1
|
Mussap M, Puddu M, Fanos V. Metabolic Reprogramming of Immune Cells Following Vaccination: From Metabolites to Personalized Vaccinology. Curr Med Chem 2024; 31:1046-1068. [PMID: 37165503 DOI: 10.2174/0929867330666230509110108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 05/12/2023]
Abstract
Identifying metabolic signatures induced by the immune response to vaccines allows one to discriminate vaccinated from non-vaccinated subjects and decipher the molecular mechanisms associated with the host immune response. This review illustrates and discusses the results of metabolomics-based studies on the innate and adaptive immune response to vaccines, long-term functional reprogramming (immune memory), and adverse reactions. Glycolysis is not overexpressed by vaccines, suggesting that the immune cell response to vaccinations does not require rapid energy availability as necessary during an infection. Vaccines strongly impact lipids metabolism, including saturated or unsaturated fatty acids, inositol phosphate, and cholesterol. Cholesterol is strategic for synthesizing 25-hydroxycholesterol in activated macrophages and dendritic cells and stimulates the conversion of macrophages and T cells in M2 macrophage and Treg, respectively. In conclusion, the large-scale application of metabolomics enables the identification of candidate predictive biomarkers of vaccine efficacy/tolerability.
Collapse
Affiliation(s)
- Michele Mussap
- Department of Surgical Sciences, School of Medicine, University of Cagliari, Cittadella Universitaria S.S. 554, Monserrato 09042, Cagliari, Italy
| | - Melania Puddu
- Department of Surgical Sciences, School of Medicine, University of Cagliari, Cittadella Universitaria S.S. 554, Monserrato 09042, Cagliari, Italy
| | - Vassilios Fanos
- Department of Surgical Sciences, School of Medicine, University of Cagliari, Cittadella Universitaria S.S. 554, Monserrato 09042, Cagliari, Italy
| |
Collapse
|
2
|
The Impact of the Ca 2+-Independent Phospholipase A 2β (iPLA 2β) on Immune Cells. Biomolecules 2021; 11:biom11040577. [PMID: 33920898 PMCID: PMC8071342 DOI: 10.3390/biom11040577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 12/31/2022] Open
Abstract
The Ca2+-independent phospholipase A2β (iPLA2β) is a member of the PLA2 family that has been proposed to have roles in multiple biological processes including membrane remodeling, cell proliferation, bone formation, male fertility, cell death, and signaling. Such involvement has led to the identification of iPLA2β activation in several diseases such as cancer, cardiovascular abnormalities, glaucoma, periodontitis, neurological disorders, diabetes, and other metabolic disorders. More recently, there has been heightened interest in the role that iPLA2β plays in promoting inflammation. Recognizing the potential contribution of iPLA2β in the development of autoimmune diseases, we review this issue in the context of an iPLA2β link with macrophages and T-cells.
Collapse
|
3
|
Metabolic Effects of Selective Deletion of Group VIA Phospholipase A 2 from Macrophages or Pancreatic Islet Beta-Cells. Biomolecules 2020; 10:biom10101455. [PMID: 33080873 PMCID: PMC7602969 DOI: 10.3390/biom10101455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022] Open
Abstract
To examine the role of group VIA phospholipase A2 (iPLA2β) in specific cell lineages in insulin secretion and insulin action, we prepared mice with a selective iPLA2β deficiency in cells of myelomonocytic lineage, including macrophages (MØ-iPLA2β-KO), or in insulin-secreting β-cells (β-Cell-iPLA2β-KO), respectively. MØ-iPLA2β-KO mice exhibited normal glucose tolerance when fed standard chow and better glucose tolerance than floxed-iPLA2β control mice after consuming a high-fat diet (HFD). MØ-iPLA2β-KO mice exhibited normal glucose-stimulated insulin secretion (GSIS) in vivo and from isolated islets ex vivo compared to controls. Male MØ-iPLA2β-KO mice exhibited enhanced insulin responsivity vs. controls after a prolonged HFD. In contrast, β-cell-iPLA2β-KO mice exhibited impaired glucose tolerance when fed standard chow, and glucose tolerance deteriorated further when introduced to a HFD. β-Cell-iPLA2β-KO mice exhibited impaired GSIS in vivo and from isolated islets ex vivo vs. controls. β-Cell-iPLA2β-KO mice also exhibited an enhanced insulin responsivity compared to controls. These findings suggest that MØ iPLA2β participates in HFD-induced deterioration in glucose tolerance and that this mainly reflects an effect on insulin responsivity rather than on insulin secretion. In contrast, β-cell iPLA2β plays a role in GSIS and also appears to confer some protection against deterioration in β-cell functions induced by a HFD.
Collapse
|
4
|
Golubinskaya V, Puttonen H, Fyhr IM, Rydbeck H, Hellström A, Jacobsson B, Nilsson H, Mallard C, Sävman K. Expression of S100A Alarmins in Cord Blood Monocytes Is Highly Associated With Chorioamnionitis and Fetal Inflammation in Preterm Infants. Front Immunol 2020; 11:1194. [PMID: 32612607 PMCID: PMC7308505 DOI: 10.3389/fimmu.2020.01194] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 05/13/2020] [Indexed: 01/01/2023] Open
Abstract
Background: Preterm infants exposed to chorioamnionitis and with a fetal inflammatory response are at risk for neonatal morbidity and adverse outcome. Alarmins S100A8, S100A9, and S100A12 are expressed by myeloid cells and have been associated with inflammatory activation and monocyte modulation. Aim: To study S100A alarmin expression in cord blood monocytes from term healthy and preterm infants and relate results to clinical findings, inflammatory biomarkers and alarmin protein levels, as well as pathways identified by differentially regulated monocyte genes. Methods: Cord blood CD14+ monocytes were isolated from healthy term (n = 10) and preterm infants (<30 weeks gestational age, n = 33) by MACS technology. Monocyte RNA was sequenced and gene expression was analyzed by Principal Component Analysis and hierarchical clustering. Pathways were identified by Ingenuity Pathway Analysis. Inflammatory proteins were measured by Multiplex ELISA, and plasma S100A proteins by mass spectrometry. Histological chorioamnionitis (HCA) and fetal inflammatory response syndrome (FIRS) were diagnosed by placenta histological examination. Results: S100A8, S100A9, and S100A12 gene expression was significantly increased and with a wider range in preterm vs. term infants. High S100A8 and S100A9 gene expression (n = 17) within the preterm group was strongly associated with spontaneous onset of delivery, HCA, FIRS and elevated inflammatory proteins in cord blood, while low expression (n = 16) was associated with impaired fetal growth and physician-initiated delivery. S100A8 and S100A9 protein levels were significantly lower in preterm vs. term infants, but within the preterm group high S100A gene expression, spontaneous onset of labor, HCA and FIRS were associated with elevated protein levels. One thousand nine hundred genes were differentially expressed in preterm infants with high vs. low S100A alarmin expression. Analysis of 124 genes differentially expressed in S100A high as well as FIRS and HCA groups identified 18 common pathways and S100A alarmins represented major hubs in network analyses. Conclusion: High expression of S100A alarmins in cord blood monocytes identifies a distinct clinical risk group of preterm infants exposed to chorioamnionitis and with a fetal inflammatory response. Gene and pathway analyses suggest that high S100A alarmin expression also affects monocyte function. The connection with monocyte phenotype and inflammation-stimulated S100A expression in other cell types (e.g., neutrophils) warrants further investigation.
Collapse
Affiliation(s)
- Veronika Golubinskaya
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| | - Henri Puttonen
- Department of Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ing-Marie Fyhr
- Department of Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Halfdan Rydbeck
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| | - Ann Hellström
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Institute of Clinical Science, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Genetics and Bioinformatics, Domain of Health Data and Digitalization, Institute of Public Health, Oslo, Norway
| | - Holger Nilsson
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| | - Carina Mallard
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| | - Karin Sävman
- Department of Pediatrics, Institute of Clinical Sciences, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden.,Department of Neonatology, The Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
5
|
Kocarnik JM, Richard M, Graff M, Haessler J, Bien S, Carlson C, Carty CL, Reiner AP, Avery CL, Ballantyne CM, LaCroix AZ, Assimes TL, Barbalic M, Pankratz N, Tang W, Tao R, Chen D, Talavera GA, Daviglus ML, Chirinos-Medina DA, Pereira R, Nishimura K, Bůžková P, Best LG, Ambite JL, Cheng I, Crawford DC, Hindorff LA, Fornage M, Heiss G, North KE, Haiman CA, Peters U, Le Marchand L, Kooperberg C. Discovery, fine-mapping, and conditional analyses of genetic variants associated with C-reactive protein in multiethnic populations using the Metabochip in the Population Architecture using Genomics and Epidemiology (PAGE) study. Hum Mol Genet 2018; 27:2940-2953. [PMID: 29878111 PMCID: PMC6077792 DOI: 10.1093/hmg/ddy211] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/02/2018] [Accepted: 05/28/2018] [Indexed: 12/11/2022] Open
Abstract
C-reactive protein (CRP) is a circulating biomarker indicative of systemic inflammation. We aimed to evaluate genetic associations with CRP levels among non-European-ancestry populations through discovery, fine-mapping and conditional analyses. A total of 30 503 non-European-ancestry participants from 6 studies participating in the Population Architecture using Genomics and Epidemiology study had serum high-sensitivity CRP measurements and ∼200 000 single nucleotide polymorphisms (SNPs) genotyped on the Metabochip. We evaluated the association between each SNP and log-transformed CRP levels using multivariate linear regression, with additive genetic models adjusted for age, sex, the first four principal components of genetic ancestry, and study-specific factors. Differential linkage disequilibrium patterns between race/ethnicity groups were used to fine-map regions associated with CRP levels. Conditional analyses evaluated for multiple independent signals within genetic regions. One hundred and sixty-three unique variants in 12 loci in overall or race/ethnicity-stratified Metabochip-wide scans reached a Bonferroni-corrected P-value <2.5E-7. Three loci have no (HACL1, OLFML2B) or only limited (PLA2G6) previous associations with CRP levels. Six loci had different top hits in race/ethnicity-specific versus overall analyses. Fine-mapping refined the signal in six loci, particularly in HNF1A. Conditional analyses provided evidence for secondary signals in LEPR, IL1RN and HNF1A, and for multiple independent signals in CRP and APOE. We identified novel variants and loci associated with CRP levels, generalized known CRP associations to a multiethnic study population, refined association signals at several loci and found evidence for multiple independent signals at several well-known loci. This study demonstrates the benefit of conducting inclusive genetic association studies in large multiethnic populations.
Collapse
Affiliation(s)
- Jonathan M Kocarnik
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Institute of Translational Health Sciences, University of Washington, Seattle, WA, USA
| | - Melissa Richard
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - Misa Graff
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Jeffrey Haessler
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Stephanie Bien
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Chris Carlson
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Alexander P Reiner
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Christy L Avery
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Christie M Ballantyne
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Andrea Z LaCroix
- Department of Epidemiology, University of San Diego, San Diego, CA, USA
| | | | - Maja Barbalic
- Division of Epidemiology, Human Genetics & Environmental Sciences, The University of Texas, Houston, TX, USA
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Weihong Tang
- Division of Epidemiology & Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Ran Tao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dongquan Chen
- Division of Preventive Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gregory A Talavera
- Division of Health Promotion and Behavioral Science, San Diego State University, San Diego, CA, USA
| | - Martha L Daviglus
- Institute for Minority Health Research, University of Illinois College of Medicine, Chicago, IL, USA
| | - Diana A Chirinos-Medina
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rocio Pereira
- Division of Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Katie Nishimura
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Petra Bůžková
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Lyle G Best
- Missouri Breaks Industries Research, Inc., Eagle Butte, SD, USA
| | - José Luis Ambite
- Information Sciences Institute, University of Southern California, Marina del Rey, CA, USA
| | - Iona Cheng
- Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Dana C Crawford
- Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | | | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center, Houston, TX, USA
| | - Gerardo Heiss
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Kari E North
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ulrike Peters
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Charles Kooperberg
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
6
|
O'Donnell VB, Rossjohn J, Wakelam MJ. Phospholipid signaling in innate immune cells. J Clin Invest 2018; 128:2670-2679. [PMID: 29683435 DOI: 10.1172/jci97944] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Phospholipids comprise a large body of lipids that define cells and organelles by forming membrane structures. Importantly, their complex metabolism represents a highly controlled cellular signaling network that is essential for mounting an effective innate immune response. Phospholipids in innate cells are subject to dynamic regulation by enzymes, whose activities are highly responsive to activation status. Along with their metabolic products, they regulate multiple aspects of innate immune cell biology, including shape change, aggregation, blood clotting, and degranulation. Phospholipid hydrolysis provides substrates for cell-cell communication, enables regulation of hemostasis, immunity, thrombosis, and vascular inflammation, and is centrally important in cardiovascular disease and associated comorbidities. Phospholipids themselves are also recognized by innate-like T cells, which are considered essential for recognition of infection or cancer, as well as self-antigens. This Review describes the major phospholipid metabolic pathways present in innate immune cells and summarizes the formation and metabolism of phospholipids as well as their emerging roles in cell biology and disease.
Collapse
Affiliation(s)
- Valerie B O'Donnell
- Systems Immunity Research Institute and Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Jamie Rossjohn
- Systems Immunity Research Institute and Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom.,Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, and.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | | |
Collapse
|
7
|
Macrophages and Phospholipases at the Intersection between Inflammation and the Pathogenesis of HIV-1 Infection. Int J Mol Sci 2017; 18:ijms18071390. [PMID: 28661459 PMCID: PMC5535883 DOI: 10.3390/ijms18071390] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/22/2017] [Accepted: 06/26/2017] [Indexed: 12/12/2022] Open
Abstract
Persistent low grade immune activation and chronic inflammation are nowadays considered main driving forces of the progressive immunologic failure in effective antiretroviral therapy treated HIV-1 infected individuals. Among the factors contributing to this phenomenon, microbial translocation has emerged as a key driver of persistent immune activation. Indeed, the rapid depletion of gastrointestinal CD4+ T lymphocytes occurring during the early phases of infection leads to a deterioration of the gut epithelium followed by the translocation of microbial products into the systemic circulation and the subsequent activation of innate immunity. In this context, monocytes/macrophages are increasingly recognized as an important source of inflammation, linked to HIV-1 disease progression and to non-AIDS complications, such as cardiovascular disease and neurocognitive decline, which are currently main challenges in treated patients. Lipid signaling plays a central role in modulating monocyte/macrophage activation, immune functions and inflammatory responses. Phospholipase-mediated phospholipid hydrolysis leads to the production of lipid mediators or second messengers that affect signal transduction, thus regulating a variety of physiologic and pathophysiologic processes. In this review, we discuss the contribution of phospholipases to monocyte/macrophage activation in the context of HIV-1 infection, focusing on their involvement in virus-associated chronic inflammation and co-morbidities.
Collapse
|
8
|
Tremblay BL, Rudkowska I, Couture P, Lemieux S, Julien P, Vohl MC. Modulation of C-reactive protein and plasma omega-6 fatty acid levels by phospholipase A2 gene polymorphisms following a 6-week supplementation with fish oil. Prostaglandins Leukot Essent Fatty Acids 2015; 102-103:37-45. [PMID: 26525102 DOI: 10.1016/j.plefa.2015.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 02/08/2023]
Abstract
This clinical trial investigated the impact of a six-week supplementation with fish oil and single nucleotide polymorphisms (SNPs) in PLA2G4A and PLA2G6 genes on total omega-6 fatty acid (n-6 FA) levels in plasma phospholipids (PL) and plasma C-reactive protein (CRP) levels in 191 subjects. Interaction effects between SNPs and supplementation modulated total n-6 FAs and CRP levels in both men and women. Associations between SNPs and total n-6 FA levels and between SNPs and CRP levels were identified in men, independently of supplementation. Supplementation decreased total n-6 FAs without affecting plasma CRP levels. Changes in CRP levels correlated positively with changes in total n-6 FAs in men (r=0.25 p=0.01), but not in women. In conclusion, total n-6 FA levels in plasma PL and plasma CRP levels are modulated by SNPs within PLA2G4A and PLA2G6 genes alone or in combination with fish oil supplementation.
Collapse
Affiliation(s)
- B L Tremblay
- Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Hochelaga Blvd, Quebec, Qc, Canada G1V 0A6
| | - I Rudkowska
- Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Hochelaga Blvd, Quebec, Qc, Canada G1V 0A6; CHU de Québec Research Center - Endocrinology and Nephrology, 2705 Laurier Blvd, Quebec, Qc, Canada G1V 4G2
| | - P Couture
- Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Hochelaga Blvd, Quebec, Qc, Canada G1V 0A6
| | - S Lemieux
- Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Hochelaga Blvd, Quebec, Qc, Canada G1V 0A6
| | - P Julien
- CHU de Québec Research Center - Endocrinology and Nephrology, 2705 Laurier Blvd, Quebec, Qc, Canada G1V 4G2
| | - M C Vohl
- Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Hochelaga Blvd, Quebec, Qc, Canada G1V 0A6; CHU de Québec Research Center - Endocrinology and Nephrology, 2705 Laurier Blvd, Quebec, Qc, Canada G1V 4G2.
| |
Collapse
|
9
|
Abstract
BACKGROUND The role of calcium-independent phospholipase A2 (iPLA2), a component of the three major PLA2 families, in acute/chronic inflammatory processes remains elusive. Previous investigations have documented iPLA2-mediated respiratory burst of neutrophils (PMNs); however, the causative isoform of iPLA2 is unidentified. We also demonstrated that the iPLA2γ-specific inhibitor attenuates trauma/hemorrhagic shock-induced lung injury. Therefore, iPLA2γ may be implicated in acute inflammation. In addition, arachidonic acid (AA), which is primarily produced by cytosolic PLA2 (cPLA2), is known to display PMN cytotoxicity, although the relationship between AA and the cytotoxic function is still being debated on. We therefore hypothesized that iPLA2γ regulates PMN cytotoxicity via AA-independent signaling pathways. The study aim was to distinguish the role of intracellular phospholipases A2, iPLA2, and cPLA2, in human PMN cytotoxicity and explore the possibility of the presence of signaling molecule(s) other than AA. METHODS Isolated human PMNs were incubated with the PLA2 inhibitor selective for iPLA2β, iPLA2γ, or cPLA2 and then activated with formyl-methionyl-leucyl-phenylalanine (fMLP) or phorbol 12-myristate 13-acetate (PMA). Superoxide production was assayed according to the superoxide dismutase-inhibitable cytochrome c reduction method, and the degree of elastase release was measured using a p-nitroanilide-conjugated elastase-specific substrate. In addition, chemotaxis toward platelet activating factor/fMLP was determined with a modified Boyden chamber system. RESULTS The iPLA2γ-specific inhibitor reduced the fMLP/PMA-stimulated superoxide generation by 90% and 30%, respectively; in addition, the inhibitor completely blocked the fMLP/PMA-activated elastase release. However, the cPLA2-specific inhibitor did not abrogate these effects to any degree at all concentrations. Likewise, the inhibitor for iPLA2γ, but not iPLA2β or cPLA2, completely inhibited the platelet activating factor/fMLP-induced chemotaxis. CONCLUSION iPLA2 is involved in extracellular reactive oxygen species production, elastase release, and chemotaxis in response to well-defined stimuli. In addition, the ineffectiveness of the cPLA2 inhibitor suggests that AA may not be relevant to these cytotoxic functions.
Collapse
|
10
|
Eagle GL, Zhuang J, Jenkins RE, Till KJ, Jithesh PV, Lin K, Johnson GG, Oates M, Park K, Kitteringham NR, Pettitt AR. Total proteome analysis identifies migration defects as a major pathogenetic factor in immunoglobulin heavy chain variable region (IGHV)-unmutated chronic lymphocytic leukemia. Mol Cell Proteomics 2015; 14:933-45. [PMID: 25645933 PMCID: PMC4390271 DOI: 10.1074/mcp.m114.044479] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Indexed: 01/07/2023] Open
Abstract
The mutational status of the immunoglobulin heavy chain variable region defines two clinically distinct forms of chronic lymphocytic leukemia (CLL) known as mutated (M-CLL) and unmutated (UM-CLL). To elucidate the molecular mechanisms underlying the adverse clinical outcome associated with UM-CLL, total proteomes from nine UM-CLL and nine M-CLL samples were analyzed by isobaric tags for relative and absolute quantification (iTRAQ)-based mass spectrometry. Based on the expression of 3521 identified proteins, principal component analysis separated CLL samples into two groups corresponding to immunoglobulin heavy chain variable region mutational status. Computational analysis showed that 43 cell migration/adhesion pathways were significantly enriched by 39 differentially expressed proteins, 35 of which were expressed at significantly lower levels in UM-CLL samples. Furthermore, UM-CLL cells underexpressed proteins associated with cytoskeletal remodeling and overexpressed proteins associated with transcriptional and translational activity. Taken together, our findings indicate that UM-CLL cells are less migratory and more adhesive than M-CLL cells, resulting in their retention in lymph nodes, where they are exposed to proliferative stimuli. In keeping with this hypothesis, analysis of an extended cohort of 120 CLL patients revealed a strong and specific association between UM-CLL and lymphadenopathy. Our study illustrates the potential of total proteome analysis to elucidate pathogenetic mechanisms in cancer.
Collapse
Affiliation(s)
- Gina L Eagle
- From the ‡Department of Molecular and Clinical Cancer Medicine
| | - Jianguo Zhuang
- From the ‡Department of Molecular and Clinical Cancer Medicine,
| | - Rosalind E Jenkins
- §MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool L69 3GA, UK
| | - Kathleen J Till
- From the ‡Department of Molecular and Clinical Cancer Medicine
| | | | - Ke Lin
- ¶Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool L7 8XP, UK
| | - Gillian G Johnson
- ¶Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool L7 8XP, UK
| | - Melanie Oates
- From the ‡Department of Molecular and Clinical Cancer Medicine
| | - Kevin Park
- §MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool L69 3GA, UK
| | - Neil R Kitteringham
- §MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool L69 3GA, UK
| | - Andrew R Pettitt
- From the ‡Department of Molecular and Clinical Cancer Medicine, ¶Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool L7 8XP, UK
| |
Collapse
|
11
|
Pniewska E, Sokolowska M, Kupryś-Lipińska I, Kacprzak D, Kuna P, Pawliczak R. Exacerbating factors induce different gene expression profiles in peripheral blood mononuclear cells from asthmatics, patients with chronic obstructive pulmonary disease and healthy subjects. Int Arch Allergy Immunol 2015; 165:229-43. [PMID: 25634111 DOI: 10.1159/000370067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 11/21/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Despite several common phenotypic features, chronic obstructive pulmonary disease (COPD) and severe asthma differ with regard to their causative factors and pathophysiology. Both diseases may be exacerbated by environmental factors, however, the molecular profiles of disease episodes have not been comprehensively studied. We identified differences in gene and protein expression profiles expressed by peripheral blood mononuclear cells (PBMC) of COPD patients, patients with atopic asthma and healthy subjects when challenged with exacerbating factors in vitro: lipopolysaccharide (LPS), house dust mite (HDM) and cat allergen. METHODS PBMC isolated from patients with severe atopic asthma and COPD, as well as healthy subjects were stimulated with rDer p 1 DG, rFel d 1 DG and LPS. The changes in the expression of 47 genes belonging to five groups (phospholipase A2, eicosanoids, transcription factors, cytokines and airway remodeling) were studied using TaqMan low density array cards. Immunoblotting was used to study relative protein expression. RESULTS rDer p 1 significantly up-regulated the expression of PLA2G4A, PLA2G6, PLA2G15, CYSLTR1, LB4R2, PTGS1, PTGS2, FOXP1, GATA3, HDAC2, IREB2, PPARG, STAT4, TSLP and CHI3L1 genes in asthmatics in comparison to healthy subjects. LPS induced significant expression of ANXA1 and LTA4H in asthmatics when compared to COPD patients and healthy subjects. SOX6,STAT4 and IL1RL1 were induced in COPD after LPS stimulation. Analysis of protein expression revealed a pattern similar to mRNA expression. CONCLUSIONS LPS-induced exacerbation of asthma and COPD is characterized by differential expression of selected genes in PBMC. HDM allergen changed the expression profile of inflammatory genes between patients with asthma of atopic origin and healthy controls.
Collapse
Affiliation(s)
- Ewa Pniewska
- Division of Allergology, Immunology and Dermatology, Department of Immunopathology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, Lodz, Poland
| | | | | | | | | | | |
Collapse
|
12
|
Campwala H, Sexton DW, Crossman DC, Fountain SJ. P2Y₆ receptor inhibition perturbs CCL2-evoked signalling in human monocytic and peripheral blood mononuclear cells. J Cell Sci 2014; 127:4964-73. [PMID: 25271060 PMCID: PMC4231309 DOI: 10.1242/jcs.159012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The chemokine CCL2 serves to target circulating monocytes and other leukocytes to tissue during innate immune responses, and modulates the progression of chronic inflammatory disease through activation of the receptor CCR2. Here, we show that co-activation of the P2Y₆ purinergic receptor (encoded by P2RY₆) occurs when THP-1 cells and human peripheral blood mononuclear cells sense CCL2 through CCR2. Furthermore, P2Y₆ receptor activation accounts for ∼80% of the intracellular Ca²⁺ signal evoked by CCL2. Scavenging extracellular nucleotides with apyrase caused a fourfold reduction in THP-1 sensitivity to CCL2, whereas inhibition of CD39-like ectonucleotidases potentiated CCL2-evoked Ca²⁺ responses. Pharmacological inhibition of P2Y₆ impaired CCL2-evoked Ca²⁺ signalling and chemotaxis in peripheral blood mononuclear cells and THP-1 cells. Furthermore, stable P2Y₆ receptor knockdown (of twofold) in THP-1 cells impaired CCL2-evoked Ca²⁺ signalling, chemotaxis and adhesion to TNFα-treated HUVECs. We demonstrate that THP-1 cells rapidly secrete ATP during signalling downstream of the CCL2-CCR2 axis and suggest this might act as a mechanism for P2Y₆ receptor co-activation following CCL2 activation of the CCR2 receptor. The discovery that P2Y₆ receptor mediates leukocyte responsiveness to CCL2 represents a new mechanism by which to modulate CCL2 signals.
Collapse
Affiliation(s)
- Hinnah Campwala
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Darren W Sexton
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - David C Crossman
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Samuel J Fountain
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
13
|
Vadali S, Post SR. Lipid rafts couple class A scavenger receptors to phospholipase A2 activation during macrophage adhesion. J Leukoc Biol 2014; 96:873-81. [PMID: 25070949 DOI: 10.1189/jlb.2a0414-214r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
SR-A mediated macrophage adhesion to modified ECM proteins in a process that involves physical attachment of SR-A to modified ECM and activation of Lyn-PI3K and PLA2-12/15-lipoxygenase signaling pathways. Structurally, SR-A-mediated cell adhesion requires a 6-aa membrane-proximal cytoplasmic motif. However, the mechanism that couples SR-A-mediated adhesion to activation of these distinct signaling pathways is not known. For other adhesion receptors, including integrins, localization in cholesterol-rich LRs is an important mechanism for coupling the receptor with the activation of specific signaling pathways. We hypothesized that SR-A-mediated macrophage adhesion might also involve LRs. Our results demonstrate that SR-A is enriched in LRs in HEK cells that heterologously express SR-A and in macrophages that endogenously expressed the receptor. We further show that a truncated SR-A construct (SR-A(Δ1-49)), which mediates cell adhesion but not ligand internalization, is also enriched in LRs, suggesting an association between LRs and SR-A-dependent cell adhesion. To examine this association more directly, we used the cholesterol chelator MβCD to deplete cholesterol and disrupt LR function. We found that cholesterol depletion significantly decreased SR-A-mediated macrophage adhesion. We further show that decreased SR-A-dependent macrophage adhesion following cholesterol depletion results from the inhibition of PLA2 but not PI3K activation. Overall, our results demonstrate an important role for LRs in selectively coupling SR-A with PLA2 activation during macrophage adhesion.
Collapse
Affiliation(s)
| | - Steven R Post
- Departments of Pharmacology and Toxicology and Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
14
|
Nishiura H, Yamanegi K, Kawabe M, Kato-Kogoe N, Yamada N, Nakasho K. Annexin A3 plays a role in cytoplasmic calcium oscillation by extracellular calcium in the human promyelocytic leukemia HL-60 cells differentiated by phorbol-12-myristate-13-acetate. Exp Mol Pathol 2014; 97:241-6. [PMID: 25036403 DOI: 10.1016/j.yexmp.2014.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 07/15/2014] [Indexed: 10/25/2022]
Abstract
The roles of annexin A3 (ANXA3) in macrophages are not fully understood. In contrast to C5a, we have demonstrated that C-terminal ribosomal protein S19 (RP S19)-tagged S-tagged C5a (S-tagged C5a/RP S19) raises an alternative cytoplasmic calcium oscillation by extracellular calcium during macrophage migration into apoptotic cells. We here differentiated human promyelocytic leukemia HL-60 cells bearing with either control sense RNA and shRNA for ANXA3 mRNA or a vector cDNA with or without ANXA3 cDNA into macrophage-like cells by phorbol-12-myristate-13-acetate and found that a fluorescence ratio (340 nm/380 nm) upon the S-tagged C5a/RP S19-induced alternative cytoplasmic calcium oscillation by extracellular calcium was an equilateral association with a dose of ANXA3. Moreover, the ANXA3-dependent modification was partially reflected upon the S-tagged C5a-induced classical cytoplasmic calcium oscillation by both intracellular calcium and extracellular calcium. ANXA3 seems to extend the C5aR-mediated cytoplasmic calcium oscillation by extracellular calcium at least in the HL-60 macrophage-like cells.
Collapse
Affiliation(s)
- Hiroshi Nishiura
- Division of Functional Pathology, Department of Pathology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan.
| | - Koji Yamanegi
- Division of Functional Pathology, Department of Pathology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Mutsuki Kawabe
- Department of Dentistry and Oral Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Nahoko Kato-Kogoe
- Division of Functional Pathology, Department of Pathology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Naoko Yamada
- Division of Functional Pathology, Department of Pathology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Keiji Nakasho
- Division of Functional Pathology, Department of Pathology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| |
Collapse
|
15
|
Loughrey BV, McGinty A, Young IS, McCance DR, Powell LA. Increased circulating CC chemokine levels in the metabolic syndrome are reduced by low-dose atorvastatin treatment: evidence from a randomized controlled trial. Clin Endocrinol (Oxf) 2013; 79:800-6. [PMID: 23170936 DOI: 10.1111/cen.12113] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 09/18/2012] [Accepted: 11/19/2012] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Central obesity and insulin resistance are key components of the metabolic syndrome, which is associated with an increased risk of cardiovascular disease. In obesity, CC chemokines, such as monocyte chemotactic protein-1 (MCP-1), macrophage inhibitory protein-1β (MIP-1β) and eotaxin-1 and their respective receptors, are critically involved in peripheral monocyte activation and adipose tissue infiltration. The aim of the current study was to examine whether low-dose atorvastatin (10 mg/d) treatment modulated serum levels of CC chemokines in metabolic syndrome subjects. MATERIALS AND METHODS Serum levels of MCP-1, eotaxin-1, MIP-1β, C reactive protein (CRP) and interleukin-6 (IL-6) were measured in lean control and metabolic syndrome subjects at baseline, and following a 6-week randomized placebo-controlled clinical trial of atorvastatin (10 mg/d). Peripheral CD14(+) monocytes were isolated and mRNA levels of MCP-1, MIP-1 β and CCR5 determined. RESULTS Serum MCP-1 (P = 0·02), eotaxin-1 (P = 0·02) and MIP-1β (P = 0·03), CRP (P < 0·001) and IL-6 (P = 0·006) were significantly increased in metabolic syndrome in comparison with lean controls. Furthermore, CD14(+) peripheral monocyte mRNA expression of the chemokine receptor, CCR5, of which MIP-1β and eotaxin-1 are ligands, was increased two-fold in the metabolic syndrome group (P = 0·03). In addition to the expected improvements in lipid profile, atorvastatin treatment significantly reduced circulating eotaxin-1 (P < 0·05), MIP-1β (P < 0·05) levels and CD14(+) peripheral monocyte CCR5 mRNA expression (P = 0·02). CONCLUSION These results support a model whereby atorvastatin treatment, by inhibiting CD14(+) monocyte CCR5 expression, may inhibit monocyte trafficking, reduce chronic inflammation and, thus, lower circulating levels of CC chemokines.
Collapse
|
16
|
Gomez I, Foudi N, Longrois D, Norel X. The role of prostaglandin E2 in human vascular inflammation. Prostaglandins Leukot Essent Fatty Acids 2013; 89:55-63. [PMID: 23756023 DOI: 10.1016/j.plefa.2013.04.004] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 04/04/2013] [Accepted: 04/05/2013] [Indexed: 10/26/2022]
Abstract
Prostaglandins (PG) are the product of a cascade of enzymes such as cyclooxygenases and PG synthases. Among PG, PGE2 is produced by 3 isoforms of PGE synthase (PGES) and through activation of its cognate receptors (EP1-4), this PG is involved in the pathophysiology of vascular diseases. Some anti-inflammatory drugs (e.g. glucocorticoids, nonsteroidal anti-inflammatory drugs) interfere with its metabolism or effects. Vascular cells can initiate many of the responses associated with inflammation. In human vascular tissue, PGE2 is involved in many physiological processes, such as increasing vascular permeability, cell proliferation, cell migration and control of vascular smooth muscle tone. PGE2 has been shown to contribute to the pathogenesis of atherosclerosis, abdominal aortic aneurysm but also in physiologic/adaptive processes such as angiogenesis. Understanding the roles of PGE2 and its cognate receptors in vascular diseases could help to identify diagnostic and prognostic biomarkers. In addition, from these recent studies new promising therapeutic approaches like mPGES-1 inhibition and/or EP4-antagonism should be investigated.
Collapse
Affiliation(s)
- I Gomez
- INSERM, U698, Paris F-75018, France; University Paris Nord, UMR-S698, Paris F-75018, France
| | | | | | | |
Collapse
|
17
|
Khajah M, Andonegui G, Chan R, Craig AW, Greer PA, McCafferty DM. Fer kinase limits neutrophil chemotaxis toward end target chemoattractants. THE JOURNAL OF IMMUNOLOGY 2013; 190:2208-16. [PMID: 23355730 DOI: 10.4049/jimmunol.1200322] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neutrophil recruitment and directional movement toward chemotactic stimuli are important processes in innate immune responses. This study examines the role of Fer kinase in neutrophil recruitment and chemotaxis to various chemoattractants in vitro and in vivo. Mice targeted with a kinase-inactivating mutation (Fer(DR/DR)) or wild type (WT) were studied using time-lapse intravital microscopy to examine leukocyte recruitment and chemotaxis in vivo. In response to keratinocyte-derived cytokine, no difference in leukocyte chemotaxis was observed between WT and Fer(DR/DR) mice. However, in response to the chemotactic peptide WKYMVm, a selective agonist of the formyl peptide receptor, a 2-fold increase in leukocyte emigration was noted in Fer(DR/DR) mice (p < 0.05). To determine whether these defects were due to Fer signaling in the endothelium or other nonhematopoietic cells, bone marrow chimeras were generated. WKYMVm-induced leukocyte recruitment in chimeric mice (WT bone marrow to Fer(DR/DR) recipients or vice versa) was similar to WT mice, suggesting that Fer kinase signaling in both leukocytes and endothelial cells serves to limit chemotaxis. Purified Fer(DR/DR) neutrophils demonstrated enhanced chemotaxis toward end target chemoattractants (WKYMVm and C5a) compared with WT using an under-agarose gel chemotaxis assay. These defects were not observed in response to intermediate chemoattractants (keratinocyte-derived cytokine, MIP-2, or LTB(4)). Increased WKYMVm-induced chemotaxis of Fer(DR/DR) neutrophils correlated with sustained PI3K activity and reduced reliance on the p38 MAPK pathway compared with WT neutrophils. Together, these data identify Fer as a novel inhibitory kinase for neutrophil chemotaxis toward end target chemoattractants through modulation of PI3K activity.
Collapse
Affiliation(s)
- Maitham Khajah
- Department of Physiology and Pharmacology, Gastrointestinal Research Group, Institute of Inflammation, Immunity, and Infection, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | | | | | | | | | | |
Collapse
|
18
|
Kundu S, Roome T, Bhattacharjee A, Carnevale KA, Yakubenko VP, Zhang R, Hwang SH, Hammock BD, Cathcart MK. Metabolic products of soluble epoxide hydrolase are essential for monocyte chemotaxis to MCP-1 in vitro and in vivo. J Lipid Res 2012; 54:436-47. [PMID: 23160182 DOI: 10.1194/jlr.m031914] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Monocyte chemoattractant protein-1 (MCP-1)-induced monocyte chemotaxis is a major event in inflammatory disease. Our prior studies have demonstrated that MCP-1-dependent chemotaxis requires release of arachidonic acid (AA) by activated cytosolic phospholipase A(2) (cPLA(2)). Here we investigated the involvement of AA metabolites in chemotaxis. Neither cyclooxygenase nor lipoxygenase pathways were required, whereas pharmacologic inhibitors of both the cytochrome-P450 (CYP) and the soluble epoxide hydrolase (sEH) pathways blocked monocyte chemotaxis to MCP-1. To verify specificity, we demonstrated that the CYP and sEH products epoxyeiscosatrienoic acids (EETs) and dihydroxyeicosatrienoic acids (DHETs), respectively, restored chemotaxis in the presence of the inhibitors, indicating that sEH-derived products are essential for MCP-1-driven chemotaxis. Importantly, DHETs also rescued chemotaxis in cPLA(2)-deficient monocytes and monocytes with blocked Erk1/2 activity, because Erk controls cPLA(2) activation. The in vitro findings regarding the involvement of CYP/sEH pathways were further validated in vivo using two complementary approaches measuring MCP-1-dependent chemotaxis in mice. These observations reveal the importance of sEH in MCP-1-regulated monocyte chemotaxis and may explain the observed therapeutic value of sEH inhibitors in treatment of inflammatory diseases, cardiovascular diseases, pain, and even carcinogenesis. Their effectiveness, often attributed to increasing EET levels, is probably influenced by the impairment of DHET formation and inhibition of chemotaxis.
Collapse
Affiliation(s)
- Suman Kundu
- Department of Cell Biology, and Research Core Services, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
A Lys49-PLA2 myotoxin of Bothrops asper triggers a rapid death of macrophages that involves autocrine purinergic receptor signaling. Cell Death Dis 2012; 3:e343. [PMID: 22764102 PMCID: PMC3406575 DOI: 10.1038/cddis.2012.68] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lys49-PLA(2) myotoxins, an important component of various viperid snake venoms, are a class of PLA(2)-homolog proteins deprived of catalytic activity. Similar to enzymatically active PLA(2) (Asp49) and to other classes of myotoxins, they cause severe myonecrosis. Moreover, these toxins are used as tools to study skeletal muscle repair and regeneration, a process that can be very limited after snakebites. In this work, the cytotoxic effect of different myotoxins, Bothrops asper Lys49 and Asp49-PLA(2), Notechis scutatus notexin and Naja mossambica cardiotoxin, was evaluated on macrophages, cells that have a key role in muscle regeneration. Only the Lys49-myotoxin was found to trigger a rapid asynchronous death of mouse peritoneal macrophages and macrophagic cell lines through a process that involves ATP release, ATP-induced ATP release and that is inhibited by various purinergic receptor antagonists. ATP leakage is induced also at sublytical doses of the Lys49-myotoxin, it involves Ca(2+) release from intracellular stores, and is reduced by inhibitors of VSOR and the maxi-anion channel. The toxin-induced cell death is different from that caused by high concentration of ATP and appears to be linked to localized purinergic signaling. Based on present findings, a mechanism of cell death is proposed that can be extended to other cytolytic proteins and peptides.
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW The phospholipase A2 (PLA2) family of proteins includes lipolytic enzymes that liberate the sn-2 fatty acyl chains from phospholipids to yield nonesterified fatty acids and lysophospholipids. The purpose of this review is to discuss recent findings showing distinct roles of several of these PLA2 enzymes in inflammatory metabolic diseases such as diabetes and atherosclerosis. RECENT FINDINGS The group 1B PLA2 digestion of phospholipids in the intestinal lumen facilitates postprandial lysophospholipid absorption, which suppresses hepatic fatty acid oxidation leading to increased VLDL synthesis, decreased glucose tolerance, and promotion of tissue lipid deposition to accentuate diet-induced hyperlipidemia, diabetes, and obesity. Other secretory PLA2s promote inflammatory metabolic diseases by generating bioactive lipid metabolites to induce inflammatory cytokine production, whereas the major intracellular PLA2s, cPLA2α, and iPLA2, generate arachidonic acid and lysophosphatic acid in response to extracellular stimuli to activate leukocyte chemotactic response. SUMMARY Each member of the PLA2 family of enzymes serves a distinct role in generating active lipid metabolites that promote inflammatory metabolic diseases including atherosclerosis, hyperlipidemia, obesity, and diabetes. The development of specific drugs that target one or more of these PLA2 enzymes may be novel strategies for treatment of these chronic inflammatory metabolic disorders.
Collapse
Affiliation(s)
- David Y Hui
- Department of Pathology, Metabolic Diseases Institute, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
21
|
TLR signaling paralyzes monocyte chemotaxis through synergized effects of p38 MAPK and global Rap-1 activation. PLoS One 2012; 7:e30404. [PMID: 22347375 PMCID: PMC3276499 DOI: 10.1371/journal.pone.0030404] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 12/20/2011] [Indexed: 01/15/2023] Open
Abstract
Toll-like receptors (TLRs) that recognize pathogen associated molecular patterns and chemoattractant receptors (CKRs) that orchestrate leukocyte migration to infected tissue are two arms of host innate immunity. Although TLR signaling induces synthesis and secretion of proinflammatory cytokines and chemokines, which recruit leukocytes, many studies have reported the paradoxical observation that TLR stimulation inhibits leukocyte chemotaxis in vitro and impairs their recruitment to tissues during sepsis. There is consensus that physical loss of chemokine receptor (CKR) at the RNA or protein level or receptor usage switching are the mechanisms underlying this effect. We show here that a brief (<15 min) stimulation with LPS (lipopolysaccharide) at ~0.2 ng/ml inhibited chemotactic response from CCR2, CXCR4 and FPR receptors in monocytes without downmodulation of receptors. A 3 min LPS pre-treatment abolished the polarized accumulation of F-actin, integrins and PIP(3) (phosphatidylinositol-3,4,5-trisphosphate) in response to chemokines in monocytes, but not in polymorphonuclear neutrophils (PMNs). If chemoattractants were added before or simultaneously with LPS, chemotactic polarization was preserved. LPS did not alter the initial G-protein signaling, or endocytosis kinetics of agonist-occupied chemoattractant receptors (CKRs). The chemotaxis arrest did not result from downmodulation of receptors or from inordinate increase in adhesion. LPS induced rapid p38 MAPK activation, global redistribution of activated Rap1 (Ras-proximate-1 or Ras-related protein 1) GTPase and Rap1GEF (guanylate exchange factor) Epac1 (exchange proteins activated by cyclic AMP) and disruption of intracellular gradient. Co-inhibition of p38 MAPK and Rap1 GTPase reversed the LPS induced breakdown of chemotaxis suggesting that LPS effect requires the combined function of p38 MAPK and Rap1 GTPase.
Collapse
|
22
|
Sun Z, Tang X, Lin F, Chen S. The WD40 repeat protein WDR26 binds Gβγ and promotes Gβγ-dependent signal transduction and leukocyte migration. J Biol Chem 2011; 286:43902-43912. [PMID: 22065575 DOI: 10.1074/jbc.m111.301382] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Gβγ subunits of heterotrimeric G proteins transmit signals to control many cellular processes, including leukocyte migration. Gβγ signaling may regulate and be regulated by numerous signaling partners. Here, we reveal that WDR26, a member of the WD40 repeat protein family, directly bound free Gβγ in vitro, and formed a complex with endogenous Gβγ in Jurkat T cells stimulated by the chemokine SDF1α. Suppression of WDR26 by siRNAs selectively inhibited Gβγ-dependent phospholipase Cβ and PI3K activation, and attenuated chemotaxis in Jurkat T cells and differentiated HL60 cells in vitro and Jurkat T cell homing to lymphoid tissues in scid mice. Similarly, disruption of the WDR26/Gβγ interaction via expression of a WDR26 deletion mutant impaired Gβγ signaling and Jurkat T cell migration, indicating that the function of WDR26 depends on its binding to Gβγ. Additional data show that WDR26 also controlled RACK1, a negative regulator, in binding Gβγ and inhibiting leukocyte migration. Collectively, these experiments identify WDR26 as a novel Gβγ-binding protein that is required for the efficacy of Gβγ signaling and leukocyte migration.
Collapse
Affiliation(s)
- Zhizeng Sun
- Department of Pharmacology, University of Iowa, Iowa City, Iowa 52242
| | - Xiaoyun Tang
- Department of Pharmacology, University of Iowa, Iowa City, Iowa 52242
| | - Fang Lin
- Departments of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242
| | - Songhai Chen
- Department of Pharmacology, University of Iowa, Iowa City, Iowa 52242; Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242.
| |
Collapse
|
23
|
Sadik CD, Luster AD. Lipid-cytokine-chemokine cascades orchestrate leukocyte recruitment in inflammation. J Leukoc Biol 2011; 91:207-15. [PMID: 22058421 DOI: 10.1189/jlb.0811402] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Chemoattractants are pivotal mediators of host defense, orchestrating the recruitment of immune cells into sites of infection and inflammation. Chemoattractants display vast chemical diversity and include bioactive lipids, proteolytic fragments of serum proteins, and chemokines (chemotactic cytokines). All chemoattractants induce chemotaxis by activating seven-transmembrane-spanning GPCRs expressed on immune cells, establishing the concept that all chemoattractants are related in function. However, although chemoattractants have overlapping functions in vitro, recent in vivo data have revealed that they function, in many cases, nonredundantly in vivo. The chemically diverse nature of chemoattractants contributes to the fine control of leukocyte trafficking in vivo, with sequential chemoattractant use guiding immune cell recruitment into inflammatory sites. Lipid mediators frequently function as initiators of leukocyte recruitment, attracting the first immune cells into tissues. These initial responding immune cells produce cytokines locally, which in turn, induce the local release of chemokines. Local chemokine production then markedly amplifies subsequent waves of leukocyte recruitment. These new discoveries establish a paradigm for leukocyte recruitment in inflammation--described as lipid-cytokine-chemokine cascades--as a driving force in the effector phase of immune responses.
Collapse
Affiliation(s)
- Christian D Sadik
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | |
Collapse
|
24
|
Shores DR, Binion DG, Freeman BA, Baker PR. New insights into the role of fatty acids in the pathogenesis and resolution of inflammatory bowel disease. Inflamm Bowel Dis 2011; 17:2192-204. [PMID: 21910181 PMCID: PMC4100336 DOI: 10.1002/ibd.21560] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 10/05/2010] [Indexed: 12/12/2022]
Abstract
Dietary and endogenously modified lipids modulate inflammation by functioning as intra- and intercellular signaling molecules. Proinflammatory lipid mediators such as the eicosanoids compete against the signaling actions of newly discovered modified fatty acids that act to resolve inflammation. In inflammatory bowel disease, multiple aberrancies in lipid metabolism have been discovered, which shed further light on the pathogenesis of intestinal inflammation. Mechanisms by which lipids modulate inflammation, abnormalities of lipid metabolism in the setting of inflammatory bowel disease, and potential therapeutic application of lipid derivatives in this setting are discussed.
Collapse
Affiliation(s)
- Darla R. Shores
- Division of Pediatric Gastroenterology, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - David G. Binion
- Division of Gastroenterology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Bruce A. Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Paul R.S. Baker
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
25
|
Su W, Chen Q, Frohman MA. Targeting phospholipase D with small-molecule inhibitors as a potential therapeutic approach for cancer metastasis. Future Oncol 2010; 5:1477-86. [PMID: 19903073 DOI: 10.2217/fon.09.110] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Phospholipase D (PLD)1 and PLD2, the classic mammalian members of the PLD superfamily, have been linked over the past three decades to immune cell function and to cell biological processes required by cancer cells for metastasis. However, owing to the lack of effective small-molecule inhibitors, it has not been possible to validate these roles for the PLDs and to explore the possible utility of acute and chronic PLD inhibition in vivo. The first such inhibitors have recently been described and demonstrated to block neutrophil chemotaxis and invasion by breast cancer cells in culture, increasing the prospects for a new class of therapeutics for autoimmune disorders and several types of metastatic cancer.
Collapse
Affiliation(s)
- Wenjuan Su
- Center for Developmental Genetics, Program in Molecular & Cellular Pharmacology and, Department of Pharmacology, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | |
Collapse
|
26
|
Lei X, Barbour SE, Ramanadham S. Group VIA Ca2+-independent phospholipase A2 (iPLA2beta) and its role in beta-cell programmed cell death. Biochimie 2010; 92:627-37. [PMID: 20083151 DOI: 10.1016/j.biochi.2010.01.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 01/11/2010] [Indexed: 01/09/2023]
Abstract
Activation of phospholipases A(2) (PLA(2)s) leads to the generation of biologically active lipid mediators that can affect numerous cellular events. The Group VIA Ca(2+)-independent PLA(2), designated iPLA(2)beta, is active in the absence of Ca(2+), activated by ATP, and inhibited by the bromoenol lactone suicide inhibitor (BEL). Over the past 10-15 years, studies using BEL have demonstrated that iPLA(2)beta participates in various biological processes and the recent availability of mice in which iPLA(2)beta expression levels have been genetically-modified are extending these findings. Work in our laboratory suggests that iPLA(2)beta activates a unique signaling cascade that promotes beta-cell apoptosis. This pathway involves iPLA(2)beta dependent induction of neutral sphingomyelinase, production of ceramide, and activation of the intrinsic pathway of apoptosis. There is a growing body of literature supporting beta-cell apoptosis as a major contributor to the loss of beta-cell mass associated with the onset and progression of Type 1 and Type 2 diabetes mellitus. This underscores a need to gain a better understanding of the molecular mechanisms underlying beta-cell apoptosis so that improved treatments can be developed to prevent or delay the onset and progression of diabetes mellitus. Herein, we offer a general review of Group VIA Ca(2+)-independent PLA(2) (iPLA(2)beta) followed by a more focused discussion of its participation in beta-cell apoptosis. We suggest that iPLA(2)beta-derived products trigger pathways which can lead to beta-cell apoptosis during the development of diabetes.
Collapse
Affiliation(s)
- Xiaoyong Lei
- Department of Medicine, Mass Spectrometry Resource and Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
27
|
Vitale N, Thiersé D, Bader MF. Melittin promotes exocytosis in neuroendocrine cells through the activation of phospholipase A₂. ACTA ACUST UNITED AC 2009; 165:111-6. [PMID: 19800928 DOI: 10.1016/j.regpep.2009.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 09/17/2009] [Accepted: 09/24/2009] [Indexed: 01/02/2023]
Abstract
Regulated exocytosis requires the formation of trans-SNARE complexes that assemble at the interface between vesicles and the plasma membrane. Recent evidence has also highlighted the importance of lipid dynamic in this process. For instance, small cone-shaped lipids generating membrane curvature of the plasma membrane are synthesized at the exocytotic sites. Among those lipids, phosphatidic acid (PA) synthesized through the activity of phospholipase D (PLD) has been recently shown to be necessary to hormonal release in various cell types as well as in neurotransmitter release. In this paper we examined the possible role of arachidonic acid (AA), a fatty acid that is generated by the activity of phospholipase A₂ (PLA₂). Melittin a well-known activator of PLA₂ was found to concomitantly promote catecholamine and chromogranin A (CGA) release in a calcium-dependent manner and also to increase AA synthesis in chromaffin cells. The effects of melittin on exocytosis and AA synthesis did not involve heterotrimeric G protein activation, but were suppressed by PLA₂ inhibitors. Accordingly addition of exogenous PLA₂ stimulated AA synthesis and catecholamine release in permeabilized chromaffin cells, whereas provision of exogenous AA directly increased exocytosis. These results suggest that AA produced by PLA₂ activation during exocytosis may play an important regulatory role in hormonal and neurotransmitter release. The possibility that CGA-derived peptides released during exocytosis mimic the activity of melittin is discussed.
Collapse
Affiliation(s)
- Nicolas Vitale
- Département Neurotransmission & Sécrétion Neuroendocrine, Institut des Neurosciences Cellulaires et Intégratives (UPR-3212), Centre National de la Recherche Scientifique & Université de Strasbourg, 5 Rue Blaise Pascal, 67084 Strasbourg, France.
| | | | | |
Collapse
|