensitive immune-mediated liver injury model. Cellular uptake of micro-sized PMMA in the cells was done by transmission electron microscopy. Determination of its effects on cell viability and inflammatory response, oxidative stress, along with gene and protein expression levels that play a role in the mechanism pathways underlying the effects were investigated. The results concluded that inflammation, oxidative stress, and disruptions in lipid metabolism should be the focus of attention as important underlying causes of PMMA-induced hepatotoxicity. Our study, which points out the potential adverse effects of microplastics on human health, supports the literature information on the subject.
Collapse
Affiliation(s)
- Tugce Boran
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Ozge Sultan Zengin
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
- Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey
| | - Zehra Seker
- Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkey
| | - Aysenur Gunaydin Akyildiz
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkey
| | - Mehtap Kara
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Ezgi Oztas
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Gül Özhan
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
21
|
He X, Chen A, Liao Z, Zhong J, Cheng A, Xue X, Li F, Chen M, Yao R, Zhao W, Niu J. Dietary Supplementation of Astragalus membranaceus Extract Affects Growth Performance, Antioxidant Capacity, Immune Response, and Energy Metabolism of Largemouth Bass ( Micropterus salmoides). AQUACULTURE NUTRITION 2024; 2024:3893671. [PMID: 38464590 PMCID: PMC10923623 DOI: 10.1155/2024/3893671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/01/2024] [Accepted: 02/20/2024] [Indexed: 03/12/2024]
Abstract
The present study investigated the effects of Astragalus membranaceus extract (AME) on growth performance, immune response, and energy metabolism of juvenile largemouth bass (Micropterus salmoides). Seven diets containing 0%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, and 0.6% AME (Con, AME0.1, AME0.2, AME0.3, AME0.4, AME0.5, and AME0.6 groups) were formulated and fed to M. salmoides for 8 weeks. Final body weight (FBW), feed intake (FI), weight gain (WG), and specific growth rate (SGR) were all significantly higher in AME0.4 group than in Con group (P < 0.05). Feed conversion rate (FCR) was significantly improved in AME0.5 group compared with Con group (P < 0.05). Whole-body crude protein contents were significantly increased in AME0.2 group (P < 0.05). Whole-body crude lipid contents were significantly lower in AME0.2 and AME0.3 groups, while muscle lipid was upregulated by dietary AME (P < 0.05). Hepatic malondialdehyde (MDA) contents were significantly lowered in AME0.3 and AME0.4 groups, and catalase (CAT) activities were significantly increased in AME0.1 and AME0.2 groups (P < 0.05). Plasma aspartate aminotransferase (AST) level was significantly lowered in AME0.5, and AME0.6 groups, and alanine aminotransferase (ALT) level was lowered in AME0.5 groups (P < 0.05). Plasma triglyceride was declined in AME0.6 group, and glucose was decreased by 0.3%-0.5% AME (P < 0.05). Significantly higher hepatocyte diameter, lamina propria width, and submucosal layer thickness were recorded in AME0.6 groups, while the longest villi height was obtained in AME0.2 and AME0.3 groups (P < 0.05). The mRNA expression levels of insulin-like growth factor 1 (igf1) revealed the growth-promoting effect of AME. The anti-inflammatory and antiapoptotic effects of AME were demonstrated by transcription levels of interleukin 8 (il-8), tumor necrosis factor-alpha (tnf-a), caspase, B-cell lymphoma-xl (Bcl-xl), bcl-2 associated x (Bax), and bcl-2-associated death protein (Bad). The transcription levels of lipid metabolism and gluconeogenesis related genes, including acetyl-CoA carboxylase alpha (acc1), fatty acid synthase (fasn), fatty acid binding protein 1 (fabp1), phosphoenolpyruvate carboxykinase 2 (pepck2), and glucose-6-phosphatase catalytic subunit 1a (g6pc), were reduced by AME treatment, while the levels of glycolysis-related genes, including glucokinase (gck) and pyruvate kinase (pk), were the highest in AME0.2 and AME0.3 groups (P < 0.05). According to polynomial regression analysis of SGR, WG, FCR, whole-body crude lipid, MDA, and ALT, the optimal AME supplementation level was estimated to be 0.320%-0.429% of the diet. These results provided insights into the roles of AME in regulating immunity and metabolism, which highly indicated its potential as immunostimulants and metabolic regulators in diverse aquatic animals.
Collapse
Affiliation(s)
- Xuanshu He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Anqi Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhihong Liao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | | | - Anda Cheng
- Beijing Centre Biology Co. Ltd., Beijing, China
| | - Xinghua Xue
- Beijing Centre Biology Co. Ltd., Beijing, China
| | - Fuyuan Li
- Beijing Centre Biology Co. Ltd., Beijing, China
| | - Mengdie Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Rong Yao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wei Zhao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jin Niu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
22
|
Huang Y, Liu X, Wang HY, Chen JY, Zhang X, Li Y, Lu Y, Dong Z, Liu K, Wang Z, Wang Q, Fan G, Zou J, Liu S, Shao C. Single-cell transcriptome landscape of zebrafish liver reveals hepatocytes and immune cell interactions in understanding nonalcoholic fatty liver disease. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109428. [PMID: 38325594 DOI: 10.1016/j.fsi.2024.109428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/27/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is becoming the most common chronic liver disease in the world. Immunity is the major contributing factor in NAFLD; however, the interaction of immune cells and hepatocytes in disease progression has not been fully elucidated. As a popular species for studying NAFLD, zebrafish, whose liver is a complex immune system mediated by immune cells and non-immune cells in maintaining immune tolerance and homeostasis. Understanding the cellular composition and immune environment of zebrafish liver is of great significance for its application in NAFLD. Here, we established a liver atlas that consists of 10 cell types using single-cell RNA sequencing (scRNA-seq). By examining the heterogeneity of hepatocytes and analyzing the expression of NAFLD-associated genes in the specific cluster, we provide a potential target cell model to study NAFLD. Additionally, our analysis identified two subtypes of distinct resident macrophages with inflammatory and non-inflammatory functions and characterized the successive stepwise development of T cell subclusters in the liver. Importantly, we uncovered the possible regulation of macrophages and T cells on target cells of fatty liver by analyzing the cellular interaction between hepatocytes and immune cells. Our data provide valuable information for an in-depth study of immune cells targeting hepatocytes to regulate the immune balance in NAFLD.
Collapse
Affiliation(s)
- Yingyi Huang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266072, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266072, Qingdao, Shandong, China
| | - Xiang Liu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266072, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266072, Qingdao, Shandong, China
| | - Hong-Yan Wang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266072, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266072, Qingdao, Shandong, China
| | - Jian-Yang Chen
- BGI Research, 266555, Qingdao, Shandong, China; Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, Shandong, China
| | - Xianghui Zhang
- BGI Research, 266555, Qingdao, Shandong, China; Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, Shandong, China
| | - Yubang Li
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266072, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266072, Qingdao, Shandong, China
| | - Yifang Lu
- BGI Research, 266555, Qingdao, Shandong, China; Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, Shandong, China
| | - Zhongdian Dong
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, 524088, Zhanjiang, Guangdong, China
| | - Kaiqiang Liu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266072, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266072, Qingdao, Shandong, China
| | - Zhongduo Wang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, 524088, Zhanjiang, Guangdong, China
| | - Qian Wang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266072, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266072, Qingdao, Shandong, China
| | - Guangyi Fan
- BGI Research, 266555, Qingdao, Shandong, China; Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, Shandong, China; BGI Research, 518083, Shenzhen, China
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, 201306, Shanghai, China
| | - Shanshan Liu
- MGI Tech, 518083, Shenzhen, China; BGI Research, 518083, Shenzhen, China.
| | - Changwei Shao
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266072, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266072, Qingdao, Shandong, China.
| |
Collapse
|
23
|
Ribeiro DM, Leclercqc CC, Charton SAB, Costa MM, Carvalho DFP, Sergeant K, Cocco E, Renaut J, Freire JPB, Prates JAM, de Almeida AM. The impact of dietary Laminaria digitata and alginate lyase supplementation on the weaned piglet liver: A comprehensive proteomics and metabolomics approach. J Proteomics 2024; 293:105063. [PMID: 38151157 DOI: 10.1016/j.jprot.2023.105063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 12/29/2023]
Abstract
The brown seaweed Laminaria digitata, a novel feedstuff for weaned piglets, has potentially beneficial prebiotic properties. However, its recalcitrant cell wall challenges digestion in monogastrics. Alginate lyase is a promising supplement to mitigate this issue. This study's aim was to investigate the impact of incorporating 10% dietary Laminaria digitata, supplemented with alginate lyase, on the hepatic proteome and metabolome of weaned piglets. These diets introduced minor variations to the metabolome and caused significant shifts in the proteome. Dietary seaweed provided a rich source of n-3 PUFAs that could signal hepatic fatty acid oxidation (FABP, ACADSB and ALDH1B1). This may have affected the oxidative stability of the tissue, requiring an elevated abundance of GST for regulation. The presence of reactive oxygen species likely inflicted protein damage, triggering increased proteolytic activity (LAPTM4B and PSMD4). Alginate lyase supplementation augmented the number of differentially abundant proteins, which included GBE1 and LDHC, contributing to maintain circulating glucose levels by mobilizing glycogen stores and branched-chain amino acids. The enzymatic supplementation with alginate lyase amplified the effects of the seaweed-only diet. An additional filter was employed to test the effect of missing values on the proteomics analysis, which is discussed from a technical perspective. SIGNIFICANCE: Brown seaweeds such as Laminaria digitata have prebiotic and immune-modulatory components, such as laminarin, that can improve weaned piglet health. However, they have recalcitrant cell wall polysaccharides, such as alginate, that can elicit antinutritional effects on the monogastric digestive system. The aim of this study was to evaluate the effect of a high level of dietary L. digitata and alginate lyase supplementation on the hepatic metabolism of weaned piglets, using high throughput Omics approaches.
Collapse
Affiliation(s)
- David M Ribeiro
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Celine C Leclercqc
- LIST- Luxembourg Institute of Science and Technology, Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), 5, rue Bommel, L-4940 Hautcharage, Luxembourg
| | - Sophie A B Charton
- LIST- Luxembourg Institute of Science and Technology, Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), 5, rue Bommel, L-4940 Hautcharage, Luxembourg
| | - Mónica M Costa
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Portugal
| | - Daniela F P Carvalho
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Kjell Sergeant
- LIST- Luxembourg Institute of Science and Technology, Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), 5, rue Bommel, L-4940 Hautcharage, Luxembourg
| | - Emmanuelle Cocco
- LIST- Luxembourg Institute of Science and Technology, Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), 5, rue Bommel, L-4940 Hautcharage, Luxembourg
| | - Jenny Renaut
- LIST- Luxembourg Institute of Science and Technology, Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), 5, rue Bommel, L-4940 Hautcharage, Luxembourg
| | - João P B Freire
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - José A M Prates
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Portugal
| | - André M de Almeida
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal.
| |
Collapse
|
24
|
Bao MY, Wang Z, Nuez-Ortín WG, Zhao G, Dehasque M, Du ZY, Zhang ML. Comparison of Lysophospholipids and Bile Acids on the Growth Performance, Lipid Deposition, and Intestinal Health of Largemouth Bass ( Micropterus salmoides). AQUACULTURE NUTRITION 2024; 2024:1518809. [PMID: 39555522 PMCID: PMC11003383 DOI: 10.1155/2024/1518809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/27/2023] [Accepted: 01/17/2024] [Indexed: 11/19/2024]
Abstract
Lysophospholipids (LPLs) and bile acids (BA) are commonly used as emulsifiers in aquaculture. This study investigated the effects of dietary supplementation of LPLs or BA on the growth performance, lipid deposition, and intestinal health of largemouth juveniles. Fish were randomly allotted into three groups in quadruplicate and fed with a basal diet (CON) or diets containing 300 mg/kg LPLs (LPLs), or 300 mg/kg commercially available BA product (BA) for 8 weeks. The results showed that compared with the control group, LPLs and BA supplemented groups showed a higher weight gain trend, and LPLs supplementation promoted the protein deposition in fish body. Both BA and LPLs supplementations helped to maintain liver health by decreasing the activities of aspartate aminotransferase and alanine aminotransferase in serum. Besides, LPLs supplementation decreased overall lipid deposition in terms of mesenteric fat index and liver lipid content. Furthermore, LPLs supplementation showed unique advantage in improving intestinal barrier, as characterized by the increased villus length and higher expression of the tight junction protein zo-1 expression. LPLs supplementation also increased the alpha diversity index and the abundances of Proteobacteria in the intestinal microbiota which is positively correlated with the abundance of SCFA in the gut. These findings will promote the application of novel feed additives and especially provide a basis for the rational selection of emulsifiers in the aquaculture industry.
Collapse
Affiliation(s)
- Ming-Yang Bao
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhe Wang
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | | | - Guiping Zhao
- Adisseo Life Science (Shanghai) Co., Ltd., Shanghai 200241, China
| | | | - Zhen-Yu Du
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mei-Ling Zhang
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
25
|
Chen PK, Hsu WF, Peng CY, Liao TL, Chang SH, Chen HH, Chen CH, Chen DY. Significant association of elevated serum galectin-9 levels with the development of non-alcoholic fatty liver disease in patients with rheumatoid arthritis. Front Med (Lausanne) 2024; 11:1347268. [PMID: 38371515 PMCID: PMC10869587 DOI: 10.3389/fmed.2024.1347268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is prevalent among rheumatoid arthritis (RA) patients, but its pathogenesis has rarely been explored. Galectin-9 (Gal-9) interacts with T cell immunoglobulin and mucin-containing-molecule-3 (TIM-3) expressed on hepatocytes and thus regulates T cell proliferation in a murine model of NAFLD. We aimed to examine the pathogenic role of the Gal-9/TIM-3 pathway in RA-NAFLD. Methods Serum levels of Gal-9, soluble TIM-3 (sTIM-3), fatty acid-binding proteins (FABP)1, and FABP4 were determined by ELISA in forty-five RA patients and eleven healthy participants. Using Oil-red O staining and immunoblotting, we examined the effects of Gal-9 and free fatty acid (FFA) on lipid accumulation in human hepatocytes and FABP1 expression. Results Serum Gal-9, sTIM-3 and FABP1 level were significantly higher in RA patients (median 5.02 ng/mL, 3.42 ng/mL, and 5.76 ng/mL, respectively) than in healthy participants (1.86 ng/mL, 0.99 ng/mL, and 0.129 ng/mL, all p < 0.001). They were also significantly higher in patients with moderate-to-severe NAFLD compared with none-to-mild NAFLD (p < 0.01; p < 0.05; and p < 0.01, respectively). Serum Gal-9 levels were positively correlated with sTIM-3, FABP1, FABP4 levels, and ultrasound-fatty liver score, respectively, in RA patients. Multivariate regression analysis revealed that Gal-9 (cut-off>3.30) was a significant predictor of NAFLD development, and Gal-9 and sTIM-3 were predictors of NAFLD severity (both p < 0.05). The cell-based assay showed that Gal-9 and FFA could upregulate FABP1 expression and enhance lipid droplet accumulation in hepatocytes. Conclusion Elevated levels of Gal-9 and sTIM3 in RA patients with NAFLD and their positive correlation with NAFLD severity suggest the pathogenic role of Gal-9 signaling in RA-related NAFLD.
Collapse
Affiliation(s)
- Po-Ku Chen
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung, Taiwan
- Translational Medicine Laboratory, China Medical University Hospital, Taichung, Taiwan
| | - Wei-Fan Hsu
- College of Medicine, China Medical University, Taichung, Taiwan
- Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Cheng-Yuan Peng
- College of Medicine, China Medical University, Taichung, Taiwan
- Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Tsai-Ling Liao
- Ph.D. Program in Translational Medicine and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Shih-Hsin Chang
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
- Ph.D. Program in Translational Medicine and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Hsin-Hua Chen
- Ph.D. Program in Translational Medicine and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Division of General Medicine, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chu-Huang Chen
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX, United States
- Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| | - Der-Yuan Chen
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung, Taiwan
- Translational Medicine Laboratory, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
- Ph.D. Program in Translational Medicine and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- College of Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
26
|
Arunorat J, Chusakulwong N, Sakunasing N, Matchimakul P. Comparative quantitation of liver-type fatty acid-binding protein localizations in liver injury and non-pathological liver tissue in dogs. Vet World 2024; 17:313-318. [PMID: 38595649 PMCID: PMC11000465 DOI: 10.14202/vetworld.2024.313-318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/11/2024] [Indexed: 04/11/2024] Open
Abstract
Background and Aim Liver injury results in the production of free radicals that can lead to hepatocytic degeneration, cirrhosis, and hepatocellular carcinoma (HCC). Liver-fatty acid-binding protein (L-FABP) is highly expressed in hepatocytes and is a key regulator of hepatic lipid metabolism and antioxidant characteristics. Interestingly, the increase in L-FABP expression could be used as a novel marker of liver injury. Therefore, this study aimed to use immunohistochemical techniques to investigate the expression of L-FABP in dogs with liver injury compared with dogs with non-pathological liver. Materials and Methods Liver tissue samples were collected from dog biopsy specimens at the Veterinary Diagnostic Laboratory at the Faculty of Veterinary Medicine, Chiang Mai University. The tissues were prepared for immunohistochemistry and the expression and localization of L-FABP were investigated using one-way analysis of variance. Results Immunohistochemical analysis showed that L-FABP was strongly expressed in the hepatocytes of dogs with lipidosis and HCC when compared with that in normal liver. Semi-quantitative immunohistochemistry evaluation showed the percentage of protein expression of L-FABP 0.023 ± 0.027 in the non-pathological liver. The percentage of L-FABP protein expression in lipidosis and HCC was found to be 8.517 ± 1.059 and 17.371 ± 4.026, respectively. Conclusion L-FABP expression in dogs with liver injuries was significantly higher than that in dogs with non-pathological liver injury (p = 0.05). These results suggest that L-FABP has the potential as a novel marker for specific diagnosis and prognosis of dogs with liver injury.
Collapse
Affiliation(s)
- Jirapat Arunorat
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
- Research Center for Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nuttawan Chusakulwong
- Academic Year 2565, Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Natcha Sakunasing
- Academic Year 2565, Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Pitchaya Matchimakul
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
- Research Center for Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
27
|
Yabut KCB, Martynova A, Nath A, Zercher BP, Bush MF, Isoherranen N. Drugs Form Ternary Complexes with Human Liver Fatty Acid Binding Protein (FABP1) and FABP1 Binding Alters Drug Metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576032. [PMID: 38293009 PMCID: PMC10827205 DOI: 10.1101/2024.01.17.576032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Liver fatty acid binding protein (FABP1) binds diverse endogenous lipids and is highly expressed in the human liver. Binding to FABP1 alters the metabolism and homeostasis of endogenous lipids in the liver. Drugs have also been shown to bind to rat FABP1, but limited data is available for human FABP1 (hFABP1). FABP1 has a large binding pocket and multiple fatty acids can bind to FABP1 simultaneously. We hypothesized that drug binding to hFABP1 results in formation of ternary complexes and that FABP1 binding alters drug metabolism. To test these hypotheses native protein mass spectrometry (MS) and fluorescent 11-(dansylamino)undecanoic acid (DAUDA) displacement assays were used to characterize drug binding to hFABP1 and diclofenac oxidation by cytochrome P450 2C9 (CYP2C9) was studied in the presence and absence of hFABP1. DAUDA binding to hFABP1 involved high (Kd,1=0.2 µM) and low affinity (Kd,2 >10 µM) binding sites. Nine drugs bound to hFABP1 with Kd values ranging from 1 to 20 µM. None of the tested drugs completely displaced DAUDA from hFABP1 and fluorescence spectra showed evidence of ternary complex formation. Formation of DAUDA-diclofenac-hFABP1 ternary complex was verified with native MS. Docking placed diclofenac in the portal region of FABP1 with DAUDA in the binding cavity. Presence of hFABP1 decreased the kcat and Km,u of diclofenac with CYP2C9 by ~50% suggesting that hFABP1 binding in the liver will alter drug metabolism and clearance. Together, these results suggest that drugs form ternary complexes with hFABP1 and that hFABP1 interacts with CYP2C9.
Collapse
Affiliation(s)
- King Clyde B. Yabut
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, United States
| | - Alice Martynova
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - Abhinav Nath
- Department of Medicinal Chemistry, University of Washington, Seattle, WA
| | - Benjamin P. Zercher
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - Matthew F. Bush
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, United States
| |
Collapse
|
28
|
Wang S, Lin X, Zhu C, Dong Y, Guo Y, Xie Z, He X, Ju W, Chen M. Association between nonalcoholic fatty liver disease and increased glucose-to-albumin ratio in adults without diabetes. Front Endocrinol (Lausanne) 2024; 14:1287916. [PMID: 38264288 PMCID: PMC10804880 DOI: 10.3389/fendo.2023.1287916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/22/2023] [Indexed: 01/25/2024] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) affects approximately 30% of individuals globally. Both serum glucose and albumin were demonstrated to be potential markers for the development of NAFLD. We hypothesized that the risk of NAFLD may be proportional to the glucose-to-albumin ratio (GAR). Methods Based on information from the National Health and Nutrition Examination Survey (NHANES) 1999-2018, it was determined that GAR was associated with an increased risk of NAFLD and liver fibrosis utilizing weighted multivariable logistic regression. Participants with a fatty liver index (FLI) over 60 were identified with NAFLD, and those with an NAFLD fibrosis score (NFS) >0.676 with evidence of NAFLD were labeled with advanced hepatic fibrosis (AHF). The liver biopsy was utilized to verify the relationship between GAR and FLD in our center cohort. Mendelian randomization analysis investigated the genetic relationship between GAR and NAFLD. Results Of 15,534 eligible participants, 36.4% of participants were identified as NAFLD without AHF. GAR was positively correlated with the probability of NAFLD following full adjustment for possible variables (OR = 1.53, 95% CI: 1.39-1.67). It was confirmed that patients with NAFLD and AHF had an inferior prognosis. The relationship between GAR and NFS was favorable (R = 0.46, P< 0.0001), and NAFLD patients with a higher GAR tended to develop poor survival. In our center cohort, the association between GAR and NAFLD was verified. Conclusion Among participants without diabetes, greater GAR was linked to higher risks of NAFLD. In addition, NAFLD patients with higher GAR tended to develop liver fibrosis and adverse outcomes.
Collapse
Affiliation(s)
- Shuai Wang
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Xiaohong Lin
- Department of Breast and Thyroid Surgery, Eastern Hospital of the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chuchen Zhu
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Yuqi Dong
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Yiwen Guo
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Zhonghao Xie
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Xiaoshun He
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Weiqiang Ju
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Maogen Chen
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| |
Collapse
|
29
|
Shen N, Li C, Yang S, Ma Y, Wang HL. Liver proteomics analysis reveals the differentiation of lipid mechanism and antioxidant enzyme activity during chicken embryonic development. Int J Biol Macromol 2023; 253:127417. [PMID: 37848110 DOI: 10.1016/j.ijbiomac.2023.127417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
Chicken embryo development is a dynamic process. However, no detailed information is available about the protein abundance changes associated with the lipid mechanism and antioxidant enzyme activity during the egg embryo development. Thus, in the present study, an TMT-based proteomic approach was used to quantify protein abundance changes at different stages of chicken embryonic development. A total of 289 significantly differentially abundant hepatic proteins were quantified, of which 180 were upregulated and 109 were downregulated in the comparison of Day 20 with Day 12 in chicken embryos. Pathway analysis showed that metabolic pathways were the most highly enriched pathways, followed by arachidonic acid metabolism and steroid biosynthesis. Integration of proteomic-based studies profiling of three incubation stages revealed that the two compare groups (Day 12 vs Day 20 and Day 16 vs Day 20) shared some key differentially abundant proteins (DAPs), including LBFABP, FABP5, CYP4V2, PDCD4, LAL, APOA1, APOA4, SAA, FABP2, ACBSG2, FABP2, CYP51A1, and FBXO9. The STRING database and GO analysis results showed that there was close connectivity between APOA4, LBFABP, SERPINC1, APOA1, FGB, FGA, ANGPTL3 and these proteins were involved in the oxidation-reduction process, lipid transport, iron ion, heme, and lipid binding. Importantly, APOA4, FABP2, and CYP51A1 might be key factors to control fat deposition and antioxidant enzyme activity during chicken embryonic development. These findings will facilitate a better understanding of antioxidant and lipid mechanisms in chicken embryo and these DAPs can be further investigated as candidate markers to predict lipid deposition and the activity of antioxidant enzymes.
Collapse
Affiliation(s)
- Nan Shen
- College of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Changqing Li
- College of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Shaohua Yang
- College of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China.
| | - Yilong Ma
- College of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Hui-Li Wang
- College of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China.
| |
Collapse
|
30
|
Storjord E, Wahlin S, Karlsen BO, Hardersen RI, Dickey AK, Ludviksen JK, Brekke OL. Potential Biomarkers for the Earlier Diagnosis of Kidney and Liver Damage in Acute Intermittent Porphyria. Life (Basel) 2023; 14:19. [PMID: 38276268 PMCID: PMC11154556 DOI: 10.3390/life14010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Acute intermittent porphyria (AIP) is an inherited metabolic disorder associated with complications including kidney failure and hepatocellular carcinoma, probably caused by elevations in the porphyrin precursors porphobilinogen (PBG) and delta-aminolevulinic acid (ALA). This study explored differences in modern biomarkers for renal and hepatic damage between AIP patients and controls. Urine PBG testing, kidney injury panels, and liver injury panels, including both routine and modern biomarkers, were performed on plasma and urine samples from AIP cases and matched controls (50 and 48 matched pairs, respectively). Regarding the participants' plasma, the AIP cases had elevated kidney injury marker-1 (KIM-1, p = 0.0002), fatty acid-binding protein-1 (FABP-1, p = 0.04), and α-glutathione S-transferase (α-GST, p = 0.001) compared to the matched controls. The AIP cases with high PBG had increased FABP-1 levels in their plasma and urine compared to those with low PBG. In the AIP cases, KIM-1 correlated positively with PBG, CXCL10, CCL2, and TCC, and the liver marker α-GST correlated positively with IL-13, CCL2, and CCL4 (all p < 0.05). In conclusion, KIM-1, FABP-1, and α-GST could represent potential early indicators of renal and hepatic damage in AIP, demonstrating associations with porphyrin precursors and inflammatory markers.
Collapse
Affiliation(s)
- Elin Storjord
- Department of Laboratory Medicine, Nordland Hospital Trust, 8092 Bodø, Norway; (B.O.K.); (O.-L.B.)
| | - Staffan Wahlin
- Hepatology Division, Department of Upper GI Diseases, Porphyria Centre Sweden, Karolinska Institute and Karolinska University Hospital, 14186 Stockholm, Sweden;
| | - Bård Ove Karlsen
- Department of Laboratory Medicine, Nordland Hospital Trust, 8092 Bodø, Norway; (B.O.K.); (O.-L.B.)
- Research Laboratory, Nordland Hospital Trust, 8092 Bodø, Norway;
| | - Randolf I. Hardersen
- Department of Nephrology, Nordland Hospital Trust, 8092 Bodø, Norway
- Department of Clinical Medicine, UiT-The Arctic University of Norway, 9019 Tromsø, Norway
| | - Amy K. Dickey
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA;
- Harvard Medical School, Boston, MA 02115, USA
| | | | - Ole-Lars Brekke
- Department of Laboratory Medicine, Nordland Hospital Trust, 8092 Bodø, Norway; (B.O.K.); (O.-L.B.)
- Department of Clinical Medicine, UiT-The Arctic University of Norway, 9019 Tromsø, Norway
| |
Collapse
|
31
|
Gaffar S, Aathirah AS. Fatty-Acid-Binding Proteins: From Lipid Transporters to Disease Biomarkers. Biomolecules 2023; 13:1753. [PMID: 38136624 PMCID: PMC10741572 DOI: 10.3390/biom13121753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 12/24/2023] Open
Abstract
Fatty-acid-binding proteins (FABPs) serve a crucial role in the metabolism and transport of fatty acids and other hydrophobic ligands as an intracellular protein family. They are also recognized as a critical mediator in the inflammatory and ischemic pathways. FABPs are found in a wide range of tissues and organs, allowing them to contribute to various disease/injury developments that have not been widely discussed. We have collected and analyzed research journals that have investigated the role of FABPs in various diseases. Through this review, we discuss the findings on the potential of FABPs as biomarkers for various diseases in different tissues and organs, looking at their expression levels and their roles in related diseases according to available literature data. FABPs have been reported to show significantly increased expression levels in various tissues and organs associated with metabolic and inflammatory diseases. Therefore, FABPs are a promising novel biomarker that needs further development to optimize disease diagnosis and prognosis methods along with previously discovered markers.
Collapse
Affiliation(s)
- Shabarni Gaffar
- Graduate School, Padjadjaran University, Bandung 40132, Indonesia;
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Sumedang 45363, Indonesia
| | | |
Collapse
|
32
|
Wang X, Ma G, Ren F, Awais MM, Sun J. Bombyx mori nucleopolyhedrovirus induces BmFABP1 downregulation to promote viral proliferation. INSECT SCIENCE 2023; 30:1595-1606. [PMID: 37144516 DOI: 10.1111/1744-7917.13200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 05/06/2023]
Abstract
Fatty acid binding proteins (FABPs) play an important role as endogenous cytoprotectants. However, studies on FABPs in invertebrates are scarce. Previously, we discovered Bombyx mori fatty acid binding protein 1 (BmFABP1) through co-immunoprecipitation. Here, we cloned and identified BmFABP1 from BmN cells. The results of immunofluorescence indicated that BmFABP1 was localized in the cytoplasm. The tissue expression profile of silkworms showed that BmFABP1 was expressed in all tissues except hemocytes. The expression level of BmFABP1 gradually decreases in BmN cells and B. mori larvae after infection with B. mori nucleopolyhedrovirus (BmNPV). Upregulation of BmFABP1 expression through overexpression or WY14643 treatment significantly inhibited the replication of BmNPV, while downregulation of BmFABP1 expression by RNA interference promoted the replication of BmNPV. The same results were obtained in experiments on silkworm larvae. These results suggest that BmNPV induces BmFABP1 downregulation to promote its proliferation and that BmFABP1 has a potential anti-BmNPV role. This is the first report on the antiviral effect of BmFABP1 in silkworms and provides new insights into the study of the FABP protein family. Also, it is important to study BmNPV resistance in silkworms to breed transgenic silkworms with BmNPV resistance.
Collapse
Affiliation(s)
- Xiong Wang
- College of Animal Science, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Guangyu Ma
- College of Animal Science, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Feifei Ren
- College of Animal Science, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Mian Muhammad Awais
- College of Animal Science, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Jingchen Sun
- College of Animal Science, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| |
Collapse
|
33
|
Tzouanas CN, Sherman MS, Shay JE, Rubin AJ, Mead BE, Dao TT, Butzlaff T, Mana MD, Kolb KE, Walesky C, Pepe-Mooney BJ, Smith CJ, Prakadan SM, Ramseier ML, Tong EY, Joung J, Chi F, McMahon-Skates T, Winston CL, Jeong WJ, Aney KJ, Chen E, Nissim S, Zhang F, Deshpande V, Lauer GM, Yilmaz ÖH, Goessling W, Shalek AK. Chronic metabolic stress drives developmental programs and loss of tissue functions in non-transformed liver that mirror tumor states and stratify survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569407. [PMID: 38077056 PMCID: PMC10705501 DOI: 10.1101/2023.11.30.569407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Under chronic stress, cells must balance competing demands between cellular survival and tissue function. In metabolic dysfunction-associated steatotic liver disease (MASLD, formerly NAFLD/NASH), hepatocytes cooperate with structural and immune cells to perform crucial metabolic, synthetic, and detoxification functions despite nutrient imbalances. While prior work has emphasized stress-induced drivers of cell death, the dynamic adaptations of surviving cells and their functional repercussions remain unclear. Namely, we do not know which pathways and programs define cellular responses, what regulatory factors mediate (mal)adaptations, and how this aberrant activity connects to tissue-scale dysfunction and long-term disease outcomes. Here, by applying longitudinal single-cell multi -omics to a mouse model of chronic metabolic stress and extending to human cohorts, we show that stress drives survival-linked tradeoffs and metabolic rewiring, manifesting as shifts towards development-associated states in non-transformed hepatocytes with accompanying decreases in their professional functionality. Diet-induced adaptations occur significantly prior to tumorigenesis but parallel tumorigenesis-induced phenotypes and predict worsened human cancer survival. Through the development of a multi -omic computational gene regulatory inference framework and human in vitro and mouse in vivo genetic perturbations, we validate transcriptional (RELB, SOX4) and metabolic (HMGCS2) mediators that co-regulate and couple the balance between developmental state and hepatocyte functional identity programming. Our work defines cellular features of liver adaptation to chronic stress as well as their links to long-term disease outcomes and cancer hallmarks, unifying diverse axes of cellular dysfunction around core causal mechanisms.
Collapse
Affiliation(s)
- Constantine N. Tzouanas
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- These authors contributed equally
| | - Marc S. Sherman
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
- These authors contributed equally
| | - Jessica E.S. Shay
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Alcohol Liver Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- These authors contributed equally
| | - Adam J. Rubin
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Benjamin E. Mead
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tyler T. Dao
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Titus Butzlaff
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Miyeko D. Mana
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Kellie E. Kolb
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Chad Walesky
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian J. Pepe-Mooney
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Colton J. Smith
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Sanjay M. Prakadan
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michelle L. Ramseier
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Evelyn Y. Tong
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Julia Joung
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Science, MA, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, MIT, Cambridge, MA, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Fangtao Chi
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Thomas McMahon-Skates
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Carolyn L. Winston
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Woo-Jeong Jeong
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Katherine J. Aney
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ethan Chen
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sahar Nissim
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- Gastroenterology Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Science, MA, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, MIT, Cambridge, MA, USA
| | - Vikram Deshpande
- Department of Pathology, Massachusetts General Hospital, Boston, MA
| | - Georg M. Lauer
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ömer H. Yilmaz
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA
- These senior authors contributed equally
| | - Wolfram Goessling
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Developmental and Regenerative Biology Program, Harvard Medical School, Boston, MA, USA
- These senior authors contributed equally
| | - Alex K. Shalek
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- These senior authors contributed equally
| |
Collapse
|
34
|
Gowda D, Shekhar C, B. Gowda SG, Chen Y, Hui SP. Crosstalk between Lipids and Non-Alcoholic Fatty Liver Disease. LIVERS 2023; 3:687-708. [DOI: 10.3390/livers3040045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), a complex liver disorder that can result in non-alcoholic steatohepatitis, cirrhosis, and liver cancer, is the accumulation of fat in the liver seen in people due to metabolic dysfunction. The pathophysiology of NAFLD is influenced by several variables, such as metabolic dysregulation, oxidative stress, inflammation, and genetic susceptibility. This illness seriously threatens global health because of its link to obesity, insulin resistance, type 2 diabetes, and other metabolic disorders. In recent years, lipid–NAFLD crosstalk has drawn a lot of interest. Through numerous methods, lipids have been connected to the onset and advancement of the illness. The connection between lipids and NAFLD is the main topic of the current review, along with the various therapeutic targets and currently available drugs. The importance of hepatic lipid metabolism in the progression of NAFLD is summarized with the latest results in the field.
Collapse
Affiliation(s)
- Divyavani Gowda
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Chandra Shekhar
- Department of Physiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Siddabasave Gowda B. Gowda
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
- Graduate School of Global Food Resources, Hokkaido University, Sapporo 060-0812, Japan
| | - Yifan Chen
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
35
|
Flynn J, Ahmadi MM, McFarland CT, Kubal MD, Taylor MA, Cheng Z, Torchia EC, Edwards MG. Crowdsourcing temporal transcriptomic coronavirus host infection data: Resources, guide, and novel insights. Biol Methods Protoc 2023; 8:bpad033. [PMID: 38107402 PMCID: PMC10723038 DOI: 10.1093/biomethods/bpad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/07/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023] Open
Abstract
The emergence of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) reawakened the need to rapidly understand the molecular etiologies, pandemic potential, and prospective treatments of infectious agents. The lack of existing data on SARS-CoV-2 hampered early attempts to treat severe forms of coronavirus disease-2019 (COVID-19) during the pandemic. This study coupled existing transcriptomic data from severe acute respiratory syndrome-related coronavirus 1 (SARS-CoV-1) lung infection animal studies with crowdsourcing statistical approaches to derive temporal meta-signatures of host responses during early viral accumulation and subsequent clearance stages. Unsupervised and supervised machine learning approaches identified top dysregulated genes and potential biomarkers (e.g. CXCL10, BEX2, and ADM). Temporal meta-signatures revealed distinct gene expression programs with biological implications to a series of host responses underlying sustained Cxcl10 expression and Stat signaling. Cell cycle switched from G1/G0 phase genes, early in infection, to a G2/M gene signature during late infection that correlated with the enrichment of DNA damage response and repair genes. The SARS-CoV-1 meta-signatures were shown to closely emulate human SARS-CoV-2 host responses from emerging RNAseq, single cell, and proteomics data with early monocyte-macrophage activation followed by lymphocyte proliferation. The circulatory hormone adrenomedullin was observed as maximally elevated in elderly patients who died from COVID-19. Stage-specific correlations to compounds with potential to treat COVID-19 and future coronavirus infections were in part validated by a subset of twenty-four that are in clinical trials to treat COVID-19. This study represents a roadmap to leverage existing data in the public domain to derive novel molecular and biological insights and potential treatments to emerging human pathogens.
Collapse
Affiliation(s)
- James Flynn
- Illumina Corporation, San Diego, CA 92122, United States
| | - Mehdi M Ahmadi
- Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | | | | | - Mark A Taylor
- Bioinfo Solutions LLC, Parker, CO 80134, United States
| | - Zhang Cheng
- Illumina Corporation, San Diego, CA 92122, United States
| | - Enrique C Torchia
- Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | | |
Collapse
|
36
|
Xiong L, Liu J, Han SY, Koppitch K, Guo JJ, Rommelfanger M, Miao Z, Gao F, Hallgrimsdottir IB, Pachter L, Kim J, MacLean AL, McMahon AP. Direct androgen receptor control of sexually dimorphic gene expression in the mammalian kidney. Dev Cell 2023; 58:2338-2358.e5. [PMID: 37673062 PMCID: PMC10873092 DOI: 10.1016/j.devcel.2023.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 09/08/2023]
Abstract
Mammalian organs exhibit distinct physiology, disease susceptibility, and injury responses between the sexes. In the mouse kidney, sexually dimorphic gene activity maps predominantly to proximal tubule (PT) segments. Bulk RNA sequencing (RNA-seq) data demonstrated that sex differences were established from 4 and 8 weeks after birth under gonadal control. Hormone injection studies and genetic removal of androgen and estrogen receptors demonstrated androgen receptor (AR)-mediated regulation of gene activity in PT cells as the regulatory mechanism. Interestingly, caloric restriction feminizes the male kidney. Single-nuclear multiomic analysis identified putative cis-regulatory regions and cooperating factors mediating PT responses to AR activity in the mouse kidney. In the human kidney, a limited set of genes showed conserved sex-linked regulation, whereas analysis of the mouse liver underscored organ-specific differences in the regulation of sexually dimorphic gene expression. These findings raise interesting questions on the evolution, physiological significance, disease, and metabolic linkage of sexually dimorphic gene activity.
Collapse
Affiliation(s)
- Lingyun Xiong
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA; Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Jing Liu
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Seung Yub Han
- Graduate Program in Genomics and Computational Biology, Biomedical Graduate Studies, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kari Koppitch
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Jin-Jin Guo
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Megan Rommelfanger
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Zhen Miao
- Graduate Program in Genomics and Computational Biology, Biomedical Graduate Studies, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fan Gao
- Caltech Bioinformatics Resource Center at Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ingileif B Hallgrimsdottir
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lior Pachter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Junhyong Kim
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adam L MacLean
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
37
|
Ider M, Yildiz R, Naseri A, Gülersoy E, Alkan F, Ok M, Erturk A, Sulu K, Durgut MK. Investigation of gastrointestinal injury-related biomarkers in dairy cattle with displaced abomasum. Vet Med Sci 2023; 9:2893-2900. [PMID: 37776262 PMCID: PMC10650368 DOI: 10.1002/vms3.1292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/30/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND Displaced abomasum (DA) is one of the most important metabolic disorders of dairy cattle. In DA, ischaemic damage may occur as a result of impaired perfusion due to abomasal displacement, which may result in gastrointestinal mucosal damage. OBJECTIVE Investigation of gastrointestinal tissue damage in cattle with right displacement of the abomasum (RDA) and left displacement of the abomasum (LDA) using intestinal-related biomarkers. METHODS Forty-eight DA (24 LDA, 24 RDA) and 15 healthy Holstein dairy cows were enrolled between March 2021 and July 2022. Serum biomarkers including gamma-enteric smooth muscle actin (ACTG-2), liver-fatty acid binding proteins (L-FABP), platelet activating factor (PAF), trefoil factor-3 (TFF-3), leptin, claudin-3 and interleukin-8 (IL-8) concentrations were measured from venous blood samples. RESULTS L-FABP concentrations in the LDA group and TFF-3 concentrations in the RDA group were lower than in the control group. The leptin concentration of the RDA group was higher than that of the other groups. There was a negative correlation between lactate, leptin and IL-8 concentrations. There was a negative correlation between lactate and TFF-3, whereas leptin and lactate were positively correlated. Leptin was the more reliable biomarker for discriminating between RDA and LDA cases. CONCLUSION Changes in serum L-FABP, TFF-3 and leptin concentrations in cattle with DA may reflect acute intestinal injury and the subsequent repair phase. However, these biomarkers had poor diagnostic performance in discriminating between healthy and cattle with DA, while leptin emerged as the most useful marker in differentiating LDA from RDA cases.
Collapse
Affiliation(s)
- Merve Ider
- Faculty of Veterinary MedicineDepartment of Internal MedicineSelcuk UniversityKonyaTurkey
| | - Ramazan Yildiz
- Faculty of Veterinary MedicineDepartment of Internal MedicineBurdur Mehmet Akif Ersoy UniversityBurdurTurkey
| | - Amir Naseri
- Faculty of Veterinary MedicineDepartment of Internal MedicineSelcuk UniversityKonyaTurkey
| | - Erdem Gülersoy
- Faculty of Veterinary MedicineDepartment of Internal MedicineHarran UniversitySanlıurfaTurkey
| | - Fahrettin Alkan
- Faculty of Veterinary MedicineDepartment of SurgerySelcuk UniversityKonyaTurkey
| | - Mahmut Ok
- Faculty of Veterinary MedicineDepartment of Internal MedicineSelcuk UniversityKonyaTurkey
| | - Alper Erturk
- Faculty of Veterinary MedicineDepartment of Internal MedicineMustafa Kemal UniversityHatayTurkey
| | - Kadir Sulu
- Faculty of Veterinary MedicineDepartment of Internal MedicineSiirt UniversitySiirtTurkey
| | - Murat Kaan Durgut
- Faculty of Veterinary MedicineDepartment of Internal MedicineSelcuk UniversityKonyaTurkey
| |
Collapse
|
38
|
Fu Z, Yin H, Liu J, He Y, Song S, Peng X, Huang X, Lai Y, Li S, Luo Q, Su J, Yang P. Therapeutic effects of fatty acid binding protein 1 in mice with pulmonary fibrosis by regulating alveolar epithelial regeneration. BMJ Open Respir Res 2023; 10:e001568. [PMID: 37940355 PMCID: PMC10632910 DOI: 10.1136/bmjresp-2022-001568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 10/20/2023] [Indexed: 11/10/2023] Open
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis is a progressive fibrotic lung disease with limited therapeutic options and high lethality, related to alveolar type II epithelial (ATII) cell dysregulation, the abnormal repair of alveolar epithelial cells and activation of fibroblasts promote the development of pulmonary fibrosis. Fatty acid binding protein 1 (FABP1) was significantly downregulated in the fibrotic state by proteomics screening in our previous date, and the ATII cell dysregulation can be mediated by FABP1 via regulating fatty acid metabolism and intracellular transport. The aim of this study was to evaluate the role and potential mechanism of FABP1 in the development of pulmonary fibrosis. METHODS Proteomics screening was used to detect changes of the protein profiles in two different types (induced by bleomycin and silica, respectively) of pulmonary fibrosis models. The localisation of FABP1 in mouse lung was detected by Immunofluorescence and immunohistochemistry. Experimental methods such as lung pathology, micro-CT, western blotting, small animal imaging in vivo, EdU, etc were used to verify the role of FABP1 in pulmonary fibrosis. RESULTS The expression of FABP1 in the mouse lung was significantly reduced in the model of pulmonary fibrosis from our proteomic analysis and immunological methods, the double immunofluorescence staining showed that FABP1 was mainly localised in type II alveolar epithelial cells. Additionally, the expression of FABP1 was negatively correlated with the progression of pulmonary fibrosis. Further in vivo and in vitro experiments showed that overexpression of FABP1 alleviated pulmonary fibrosis by protecting alveolar epithelium from injury and promoting cell survival. CONCLUSION Our findings provide a proof-of-principle that FABP1 may represent an effective treatment for pulmonary fibrosis by regulating alveolar epithelial regeneration, which may be associated with the fatty acid metabolism in ATII cells.
Collapse
Affiliation(s)
- Zhenli Fu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hang Yin
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiani Liu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ying He
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shengren Song
- Department of Respiratory Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaomin Peng
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xihui Huang
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yunxin Lai
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuang Li
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qun Luo
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jin Su
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Penghui Yang
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
39
|
Kroon J, Gentenaar M, Moll TJA, Hunt H, Meijer OC. Glucocorticoid receptor modulator CORT125385 alleviates diet-induced hepatosteatosis in male and female mice. Eur J Pharmacol 2023; 957:176012. [PMID: 37634839 DOI: 10.1016/j.ejphar.2023.176012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common condition that can progress to the more severe conditions like non-alcoholic steatohepatitis (NASH) for which limited effective therapeutic options are available. In this study, we set out to evaluate the novel glucocorticoid receptor modulator CORT125385, an analogue of the previously studied miricorilant but without mineralocorticoid receptor binding activity. Male and female mice that received high-fat diet and fructose water were treated with either vehicle, CORT125385 or mifepristone. We found that CORT125385 significantly lowered hepatic triglyceride levels in male mice, and hepatic triglyceride and cholesterol levels in female mice. Mifepristone treatment had no effect in male mice, but significantly lowered hepatic triglyceride and cholesterol levels in female mice. In reporter assays in vitro, CORT125385 showed weak partial agonism on the progesterone receptor (PR) at high doses, as well as PR antagonism at a potency 1000-fold lower than mifepristone. In vivo, CORT125385 treatment did not influence PR-responsive gene expression in the oviduct, while mifepristone treatment strongly influenced these genes in the oviduct, thus excluding in vivo PR cross-reactivity of CORT125385 at a therapeutically active dose. We conclude that CORT125385 is a promising glucocorticoid receptor modulator that effectively reduces liver steatosis in male and female mice without affecting other steroid receptors at doses that lower hepatic lipid content.
Collapse
Affiliation(s)
- Jan Kroon
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands; Corcept Therapeutics, Menlo Park, CA, USA.
| | - Max Gentenaar
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Tijmen J A Moll
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Hazel Hunt
- Corcept Therapeutics, Menlo Park, CA, USA
| | - Onno C Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
40
|
Liao H, Gao D, Kong C, Junaid M, Li Y, Chen X, Zheng Q, Chen G, Wang J. Trophic transfer of nanoplastics and di(2-ethylhexyl) phthalate in a freshwater food chain (Chlorella Pyrenoidosa-Daphnia magna-Micropterus salmoides) induced disturbance of lipid metabolism in fish. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132294. [PMID: 37591169 DOI: 10.1016/j.jhazmat.2023.132294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/31/2023] [Accepted: 08/12/2023] [Indexed: 08/19/2023]
Abstract
Nanoplastics and di(2-ethylhexyl) phthalate (DEHP) are ubiquitous emerging contaminants that are transferred among organisms through food chain in the ecosystem. This study evaluated the trophic transfer of polystyrene nanoplastics (PSNPs) and DEHP in a food chain including Chlorella pyrenoidosa, Daphnia magna and Micropterus salmoides (algae-crustacean-fish) and lipid metabolism at a higher trophic level in fish. Our results showed that the PSNPs and DEHP accumulated in C. pyrenoidosa or D. magna were transferred to the M. salmoides, of which the DEHP were not biomagnified, while the PSNPs were trophically amplified by the food chain. It is suggested that more PSNPs might be accumulated by higher level consumers in a longer food chain. Additionally, the trophic transfer of PSNPs and DEHP resulted in antioxidant response and histopathological damage in M. salmoides. Moreover, the lipid biochemical parameters and lipid metabolism related genes (fasn, hsl, cpt1a, atgl, apob, fabp1, lpl, cetp) of M. salmoides were significantly affected, which indicated disturbance of lipid metabolism. This study offers great insight into the transfer of contaminants by trophic transfer and their negative effects on organisms at higher trophic levels, which cause human exposure to MNPs and organic contaminants in the ecosystem.
Collapse
Affiliation(s)
- Hongping Liao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Dandan Gao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Chunmiao Kong
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Ye Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xikun Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qingzhi Zheng
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Guanglong Chen
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 528478, China.
| |
Collapse
|
41
|
You H, Wen X, Wang X, Zhu C, Chen H, Bu L, Zhang J, Qu S. Derlin-1 ameliorates nonalcoholic hepatic steatosis by promoting ubiquitylation and degradation of FABP1. Free Radic Biol Med 2023; 207:260-271. [PMID: 37499886 DOI: 10.1016/j.freeradbiomed.2023.07.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND AND AIMS The functions of liver fatty acid binding protein 1 (FABP1) in the regulation of nonalcoholic fatty liver disease (NAFLD) have been previously established. However, how FABP1 expression is dynamically regulated in metabolic disorders is unclear. Previous studies have reported that ubiquitin proteasome-mediated degradation of FABP1 is involved, but the mechanism remains unknown. METHODS Dysregulated expression of hepatic FABP1 and Derlin-1 was observed in NAFLD patients. We performed mice hepatic tissue coimmunoprecipitation based mass spectrum assays. Interaction between Derlin-1 and FABP1, and its impact on FABP1 ubiquitination status was evaluated by coimmunoprecipitation. The role of Derlin-1 in lipid deposition was tested using adenovirus-mediated overexpression in C57BL/6 mice, as well as by Derlin-1 overexpression or knockdown in HepG2 cells. RESULTS As a subunit of the endoplasmic reticulum-associated degradation complex, Derlin-1 was negatively associated with NAFLD patients, interacted with and ubiquitinated FABP1. Derlin-1 suppressed FABP1 levels and inhibited lipid deposition through a FABP1-dependent pathway. Additionally, Trim25, an E3 ubiquitin ligase present in the endoplasmic reticulum, was recruited to promote Derlin-1-related polyubiquitylation of FABP1, thereby creating a ubiquitin-associated network for FABP1 regulation. Derlin-1 overexpression ameliorated hepatic steatosis in both C57BL/6 mice and HepG2 cells, and contributed to attenuated weight gain, lower liver weight, and visceral fat mass. CONCLUSIONS FABP1 was degraded by Derlin-1 through ubiquitin modification. Negative regulation of FABP1 by Derlin-1 overexpression, suppressed lipid metabolism and alleviated lipid deposition in vivo and in vitro. Hence, Derlin-1 activation in hepatocytes may represent a potential therapeutic strategy for NAFLD.
Collapse
Affiliation(s)
- Hui You
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China; Shanghai Center of Thyroid Diseases, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Xin Wen
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Xingchun Wang
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China; Shanghai Center of Thyroid Diseases, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Cuiling Zhu
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Haibing Chen
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Le Bu
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China.
| | - Jun Zhang
- Research Center for Translational Medicine at East Hospital, Tongji University School of Medicine, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200072, PR China.
| | - Shen Qu
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China; Shanghai Center of Thyroid Diseases, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China.
| |
Collapse
|
42
|
Mahli A, Thasler WE, Biendl M, Hellerbrand C. Hop-derived Humulinones Reveal Protective Effects in in vitro Models of Hepatic Steatosis, Inflammation and Fibrosis. PLANTA MEDICA 2023; 89:1138-1146. [PMID: 37343573 DOI: 10.1055/a-2103-3230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is emerging as leading cause of liver disease worldwide. Specific pharmacologic therapy for NAFLD is a major unmet medical need. Recently, iso-alpha acids, hop-derived bitter compounds in beer, have been shown to beneficially affect NAFLD pathology. Humulinones are further hop derived bitter acids particularly found in modern styles of beer. So far, biological effects of humulinones have been unknown. Here, we investigated the effect of humulinones in in vitro models for hepatic steatosis, inflammation and fibrosis. Humulinones dose-dependently inhibited fatty acid induced lipid accumulation in primary human hepatocytes. Humulinones reduced the expression of fatty acid uptake transporter CD36 and key enzymes of (de novo) lipid synthesis. Conversely, humulinones increased the expression of FABP1, CPT1 and ACOX1, indicative for increased lipid combustion. Furthermore, humulinones ameliorated steatosis induced pro-inflammatory gene expression. Furthermore, humulinones significantly reduced the expression of pro-inflammatory and pro-fibrogenic factors in control as well as lipopolysaccharide treated activated hepatic stellate cells, which play a key role in hepatic fibrosis. In conclusion, humulinones beneficially affect different pathophysiological steps of NAFLD. Our data suggest humulinones as promising therapeutic agents for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Abdo Mahli
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Wolfgang E Thasler
- Human Tissue and Cell Research-Services GmbH, Planegg/Martinsried, Germany
| | - Martin Biendl
- Hopsteiner, Hallertauer Hopfenveredelung GmbH, Mainburg, Germany
| | - Claus Hellerbrand
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
43
|
Muthusamy G, Liu CC, Johnston AN. Deletion of PGAM5 Downregulates FABP1 and Attenuates Long-Chain Fatty Acid Uptake in Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:4796. [PMID: 37835490 PMCID: PMC10571733 DOI: 10.3390/cancers15194796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Phosphoglycerate mutase 5 (PGAM5) is a Ser/His/Thr phosphatase responsible for regulating mitochondrial homeostasis. Overexpression of PGAM5 is correlated with a poor prognosis in hepatocellular carcinoma, colon cancer, and melanoma. In hepatocellular carcinoma, silencing of PGAM5 reduces growth, which has been attributed to decreased mitophagy and enhanced apoptosis. Yet in colon cancer, PGAM5's pro-tumor survival effect is correlated to lipid metabolism. We sought to identify whether deletion of PGAM5 modulated lipid droplet accrual in hepatocellular carcinoma. HepG2 and Huh7 PGAM5 knockout cell lines generated using CRISPR/Cas9 technology were used to measure cell growth, cellular ATP, and long-chain fatty acid uptake. Expression of hepatocellular fatty acid transporters, cluster of differentiation 36 (CD36), solute carrier family 27 member 2 (SLC27A2), solute carrier family 27 member 5 (SLC27A5), and fatty acid binding protein 1 (FABP1) was measured by quantitative PCR and Western blot. We found that deletion of PGAM5 attenuates hepatocellular carcinoma cell growth and ATP production. Further, PGAM5 knockout ameliorates palmitate-induced steatosis and reduces expression of FABP1 in HepG2 and Huh7 cell lines. PGAM5's role in hepatocellular carcinoma includes regulation of fatty acid metabolism, which may be related to expression of the fatty acid transporter, FABP1.
Collapse
Affiliation(s)
| | | | - Andrea N. Johnston
- Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA; (G.M.); (C.-C.L.)
| |
Collapse
|
44
|
India-Aldana S, Yao M, Midya V, Colicino E, Chatzi L, Chu J, Gennings C, Jones DP, Loos RJF, Setiawan VW, Smith MR, Walker RW, Barupal D, Walker DI, Valvi D. PFAS Exposures and the Human Metabolome: A Systematic Review of Epidemiological Studies. CURRENT POLLUTION REPORTS 2023; 9:510-568. [PMID: 37753190 PMCID: PMC10520990 DOI: 10.1007/s40726-023-00269-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 09/28/2023]
Abstract
Purpose of Review There is a growing interest in understanding the health effects of exposure to per- and polyfluoroalkyl substances (PFAS) through the study of the human metabolome. In this systematic review, we aimed to identify consistent findings between PFAS and metabolomic signatures. We conducted a search matching specific keywords that was independently reviewed by two authors on two databases (EMBASE and PubMed) from their inception through July 19, 2022 following PRISMA guidelines. Recent Findings We identified a total of 28 eligible observational studies that evaluated the associations between 31 different PFAS exposures and metabolomics in humans. The most common exposure evaluated was legacy long-chain PFAS. Population sample sizes ranged from 40 to 1,105 participants at different stages across the lifespan. A total of 19 studies used a non-targeted metabolomics approach, 7 used targeted approaches, and 2 included both. The majority of studies were cross-sectional (n = 25), including four with prospective analyses of PFAS measured prior to metabolomics. Summary Most frequently reported associations across studies were observed between PFAS and amino acids, fatty acids, glycerophospholipids, glycerolipids, phosphosphingolipids, bile acids, ceramides, purines, and acylcarnitines. Corresponding metabolic pathways were also altered, including lipid, amino acid, carbohydrate, nucleotide, energy metabolism, glycan biosynthesis and metabolism, and metabolism of cofactors and vitamins. We found consistent evidence across studies indicating PFAS-induced alterations in lipid and amino acid metabolites, which may be involved in energy and cell membrane disruption.
Collapse
Affiliation(s)
- Sandra India-Aldana
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Meizhen Yao
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Vishal Midya
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Elena Colicino
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Leda Chatzi
- Department of Population and Public Health Sciences, Keck
School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jaime Chu
- Department of Pediatrics, Icahn School of Medicine at Mount
Sinai, New York, NY, USA
| | - Chris Gennings
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Dean P. Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary,
Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Ruth J. F. Loos
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
- Charles Bronfman Institute for Personalized Medicine, Icahn
School of Medicine at Mount Sinai, New York, NY, USA
- Faculty of Health and Medical Sciences, Novo Nordisk
Foundation Center for Basic Metabolic Research, University of Copenhagen,
Copenhagen, Denmark
| | - Veronica W. Setiawan
- Department of Population and Public Health Sciences, Keck
School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mathew Ryan Smith
- Clinical Biomarkers Laboratory, Division of Pulmonary,
Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
- Veterans Affairs Medical Center, Decatur, GA, USA
| | - Ryan W. Walker
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Dinesh Barupal
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Douglas I. Walker
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| |
Collapse
|
45
|
Pérez-Luz S, Lalchandani J, Matamala N, Barrero MJ, Gil-Martín S, Saz SRD, Varona S, Monzón S, Cuesta I, Justo I, Marcacuzco A, Hierro L, Garfia C, Gomez-Mariano G, Janciauskiene S, Martínez-Delgado B. Quantitative Lipid Profiling Reveals Major Differences between Liver Organoids with Normal Pi*M and Deficient Pi*Z Variants of Alpha-1-antitrypsin. Int J Mol Sci 2023; 24:12472. [PMID: 37569847 PMCID: PMC10419530 DOI: 10.3390/ijms241512472] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Different mutations in the SERPINA1 gene result in alpha-1 antitrypsin (AAT) deficiency and in an increased risk for the development of liver diseases. More than 90% of severe deficiency patients are homozygous for Z (Glu342Lys) mutation. This mutation causes Z-AAT polymerization and intrahepatic accumulation which can result in hepatic alterations leading to steatosis, fibrosis, cirrhosis, and/or hepatocarcinoma. We aimed to investigate lipid status in hepatocytes carrying Z and normal M alleles of the SERPINA1 gene. Hepatic organoids were developed to investigate lipid alterations. Lipid accumulation in HepG2 cells overexpressing Z-AAT, as well as in patient-derived hepatic organoids from Pi*MZ and Pi*ZZ individuals, was evaluated by Oil-Red staining in comparison to HepG2 cells expressing M-AAT and liver organoids from Pi*MM controls. Furthermore, mass spectrometry-based lipidomics analysis and transcriptomic profiling were assessed in Pi*MZ and Pi*ZZ organoids. HepG2 cells expressing Z-AAT and liver organoids from Pi*MZ and Pi*ZZ patients showed intracellular accumulation of AAT and high numbers of lipid droplets. These latter paralleled with augmented intrahepatic lipids, and in particular altered proportion of triglycerides, cholesterol esters, and cardiolipins. According to transcriptomic analysis, Pi*ZZ organoids possess many alterations in genes and cellular processes of lipid metabolism with a specific impact on the endoplasmic reticulum, mitochondria, and peroxisome dysfunction. Our data reveal a relationship between intrahepatic accumulation of Z-AAT and alterations in lipid homeostasis, which implies that liver organoids provide an excellent model to study liver diseases related to the mutation of the SERPINA1 gene.
Collapse
Affiliation(s)
- Sara Pérez-Luz
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (J.L.); (N.M.); (S.G.-M.); (S.R.-D.S.); (G.G.-M.)
| | - Jaanam Lalchandani
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (J.L.); (N.M.); (S.G.-M.); (S.R.-D.S.); (G.G.-M.)
| | - Nerea Matamala
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (J.L.); (N.M.); (S.G.-M.); (S.R.-D.S.); (G.G.-M.)
| | - Maria Jose Barrero
- Models and Mechanisms Unit, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain;
| | - Sara Gil-Martín
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (J.L.); (N.M.); (S.G.-M.); (S.R.-D.S.); (G.G.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER U758, 28029 Madrid, Spain
| | - Sheila Ramos-Del Saz
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (J.L.); (N.M.); (S.G.-M.); (S.R.-D.S.); (G.G.-M.)
| | - Sarai Varona
- Bioinformatics Unit, Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.V.); (S.M.); (I.C.)
| | - Sara Monzón
- Bioinformatics Unit, Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.V.); (S.M.); (I.C.)
| | - Isabel Cuesta
- Bioinformatics Unit, Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.V.); (S.M.); (I.C.)
| | - Iago Justo
- General and Digestive Surgery Department, Hospital 12 de Octubre, 28041 Madrid, Spain; (I.J.); (A.M.)
| | - Alberto Marcacuzco
- General and Digestive Surgery Department, Hospital 12 de Octubre, 28041 Madrid, Spain; (I.J.); (A.M.)
| | - Loreto Hierro
- Paediatric Hepatology Service, Research Institute of University Hospital La Paz, (IdiPAZ), 28046 Madrid, Spain;
| | - Cristina Garfia
- Digestive Department, Hospital 12 de Octubre, 28041 Madrid, Spain;
| | - Gema Gomez-Mariano
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (J.L.); (N.M.); (S.G.-M.); (S.R.-D.S.); (G.G.-M.)
| | - Sabina Janciauskiene
- Department of Respiratory Medicine, Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover Medical School, 30625 Hannover, Germany;
| | - Beatriz Martínez-Delgado
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (J.L.); (N.M.); (S.G.-M.); (S.R.-D.S.); (G.G.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER U758, 28029 Madrid, Spain
| |
Collapse
|
46
|
Nomura S, Hosono T, Ono M, Daikoku T, Michihiro M, Kagami K, Iizuka T, Chen Y, Shi Y, Morishige JI, Fujiwara T, Fujiwara H, Ando H. Desynchronization between Food Intake and Light Stimulations Induces Uterine Clock Quiescence in Female Mice. J Nutr 2023; 153:2283-2290. [PMID: 37336322 DOI: 10.1016/j.tjnut.2023.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/15/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Dysmenorrhea is associated with breakfast skipping in young women, suggesting that fasting in the early active phase disrupts uterine functions. OBJECTIVES To investigate the possible involvement of the uterine clock system in fasting-induced uterine dysfunction, we examined core clock gene expressions in the uterus using a 28-h interval-fed mouse model. METHODS Young female mice (8 wk of age) were divided into 3 groups: group I (ad libitum feeding), group II (time-restricted feeding, initial 4 h of the active period every day), and group III (time-restricted feeding for 8 h with a 28-h cycle). Groups II and III have the same fasting interval of 20 h. After analyzing feeding and wheel running behaviors during 2 wk of dietary restriction, mice were sacrificed at 4-h intervals, and the expression profiles of clock genes in the uterus and liver were examined by qPCR. RESULTS The mice in group I took food mainly during the dark phase and those in group II during the initial 4 h of the dark phase, whereas those in group III delayed feeding time by 4 h per cycle. In all groups, spontaneous wheel running was observed during the dark phase. There was no difference in the quantity of feeding and the amount of running exercise among the 3 groups during the second week. The mRNA expressions of peripheral clock genes, Bmal1, Clock, Per1, Per2, Cry1, Nr1d1, and Dbp and a clock-controlled gene, Fabp1, in the uterus showed rhythmic oscillations with normal sequential expression cascade in groups I and II, whereas their expressions decreased and circadian cycles disappeared in group III. In contrast, liver core clock genes in group III showed clear circadian cycles. CONCLUSIONS Fluctuations in the timing of the first food intake impair the uterine clock oscillator system to reduce clock gene expressions and abolish their circadian rhythms.
Collapse
Affiliation(s)
- Satoshi Nomura
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Takashi Hosono
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Masanori Ono
- Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo, Japan.
| | - Takiko Daikoku
- Division of Animal Disease Model, Research Center for Experimental Modeling of Human Disease, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Mieda Michihiro
- Department of Integrative Neurophysiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Kyosuke Kagami
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Takashi Iizuka
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Yuchen Chen
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Yifan Shi
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Jun-Ichi Morishige
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Tomoko Fujiwara
- Department of Social Work and Life Design, Kyoto Notre Dame University, Kyoto, Japan
| | - Hiroshi Fujiwara
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| | - Hitoshi Ando
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
47
|
Aslebagh R, Whitham D, Channaveerappa D, Lowe J, Pentecost BT, Arcaro KF, Darie CC. Proteomics analysis of human breast milk by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) coupled with mass spectrometry to assess breast cancer risk. Electrophoresis 2023; 44:1097-1113. [PMID: 36971330 PMCID: PMC10522790 DOI: 10.1002/elps.202300040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Breast cancer (BC) is one of the most common cancers and one of the most common causes for cancer-related mortality. Discovery of protein biomarkers associated with cancer is considered important for early diagnosis and prediction of the cancer risk. Protein biomarkers could be investigated by large-scale protein investigation or proteomics, using mass spectrometry (MS)-based techniques. Our group applies MS-based proteomics to study the protein pattern in human breast milk from women with BC and controls and investigates the alterations and dysregulations of breast milk proteins in comparison pairs of BC versus control. These dysregulated proteins might be considered potential future biomarkers of BC. Identification of potential biomarkers in breast milk may benefit young women without BC, but who could collect the milk for future assessment of BC risk. Previously we identified several dysregulated proteins in different sets of human breast milk samples from BC patients and controls using gel-based protein separation coupled with MS. Here, we performed 2D-PAGE coupled with nano-liquid chromatography-tandem MS (nanoLC-MS/MS) in a small-scale study on a set of six human breast milk pairs (three BC samples vs. three controls) and we identified several dysregulated proteins that have potential roles in cancer progression and might be considered potential BC biomarkers in the future.
Collapse
Affiliation(s)
- Roshanak Aslebagh
- Biochemistry and Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699-5810, USA
| | - Danielle Whitham
- Biochemistry and Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699-5810, USA
| | - Devika Channaveerappa
- Biochemistry and Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699-5810, USA
| | - James Lowe
- Biochemistry and Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699-5810, USA
| | - Brian T. Pentecost
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Kathleen F. Arcaro
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Costel C. Darie
- Biochemistry and Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699-5810, USA
| |
Collapse
|
48
|
Yabut KCB, Isoherranen N. Impact of Intracellular Lipid Binding Proteins on Endogenous and Xenobiotic Ligand Metabolism and Disposition. Drug Metab Dispos 2023; 51:700-717. [PMID: 37012074 PMCID: PMC10197203 DOI: 10.1124/dmd.122.001010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 03/16/2023] [Accepted: 02/10/2023] [Indexed: 04/05/2023] Open
Abstract
The family of intracellular lipid binding proteins (iLBPs) is comprised of 16 members of structurally related binding proteins that have ubiquitous tissue expression in humans. iLBPs collectively bind diverse essential endogenous lipids and xenobiotics. iLBPs solubilize and traffic lipophilic ligands through the aqueous milieu of the cell. Their expression is correlated with increased rates of ligand uptake into tissues and altered ligand metabolism. The importance of iLBPs in maintaining lipid homeostasis is well established. Fatty acid binding proteins (FABPs) make up the majority of iLBPs and are expressed in major organs relevant to xenobiotic absorption, distribution, and metabolism. FABPs bind a variety of xenobiotics including nonsteroidal anti-inflammatory drugs, psychoactive cannabinoids, benzodiazepines, antinociceptives, and peroxisome proliferators. FABP function is also associated with metabolic disease, making FABPs currently a target for drug development. Yet the potential contribution of FABP binding to distribution of xenobiotics into tissues and the mechanistic impact iLBPs may have on xenobiotic metabolism are largely undefined. This review examines the tissue-specific expression and functions of iLBPs, the ligand binding characteristics of iLBPs, their known endogenous and xenobiotic ligands, methods for measuring ligand binding, and mechanisms of ligand delivery from iLBPs to membranes and enzymes. Current knowledge of the importance of iLBPs in affecting disposition of xenobiotics is collectively described. SIGNIFICANCE STATEMENT: The data reviewed here show that FABPs bind many drugs and suggest that binding of drugs to FABPs in various tissues will affect drug distribution into tissues. The extensive work and findings with endogenous ligands suggest that FABPs may also alter the metabolism and transport of drugs. This review illustrates the potential significance of this understudied area.
Collapse
Affiliation(s)
- King Clyde B Yabut
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| |
Collapse
|
49
|
Xiong L, Liu J, Han SY, Koppitch K, Guo JJ, Rommelfanger M, Gao F, Hallgrimsdottir IB, Pachter L, Kim J, MacLean AL, McMahon AP. Direct androgen receptor regulation of sexually dimorphic gene expression in the mammalian kidney. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.06.539585. [PMID: 37205355 PMCID: PMC10187285 DOI: 10.1101/2023.05.06.539585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Mammalian organs exhibit distinct physiology, disease susceptibility and injury responses between the sexes. In the mouse kidney, sexually dimorphic gene activity maps predominantly to proximal tubule (PT) segments. Bulk RNA-seq data demonstrated sex differences were established from 4 and 8 weeks after birth under gonadal control. Hormone injection studies and genetic removal of androgen and estrogen receptors demonstrated androgen receptor (AR) mediated regulation of gene activity in PT cells as the regulatory mechanism. Interestingly, caloric restriction feminizes the male kidney. Single-nuclear multiomic analysis identified putative cis-regulatory regions and cooperating factors mediating PT responses to AR activity in the mouse kidney. In the human kidney, a limited set of genes showed conserved sex-linked regulation while analysis of the mouse liver underscored organ-specific differences in the regulation of sexually dimorphic gene expression. These findings raise interesting questions on the evolution, physiological significance, and disease and metabolic linkage, of sexually dimorphic gene activity.
Collapse
Affiliation(s)
- Lingyun Xiong
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Jing Liu
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Seung Yub Han
- Graduate Program in Genomics and Computational Biology, Biomedical Graduate Studies, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kari Koppitch
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Jin-Jin Guo
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Megan Rommelfanger
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Fan Gao
- Caltech Bioinformatics Resource Center at Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Lior Pachter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Junhyong Kim
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adam L. MacLean
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrew P. McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
- Lead Contact
| |
Collapse
|
50
|
Li X, He X, Lin X, Li W, Gao J, Zhang N, Guo Y, Wang Z, Zhao N, Zhang B, Dong Z. Effects of bisphenols on lipid metabolism and neuro-cardiovascular toxicity in marine medaka larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 259:106551. [PMID: 37156703 DOI: 10.1016/j.aquatox.2023.106551] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/29/2023] [Accepted: 04/30/2023] [Indexed: 05/10/2023]
Abstract
Bisphenols are environmental endocrine disruptors that have detrimental effects on aquatic organisms. Using marine medaka larvae, this study explored the effects of bisphenol compounds [bisphenol A (BPA), bisphenol S (BPS), bisphenol F (BPF), and bisphenol AF (BPAF)] on the early growth and development of aquatic organisms. Marine medaka larvae were exposed to bisphenol compounds at concentrations of 0.05, 0.5, and 5 μM for 72 h, and changes in heartbeat rate, behavior, hormone levels, and gene expression were determined. Bisphenols were shown to have a toxic effect on the cardiovascular system of larvae and can cause neurotoxicity and endocrine disruption, such as changes to thyroid-related hormones. Functional enrichment showed that bisphenols mainly affect lipid metabolism and cardiac muscle contraction of larvae, which implied that the main toxic effects of bisphenols on marine medaka larvae targeted the liver and heart. This study provides a theoretical foundation for evaluating the toxicological effects of bisphenols on the early development of aquatic organisms.
Collapse
Affiliation(s)
- Xueyou Li
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Xiaoxu He
- Tianjin Fisheries Research Institute, Tianjin 300200, China
| | - Xiaona Lin
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Weihao Li
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Jiahao Gao
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Ning Zhang
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Yusong Guo
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Zhongduo Wang
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Na Zhao
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Bo Zhang
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Tianjin Fisheries Research Institute, Tianjin 300200, China
| | - Zhongdian Dong
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang, China.
| |
Collapse
|