1
|
Ziadlou R, Pandian GN, Hafner J, Akdis CA, Stingl G, Maverakis E, Brüggen M. Subcutaneous adipose tissue: Implications in dermatological diseases and beyond. Allergy 2024; 79:3310-3325. [PMID: 39206504 PMCID: PMC11657049 DOI: 10.1111/all.16295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/19/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Subcutaneous adipose tissue (SAT) is the deepest component of the three-layered cutaneous integument. While mesenteric adipose tissue-based immune processes have gained recognition in the context of the metabolic syndrome, SAT has been traditionally considered primarily for energy storage, with less attention to its immune functions. SAT harbors a reservoir of immune and stromal cells that significantly impact metabolic and immunologic processes not only in the skin, but even on a systemic level. These processes include wound healing, cutaneous and systemic infections, immunometabolic, and autoimmune diseases, inflammatory skin diseases, as well as neoplastic conditions. A better understanding of SAT immune functions in different processes, could open avenues for novel therapeutic interventions. Targeting SAT may not only address SAT-specific diseases but also offer potential treatments for cutaneous or even systemic conditions. This review aims to provide a comprehensive overview on SAT's structure and functions, highlight recent advancements in understanding its role in both homeostatic and pathological conditions within and beyond the skin, and discuss the main questions for future research in the field.
Collapse
Affiliation(s)
- Reihane Ziadlou
- Faculty of MedicineUniversity of ZurichZurichSwitzerland
- Department of DermatologyUniversity Hospital ZurichZurichSwitzerland
- Christine Kühne Center for Allergy Research and Education CK‐CAREDavosSwitzerland
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichZurichSwitzerland
| | - Ganesh N. Pandian
- Institute for Integrated Cell‐Material Science (WPI‐iCeMS)Kyoto UniversityKyotoJapan
| | - Jürg Hafner
- Faculty of MedicineUniversity of ZurichZurichSwitzerland
- Department of DermatologyUniversity Hospital ZurichZurichSwitzerland
| | - Cezmi A. Akdis
- Faculty of MedicineUniversity of ZurichZurichSwitzerland
- Christine Kühne Center for Allergy Research and Education CK‐CAREDavosSwitzerland
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichZurichSwitzerland
| | - Georg Stingl
- Department of DermatologyMedical University of ViennaViennaAustria
| | | | - Marie‐Charlotte Brüggen
- Faculty of MedicineUniversity of ZurichZurichSwitzerland
- Department of DermatologyUniversity Hospital ZurichZurichSwitzerland
- Christine Kühne Center for Allergy Research and Education CK‐CAREDavosSwitzerland
| |
Collapse
|
2
|
Chen X, Wang Y, Li H, Deng Y, Giang C, Song A, Liu Y, Wang QA, Zhu Y. Hyaluronan Mediates Cold-Induced Adipose Tissue Beiging. Cells 2024; 13:1233. [PMID: 39120264 PMCID: PMC11311271 DOI: 10.3390/cells13151233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
Adipose tissue beiging refers to the process by which beige adipocytes emerge in classical white adipose tissue depots. Beige adipocytes dissipate chemical energy and secrete adipokines, such as classical brown adipocytes, to improve systemic metabolism, which is beneficial for people with obesity and metabolic diseases. Cold exposure and β3-adrenergic receptor (AR) agonist treatment are two commonly used stimuli for increasing beige adipocytes in mice; however, their underlying biological processes are different. Transcriptional analysis of inguinal white adipose tissue (iWAT) has revealed that changes in extracellular matrix (ECM) pathway genes are specific to cold exposure. Hyaluronic acid (HA), a non-sulfated linear polysaccharide produced by nearly all cells, is one of the most common components of ECM. We found that cold exposure significantly increased iWAT HA levels, whereas the β3-AR agonist CL316,243 did not. Increasing HA levels in iWAT by Has2 overexpression significantly increases cold-induced adipose tissue beiging; in contrast, decreasing HA by Spam1 overexpression, which encodes a hyaluronidase that digests HA, significantly decreases cold-induced iWAT beiging. All these data implicate a role of HA in promoting adipose tissue beiging, which is unique to cold exposure. Given the failure of β3-AR agonists in clinical trials for obesity and metabolic diseases, increasing HA could serve as a new approach for recruiting more beige adipocytes to combat metabolic diseases.
Collapse
Affiliation(s)
- Xi Chen
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yifan Wang
- Department of Molecular Endocrinology, Diabetes and Metabolism Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Huiqiao Li
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yanru Deng
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Charlise Giang
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anying Song
- Department of Molecular Endocrinology, Diabetes and Metabolism Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Yu’e Liu
- Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai 200092, China
| | - Qiong A. Wang
- Department of Molecular Endocrinology, Diabetes and Metabolism Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Yi Zhu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
3
|
Liu W, Li B, Liu D, Zhao B, Sun G, Ding J. Obesity correlates with the immunosuppressive ILC2s-MDSCs axis in advanced breast cancer. Immun Inflamm Dis 2024; 12:e1196. [PMID: 38501542 PMCID: PMC10949396 DOI: 10.1002/iid3.1196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 03/20/2024] Open
Abstract
AIM We investigated the relationship between the group 2 innate lymphoid cells (ILC2s)-myeloid-derived suppressor cells (MDSCs) axis and obesity-related breast cancer. METHODS Fifty-eight patients with breast cancer who had first relapse and metastasis between January 2019 and August 2021 were enrolled. The proportions of ILC2s and MDSCs in blood and the levels of cytokines in serum were detected with flow cytometry. Correlation analysis among clinical characteristics (such as body mass index [BMI]), cytokines, ILC2s, and MDSCs was conducted. RESULTS There was a significant difference in the proportions of ILC2s and MDSCs between the high BMI group and the normal BMI group (p < .05). In the triple-negative breast cancer (TNBC) patients, the proportions of ILC2s and MDSCs in the obese group were significantly higher than those in the nonobese group (p < .05). In all breast cancer patients, there was a positive correlation between BMI and the ILC2s-MDSCs axis (p < .05). However, there was no correlation observed between the number of metastases, progression-free survival, and the ILC2s-MDSCs axis (p > .05). Additionally, ILC2s showed positive correlations with MDSCs, interleukin-5 (IL-5), IL-10, IL-17A, (PD-L1), programmed cell death 2 ligand 2 (PD-L2), and molecular typing (p < .05). Similarly, MDSCs exhibited positive correlations with IL-5, IL-8, IL-9, IL-17A, PD-L1, and PD-L2 (p < .05). In patients with TNBC, there was a positive correlation between BMI and IL-5 (p < .05). CONCLUSION Conclusively, obesity may enhance the immunosuppressive effect of the ILC2-MDSC axis in advanced breast cancer. IL-5 may play a vital role in the ILC2-MDSC axis and obesity in TNBC.
Collapse
Affiliation(s)
- Wei Liu
- School of Public HealthXinjiang Medical UniversityUrumqiPeople's Republic of China
- Department of Mammary MedicineAffiliated Tumor Hospital of Xinjiang Medical UniversityUrumqiPeople's Republic of China
- Department of Internal Medicinethe Third Clinical College of Xinjiang Medical UniversityUrumqiPeople's Republic of China
- Xinjiang Uygur Autonomous Region Cancer Center/Xinjiang Key Laboratory of OncologyUrumqiPeople's Republic of China
- Xinjiang Key Laboratory of Molecular Biology for Endemic DiseasesUrumqiXinjiangPeople's Republic of China
- Key Laboratory of Oncology of Xinjiang Uyghur Autonomous RegionUrumqiXinjiangPeople's Republic of China
| | - Bingyu Li
- Department of Mammary MedicineAffiliated Tumor Hospital of Xinjiang Medical UniversityUrumqiPeople's Republic of China
- Department of Internal Medicinethe Third Clinical College of Xinjiang Medical UniversityUrumqiPeople's Republic of China
- Xinjiang Uygur Autonomous Region Cancer Center/Xinjiang Key Laboratory of OncologyUrumqiPeople's Republic of China
| | - Dan Liu
- Department of Mammary MedicineAffiliated Tumor Hospital of Xinjiang Medical UniversityUrumqiPeople's Republic of China
- Department of Internal Medicinethe Third Clinical College of Xinjiang Medical UniversityUrumqiPeople's Republic of China
- Xinjiang Uygur Autonomous Region Cancer Center/Xinjiang Key Laboratory of OncologyUrumqiPeople's Republic of China
| | - Bing Zhao
- Department of Mammary MedicineAffiliated Tumor Hospital of Xinjiang Medical UniversityUrumqiPeople's Republic of China
- Department of Internal Medicinethe Third Clinical College of Xinjiang Medical UniversityUrumqiPeople's Republic of China
- Xinjiang Uygur Autonomous Region Cancer Center/Xinjiang Key Laboratory of OncologyUrumqiPeople's Republic of China
| | - Gang Sun
- Xinjiang Uygur Autonomous Region Cancer Center/Xinjiang Key Laboratory of OncologyUrumqiPeople's Republic of China
- Department of Breast and Thyroid SurgeryAffiliated Tumor Hospital of Xinjiang Medical UniversityUrumqiXinjiangPeople's Republic of China
| | - Jianbing Ding
- Xinjiang Key Laboratory of Molecular Biology for Endemic DiseasesUrumqiXinjiangPeople's Republic of China
- Department of Immunology, School of Basic Medical SciencesXinjiang Medical UniversityUrumqiXinjiangPeople's Republic of China
| |
Collapse
|
4
|
Caslin HL, Cottam MA, Betjemann AM, Mashayekhi M, Silver HJ, Hasty AH. Single cell RNA-sequencing suggests a novel lipid associated mast cell population following weight cycling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.12.566786. [PMID: 38014269 PMCID: PMC10680619 DOI: 10.1101/2023.11.12.566786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Our recent study showed weight cycled mice have increased adipose mast cells compared to obese mice by single cell RNA-sequencing. Here, we aimed to confirm and elucidate these changes. Further analysis of our dataset showed that our initial mast cell cluster could subcluster into two unique populations: one with very high expression of classical mast cell markers and another with elevated lipid handling and antigen presentation genes. This new mast cell cluster accounted for most of the mast cells in the weight cycled group although it was not possible to detect the different populations by new studies with flow cytometry or Toluidine blue staining in mice, possibly due to a downregulation in classical mast cell genes. Interestingly, a pilot study in humans did suggest the existence of two mast cell populations in subcutaneous adipose tissue from obese women that appear similar to the murine populations detected by sequencing; one of which was significantly correlated with weight variance. Together, these data suggest that weight cycling may induce a unique population of mast cells similar to lipid associated macrophages. Future studies will focus on isolation of these cells to better determine their lineage, differentiation, and functional roles.
Collapse
|
5
|
Hu Y, Chakarov S. Eosinophils in obesity and obesity-associated disorders. DISCOVERY IMMUNOLOGY 2023; 2:kyad022. [PMID: 38567054 PMCID: PMC10917198 DOI: 10.1093/discim/kyad022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/18/2023] [Accepted: 11/10/2023] [Indexed: 04/04/2024]
Abstract
Despite the rising prevalence and costs for the society, obesity etiology, and its precise cellular and molecular mechanisms are still insufficiently understood. The excessive accumulation of fat by adipocytes plays a key role in obesity progression and has many repercussions on total body physiology. In recent years the immune system as a gatekeeper of adipose tissue homeostasis has been evidenced and has become a focal point of research. Herein we focus on eosinophils, an important component of type 2 immunity, assuming fundamental, yet ill-defined, roles in the genesis, and progression of obesity and related metabolic disorders. We summarize eosinophilopoiesis and eosinophils recruitment into adipose tissue and discuss how the adipose tissue environments shape their function and vice versa. Finally, we also detail how obesity transforms the local eosinophil niche. Understanding eosinophil crosstalk with the diverse cell types within the adipose tissue environment will allow us to framework the therapeutic potential of eosinophils in obesity.
Collapse
Affiliation(s)
- Yanan Hu
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, 280 South Chongqing Road, Shanghai, China
| | - Svetoslav Chakarov
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, 280 South Chongqing Road, Shanghai, China
| |
Collapse
|
6
|
Winn NC, Patel VS, Blair JA, Rodriguez A, Garcia JN, Yang TS, Hasty AH. Deletion of complement factor 5 amplifies glucose intolerance in obese male but not female mice. Am J Physiol Endocrinol Metab 2023; 325:E325-E335. [PMID: 37610411 PMCID: PMC10642989 DOI: 10.1152/ajpendo.00140.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 08/24/2023]
Abstract
Complement factor 5 of the innate immune system generates C5a and C5b ligands, which initiate inflammatory and cell lysis events, respectively. C5 activation has been linked with obesity-associated metabolic disorders; however, whether it has a causative role is unclear. We generated a C5 null (C5-/-) mouse using CRISPR-Cas9 gene editing to determine whether loss of C5 improves obesity-linked metabolic dysfunction. Generation of a new mouse model was prompted in part by the observation of off-target gene mutations in commercially available C5-/- lines. Male and female wild-type (WT), heterozygous (Het), and C5-/- mice were fed low-fat diet (LFD) or high-fat diet (HFD) for 22 wk. Body weight gain did not differ between genotypes on LFD or HFD. In lean animals, male C5-/- mice had similar glucose tolerance compared with WT controls; however, in obese conditions, glucose tolerance was worsened in C5-/- compared with controls. In contrast, female mice did not exhibit differences in glucose tolerance between genotypes under either dietary paradigm. Fasting insulin was not different between genotypes, whereas diet-induced obese male C5-/- mice had lower fed insulin concentrations compared with WT controls. No differences in adipose tissue inflammation or adipocyte size were identified between groups. Similarly, susceptibility to fatty liver and hepatic inflammation was similar between WT and C5-/- mice. However, the systemic cytokine response to acute endotoxin exposure was decreased in C5-/- mice. Together, these data suggest that loss of C5 worsens glucose tolerance in obese male but not female mice. Additional work is required to pinpoint the mechanisms by which loss of C5 amplifies glucose intolerance in obesity.NEW & NOTEWORTHY We generated a new mouse model of complement factor 5 deficiency. This work was prompted by a need for improved transgenic mouse lines of C5, due to off-target gene mutations. We find that loss of C5 worsens glucose tolerance in a sex-dependent manner. Though the mechanisms evoking glucose intolerance are not clear, we are confident this model will be useful in interrogating complement activation in obesity-associated diseases.
Collapse
Affiliation(s)
- Nathan C Winn
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Vitrag S Patel
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Joslin A Blair
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Alec Rodriguez
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Jamie N Garcia
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Tzushan S Yang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, United States
| |
Collapse
|
7
|
Ryu S, Kim HY. Bone Marrow Progenitors and IL-2 Signaling Contribute to the Strain Differences of Kidney Innate Lymphoid Cells. Immune Netw 2023; 23:e15. [PMID: 37179753 PMCID: PMC10166654 DOI: 10.4110/in.2023.23.e15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 11/24/2022] [Accepted: 12/21/2022] [Indexed: 05/15/2023] Open
Abstract
Innate lymphoid cells (ILCs) are critical immune-response mediators. Although they largely reside in mucosal tissues, the kidney also bears substantial numbers. Nevertheless, kidney ILC biology is poorly understood. BALB/c and C57BL/6 mice are known to display type-2 and type-1 skewed immune responses, respectively, but it is unclear whether this extends to ILCs. We show here that indeed, BALB/c mice have higher total ILCs in the kidney than C57BL/6 mice. This difference was particularly pronounced for ILC2s. We then showed that three factors contributed to the higher ILC2s in the BALB/c kidney. First, BALB/c mice demonstrated higher numbers of ILC precursors in the bone marrow. Second, transcriptome analysis showed that compared to C57BL/6 kidneys, the BALB/c kidneys associated with significantly higher IL-2 responses. Quantitative RT-PCR also showed that compared to C57BL/6 kidneys, the BALB/c kidneys expressed higher levels of IL-2 and other cytokines known to promote ILC2 proliferation and/or survival (IL-7, IL-33, and thymic stromal lymphopoietin). Third, the BALB/c kidney ILC2s may be more sensitive to the environmental signals than C57BL/6 kidney ILC2s since they expressed their transcription factor GATA-3 and the IL-2, IL-7, and IL-25 receptors at higher levels. Indeed, they also demonstrated greater responsiveness to IL-2 than C57BL/6 kidney ILC2s, as shown by their greater STAT5 phosphorylation levels after culture with IL-2. Thus, this study demonstrates previously unknown properties of kidney ILC2s. It also shows the impact of mouse strain background on ILC2 behavior, which should be considered when conducting research on immune diseases with experimental mouse models.
Collapse
Affiliation(s)
- Seungwon Ryu
- Department of Microbiology, Gachon University College of Medicine, Incheon 21999, Korea
| | - Hye Young Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
8
|
Röszer T. Metabolic impact of adipose tissue macrophages in the early postnatal life. J Leukoc Biol 2022; 112:1515-1524. [PMID: 35899927 PMCID: PMC9796690 DOI: 10.1002/jlb.3mr0722-201r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/02/2022] [Indexed: 01/07/2023] Open
Abstract
Adipose tissue macrophages (ATMs) play key roles in metabolic inflammation, insulin resistance, adipose tissue fibrosis, and immune disorders associated with obesity. Research on ATM biology has mostly been conducted in the setting of adult obesity, since adipocyte hypertrophy is associated with a significant increase in ATM number. Signals that control ATM activation toward a proinflammatory or a proresolving phenotype also determine the developmental program and lipid metabolism of adipocytes after birth. ATMs are present at birth and actively participate in the synthesis of mediators, which induce lipolysis, mitobiogenesis, and mitochondrial uncoupling in adipocytes. ATMs in the newborn and the infant promote a lipolytic and fatty acid oxidizing adipocyte phenotype, which is essential to support the lipid-fueled metabolism, to maintain nonshivering thermogenesis and counteract an excessive adipose tissue expansion. Since adipose tissue metabolism in the early postnatal life determines obesity status in adulthood, early-life ATM functions may have a life-long impact.
Collapse
Affiliation(s)
- Tamás Röszer
- Division of Pediatric Obesity, Children's Hospital and Institute of PediatricsUniversity of DebrecenDebrecenHungary,Institute of NeurobiologyUlm UniversityUlmGermany
| |
Collapse
|
9
|
Chan PC, Hsieh PS. The Chemokine Systems at the Crossroads of Inflammation and Energy Metabolism in the Development of Obesity. Int J Mol Sci 2021; 22:ijms222413528. [PMID: 34948325 PMCID: PMC8709111 DOI: 10.3390/ijms222413528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 12/16/2022] Open
Abstract
Obesity is characterized as a complex and multifactorial excess accretion of adipose tissue accompanied with alterations in the immune and metabolic responses. Although the chemokine systems have been documented to be involved in the control of tissue inflammation and metabolism, the dual role of chemokines and chemokine receptors in the pathogenesis of the inflammatory milieu and dysregulated energy metabolism in obesity remains elusive. The objective of this review is to present an update on the link between chemokines and obesity-related inflammation and metabolism dysregulation under the light of recent knowledge, which may present important therapeutic targets that could control obesity-associated immune and metabolic disorders and chronic complications in the near future. In addition, the cellular and molecular mechanisms of chemokines and chemokine receptors including the potential effect of post-translational modification of chemokines in the regulation of inflammation and energy metabolism will be discussed in this review.
Collapse
Affiliation(s)
- Pei-Chi Chan
- National Defense Medical Center (NDMC), Department of Physiology & Biophysics, Taipei 114, Taiwan;
| | - Po-Shiuan Hsieh
- National Defense Medical Center (NDMC), Department of Physiology & Biophysics, Taipei 114, Taiwan;
- Graduate Institute of Medical Science, NDMC, Taipei 114, Taiwan
- Department of Medical Research, Tri-Service General Hospital, Taipei 114, Taiwan
- Correspondence: ; Tel.: +886-2-87923100 (ext. 18622); Fax: +886-2-87924827
| |
Collapse
|
10
|
Percopo CM, McCullough M, Limkar AR, Druey KM, Rosenberg HF. Impact of controlled high-sucrose and high-fat diets on eosinophil recruitment and cytokine content in allergen-challenged mice. PLoS One 2021; 16:e0255997. [PMID: 34383839 PMCID: PMC8360545 DOI: 10.1371/journal.pone.0255997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/27/2021] [Indexed: 12/30/2022] Open
Abstract
Despite an ongoing focus on the role of diet in health and disease, we have only a limited understanding of these concepts at the cellular and molecular levels. While obesity has been clearly recognized as contributing to metabolic syndrome and the pathogenesis of adult asthma, recent evidence has linked high sugar intake alone to an increased risk of developing asthma in childhood. In this study, we examined the impact of diet in a mouse model of allergic airways inflammation with a specific focus on eosinophils. As anticipated, male C57BL/6 mice gained weight on a high-calorie, high-fat diet. However, mice also gained weight on an isocaloric high-sucrose diet. Elevated levels of leptin were detected in the serum and airways of mice maintained on the high-fat, but not the high-sucrose diets. We found that diet alone had no impact on eosinophil numbers in the airways at baseline or their recruitment in response to allergen (Alternaria alternata) challenge in either wild-type or leptin-deficient ob/ob mice. However, both bronchoalveolar lavage fluid and eosinophils isolated from lung tissue of allergen-challenged mice exhibited profound diet-dependent differences in cytokine content. Similarly, while all wild-type mice responded to allergen challenge with significant increases in methacholine-dependent total airway resistance (Rrs), airway resistance in mice maintained on the isocaloric high-sucrose (but not the high-calorie/high-fat) diet significantly exceeded that of mice maintained on the basic diet. In summary, our findings revealed that mice maintained on an isocaloric high-sucrose diet responded to allergen challenge with significant changes in both BAL and eosinophil cytokine content together with significant increases in Rrs. These results provide a model for further exploration of the unique risks associated with a high-sugar diet and its impact on allergen-associated respiratory dysfunction.
Collapse
Affiliation(s)
- Caroline M. Percopo
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Morgan McCullough
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ajinkya R. Limkar
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kirk M. Druey
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Helene F. Rosenberg
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
11
|
Blaszczak AM, Jalilvand A, Hsueh WA. Adipocytes, Innate Immunity and Obesity: A Mini-Review. Front Immunol 2021; 12:650768. [PMID: 34248937 PMCID: PMC8264354 DOI: 10.3389/fimmu.2021.650768] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022] Open
Abstract
The role of adipose tissue (AT) inflammation in obesity and its multiple related-complications is a rapidly expanding area of scientific interest. Within the last 30 years, the role of the adipocyte as an endocrine and immunologic cell has been progressively established. Like the macrophage, the adipocyte is capable of linking the innate and adaptive immune system through the secretion of adipokines and cytokines; exosome release of lipids, hormones, and microRNAs; and contact interaction with other immune cells. Key innate immune cells in AT include adipocytes, macrophages, neutrophils, and innate lymphoid cells type 2 (ILC2s). The role of the innate immune system in promoting adipose tissue inflammation in obesity will be highlighted in this review. T cells and B cells also play important roles in contributing to AT inflammation and are discussed in this series in the chapter on adaptive immunity.
Collapse
Affiliation(s)
- Alecia M Blaszczak
- Hsueh Laboratory, The Ohio State University Wexner Medical Center, Diabetes and Metabolism Research Center, Columbus, OH, United States
| | - Anahita Jalilvand
- Hsueh Laboratory, The Ohio State University Wexner Medical Center, Diabetes and Metabolism Research Center, Columbus, OH, United States
| | - Willa A Hsueh
- Hsueh Laboratory, The Ohio State University Wexner Medical Center, Diabetes and Metabolism Research Center, Columbus, OH, United States
| |
Collapse
|
12
|
Allaf M, Elghazaly H, Mohamed OG, Fareen MFK, Zaman S, Salmasi AM, Tsilidis K, Dehghan A. Intermittent fasting for the prevention of cardiovascular disease. Cochrane Database Syst Rev 2021; 1:CD013496. [PMID: 33512717 PMCID: PMC8092432 DOI: 10.1002/14651858.cd013496.pub2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Cardiovascular disease (CVD) is the leading cause of death worldwide. Lifestyle changes are at the forefront of preventing the disease. This includes advice such as increasing physical activity and having a healthy balanced diet to reduce risk factors. Intermittent fasting (IF) is a popular dietary plan involving restricting caloric intake to certain days in the week such as alternate day fasting and periodic fasting, and restricting intake to a number of hours in a given day, otherwise known as time-restricted feeding. IF is being researched for its benefits and many randomised controlled trials have looked at its benefits in preventing CVD. OBJECTIVES To determine the role of IF in preventing and reducing the risk of CVD in people with or without prior documented CVD. SEARCH METHODS We conducted our search on 12 December 2019; we searched CENTRAL, MEDLINE and Embase. We also searched three trials registers and searched the reference lists of included papers. Systematic reviews were also viewed for additional studies. There was no language restriction applied. SELECTION CRITERIA We included randomised controlled trials comparing IF to ad libitum feeding (eating at any time with no specific caloric restriction) or continuous energy restriction (CER). Participants had to be over the age of 18 and included those with and without cardiometabolic risk factors. Intermittent fasting was categorised into alternate-day fasting, modified alternate-day fasting, periodic fasting and time-restricted feeding. DATA COLLECTION AND ANALYSIS Five review authors independently selected studies for inclusion and extraction. Primary outcomes included all-cause mortality, cardiovascular mortality, stroke, myocardial infarction, and heart failure. Secondary outcomes include the absolute change in body weight, and glucose. Furthermore, side effects such as headaches and changes to the quality of life were also noted. For continuous data, pooled mean differences (MD) (with 95% confidence intervals (CIs)) were calculated. We contacted trial authors to obtain missing data. We used GRADE to assess the certainty of the evidence. MAIN RESULTS: Our search yielded 39,165 records after the removal of duplicates. From this, 26 studies met our criteria, and 18 were included in the pooled analysis. The 18 studies included 1125 participants and observed outcomes ranging from four weeks to six months. No studies included data on all-cause mortality, cardiovascular mortality, stroke, myocardial infarction, and heart failure at any point during follow-up. Of quantitatively analysed data, seven studies compared IF with ab libitum feeding, eight studies compared IF with CER, and three studies compared IF with both ad libitum feeding and CER. Outcomes were reported at short term (≤ 3 months) and medium term (> 3 months to 12 months) follow-up. Body weight was reduced with IF compared to ad libitum feeding in the short term (MD -2.88 kg, 95% CI -3.96 to -1.80; 224 participants; 7 studies; low-certainty evidence). We are uncertain of the effect of IF when compared to CER in the short term (MD -0.88 kg, 95% CI -1.76 to 0.00; 719 participants; 10 studies; very low-certainty evidence) and there may be no effect in the medium term (MD -0.56 kg, 95% CI -1.68 to 0.56; 279 participants; 4 studies; low-certainty evidence). We are uncertain about the effect of IF on glucose when compared to ad libitum feeding in the short term (MD -0.03 mmol/L, 95% CI -0.26 to 0.19; 95 participants; 3 studies; very-low-certainty of evidence) and when compared to CER in the short term: MD -0.02 mmol/L, 95% CI -0.16 to 0.12; 582 participants; 9 studies; very low-certainty; medium term: MD 0.01, 95% CI -0.10 to 0.11; 279 participants; 4 studies; low-certainty evidence). The changes in body weight and glucose were not deemed to be clinically significant. Four studies reported data on side effects, with some participants complaining of mild headaches. One study reported on the quality of life using the RAND SF-36 score. There was a modest increase in the physical component summary score. AUTHORS' CONCLUSIONS Intermittent fasting was seen to be superior to ad libitum feeding in reducing weight. However, this was not clinically significant. There was no significant clinical difference between IF and CER in improving cardiometabolic risk factors to reduce the risk of CVD. Further research is needed to understand the safety and risk-benefit analysis of IF in specific patient groups (e.g. patients with diabetes or eating disorders) as well as the effect on longer-term outcomes such as all-cause mortality and myocardial infarction.
Collapse
Affiliation(s)
| | | | | | | | - Sadia Zaman
- School of Medicine, Imperial College London, London, UK
| | - Abdul-Majeed Salmasi
- Department of Cardiology, London North West University Healthcare NHS Trust, London, UK
| | - Kostas Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Abbas Dehghan
- School of Public Health, Imperial College London, London, UK
| |
Collapse
|
13
|
Yuan Y, Wang H, He J, Sun H, Zhu D, Bi Y. Peripheral Administration of NMU Promotes White Adipose Tissue Beiging and Improves Glucose Tolerance. Int J Endocrinol 2021; 2021:6142096. [PMID: 34422045 PMCID: PMC8373479 DOI: 10.1155/2021/6142096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/25/2021] [Accepted: 07/21/2021] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Targeting white adipose tissue (WAT) beiging has been proposed as an effective way to increase thermogenesis and improve glucose metabolism. Neuromedin U (NMU) is a neuropeptide that could increase energy expenditure, while its effects on WAT beiging and glucose homeostasis remain to be investigated. METHODS Male C57BL/6 mice were fed with high fat diet (HFD) to induce obesity and hyperglycemia and then treated with chronic subcutaneous injection of NMU. Body weight and food intake were recorded daily. After 14 days of injection, intraperitoneal glucose tolerance tests and 18F-fluorodeoxyglucose micro-positron emission tomography/computed tomography (18F-FDG micro-PET/CT) scans were conducted. Subcutaneous WAT (sWAT) and interscapular brown adipose tissue were collected for the evaluation of adipocyte size, expression of uncoupling protein 1 (Ucp1), and other thermogenic-related genes. Stromal vascular fraction of subcutaneous WAT was extracted for the measurement of type 2 innate lymphocytes (ILC2s) proportions. RESULTS Glucose tolerance was markedly improved by peripherally administered NMU. Micro-PET/CT suggested that NMU promoted WAT beiging, which was further confirmed by haematoxylin and eosin (H&E) staining and immunohistochemistry. In diet-induced-obese (DIO) mice, NMU activated thermogenic-related genes in WAT. In addition, NMU stimulated ILC2s in the stromal vascular fraction of WAT. CONCLUSION Taken together, our study indicates that peripheral administration of NMU is a potential therapeutic strategy for the promotion of WAT beiging and the improvement of impaired glucose tolerance.
Collapse
Affiliation(s)
- Yue Yuan
- Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Hongdong Wang
- Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jielei He
- Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Haixiang Sun
- Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Dalong Zhu
- Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yan Bi
- Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
14
|
Vohralik EJ, Psaila AM, Knights AJ, Quinlan KGR. EoTHINophils: Eosinophils as key players in adipose tissue homeostasis. Clin Exp Pharmacol Physiol 2020; 47:1495-1505. [PMID: 32163614 DOI: 10.1111/1440-1681.13304] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/24/2020] [Accepted: 03/09/2020] [Indexed: 12/22/2022]
Abstract
Eosinophils are granular cells of the innate immune system that are found in almost all vertebrates and some invertebrates. Knowledge of their wide-ranging roles in health and disease has largely been attained through studies in mice and humans. Although eosinophils are typically associated with helminth infections and allergic diseases such as asthma, there is building evidence that beneficial homeostatic eosinophils residing in specific niches are important for tissue development, remodelling and metabolic control. In recent years, the importance of immune cells in the regulation of adipose tissue homeostasis has been a focal point of research efforts. There is an abundance of anti-inflammatory innate immune cells in lean white adipose tissue, including macrophages, eosinophils and group 2 innate lymphoid cells, which promote energy homeostasis and stimulate the development of thermogenic beige adipocytes. This review will evaluate evidence for the role of adipose-resident eosinophils in local tissue homeostasis, beiging and systemic metabolism, highlighting where more research is needed to establish the specific effector functions that adipose eosinophils perform in response to different internal and external cues.
Collapse
Affiliation(s)
- Emily J Vohralik
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Annalise M Psaila
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Alexander J Knights
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Kate G R Quinlan
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
15
|
The emerging roles of eosinophils in mucosal homeostasis. Mucosal Immunol 2020; 13:574-583. [PMID: 32157190 DOI: 10.1038/s41385-020-0281-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 02/04/2023]
Abstract
Eosinophils are granulocytes, typically implicated as end-stage effector cells in type-II immune responses. They are capable of producing a wide array of pre-formed molecules which render them with vast potential to influence a wide variety of processes. Nonetheless, eosinophil research has traditionally focused on their role in anti-helminthic responses and pathophysiological processes in type-II immune disorders, such as allergy and asthma, where eosinophilia is a hallmark phenotype. However, a number of key studies over the past decade have placed this restricted view of eosinophil function into question, presenting additional evidence for eosinophils as critical regulators of various homeostatic processes including immune maintenance, organ development, and tissue regeneration.
Collapse
|
16
|
Alberca RW, Oliveira LDM, Branco ACCC, Pereira NZ, Sato MN. Obesity as a risk factor for COVID-19: an overview. Crit Rev Food Sci Nutr 2020; 61:2262-2276. [PMID: 32539446 DOI: 10.1080/10408398.2020.1775546] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The current coronavirus disease-2019 (COVID-19) pandemic presents a huge challenge for health-care systems worldwide. Many different risk factors are associated with disease severity, such as older age, diabetes, hypertension, and most recently obesity. The incidence of obesity has been on the rise for the past 25 years, reaching over 2 billion people throughout the world, and obesity itself could be considered a pandemic. In this review, we summarize aspects involved with obesity, such as changes in the immune response, nutritional factors, physiological factors, and the gut-lung axis, that impact the viral response and the COVID-19 prognosis.
Collapse
Affiliation(s)
- Ricardo Wesley Alberca
- Laboratory of Medical Investigation-56, - Departament of Dermatology, - Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Luana de Mendonça Oliveira
- Institute of Biomedical Sciences, - Departament of Immunology, - University of São Paulo, São Paulo, Brazil
| | | | - Nátalli Zanete Pereira
- Laboratory of Medical Investigation-56, - Departament of Dermatology, - Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Maria Notomi Sato
- Laboratory of Medical Investigation-56, - Departament of Dermatology, - Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
17
|
Abstract
Obesity is becoming an epidemic in the United States and worldwide and increases risk for many diseases, particularly insulin resistance, type 2 diabetes mellitus, and cardiovascular disease. The mechanisms linking obesity with these diseases remain incompletely understood. Over the past 2 to 3 decades, it has been recognized that in obesity, inflammation, with increased accumulation and inflammatory polarization of immune cells, takes place in various tissues, including adipose tissue, skeletal muscle, liver, gut, pancreatic islet, and brain and may contribute to obesity-linked metabolic dysfunctions, leading to insulin resistance and type 2 diabetes mellitus. Therapies targeting inflammation have shed light on certain obesity-linked diseases, including type 2 diabetes mellitus and atherosclerotic cardiovascular disease, but remain to be tested further and confirmed in clinical trials. This review focuses on inflammation in adipose tissue and its potential role in insulin resistance associated with obesity.
Collapse
Affiliation(s)
- Huaizhu Wu
- From the Department of Medicine (H.W., C.M.B.), Baylor College of Medicine, Houston, TX.,Department of Pediatrics (H.W.), Baylor College of Medicine, Houston, TX
| | - Christie M Ballantyne
- From the Department of Medicine (H.W., C.M.B.), Baylor College of Medicine, Houston, TX.,Department of Molecular and Human Genetics (C.M.B.), Baylor College of Medicine, Houston, TX.,Center for Cardiometabolic Disease Prevention (C.M.B.), Baylor College of Medicine, Houston, TX
| |
Collapse
|
18
|
Calco GN, Fryer AD, Nie Z. Unraveling the connection between eosinophils and obesity. J Leukoc Biol 2020; 108:123-128. [PMID: 32170879 DOI: 10.1002/jlb.5mr0120-377r] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/31/2020] [Accepted: 02/14/2020] [Indexed: 12/23/2022] Open
Abstract
Obesity affects more than 650 million adults worldwide and is a major risk factor for a variety of serious comorbidities. The prevalence of obesity has tripled in the past forty years and continues to rise. Eosinophils have recently been implicated in providing a protective role against obesity. Decreasing eosinophils exacerbates weight gain and contributes to glucose intolerance in high fat diet-induced obese animals, while increasing eosinophils prevents high-fat diet-induced adipose tissue and body weight gain. Human studies, however, do not support a protective role for eosinophils in obesity. More recent animal studies have also reported conflicting results. Considering these contradictory findings, the relationship between eosinophils and obesity may not be unidirectional. In this mini-review, we summarize a recent debate regarding the role of adipose tissue eosinophils in metabolic disorders, and discuss local and systemic effects of eosinophils in obesity. Given that adipose eosinophils play a role in tissue homeostasis, more research is needed to understand the primary function of adipose tissue eosinophils in their microenvironment. Therapeutic interventions that target eosinophils in adipose tissue may have the potential to reduce inflammation and body fat, while improving metabolic dysfunction in obese patients.
Collapse
Affiliation(s)
- Gina N Calco
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Allison D Fryer
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Zhenying Nie
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
19
|
Figueroa-Vega N, Marín-Aragón CI, López-Aguilar I, Ibarra-Reynoso L, Pérez-Luque E, Malacara JM. Analysis of the percentages of monocyte subsets and ILC2s, their relationships with metabolic variables and response to hypocaloric restriction in obesity. PLoS One 2020; 15:e0228637. [PMID: 32074122 PMCID: PMC7029876 DOI: 10.1371/journal.pone.0228637] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/21/2020] [Indexed: 01/17/2023] Open
Abstract
PURPOSE Obesity results from excess energy intake over expenditure and is characterized by chronic low-grade inflammation involving circulating monocytes (Mo) and group 2 innate lymphoid cells (ILC2s) imbalance. We analyzed circulating Mo subsets and ILC2s percentages and β2-adrenergic receptor (β2AR) expression in lean and obese subjects, and the possible effect of hypocaloric restriction on these innate immune cells. METHODS In 139 individuals aged 45 to 57 years, classified in 74 lean individuals (>18.9kg/m2 BMI <24.9kg/m2) and 65 with obesity (n = 65), we collected fasting blood samples to detect Mo subsets, ILC2s number, and β2AR expression by flow cytometry. Lipids, insulin, leptin, and acylated-ghrelin concentrations were quantified. Resting energy expenditure (REE) was estimated by indirect calorimetry. These measurements were repeated in obese subjects after 7-weeks of hypocaloric restriction. RESULTS Non-classical monocytes (NCM) and β2AR expression on intermediate Mo (IM) were increased in obese individuals (p<0.001, in both cases), whereas the percent of ILC2s was decreased (p<0.0001). Stepwise regression analysis showed significantly negative associations of ILC2s with caloric intake, β2AR expression on IM with REE, but a positive relationship between NCM and HOMA-IR. Caloric restriction allowed a significant diminution of NCM and the β2AR expression on IM, as well as, an increase in the percent of classical Mo (CM), and ILC2s. ΔREE was related to ΔCD16+/CD16- ratio. CONCLUSIONS These findings show that in obesity occur changes in NCM, ILC2s and β2AR expression, which contribute to the low-grade inflammation linked to obesity and might revert with caloric restriction.
Collapse
Affiliation(s)
- Nicté Figueroa-Vega
- Department of Medical Sciences, University of Guanajuato, León Campus, León, Gto., México
| | | | - Itzel López-Aguilar
- Department of Medical Sciences, University of Guanajuato, León Campus, León, Gto., México
| | - Lorena Ibarra-Reynoso
- Department of Medical Sciences, University of Guanajuato, León Campus, León, Gto., México
| | - Elva Pérez-Luque
- Department of Medical Sciences, University of Guanajuato, León Campus, León, Gto., México
| | - Juan Manuel Malacara
- Department of Medical Sciences, University of Guanajuato, León Campus, León, Gto., México
| |
Collapse
|
20
|
Caslin HL, Hasty AH. Extrinsic and Intrinsic Immunometabolism Converge: Perspectives on Future Research and Therapeutic Development for Obesity. Curr Obes Rep 2019; 8:210-219. [PMID: 30919312 PMCID: PMC6661206 DOI: 10.1007/s13679-019-00344-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Research over the past decade has shown that immunologic and metabolic pathways are intricately linked. This burgeoning field of immunometabolism includes intrinsic and extrinsic pathways and is known to be associated with obesity-accelerated metabolic disease. Intrinsic immunometabolism includes the study of fuel utilization and bioenergetic pathways that influence immune cell function. Extrinsic immunometabolism includes the study of immune cells and products that influence systemic metabolism. RECENT FINDINGS Th2 immunity, macrophage iron handling, adaptive immune memory, and epigenetic regulation of immunity, which all require intrinsic metabolic changes, play a role in systemic metabolism and metabolic function, linking the two arms of immunometabolism. Together, this suggests that targeting intrinsic immunometabolism can directly affect immune function and ultimately systemic metabolism. We highlight important questions for future basic research that will help improve translational research and provide therapeutic targets to help establish new treatments for obesity and associated metabolic disorders.
Collapse
Affiliation(s)
- Heather L Caslin
- Molecular Physiology and Biophysics, Vanderbilt University, 813 Light Hall, 23rd Ave. South and Pierce, Nashville, TN, 37232, USA
| | - Alyssa H Hasty
- Molecular Physiology and Biophysics, Vanderbilt University, 813 Light Hall, 23rd Ave. South and Pierce, Nashville, TN, 37232, USA.
- VA Tennessee Valley Healthcare System, Nashville, TN, USA.
| |
Collapse
|
21
|
Moussa K, Gurung P, Adams-Huet B, Devaraj S, Jialal I. Increased eosinophils in adipose tissue of metabolic syndrome. J Diabetes Complications 2019; 33:535-538. [PMID: 31204245 DOI: 10.1016/j.jdiacomp.2019.05.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/13/2019] [Accepted: 05/13/2019] [Indexed: 02/07/2023]
Abstract
AIMS Metabolic Syndrome (MetS) is a common global disorder that predisposes to both Type 2 diabetes mellitus (T2DM) and cardiovascular disease (ASCVD). Adipose tissue (AT) contributes significantly to increased inflammation and insulin resistance (IR) in MetS which appear to be the crucial underpinnings of MetS. Compared to macrophages and lymphocytes in human subcutaneous AT (SAT), there is sparse data on the role of other immune cells, especially eosinophils (EOS). In this study, we investigated the abundance of EOS in the SAT of 19 patients with MetS without diabetes, ASCVD, smoking or any inflammatory condition, and matched controls. METHODS SAT EOS were quantified by immunohistochemistry. RESULTS Both circulating and SAT EOS were significantly increased 2-fold in MetS and correlated with each other. Circulating EOS correlated significantly with triglycerides (TG), high-sensitivity CRP, leptin, and IL-6. SAT EOS correlated significantly with plasma glucose, TG, FFA, adipose-IR, leptin, IL-6, endotoxin, chemerin and inversely with adiponectin. They also correlated with SAT markers of fibrosis: collagen and Sirius red staining of SAT. CONCLUSION We make the novel and seminal observation that eosinophils are increased in SAT of MetS patients, and are associated with the pro-inflammatory state. Hence, in humans, they appear to contribute to the dysregulation of SAT biology in MetS.
Collapse
Affiliation(s)
- Karine Moussa
- California Northstate University College of Medicine, United States of America
| | - Purnima Gurung
- California Northstate University College of Medicine, United States of America
| | - Beverley Adams-Huet
- University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Sridevi Devaraj
- Baylor College of Medicine, Houston, TX, United States of America
| | - Ishwarlal Jialal
- California Northstate University College of Medicine, United States of America; VA Medical Center, Mather, CA, United States of America.
| |
Collapse
|
22
|
Ma M, Percopo CM, Sturdevant DE, Sek AC, Komarow HD, Rosenberg HF. Cytokine Diversity in Human Peripheral Blood Eosinophils: Profound Variability of IL-16. THE JOURNAL OF IMMUNOLOGY 2019; 203:520-531. [PMID: 31182481 DOI: 10.4049/jimmunol.1900101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/20/2019] [Indexed: 01/07/2023]
Abstract
Eosinophilic leukocytes develop in the bone marrow and migrate from peripheral blood to tissues, where they maintain homeostasis and promote dysfunction via release of preformed immunomodulatory mediators. In this study, we explore human eosinophil heterogeneity with a specific focus on naturally occurring variations in cytokine content. We found that human eosinophil-associated cytokines varied on a continuum from minimally (coefficient of variation [CV] ≤ 50%) to moderately variable (50% < CV ≤ 90%). Within the moderately variable group, we detected immunoreactive IL-27 (953 ± 504 pg/mg lysate), a mediator not previously associated with human eosinophils. However, our major finding was the distinct and profound variability of eosinophil-associated IL-16 (CV = 103%). Interestingly, eosinophil IL-16 content correlated directly with body mass index (R 2 = 0.60, ***p < 0.0001) in one donor subset. We found no direct correlation between eosinophil IL-16 content and donor age, sex, total leukocytes, lymphocytes, or eosinophils (cells per microliter), nor was there any relationship between IL-16 content and the characterized -295T/C IL-16 promoter polymorphism. Likewise, although eosinophil IL-1β, IL-1α, and IL-6 levels correlated with one another, there was no direct association between any of these cytokines and eosinophil IL-16 content. Finally, a moderate increase in total dietary fat resulted in a 2.7-fold reduction in eosinophil IL-16 content among C57BL/6-IL5tg mice. Overall, these results suggest that relationships between energy metabolism, eosinophils, and IL-16 content are not direct or straightforward. Nonetheless, given our current understanding of the connections between asthma and obesity, these findings suggest important eosinophil-focused directions for further exploration.
Collapse
Affiliation(s)
- Michelle Ma
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Caroline M Percopo
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Daniel E Sturdevant
- Genomics Unit, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840; and
| | - Albert C Sek
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Hirsh D Komarow
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Helene F Rosenberg
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
23
|
White Adipose Tissue Response of Obese Mice to Ambient Oxygen Restriction at Thermoneutrality: Response Markers Identified, but no WAT Inflammation. Genes (Basel) 2019; 10:genes10050359. [PMID: 31083422 PMCID: PMC6562665 DOI: 10.3390/genes10050359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 11/16/2022] Open
Abstract
Obesity is associated with white adipose tissue (WAT) hypoxia and inflammation. We aimed to test whether mild environmental oxygen restriction (OxR, 13% O2), imposing tissue hypoxia, triggers WAT inflammation in obese mice. Thirteen weeks diet-induced obese male adult C57BL/6JOlaHsd mice housed at thermoneutrality were exposed for five days to OxR versus normoxia. WAT and blood were isolated and used for analysis of metabolites and adipokines, WAT histology and macrophage staining, and WAT transcriptomics. OxR increased circulating levels of haemoglobin and haematocrit as well as hypoxia responsive transcripts in WAT and decreased blood glucose, indicating systemic and tissue hypoxia. WAT aconitase activity was inhibited. Macrophage infiltration as marker for WAT inflammation tended to be decreased, which was supported by down regulation of inflammatory genes S100a8, Ccl8, Clec9a, Saa3, Mgst2, and Saa1. Other down regulated processes include cytoskeleton remodelling and metabolism, while response to hypoxia appeared most prominently up regulated. The adipokines coiled-coil domain containing 3 (CCDC3) and adiponectin, as well as the putative WAT hormone cholecystokinin (CCK), were reduced by OxR on transcript (Cck, Ccdc3) and/or serum protein level (adiponectin, CCDC3). Conclusively, our data demonstrate that also in obese mice OxR does not trigger WAT inflammation. However, OxR does evoke a metabolic response in WAT, with CCDC3 and adiponectin as potential markers for systemic or WAT hypoxia.
Collapse
|
24
|
Milart P, Paluszkiewicz P, Dobrowolski P, Tomaszewska E, Smolinska K, Debinska I, Gawel K, Walczak K, Bednarski J, Turska M, Raban M, Kocki T, Turski WA. Kynurenic acid as the neglected ingredient of commercial baby formulas. Sci Rep 2019; 9:6108. [PMID: 30988385 PMCID: PMC6465401 DOI: 10.1038/s41598-019-42646-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/04/2019] [Indexed: 02/05/2023] Open
Abstract
The global increase in resorting to artificial nutritional formulas replacing breastfeeding has been identified among the complex causes of the obesity epidemic in infants and children. One of the factors recently recognized to influence metabolism and weight gain is kynurenic acid (KYNA), an agonist of G protein-coupled receptor (GPR35). Therefore the aim of the study was to determine the concentration of KYNA in artificial nutritional formulas in comparison with its level in human breast milk and to evaluate developmental changes in rats exposed to KYNA enriched diet during the time of breastfeeding. KYNA levels were measured in milk samples from 25 heathy breast-feeding women during the first six months after labor and were compared with 21 time-adjusted nutritional formulas. Animal experiments were performed on male Wistar rats. KYNA was administered in drinking water. The content of KYNA in human milk increases more than 13 times during the time of breastfeeding while its level is significantly lower in artificial formulas. KYNA was detected in breast milk of rats and it was found that the supplementation of rat maternal diet with KYNA in drinking water results in its increase in maternal milk. By means of the immunoblotting technique, GPR35 was evidenced in the mucosa of the jejunum of 1-day-old rats and distinct morphological changes in the jejunum of 21-day-old rats fed by mothers exposed to water supplemented with KYNA were found. A significant reduction of body weight gain of rats postnatally exposed to KYNA supplementation without changes in total body surface and bone mineral density was observed. The rat offspring fed with breast milk with artificially enhanced KYNA content demonstrated a lower mass gain during the first 21 days of life, which indicates that KYNA may act as an anti-obesogen. Further studies are, therefore, warranted to investigate the mechanisms regulating KYNA secretion via breast milk, as well as the influence of breast milk KYNA on mass gain. In the context of lifelong obesity observed worldwide in children fed artificially, our results imply that insufficient amount of KYNA in baby formulas could be considered as one of the factors associated with increased mass gain.
Collapse
Affiliation(s)
- Pawel Milart
- 3rd Department of Gynecology, Medical University of Lublin, Jaczewskiego 8, PL-20090, Lublin, Poland.
| | - Piotr Paluszkiewicz
- Department of General, Oncological and Metabolic Surgery Institute of Haematology and Transfusion Medicine, Indiry Gandhi 14, PL-02776, Warsaw, Poland.,Department of Surgery and Surgical Nursing, Medical University of Lublin, Szkolna 18, PL-20124, Lublin, Poland
| | - Piotr Dobrowolski
- Department of Comparative Anatomy and Anthropology, Maria Curie-Sklodowska University, Akademicka 19, PL-20033, Lublin, Poland
| | - Ewa Tomaszewska
- Department of Animal Physiology, University of Life Sciences in Lublin, Akademicka 12, PL-20950, Lublin, Poland
| | - Katarzyna Smolinska
- Department of Surgery and Surgical Nursing, Medical University of Lublin, Szkolna 18, PL-20124, Lublin, Poland
| | - Iwona Debinska
- Department of Surgery and Surgical Nursing, Medical University of Lublin, Szkolna 18, PL-20124, Lublin, Poland
| | - Kinga Gawel
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8b, PL-20090, Lublin, Poland
| | - Katarzyna Walczak
- Department of Pharmacology, Medical University of Lublin, Chodzki 4a, PL-20093, Lublin, Poland
| | - Jerzy Bednarski
- Chair of Human Anatomy (Department of Normal Anatomy), Medical University of Lublin, Jaczewskiego 4, PL-20090, Lublin, Poland
| | - Monika Turska
- Department of Pharmacology, Medical University of Lublin, Chodzki 4a, PL-20093, Lublin, Poland
| | - Michal Raban
- 2nd Chair and Department of General and Gastrointestinal Surgery and Surgical Oncology of the Alimentary Tract, Medical University of Lublin, Staszica 16, PL-20081, Lublin, Poland
| | - Tomasz Kocki
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8b, PL-20090, Lublin, Poland
| | - Waldemar A Turski
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8b, PL-20090, Lublin, Poland
| |
Collapse
|
25
|
Colson C, Ghandour RA, Dufies O, Rekima S, Loubat A, Munro P, Boyer L, Pisani DF. Diet Supplementation in ω3 Polyunsaturated Fatty Acid Favors an Anti-Inflammatory Basal Environment in Mouse Adipose Tissue. Nutrients 2019; 11:nu11020438. [PMID: 30791540 PMCID: PMC6412622 DOI: 10.3390/nu11020438] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/12/2019] [Accepted: 02/15/2019] [Indexed: 12/17/2022] Open
Abstract
Oxylipins are metabolized from dietary ω3 and ω6 polyunsaturated fatty acids and are involved in an inflammatory response. Adipose tissue inflammatory background is a key factor of metabolic disorders and it is accepted that dietary fatty acids, in terms of quality and quantity, modulate oxylipin synthesis in this tissue. Moreover, it has been reported that diet supplementation in ω3 polyunsaturated fatty acids resolves some inflammatory situations. Thus, it is crucial to assess the influence of dietary polyunsaturated fatty acids on oxylipin synthesis and their impact on adipose tissue inflammation. To this end, mice fed an ω6- or ω3-enriched standard diet (ω6/ω3 ratio of 30 and 3.75, respectively) were analyzed for inflammatory phenotype and adipose tissue oxylipin content. Diet enrichment with an ω3 polyunsaturated fatty acid induced an increase in the oxylipins derived from ω6 linoleic acid, ω3 eicosapentaenoic, and ω3 docosahexaenoic acids in brown and white adipose tissues. Among these, the level of pro-resolving mediator intermediates, as well as anti-inflammatory metabolites, were augmented. Concomitantly, expressions of M2 macrophage markers were increased without affecting inflammatory cytokine contents. In vitro, these metabolites did not activate macrophages but participated in macrophage polarization by inflammatory stimuli. In conclusion, we demonstrated that an ω3-enriched diet, in non-obesogenic non-inflammatory conditions, induced synthesis of oxylipins which were involved in an anti-inflammatory response as well as enhancement of the M2 macrophage molecular signature, without affecting inflammatory cytokine secretion.
Collapse
Affiliation(s)
- Cecilia Colson
- Université Côte d'Azur, CNRS, Inserm, iBV, 06107 Nice, France.
| | | | - Océane Dufies
- Université Côte d'Azur, Inserm, C3M, 06107 Nice, France.
| | - Samah Rekima
- Université Côte d'Azur, CNRS, Inserm, iBV, 06107 Nice, France.
| | - Agnès Loubat
- Université Côte d'Azur, CNRS, Inserm, iBV, 06107 Nice, France.
| | - Patrick Munro
- Université Côte d'Azur, Inserm, C3M, 06107 Nice, France.
| | - Laurent Boyer
- Université Côte d'Azur, Inserm, C3M, 06107 Nice, France.
| | - Didier F Pisani
- Université Côte d'Azur, CNRS, Inserm, iBV, 06107 Nice, France.
- Didier Pisani, Laboratoire de PhysioMédecine Moléculaire-LP2M, Univ. Nice Sophia Antipolis, 28 Avenue de Valombrose, 06107 Nice CEDEX 2, France.
| |
Collapse
|
26
|
Abstract
Adipose tissue remains a cryptic organ. The ubiquitous presence of adipocytes, the different fat pads in distinct anatomical locations, the many different types of fat, in each case with their distinct precursor populations, and the ability to interchange into other types of fat cells or even de-differentiate altogether, offers a staggering amount of complexity to the adipose tissue organ as a whole. Adipose tissue holds the key to improving our understanding of systemic metabolic homeostasis. As such, understanding adipose tissue physiology offers the basis for a mechanistic understanding of the pathophysiology of diabetes. This review presents some of the lesser known aspects of this fascinating tissue, which consistently still offers much opportunity for the discovery of novel targets for pharmacological intervention.
Collapse
Affiliation(s)
- Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390-8549, USA.
| |
Collapse
|
27
|
Bolus WR, Kennedy AJ, Hasty AH. Obesity-induced reduction of adipose eosinophils is reversed with low-calorie dietary intervention. Physiol Rep 2018; 6:e13919. [PMID: 30488596 PMCID: PMC6250927 DOI: 10.14814/phy2.13919] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/13/2018] [Accepted: 10/16/2018] [Indexed: 12/16/2022] Open
Abstract
While many studies have characterized the inflammatory disposition of adipose tissue (AT) during obesity, far fewer have dissected how such inflammation resolves during the process of physiological weight loss. In addition, new immune cells, such as the eosinophil, have been discovered as part of the AT immune cell repertoire. We have therefore characterized how AT eosinophils, associated eosinophilic inflammation, and remodeling processes, fluctuate during a dietary intervention in obese mice. Similar to previous reports, we found that obesity induced by high-fat diet feeding reduced the AT eosinophil content. However, upon switching obese mice to a low fat diet, AT eosinophils were restored to lean levels as mice reached the body weight of controls. The rise in AT eosinophils during dietary weight loss was accompanied by reduced macrophage content and inflammatory expression, upregulated tissue remodeling factors, and a more uniformly distributed AT vascular network. Additionally, we show that eosinophils of another metabolically relevant tissue, the liver, did not oscillate with either dietary weight gain or weight loss. This study shows that eosinophil content is differentially regulated among tissues during the onset and resolution of obesity. Furthermore, AT eosinophils correlated with AT remodeling processes during weight loss and thus may play a role in reestablishing AT homeostasis.
Collapse
Affiliation(s)
- William Reid Bolus
- Department of Molecular Physiology and BiophysicsVanderbilt University School of MedicineNashvilleTennessee
| | - Arion J. Kennedy
- Department of Molecular Physiology and BiophysicsVanderbilt University School of MedicineNashvilleTennessee
| | - Alyssa H. Hasty
- Department of Molecular Physiology and BiophysicsVanderbilt University School of MedicineNashvilleTennessee
- VA Tennessee Valley Healthcare SystemNashvilleTennessee
| |
Collapse
|
28
|
García MDC, Pazos P, Lima L, Diéguez C. Regulation of Energy Expenditure and Brown/Beige Thermogenic Activity by Interleukins: New Roles for Old Actors. Int J Mol Sci 2018; 19:E2569. [PMID: 30158466 PMCID: PMC6164446 DOI: 10.3390/ijms19092569] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/24/2018] [Accepted: 08/25/2018] [Indexed: 12/16/2022] Open
Abstract
Obesity rates and the burden of metabolic associated diseases are escalating worldwide Energy burning brown and inducible beige adipocytes in human adipose tissues (ATs) have attracted considerable attention due to their therapeutic potential to counteract the deleterious metabolic effects of nutritional overload and overweight. Recent research has highlighted the relevance of resident and recruited ATs immune cell populations and their signalling mediators, cytokines, as modulators of the thermogenic activity of brown and beige ATs. In this review, we first provide an overview of the developmental, cellular and functional heterogeneity of the AT organ, as well as reported molecular switches of its heat-producing machinery. We also discuss the key contribution of various interleukins signalling pathways to energy and metabolic homeostasis and their roles in the biogenesis and function of brown and beige adipocytes. Besides local actions, attention is also drawn to their influence in the central nervous system (CNS) networks governing energy expenditure.
Collapse
Affiliation(s)
- María Del Carmen García
- Department of Physiology/Research Center of Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain.
- CIBER Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III (ISCIII, Ministerio de Economía y Competitividad (MINECO)), C/Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029 Madrid, Spain.
| | - Patricia Pazos
- Department of Physiology/Research Center of Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain.
- CIBER Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III (ISCIII, Ministerio de Economía y Competitividad (MINECO)), C/Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029 Madrid, Spain.
| | - Luis Lima
- Department of Physiology/Research Center of Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain.
| | - Carlos Diéguez
- Department of Physiology/Research Center of Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain.
- CIBER Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III (ISCIII, Ministerio de Economía y Competitividad (MINECO)), C/Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029 Madrid, Spain.
| |
Collapse
|
29
|
Carpentier AC, Blondin DP, Virtanen KA, Richard D, Haman F, Turcotte ÉE. Brown Adipose Tissue Energy Metabolism in Humans. Front Endocrinol (Lausanne) 2018; 9:447. [PMID: 30131768 PMCID: PMC6090055 DOI: 10.3389/fendo.2018.00447] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/20/2018] [Indexed: 12/16/2022] Open
Abstract
The demonstration of metabolically active brown adipose tissue (BAT) in humans primarily using positron emission tomography coupled to computed tomography (PET/CT) with the glucose tracer 18-fluorodeoxyglucose (18FDG) has renewed the interest of the scientific and medical community in the possible role of BAT as a target for the prevention and treatment of obesity and type 2 diabetes (T2D). Here, we offer a comprehensive review of BAT energy metabolism in humans. Considerable advances in methods to measure BAT energy metabolism, including nonesterified fatty acids (NEFA), chylomicron-triglycerides (TG), oxygen, Krebs cycle rate, and intracellular TG have led to very good quantification of energy substrate metabolism per volume of active BAT in vivo. These studies have also shown that intracellular TG are likely the primary energy source of BAT upon activation by cold. Current estimates of BAT's contribution to energy expenditure range at the lower end of what would be potentially clinically relevant if chronically sustained. Yet, 18FDG PET/CT remains the gold-standard defining method to quantify total BAT volume of activity, used to calculate BAT's total energy expenditure. Unfortunately, BAT glucose metabolism better reflects BAT's insulin sensitivity and blood flow. It is now clear that most glucose taken up by BAT does not fuel mitochondrial oxidative metabolism and that BAT glucose uptake can therefore be disconnected from thermogenesis. Furthermore, BAT thermogenesis is efficiently recruited upon repeated cold exposure, doubling to tripling its total oxidative capacity, with reciprocal reduction of muscle thermogenesis. Recent data suggest that total BAT volume may be much larger than the typically observed 50-150 ml with 18FDG PET/CT. Therefore, the current estimates of total BAT thermogenesis, largely relying on total BAT volume using 18FDG PET/CT, may underestimate the true contribution of BAT to total energy expenditure. Quantification of the contribution of BAT to energy expenditure begs for the development of more integrated whole body in vivo methods.
Collapse
Affiliation(s)
- André C. Carpentier
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Kirsi A. Virtanen
- Turku PET Centre, Turku University Hospital, Turku, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland (UEF), Kuopio, Finland
| | - Denis Richard
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, QC, Canada
| | - François Haman
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Éric E. Turcotte
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|