1
|
Han H, Zhang JM, Ji S, Zeng XB, Jin XC, Shen ZQ, Xie B, Luo XN, Li K, Liu LP. Histology and transcriptomic analysis reveal the inflammation and affected pathways under 2-methylisoborneol (2-MIB) exposure on grass carp. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173233. [PMID: 38763196 DOI: 10.1016/j.scitotenv.2024.173233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/19/2024] [Accepted: 05/12/2024] [Indexed: 05/21/2024]
Abstract
2-Methylisoborneol (2-MIB) is a common and widely distributed off-flavor compound in water. However, the toxic mechanisms of 2-MIB on aquatic organisms remain largely unexplored. In this study, grass carp larvae were exposed to different concentrations (0, 5, and 20 μg L-1) of 2-MIB for 96 h. The accumulation of 2-MIB in the dorsal muscle was measured. Histological analysis, ultrastructure observations, and transcriptomic sequencing were conducted on the liver tissues. The results showed that 2-MIB accumulated significantly in the fish muscle, with the accumulation increasing as the exposure concentration increased through gas chromatography-mass spectrometry (GC-MS) detection. Histological and ultrastructure observations indicated that 2-MIB caused concentration-dependent inflammatory infiltration and mitochondrial damage in the liver. Transcriptomic analysis revealed lipid metabolism disorders induced by exposure to 2-MIB in grass carp. Additionally, 5 μg L-1 2-MIB affected the neurodevelopment and cardiovascular system of grass carp larvae through extracellular matrix (ECM)-receptor interaction and focal adhesion pathway. Furthermore, several pathways related to the digestive system were significantly enriched, implying that 2-MIB may impact pancreatic secretion function, protein digestion and absorption processes. These findings provide new insights into the potential toxicological mechanisms of 2-MIB.
Collapse
Affiliation(s)
- Huan Han
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China
| | - Jun-Ming Zhang
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China
| | - Shuang Ji
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China
| | - Xiang-Biao Zeng
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China
| | - Xi-Chen Jin
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China
| | - Zi-Qian Shen
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China
| | - Bin Xie
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China
| | - Xue-Neng Luo
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China
| | - Kang Li
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China; Center for Ecological Aquaculture (CEA), Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| | - Li-Ping Liu
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China; Center for Ecological Aquaculture (CEA), Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
2
|
Ciarambino T, Crispino P, Minervini G, Giordano M. Role of Helicobacter pylori Infection in Pathogenesis, Evolution, and Complication of Atherosclerotic Plaque. Biomedicines 2024; 12:400. [PMID: 38398002 PMCID: PMC10886498 DOI: 10.3390/biomedicines12020400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/11/2023] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The therapeutic management of atherosclerosis focuses almost exclusively on the reduction of plasma cholesterol levels. An important role in the genesis and evolution of atherosclerosis is played by chronic inflammation in promoting thrombosis phenomena after atheroma rupture. This review aims to take stock of the knowledge so far accumulated on the role of endemic HP infection in atherosclerosis. The studies produced so far have demonstrated a causal relationship between Helicobacter pylori (HP) and CVD. In a previous study, we demonstrated in HP-positive patients that thrombin and plasma fragment 1 + 2 production was proportionally related to tumor necrosis factor-alpha levels and that eradication of the infection resulted in a reduction of inflammation. At the end of our review, we can state that HP slightly affects the risk of CVD, particularly if the infection is associated with cytotoxic damage, and HP screening could have a clinically significant role in patients with a high risk of CVD. Considering the high prevalence of HP infection, an infection screening could be of great clinical utility in patients at high risk of CVD.
Collapse
Affiliation(s)
- Tiziana Ciarambino
- Internal Medicine Department, Hospital of Marcianise, ASL Caserta, 81037 Caserta, Italy
| | - Pietro Crispino
- Internal Medicine Department, Hospital of Latina, ASL Latina, 04100 Latina, Italy;
| | - Giovanni Minervini
- Internal Medicine Department, Hospital of Lagonegro, AOR San Carlo, 85042 Lagonegro, Italy;
| | - Mauro Giordano
- Department of Advanced Medical and Surgical Sciences, University of Campania “L. Vanvitelli”, 81100 Naples, Italy;
| |
Collapse
|
3
|
Huang H, Sun Z, Xu J, Wang L, Zhao J, Li J, Zhang S, Yuan F, Liu M, Fang Z. Yang-Xin-Shu-Mai granule alleviates atherosclerosis by regulating macrophage polarization via the TLR9/MyD88/NF-κB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116868. [PMID: 37454749 DOI: 10.1016/j.jep.2023.116868] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/04/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Previous studies have found that Yang-Xin-Shu-Mai granule (YXSMG) has certain advantages in the treatment of stable coronary heart disease. However, YXSMG can inhibit the progression of atherosclerotic plaque and stabilize vulnerable plaque needs to be further explored and studied. This research, mass spectrometry analysis, network pharmacology, in vivo and in vitro experimental studies were conducted to explore the mechanism of YXSMG on atherosclerosis. AIM OF THE STUDY To decipher the mechanism of atherosclerotic plaque, stabilization for YXSMG by analysis of its active ingredients and biological network and activity in whole animal and at cellular and molecular levels. METHODS The active components of YXSMG were determined using high performance liquid chromatography-mass spectrometry/mass spectrometry (HPLC-MS/MS) analysis. The 'Disease-Compound-Target-Pathway' network diagram was constructed using network pharmacology, and the stability of binding between core targets and core compounds was analyzed with molecular docking. After intervention with YXSMG, the pathology of aortic plaque, inflammation in the surrounding tissue, expression of TLR9/MyD88/NF-κB pathway protein in plaque and M1/M2 polarization of plaque macrophages were evaluated in vivo in apolipoprotein E-deficient (ApoE-/-) mice fed with high-fat diet. To verify whether it suppressed inflammation by inhibiting Toll-like receptor 9 (TLR9) reprogramming of macrophage polarization, we used RAW264.7 macrophages treated with specific TLR9 agonist (ODN1826) and inhibitor (ODN2088). RESULTS Five active compounds were identified in YXSMG: catechin, formononetin, tanshinone IIA, cryptotanshinone and glycitein. Network pharmacology studies revealed TLR9 as one of the core targets of YXSMG intervention in atherosclerosis. Computer simulation of molecular docking showed that TLR9 could interact with the core compound to form a stable complex. In vivo experiments confirmed that YXSMG could significantly inhibit atherosclerotic plaque, reduce levels of blood lipids and inflammatory factors, downregulate TLR9/MyD88/NF-κB pathway protein and inhibit aortic sinus macrophages polarization to M1, but promote their polarization to M2 to inhibit inflammation. In vitro experiments revealed that YXSMG could downregulate expression of TLR9 gene and protein in ODN1826-activated RAW264.7 macrophages. ODN2088 had a synergistic effect with YXSMG on the TLR9/MyD88/NF-κB signaling pathway, and reprogrammed macrophages polarization from M1 to M2 by inhibiting TLR9, thus reducing immuno-inflammatory response. CONCLUSION YXSMG can reduce the level of blood lipid and improve the size of atherosclerotic plaque and inflammatory infiltration in ApoE-/- mice fed with high fat. It is concluded that YXSMG can improve the mechanism of atherosclerotic plaque by inhibiting TLR9/MyD88/NF-κB pathway reprogramming macrophage M1/M2 polarization and reducing arterial inflammation.
Collapse
Affiliation(s)
- Hong Huang
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, PR China.
| | - Zeqi Sun
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, PR China.
| | - Junyao Xu
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, PR China
| | - Linjie Wang
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, PR China
| | - Jing Zhao
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, PR China
| | - Jie Li
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, PR China
| | - Siqi Zhang
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, PR China; Institute of Hypertension, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, PR China
| | - Fang Yuan
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, PR China
| | - Ming Liu
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, PR China; Institute of Hypertension, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, PR China.
| | - Zhuyuan Fang
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, PR China; Institute of Hypertension, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, PR China.
| |
Collapse
|
4
|
Zhang Y, Li H, Wang C, Lv H, Fu S. Toll like receptor 4 gene Asp299Gly polymorphism increases the risk of diabetic microvascular complications: a meta analysis. Diabetol Metab Syndr 2022; 14:79. [PMID: 35672795 PMCID: PMC9172045 DOI: 10.1186/s13098-022-00849-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 05/29/2022] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE The relationship between Toll like receptor 4(TLR4) gene Asp299Gly polymorphism and diabetic microvascular complications (DMI) is unclear. Therefore, the aim of this meta analysis was to explore the relationship between TLR4 Asp299Gly polymorphism and DMI. METHODS System search PubMed, Web of science, Springer, Cochrane library, ELSEVIER, Wanfang database, VIP, CNKI, a case-control study of the correlation between TLR4 gene Asp299Gly polymorphism and DMI published before June 2020 was collected. RESULTS We included 6 articles, a total of 11 studies involving patients with type 2 diabetes mellitus (T2DM) complicated by microvascular complications 1834 cases, without corresponding microvascular complications 4069 cases. TLR4 gene Asp299Gly polymorphism increased the risk of microvascular complications in T2DM (dominant model OR = 1.52, 95% CI 1.10-2.09, p = 0.01; allelic model OR = 1.42, 95% CI 1.02-1.96, p = 0.04). Subgroup analysis by race and different type of microvascular complications, we found that TLR4 gene Asp299Gly polymorphism was associated with increased risk of microvascular complications in the Caucasian population (dominant model OR = 1.69, 95% CI 1.22-2.35, P = 0.002; allelic model OR = 1.56, 95% CI 1.10-2.21, P = 0.01) and increased the risk of retinopathy in patients with T2DM(dominant model OR = 1.81, 95% CI 1.04-3.14, P = 0.03; allelic model OR = 1.77, 95% CI 1.05-2.98, P = 0.03). CONCLUSION TLR4 gene Asp299Gly polymorphism was associated with increased risk of microvascular complications in patients with T2DM, especially diabetic retinopathy (DR).
Collapse
Affiliation(s)
- Yuqi Zhang
- Department of Endocrinology, The First Hospital of Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000 Gansu People’s Republic of China
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000 Gansu People’s Republic of China
| | - Huanhuan Li
- Department of Endocrinology, The First Hospital of Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000 Gansu People’s Republic of China
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000 Gansu People’s Republic of China
| | - Chenyi Wang
- Department of Endocrinology, The First Hospital of Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000 Gansu People’s Republic of China
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000 Gansu People’s Republic of China
| | - Haihong Lv
- Department of Endocrinology, The First Hospital of Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000 Gansu People’s Republic of China
| | - Songbo Fu
- Department of Endocrinology, The First Hospital of Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000 Gansu People’s Republic of China
| |
Collapse
|
5
|
Su E, Yu P, Zhang B, Zhang A, Xie S, Zhang C, Li S, Zou Y, Liu M, Jiang H, Ge J. Endothelial Intracellular ANG (Angiogenin) Protects Against Atherosclerosis by Decreasing Endoplasmic Reticulum Stress. Arterioscler Thromb Vasc Biol 2022; 42:305-325. [PMID: 35045729 DOI: 10.1161/atvbaha.121.317339] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND ANG (angiogenin) is essential for cellular adaptation to endoplasmic reticulum (ER) stress, a process closely associated with cardiovascular diseases, including atherosclerosis. We aimed to investigate the role of ANG in the progression of atherosclerosis and elucidate its underlying molecular mechanisms. METHODS We constructed adenoassociated virus 9 ANG overexpression vectors and endothelial ANG- and ApoE (apolipoprotein E)-deficient mice to determine the effects of ANG on ER stress and atherosclerotic lesions. RNA sequencing of endothelial ANG- and ApoE-deficient mice identified ANG-dependent downregulation of ST3GAL5 (ST3 beta-galactoside alpha-2,3-sialyltransferase 5) expression, and the direct regulation of ST3GAL5 by ANG was verified by chromatin immunoprecipitation sequencing and luciferase reporter assay results. RESULTS Reanalysis of expression profiling datasets indicated decreased ANG levels in patients' atherosclerotic lesions, and these data were validated in aortas from ApoE-/- mice. ER stress marker and adhesion molecule levels, aortic root lesions and macrophage deposition were substantially reduced in ApoE-/- mice injected with an adenoassociated virus 9 ANG without signal peptide (ANG-ΔSP) overexpression vector compared with empty and full-length ANG overexpression vectors. Endothelial ANG deficiency significantly elevated ER stress and increased adhesion molecule expression, which aggravated atherosclerotic lesions and enhanced THP-1 monocyte adhesion to endothelial cells in vivo and in vitro, respectively. Furthermore, ANG-ΔSP overexpression significantly attenuated oxidized low-density lipoprotein-induced ER stress and THP-1 monocyte adhesion to endothelial cells, which were reversed by ST3GAL5 inhibition. CONCLUSIONS These results suggest that endothelial intracellular ANG is a novel therapeutic against atherosclerosis and exerts atheroprotective effects via ST3GAL5-mediated ER stress suppression.
Collapse
Affiliation(s)
- Enyong Su
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases (E.S., B.Z., S.X., C.Z., S.L., Y.Z., H.J., J.G.), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peng Yu
- Department of Endocrinology and Metabolism (P.Y.), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Baoli Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases (E.S., B.Z., S.X., C.Z., S.L., Y.Z., H.J., J.G.), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Anjing Zhang
- Department of Neurorehabilitation Medicine, Kongjiang Branch, the First Rehabilitation Hospital of Shanghai, China (A.Z.)
| | - Shiyao Xie
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases (E.S., B.Z., S.X., C.Z., S.L., Y.Z., H.J., J.G.), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunyu Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases (E.S., B.Z., S.X., C.Z., S.L., Y.Z., H.J., J.G.), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Su Li
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases (E.S., B.Z., S.X., C.Z., S.L., Y.Z., H.J., J.G.), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunzeng Zou
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases (E.S., B.Z., S.X., C.Z., S.L., Y.Z., H.J., J.G.), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ming Liu
- Department of Health Management Center (M.L.), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hong Jiang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases (E.S., B.Z., S.X., C.Z., S.L., Y.Z., H.J., J.G.), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases (E.S., B.Z., S.X., C.Z., S.L., Y.Z., H.J., J.G.), Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Talepoor AG, Rastegari B, Kalani M, Doroudchi M. Decrease in the inflammatory cytokines of LPS-stimulated PBMCs of patients with atherosclerosis by a TLR-4 antagonist in the co-culture with HUVECs. Int Immunopharmacol 2021; 101:108295. [PMID: 34735917 DOI: 10.1016/j.intimp.2021.108295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/22/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022]
Abstract
Toll-like receptors (TLRs) are among the players of inflammation during atherosclerosis. We assessed the effects of Eritoran, a TLR-4 antagonist, on lipopolysaccharide (LPS)-induced cytokines production by Peripheral Blood Mononuclear Cells (PBMCs) of patients with high-stenosis (HS) (n = 6) and healthy controls (HCs) (n = 6) co-cultured with Human Umbilical Vein Endothelial Cells (HUVECs). LPS stimulation significantly increased the levels of IL-6 (P = 0.007 and P = 0.005), TNF-α (P = 0.006 and P = 0.005), IL-2 (P = 0.007 and P = 0.002), IFN-γ (P = 0.006 and P = 0.003), IL-17A (P = 0.004 and P = 0.003), IL-17F (P = 0.005 and P = 0.003), IL-5 (P = 0.007 and P = 0.005), IL-13 (P = 0.006 and P = 0.005), IL-9 (P = 0.005 and P = 0.005) and IL-21 (P = 0.007 and P = 0.005) in HUVECs co-cultured with HC and HS PBMCs as compared with un-stimulated co-culture condition, respectively. Eritoran treatment (50 μg/mL and 100 μg/mL) significantly reduced the levels of LPS-induced IL-6 (P = 0.007 and P = 0.006; P = 0.007 and P = 0.007), TNF-α (P = 0.005 and P = 0.003; P = 0.007 and P = 0.005), IL-2 (P = 0.007 and P = 0.005; P = 0.005 and P = 0.004), IFN-γ (P = 0.007 and P = 0.005; P = 0.005 and P = 0.004), IL-17A (P = 0.005 and P = 0.002; P = 0.005 and P = 0.002), IL-17F (P = 0.006 and P = 0.006; P = 0.005 and P = 0.005), IL-5 (P = 0.007 and P = 0.006; P = 0.007 and P = 0.007), IL-9 (P = 0.005 and P = 0.005; P = 0.005 and P = 0.005) and IL-21 (P = 0.007 and P = 0.007; P = 0.005 and P = 0.005) in stimulated HUVECs co-cultured with HC and HS PBMCs, compared to un-treated condition, respectively. Our results demonstrate that attenuating effect of Eritoran on the inflammatory responses to LPS is higher in PBMCs of patients with high stenosis, suggesting its potential role in ameliorating inflammatory conditions in atherosclerosis.
Collapse
Affiliation(s)
- Atefe Ghamar Talepoor
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Banafsheh Rastegari
- Diagnostic Laboratory of Sciences and Technology Research Center, Paramedical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Kalani
- Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Iran
| | - Mehrnoosh Doroudchi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
7
|
Wu YJ, Wang L, Ji CF, Gu SF, Yin Q, Zuo J. The Role of α7nAChR-Mediated Cholinergic Anti-inflammatory Pathway in Immune Cells. Inflammation 2021; 44:821-834. [PMID: 33405021 DOI: 10.1007/s10753-020-01396-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/05/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022]
Abstract
Alpha 7 nicotinic acetylcholine receptor (α7nAChR) is widely distributed in the nervous and non-cholinergic immune systems. It is necessary for the cholinergic transmitter to participate in the regulation of inflammatory response and is the key element of cholinergic anti-inflammatory pathway (CAP). Because of the profound impact of CAP on the immune system, α7nAChR is considered as a potential therapeutic target for the treatment of inflammatory diseases. Available evidences confirmed that manipulation of CAP by activating α7nAChR with either endogenous acetylcholine (ACh) or cholinergic agonists can substantially alleviate inflammatory responses both in vivo and in vitro. However, the mechanism through which CAP curbs the excessive pro-inflammatory responses and maintains immune homeostasis is not fully understood. Obtained clues suggest that the crosstalk between CAP and classical inflammatory pathways is the key to elucidate the anti-inflammatory mechanism, and the impacts of CAP activation in α7nAChR-expressing immune cells are the foundation of the immunoregulatory property. In this article, we review and update the knowledge concerning the progresses of α7nAChR-based CAP, including α7nAChR properties, signal transductions, interactions with classic immune pathways, and immunoregulatory functions in different immune cells. Certain critical issues to be addressed are also highlighted. By providing a panoramic view of α7nAChR, the summarized evidences will pave the way for the development of novel anti-inflammatory reagents and strategy and inspire further researches.
Collapse
Affiliation(s)
- Yi-Jin Wu
- The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
- School of Pharmacy, Wannan Medical College, Wuhu, 241000, China
| | - Li Wang
- Department of Pharmacy, Wuhu Medicine and Health School, Wuhu, 241000, China
| | - Chao-Fan Ji
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, China
| | - Shao-Fei Gu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, China
| | - Qin Yin
- The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China.
- School of Pharmacy, Wannan Medical College, Wuhu, 241000, China.
| | - Jian Zuo
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, China.
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, 241000, China.
- Research Center of Integrated Traditional and Western Medicine, Wannan Medical College, 241000, Wuhu, China.
| |
Collapse
|
8
|
Kiouptsi K, Jäckel S, Wilms E, Pontarollo G, Winterstein J, Karwot C, Groß K, Jurk K, Reinhardt C. The Commensal Microbiota Enhances ADP-Triggered Integrin α IIbβ 3 Activation and von Willebrand Factor-Mediated Platelet Deposition to Type I Collagen. Int J Mol Sci 2020; 21:ijms21197171. [PMID: 32998468 PMCID: PMC7583822 DOI: 10.3390/ijms21197171] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022] Open
Abstract
The commensal microbiota is a recognized enhancer of arterial thrombus growth. While several studies have demonstrated the prothrombotic role of the gut microbiota, the molecular mechanisms promoting arterial thrombus growth are still under debate. Here, we demonstrate that germ-free (GF) mice, which from birth lack colonization with a gut microbiota, show diminished static deposition of washed platelets to type I collagen compared with their conventionally raised (CONV-R) counterparts. Flow cytometry experiments revealed that platelets from GF mice show diminished activation of the integrin αIIbβ3 (glycoprotein IIbIIIa) when activated by the platelet agonist adenosine diphosphate (ADP). Furthermore, washed platelets from Toll-like receptor-2 (Tlr2)-deficient mice likewise showed impaired static deposition to the subendothelial matrix component type I collagen compared with wild-type (WT) controls, a process that was unaffected by GPIbα-blockade but influenced by von Willebrand factor (VWF) plasma levels. Collectively, our results indicate that microbiota-triggered steady-state activation of innate immune pathways via TLR2 enhances platelet deposition to subendothelial matrix molecules. Our results link host colonization status with the ADP-triggered activation of integrin αIIbβ3, a pathway promoting platelet deposition to the growing thrombus.
Collapse
Affiliation(s)
- Klytaimnistra Kiouptsi
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg- University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (K.K.); (S.J.); (E.W.); (G.P.); (J.W.); (C.K.); (K.G.); (K.J.)
| | - Sven Jäckel
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg- University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (K.K.); (S.J.); (E.W.); (G.P.); (J.W.); (C.K.); (K.G.); (K.J.)
| | - Eivor Wilms
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg- University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (K.K.); (S.J.); (E.W.); (G.P.); (J.W.); (C.K.); (K.G.); (K.J.)
| | - Giulia Pontarollo
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg- University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (K.K.); (S.J.); (E.W.); (G.P.); (J.W.); (C.K.); (K.G.); (K.J.)
| | - Jana Winterstein
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg- University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (K.K.); (S.J.); (E.W.); (G.P.); (J.W.); (C.K.); (K.G.); (K.J.)
| | - Cornelia Karwot
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg- University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (K.K.); (S.J.); (E.W.); (G.P.); (J.W.); (C.K.); (K.G.); (K.J.)
| | - Kathrin Groß
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg- University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (K.K.); (S.J.); (E.W.); (G.P.); (J.W.); (C.K.); (K.G.); (K.J.)
| | - Kerstin Jurk
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg- University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (K.K.); (S.J.); (E.W.); (G.P.); (J.W.); (C.K.); (K.G.); (K.J.)
- German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, 55131 Mainz, Germany
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg- University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (K.K.); (S.J.); (E.W.); (G.P.); (J.W.); (C.K.); (K.G.); (K.J.)
- German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, 55131 Mainz, Germany
- Correspondence:
| |
Collapse
|
9
|
Romerio A, Peri F. Increasing the Chemical Variety of Small-Molecule-Based TLR4 Modulators: An Overview. Front Immunol 2020; 11:1210. [PMID: 32765484 PMCID: PMC7381287 DOI: 10.3389/fimmu.2020.01210] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/15/2020] [Indexed: 12/17/2022] Open
Abstract
Toll-Like Receptor 4 (TLR4) is one of the receptors of innate immunity. It is activated by Pathogen- and Damage-Associated Molecular Patterns (PAMPs and DAMPs) and triggers pro-inflammatory responses that belong to the repertoire of innate immune responses, consequently protecting against infectious challenges and boosting adaptive immunity. Mild TLR4 stimulation by non-toxic molecules resembling its natural agonist (lipid A) provided efficient vaccine adjuvants. The non-toxic TLR4 agonist monophosphoryl lipid A (MPLA) has been approved for clinical use. This suggests the development of other TLR4 agonists as adjuvants or drugs for cancer immunotherapy. TLR4 excessive activation by a Gram-negative bacteria lipopolysaccharide (LPS) leads to sepsis, while TLR4 stimulation by DAMPs is a common mechanism in several inflammatory and autoimmune diseases. TLR4 inhibition by small molecules and antibodies could therefore provide access to innovative therapeutics targeting sepsis as well as acute and chronic inflammations. The potential use of TLR4 antagonists as anti-inflammatory drugs with unique selectivity and a new mechanism of action compared to corticosteroids or other non-steroid anti-inflammatory drugs fueled the search for compounds of natural or synthetic origin able to block or inhibit TLR4 activation and signaling. The wide spectrum of clinical settings to which TLR4 inhibitors can be applied include autoimmune diseases (rheumatoid arthritis, inflammatory bowel diseases), vascular inflammation, neuroinflammations, and neurodegenerative diseases. The last advances (from 2017) in TLR4 activation or inhibition by small molecules (molecular weight <2 kDa) are reviewed here. Studies on pre-clinical validation of new chemical entities (drug hits) on cellular or animal models as well as new clinical studies on previously developed TLR4 modulators are reported. Innovative TLR4 modulators discovered by computer-assisted drug design and an artificial intelligence approach are described. Some "old" TLR4 agonists or antagonists such as MPLA or Eritoran are under study for repositioning in different pharmacological contexts. The mechanism of action of the molecules and the level of TLR4 involvement in their biological activity are critically discussed.
Collapse
Affiliation(s)
- Alessio Romerio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Francesco Peri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
10
|
Li B, Xia Y, Hu B. Infection and atherosclerosis: TLR-dependent pathways. Cell Mol Life Sci 2020; 77:2751-2769. [PMID: 32002588 PMCID: PMC7223178 DOI: 10.1007/s00018-020-03453-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 12/15/2022]
Abstract
Atherosclerotic vascular disease (ASVD) is a chronic process, with a progressive course over many years, but it can cause acute clinical events, including acute coronary syndromes (ACS), myocardial infarction (MI) and stroke. In addition to a series of typical risk factors for atherosclerosis, like hyperlipidemia, hypertension, smoking and obesity, emerging evidence suggests that atherosclerosis is a chronic inflammatory disease, suggesting that chronic infection plays an important role in the development of atherosclerosis. Toll-like receptors (TLRs) are the most characteristic members of pattern recognition receptors (PRRs), which play an important role in innate immune mechanism. TLRs play different roles in different stages of infection of atherosclerosis-related pathogens such as Chlamydia pneumoniae (C. pneumoniae), periodontal pathogens including Porphyromonas gingivalis (P. gingivalis), Helicobacter pylori (H. pylori) and human immunodeficiency virus (HIV). Overall, activation of TLR2 and 4 seems to have a profound impact on infection-related atherosclerosis. This article reviews the role of TLRs in the process of atherosclerosis after C. pneumoniae and other infections and the current status of treatment, with a view to providing a new direction and potential therapeutic targets for the study of ASVD.
Collapse
Affiliation(s)
- Bowei Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuanpeng Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
11
|
Cui K, Ardell CL, Podolnikova NP, Yakubenko VP. Distinct Migratory Properties of M1, M2, and Resident Macrophages Are Regulated by α Dβ 2 and α Mβ 2 Integrin-Mediated Adhesion. Front Immunol 2018; 9:2650. [PMID: 30524429 PMCID: PMC6262406 DOI: 10.3389/fimmu.2018.02650] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/26/2018] [Indexed: 12/11/2022] Open
Abstract
Chronic inflammation is essential mechanism during the development of cardiovascular and metabolic diseases. The outcome of diseases depends on the balance between the migration/accumulation of pro-inflammatory (M1) and anti-inflammatory (M2) macrophages in damaged tissue. The mechanism of macrophage migration and subsequent accumulation is still not fully understood. Currently, the amoeboid adhesion-independent motility is considered essential for leukocyte migration in the three-dimensional environment. We challenge this hypothesis by studying the contribution of leukocyte adhesive receptors, integrins αMβ2, and αDβ2, to three-dimensional migration of M1-polarized, M2-polarized, and resident macrophages. Both integrins have a moderate expression on M2 macrophages, while αDβ2 is upregulated on M1 and αMβ2 demonstrates high expression on resident macrophages. The level of integrin expression determines its contribution to macrophage migration. Namely, intermediate expression supports macrophage migration, while a high integrin density inhibits it. Using in vitro three-dimensional migration and in vivo tracking of adoptively-transferred fluorescently-labeled macrophages during the resolution of inflammation, we found that strong adhesion of M1-activated macrophages translates to weak 3D migration, while moderate adhesion of M2-activated macrophages generates dynamic motility. Reduced migration of M1 macrophages depends on the high expression of αDβ2, since αD-deficiency decreased M1 macrophage adhesion and improved migration in fibrin matrix and peritoneal tissue. Similarly, the high expression of αMβ2 on resident macrophages prevents their amoeboid migration, which is markedly increased in αM-deficient macrophages. In contrast, αD- and αM-knockouts decrease the migration of M2 macrophages, demonstrating that moderate integrin expression supports cell motility. The results were confirmed in a diet-induced diabetes model. αD deficiency prevents the retention of inflammatory macrophages in adipose tissue and improves metabolic parameters, while αM deficiency does not affect macrophage accumulation. Summarizing, β2 integrin-mediated adhesion may inhibit amoeboid and mesenchymal macrophage migration or support mesenchymal migration in tissue, and, therefore, represents an important target to control inflammation.
Collapse
Affiliation(s)
- Kui Cui
- Department of Biomedical Sciences, Center of Excellence for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Christopher L Ardell
- Department of Biomedical Sciences, Center of Excellence for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Nataly P Podolnikova
- Center for Metabolic and Vascular Biology, School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Valentin P Yakubenko
- Department of Biomedical Sciences, Center of Excellence for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
12
|
Banerjee D, Sinha A, Saikia S, Gogoi B, Rathore AK, Das AS, Pal D, Buragohain AK, Dasgupta S. Inflammation-induced mTORC2-Akt-mTORC1 signaling promotes macrophage foam cell formation. Biochimie 2018; 151:139-149. [DOI: 10.1016/j.biochi.2018.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 06/04/2018] [Indexed: 01/10/2023]
|
13
|
Yakubenko VP, Cui K, Ardell CL, Brown KE, West XZ, Gao D, Stefl S, Salomon RG, Podrez EA, Byzova TV. Oxidative modifications of extracellular matrix promote the second wave of inflammation via β 2 integrins. Blood 2018; 132:78-88. [PMID: 29724896 PMCID: PMC6034644 DOI: 10.1182/blood-2017-10-810176] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 04/19/2018] [Indexed: 12/13/2022] Open
Abstract
Early stages of inflammation are characterized by extensive oxidative insult by recruited and activated neutrophils. Secretion of peroxidases, including the main enzyme, myeloperoxidase, leads to the generation of reactive oxygen species. We show that this oxidative insult leads to polyunsaturated fatty acid (eg, docosahexaenoate), oxidation, and accumulation of its product 2-(ω-carboxyethyl)pyrrole (CEP), which, in turn, is capable of protein modifications. In vivo CEP is generated predominantly at the inflammatory sites in macrophage-rich areas. During thioglycollate-induced inflammation, neutralization of CEP adducts dramatically reduced macrophage accumulation in the inflamed peritoneal cavity while exhibiting no effect on the early recruitment of neutrophils, suggesting a role in the second wave of inflammation. CEP modifications were abundantly deposited along the path of neutrophils migrating through the 3-dimensional fibrin matrix in vitro. Neutrophil-mediated CEP formation was markedly inhibited by the myeloperoxidase inhibitor, 4-ABH, and significantly reduced in myeloperoxidase-deficient mice. On macrophages, CEP adducts were recognized by cell adhesion receptors, integrin αMβ2 and αDβ2 Macrophage migration through CEP-fibrin gel was dramatically augmented when compared with fibrin alone, and was reduced by β2-integrin deficiency. Thus, neutrophil-mediated oxidation of abundant polyunsaturated fatty acids leads to the transformation of existing proteins into stronger adhesive ligands for αMβ2- and αDβ2-dependent macrophage migration. The presence of a carboxyl group rather than a pyrrole moiety on these adducts, resembling characteristics of bacterial and/or immobilized ligands, is critical for recognition by macrophages. Therefore, specific oxidation-dependent modification of extracellular matrix, aided by neutrophils, promotes subsequent αMβ2- and αDβ2-mediated migration/retention of macrophages during inflammation.
Collapse
Affiliation(s)
- Valentin P Yakubenko
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; and the
| | - Kui Cui
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN
| | - Christopher L Ardell
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN
| | - Kathleen E Brown
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; and the
| | - Xiaoxia Z West
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; and the
| | - Detao Gao
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; and the
| | - Samantha Stefl
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; and the
| | - Robert G Salomon
- Department of Chemistry, Case Western Reserve University, Cleveland, OH
| | - Eugene A Podrez
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; and the
| | - Tatiana V Byzova
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; and the
| |
Collapse
|
14
|
Hoover DB. Cholinergic modulation of the immune system presents new approaches for treating inflammation. Pharmacol Ther 2017; 179:1-16. [PMID: 28529069 DOI: 10.1016/j.pharmthera.2017.05.002] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The nervous system and immune system have broad and overlapping distributions in the body, and interactions of these ubiquitous systems are central to the field of neuroimmunology. Over the past two decades, there has been explosive growth in our understanding of neuroanatomical, cellular, and molecular mechanisms that mediate central modulation of immune functions through the autonomic nervous system. A major catalyst for growth in this field was the discovery that vagal nerve stimulation (VNS) caused a prominent attenuation of the systemic inflammatory response evoked by endotoxin in experimental animals. This effect was mediated by acetylcholine (ACh) stimulation of nicotinic receptors on splenic macrophages. Hence, the circuit was dubbed the "cholinergic anti-inflammatory pathway". Subsequent work identified the α7 nicotinic ACh receptor (α7nAChR) as the crucial target for attenuation of pro-inflammatory cytokine release from macrophages and dendritic cells. Further investigation made the important discovery that cholinergic T cells within the spleen and not cholinergic nerve cells were the source of ACh that stimulated α7 receptors on splenic macrophages. Given the important role that inflammation plays in numerous disease processes, cholinergic anti-inflammatory mechanisms are under intensive investigation from a basic science perspective and in translational studies of animal models of diseases such as inflammatory bowel disease and rheumatoid arthritis. This basic work has already fostered several clinical trials examining the efficacy of VNS and cholinergic therapeutics in human inflammatory diseases. This review provides an overview of basic and translational aspects of the cholinergic anti-inflammatory response and relevant pharmacology of drugs acting at the α7nAChR.
Collapse
Affiliation(s)
- Donald B Hoover
- Department of Biomedical Sciences and Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.
| |
Collapse
|
15
|
Aziz MH, Cui K, Das M, Brown KE, Ardell CL, Febbraio M, Pluskota E, Han J, Wu H, Ballantyne CM, Smith JD, Cathcart MK, Yakubenko VP. The Upregulation of Integrin α Dβ 2 (CD11d/CD18) on Inflammatory Macrophages Promotes Macrophage Retention in Vascular Lesions and Development of Atherosclerosis. THE JOURNAL OF IMMUNOLOGY 2017; 198:4855-4867. [PMID: 28500072 DOI: 10.4049/jimmunol.1602175] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 04/17/2017] [Indexed: 01/24/2023]
Abstract
Macrophage accumulation is a critical step during development of chronic inflammation, initiating progression of many devastating diseases. Leukocyte-specific integrin αDβ2 (CD11d/CD18) is dramatically upregulated on macrophages at inflammatory sites. Previously we found that CD11d overexpression on cell surfaces inhibits in vitro cell migration due to excessive adhesion. In this study, we have investigated how inflammation-mediated CD11d upregulation contributes to macrophage retention at inflammatory sites during atherogenesis. Atherosclerosis was evaluated in CD11d-/-/ApoE-/- mice after 16 wk on a Western diet. CD11d deficiency led to a marked reduction in lipid deposition in aortas and isolated macrophages. Macrophage numbers in aortic sinuses of CD11d-/- mice were reduced without affecting their apoptosis and proliferation. Adoptive transfer of fluorescently labeled wild-type and CD11d-/- monocytes into ApoE-/- mice demonstrated similar recruitment from circulation, but reduced accumulation of CD11d-/- macrophages within the aortas. Furthermore, CD11d expression was significantly upregulated on macrophages in atherosclerotic lesions and M1 macrophages in vitro. Interestingly, expression of the related ligand-sharing integrin CD11b was not altered. This difference defines their distinct roles in the regulation of macrophage migration. CD11d-deficient M1 macrophages demonstrated improved migration in a three-dimensional fibrin matrix and during resolution of peritoneal inflammation, whereas migration of CD11b-/- M1 macrophages was not affected. These results prove the contribution of high densities of CD11d to macrophage arrest during atherogenesis. Because high expression of CD11d was detected in several inflammation-dependent diseases, we suggest that CD11d/CD18 upregulation on proinflammatory macrophages may represent a common mechanism for macrophage retention at inflammatory sites, thereby promoting chronic inflammation and disease development.
Collapse
Affiliation(s)
- Moammir H Aziz
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37604
| | - Kui Cui
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37604
| | - Mitali Das
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Kathleen E Brown
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Christopher L Ardell
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37604
| | - Maria Febbraio
- Division of Foundational Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Elzbieta Pluskota
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Juying Han
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; and
| | - Huaizhu Wu
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | | | - Jonathan D Smith
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; and
| | - Martha K Cathcart
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; and
| | - Valentin P Yakubenko
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37604; .,Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| |
Collapse
|
16
|
Abstract
In this chapter, we discuss the manner through which the immune system regulates the cardiovascular system in health and disease. We define the cardiovascular system and elements of atherosclerotic disease, the main focus in this chapter. Herein we elaborate on the disease process that can result in myocardial infarction (heart attack), ischaemic stroke and peripheral arterial disease. We have discussed broadly the homeostatic mechanisms in place that help autoregulate the cardiovascular system including the vital role of cholesterol and lipid clearance as well as the role lipid homeostasis plays in cardiovascular disease in the context of atherosclerosis. We then elaborate on the role played by the immune system in this setting, namely, major players from the innate and adaptive immune system, as well as discussing in greater detail specifically the role played by monocytes and macrophages.This chapter should represent an overview of the role played by the immune system in cardiovascular homeostasis; however further reading of the references cited can expand the reader's knowledge of the detail, and we point readers to many excellent reviews which summarise individual immune systems and their role in cardiovascular disease.
Collapse
Affiliation(s)
- Mohammed Shamim Rahman
- Division of Immunology and Inflammation, Department of Medicine, Imperial College London, London, UK
| | - Kevin Woollard
- Division of Immunology and Inflammation, Department of Medicine, Imperial College London, London, UK.
| |
Collapse
|
17
|
Lauriano ER, Pergolizzi S, Capillo G, Kuciel M, Alesci A, Faggio C. Immunohistochemical characterization of Toll-like receptor 2 in gut epithelial cells and macrophages of goldfish Carassius auratus fed with a high-cholesterol diet. FISH & SHELLFISH IMMUNOLOGY 2016; 59:250-255. [PMID: 27818343 DOI: 10.1016/j.fsi.2016.11.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/28/2016] [Accepted: 11/02/2016] [Indexed: 06/06/2023]
Abstract
Toll-like receptors (TLRs) are a group of pattern recognition molecules that play a crucial role in innate immunity. The structural conservation of the archaic TLR system suggests that the regulation of the immune response might be similar in fish and mammals. Several TLRs (TLR-1, -2, and -4) are expressed by activated macrophages, "foam cells" in human atherosclerotic lesions. To date, 20 different TLRs were identified in more than a dozen different fish species. In this study we found that feeding goldfish, Carrassius auratus, a high-cholesterol diet (HCD) resulted macrophage foam cell formation in the intestinal tissues. The expression of TLR2 has been found in foam cells and in the cytoplasm of enterocytes, however the staining was more intense at the apical surface of polarized intestinal epithelial cells and in the lamina propria. In the intestinal epithelial cells and in the lamina propria cells of the control fish the TLR2 was expressed at low levels. The intestinal epithelium is directly involved in the mucosal immune response through its expression of proinflammatory genes, release of inflammatory cytokines, and recruitment of inflammatory cells.
Collapse
Affiliation(s)
- E R Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - S Pergolizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - G Capillo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - M Kuciel
- Department of Comparative Anatomy, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - A Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - C Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| |
Collapse
|
18
|
Gu L, Zhou J, Tan J, Yang J, Shen T, Jiang H, Tang Q. Association of TLR8 gene rs3764880 polymorphisms with susceptibility and lipid metabolism- and inflammation response-related quantitative traits of ischemic stroke in southern Chinese Han male population. J Neurol Sci 2016; 370:94-99. [DOI: 10.1016/j.jns.2016.08.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 07/21/2016] [Accepted: 08/09/2016] [Indexed: 10/21/2022]
|
19
|
Buraczynska M, Zukowski P, Ksiazek K, Wacinski P, Dragan M. The effect of Toll-like receptor 4 gene polymorphism on vascular complications in type 2 diabetes patients. Diabetes Res Clin Pract 2016; 116:7-13. [PMID: 27321310 DOI: 10.1016/j.diabres.2016.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 03/23/2016] [Accepted: 04/14/2016] [Indexed: 12/24/2022]
Abstract
OBJECTIVE The aim of our study was to assess the association between the TLR4 Asp299Gly polymorphism and vascular complications in patients with type 2 diabetes. METHODS We examined 1090 patients with T2DM and 716 healthy controls. All subjects were genotyped for the Asp299Gly polymorphism by polymerase chain reaction (PCR) and restriction analysis. RESULTS The genotype frequencies of the Asp299Gly polymorphism were similar in T2DM patients and controls (p=0.512 and 0.311, respectively). The polymorphism was analyzed in subgroups of patients with macro- and microvascular complications. The distribution of genotypes was significantly different between patients with CVD and those without CVD. A significant increase of G allele frequency was observed in CVD+ patients, with odds ratio 2.06 (1.27-3.34), p=0.0035. The same effect was found when patients with diabetic retinopathy were compared with those without it (OR for G allele 2.12, 95% CI 1.43-3.12, p=0.0002). There were no statistically significant differences in genotype distribution between patients with diabetic nephropathy or neuropathy and those without these complications. CONCLUSIONS The results of our study demonstrated that the G allele of the Asp299Gly polymorphism of the TLR4 gene is associated with increased risk of cardiovascular disease and diabetic retinopathy in type 2 diabetes patients.
Collapse
Affiliation(s)
| | - Pawel Zukowski
- Department of Nephrology, Medical University of Lublin, Lublin, Poland
| | - Katarzyna Ksiazek
- Department of Nephrology, Medical University of Lublin, Lublin, Poland
| | - Piotr Wacinski
- Department of Cardiology, Medical University of Lublin, Lublin, Poland
| | - Michal Dragan
- Department of Nephrology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
20
|
Zewinger S, Schumann T, Fliser D, Speer T. Innate immunity in CKD-associated vascular diseases. Nephrol Dial Transplant 2015; 31:1813-1821. [DOI: 10.1093/ndt/gfv358] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 09/09/2015] [Indexed: 12/11/2022] Open
|
21
|
Fibrinogen-like protein 2 gene silencing inhibits cardiomyocytes apoptosis, improves heart function of streptozotocin-induced diabetes rats and the molecular mechanism involved. Biosci Rep 2015; 35:BSR20150078. [PMID: 26182381 PMCID: PMC4613684 DOI: 10.1042/bsr20150078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/06/2015] [Indexed: 12/13/2022] Open
Abstract
We assumed that Fibrinogen-like protein 2 (Fgl2) plays an important role during the process of diabetic cardiomyopathy (DCM). In the present study, we test that the feasibility of Fgl2 as a therapeutic target for the treatment of DCM and its possible molecular mechanism involved. Fibrinogen-like protein 2 (Fgl2) is involved in apoptosis, angiogenesis and inflammatory response. Diabetes is closely associated with apoptosis, angiogenesis and coagulation. So it allowed us to assume that Fgl2 plays an important role during the process of diabetic cardiomyopathy (DCM). In the present study, we test that the feasibility of Fgl2 as a therapeutic target for the treatment of DCM and its possible molecular mechanism involved. We found that Fgl2 gene silencing inhibits apoptosis and improves heart function of streptozotocin (STZ)-induced diabetes rats, the possible mechanism maybe that Fgl2 gene silencing reduces the tumour necrosis factor (TNF)±levels, decreases the expression of B-cell lymphoma-2 (bcl2), bcl-2-associated X (bax), toll-like receptors 4 (TLR4) and p38 mitogen-activated protein kinase (MAPK). In conclusion, Fgl2 is a potent target to treat DCM.
Collapse
|
22
|
Affiliation(s)
- Catherine C Hedrick
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA.
| |
Collapse
|
23
|
Manček-Keber M, Jerala R. Postulates for validating TLR4 agonists. Eur J Immunol 2015; 45:356-70. [DOI: 10.1002/eji.201444462] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 10/20/2014] [Accepted: 12/01/2014] [Indexed: 02/03/2023]
Affiliation(s)
- Mateja Manček-Keber
- Department of Biotechnology; National Institute of Chemistry; Ljubljana Slovenia
- EN-FIST Centre of Excellence; Ljubljana Slovenia
| | - Roman Jerala
- Department of Biotechnology; National Institute of Chemistry; Ljubljana Slovenia
- EN-FIST Centre of Excellence; Ljubljana Slovenia
| |
Collapse
|
24
|
Karasneh J, Bani-Hani M, Alkhateeb A, Hassan A, Alzoubi F, Thornhill M. TLR2, TLR4 and CD86 gene polymorphisms in recurrent aphthous stomatitis. J Oral Pathol Med 2014; 44:857-63. [PMID: 25482673 DOI: 10.1111/jop.12298] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2014] [Indexed: 01/01/2023]
Abstract
BACKGROUND Recurrent aphthous stomatitis (RAS) is an inflammatory disease induced by genetic and environmental factors. Toll-like receptor (TLR) and CD86 are essential components for innate immunity and cellular immune response. We aimed to determine whether inheritance of specific TLR2, TLR4and CD86 gene polymorphisms are associated with RAS. METHODS Ninety-six patients with RAS and 153 controls were studied. Eight SNPs were genotyped using PCR-RFLP technique; four in TLR2 gene: rs4696480, rs3804100, rs121917864, rs5743708; three in TLR4 gene: rs10759931, rs4986790 rs1927911; and one in CD86 gene rs17281995. Association was assessed by logistic regression analysis. Linkage disequilibrium (LD) was assessed using the Haploview program. RESULTS Significant increase in inheritance of A allele (OR = 1.6, P = 0.01) and AA genotype (OR = 3.89, P = 0.01) of TLR4 rs10759931 was observed in cases. TLR4rs1927911 C allele and CC genotype were also increased (OR = 1.60 and 2.78 respectively); however, this was not statistically significant (P = 0.02 and 0.03 respectively). TLR2 and CD86 did not show association with RAS. CONCLUSIONS This is the first study to investigate the association of TLR and CD86 with RAS. We found a significant association between TLR4 rs10759931 polymorphism and RAS. Confirmatory studies in other populations and functional investigations are needed to determine the role of TLR4 in RAS.
Collapse
Affiliation(s)
- Jumana Karasneh
- Department of Oral Medicine and Oral Surgery, Jordan University of Science and Technology (JUST), Irbid, Jordan
| | | | - Asem Alkhateeb
- Department of Biotechnology and Genetics, JUST, Irbid, Jordan
| | - Ahmad Hassan
- Department of Oral Medicine and Oral Diagnosis, College of Dentistry, Al Mustansiriya University, Baghdad, Iraq
| | - Firas Alzoubi
- Division of Otolaryngology, Department of Special Surgery, Faculty of Medicine, King Abdullah University Hospital, Jordan University of Science and Technology, Irbid, Jordan
| | - Martin Thornhill
- Unit of Oral and Maxillofacial Medicine and Surgery, School of Clinical Dentistry, The University of Sheffield, Sheffield, UK
| |
Collapse
|
25
|
Sun Z, Xu L. Computational fluid dynamics in coronary artery disease. Comput Med Imaging Graph 2014; 38:651-63. [PMID: 25262321 DOI: 10.1016/j.compmedimag.2014.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 08/22/2014] [Accepted: 09/03/2014] [Indexed: 01/01/2023]
Abstract
Computational fluid dynamics (CFD) is a widely used method in mechanical engineering to solve complex problems by analysing fluid flow, heat transfer, and associated phenomena by using computer simulations. In recent years, CFD has been increasingly used in biomedical research of coronary artery disease because of its high performance hardware and software. CFD techniques have been applied to study cardiovascular haemodynamics through simulation tools to predict the behaviour of circulatory blood flow in the human body. CFD simulation based on 3D luminal reconstructions can be used to analyse the local flow fields and flow profiling due to changes of coronary artery geometry, thus, identifying risk factors for development and progression of coronary artery disease. This review aims to provide an overview of the CFD applications in coronary artery disease, including biomechanics of atherosclerotic plaques, plaque progression and rupture; regional haemodynamics relative to plaque location and composition. A critical appraisal is given to a more recently developed application, fractional flow reserve based on CFD computation with regard to its diagnostic accuracy in the detection of haemodynamically significant coronary artery disease.
Collapse
Affiliation(s)
- Zhonghua Sun
- Discipline of Medical Imaging, Department of Imaging and Applied Physics, Curtin University, Perth, Western Australia 6845, Australia.
| | - Lei Xu
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
26
|
Effects of Wenxiao Decoction on the expression of interleukin-6, intercellular adhesion molecular-1 and monocyte chemoattractant protein-1 in experimental atherosclerotic rabbits. Chin J Integr Med 2013; 20:445-9. [PMID: 24242131 DOI: 10.1007/s11655-013-1531-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To observe the effects of different doses of Wenxiao Decoction on the expression of interleukin-6 (IL-6), intercellular adhesion molecule-1 (ICAM-1), and monocyte chemoattractant protein-1 (MCP-1) in experimental atherosclerotic rabbits and to explore the mechanism by which it alleviates atherosclerosis. METHODS Sixty New Zealand rabbits were randomly divided into six groups: a blank group, a model group, a Simvastatin group, and high-, medium-, and low-dosage Wenxiao Decoction groups. Except for those in the blank group, all rabbits were fed with a high-cholesterol diet. Carotid atherosclerosis was established by balloon-induced carotid artery endothelium injury in conjunction with the high-cholesterol diet. After 8 weeks, all animals were euthanized to evaluate levels of IL-6 and ICAM-1 expressions (by enzyme linked immunosorbent assay) and of MCP-1 (by immunohistochemistry staining). RESULTS The expressions of IL-6, ICAM-1, and MCP-1 were significantly increased in all groups except the blank group (P<0.05). However, the rabbits in the Wenxiao Decoction groups and the Simvastatin group showed significantly lower levels of IL-6, ICAM-1, and MCP-1 expression than those in the model group (P<0.05). The expressions of IL-6, ICAM-1, and MCP-1 in the highdosage Wenxiao Decoction group and the Simvastatin group were lower than those in the low-dosage Wenxiao Decoction group (P<0.05). The expression of MCP-1 in medium-dosage Wenxiao Decoction group was lower than that in the low-dosage group (P<0.05). CONCLUSIONS High, medium, and low doses of Wenxiao Decoction can inhibit the expressions of IL-6, ICAM-1, and MCP-1, which may prevent and stabilize atherosclerotic plaques. There may be a direct relationship between dosage and therapeutic efficacy of Wenxiao Decoction.
Collapse
|
27
|
Polymorphism -2604G>A variants in TLR4 promoter are associated with different gene expression level in peripheral blood of atherosclerotic patients. J Hum Genet 2013; 58:812-4. [PMID: 24108365 DOI: 10.1038/jhg.2013.98] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 07/15/2013] [Accepted: 08/31/2013] [Indexed: 11/08/2022]
Abstract
Toll-like receptor-4 (TLR4) is a primary receptor of the innate immune reaction and compelling evidence demonstrates its involvement in the pathogenesis of atherosclerosis and stroke. TLR4 is constitutively expressed on monocytes and endothelial cells; it is highly expressed in atherosclerotic plaques and in peripheral blood of patients after ischemic stroke. Polymorphisms in the promoter region that alter the transcriptional regulation of this gene may represent genetic risk factors involved in the predisposition to atherosclerotic disease. In this study we investigated the effect on TLR4 gene expression of three polymorphisms in the upstream regulatory region at positions -1607T>C/rs10759932, -2026A>G/rs1927914 and -2604G>A/rs10759931 in peripheral blood of atherosclerotic patients. RNA from individuals homozygous for the -2604A allele showed a lower expression of the gene when compared to patients carrying the counterparts GG+GA. Electrophoretic mobility shift assays showed differences in the electrophoretic mobility of the DNA-nuclear protein complexes formed by the G>A variants, suggesting that the two alleles differ in their binding affinity to transcriptional factors.
Collapse
|
28
|
Abstract
Toll-like receptors (TLRs) serve to initiate inflammatory signalling in response to the detection of conserved microbial molecules or products of host tissue damage. Recent evidence suggests that TLR-signalling plays a considerable role in a number of inflammatory diseases, including atherosclerosis and arthritis. Agents which modulate TLR-signalling are, therefore, receiving interest in terms of their potential to modify inflammatory disease processes. One such family of molecules, the oxidised phospholipids (OxPLs), which are formed as a result of inflammatory events and accumulate at sites of chronic inflammation, have been shown to modulate TLR-signalling in both in vitro and in vivo systems. As the interaction between OxPLs and TLRs may play a significant role in chronic inflammatory disease processes, consideration is given in this review to the potential role of OxPLs in the regulation of TLR-signalling.
Collapse
Affiliation(s)
- Clett Erridge
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | | |
Collapse
|
29
|
Rosenfeld ME. Inflammation and atherosclerosis: direct versus indirect mechanisms. Curr Opin Pharmacol 2013; 13:154-60. [PMID: 23357128 DOI: 10.1016/j.coph.2013.01.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/05/2013] [Accepted: 01/07/2013] [Indexed: 12/15/2022]
Abstract
It is now widely accepted that the development of atherosclerotic lesions involves a chronic inflammatory response that includes both innate and adaptive immune mechanisms. However, it is still unclear precisely what induces the inflammatory response. Furthermore, inflammation within the blood vessel can be divided into direct mechanisms where the primary inflammatory events occur within the intima of the blood vessel and contribute to both the initiation and progression of the plaques and indirect mechanisms where inflammation at nonvascular sites can contribute to the progression of the lesions. The direct mechanisms include lipid deposition and modification, influx of lipoprotein associated factors and microparticles derived from many different cell types, and possibly bacterial and viral infection of vascular cells. Indirect mechanisms derive from inflammation related to autoimmune diseases, smoking, respiratory infection, and pollution exposure, and possibly periodontal disease and gastric infection. The mechanisms include secretion of cytokines and other inflammatory factors into the circulation with subsequent uptake into the plaques, egress and recruitment of activated inflammatory cells, formation of dysfunctional HDL and crossreactive autoantibodies.
Collapse
|
30
|
Fuster V, Sanz J. Vascular inflammation. ACTA ACUST UNITED AC 2012; 1:68-81. [PMID: 20409834 DOI: 10.1016/j.jash.2006.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 11/10/2006] [Accepted: 11/10/2006] [Indexed: 11/28/2022]
Abstract
Inflammation of the vessel wall is involved in all stages of the course of atherothrombotic disease, from the development of early lesions to the occurrence of clinical events. Significant advances in recent years have largely improved our understanding of this phenomenon and of its influence not only on atherogenesis, but also on other intimately related disorders such as arterial hypertension or the metabolic syndrome. Emerging imaging technologies as well as measurement of serum concentrations of specific biomarkers offer the possibility to detect and, to some extent, quantify the degree of chronic vascular inflammation in vivo. In addition, many standard and novel antiatherosclerotic therapies may exert beneficial effects through anti-inflammatory actions. As a result, detection and treatment of vascular inflammation are certain to become increasingly important in the management with patients of cardiovascular disease.
Collapse
Affiliation(s)
- Valentin Fuster
- The Zena and Michael A. Wiener Cardiovascular Institute/Marie-Josee and Henry R. Kravis Center for Cardiovascular Health, Mount Sinai School of Medicine, New York, New York, USA
| | | |
Collapse
|
31
|
Huo QP, Liu HY, Wang YX. Effects of Wenxiao II decoction on the expression of MCP-1 and VCAM-1 in atherosclerotic rabbits. J TRADIT CHIN MED 2012; 32:267-72. [PMID: 22876455 DOI: 10.1016/s0254-6272(13)60023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To observe the effects of different doses of wenxiao II decoction on the expression of monocyte chemoattractant protein-1 (MCP-1) and vascular cell adhesion molecule-1 (VCAM-1) in an experimental model of atherosclerosis in rabbits and to explore the mechanism by which it alleviates atherosclerosis. METHODS Sixty 3-4 month-old New Zealand rabbits of both sexes were randomly divided into six groups: simvastain; model; blank; and high-dose, mid-dose, and low-dose wenxiao II decoction groups. Except for those in the blank group, all rabbits were fed a high-cholesterol diet. Carotid atherosclerosis was established by balloon-induced injury to the endothelium of the carotid artery in conjunction with consumption of a high-cholesterol diet. After 8 weeks, all rabbits were killed to evaluate the expression of MCP-1 and VCAM-1 by immunohistochemical staining. RESULTS Expressions of MCP-1 and VCAM-1 were significantly decreased in all groups except the blank group compared with the model group (P < 0.05). When compared with the simvastain group only variation of MCP-1 expression in low-dose group was not appreciable, and the differences were indistinct (P < 0.05). When comparing among wenxiao II decoction groups, MCP-1 expression in the mid- and high-dose groups was significantly lower than that seen in the low-dose group (P< 0.01), but there were no differences among three dosage groups with respect to VCAM-1 expression (P > 0.05). CONCLUSION These data suggested that high, mid, and low doses of Wenxiao II Decoction can inhibit the expression of MCP-1 and VCAM-1, which may prevent the formation of or stabilize atherosclerotic plaques. There may be a direct relationship between the dosage of wenxiao II decoction and its therapeutic efficacy.
Collapse
Affiliation(s)
- Qing-ping Huo
- Department of Traditional Chinese Medicine, Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200233, China.
| | | | | |
Collapse
|
32
|
Laguna JC, Alegret M. Regulation of gene expression in atherosclerosis: insights from microarray studies in monocytes/macrophages. Pharmacogenomics 2012; 13:477-95. [PMID: 22380002 DOI: 10.2217/pgs.12.9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Atherosclerosis is a pathological phenomenon in which the walls of large arteries thicken and lose elasticity as a result of the growth of atheromatous lesions. It is a complex, multifactorial disease that involves several cell types and various pathobiological processes. Its genetic basis has not yet been deciphered, but it is related to complex multigene patterns influenced by environmental interactions. In this review, we focus specifically on the application of microarrays to atherosclerosis research using monocytes and monocyte-derived macrophages, as these are key cells in all phases of atherosclerosis, from the formation of foam cells to the destabilization and rupture of the atherosclerotic plaque. These studies have provided relevant information on genes involved in atherosclerosis development, contributing to our understanding of the molecular mechanisms that underlie this complex disease.
Collapse
Affiliation(s)
- Juan C Laguna
- Pharmacology Department, Faculty of Pharmacy & Institute of Biomedicine (IBUB), University of Barcelona, Spain
| | | |
Collapse
|
33
|
New insights into mechanisms of therapeutic effects of antimalarial agents in SLE. Nat Rev Rheumatol 2012; 8:522-33. [DOI: 10.1038/nrrheum.2012.106] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
34
|
Yuan Y, Li P, Ye J. Lipid homeostasis and the formation of macrophage-derived foam cells in atherosclerosis. Protein Cell 2012; 3:173-81. [PMID: 22447659 DOI: 10.1007/s13238-012-2025-6] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Accepted: 02/04/2012] [Indexed: 01/18/2023] Open
Abstract
Atherosclerosis is a chronic, inflammatory disorder characterized by the deposition of excess lipids in the arterial intima. The formation of macrophage-derived foam cells in a plaque is a hallmark of the development of atherosclerosis. Lipid homeostasis, especially cholesterol homeostasis, plays a crucial role during the formation of foam cells. Recently, lipid droplet-associated proteins, including PAT and CIDE family proteins, have been shown to control the development of atherosclerosis by regulating the formation, growth, stabilization and functions of lipid droplets in macrophage-derived foam cells. This review focuses on the potential mechanisms of formation of macrophage-derived foam cells in atherosclerosis with particular emphasis on the role of lipid homeostasis and lipid droplet-associated proteins. Understanding the process of foam cell formation will aid in the future discovery of novel therapeutic interventions for atherosclerosis.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | | | | |
Collapse
|
35
|
Analysis of oxidized and chlorinated lipids by mass spectrometry and relevance to signalling. Biochem Soc Trans 2012; 39:1233-9. [PMID: 21936795 DOI: 10.1042/bst0391233] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Oxidized and chlorinated phospholipids are generated under inflammatory conditions and are increasingly understood to play important roles in diseases involving oxidative stress. MS is a sensitive and informative technique for monitoring phospholipid oxidation that can provide structural information and simultaneously detect a wide variety of oxidation products, including chain-shortened and -chlorinated phospholipids. MSn technologies involve fragmentation of the compounds to yield diagnostic fragment ions and thus assist in identification. Advanced methods such as neutral loss and precursor ion scanning can facilitate the analysis of specific oxidation products in complex biological samples. This is essential for determining the contributions of different phospholipid oxidation products in disease. While many pro-inflammatory signalling effects of oxPLs (oxidized phospholipids) have been reported, it has more recently become clear that they can also have anti-inflammatory effects in conditions such as infection and endotoxaemia. In contrast with free radical-generated oxPLs, the signalling effects of chlorinated lipids are much less well understood, but they appear to demonstrate mainly pro-inflammatory effects. Specific analysis of oxidized and chlorinated lipids and the determination of their molecular effects are crucial to understanding their role in disease pathology.
Collapse
|
36
|
Greig FH, Kennedy S, Spickett CM. Physiological effects of oxidized phospholipids and their cellular signaling mechanisms in inflammation. Free Radic Biol Med 2012; 52:266-80. [PMID: 22080084 DOI: 10.1016/j.freeradbiomed.2011.10.481] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 10/25/2011] [Accepted: 10/25/2011] [Indexed: 12/31/2022]
Abstract
Oxidized phospholipids, such as the products of the oxidation of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine by nonenzymatic radical attack, are known to be formed in a number of inflammatory diseases. Interest in the bioactivity and signaling functions of these compounds has increased enormously, with many studies using cultured immortalized and primary cells, tissues, and animals to understand their roles in disease pathology. Initially, oxidized phospholipids were viewed largely as culprits, in line with observations that they have proinflammatory effects, enhancing inflammatory cytokine production, cell adhesion and migration, proliferation, apoptosis, and necrosis, especially in vascular endothelial cells, macrophages, and smooth muscle cells. However, evidence has emerged that these compounds also have protective effects in some situations and cell types; a notable example is their ability to interfere with signaling by certain Toll-like receptors (TLRs) induced by microbial products that normally leads to inflammation. They also have protective effects via the stimulation of small GTPases and induce up-regulation of antioxidant enzymes and cytoskeletal rearrangements that improve endothelial barrier function. Oxidized phospholipids interact with several cellular receptors, including scavenger receptors, platelet-activating factor receptors, peroxisome proliferator-activated receptors, and TLRs. The various and sometimes contradictory effects that have been observed for oxidized phospholipids depend on their concentration, their specific structure, and the cell type investigated. Nevertheless, the underlying molecular mechanisms by which oxidized phospholipids exert their effects in various pathologies are similar. Although our understanding of the actions and mechanisms of these mediators has advanced substantially, many questions do remain about their precise interactions with components of cell signaling pathways.
Collapse
Affiliation(s)
- Fiona H Greig
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | | |
Collapse
|
37
|
Intracellular inflammatory sensors for foreign invaders and substances of self-origin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 738:60-78. [PMID: 22399374 DOI: 10.1007/978-1-4614-1680-7_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In order to survive, all organisms must recognize and eliminate foreign invaders such as infectious pathogens, chemicals, ultraviolet rays, metabolites and damaged or transformed self-tissues, as well as allogenic organs in cases of transplantation. Recent research in innate immunity has elucidated that there are versatile inflammatory sensors on spatiotemporal 'sentry duty' that recognize substances derived from both 'nonself' and 'self', e.g., Toll-like receptors, retinoic acid-inducible gene-I-like receptors, nucleotide oligomerization domain-like receptors and c-type lectin receptors. Having acquired high-level functions through the development of multiple molecules, higher organisms have established both extracellular and intracellular sensors that can discriminate danger-associated molecular patterns from promiscuous, but biologically similar, molecular patterns. In addition, 'loss-of-function' or 'gain-of-function' mutations in these inflammatory sensors have been linked (at least in part) with the etiology and severity of autoimmune diseases, autoinflammatory diseases and immunocompromised diseases in humans. Further studies focusing on the role of these inflammatory sensors in the development of immune disorders would highlight new avenues for the development of novel diagnostic and therapeutic applications with regard to these diseases.
Collapse
|
38
|
Bertocchi C, Traunwieser M, Dörler J, Hasslacher J, Joannidis M, Dunzendorfer S. Atorvastatin inhibits functional expression of proatherogenic TLR2 in arterial endothelial cells. Cell Physiol Biochem 2011; 28:625-30. [PMID: 22178874 DOI: 10.1159/000335758] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2011] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND There is growing evidence that TLR2 plays a role in the pathogenesis of atherosclerosis. It is highly expressed in endothelial cells in areas of disturbed blood flow, like plaques or vessel bifurcations, but laminar blood flow suppresses endothelial TLR2 expression and is therefore thought to be atheroprotective. We sought for means to also protect lesion prone sites from TLR2 over-expression and subsequent endothelial activation. METHODS Human coronary artery endothelial cells (HCAEC) were treated with atorvastatin (ATV) and TLR2 surface expression was determined by FACS analyses. Western blot analyses were used to explore the phosphorylation status of SP1. RESULTS ATV profoundly inhibited basal and stimulated endothelial TLR2 expression in a time- and dose-dependent manner. It also inhibited HCAEC activation by MALP-2. TLR2 surface expression was inversely correlated to SP1 serine phosphorylation and was casein kinase 2 dependent. CONCLUSION We demonstrate that ATV can control over-expression of proinflammatory endothelial TLR2 protein and TLR2-mediated endothelial activation. The mechanism involves casein kinase 2 and SP1 phosphorylation. ATV effects on endothelial cell TLR2 are comparable to those of laminar blood flow and might therefore also be atheroprotective.
Collapse
Affiliation(s)
- Cristina Bertocchi
- Department of Internal Medicine, Medical University of Innsbruck, Anichstrasse 35, Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
39
|
Jin J, Samuvel DJ, Zhang X, Li Y, Lu Z, Lopes-Virella MF, Huang Y. Coactivation of TLR4 and TLR2/6 coordinates an additive augmentation on IL-6 gene transcription via p38MAPK pathway in U937 mononuclear cells. Mol Immunol 2011; 49:423-32. [PMID: 22030478 DOI: 10.1016/j.molimm.2011.08.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Revised: 08/05/2011] [Accepted: 08/17/2011] [Indexed: 11/17/2022]
Abstract
Studies have demonstrated that TLR4 and TLR2 expression by monocytes and the blood levels of TLR4 and TLR2 ligand in diabetic patients are significantly incased compared to nondiabetic patients, indicating that more monocytes in diabetic patients may have coactivation of TLR4 and TLR2. Although it has been shown that either TLR4 or TLR2 activation leads to increased expression of proinflammatory cytokines, the effect of coactivation of TLR2 and TLR4 in mononuclear cells on proinflammatory cytokine expression and the underlying molecular mechanisms remain largely unknown. In this study, we found that while TLR1, TLR2, TLR4 and TLR6 were expressed by U937 mononuclear cells, TLR4 was expressed at the highest level. Interestingly, results showed that while activation of either TLR4 or TLR2/6 (TLR2dimerized with TLR6), but not TLR2/1 (TLR2dimerized with TLR1), significantly increased IL-6 expression by U937 mononuclear cells, coactivation of TLR4 and TLR2/6, but not TLR4 and TLR2/1, led to a further augmentation on IL-6 expression by increasing IL-6 transcriptional activity, but not mRNA stability. To explore the signaling mechanisms involved in the augmentation, we found that p38MAPK and NFκB pathways, but not ERK and JNK pathways, were required for the augmentation of IL-6 expression by coactivation of TLR4 and TLR2/6. Furthermore, we found that coactivation of TLR4 and TLR2/6 increased p38 phosphorylation, but not NFkB activity, as compared to activation of TLR4or TLR2/6 alone. Taken together, this study showed that coactivation of TLR4 and TLR2/6 coordinates an additive augmentation of IL-6 gene transcription via p38MAPK pathway in U937 mononuclear cells.
Collapse
Affiliation(s)
- Junfei Jin
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, United States
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Chronic spirochetal infection can cause slowly progressive dementia, cortical atrophy and amyloid deposition in the atrophic form of general paresis. There is a significant association between Alzheimer disease (AD) and various types of spirochete (including the periodontal pathogen Treponemas and Borrelia burgdorferi), and other pathogens such as Chlamydophyla pneumoniae and herpes simplex virus type-1 (HSV-1). Exposure of mammalian neuronal and glial cells and organotypic cultures to spirochetes reproduces the biological and pathological hallmarks of AD. Senile-plaque-like beta amyloid (Aβ) deposits are also observed in mice following inhalation of C. pneumoniae in vivo, and Aβ accumulation and phosphorylation of tau is induced in neurons by HSV-1 in vitro and in vivo. Specific bacterial ligands, and bacterial and viral DNA and RNA all increase the expression of proinflammatory molecules, which activates the innate and adaptive immune systems. Evasion of pathogens from destruction by the host immune reactions leads to persistent infection, chronic inflammation, neuronal destruction and Aβ deposition. Aβ has been shown to be a pore-forming antimicrobial peptide, indicating that Aβ accumulation might be a response to infection. Global attention and action is needed to support this emerging field of research because dementia might be prevented by combined antibiotic, antiviral and anti-inflammatory therapy.
Collapse
|
41
|
Yang JM, Wang Y, Qi LH, Wang Y, Gao F, Ding SF, Ni M, Liu CX, Zhang C, Zhang Y. Combinatorial interference of toll-like receptor 2 and 4 synergistically stabilizes atherosclerotic plaque in apolipoprotein E-knockout mice. J Cell Mol Med 2011; 15:602-11. [PMID: 20132416 PMCID: PMC3922382 DOI: 10.1111/j.1582-4934.2010.01028.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
To test the hypothesis that combinatorial interference of toll-like receptor 2 (TLR2) and TLR4 is superior to isolated interference of TLR2 or TLR4 in stabilizing atherosclerotic plaques, lentiviruses carrying small interfering RNA of TLR2 or TLR4 were constructed and proved efficacious for knocking down mRNA and protein expression of TLR2 or TLR4 significantly in vitro. One hundred and fifty apolipoprotein E(-/-) mice fed a high-fat diet were divided into the control, mock, TLR2i, TLR4i and TLR2 + 4i subgroups and a constrictive collar was placed around carotid artery of these mice to induce plaque formation. TLR2i and TLR4i viral suspension was transfected into carotid plaques, respectively, in TLR2i and TLR4i subgroups, or in combination in TLR2 + 4i subgroup. Four weeks after lentivirus transfection, mRNA and protein expression of TLR2 or TLR4 was attenuated markedly in carotid plaques, leading to reduced local inflammatory cytokine expression and plaque content of lipid and macrophages, increased plaque content of collagen and lowered plaque vulnerability index. Factorial ANOVA analysis revealed that there was a synergistic effect between TLR4i and TLR2i in stabilizing plaques. In conclusion, combinatorial interference of TLR2 and TLR4 reduces local inflammation and stabilizes plaques more effectively than interference of TLR2 or TLR4 alone.
Collapse
Affiliation(s)
- Jian Min Yang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Gu JQ, Wang DF, Yan XG, Zhong WL, Zhang J, Fan B, Ikuyama S. A Toll-like receptor 9-mediated pathway stimulates perilipin 3 (TIP47) expression and induces lipid accumulation in macrophages. Am J Physiol Endocrinol Metab 2010; 299:E593-600. [PMID: 20628022 DOI: 10.1152/ajpendo.00159.2010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Excessive accumulation of lipids in macrophages results in formation of foam cells and is a hallmark of atherosclerosis. The PAT family of proteins has been implicated in this process, but details of their involvement in foam cell formation have not been fully elucidated. One of dominant members of the PAT proteins, perilipin 3 (TIP47), is likely to be involved in such a regulatory mechanism. In this study, we demonstrated that the Toll-like receptor 9 (TLR9)-mediated pathway stimulates perilipin 3 expression and accumulation of lipids, especially triglycerides, in macrophages. Oligodeoxynucleotide (ODN) 1826, a ligand of TLR9, significantly enhanced perilipin 3 expression in RAW264.7 cells, and chloroquine, a TLR9 inhibitor, almost completely inhibited ODN1826-induced perilipin 3 expression. The inhibitors of c-jun NH2-terminal kinase and PI 3-kinase suppressed the level of perilipin 3 mRNA induced by ODN1826. ODN1826 induced the expression of IL-1α and IFNβ, both of which increased perilipin 3 expression. Antibodies against these cytokines suppressed the ODN1826-induced perilipin 3 mRNA levels. These results suggest that the expression of perilipin 3 in macrophages is in part regulated through the TLR9-mediated mechanism. Furthermore, ODN1826 increased intracellular lipid accumulation in the presence of oxLDL, which was reduced by perilipin 3 siRNA. Perilipin 3 expression was not stimulated by oxLDL. Depletion of perilipin 3 by siRNA specifically reduced triglyceride content in the cells but not cholesterol content, indicating that perilipin 3 is involved mainly in triglyceride accumulation. In conclusion, the TLR9-mediated pathway facilitates foam cell formation in part through increased expression of perilipin 3.
Collapse
Affiliation(s)
- Jian-Qiu Gu
- Dept. of Endocrinology and Metabolism, The First Affiliated Hospital of China Medical University, No. 155, North Nanjing St., Heping District, Shenyang 110001, China.
| | | | | | | | | | | | | |
Collapse
|
43
|
Liu N, Liu JT, Ji YY, Lu PP. C-reactive protein triggers inflammatory responses partly via TLR4/IRF3/NF-κB signaling pathway in rat vascular smooth muscle cells. Life Sci 2010; 87:367-74. [PMID: 20670634 DOI: 10.1016/j.lfs.2010.07.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 06/20/2010] [Accepted: 07/20/2010] [Indexed: 01/18/2023]
Abstract
AIMS C-reactive protein (CRP) plays an important role in the inflammatory process of atherosclerosis. Toll-like receptor 4 (TLR4) participates in atherogenesis by mediating the inflammatory responses. The aim of this experiment was to investigate the pro-inflammatory effects and mechanisms of CRP in rat vascular smooth muscle cells (VSMCs), especially focusing on the effects of CRP on IL-6 and peroxisome proliferator-activated receptor γ (PPARγ), and TLR4-dependent signal pathway. MAIN METHODS rat VSMCs were cultured, and CRP was used as a stimulant for IL-6 and peroxisome proliferator-activated receptor γ (PPARγ). IL-6 level in the culture supernatant was measured by ELISA, and mRNA and protein expressions were assayed by quantitative real-time PCR and western blot, respectively. RNA interference was used to assess the roles of TLR4 and interferon regulatory factor 3 (IRF3) in the pro-inflammatory signal pathway of CRP. KEY FINDINGS CRP stimulated IL-6 secretion, and inhibited mRNA and protein expression of PPARγ in VSMCs in a concentration-dependent manner. Additionally, CRP induced TLR4 expression, promoted nuclear translocation of NF-κB (p65), and augmented IκBα phosphorylation in VSMCs. Taken together, CRP induces the inflammatory responses through increasing IL-6 generation and reducing PPARγ expression in VSMCs, which is mediated by TLR4/IRF3/NF-κB signal pathway. SIGNIFICANCE CRP is able to stimulate IL-6 production and to inhibit PPARγ expression in VSMCs via MyD88-independent TLR4 signaling pathway (TLR4/IRF3/NF-κB). These provide the novel evidence for the pro-inflammatory action of CRP involved in atherogenesis.
Collapse
Affiliation(s)
- Na Liu
- Department of Pharmacology, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China
| | | | | | | |
Collapse
|
44
|
Liu N, Liu J, Ji Y, Lu P, Wang C, Guo F. C-Reactive Protein Induces TNF-α Secretion by p38 MAPK–TLR4 Signal Pathway in Rat Vascular Smooth Muscle Cells. Inflammation 2010; 34:283-90. [DOI: 10.1007/s10753-010-9234-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
45
|
Winkelmann BR, von Holt K, Unverdorben M. Smoking and atherosclerotic cardiovascular disease: Part I: atherosclerotic disease process. Biomark Med 2010; 3:411-28. [PMID: 20477486 DOI: 10.2217/bmm.09.32] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The normal endothelium inhibits platelet and leukocyte adhesion to the vascular surface maintaining a balance of profibrinolytic and prothrombotic activity. Endothelial function is assessed largely as endothelium-dependent vasomotion, partly based on the assumption that impaired endothelium-dependent vasodilation reflects the alteration of important endothelial functions. Atherosclerotic risk factors, such as hypercholesterolemia, hypertension, diabetes and smoking, are associated with endothelial dysfunction. In the diseased endothelium, the balance between pro- and antithrombotic, pro- and anti-inflammatory, pro- and antiadhesive or pro- and antioxidant effects shifts towards a proinflammatory, prothrombotic, pro-oxidative and proadhesive phenotype of the endothelium. A common mechanism underlying endothelial dysfunction is related to the increased vascular production of reactive oxygen species. Recent studies suggest that inflammation per se, and C-reactive protein in particular, may contribute directly to endothelial dysfunction. The loss of endothelial integrity is a hallmark of atherosclerosis and the causal possible link between each individual risk factor, the development of atherosclerosis and the subsequent clinical events, such as myocardial infarction or stroke.
Collapse
|
46
|
Miller YI. Toll-like receptors and atherosclerosis: oxidized LDL as an endogenous Toll-like receptor ligand. Future Cardiol 2010; 1:785-92. [PMID: 19804052 DOI: 10.2217/14796678.1.6.785] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The oxidation hypothesis of atherosclerosis suggests that oxidative modification of low-density lipoprotein (LDL) is a prerequisite for LDL atherogenicity. Recent studies demonstrate that upon oxidative modification, LDL becomes enriched with pathogen-associated molecular patterns recognized by natural (inborn) antibodies and innate immune receptors. This review focuses on recent findings showing that Toll-like receptors (TLRs)--which sense microbial pathogens and initiate immediate inflammatory responses--are potentially involved in the pathogenesis of atherosclerosis. In addition to the data that bacterial agonists of TLR4 and TLR2 accelerate atherosclerosis, new evidence suggests that minimally oxidized LDL and specific oxidized phospholipids signal via TLRs to induce cytoskeletal changes and inflammatory cytokine secretion by macrophages and endothelial cells. Identifying the signaling mechanisms by which oxidized LDL induces chronic inflammation in atherosclerotic lesions may lead to novel therapeutic targets for the treatment of atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Yury I Miller
- Department of Medicine, University of California, San Diego, USA.
| |
Collapse
|
47
|
Katsargyris A, Theocharis SE, Tsiodras S, Giaginis K, Bastounis E, Klonaris C. Enhanced TLR4 endothelial cell immunohistochemical expression in symptomatic carotid atherosclerotic plaques. Expert Opin Ther Targets 2010; 14:1-10. [PMID: 20001205 DOI: 10.1517/14728220903401294] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND AND PURPOSE Toll-like receptor-4 (TLR4) has been linked to the pathogenesis of atherosclerosis. Carotid atheroma endothelial cells (ECs) express TLR4, nevertheless correlations with cerebrovascular symptomatology, epidemiological and clinical variables remain unresolved. METHODS Carotid atherosclerotic plaques were obtained by standard carotid endarterectomy from 157 patients with carotid artery disease (84 asymptomatic - Group A, 73 symptomatic - Group B). TLR4 expression was detected by immunohistochemistry and TLR4 positivity, overexpression and intensity of immunostaining in ECs were correlated with cerebrovascular symptomatology, epidemiological and clinical variables. RESULTS A significant association was found between TLR4 positivity in ECs and the occurrence of any cerebrovascular event (overall response (OR): 2.85, 95% CI 1.33 - 6.11, p = 0.009). TLR4 overexpression and staining intensity in ECs were both significantly enhanced in symptomatic patients (p < 0.0001 and p = 0.003, respectively). These associations were stronger for the occurrence of a major cerebrovascular accident (CVA) compared with a transient ischemic attack (TIA) or amaurosis fugax. TLR4 expression in ECs was less prominent in statin users (OR: 0.25, 95%CI 0.1 - 0.58, p = 0.001], while it was enhanced in restenotic plaques compared with primary atherosclerotic lesions (p = 0.012). CONCLUSIONS TLR4 expression in ECs of carotid atheroma was enhanced in symptomatic patients with most commonly 'unstable' - 'more prone to rupture' carotid plaques.
Collapse
Affiliation(s)
- Athanasios Katsargyris
- National and Kapodistrian University of Athens, School of Medicine, LAIKON Hospital, Vascular Division, 1st Department of Surgery, Goudi, GR11527, Athens, Greece
| | | | | | | | | | | |
Collapse
|
48
|
Mulvihill EE, Assini JM, Sutherland BG, DiMattia AS, Khami M, Koppes JB, Sawyez CG, Whitman SC, Huff MW. Naringenin decreases progression of atherosclerosis by improving dyslipidemia in high-fat-fed low-density lipoprotein receptor-null mice. Arterioscler Thromb Vasc Biol 2010; 30:742-8. [PMID: 20110573 DOI: 10.1161/atvbaha.109.201095] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Naringenin is a citrus flavonoid that potently inhibits the assembly and secretion of apolipoprotein B100-containing lipoproteins in cultured hepatocytes and improves the dyslipidemia and insulin resistance in a mouse model of the metabolic syndrome. In the present study, we used low-density lipoprotein receptor-null mice fed a high-fat diet (Western, TD96125) to test the hypothesis that naringenin prevents atherosclerosis. METHODS AND RESULTS Three groups (chow, Western, and Western plus naringenin) were fed ad libitum for 6 months. The Western diet increased fasting plasma triglyceride (TG) (5-fold) and cholesterol (8-fold) levels compared with chow, whereas the addition of naringenin significantly decreased both lipids by 50%. The Western-fed mice developed extensive atherosclerosis in the aortic sinus because plaque area was increased by 10-fold compared with chow-fed animals. Quantitation of fat-soluble dye (Sudan IV)-stained aortas, prepared en face, revealed that Western-fed mice also had a 10-fold increase in plaque deposits throughout the arch and in the abdominal sections of the aorta, compared with chow. Atherosclerosis in both areas was significantly decreased by more than 70% in naringenin-treated mice. Consistent with quantitation of aortic lesions, the Western-fed mice had a significant 6-fold increase in cholesterol and a 4-fold increase in TG deposition in the aorta compared with chow-fed mice. Both were reduced more than 50% by naringenin. The Western diet induced extensive hepatic steatosis, with a 10-fold increase in both TG and cholesteryl ester mass compared with chow. The addition of naringenin decreased both liver TG and cholesteryl ester mass by 80%. The hyperinsulinemia and obesity that developed in Western-fed mice was normalized by naringenin to levels observed in chow-fed mice. CONCLUSIONS These in vivo studies demonstrate that the citrus flavonoid naringenin ameliorates the dyslipidemia in Western-fed low-density lipoprotein receptor-null mice, leading to decreased atherosclerosis; and suggests a potential therapeutic strategy for the hyperlipidemia and increased risk of atherosclerosis associated with insulin resistance.
Collapse
Affiliation(s)
- Erin E Mulvihill
- Vascular Biology Group, Robarts Research Institute, The University of Western Ontario, 100 Perth Dr, London, ON, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Portugal LR, Fernandes LR, Alvarez-Leite JI. Host cholesterol and inflammation as common key regulators of toxoplasmosis and artherosclerosis development. Expert Rev Anti Infect Ther 2009; 7:807-19. [PMID: 19735223 DOI: 10.1586/eri.09.60] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Atherosclerosis and toxoplasmosis are two widely prevalent diseases worldwide. The relationship between these diseases is now being elucidated. Atherosclerosis is a disease with three main components: increased blood lipoprotein/cholesterol and their deposition in the arterial wall, an important Th1-mediated proinflammatory reaction and thrombogenic status. Toxoplasma gondii, in turn, is dependent on host cholesterol for optimal intracellular growth and replication. As a result, host cholesterol will be cleared from the blood, reducing plasma low-density lipoprotein, a crucial atherosclerosis risk factor. On the other hand, T. gondii infection elicits an important Th1 systemic inflammatory response in the host. Therefore, this additional proinflammatory stimulus may impose an enhanced pro-atherogenic environment in the host. As result, the association between these two diseases in one individual could change the course of atherosclerosis. In this review, we demonstrate that the host-parasite relationship is complex and that the outcome of each disease is dependent on the availability of intracellular cholesterol, as well as the intensity of the inflammatory reaction triggered by the parasite. We also discuss the possible clinical implications of these studies.
Collapse
|
50
|
Lee SH, Park DW, Park SC, Park YK, Hong SY, Kim JR, Lee CH, Baek SH. Calcium-independent phospholipase A2beta-Akt signaling is involved in lipopolysaccharide-induced NADPH oxidase 1 expression and foam cell formation. THE JOURNAL OF IMMUNOLOGY 2009; 183:7497-504. [PMID: 19917703 DOI: 10.4049/jimmunol.0900503] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Foam cell formation is the most important process in atherosclerosis, and low density lipoprotein oxidation by reactive oxygen species (ROS) is the key step in the conversion of macrophages to foam cells. This study reveals the control mechanism of the gene for NADPH oxidase 1 (Nox1), which produces ROS in the formation of foam cells by stimulating TLR4. Treatment of macrophages by the TLR4 agonist LPS stimulated ROS production and ROS-mediated macrophage to foam cell conversion. This LPS-induced ROS production and foam cell formation could be abrogated by pretreatment of macrophages with N-acetyl cysteine or apocynin. LPS increased Nox1 promoter activity, and resultant expression of mRNA and protein. Small interfering RNA mediated inhibition of Nox1 expression decreased LPS-induced ROS production and foam cell formation. LPS-mediated Nox1 expression and the responses occurred in a calcium-independent phospholipase A(2) (iPLA(2))-dependent manner. The iPLA(2)beta-specific inhibitor S-BEL or iPLA(2)beta small interfering RNA attenuated LPS-induced Nox1 expression, ROS production, and foam cell formation. In addition, activation of iPLA(2)beta by LPS caused Akt phosphorylation and was followed by increased Nox1 expression. These results suggest that the binding of LPS and TLR4 increases Nox1 expression through the iPLA(2)beta-Akt signaling pathway, and control ROS production and foam cell formation.
Collapse
Affiliation(s)
- Sun-Hye Lee
- Aging-associated Vascular Disease Research Center, Department of Biochemistry and Molecular Biology, College of Medicine, Yeungnam University, Daegu, South Korea
| | | | | | | | | | | | | | | |
Collapse
|