1
|
Harlina PW, Maritha V, Yang X, Dixon R, Muchtaridi M, Shahzad R, Nur'Isma EA. Exploring oxylipins in processed foods: Understanding mechanisms, analytical perspectives, and enhancing quality with lipidomics. Heliyon 2024; 10:e35917. [PMID: 39247353 PMCID: PMC11379580 DOI: 10.1016/j.heliyon.2024.e35917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024] Open
Abstract
Oxylipins are active lipid compounds formed through the oxidation of unsaturated fatty acids. These compounds have drawn considerable attention due to the potential impact on human health and processed food quality. Therefore, this study aimed to deepen current understanding and assess recent analytical advancements regarding the physiological roles of oxylipins in processed food products using lipidomics. The mechanisms behind oxylipins production in processed foods were extensively investigated, underscoring potential associations with chronic diseases. This indicates the need for innovative strategies to mitigate harmful oxylipins levels to enhance the safety and shelf life of processed food products. The results showed that mitigation methods, including the use of antioxidants and optimization of processing parameters, reduced oxylipins levels. The integration of lipidomics with food safety and quality control processes is evident in cutting-edge methods such as nuclear magnetic resonance and mass spectrometry for compliance and real-time evaluation. Aside from envisioning the future trajectory of food science and industry through prospective studies on oxylipins and processed foods, the results also provide the basis for future investigations, innovation, and advancements in the dynamic field of food science and technology.
Collapse
Affiliation(s)
- Putri Widyanti Harlina
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, 45363, Bandung, Indonesia
| | - Vevi Maritha
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, 45363, Bandung, Indonesia
- Pharmacy Study Program, Faculty of Health and Science, Universitas PGRI Madiun, Indonesia
| | - Xiang Yang
- Department of Animal Science, University of California Davis, California, 95616, United States
| | - Roy Dixon
- Department of Chemistry, California State University, Sacramento, CA, 95819, United States
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, 45363, Bandung, Indonesia
| | - Raheel Shahzad
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), Indonesia
| | - Ernisa Adha Nur'Isma
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, 45363, Bandung, Indonesia
| |
Collapse
|
2
|
Parchem K, Letsiou S, Petan T, Oskolkova O, Medina I, Kuda O, O'Donnell VB, Nicolaou A, Fedorova M, Bochkov V, Gladine C. Oxylipin profiling for clinical research: Current status and future perspectives. Prog Lipid Res 2024; 95:101276. [PMID: 38697517 DOI: 10.1016/j.plipres.2024.101276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Oxylipins are potent lipid mediators with increasing interest in clinical research. They are usually measured in systemic circulation and can provide a wealth of information regarding key biological processes such as inflammation, vascular tone, or blood coagulation. Although procedures still require harmonization to generate comparable oxylipin datasets, performing comprehensive profiling of circulating oxylipins in large studies is feasible and no longer restricted by technical barriers. However, it is essential to improve and facilitate the biological interpretation of complex oxylipin profiles to truly leverage their potential in clinical research. This requires regular updating of our knowledge about the metabolism and the mode of action of oxylipins, and consideration of all factors that may influence circulating oxylipin profiles independently of the studied disease or condition. This review aims to provide the readers with updated and necessary information regarding oxylipin metabolism, their different forms in systemic circulation, the current limitations in deducing oxylipin cellular effects from in vitro bioactivity studies, the biological and technical confounding factors needed to consider for a proper interpretation of oxylipin profiles.
Collapse
Affiliation(s)
- Karol Parchem
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza St., 80-233 Gdańsk, Poland; Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic.
| | - Sophia Letsiou
- Department of Biomedical Sciences, University of West Attica, Ag. Spiridonos St. Egaleo, 12243 Athens, Greece.
| | - Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.
| | - Olga Oskolkova
- Institute of Pharmaceutical Sciences, University of Graz, Humboldtstrasse 46/III, 8010 Graz, Austria.
| | - Isabel Medina
- Instituto de Investigaciones Marinas-Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Spain.
| | - Ondrej Kuda
- Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic.
| | - Valerie B O'Donnell
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK.
| | - Anna Nicolaou
- School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK.
| | - Maria Fedorova
- Center of Membrane Biochemistry and Lipid Research, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, 01307 Dresden, Germany.
| | - Valery Bochkov
- Institute of Pharmaceutical Sciences, University of Graz, Humboldtstrasse 46/III, 8010 Graz, Austria.
| | - Cécile Gladine
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, France.
| |
Collapse
|
3
|
Rubenzucker S, Manke MC, Lehmann R, Assinger A, Borst O, Ahrends R. A Targeted, Bioinert LC-MS/MS Method for Sensitive, Comprehensive Analysis of Signaling Lipids. Anal Chem 2024; 96:9643-9652. [PMID: 38795073 PMCID: PMC11170558 DOI: 10.1021/acs.analchem.4c01388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 05/27/2024]
Abstract
Signaling lipids are key players in cellular processes. Despite their importance, no method currently allows their comprehensive monitoring in one analytical run. Challenges include a wide dynamic range, isomeric and isobaric species, and unwanted interaction along the separation path. Herein, we present a sensitive and robust targeted liquid chromatography-mass spectrometry (LC-MS/MS) approach to overcome these challenges, covering a broad panel of 17 different signaling lipid classes. It involves a simple one-phase sample extraction and lipid analysis using bioinert reversed-phase liquid chromatography coupled to targeted mass spectrometry. The workflow shows excellent sensitivity and repeatability in different biological matrices, enabling the sensitive and robust monitoring of 388 lipids in a single run of only 20 min. To benchmark our workflow, we characterized the human plasma signaling lipidome, quantifying 307 endogenous molecular lipid species. Furthermore, we investigated the signaling lipidome during platelet activation, identifying numerous regulations along important lipid signaling pathways. This highlights the potential of the presented method to investigate signaling lipids in complex biological systems, enabling unprecedentedly comprehensive analysis and direct insight into signaling pathways.
Collapse
Affiliation(s)
- Stefanie Rubenzucker
- Department
of Analytical Chemistry, University of Vienna, 1090 Vienna, Austria
- Vienna
Doctoral School in Chemistry, University
of Vienna, 1090 Vienna, Austria
| | - Mailin-Christin Manke
- DFG
Heisenberg Group Cardiovascular Thromboinflammation and Translational
Thrombocardiology, University of Tübingen, 72076 Tübingen, Germany
- Department
of Cardiology and Angiology, University
of Tübingen, 72076 Tübingen, Germany
| | - Rainer Lehmann
- Institute
for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic
Laboratory Medicine, University Hospital
Tübingen, 72076 Tübingen, Germany
| | - Alice Assinger
- Department
of Vascular Biology and Thrombosis Research, Centre of Physiology
and Pharmacology, Medical University of
Vienna, 1090 Vienna, Austria
| | - Oliver Borst
- DFG
Heisenberg Group Cardiovascular Thromboinflammation and Translational
Thrombocardiology, University of Tübingen, 72076 Tübingen, Germany
- Department
of Cardiology and Angiology, University
of Tübingen, 72076 Tübingen, Germany
| | - Robert Ahrends
- Department
of Analytical Chemistry, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
4
|
Lobbes H, Dalle C, Pereira B, Ruivard M, Mazur A, Gladine C. Eicosanoids and Oxylipin Signature in Hereditary Hemochromatosis Patients Are Similar to Dysmetabolic Iron Overload Syndrome Patients but Are Impacted by Dietary Iron Absorption. ANNALS OF NUTRITION & METABOLISM 2024; 80:117-127. [PMID: 38354712 DOI: 10.1159/000536657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
INTRODUCTION Oxylipins are mediators of oxidative stress. To characterize the underlying inflammatory processes and phenotype effect of iron metabolism disorders, we investigated the oxylipin profile in hereditary hemochromatosis (HH) and dysmetabolic iron overload syndrome (DIOS) patients. METHODS An LC-MS/MS-based method was performed to quantify plasma oxylipins in 20 HH and 20 DIOS patients in fasting conditions and 3 h after an iron-rich meal in HH patients. RESULTS Principal component analysis showed no separation between HH and DIOS, suggesting that the clinical phenotype has no direct impact on oxylipin metabolism. 20-HETE was higher in DIOS and correlated with hypertension (p = 0.03). Different oxylipin signatures were observed in HH before and after the iron-rich meal. Discriminant oxylipins include epoxy fatty acids derived from docosahexaenoic acid and arachidonic acid as well as 13-HODE and 9-HODE. Mediation analysis found no major contribution of dietary iron absorption for 16/22 oxylipins significantly affected by the meal. DISCUSSION The oxylipin profiles of HH and DIOS seemed similar except for 20-HETE, possibly reflecting different hypertension prevalence between the two groups. Oxylipins were significantly affected by the iron-rich meal, but the specific contribution of iron was not clear. Although iron may contribute to oxidative stress and inflammation in HH and DIOS, this does not seem to directly affect oxylipin metabolism.
Collapse
Affiliation(s)
- Hervé Lobbes
- Médecine Interne, Hôpital Estaing, 1 Place Lucie et Raymond Aubrac, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France,
- Institut Pascal, UMR 6602, Centre National de la Recherche Scientifique, Université Clermont Auvergne, Clermont-Ferrand, France,
| | - Céline Dalle
- Unité de Nutrition Humaine, UMR 1019, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Paris, France
| | - Bruno Pereira
- Unité de biostatistiques, Direction de la Recherche Clinique et de l'Innovation, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Marc Ruivard
- Médecine Interne, Hôpital Estaing, 1 Place Lucie et Raymond Aubrac, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
- Institut Pascal, UMR 6602, Centre National de la Recherche Scientifique, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Andrzej Mazur
- Unité de Nutrition Humaine, UMR 1019, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Paris, France
| | - Cécile Gladine
- Unité de Nutrition Humaine, UMR 1019, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Paris, France
| |
Collapse
|
5
|
Wu Z, Xiao H, Rao D, Wang J, Lv X, Wang D, Yao P, Huang F, Chen H, Wei F. Analytical Strategy for Oxylipin Annotation by Combining Chemical Derivatization-Based Retention Index Algorithm and Feature Tandem Mass Spectrometric Fragmentation as a Biomarker Discovery Tool. Anal Chem 2023; 95:15933-15942. [PMID: 37852209 DOI: 10.1021/acs.analchem.3c02789] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Accurate oxylipin annotation is crucial for advancing our understanding of physiological processes in health and disease and identifying biomarkers. However, a full view of oxylipins for early diagnosis needs further attention due to the lack of proper analytical methods, which may be attributed to the wide dynamic range, poor sensitivity, extreme molecular complexity, and limited commercially available standards of oxylipins. Here, we devised a novel method by combining a chemical derivatization (CD)-based retention index (RI) algorithm and feature tandem mass spectrometric fragmentation annotation (CD-RI-LC-MS/MS) for identification and quantification of oxylipins. To this end, N,N-diethyl-1,3-diaminopropane (DEPA) was used for fast labeling of oxylipin (within 0.5 min at room temperature) to improve separation resolution and detection sensitivity. The RI algorithm was established to calibrate the retention time variances and assist the identification of oxylipins during liquid chromatography-tandem mass spectrometry (LC-MS) analysis. MS/MS analysis of in total 58 DEPA derivatives of authentic oxylipin standards was subsequently employed to obtain the tandem mass spectrometric feature fragmentation rules for further structure elucidation of the unknown regio-isomers. Finally, a method based upon CD-RI-LC-MS/MS was established for profiling oxylipins from Standard Reference Material (SRM) 1950 human plasma and nonalcoholic fatty liver disease (NAFLD) mouse liver tissue samples. A total of 87 and 96 potential oxylipins including 12 and 14 unreported oxylipins were detected and identified from human plasma and mouse liver tissues, respectively. The results showed that compared to the control group, in the liver samples of the NAFLD mouse, the content levels of prostaglandin (PG) E2, PGF2a, 8-hydroxy-eicosatrienoic acid (8-HETrE), and the newly discovered 2-hydroxy-octadecatrienoic acid (2-HOTrE) were remarkably increased, while the oxidation product of n-3 PUFA (p < 0.05) and all hydroperoxy oxylipins significantly decreased. On balance, this method contributes to future studies on oxylipin screening and application in other biological samples for facilitating the understanding of oxylipin roles in metabolic regulation of numerous diseases.
Collapse
Affiliation(s)
- Zongyuan Wu
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Huaming Xiao
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Di Rao
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Jie Wang
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Xin Lv
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Dan Wang
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Ping Yao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Fenghong Huang
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Hong Chen
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Fang Wei
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430062, PR China
| |
Collapse
|
6
|
Villain E, Chanson A, Mainka M, Kampschulte N, Le Faouder P, Bertrand-Michel J, Brandolini-Bulon M, Charbit B, Musvosvi M, Bilek N, Scriba TJ, Quintana-Murci L, Schebb NH, Duffy D, Gladine C. Integrated analysis of whole blood oxylipin and cytokine responses after bacterial, viral, and T cell stimulation reveals new immune networks. iScience 2023; 26:107422. [PMID: 37575177 PMCID: PMC10415927 DOI: 10.1016/j.isci.2023.107422] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/24/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Oxylipins are major immunomodulating mediators, yet studies of inflammation focus mainly on cytokines. Here, using a standardized whole-blood stimulation system, we characterized the oxylipin-driven inflammatory responses to various stimuli and their relationships with cytokine responses. We performed a pilot study in 25 healthy individuals using 6 different stimuli: 2 bacterial stimuli (LPS and live BCG), 2 viral stimuli (vaccine-grade poly I:C and live H1N1 attenuated influenza), an enterotoxin superantigen and a Null control. All stimuli induced a strong production of oxylipins but most importantly, bacterial, viral, and T cell immune responses show distinct oxylipin signatures. Integration of the oxylipin and cytokine responses for each condition revealed new immune networks improving our understanding of inflammation regulation. Finally, the oxylipin responses and oxylipin-cytokine networks were compared in patients with active tuberculosis or with latent infection. This revealed different responses to BCG but not LPS stimulation highlighting new regulatory pathways for further investigations.
Collapse
Affiliation(s)
- Etienne Villain
- Institut Pasteur, Université Paris Cité, Translational Immunology Unit, Paris, France
| | - Aurélie Chanson
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, France
| | - Malwina Mainka
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Nadja Kampschulte
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Pauline Le Faouder
- MetaToul, MetaboHUB, Inserm/UPS UMR 1048-I2MC, Institut des Maladies Métaboliques et Cardiovasculaires, 31400 Toulouse, France
| | - Justine Bertrand-Michel
- MetaToul, MetaboHUB, Inserm/UPS UMR 1048-I2MC, Institut des Maladies Métaboliques et Cardiovasculaires, 31400 Toulouse, France
| | - Marion Brandolini-Bulon
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, France
- Université Clermont Auvergne, INRAE, UNH, Plateforme D’Exploration Du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Bruno Charbit
- Institut Pasteur, Université Paris Cité, CBUTechS, Paris, France
| | - Munyaradzi Musvosvi
- South African Tuberculosis Vaccine Initiative (SATVI), Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Nicole Bilek
- South African Tuberculosis Vaccine Initiative (SATVI), Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Thomas J. Scriba
- South African Tuberculosis Vaccine Initiative (SATVI), Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Lluis Quintana-Murci
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, Paris, France
- Collège de France, 75005 Paris, France
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Darragh Duffy
- Institut Pasteur, Université Paris Cité, Translational Immunology Unit, Paris, France
- Institut Pasteur, Université Paris Cité, CBUTechS, Paris, France
| | - Cécile Gladine
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, France
| |
Collapse
|
7
|
Chistyakov DV, Kovalenko LV, Donnikov MY, Sergeeva MG. Blood Oxylipin Profiles as Markers of Oncological Diseases. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:621-629. [PMID: 37331708 DOI: 10.1134/s000629792305005x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/03/2023] [Accepted: 03/11/2023] [Indexed: 06/20/2023]
Abstract
Oxylipins are signal lipid molecules formed from polyunsaturated fatty acids (PUFAs) in several multienzymatic metabolic pathways, such as cyclooxygenase (COX), lipoxygenase (LOX), epoxygenase (CYP), and anandamide pathways, as well as non-enzymatically. The pathways of PUFA transformation are activated in parallel, yielding a mixture of physiologically active substances. Although the association of oxylipins with carcinogenesis had been established a long time ago, only recently analytical methods have advanced to a degree allowing detection and quantification of oxylipins from different classes (oxylipin profiles). The review describes current approaches to the HPLC-MS/MS analysis of oxylipin profiles and compares oxylipin profiles from patients with oncological diseases (breast cancer, colorectal cancer, ovarian cancer, lung cancer, prostate cancer, liver cancer). The possibility of using blood oxylipin profiles as biomarkers in oncological diseases is discussed. Understanding the patterns of PUFA metabolism and physiological activity of combinations of oxylipins will improve early diagnostics of oncological diseases and evaluation of disease prognosis.
Collapse
Affiliation(s)
- Dmitry V Chistyakov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | | | - Maxim Y Donnikov
- Medical Institute, Surgut State University, Surgut, 628416, Russia
| | | |
Collapse
|
8
|
Aukema HM, Ravandi A. Factors affecting variability in free oxylipins in mammalian tissues. Curr Opin Clin Nutr Metab Care 2023; 26:91-98. [PMID: 36892958 DOI: 10.1097/mco.0000000000000892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF THE REVIEW Along with the growing interest in oxylipins is an increasing awareness of multiple sources of variability in oxylipin data. This review summarizes recent findings that highlight the experimental and biological sources of variation in free oxylipins. RECENT FINDINGS Experimental factors that affect oxylipin variability include different methods of euthanasia, postmortem changes, cell culture reagents, tissue processing conditions and timing, storage losses, freeze-thaw cycles, sample preparation techniques, ion suppression, matrix effects, use and availability of oxylipin standards, and postanalysis procedures. Biological factors include dietary lipids, fasting, supplemental selenium, vitamin A deficiency, dietary antioxidants and the microbiome. Overt, but also more subtle differences in health affect oxylipin levels, including during resolution of inflammation and long-term recovery from disease. Sex, genetic variation, exposure to air pollution and chemicals found in food packaging and household and personal care products, as well as many pharmaceuticals used to treat health conditions also affect oxylipin levels. SUMMARY Experimental sources of oxylipin variability can be minimized with proper analytical procedures and protocol standardization. Fully characterizing study parameters will help delineate biological factors of variability, which are rich sources of information that can be used to probe oxylipin mechanisms of action and to investigate their roles in health.
Collapse
Affiliation(s)
- Harold M Aukema
- Department of Food and Human Nutritional Sciences, University of Manitoba
- Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Hospital Albrechtsen Research Centre
- Precision Cardiovascular Medicine Group, St Boniface Hospital Albrechtsen Research Centre
| | - Amir Ravandi
- Precision Cardiovascular Medicine Group, St Boniface Hospital Albrechtsen Research Centre
- Department of Physiology and Pathophysiology, University of Manitoba
- Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| |
Collapse
|
9
|
Lipidomics analysis in drug discovery and development. Curr Opin Chem Biol 2023; 72:102256. [PMID: 36586190 DOI: 10.1016/j.cbpa.2022.102256] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/08/2022] [Accepted: 11/28/2022] [Indexed: 12/30/2022]
Abstract
Despite being a relatively new addition to the Omics' landscape, lipidomics is increasingly being recognized as an important tool for the identification of druggable targets and biochemical markers. In this review we present recent advances of lipid analysis in drug discovery and development. We cover current state of the art technologies which are constantly evolving to meet demands in terms of sensitivity and selectivity. A careful selection of important examples is then provided, illustrating the versatility of lipidomics analysis in the drug discovery and development process. Integration of lipidomics with other omics', stem-cell technologies, and metabolic flux analysis will open new avenues for deciphering pathophysiological mechanisms and the discovery of novel targets and biomarkers.
Collapse
|
10
|
Annevelink CE, Walker RE, Shearer GC. Esterified Oxylipins: Do They Matter? Metabolites 2022; 12:1007. [PMID: 36355090 PMCID: PMC9697791 DOI: 10.3390/metabo12111007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 10/25/2023] Open
Abstract
Oxylipins are oxygenated metabolites of fatty acids that share several similar biochemical characteristics and functions to fatty acids including transport and trafficking. Oxylipins are most commonly measured in the non-esterified form which can be found in plasma, free or bound to albumin. The non-esterified form, however, reflects only one of the possible pools of oxylipins and is by far the least abundant circulating form of oxylipins. Further, this fraction cannot reliably be extrapolated to the other, more abundant, esterified pool. In cells too, esterified oxylipins are the most abundant form, but are seldom measured and their potential roles in signaling are not well established. In this review, we examine the current literature on experimental oxylipin measurements to describe the lack in reporting the esterified oxylipin pool. We outline the metabolic and experimental importance of esterified oxylipins using well established roles of fatty acid trafficking in non-esterified fatty acids and in esterified form as components of circulating lipoproteins. Finally, we use mathematical modeling to simulate how exchange between cellular esterified and unesterified pools would affect intracellular signaling.. The explicit inclusion of esterified oxylipins along with the non-esterified pool has the potential to convey a more complete assessment of the metabolic consequences of oxylipin trafficking.
Collapse
Affiliation(s)
| | | | - Gregory C. Shearer
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
11
|
Dalle C, Tournayre J, Mainka M, Basiak-Rasała A, Pétéra M, Lefèvre-Arbogast S, Dalloux-Chioccioli J, Deschasaux-Tanguy M, Lécuyer L, Kesse-Guyot E, Fezeu LK, Hercberg S, Galan P, Samieri C, Zatońska K, Calder PC, Fiil Hjorth M, Astrup A, Mazur A, Bertrand-Michel J, Schebb NH, Szuba A, Touvier M, Newman JW, Gladine C. The Plasma Oxylipin Signature Provides a Deep Phenotyping of Metabolic Syndrome Complementary to the Clinical Criteria. Int J Mol Sci 2022; 23:ijms231911688. [PMID: 36232991 PMCID: PMC9570185 DOI: 10.3390/ijms231911688] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/06/2022] Open
Abstract
Metabolic syndrome (MetS) is a complex condition encompassing a constellation of cardiometabolic abnormalities. Oxylipins are a superfamily of lipid mediators regulating many cardiometabolic functions. Plasma oxylipin signature could provide a new clinical tool to enhance the phenotyping of MetS pathophysiology. A high-throughput validated mass spectrometry method, allowing for the quantitative profiling of over 130 oxylipins, was applied to identify and validate the oxylipin signature of MetS in two independent nested case/control studies involving 476 participants. We identified an oxylipin signature of MetS (coined OxyScore), including 23 oxylipins and having high performances in classification and replicability (cross-validated AUCROC of 89%, 95% CI: 85–93% and 78%, 95% CI: 72–85% in the Discovery and Replication studies, respectively). Correlation analysis and comparison with a classification model incorporating the MetS criteria showed that the oxylipin signature brings consistent and complementary information to the clinical criteria. Being linked with the regulation of various biological processes, the candidate oxylipins provide an integrative phenotyping of MetS regarding the activation and/or negative feedback regulation of crucial molecular pathways. This may help identify patients at higher risk of cardiometabolic diseases. The oxylipin signature of patients with metabolic syndrome enhances MetS phenotyping and may ultimately help to better stratify the risk of cardiometabolic diseases.
Collapse
Affiliation(s)
- Céline Dalle
- UNH, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Jérémy Tournayre
- UNH, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Malwina Mainka
- Faculty of Mathematics and Natural Sciences, University of Wuppertal, 42119 Wuppertal, Germany
| | - Alicja Basiak-Rasała
- Department of Social Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Mélanie Pétéra
- Plateforme d’Exploration du Métabolisme, MetaboHUB Clermont, UNH, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Sophie Lefèvre-Arbogast
- Bordeaux Population Health Research Center, Université de Bordeaux, INSERMUMR 1219, 33076 Bordeaux, France
| | - Jessica Dalloux-Chioccioli
- MetaToul, MetaboHUB, Inserm/UPS UMR 1048-I2MC, Institut des Maladies Métaboliques et Cardiovasculaires, 31400 Toulouse, France
| | - Mélanie Deschasaux-Tanguy
- Nutritional Epidemiology Research Team (EREN), Sorbonne Paris Nord University, INSERM U1153, INRAE U1125, Cnam, Epidemiology and Statistics Research Center, University Paris Cité (CRESS), 93017 Bobigny, France
| | - Lucie Lécuyer
- Nutritional Epidemiology Research Team (EREN), Sorbonne Paris Nord University, INSERM U1153, INRAE U1125, Cnam, Epidemiology and Statistics Research Center, University Paris Cité (CRESS), 93017 Bobigny, France
| | - Emmanuelle Kesse-Guyot
- Nutritional Epidemiology Research Team (EREN), Sorbonne Paris Nord University, INSERM U1153, INRAE U1125, Cnam, Epidemiology and Statistics Research Center, University Paris Cité (CRESS), 93017 Bobigny, France
| | - Léopold K. Fezeu
- Nutritional Epidemiology Research Team (EREN), Sorbonne Paris Nord University, INSERM U1153, INRAE U1125, Cnam, Epidemiology and Statistics Research Center, University Paris Cité (CRESS), 93017 Bobigny, France
| | - Serge Hercberg
- Nutritional Epidemiology Research Team (EREN), Sorbonne Paris Nord University, INSERM U1153, INRAE U1125, Cnam, Epidemiology and Statistics Research Center, University Paris Cité (CRESS), 93017 Bobigny, France
| | - Pilar Galan
- Nutritional Epidemiology Research Team (EREN), Sorbonne Paris Nord University, INSERM U1153, INRAE U1125, Cnam, Epidemiology and Statistics Research Center, University Paris Cité (CRESS), 93017 Bobigny, France
| | - Cécilia Samieri
- Bordeaux Population Health Research Center, Université de Bordeaux, INSERMUMR 1219, 33076 Bordeaux, France
| | - Katarzyna Zatońska
- Department of Social Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Philip C. Calder
- Faculty of Medicine, School of Human Development and Health, University of Southampton, Southampton SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton SO16 6YD, UK
| | - Mads Fiil Hjorth
- Obesity and Nutritional Sciences, Novo Nordisk Foundation, 2900 Hellerup, Denmark
| | - Arne Astrup
- Obesity and Nutritional Sciences, Novo Nordisk Foundation, 2900 Hellerup, Denmark
| | - André Mazur
- UNH, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Justine Bertrand-Michel
- MetaToul, MetaboHUB, Inserm/UPS UMR 1048-I2MC, Institut des Maladies Métaboliques et Cardiovasculaires, 31400 Toulouse, France
| | - Nils Helge Schebb
- Faculty of Mathematics and Natural Sciences, University of Wuppertal, 42119 Wuppertal, Germany
| | - Andrzej Szuba
- Department of Angiology, Hypertension and Diabetology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Mathilde Touvier
- Nutritional Epidemiology Research Team (EREN), Sorbonne Paris Nord University, INSERM U1153, INRAE U1125, Cnam, Epidemiology and Statistics Research Center, University Paris Cité (CRESS), 93017 Bobigny, France
| | - John W. Newman
- Obesity and Metabolism Research Unit, United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA 95616, USA
- University of California Davis Genome Center, University of California, Davis, CA 95616, USA
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Cécile Gladine
- UNH, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
- Correspondence: ; Tel.: +33-473-624-230
| |
Collapse
|
12
|
Janciauskiene S, Tumpara S, Schebb NH, Buettner FFR, Mainka M, Sivaraman K, Immenschuh S, Grau V, Welte T, Olejnicka B. Indirect effect of alpha-1-antitrypsin on endotoxin-induced IL-1β secretion from human PBMCs. Front Pharmacol 2022; 13:995869. [PMID: 36249781 PMCID: PMC9564231 DOI: 10.3389/fphar.2022.995869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Human alpha-1-antitrypsin (AAT) encoded by the SERPINA1 gene, is an acute phase glycoprotein that regulates inflammatory responses via both protease inhibitory and non-inhibitory activities. We previously reported that AAT controls ATP-induced IL-1β release from human mononuclear cells by stimulating the release of small bioactive molecules. In the current study, we aimed to elucidate the identity of these putative effectors released from human PBMCs in response to AAT, which may inhibit the LPS-induced release of IL-1β. We pre-incubated human PBMCs alone or with different preparations of AAT (4 mg/ml) for 30 min at 37°C, 5% CO2, and collected cell supernatants filtered through centrifugal filters (cutoff 3 kDa) to eliminate AAT and other high molecular weight substances. Supernatants passed through the filters were used to culture PBMCs isolated from the autologous or a heterologous donors with or without adding LPS (1 μg/ml) for 6 h. Unexpectedly, supernatants from PBMCs pre-incubated with AAT (Zemaira®), but not with other AAT preparations tested or with oxidized AAT (Zemaira®), lowered the LPS-induced release of IL-1β by about 25%–60% without affecting IL1B mRNA. The reversed-phase liquid chromatography coupled with mass spectrometry did not confirm the hypothesis that small pro-resolving lipid mediators released from PBMCs after exposure to AAT (Zemaira®) are responsible for lowering the LPS-induced IL-1β release. Distinctively from other AAT preparations, AAT (Zemaira®) and supernatants from PBMCs pre-treated with this protein contained high levels of total thiols. In line, mass spectrometry analysis revealed that AAT (Zemaira®) protein contains freer Cys232 than AAT (Prolastin®). Our data show that a free Cys232 in AAT is required for controlling LPS-induced IL-1β release from human PBMCs. Further studies characterizing AAT preparations used to treat patients with inherited AAT deficiency remains of clinical importance.
Collapse
Affiliation(s)
- Sabina Janciauskiene
- Department of Respiratory Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
- Department of Experimental Medicine, Lund University, Lund, Sweden
- *Correspondence: Sabina Janciauskiene,
| | - Srinu Tumpara
- Department of Respiratory Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Falk F. R. Buettner
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Malwina Mainka
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Kokilavani Sivaraman
- Department of Respiratory Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Stephan Immenschuh
- Institute for Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Veronika Grau
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, German Center for Lung Research, Giessen, Germany
| | - Tobias Welte
- Department of Respiratory Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Beata Olejnicka
- Department of Respiratory Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
- Department of Experimental Medicine, Lund University, Lund, Sweden
| |
Collapse
|
13
|
Understanding the systemic burden of disease in hidradenitis suppurativa from plasma lipidomic analysis. J Dermatol Sci 2022; 107:133-141. [PMID: 36008225 DOI: 10.1016/j.jdermsci.2022.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/30/2022] [Accepted: 08/11/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Hidradenitis suppurativa (HS) is an inflammatory skin condition that is often considered a systemic disease due to its association with metabolic comorbidity. OBJECTIVE In this study, we aimed to identify differences in plasma lipidomic profiles between HS patients and control subjects. METHODS HS patients were recruited from a tertiary dermatological centre and demographic and comorbidity matched controls from the general population. A targeted lipidomic approach was performed to characterize over 700 lipid species representing 35 lipid classes/sub-classes. Linear regression models adjusted for confounding factors were used to compare the plasma lipidomic profiles of HS patients to controls. Ordinal regression models were used to study the association of lipids with disease activity and severity scores. RESULTS 60 HS patients and 73 control subjects were recruited. Differential levels (p < 0.05) of 32 lipid species in HS patients compared to controls were observed, including a decrease in the long chain base d19:1 containing ceramides, and elevation of hydroxyeicosatetraenoic acid (HETE) and dihydroxyeicosatrienoic acid (DHET) oxylipins. These lipids along with several other molecules showed associations with Hurley, HS-PGA and disease activity scores. CONCLUSION This study found mild changes in plasma lipidomic profiles, consistent with previous studies showing attenuated metabolomic changes in plasma as opposed to lesional skin. However, a number of lipid species were associated with increasing activity and severity of the disease. Further, the significant lipid species within the same class showed consistent trends of increase or decrease in HS as compared to controls.
Collapse
|
14
|
Olshansky G, Giles C, Salim A, Meikle PJ. Challenges and opportunities for prevention and removal of unwanted variation in lipidomic studies. Prog Lipid Res 2022; 87:101177. [PMID: 35780914 DOI: 10.1016/j.plipres.2022.101177] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/19/2022] [Accepted: 06/26/2022] [Indexed: 10/17/2022]
Abstract
Large 'omics studies are of particular interest to population and clinical research as they allow elucidation of biological pathways that are often out of reach of other methodologies. Typically, these information rich datasets are produced from multiple coordinated profiling studies that may include lipidomics, metabolomics, proteomics or other strategies to generate high dimensional data. In lipidomics, the generation of such data presents a series of unique technological and logistical challenges; to maximize the power (number of samples) and coverage (number of analytes) of the dataset while minimizing the sources of unwanted variation. Technological advances in analytical platforms, as well as computational approaches, have led to improvement of data quality - especially with regard to instrumental variation. In the small scale, it is possible to control systematic bias from beginning to end. However, as the size and complexity of datasets grow, it is inevitable that unwanted variation arises from multiple sources, some potentially unknown and out of the investigators control. Increases in cohort sizes and complexity has led to new challenges in sample collection, handling, storage, and preparation stages. If not considered and dealt with appropriately, this unwanted variation may undermine the quality of the data and reliability of any subsequent analysis. Here we review the various experimental phases where unwanted variation may be introduced and review general strategies and approaches to handle this variation, specifically addressing issues relevant to lipidomics studies.
Collapse
Affiliation(s)
- Gavriel Olshansky
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, Victoria, Australia
| | - Corey Giles
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, Victoria, Australia
| | - Agus Salim
- Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC 3010, Australia; School of Mathematics and Statistics, University of Melbourne, Parkville, VIC 3010, Australia
| | - Peter J Meikle
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, Victoria, Australia; Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
15
|
HPLC-MS/MS Oxylipin Analysis of Plasma from Amyotrophic Lateral Sclerosis Patients. Biomedicines 2022; 10:biomedicines10030674. [PMID: 35327476 PMCID: PMC8945419 DOI: 10.3390/biomedicines10030674] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 01/27/2023] Open
Abstract
Oxylipins play a critical role in regulating the onset and resolution phase of inflammation. Despite inflammation is a pathological hallmark in amyotrophic lateral sclerosis (ALS), the plasma oxylipin profile of ALS patients has not been assessed yet. Herein, we develop an oxylipin profile-targeted analysis of plasma from 74 ALS patients and controls. We found a significant decrease in linoleic acid-derived oxylipins in ALS patients, including 9-hydroxy-octadecadienoic acid (9-HODE) and 13-HODE. These derivatives have been reported as important regulators of inflammation on different cell systems. In addition, some 5-lipoxygenase metabolites, such as 5-hydroxy- eicosatetraenoic acid also showed a significant decrease in ALS plasma samples. Isoprostanes of the F2α family were detected only in ALS patients but not in control samples, while the hydroxylated metabolite 11-HETE significantly decreased. Despite our effort to analyze specialized pro-resolving mediators, they were not detected in plasma samples. However, we found the levels of 14-hydroxy-docosahexaenoic acid, a marker pathway of the Maresin biosynthesis, were also reduced in ALS patients, suggesting a defective activation in the resolution programs of inflammation in ALS. We further analyze oxylipin concentration levels in plasma from ALS patients to detect correlations between these metabolites and some clinical parameters. Interestingly, we found that plasmatic levels of 13-HODE and 9-HODE positively correlate with disease duration, expressed as days since onset. In summary, we developed a method to analyze “(oxy)lipidomics” in ALS human plasma and found new profiles of metabolites and novel lipid derivatives with unknown biological activities as potential footprints of disease onset.
Collapse
|
16
|
Ghorasaini M, Mohammed Y, Adamski J, Bettcher L, Bowden JA, Cabruja M, Contrepois K, Ellenberger M, Gajera B, Haid M, Hornburg D, Hunter C, Jones CM, Klein T, Mayboroda O, Mirzaian M, Moaddel R, Ferrucci L, Lovett J, Nazir K, Pearson M, Ubhi BK, Raftery D, Riols F, Sayers R, Sijbrands EJG, Snyder MP, Su B, Velagapudi V, Williams KJ, de Rijke YB, Giera M. Cross-Laboratory Standardization of Preclinical Lipidomics Using Differential Mobility Spectrometry and Multiple Reaction Monitoring. Anal Chem 2021; 93:16369-16378. [PMID: 34859676 PMCID: PMC8674878 DOI: 10.1021/acs.analchem.1c02826] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022]
Abstract
Modern biomarker and translational research as well as personalized health care studies rely heavily on powerful omics' technologies, including metabolomics and lipidomics. However, to translate metabolomics and lipidomics discoveries into a high-throughput clinical setting, standardization is of utmost importance. Here, we compared and benchmarked a quantitative lipidomics platform. The employed Lipidyzer platform is based on lipid class separation by means of differential mobility spectrometry with subsequent multiple reaction monitoring. Quantitation is achieved by the use of 54 deuterated internal standards and an automated informatics approach. We investigated the platform performance across nine laboratories using NIST SRM 1950-Metabolites in Frozen Human Plasma, and three NIST Candidate Reference Materials 8231-Frozen Human Plasma Suite for Metabolomics (high triglyceride, diabetic, and African-American plasma). In addition, we comparatively analyzed 59 plasma samples from individuals with familial hypercholesterolemia from a clinical cohort study. We provide evidence that the more practical methyl-tert-butyl ether extraction outperforms the classic Bligh and Dyer approach and compare our results with two previously published ring trials. In summary, we present standardized lipidomics protocols, allowing for the highly reproducible analysis of several hundred human plasma lipids, and present detailed molecular information for potentially disease relevant and ethnicity-related materials.
Collapse
Affiliation(s)
- Mohan Ghorasaini
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Albinusdreef 2, Leiden 2333ZA, The Netherlands
| | - Yassene Mohammed
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Albinusdreef 2, Leiden 2333ZA, The Netherlands
- Genome
BC Proteomics Centre, University of Victoria, Victoria, British Columbia V8Z 7X8, Canada
| | - Jerzy Adamski
- Institute
of Experimental Genetics, German Research Center for Environmental
Health, Helmholtz Zentrum München, Ingolstaedter Landstr. 1, Neuherberg 85764, Germany
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
- Institute
of Biochemistry, Faculty of Medicine, University
of Ljubljana, Vrazov
Trg 2, Ljubljana 1000, Slovenia
| | - Lisa Bettcher
- Northwest
Metabolomics Research Center, Department of Anesthesiology, University of Washington, Seattle, Washington 98109, United States
| | - John A. Bowden
- Department
of Physiological Sciences, College of Veterinary Medicine, University of Florida, 1333 Center Drive, Gainesville, Florida 32610, United States
| | - Matias Cabruja
- Department
of Genetics, School of Medicine, Stanford
University, 300 Pasteur Drive, Stanford, California 94305, United States
| | - Kévin Contrepois
- Department
of Genetics, School of Medicine, Stanford
University, 300 Pasteur Drive, Stanford, California 94305, United States
| | - Mathew Ellenberger
- Department
of Genetics, School of Medicine, Stanford
University, 300 Pasteur Drive, Stanford, California 94305, United States
| | - Bharat Gajera
- Metabolomics
Unit, Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Tukholmankatu 8, Biomedicum 2U, Helsinki 00014, Finland
| | - Mark Haid
- Metabolomics
and Proteomics Core, German Research Center for Environmental Health, Helmholtz Zentrum München, Ingolstaedter Landstr. 1, Neuherberg 85764, Germany
| | - Daniel Hornburg
- Department
of Genetics, School of Medicine, Stanford
University, 300 Pasteur Drive, Stanford, California 94305, United States
| | | | - Christina M. Jones
- Material Measurement Laboratory, National
Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Theo Klein
- Department
of Clinical Chemistry, University Medical Center, Erasmus MC, Rotterdam, 3000CA, The Netherlands
| | - Oleg Mayboroda
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Albinusdreef 2, Leiden 2333ZA, The Netherlands
| | - Mina Mirzaian
- Department
of Clinical Chemistry, University Medical Center, Erasmus MC, Rotterdam, 3000CA, The Netherlands
| | - Ruin Moaddel
- National Institute on Aging, National Institutes of
Health, Baltimore, Maryland 21224, United
States
| | - Luigi Ferrucci
- National Institute on Aging, National Institutes of
Health, Baltimore, Maryland 21224, United
States
| | - Jacqueline Lovett
- National Institute on Aging, National Institutes of
Health, Baltimore, Maryland 21224, United
States
| | - Kenneth Nazir
- Metabolomics
Unit, Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Tukholmankatu 8, Biomedicum 2U, Helsinki 00014, Finland
| | | | | | - Daniel Raftery
- Northwest
Metabolomics Research Center, Department of Anesthesiology, University of Washington, Seattle, Washington 98109, United States
| | - Fabien Riols
- Metabolomics
and Proteomics Core, German Research Center for Environmental Health, Helmholtz Zentrum München, Ingolstaedter Landstr. 1, Neuherberg 85764, Germany
| | | | - Eric J. G. Sijbrands
- Department of Internal Medicine, University
Medical Center, Erasmus MC, Rotterdam 3000CA, The Netherlands
| | - Michael P. Snyder
- Department
of Genetics, School of Medicine, Stanford
University, 300 Pasteur Drive, Stanford, California 94305, United States
| | - Baolong Su
- Department of Biological
Chemistry, University
of California, Los Angeles, California 90095, United States
| | - Vidya Velagapudi
- Metabolomics
Unit, Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Tukholmankatu 8, Biomedicum 2U, Helsinki 00014, Finland
| | - Kevin J. Williams
- Department of Biological
Chemistry, University
of California, Los Angeles, California 90095, United States
| | - Yolanda B. de Rijke
- Department
of Clinical Chemistry, University Medical Center, Erasmus MC, Rotterdam, 3000CA, The Netherlands
| | - Martin Giera
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Albinusdreef 2, Leiden 2333ZA, The Netherlands
| |
Collapse
|
17
|
Verny MA, Milenkovic D, Macian N, Pereira B, Evrard R, Gilcher C, Steingass CB, Mosoni P, Gladine C, Monfoulet LE, Schweiggert R, Pickering G, Morand C. Evaluating the role of orange juice, HESPERidin in vascular HEALTH benefits (HESPER-HEALTH study): protocol for a randomised controlled trial. BMJ Open 2021; 11:e053321. [PMID: 34848522 PMCID: PMC8634291 DOI: 10.1136/bmjopen-2021-053321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION Although epidemiological studies associate the consumption of sugary beverages with adverse health effects, human experimental studies have demonstrated substantially different metabolic responses when 100% fruit juices are compared with artificial beverages. Fruit juices do not just provide sugars and associated calories, but they are also rich in bioactive compounds. Flavanones are bioactives specifically and abundantly found in citrus foods, with hesperidin as the major representative in sweet oranges. Flavanone intake has been associated with a lower incidence of mortality from cardiovascular disease (CVD). However, clinical evidence are too scarce to confirm the vasculoprotective effects of 100% orange juice (OJ) presumably mediated by flavanones and thereby do not allow firm conclusions to be drawn about their efficacy. METHODS AND ANALYSIS The HESPER-HEALTH study aims to assess the efficacy of OJ in improving vascular function and the contribution of hesperidin to these effects. This double-blind, randomised, controlled, crossover study will be carried out in 42 volunteers predisposed to CVD, based on age and on overweight. It includes three 6-week periods of consumption of 330 mL/d of OJ versus control drinks with and without hesperidin at a dose in agreement with a daily OJ serving (approx. 200-215 mg). The primary outcome is endothelial function, assessed by flow mediated dilation, with measurements performed at fasting and postprandially in response to a challenge meal. The secondary outcomes include bioavailability and metabolism of flavanones, changes in other markers of vascular function, systemic biomarkers of cardiovascular risk, endothelial dysfunction and inflammation, vitamin C and carotenoids status, anthropometry and body composition, gut microbiota composition, nutrigenomic response and in oxylipin profiling. ETHICS AND DISSEMINATION This ongoing study was approved by the Ethics committee Sud-Est III, Bron, France on 17 November 2020. The trial is registered on ClinicalTrials.gov. The results will be disseminated in peer-reviewed journals. TRIAL REGISTRATION NUMBER NCT04731987; Pre-results.
Collapse
Affiliation(s)
| | | | - Nicolas Macian
- Platform of Clinical Investigation Department, University Hospital Clermont-Ferrand, INSERM CIC 1405, Clermont-Ferrand, France
| | - Bruno Pereira
- Clinical Research and Innovation Department, Biostatistics unit, University Hospital Clermont-Ferrand, Clermont-Ferrand, France
| | - Rémy Evrard
- Platform of Clinical Investigation Department, University Hospital Clermont-Ferrand, INSERM CIC 1405, Clermont-Ferrand, France
| | - Caroline Gilcher
- Chair of Analysis & Technology of Plant-based Foods, Department of Beverage Research, Geisenheim University, Geisenheim, Germany
| | - Christof B Steingass
- Chair of Analysis & Technology of Plant-based Foods, Department of Beverage Research, Geisenheim University, Geisenheim, Germany
| | - Pascale Mosoni
- Clermont Auvergne, INRAE, MEDIS, Clermont-Ferrand, France
| | | | | | - Ralf Schweiggert
- Chair of Analysis & Technology of Plant-based Foods, Department of Beverage Research, Geisenheim University, Geisenheim, Germany
| | - Gisèle Pickering
- Platform of Clinical Investigation Department, University Hospital Clermont-Ferrand, INSERM CIC 1405, Clermont-Ferrand, France
| | | |
Collapse
|
18
|
Gladine C, Fedorova M. The clinical translation of eicosanoids and other oxylipins, although challenging, should be actively pursued. J Mass Spectrom Adv Clin Lab 2021; 21:27-30. [PMID: 34820674 PMCID: PMC8600996 DOI: 10.1016/j.jmsacl.2021.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 01/02/2023] Open
Key Words
- CE, cholesteryl ester
- CVD, cardiovascular disease
- LDL, low density lipoprotein
- NFκB, nuclear factor kappa B
- PC, phosphatidylcholine
- PL, phospholipid
- PPAR, peroxisome proliferator-activated receptor
- PUFA, polyunsaturated fatty acid
- TG, triglyceride
- oxCE, oxidized CE
- oxLDL, oxidized LDL
- oxTG, oxidized TG
Collapse
Affiliation(s)
- Cécile Gladine
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, France
| | - Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany.,Center for Biotechnology and Biomedicine, University of Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
| |
Collapse
|
19
|
Morisseau C, Kodani SD, Kamita SG, Yang J, Lee KSS, Hammock BD. Relative Importance of Soluble and Microsomal Epoxide Hydrolases for the Hydrolysis of Epoxy-Fatty Acids in Human Tissues. Int J Mol Sci 2021; 22:ijms22094993. [PMID: 34066758 PMCID: PMC8125816 DOI: 10.3390/ijms22094993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 01/03/2023] Open
Abstract
Epoxy-fatty acids (EpFAs) are endogenous lipid mediators that have a large breadth of biological activities, including the regulation of blood pressure, inflammation, angiogenesis, and pain perception. For the past 20 years, soluble epoxide hydrolase (sEH) has been recognized as the primary enzyme for degrading EpFAs in vivo. The sEH converts EpFAs to the generally less biologically active 1,2-diols, which are quickly eliminated from the body. Thus, inhibitors of sEH are being developed as potential drug therapeutics for various diseases including neuropathic pain. Recent findings suggest that other epoxide hydrolases (EHs) such as microsomal epoxide hydrolase (mEH) and epoxide hydrolase-3 (EH3) can contribute significantly to the in vivo metabolism of EpFAs. In this study, we used two complementary approaches to probe the relative importance of sEH, mEH, and EH3 in 15 human tissue extracts: hydrolysis of 14,15-EET and 13,14-EDP using selective inhibitors and protein quantification. The sEH hydrolyzed the majority of EpFAs in all of the tissues investigated, mEH hydrolyzed a significant portion of EpFAs in several tissues, whereas no significant role in EpFAs metabolism was observed for EH3. Our findings indicate that residual mEH activity could limit the therapeutic efficacy of sEH inhibition in certain organs.
Collapse
|