1
|
Mu Q, Wang Q, Yang Y, Wei G, Wang H, Liao J, Yang X, Wang F. HMGB1 promotes M1 polarization of macrophages and induces COPD inflammation. Cell Biol Int 2024. [PMID: 39364689 DOI: 10.1002/cbin.12252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/21/2024] [Accepted: 09/21/2024] [Indexed: 10/05/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a pervasive and incapacitating respiratory condition, distinguished by airway inflammation and the remodeling of the lower respiratory tract. Central to its pathogenesis is an intricate inflammatory process, wherein macrophages exert significant regulatory functions, and High mobility group box 1 (HMGB1) emerges as a pivotal inflammatory mediator potentially driving COPD progression. This study explores the hypothesis that HMGB1, within macrophages, modulates COPD through inflammatory mechanisms, focusing on its influence on macrophage polarization. Our investigation uncovered that HMGB1 is upregulated in the context of COPD, associated with an enhanced proinflammatory M1 macrophage polarization induced by cigarette smoke. This polarization is linked to suppressed cell proliferation and induced apoptosis, indicative of HMGB1's role in the disease's inflammatory trajectory. The study further implicates HMGB1 in the activation of the Nuclear factor kappa-B (NF-κB) signaling pathway and chemokine signaling within macrophages, which are likely to amplify the inflammatory response characteristic of COPD. The findings underscore HMGB1's critical involvement in COPD pathogenesis, presenting it as a significant target for therapeutic intervention aimed at modulating macrophage polarization and inflammation.
Collapse
Affiliation(s)
- Qingshuang Mu
- Xinjiang Key Laboratory of Neurological Disorder Research, Department of Gerontology, the Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Qin Wang
- Xinjiang Key Laboratory of Neurological Disorder Research, Department of Gerontology, the Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Ye Yang
- Xinjiang Key Laboratory of Neurological Disorder Research, Department of Gerontology, the Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Ganghua Wei
- Department of Cardiology, Department of Gerontology, the Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hao Wang
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing, China
| | - Jing Liao
- Xinjiang Key Laboratory of Neurological Disorder Research, Department of Gerontology, the Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xinling Yang
- Xinjiang Key Laboratory of Neurological Disorder Research, Department of Gerontology, the Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Fan Wang
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing, China
| |
Collapse
|
2
|
Zhao Y, Chen Z, Dong R, Liu Y, Zhang Y, Guo Y, Yu M, Li X, Wang J. Multiomics analysis reveals the potential mechanism of high-fat diet in dextran sulfate sodium-induced colitis mice model. Food Sci Nutr 2024; 12:8309-8323. [PMID: 39479684 PMCID: PMC11521715 DOI: 10.1002/fsn3.4426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 11/02/2024] Open
Abstract
A high-fat diet (HFD) is recognized as an important contributor to inflammatory bowel disease (IBD). However, the precise underlying mechanism of HFD on IBD remains elusive. This study aimed to investigate the potential mechanism by which HFD affects IBD using 16S rRNA-sequencing and RNA-seq technology. Results indicated that HFD-treated mice exhibited notable alternations in the structure and composition of the gut microbiota, with some of these alternations being associated with the pathogenesis of IBD. Analysis of the colon transcriptome revealed 11 hub genes and 7 hub pathways among control, DSS-induced colitis, and HFD + DSS-treated groups. Further analysis explores the relationship between the hub pathways and genes, as well as the hub genes and gut microbiota. Overall, the findings indicate that the impact of HFD on DSS-induced colitis may be linked to intestinal dysbiosis and specific genes such as Abca8b, Ace2, Apoa1, Apoa4, Apoc3, Aspa, Dpp4, Maob, Slc34a2, Slc7a9, and Trpm6. These results provide valuable insights for determining potential therapeutic targets for addressing HFD-induced IBD.
Collapse
Affiliation(s)
- Yuyang Zhao
- Department of GastroenterologyChina‐Japan Union Hospital of Jilin UniversityChangchunJilinChina
| | - Zhimin Chen
- Department of PharmacologyCollege of Basic Medical Sciences, Jilin UniversityChangchunJilinChina
| | - Ruiyi Dong
- College of Physical Education, Hunan Normal UniversityChangshaChina
| | - Yufan Liu
- Department of PharmacologyCollege of Basic Medical Sciences, Jilin UniversityChangchunJilinChina
| | - Yixin Zhang
- Department of PharmacologyCollege of Basic Medical Sciences, Jilin UniversityChangchunJilinChina
| | - Yan Guo
- Department of PharmacologyCollege of Basic Medical Sciences, Jilin UniversityChangchunJilinChina
| | - Meiyi Yu
- Department of PharmacologyCollege of Basic Medical Sciences, Jilin UniversityChangchunJilinChina
| | - Xiang Li
- Department of PharmacologyCollege of Basic Medical Sciences, Jilin UniversityChangchunJilinChina
| | - Jiangbin Wang
- Department of GastroenterologyChina‐Japan Union Hospital of Jilin UniversityChangchunJilinChina
| |
Collapse
|
3
|
Bonacina F, Zhang X, Manel N, Yvan-Charvet L, Razani B, Norata GD. Lysosomes in the immunometabolic reprogramming of immune cells in atherosclerosis. Nat Rev Cardiol 2024:10.1038/s41569-024-01072-4. [PMID: 39304748 DOI: 10.1038/s41569-024-01072-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/08/2024] [Indexed: 09/22/2024]
Abstract
Lysosomes have a central role in the disposal of extracellular and intracellular cargo and also function as metabolic sensors and signalling platforms in the immunometabolic reprogramming of macrophages and other immune cells in atherosclerosis. Lysosomes can rapidly sense the presence of nutrients within immune cells, thereby switching from catabolism of extracellular material to the recycling of intracellular cargo. Such a fine-tuned degradative response supports the generation of metabolic building blocks through effectors such as mTORC1 or TFEB. By coupling nutrients to downstream signalling and metabolism, lysosomes serve as a crucial hub for cellular function in innate and adaptive immune cells. Lysosomal dysfunction is now recognized to be a hallmark of atherogenesis. Perturbations in nutrient-sensing and signalling have profound effects on the capacity of immune cells to handle cholesterol, perform phagocytosis and efferocytosis, and limit the activation of the inflammasome and other inflammatory pathways. Strategies to improve lysosomal function hold promise as novel modulators of the immunoinflammatory response associated with atherosclerosis. In this Review, we describe the crosstalk between lysosomal biology and immune cell function and polarization, with a particular focus on cellular immunometabolic reprogramming in the context of atherosclerosis.
Collapse
Affiliation(s)
- Fabrizia Bonacina
- Department of Excellence of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| | - Xiangyu Zhang
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
- Pittsburgh VA Medical Center, Pittsburgh, PA, USA
| | - Nicolas Manel
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Fédération Hospitalo-Universitaire (FHU), Oncoage, Nice, France
| | - Babak Razani
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
- Pittsburgh VA Medical Center, Pittsburgh, PA, USA
| | - Giuseppe D Norata
- Department of Excellence of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
4
|
Wong A, Sun Q, Latif II, Karwi QG. Macrophage energy metabolism in cardiometabolic disease. Mol Cell Biochem 2024:10.1007/s11010-024-05099-6. [PMID: 39198360 DOI: 10.1007/s11010-024-05099-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
In a rapidly expanding body of literature, the major role of energy metabolism in determining the response and polarization status of macrophages has been examined, and it is currently a very active area of research. The metabolic flux through different metabolic pathways in the macrophage is interconnected and complex and could influence the polarization of macrophages. Earlier studies suggested glucose flux through cytosolic glycolysis is a prerequisite to trigger the pro-inflammatory phenotypes of macrophages while proposing that fatty acid oxidation is essential to support anti-inflammatory responses by macrophages. However, recent studies have shown that this understanding is oversimplified and that the metabolic control of macrophage polarization is highly complex and not fully defined yet. In this review, we systematically reviewed and summarized the literature regarding the role of energy metabolism in controlling macrophage activity and how that might be altered in cardiometabolic diseases, namely heart failure, obesity, and diabetes. We critically appraised the experimental studies and methodologies in the published studies. We also highlighted the challenging concepts in macrophage metabolism and identified several research questions yet to be addressed in future investigations.
Collapse
Affiliation(s)
- Angela Wong
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1B 3V6, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Qiuyu Sun
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1B 3V6, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Ismail I Latif
- Department of Microbiology, College of Medicine, University of Diyala, Baqubaa, Diyala, Iraq
| | - Qutuba G Karwi
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1B 3V6, Canada.
| |
Collapse
|
5
|
Zhu H, Zhang H, Zhao XJ, Zhang L, Liu X, Zhang ZY, Ren YZ, Feng Y. Tetramerization of PKM2 Alleviates Traumatic Brain Injury by Ameliorating Mitochondrial Damage in Microglia. J Neuroimmune Pharmacol 2024; 19:48. [PMID: 39196455 DOI: 10.1007/s11481-024-10138-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 06/27/2024] [Indexed: 08/29/2024]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. Microglial activation and neuroinflammation are key cellular events that determine the outcome of TBI, especially neuronal and cognitive function. Studies have suggested that the metabolic characteristics of microglia dictate their inflammatory response. The pyruvate kinase isoform M2 (PKM2), a key glycolytic enzyme, is involved in the regulation of various cellular metabolic processes, including mitochondrial metabolism. This suggests that PKM2 may also participate in the regulation of microglial activation during TBI. Therefore, the present study aimed to evaluate the role of PKM2 in regulating microglial activation and neuroinflammation and its effects on cognitive function following TBI. A controlled cortical impact (CCI) mouse model and inflammation-induced primary mouse microglial cells in vitro were used to investigate the potential effects of PKM2 inhibition and regulation. PKM2 was significantly increased during the acute and subacute phases of TBI and was predominantly detected in microglia rather than in neurons. Our results demonstrate that shikonin and TEPP-46 can inhibit microglial inflammation, improving mitochondria, improving mouse behavior, reducing brain defect volume, and alleviating pathological changes after TBI. There is a difference in the intervention of shikonin and TEPP-46 on PKM2. Shikonin directly inhibits General PKM2; TEPP-46 can promote the expression of PKM2 tetramer. In vitro experiments, TEPP-46 can promote the expression of PKM2 tetramer, enhance the interaction between PKM2 and MFN2, improve mitochondria, alleviate neuroinflammation. General inhibition and tetramerization activation of PKM2 attenuated cognitive function caused by TBI, whereas PKM2 tetramerization exhibited a better treatment effect. Our experiments demonstrated the non-metabolic role of PKM2 in the regulation of microglial activation following TBI. Both shikonin and TEPP-46 can inhibit pro-inflammatory factors, but only TEPP-46 can promote PKM2 tetramerization and upregulate the release of anti-inflammatory factors from microglia.
Collapse
Affiliation(s)
- Haiyan Zhu
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Huiwen Zhang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Xiao-Jing Zhao
- Department of Pathology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China
| | - Lingyuan Zhang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Xue Liu
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Zhi-Yuan Zhang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Yi-Zhi Ren
- Department of Clinical Genetics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, China, 262 North Zhongshan Road.
| | - Yong Feng
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research &, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 210009, China, Baiziting 42.
| |
Collapse
|
6
|
Rihan M, Sharma SS. Compound 3K attenuates isoproterenol-induced cardiac hypertrophy by inhibiting pyruvate kinase M2 (PKM2) pathway. Life Sci 2024; 351:122837. [PMID: 38879156 DOI: 10.1016/j.lfs.2024.122837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
AIM Chronic sympathetic stimulation has been identified as a primary factor in the pathogenesis of cardiac hypertrophy (CH). However, there is no appropriate treatment available for the management of CH. Recently, it has been revealed that pyruvate kinase M2 (PKM2) plays a significant role in cardiac remodeling, fibrosis, and hypertrophy. However, the therapeutic potential of selective PKM2 inhibitor has not yet been explored in cardiac hypertrophy. Thus, in the current study, we have studied the cardioprotective potential of Compound 3K, a selective PKM2 inhibitor in isoproterenol-induced CH model. METHODS To induce cardiac hypertrophy, male Wistar rats were subcutaneously administered isoproterenol (ISO, 5 mg/kg/day) for 14 days. Compound 3K at dosages of 2 and 4 mg/kg orally was administered to ISO-treated rats for 14 days to explore its effects on various parameters like ECG, ventricular functions, hypertrophic markers, histology, inflammation, and protein expression were performed. RESULTS Fourteen days administration of ISO resulted in the induction of CH, which was evidenced by alterations in ECG, ventricular dysfunctions, increase in hypertrophy markers, and fibrosis. The immunoblotting of hypertrophy heart revealed the significant rise in PKM2 and reduction in PKM1 protein expression. Treatment with Compound 3K led to downregulation of PKM2 and upregulation of PKM1 protein expression. Compound 3K showed cardioprotective effects by improving ECG, cardiac functions, hypertrophy markers, inflammation, and fibrosis. Further, it also reduced cardiac expression of PKM2-associated splicing protein, HIF-1α, and caspase-3. CONCLUSION Our findings suggest that Compound 3K has a potential cardioprotective effect via PKM2 inhibition in isoproterenol-induced CH.
Collapse
Affiliation(s)
- Mohd Rihan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar (Mohali) 160062, Punjab, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar (Mohali) 160062, Punjab, India.
| |
Collapse
|
7
|
Zhang J, Chang J, Chen V, Beg MA, Huang W, Vick L, Wang Y, Zhang H, Yttre E, Gupta A, Castleberry M, Zhang Z, Dai W, Song S, Zhu J, Yang M, Brown AK, Xu Z, Ma YQ, Smith BC, Zielonka J, Traylor JG, Dhaou CB, Orr AW, Cui W, Zheng Z, Chen Y. Oxidized LDL regulates efferocytosis through the CD36-PKM2-mtROS pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.07.556574. [PMID: 39071358 PMCID: PMC11275753 DOI: 10.1101/2023.09.07.556574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Macrophage efferocytosis, the process by which phagocytes engulf and remove apoptotic cells (ACs), plays a critical role in maintaining tissue homeostasis. Efficient efferocytosis prevents secondary necrosis, mitigates chronic inflammation, and impedes atherosclerosis progression. However, the regulatory mechanisms of efferocytosis under atherogenic conditions remain poorly understood. We previously demonstrated that oxidized LDL (oxLDL), an atherogenic lipoprotein, induces mitochondrial reactive oxygen species (mtROS) in macrophages via CD36. In this study, we demonstrate that macrophage mtROS facilitate continual efferocytosis through a positive feedback mechanism. However, oxLDL disrupts continual efferocytosis by dysregulating the internalization of ACs. This disruption is mediated by an overproduction of mtROS. Mechanistically, oxLDL/CD36 signaling promotes the translocation of cytosolic PKM2 to mitochondria, facilitated by the chaperone GRP75. Mitochondrial PKM2 then binds to Complex III of the electron transport chain, inducing mtROS production. This study elucidates a novel regulatory mechanism of efferocytosis in atherosclerosis, providing potential therapeutic targets for intervention. SUMMARY Macrophages clear apoptotic cells through a process called efferocytosis, which involves mitochondrial ROS. However, the atherogenic oxidized LDL overstimulates mitochondrial ROS via the CD36-PKM2 pathway, disrupting continual efferocytosis. This finding elucidates a novel molecular mechanism that explains defects in efferocytosis, driving atherosclerosis progression.
Collapse
|
8
|
He Y, Peng Y, Sun Y, Wan Y, Zhuo R, Hu S, Wang Y, Hu X, Jin H, Hua K. AMPK signaling pathway regulated the expression of the ApoA1 gene via the transcription factor Egr1 during G. parasuis stimulation. Vet Microbiol 2024; 294:110106. [PMID: 38776767 DOI: 10.1016/j.vetmic.2024.110106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/21/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024]
Abstract
Glaesserella parasuis (G. parasuis) is the causative agent of porcine Glässer's disease, resulting in high mortality rates in pigs due to excessive inflammation-induced tissue damage. Previous studies investigating the protective effects of G. parasuis vaccination indicated a possible role of ApoA1 in reflecting disease progression following G. parasuis infection. However, the mechanisms of ApoA1 expression and its role in these infections are not well understood. In this investigation, newborn porcine tracheal (NPTr) epithelial cells infected with G. parasuis were used to elucidate the molecular mechanism and role of ApoA1. The study revealed that the AMPK pathway activation inhibited ApoA1 expression in NPTr cells infected with G. parasuis for the first time. Furthermore, Egr1 was identified as a core transcription factor regulating ApoA1 expression using a CRISPR/Cas9-based system. Importantly, it was discovered that APOA1 protein significantly reduced apoptosis, pyroptosis, necroptosis, and inflammatory factors induced by G. parasuis in vivo. These findings not only enhance our understanding of ApoA1 in response to bacterial infections but also highlight its potential in mitigating tissue damage caused by G. parasuis infection.
Collapse
Affiliation(s)
- Yanling He
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, China; College of Veterinary Medicine, Huazhong Agricultural University, China; Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, China
| | - Yuna Peng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, China; College of Veterinary Medicine, Huazhong Agricultural University, China; Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, China
| | - Yu Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, China; College of Veterinary Medicine, Huazhong Agricultural University, China; Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, China
| | - Yanxi Wan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, China; College of Veterinary Medicine, Huazhong Agricultural University, China; Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, China
| | - Ran Zhuo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, China; College of Veterinary Medicine, Huazhong Agricultural University, China; Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, China
| | - Shuai Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, China; College of Veterinary Medicine, Huazhong Agricultural University, China; Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, China
| | - Yi Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, China; College of Veterinary Medicine, Huazhong Agricultural University, China; Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, China
| | - Xueying Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, China; College of Veterinary Medicine, Huazhong Agricultural University, China; Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, China
| | - Hui Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, China; College of Veterinary Medicine, Huazhong Agricultural University, China; Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, China.
| | - Kexin Hua
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, China; College of Veterinary Medicine, Huazhong Agricultural University, China; Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, China.
| |
Collapse
|
9
|
Zeng C, Wu J, Li J. Pyruvate Kinase M2: A Potential Regulator of Cardiac Injury Through Glycolytic and Non-glycolytic Pathways. J Cardiovasc Pharmacol 2024; 84:1-9. [PMID: 38560918 PMCID: PMC11230662 DOI: 10.1097/fjc.0000000000001568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
ABSTRACT Adult animals are unable to regenerate heart cells due to postnatal cardiomyocyte cycle arrest, leading to higher mortality rates in cardiomyopathy. However, reprogramming of energy metabolism in cardiomyocytes provides a new perspective on the contribution of glycolysis to repair, regeneration, and fibrosis after cardiac injury. Pyruvate kinase (PK) is a key enzyme in the glycolysis process. This review focuses on the glycolysis function of PKM2, although PKM1 and PKM2 both play significant roles in the process after cardiac injury. PKM2 exists in both low-activity dimer and high-activity tetramer forms. PKM2 dimers promote aerobic glycolysis but have low catalytic activity, leading to the accumulation of glycolytic intermediates. These intermediates enter the pentose phosphate pathway to promote cardiomyocyte proliferation and heart regeneration. Additionally, they activate adenosine triphosphate (ATP)-sensitive K + (K ATP ) channels, protecting the heart against ischemic damage. PKM2 tetramers function similar to PKM1 in glycolysis, promoting pyruvate oxidation and subsequently ATP generation to protect the heart from ischemic damage. They also activate KDM5 through the accumulation of αKG, thereby promoting cardiomyocyte proliferation and cardiac regeneration. Apart from glycolysis, PKM2 interacts with transcription factors like Jmjd4, RAC1, β-catenin, and hypoxia-inducible factor (HIF)-1α, playing various roles in homeostasis maintenance, remodeling, survival regulation, and neovascularization promotion. However, PKM2 has also been implicated in promoting cardiac fibrosis through mechanisms like sirtuin (SIRT) 3 deletion, TG2 expression enhancement, and activation of transforming growth factor-β1 (TGF-β1)/Smad2/3 and Jak2/Stat3 signals. Overall, PKM2 shows promising potential as a therapeutic target for promoting cardiomyocyte proliferation and cardiac regeneration and addressing cardiac fibrosis after injury.
Collapse
Affiliation(s)
- Chenxin Zeng
- The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China
| | - Jiangfeng Wu
- The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China; and
| | - Junming Li
- The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
10
|
Hou X, Ai X, Liu Z, Yang J, Wu Y, Zhang D, Feng N. Wheat germ agglutinin modified mixed micelles overcome the dual barrier of mucus/enterocytes for effective oral absorption of shikonin and gefitinib. Drug Deliv Transl Res 2024:10.1007/s13346-024-01602-0. [PMID: 38656402 DOI: 10.1007/s13346-024-01602-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
The combination of shikonin (SKN) and gefitinib (GFB) can reverse the drug resistance of lung cancer cells by affecting energy metabolism. However, the poor solubility of SKN and GFB limits their clinical application because of low bioavailability. Wheat germ agglutinin (WGA) can selectively bind to sialic acid and N-acetylglucosamine on the surfaces of microfold cells and enterocytes, and is a targeted biocompatible material. Therefore, we created a co-delivery micelle system called SKN/GFB@WGA-micelles with the intestinal targeting functions to enhance the oral absorption of SKN and GFB by promoting mucus penetration for nanoparticles via oral administration. In this study, Caco-2/HT29-MTX-E12 co-cultured cells were used to simulate a mucus/enterocyte dual-barrier environment, and HCC827/GR cells were used as a model of drug-resistant lung cancer. We aimed to evaluate the oral bioavailability and anti-tumor effect of SKN and GFB using the SKN/GFB@WGA-micelles system. In vitro and in vivo experimental results showed that WGA promoted the mucus penetration ability of micelles, significantly enhanced the uptake efficiency of enterocytes, improved the oral bioavailability of SKN and GFB, and exhibited good anti-tumor effects by reversing drug resistance. The SKN/GFB@WGA-micelles were stable in the gastrointestinal tract and provided a novel safe and effective drug delivery strategy.
Collapse
Affiliation(s)
- Xuefeng Hou
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, NO. 1200 Cailun Road, Shanghai, 201203, China
- School of Pharmacy, Wannan Medical College, Wuhu, 241002, China
| | - Xinyi Ai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, NO. 1200 Cailun Road, Shanghai, 201203, China
| | - Zhenda Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, NO. 1200 Cailun Road, Shanghai, 201203, China
| | - Jiayi Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, NO. 1200 Cailun Road, Shanghai, 201203, China
| | - Yihan Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, NO. 1200 Cailun Road, Shanghai, 201203, China
| | - Di Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, NO. 1200 Cailun Road, Shanghai, 201203, China
| | - Nianping Feng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, NO. 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
11
|
Wang J, Wang X, Peng H, Dong Z, Liangpunsakul S, Zuo L, Wang H. Platelets in Alcohol-Associated Liver Disease: Interaction With Neutrophils. Cell Mol Gastroenterol Hepatol 2024; 18:41-52. [PMID: 38461963 PMCID: PMC11127035 DOI: 10.1016/j.jcmgh.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/12/2024]
Abstract
Alcohol-associated liver disease (ALD) is a major contributor to liver-related mortality globally. An increasing body of evidence underscores the pivotal role of platelets throughout the spectrum of liver injury and recovery, offering unique insights into liver homeostasis and pathobiology. Alcoholic-associated steatohepatitis is characterized by the infiltration of hepatic neutrophils. Recent studies have highlighted the extensive distance neutrophils travel through sinusoids to reach the liver injury site, relying on a platelet-paved endothelium for efficient crawling. The adherence of platelets to neutrophils is crucial for accurate migration from circulation to the inflammatory site. A gradual decline in platelet levels leads to diminished neutrophil recruitment. Platelets exhibit the ability to activate neutrophils. Platelet activation is heightened upon the release of platelet granule contents, which synergistically activate neutrophils through their respective receptors. The sequence culminates in the formation of platelet-neutrophil complexes and the release of neutrophil extracellular traps intensifies liver damage, fosters inflammatory immune responses, and triggers hepatotoxic processes. Neutrophil infiltration is a hallmark of alcohol-associated steatohepatitis, and the roles of neutrophils in ALD pathogenesis have been studied extensively, however, the involvement of platelets in ALD has received little attention. The current review consolidates recent findings on the intricate and diverse roles of platelets and neutrophils in liver pathophysiology and in ALD. Potential therapeutic strategies are highlighted, focusing on targeting platelet-neutrophil interactions and activation in ALD. The anticipation is that innovative methods for manipulating platelet and neutrophil functions will open promising avenues for future ALD therapy.
Collapse
Affiliation(s)
- Juan Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| | - Xianda Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| | - Haodong Peng
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China; The First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Zijian Dong
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Li Zuo
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China; Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei, Anhui, China.
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
12
|
Zhao ZW, Xu YW, Zhang XT, Ma HH, Zhang JK, Wu X, Huang Y. Elevated plasma pyruvate kinase M2 concentrations are associated with the clinical severity and prognosis of coronary artery disease. Biochem Med (Zagreb) 2024; 34:010704. [PMID: 38125618 PMCID: PMC10731730 DOI: 10.11613/bm.2024.010704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 10/17/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction Pyruvate kinase M2 (PKM2) was involved in the pathophysiology of atherosclerosis and coronary artery disease (CAD). We tested whether plasma PKM2 concentrations were correlated with clinical severity and major adverse cardiovascular events (MACEs) in CAD patients. Materials and methods A total of 2443 CAD patients and 238 controls were enrolled. The follow-up time was two years. Plasma PKM2 concentrations were detected by enzyme-linked immunosorbent assay (ELISA) kits (Cloud-Clone, Wuhan, China) using SpectraMax i3x Multi-Mode Microplate Reader (Molecular Devices, San Jose, USA). The predictors of acute coronary syndrome (ACS) were assessed by logistic regression analysis. The association between PKM2 concentration in different quartiles and MACEs was evaluated by Kaplan-Meier (KM) curves with log-rank test and Cox proportional hazard models. The predictive value of PKM2 and a cluster of conventional risk factors was determined by Receiver operating characteristic (ROC) curves. The net reclassification improvement (NRI) and the integrated discrimination improvement (IDI) were utilized to evaluate the enhancement in risk prediction when PKM2 was added to a predictive model containing a cluster of conventional risk factors. Results In CAD patients, PKM2 concentration was the independent predictor of ACS (P < 0.001). Kaplan-Meier cumulative survival curves and Cox proportional hazards analyses revealed that patients with a higher PKM2 concentration had higher incidence of MACEs compared to those with a lower PKM2 concentration (P < 0.001). The addition of PKM2 to a cluster of conventional risk factors significantly increased its prognostic value of MACEs. Conclusion Baseline plasma PKM2 concentrations predict the clinical severity and prognosis of CAD.
Collapse
Affiliation(s)
- Zi-wen Zhao
- Department of Cardiology, Fujian Heart Medical Center, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
| | - Yi-wei Xu
- Department of Cardiology, Fujian Heart Medical Center, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
| | - Xin-tao Zhang
- Department of Cardiology, Fujian Heart Medical Center, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
| | - Hang-hao Ma
- Department of Cardiology, Ningde People Hospital, Ningde, China
| | - Jing-kun Zhang
- Cardiovascular Research Institute, University of California, San Francisco, USA
| | - Xue Wu
- Institute for Global Health Sciences, University of California, San Francisco, USA
| | - Yu Huang
- Department of Cardiology, Fujian Heart Medical Center, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
13
|
Deng WY, Zhou CL, Zeng MY. Gypenoside XVII inhibits ox-LDL-induced macrophage inflammatory responses and promotes cholesterol efflux through activating the miR-182-5p/HDAC9 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117070. [PMID: 37625608 DOI: 10.1016/j.jep.2023.117070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/11/2023] [Accepted: 08/20/2023] [Indexed: 08/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The deposition of lipids in macrophages and the subsequent formation of foam cells significantly increase the risk of developing atherosclerosis (As). Targeting ATP-binding cassette transporter A1/G1 (ABCA1/ABCG1)-mediated reverse cholesterol transport is crucial for regulating foam cell formation. Therefore, the search for natural chemical components with the ability to regulate ABCA1/G1 is a potential drug target to combat the development of atherosclerosis. Gypenoside XVII (GP-17), a gypenoside monomer extracted from gynostemma pentaphyllum, presents an efficient anti-atherosclerosis function. However, the suppressed formation mechanism of foam cells by GP-17 remains elusive. AIM OF STUDY To explore the protective activities of GP-17 in ox-LDL-induced THP-1 macrophage-derived foam cells through modulating the promotion of cholesterol efflux and alleviation of inflammation. MATERIALS AND METHODS MTT was used to detect cell viability. Bodipy493/503 and oil red O staining were performed to measure cell lipid deposition. Enzymatic assay was used to measure intracellular cholesterol measurement. Cholesterol efflux/uptake were determined by cholesterol efflux assay and Dil-ox-LDL uptake assay. Inflammatory cytokines were measured by ELISA. Bioinformatics prediction and dual luciferase reporter assay were performed to validate miR-182-5p targeting HDAC9. Relative protein levels were evaluated by immunoblotting and relative gene levels were determined by quantitative real-time PCR. RESULTS Our results showed that GP-17 upregulated the expression of ABCA1, ABCG1 and miR-182-5p, but reduced HDAC9 expression levels in lipid-loaded macrophages, which promoted cholesterol efflux and inhibited lipid deposition. Additionally, GP-17 promoted the M2 phenotype of the macrophage and suppressed the inflammatory response in THP-1 macrophage-derived foam cells. Overexpression of HDAC9 or suppression of miR-182-5p eliminated the effects of ABCA1/G1 expression, lipid deposition and pro-inflammatory response. CONCLUSION These findings suggest that GP-17 exerts a beneficial effect on macrophage lipid deposition and inflammation responses through activating the miR-182-5p/HDAC9 signaling pathway.
Collapse
Affiliation(s)
- Wen-Yi Deng
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan, PR China
| | - Cheng-Long Zhou
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, 528300, Guangdong, PR China
| | - Meng-Ya Zeng
- Cardiovascular Disease Clinical Center, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan, PR China.
| |
Collapse
|
14
|
Xiao Y, Yang Y, Xiong H, Dong G. The implications of FASN in immune cell biology and related diseases. Cell Death Dis 2024; 15:88. [PMID: 38272906 PMCID: PMC10810964 DOI: 10.1038/s41419-024-06463-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/27/2024]
Abstract
Fatty acid metabolism, particularly fatty acid synthesis, is a very important cellular physiological process in which nutrients are used for energy storage and biofilm synthesis. As a key enzyme in the fatty acid metabolism, fatty acid synthase (FASN) is receiving increasing attention. Although previous studies on FASN have mainly focused on various malignancies, many studies have recently reported that FASN regulates the survival, differentiation, and function of various immune cells, and subsequently participates in the occurrence and development of immune-related diseases. However, few studies to date systematically summarized the function and molecular mechanisms of FASN in immune cell biology and related diseases. In this review, we discuss the regulatory effect of FASN on immune cells, and the progress in research on the implications of FASN in immune-related diseases. Understanding the function of FASN in immune cell biology and related diseases can offer insights into novel treatment strategies for clinical diseases.
Collapse
Affiliation(s)
- Yucai Xiao
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, 272067, Shandong, China
| | - Yonghong Yang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, 272007, Shandong, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China.
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, 272067, Shandong, China.
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China.
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, 272067, Shandong, China.
| |
Collapse
|
15
|
Wu H, Liao B, Ji T, Jia S, Luo Y, Ma K. A nomogram for predicting in-hospital overall survival of hypertriglyceridemia-induced severe acute pancreatitis: A single center, cross-sectional study. Heliyon 2024; 10:e23454. [PMID: 38173503 PMCID: PMC10761568 DOI: 10.1016/j.heliyon.2023.e23454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Background Hypertriglyceridemia-induced severe acute pancreatitis (HTG-SAP) is a type of pancreatitis characterized by an abnormal elevation of plasma triglyceride. HTG-SAP has been associated with various complications and a high mortality rate. In this study, we established a nomogram for predicting the overall survival (OS) of HTG-SAP patients during hospitalization. Methods 128 HTG-SAP cases hospitalized at the Affiliated Huadu Hospital, Southern Medical University, from 2019 to 2022 were analyzed retrospectively. A nomogram including prognostic factors correlated with OS during hospitalization was established by multivariate Cox regression analysis. We internally validated the nomogram using time-dependent (at 1-, 2-, and 3- months) survival receiver operating characteristic (SROC) and calibration curve with 500 iterations of bootstrap resampling. Time-dependent decision curve analysis (DCA) was employed to validate the clinical value of the nomogram. Results Multivariate Cox regression indicated that serum triglyceride, red blood cell distribution width (RDW), lactic acid, and interleukin-6 (IL6) were independent prognostic factors for OS of HTG-SAP patients during hospitalization and were used to construct a nomogram. The time-dependent area under the curve (AUC) values at 1-, 2-, and 3- months were 0.946, 0.913, and 0.929, respectively, and the Concordance index (C-index) of the nomogram was 0.916 (95%CI 0.871-0.961). The time-dependent calibration curves indicated good consistency between the observed and predicted outcomes. The time-dependent DCAs also revealed that the nomogram yielded a high clinical net benefit. After stratifying the included cases into two risk groups based on the risk score obtained from the nomogram, the high-risk group exhibited a significantly inferior overall survival (OS) compared to the low-risk group (p < 0.0001). Conclusions Our nomogram exhibited good performance in predicting the overall survival of HTG-SAP patients during hospitalization.
Collapse
Affiliation(s)
- Hongsheng Wu
- Department of Hepatobiliary Pancreatic Surgery, Huadu District People's Hospital of Guangzhou, Guangzhou, 510800, Guangdong, PR China
| | - Biling Liao
- Department of Hepatobiliary Pancreatic Surgery, Huadu District People's Hospital of Guangzhou, Guangzhou, 510800, Guangdong, PR China
| | - Tengfei Ji
- Department of Hepatobiliary Pancreatic Surgery, Huadu District People's Hospital of Guangzhou, Guangzhou, 510800, Guangdong, PR China
| | - Shichao Jia
- Information Network Center, Huadu District People's Hospital of Guangzhou, Guangzhou, Guangzhou, 510800, Guangdong, PR China
| | - Yumei Luo
- Department of Hepatobiliary Pancreatic Surgery, Huadu District People's Hospital of Guangzhou, Guangzhou, 510800, Guangdong, PR China
| | - Keqiang Ma
- Department of Hepatobiliary Pancreatic Surgery, Huadu District People's Hospital of Guangzhou, Guangzhou, 510800, Guangdong, PR China
| |
Collapse
|
16
|
Rihan M, Sharma SS. Inhibition of Pyruvate kinase M2 (PKM2) by shikonin attenuates isoproterenol-induced acute myocardial infarction via reduction in inflammation, hypoxia, apoptosis, and fibrosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:145-159. [PMID: 37382601 DOI: 10.1007/s00210-023-02593-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
Myocardial infarction (MI) is a major cause of mortality and disability globally. MI results from acute or chronic myocardial ischemia characterized by an imbalance of oxygen demand and supply, leading to irreversible myocardial injury. Despite several significant efforts in the understanding of MI, the therapy of MI is not satisfactory due to its complicated pathophysiology. Recently, therapeutic potential of targeting pyruvate kinase M2 (PKM2) has been postulated in several cardiovascular diseases. PKM2 gene knockout and expression studies implicated the role of PKM2 in MI. However, the effects of pharmacological interventions targeting PKM2 have not been investigated in MI. Therefore, in the present study, effect of PKM2 inhibitor has been investigated in the MI along with elucidation of possible mechanism(s). MI in rats was induced by administrations of isoproterenol (ISO) at a dose of 100 mg/kg s.c. for two consecutives days at 24-h interval. At the same time, shikonin (PKM2 inhibitor) was administered at 2 and 4 mg/kg in ISO-induced MI rats. After the shikonin treatment, the ventricular functions were measured using a PV-loop system. Plasma MI injury markers, cardiac histology, and immunoblotting were performed to elucidate the molecular mechanism. Treatment of shikonin 2 and 4 mg/kg ameliorated cardiac injury, reduced infarct size, biochemical alterations, ventricular dysfunction, and cardiac fibrosis in ISO-induced MI. Expression of PKM2 in the ventricle was reduced while PKM1 expression increased in the shikonin treated group, indicating PKM2 inhibition restores PKM1 expression. In addition, PKM splicing protein (hnRNPA2B1 & PTBP1), HIF-1α, and caspase-3 expression were reduced after shikonin treatment. Our findings suggest that pharmacological inhibition of PKM2 with shikonin could be a potential therapeutic strategy to treat MI.
Collapse
Affiliation(s)
- Mohd Rihan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar (Mohali), 160062, Punjab, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar (Mohali), 160062, Punjab, India.
| |
Collapse
|
17
|
Wang Y, Guo M, Tang CK. History and Development of ABCA1. Curr Probl Cardiol 2024; 49:102036. [PMID: 37595859 DOI: 10.1016/j.cpcardiol.2023.102036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
ATP-binding cassette protein A1 (ABCA1) is a key protein in the transport of intracellular cholesterol to the extracellular and plays an important role in reducing cholesterol accumulation in surrounding tissues. Bibliometric analysis refers to the cross-science of quantitative analysis of a variety of documents by mathematical and statistical methods. It combines an analysis of structural and temporal patterns in scholarly publications with a description of topic concentration and types of uncertainty. This paper analyzes the history, hotspot, and development trend of ABCA1 through bibliometrics. It will provide readers with the research status and development trend of ABCA1 and help the hot research in this field explore new research directions. After screening, the research on ABCA1 is still in a hot phase in the past 20 years. ABCA1 is emerging in previously unrelated disciplines such as cancer. There were 551 keywords and 6888 breakout citations counted by CiteSpace. The relationship between cancer and cardiovascular disease has been linked by ABCA1. This review will guide readers who are not familiar with ABCA1 research to quickly understand the development process of ABCA1 and provide researchers with a possible future research focus on ABCA1.
Collapse
Affiliation(s)
- Yang Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Min Guo
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
18
|
Hou P, Fang J, Liu Z, Shi Y, Agostini M, Bernassola F, Bove P, Candi E, Rovella V, Sica G, Sun Q, Wang Y, Scimeca M, Federici M, Mauriello A, Melino G. Macrophage polarization and metabolism in atherosclerosis. Cell Death Dis 2023; 14:691. [PMID: 37863894 PMCID: PMC10589261 DOI: 10.1038/s41419-023-06206-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/22/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of fatty deposits in the inner walls of vessels. These plaques restrict blood flow and lead to complications such as heart attack or stroke. The development of atherosclerosis is influenced by a variety of factors, including age, genetics, lifestyle, and underlying health conditions such as high blood pressure or diabetes. Atherosclerotic plaques in stable form are characterized by slow growth, which leads to luminal stenosis, with low embolic potential or in unstable form, which contributes to high risk for thrombotic and embolic complications with rapid clinical onset. In this complex scenario of atherosclerosis, macrophages participate in the whole process, including the initiation, growth and eventually rupture and wound healing stages of artery plaque formation. Macrophages in plaques exhibit high heterogeneity and plasticity, which affect the evolving plaque microenvironment, e.g., leading to excessive lipid accumulation, cytokine hyperactivation, hypoxia, apoptosis and necroptosis. The metabolic and functional transitions of plaque macrophages in response to plaque microenvironmental factors not only influence ongoing and imminent inflammatory responses within the lesions but also directly dictate atherosclerotic progression or regression. In this review, we discuss the origin of macrophages within plaques, their phenotypic diversity, metabolic shifts, and fate and the roles they play in the dynamic progression of atherosclerosis. It also describes how macrophages interact with other plaque cells, particularly T cells. Ultimately, targeting pathways involved in macrophage polarization may lead to innovative and promising approaches for precision medicine. Further insights into the landscape and biological features of macrophages within atherosclerotic plaques may offer valuable information for optimizing future clinical treatment for atherosclerosis by targeting macrophages.
Collapse
Affiliation(s)
- Pengbo Hou
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jiankai Fang
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Zhanhong Liu
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yufang Shi
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Massimiliano Agostini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Bernassola
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Pierluigi Bove
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Valentina Rovella
- Department of System Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Giuseppe Sica
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Qiang Sun
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Ying Wang
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Massimo Federici
- Department of System Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy.
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
19
|
Jin J, Zhao Q, Wei Z, Chen K, Su Y, Hu X, Peng X. Glycolysis-cholesterol metabolic axis in immuno-oncology microenvironment: emerging role in immune cells and immunosuppressive signaling. Cell Biosci 2023; 13:189. [PMID: 37828561 PMCID: PMC10571292 DOI: 10.1186/s13578-023-01138-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023] Open
Abstract
Cell proliferation and function require nutrients, energy, and biosynthesis activity to duplicate repertoires for each daughter. It is therefore not surprising that tumor microenvironment (TME) metabolic reprogramming primarily orchestrates the interaction between tumor and immune cells. Tumor metabolic reprogramming affords bioenergetic, signaling intermediates, and biosynthesis requirements for both malignant and immune cells. Different immune cell subsets are recruited into the TME, and these manifestations have distinct effects on tumor progression and therapeutic outcomes, especially the mutual contribution of glycolysis and cholesterol metabolism. In particularly, glycolysis-cholesterol metabolic axis interconnection plays a critical role in the TME modulation, and their changes in tumor metabolism appear to be a double-edged sword in regulating various immune cell responses and immunotherapy efficacy. Hence, we discussed the signature manifestation of the glycolysis-cholesterol metabolic axis and its pivotal role in tumor immune regulation. We also highlight how hypothetical combinations of immunotherapy and glycolysis/cholesterol-related metabolic interventions unleash the potential of anti-tumor immunotherapies, as well as developing more effective personalized treatment strategies.
Collapse
Affiliation(s)
- Jing Jin
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Qijie Zhao
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Zhigong Wei
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Keliang Chen
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Yonglin Su
- Department of Rehabilitation, Cancer Center, West China Hospital, Sichuan University, Sichuan, People's Republic of China.
| | - Xiaolin Hu
- Department of Nursing, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Xingchen Peng
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
20
|
Han D, Wu Y, Lu D, Pang J, Hu J, Zhang X, Wang Z, Zhang G, Wang J. Polyphenol-rich diet mediates interplay between macrophage-neutrophil and gut microbiota to alleviate intestinal inflammation. Cell Death Dis 2023; 14:656. [PMID: 37813835 PMCID: PMC10562418 DOI: 10.1038/s41419-023-06190-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/18/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023]
Abstract
Dietary phenolic acids alleviate intestinal inflammation through altering gut microbiota composition and regulating macrophage activation. However, it is unclear how individual phenolic acids affect the interactions between intestinal microbiota and macrophages in the context of inflammatory bowel disease (IBD). Here, we aim to elucidate the mechanism by which phenolic acids alleviate gut inflammation. Mice with or without depletion of macrophages were administered with four individual phenolic acids including chlorogenic, ferulic, caffeic, and ellagic acids, following dextran sulfate sodium (DSS) treatment. Gut microbiota depletion and fecal microbiota transplantation were further performed in mice to investigate the role of the gut microbiota in phenolic acid-mediated protective effect. Colitis severity was evaluated using histological, serological, and immunological measurements. Absence of intestinal microbiota and macrophage deteriorate the epithelial injury in DSS colitis. Chlorogenic acid mitigated colitis by reducing M1 macrophage polarization through suppression of pyruvate kinase M 2 (Pkm2)-dependent glycolysis and inhibition of NOD-like receptor protein 3 (Nlrp3) activation. However, ferulic acid-mediated reduction of colitis was neutrophil-dependent through diminishing the formation of neutrophil extracellular traps. On the other hand, the beneficial effects of caffeic acid and ellagic acid were dependent upon the gut microbiota. In fact, urolithin A (UroA), a metabolite transformed from ellagic acid by the gut microbiota, was found to alleviate colitis and enhance gut barrier function in an IL22-dependent manner. Overall, our findings demonstrated that the mechanisms by which phenolic acid protected against colitis were resulted from the interaction between gut microbiota and macrophage-neutrophil.
Collapse
Affiliation(s)
- Dandan Han
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yujun Wu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dongdong Lu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jiaman Pang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jie Hu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiangyu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhenyu Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
21
|
Li L, Mou J, Han Y, Wang M, Lu S, Ma Q, Wang J, Ye J, Sun G. Calenduloside e modulates macrophage polarization via KLF2-regulated glycolysis, contributing to attenuates atherosclerosis. Int Immunopharmacol 2023; 117:109730. [PMID: 36878047 DOI: 10.1016/j.intimp.2023.109730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 03/06/2023]
Abstract
Glycolysis-mediated macrophage polarization plays a crucial role in atherosclerosis. Although it is known that calenduloside E (CE) exerts anti-inflammatory and lipid-lowering effects in atherosclerosis, the underlying mechanism of action is not clearly understood. We hypothesized that CE functions by inhibiting M1 macrophage polarization via regulation of glycolysis. To verify this hypothesis, we determined the effects of CE in apolipoprotein E deficient (ApoE-/-) mice and on macrophage polarization in oxidized low-density lipoprotein (ox-LDL)-induced RAW 264.7 macrophages and peritoneal macrophages. We also determined whether these effects are linked to regulation of glycolysis both in vivo and in vitro. The plaque size was reduced, and serum cytokine levels were decreased in the ApoE-/- +CE group compared with that in the model group. CE decreased lipid droplet formation, inflammatory factor levels, and mRNA levels of M1 macrophage markers in ox-ldl-induced macrophages. CE suppressed ox-ldl-induced glycolysis, lactate levels, and glucose uptake. The relationship between glycolysis and M1 macrophage polarization was demonstrated using the glycolysis inhibitor 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one. CE substantially upregulated ox-ldl-induced Kruppel-like transcription factor (KLF2) expression, and the effects of CE on ox-ldl-induced glycolysis and inflammatory factor levels disappeared after KLF2 knockdown. Together, our findings suggest that CE alleviates atherosclerosis by inhibiting glycolysis-mediated M1 macrophage polarization through upregulation of KLF2 expression, providing a new strategy for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Lanfang Li
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Junyu Mou
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; School of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Yanwei Han
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Min Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shan Lu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Qiuxiao Ma
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jialu Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jingxue Ye
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
| | - Guibo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
22
|
Quinteros SL, von Krusenstiern E, Snyder NW, Tanaka A, O’Brien B, Donnelly S. The helminth derived peptide FhHDM-1 redirects macrophage metabolism towards glutaminolysis to regulate the pro-inflammatory response. Front Immunol 2023; 14:1018076. [PMID: 36761766 PMCID: PMC9905698 DOI: 10.3389/fimmu.2023.1018076] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
We have previously identified an immune modulating peptide, termed FhHDM-1, within the secretions of the liver fluke, Fasciola hepatica, which is sufficiently potent to prevent the progression of type 1 diabetes and multiple sclerosis in murine models of disease. Here, we have determined that the FhHDM-1 peptide regulates inflammation by reprogramming macrophage metabolism. Specifically, FhHDM-1 switched macrophage metabolism to a dependence on oxidative phosphorylation fuelled by fatty acids and supported by the induction of glutaminolysis. The catabolism of glutamine also resulted in an accumulation of alpha ketoglutarate (α-KG). These changes in metabolic activity were associated with a concomitant reduction in glycolytic flux, and the subsequent decrease in TNF and IL-6 production at the protein level. Interestingly, FhHDM-1 treated macrophages did not express the characteristic genes of an M2 phenotype, thereby indicating the specific regulation of inflammation, as opposed to the induction of an anti-inflammatory phenotype per se. Use of an inactive derivative of FhHDM-1, which did not modulate macrophage responses, revealed that the regulation of immune responses was dependent on the ability of FhHDM-1 to modulate lysosomal pH. These results identify a novel functional association between the lysosome and mitochondrial metabolism in macrophages, and further highlight the significant therapeutic potential of FhHDM-1 to prevent inflammation.
Collapse
Affiliation(s)
- Susel Loli Quinteros
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | | | - Nathaniel W. Snyder
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Akane Tanaka
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Bronwyn O’Brien
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Sheila Donnelly
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia,*Correspondence: Sheila Donnelly,
| |
Collapse
|
23
|
Cathepsin B/NLRP3/GSDMD axis-mediated macrophage pyroptosis induces inflammation and fibrosis in systemic sclerosis. J Dermatol Sci 2022; 108:127-137. [PMID: 36585288 DOI: 10.1016/j.jdermsci.2022.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 12/01/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Pyroptosis is a newly discovered type of programmed cell death associated with inflammatory and fibrotic diseases. Macrophages play an important role in inducing early immune inflammation in systemic sclerosis (SSc). OBJECTIVE To investigate the effect of macrophages pyroptosis on fibrosis of SSc. METHODS Pyroptosis/inflammatory markers in serum and skin of SSc patients were detected. Bleomycin (BLM) was subcutaneously injected to establish SSc mouse model. The levels of pyroptosis markers, dermal thickness and collagen deposition in skin were assessed before and after the administration of pyroptosis inhibitors, including MCC950, Disulfiram and necrosulfonamide (NSA). Human-derived monocyte-macrophage cell line (THP-1) or mouse bone marrow-derived macrophages (BMDMs) were primed with lipopolysaccharide (LPS) and stimulated by silicon dioxide (SiO2) to induce cell pyroptosis. Fibroblasts from patients with SSc were co-cultured with pyroptotic THP-1 cells, and the collagen production was assessed. RESULTS Pyroptotic/inflammatory proteins, including NLRP3, cleaved-Caspase (CASP)1, GSDMD-N terminal and IL-18 were increased in the serum, and ASC aggregation and GSDMD were elevated in macrophages in the skin of SSc patients. SSc mice showed increased pyroptosis markers, dermal thickness and collagen deposition in skins, which were alleviated by MCC950, Disulfiram and NSA. Pyroptosis of THP-1 cells and BMDMs was induced by LPS/SiO2, and it was reduced by the inhibitors of Cathepsin B, NLRP3, CASP1 and GSDMD. Co-culture with pyroptotic THP-1 cells increased the fibrotic proteins in fibroblasts, which were alleviated by pyroptosis inhibitors. CONCLUSIONS SSc patients and BLM-induced mouse model presented increased pyroptosis. LPS/SiO2-induced macrophage pyroptosis promoted fibrosis of SSc through Cathepsin B/NLRP3/GSDMD pathway.
Collapse
|
24
|
Ojo OO, Leake DS. Effects of lysosomal low density lipoprotein oxidation by ferritin on macrophage function. Free Radic Res 2022; 56:436-446. [PMID: 36217887 DOI: 10.1080/10715762.2022.2133703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
We have previously demonstrated that low density lipoprotein (LDL) can be oxidised by iron in the lysosomes of macrophages. Some of the iron content of lysosomes might be delivered through autophagy of ferritin (the main iron-storage protein in the body). We have now investigated the effects of ferritin-mediated LDL oxidation on macrophage function. The addition of ferritin to human THP-1 cells and human monocyte-derived macrophages increased lysosomal lipid peroxidation, as shown by LPO-Foam, a fluorescent probe targetted to lysosomes. Incubating THP-1 cells with ferritin and native LDL or LDL aggregated by sphingomyelinase, to allow their endocytosis and delivery to lysosomes, led to the formation of lysosomal ceroid (an advanced lipid oxidation product), indicative of lysosomal LDL oxidation. Incubating THP-1 cells with ferritin and LDL caused metabolic activation of the cells, as shown by increased extracellular acidification and oxygen consumption measured by a Seahorse analyser. LDL oxidised by ferritin in lysosomes might be released from macrophages when the cells die and lyse and affect neighbouring cells in atherosclerotic lesions. Adding LDL oxidised by ferritin at lysosomal pH (pH 4.5) to macrophages increased their intracellular reactive oxygen species formation, shown using dihydroethidium, and increased apoptosis. Ferritin might therefore contribute to LDL oxidation in the lysosomes of macrophages and have atherogenic effects.
Collapse
Affiliation(s)
- Oluwatosin O Ojo
- School of Biological Sciences and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, Berkshire, UK
| | - David S Leake
- School of Biological Sciences and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, Berkshire, UK
| |
Collapse
|
25
|
Bhale AS, Venkataraman K. Leveraging knowledge of HDLs major protein ApoA1: Structure, function, mutations, and potential therapeutics. Biomed Pharmacother 2022; 154:113634. [PMID: 36063649 DOI: 10.1016/j.biopha.2022.113634] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/02/2022] Open
Abstract
Apolipoprotein A1 (ApoA1) is a member of the Apolipoprotein family of proteins. It's a vital protein that helps in the production of high-density lipoprotein (HDL) particles, which are crucial for reverse cholesterol transport (RCT). It also has anti-inflammatory, anti-atherogenic, anti-apoptotic, and anti-thrombotic properties. These functions interact to give HDL particles their cardioprotective characteristics. ApoA1 has recently been investigated for its potential role in atherosclerosis, diabetes, neurological diseases, cancer, and certain infectious diseases. Since ApoA1's discovery, numerous mutations have been reported that affect its structural integrity and alter its function. Hence these insights have led to the development of clinically relevant peptides and synthetic reconstituted HDL (rHDL) that mimics the function of ApoA1. As a result, this review has aimed to provide an organized explanation of our understanding of the ApoA1 protein structure and its role in various essential pathways. Furthermore, we have comprehensively reviewed the important ApoA1 mutations (24 mutations) that are reported to be involved in various diseases. Finally, we've focused on the therapeutic potentials of some of the beneficial mutations, small peptides, and synthetic rHDL that are currently being researched or developed, since these will aid in the development of novel therapeutics in the future.
Collapse
Affiliation(s)
- Aishwarya Sudam Bhale
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Krishnan Venkataraman
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
26
|
Rihan M, Sharma SS. Role of Pyruvate Kinase M2 (PKM2) in Cardiovascular Diseases. J Cardiovasc Transl Res 2022; 16:382-402. [PMID: 36178660 DOI: 10.1007/s12265-022-10321-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022]
Abstract
Cardiovascular diseases (CVDs) are the world's leading cause of death, accounting for 32% of all fatalities. Although therapeutic agents are available for CVDs, however, most of them have significant limitations such as the time-dependency effect, hypotension, and bradycardia. To overcome the limitations of current pharmacological therapies, new molecular targets and pathways need to be identified and investigated to provide better treatment options for CVDs. Recent evidence suggested the involvement of pyruvate kinase M2 (PKM2) and targeting PKM2 by its modulators (inhibitors and activators) has shown promising results in several CVDs. PKM2 regulates gene activation in the context of apoptosis, mitosis, hypoxia, inflammation, and metabolic reprogramming. PKM2 modulators might have a significant impact on the molecular pathways involved in CVD pathogenesis. Therefore, PKM2 modulators can be one of the therapeutic options for CVDs. This review provides an insight into PKM2 involvement in various CVDs along with their therapeutic potential.
Collapse
Affiliation(s)
- Mohd Rihan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, India.
| |
Collapse
|
27
|
Li L, Wang M, Ma Q, Ye J, Sun G. Role of glycolysis in the development of atherosclerosis. Am J Physiol Cell Physiol 2022; 323:C617-C629. [DOI: 10.1152/ajpcell.00218.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Atherosclerosis is a chronic inflammatory vascular disease associated with atherosclerotic plaques and endothelial dysfunction, inflammation, and plaque formation. Glycolysis is a conservative and rigorous biological process that decomposes glucose into pyruvate. Its function is to provide the body with energy and intermediate products required for life activities. However, abnormalities in glycolytic flux during the progression of atherosclerosis accelerate disease progression. Here, we review the role of glycolysis in the development of atherosclerosis to provide new ideas for developing novel anti-atherosclerosis strategies.
Collapse
Affiliation(s)
- Lanfang Li
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Min Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Qiuxiao Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingxue Ye
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
28
|
Zhang ZZ, Yu XH, Tan WH. Baicalein inhibits macrophage lipid accumulation and inflammatory response by activating the PPARγ/LXRα pathway. Clin Exp Immunol 2022; 209:316-325. [PMID: 35749304 PMCID: PMC9521661 DOI: 10.1093/cei/uxac062] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/27/2022] [Accepted: 06/23/2022] [Indexed: 01/23/2023] Open
Abstract
Lipid accumulation and inflammatory response are two major risk factors for atherosclerosis. Baicalein, a phenolic flavonoid widely used in East Asian countries, possesses a potential atheroprotective activity. However, the underlying mechanisms remain elusive. This study was performed to explore the impact of baicalein on lipid accumulation and inflammatory response in THP-1 macrophage-derived foam cells. Our results showed that baicalein up-regulated the expression of ATP binding cassette transporter A1 (ABCA1), ABCG1, liver X receptor α (LXRα), and peroxisome proliferator-activated receptor γ (PPARγ), promoted cholesterol efflux, and inhibited lipid accumulation. Administration of baicalein also reduced the expression and secretion of TNF-α, IL-1β, and IL-6. Knockdown of LXRα or PPARγ with siRNAs abrogated the effects of baicalein on ABCA1 and ABCG1 expression, cholesterol efflux, lipid accumulation as well as pro-inflammatory cytokine release. In summary, these findings suggest that baicalein exerts a beneficial effect on macrophage lipid accumulation and inflammatory response by activating the PPARγ/LXRα signaling pathway.
Collapse
Affiliation(s)
- Zi-Zhen Zhang
- School of Medicine, Hunan Polytechnic of Environment and Biology, Hengyang Hunan, China
| | - Xiao-Hua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Wei-Hua Tan
- Correspondence: Wei-Hua Tan, Emergency Department, The First Affiliated Hospital of University of South China, Hengyang 421001 Hunan, China.
| |
Collapse
|
29
|
Dadhich R, Kapoor S. Lipidomic and Membrane Mechanical Signatures in Triple-Negative Breast Cancer: Scope for Membrane-Based Theranostics. Mol Cell Biochem 2022; 477:2507-2528. [PMID: 35595957 DOI: 10.1007/s11010-022-04459-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer associated with poor prognosis, higher grade, and a high rate of metastatic occurrence. Limited therapeutic interventions and the compounding issue of drug resistance in triple-negative breast cancer warrants the discovery of novel therapeutic targets and diagnostic modules. To this view, in addition to proteins, lipids also regulate cellular functions via the formation of membranes that modulate membrane protein function, diffusion, and their localization; thus, orchestrating signaling hot spots enriched in specific lipids/proteins on cell membranes. Lipid deregulation in cancer leads to reprogramming of the membrane dynamics and functions impacting cell proliferation, metabolism, and metastasis, providing exciting starting points for developing lipid-based approaches for treating TNBC. In this review, we provide a detailed account of specific lipidic changes in breast cancer, link the altered lipidome with membrane structure and mechanical properties, and describe how these are linked to subsequent downstream functions implicit in cancer progression, metastasis, and chemoresistance. At the fundamental level, we discuss how the lipid-centric findings in TNBC are providing cues for developing lipid-inspired theranostic strategies while bridging existing gaps in our understanding of the functional involvement of lipid membranes in cancer.
Collapse
Affiliation(s)
- Ruchika Dadhich
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India. .,Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8528, Japan.
| |
Collapse
|
30
|
Yu XH, Tang CK. ABCA1, ABCG1, and Cholesterol Homeostasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1377:95-107. [PMID: 35575923 DOI: 10.1007/978-981-19-1592-5_7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cholesterol is a major component of mammalian cell membranes and plays important structural and functional roles. However, excessive cholesterol accumulation is toxic to cells and constitutes the molecular basis for many diseases, especially atherosclerotic cardiovascular disease. Thus, cellular cholesterol is tightly regulated to maintain a homeostasis. Reverse cholesterol transport (RCT) is thought to be one primary pathway to eliminate excessive cholesterol from the body. The first and rate-limiting step of RCT is ATP-binding cassette (ABC) transports A1 (ABCA1)- and ABCG1-dependent cholesterol efflux. In the process, ABCA1 mediates initial transport of cellular cholesterol to apolipoprotein A-I (apoA-I) for forming nascent high-density lipoprotein (HDL) particles, and ABCG1 facilitates subsequent continued cholesterol efflux to HDL for further maturation. In this chapter, we summarize the roles of ABCA1 and ABCG1 in maintaining cellular cholesterol homoeostasis and discuss the underlying mechanisms by which they mediate cholesterol export.
Collapse
Affiliation(s)
- Xiao-Hua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
31
|
Doddapattar P, Dev R, Ghatge M, Patel RB, Jain M, Dhanesha N, Lentz SR, Chauhan AK. Myeloid Cell PKM2 Deletion Enhances Efferocytosis and Reduces Atherosclerosis. Circ Res 2022; 130:1289-1305. [PMID: 35400205 PMCID: PMC9050913 DOI: 10.1161/circresaha.121.320704] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/25/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND The glycolytic enzyme PKM2 (pyruvate kinase muscle 2) is upregulated in monocytes/macrophages of patients with atherosclerotic coronary artery disease. However, the role of cell type-specific PKM2 in the setting of atherosclerosis remains to be defined. We determined whether myeloid cell-specific PKM2 regulates efferocytosis and atherosclerosis. METHODS We generated myeloid cell-specific PKM2-/- mice on Ldlr (low-density lipoprotein receptor)-deficient background (PKM2mye-KOLdlr-/-). Controls were littermate PKM2WTLdlr-/- mice. Susceptibility to atherosclerosis was evaluated in whole aortae and cross sections of the aortic sinus in male and female mice fed a high-fat Western diet for 14 weeks, starting at 8 weeks. RESULTS PKM2 was upregulated in macrophages of Ldlr-/- mice fed a high-fat Western diet compared with chow diet. Myeloid cell-specific deletion of PKM2 led to a significant reduction in lesions in the whole aorta and aortic sinus despite high cholesterol and triglyceride levels. Furthermore, we found decreased macrophage content in the lesions of myeloid cell-specific PKM2-/- mice associated with decreased MCP-1 (monocyte chemoattractant protein 1) levels in plasma, reduced transmigration of macrophages in response to MCP-1, and impaired glycolytic rate. Macrophages isolated from myeloid-specific PKM2-/- mice fed the Western diet exhibited reduced expression of proinflammatory genes, including MCP-1, IL (interleukin)-1β, and IL-12. Myeloid cell-specific PKM2-/- mice exhibited reduced apoptosis concomitant with enhanced macrophage efferocytosis and upregulation of LRP (LDLR-related protein)-1 in macrophages in vitro and atherosclerotic lesions in vivo. Silencing LRP-1 in PKM2-deficient macrophages restored inflammatory gene expression and reduced efferocytosis. As a therapeutic intervention, inhibiting PKM2 nuclear translocation using a small molecule reduced glycolytic rate, enhanced efferocytosis, and reduced atherosclerosis in Ldlr-/- mice. CONCLUSIONS Genetic deletion of PKM2 in myeloid cells or limiting its nuclear translocation reduces atherosclerosis by suppressing inflammation and enhancing efferocytosis.
Collapse
Affiliation(s)
| | | | - Madankumar Ghatge
- Division of Hematology/Oncology, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Rakesh B. Patel
- Division of Hematology/Oncology, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Manish Jain
- Division of Hematology/Oncology, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Nirav Dhanesha
- Division of Hematology/Oncology, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Steven R. Lentz
- Division of Hematology/Oncology, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Anil K. Chauhan
- Division of Hematology/Oncology, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
32
|
Ranjbar R, Ghasemian M, Maniati M, Hossein Khatami S, Jamali N, Taheri-Anganeh M. Gastrointestinal disorder biomarkers. Clin Chim Acta 2022; 530:13-26. [DOI: 10.1016/j.cca.2022.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 01/19/2023]
|
33
|
Liang L, Xie Q, Sun C, Wu Y, Zhang W, Li W. Phospholipase A2 group IIA correlates with circulating high-density lipoprotein cholesterol and modulates cholesterol efflux possibly through regulation of PPAR-γ/LXR-α/ABCA1 in macrophages. J Transl Med 2021; 19:484. [PMID: 34838043 PMCID: PMC8626914 DOI: 10.1186/s12967-021-03151-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022] Open
Abstract
Background Secretory phospholipase A2 group IIA (sPLA2-IIA) is an independent risk factor for cardiovascular disease, but its role on high-density lipoprotein cholesterol (HDL-C) level has not been clarified. The aim of the present study was to explore the association between circulating sPLA2-IIA and HDL-C, and to evaluate if sPLA2-IIA enhances cholesterol efflux capacity through regulation of peroxisome proliferator-activated receptor γ (PPAR-γ), liver X receptor α (LXR-α), and ATP-binding cassette A1 (ABCA1). Methods 131 patients with coronary artery disease were enrolled. The plasma level of sPLA2-IIA was tested with enzyme-linked immunosorbent assay kit, and serum lipids were assessed by biochemical analyzer. Human monocyte-macrophage cell line THP-1 was co-incubated with sPLA2-IIA in the presence/absence of selective PPAR-γ antagonist GW9662 in vitro. Real-time PCR and Western-blot were employed to measure the mRNA and protein expressions of PPAR-γ, LXR-α, and ABCA1, respectively. The cholesterol efflux was evaluated by using an assay kit. Results In subjects, circulating level of sPLA2-IIA was positively related with that of HDL-C (r = 0.196, p = 0.024). The plasma level of sPLA2-IIA was significantly higher in the high HDL-C (≥ 1.04 mmol/L) group (7477.828 pg/mL) than that in low HDL-C (< 1.04 mmol/L) group (5836.92 pg/mL, p = 0.004). For each increase of 1 pg/μl in sPLA2-IIA level, the adjusted odds ratio for HDL-C ≥ 1.04 mmol/L was 1.143. Co-incubation of THP-1 cells with sPLA2-IIA resulted in increased expressions of PPAR-γ, LXR-α, and ABCA1, as well as enhanced cholesterol efflux capacity, that were all reversed by administration of GW9662. Conclusions Circulating sPLA2-IIA was positively associated with HDL-C. PPAR-γ/LXR-α/ABCA1 might be responsible for sPLA2-IIA-regulated cholesterol efflux in macrophages. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03151-3.
Collapse
Affiliation(s)
- Ling Liang
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.,Department of Cardiology, The Third Clinical Medical College, Fujian Medical University, Fuzhou, 350122, China
| | - Qiang Xie
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.,Department of Cardiology, The Third Clinical Medical College, Fujian Medical University, Fuzhou, 350122, China
| | - Changqing Sun
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Yuanhui Wu
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Wei Zhang
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.
| | - Weihua Li
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China. .,Department of Cardiology, The Third Clinical Medical College, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
34
|
Recognition of Oxidized Lipids by Macrophages and Its Role in Atherosclerosis Development. Biomedicines 2021; 9:biomedicines9080915. [PMID: 34440119 PMCID: PMC8389651 DOI: 10.3390/biomedicines9080915] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 02/08/2023] Open
Abstract
Atherosclerosis is a multifactorial chronic disease that has a prominent inflammatory component. Currently, atherosclerosis is regarded as an active autoimmune process that involves both innate and adaptive immune pathways. One of the drivers of this process is the presence of modified low-density lipoprotein (LDL). For instance, lipoprotein oxidation leads to the formation of oxidation-specific epitopes (OSE) that can be recognized by the immune cells. Macrophage response to OSEs is recognized as a key trigger for initiation and a stimulator of progression of the inflammatory process in the arteries. At the same time, the role of oxidized LDL components is not limited to pro-inflammatory stimulation, but includes immunoregulatory effects that can have protective functions. It is, therefore, important to better understand the complexity of oxidized LDL effects in atherosclerosis in order to develop new therapeutic approaches to correct the inflammatory and metabolic imbalance associated with this disorder. In this review, we discuss the process of oxidized LDL formation, mechanisms of OSE recognition by macrophages and the role of these processes in atherosclerosis.
Collapse
|
35
|
Gupta P, Sharma G, Lahiri A, Barthwal MK. FOXO3a acetylation regulates PINK1, mitophagy, inflammasome activation in murine palmitate-conditioned and diabetic macrophages. J Leukoc Biol 2021; 111:611-627. [PMID: 34288093 DOI: 10.1002/jlb.3a0620-348rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 3 inflammasome and mitophagy play an important role in cytokine release and diabetes progression; however, the role of saturated fatty acid that is induced under such conditions remains little explored. Therefore, the present study evaluates mechanisms regulating mitophagy and inflammasome activation in primary murine diabetic and palmitate-conditioned wild-type (WT) peritoneal macrophages. Peritoneal macrophage, from the diabetic mice and WT mice, challenged with LPS/ATP and palmitate/LPS/ATP, respectively, showed dysfunctional mitochondria as assessed by their membrane potential, mitochondrial reactive oxygen species (mtROS) production, and mitochondrial DNA (mtDNA) release. A defective mitophagy was observed in the diabetic and palmitate-conditioned macrophages stimulated with LPS/ATP as assessed by translocation of PTEN-induced kinase 1 (PINK1)/Parkin or p62 in the mitochondrial fraction. Consequently, increased apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) oligomerization, caspase-1 activation, and IL1β secretion were observed in LPS/ATP stimulated diabetic and palmitate-conditioned macrophages. LPS/ATP induced Forkhead box O3a (FOXO3a) binding to PINK1 promoter and increased PINK1 mRNA expression in WT macrophages. However, PINK1 mRNA and protein expression were significantly decreased in diabetic and palmitate-conditioned macrophages in response to LPS/ATP. Palmitate-induced acetyl CoA promoted FOXO3a acetylation, which prevented LPS/ATP-induced FOXO3a binding to the PINK1 promoter. C646 (P300 inhibitor) and SRT1720 (SIRT1 activator) prevented FOXO3a acetylation and restored FOXO3a binding to the PINK1 promoter, PINK1 mRNA expression, and mitophagy in palmitate-conditioned macrophages treated with LPS/ATP. Also, a significant decrease in the LPS/ATP-induced mtROS production, mtDNA release, ASC oligomerization, caspase-1 activation, and IL-1β release was observed in the palmitate-conditioned macrophages. Similarly, modulation of FOXO3a acetylation also prevented LPS/ATP-induced mtDNA release and inflammasome activation in diabetic macrophages. Therefore, FOXO3a acetylation regulates PINK1-dependent mitophagy and inflammasome activation in the palmitate-conditioned and diabetic macrophages.
Collapse
Affiliation(s)
- Priya Gupta
- Department of Pharmacology, Council of Scientific and Industrial Research-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
| | - Gaurav Sharma
- Department of Pharmacology, Council of Scientific and Industrial Research-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
| | - Amit Lahiri
- Department of Pharmacology, Council of Scientific and Industrial Research-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
| | - Manoj Kumar Barthwal
- Department of Pharmacology, Council of Scientific and Industrial Research-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
| |
Collapse
|
36
|
Xia XD, Yu XH, Chen LY, Xie SL, Feng YG, Yang RZ, Zhao ZW, Li H, Wang G, Tang CK. Myocardin suppression increases lipid retention and atherosclerosis via downregulation of ABCA1 in vascular smooth muscle cells. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158824. [PMID: 33035679 DOI: 10.1016/j.bbalip.2020.158824] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/16/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022]
Abstract
Myocardin (MYOCD) plays an important role in cardiovascular disease. However, its underlying impact on atherosclerosis remains to be elucidated. ATP binding cassette transporter A1 (ABCA1), a key membrane-associated lipid transporter which maintains intracellular lipid homeostasis, has a protective function in atherosclerosis progress. The purpose of this study was to investigate whether and how the effect of MYOCD on atherosclerosis is associated with ABCA1 in vascular smooth muscle cells (VSMCs). We found both MYOCD and ABCA1 expression were dramatically decreased in atherosclerotic patient aortas compared to control. MYOCD knockdown inhibited ABCA1 expression in human aortic vascular smooth muscle cells (HAVSMCs), leading to reduced cholesterol efflux and increased intracellular cholesterol contents. MYOCD overexpression exerted the opposite effect. Mechanistically, MYOCD regulates ABCA1 expression in an SRF-dependent manner. Consistently, apolipoprotein E-deficient mice treated with MYOCD shRNA developed more plaques in the aortic sinus, which is associated with reduced ABCA1 expression, increased cholesterol retention in the aorta, and decreased high-density lipoprotein cholesterol levels in the plasma. Our data suggest that MYOCD deficiency exacerbates atherosclerosis by downregulating ABCA1 dependent cholesterol efflux from VSMCs, thereby providing a novel strategy for the therapeutic treatment of atherosclerotic cardiovascular disease.
Collapse
MESH Headings
- ATP Binding Cassette Transporter 1/genetics
- ATP Binding Cassette Transporter 1/metabolism
- Aged
- Aged, 80 and over
- Animals
- Aorta/cytology
- Aorta/metabolism
- Aorta/pathology
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Cells, Cultured
- Down-Regulation
- Female
- Humans
- Lipid Metabolism
- Male
- Mice, Knockout, ApoE
- Middle Aged
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Mice
Collapse
Affiliation(s)
- Xiao-Dan Xia
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangdong Province, Qingyuan 511518, China; Department of Microsurgery, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Hua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 460106, China
| | - Ling-Yan Chen
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Song-Lin Xie
- Department of Microsurgery, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yao-Guang Feng
- Department of Cardiothoracic Surgery, the First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Rui-Zhe Yang
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, Alberta, Canada
| | - Zhen-Wang Zhao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Heng Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Gang Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
37
|
Puckett DL, Alquraishi M, Chowanadisai W, Bettaieb A. The Role of PKM2 in Metabolic Reprogramming: Insights into the Regulatory Roles of Non-Coding RNAs. Int J Mol Sci 2021; 22:1171. [PMID: 33503959 PMCID: PMC7865720 DOI: 10.3390/ijms22031171] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/17/2023] Open
Abstract
Pyruvate kinase is a key regulator in glycolysis through the conversion of phosphoenolpyruvate (PEP) into pyruvate. Pyruvate kinase exists in various isoforms that can exhibit diverse biological functions and outcomes. The pyruvate kinase isoenzyme type M2 (PKM2) controls cell progression and survival through the regulation of key signaling pathways. In cancer cells, the dimer form of PKM2 predominates and plays an integral role in cancer metabolism. This predominance of the inactive dimeric form promotes the accumulation of phosphometabolites, allowing cancer cells to engage in high levels of synthetic processing to enhance their proliferative capacity. PKM2 has been recognized for its role in regulating gene expression and transcription factors critical for health and disease. This role enables PKM2 to exert profound regulatory effects that promote cancer cell metabolism, proliferation, and migration. In addition to its role in cancer, PKM2 regulates aspects essential to cellular homeostasis in non-cancer tissues and, in some cases, promotes tissue-specific pathways in health and diseases. In pursuit of understanding the diverse tissue-specific roles of PKM2, investigations targeting tissues such as the kidney, liver, adipose, and pancreas have been conducted. Findings from these studies enhance our understanding of PKM2 functions in various diseases beyond cancer. Therefore, there is substantial interest in PKM2 modulation as a potential therapeutic target for the treatment of multiple conditions. Indeed, a vast plethora of research has focused on identifying therapeutic strategies for targeting PKM2. Recently, targeting PKM2 through its regulatory microRNAs, long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) has gathered increasing interest. Thus, the goal of this review is to highlight recent advancements in PKM2 research, with a focus on PKM2 regulatory microRNAs and lncRNAs and their subsequent physiological significance.
Collapse
Affiliation(s)
- Dexter L. Puckett
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (D.L.P.); (M.A.)
| | - Mohammed Alquraishi
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (D.L.P.); (M.A.)
| | - Winyoo Chowanadisai
- Department of Nutrition, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (D.L.P.); (M.A.)
| |
Collapse
|
38
|
Chen W, Wu Y, Lu Q, Wang S, Xing D. Endogenous ApoA-I expression in macrophages: A potential target for protection against atherosclerosis. Clin Chim Acta 2020; 505:55-59. [PMID: 32092318 DOI: 10.1016/j.cca.2020.02.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/13/2022]
Abstract
ApoA-I is a major protein component of high-density lipoprotein (HDL) that is widely known for regulating cholesterol trafficking and inflammatory and immune responses and for protecting against atherosclerosis. ApoA-I is generally considered to be synthesized in the liver (hepatocytes) and small intestine (enterocytes). However, computer analysis of ApoA-I has shown that the ApoA-I gene may be expressed in not only hepatocytes and enterocytes but also monocyte-macrophage cells, dendritic cells (DCs) and T cells. ApoA-I expression has been detected in THP-1 monocytes and macrophages, peripheral blood mononuclear cells (PBMCs) from postmenopausal women, human PBMC-derived monocytes and macrophages, mouse peritoneal macrophages, etc. Endogenous ApoA-I in macrophages has anti-inflammatory and cholesterol efflux effects. However, our understanding of the detailed roles of macrophage-synthesized ApoA-I is still at an early stage and very limited. More experiments are needed to elucidate the exact roles of endogenous ApoA-I in macrophages. Several lines of evidence indicate that recombinant exogenous human ApoA-I in mouse macrophages increases cholesterol efflux and thus reduces atherosclerosis development. Considering the antiatherogenic effect of exogenous ApoA-I overexpression in mouse macrophages, better understanding the role and mechanisms underlying macrophage-synthesized ApoA-I in atherosclerosis will enable macrophage-synthesized ApoA-I therapy to open new avenues for reducing the risk of atherosclerosis.
Collapse
Affiliation(s)
- Wujun Chen
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Yudong Wu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Qi Lu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Shuai Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China; Department of Oncology, Weifang Traditional Chinese Medicine Hospital, Weifang, Shandong 261041, China.
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|