1
|
Functional Characterization of Human Pluripotent Stem Cell-Derived Models of the Brain with Microelectrode Arrays. Cells 2021; 11:cells11010106. [PMID: 35011667 PMCID: PMC8750870 DOI: 10.3390/cells11010106] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/26/2022] Open
Abstract
Human pluripotent stem cell (hPSC)-derived neuron cultures have emerged as models of electrical activity in the human brain. Microelectrode arrays (MEAs) measure changes in the extracellular electric potential of cell cultures or tissues and enable the recording of neuronal network activity. MEAs have been applied to both human subjects and hPSC-derived brain models. Here, we review the literature on the functional characterization of hPSC-derived two- and three-dimensional brain models with MEAs and examine their network function in physiological and pathological contexts. We also summarize MEA results from the human brain and compare them to the literature on MEA recordings of hPSC-derived brain models. MEA recordings have shown network activity in two-dimensional hPSC-derived brain models that is comparable to the human brain and revealed pathology-associated changes in disease models. Three-dimensional hPSC-derived models such as brain organoids possess a more relevant microenvironment, tissue architecture and potential for modeling the network activity with more complexity than two-dimensional models. hPSC-derived brain models recapitulate many aspects of network function in the human brain and provide valid disease models, but certain advancements in differentiation methods, bioengineering and available MEA technology are needed for these approaches to reach their full potential.
Collapse
|
2
|
Abstract
The detection of neurotransmitter release from reprogrammed human cell is an important demonstration of their functionality. Electrochemistry has the distinct advantages over alternative methods that it allows for the measuring of the analyte of interest at a high temporal resolution. This is necessary for fast events, such as neurotransmitter release and reuptake, which happen in the order of milliseconds to seconds. The precise description of these kinetic events can lead to insights into the function of cells in health and disease and allows for the exploration of events that might be missed using methods that look at absolute concentration values or methods that have a slower sampling rate. In the present chapter, we describe the use of constant potential amperometry and enzyme-coated multielectrode arrays for the detection of glutamate in vitro. These biosensors have the distinct advantage of "self-referencing," a method providing high selectivity while retaining outstanding temporal resolution. Here, we provide a step-by-step user guide for a commercially available system and its application for in vitro systems such as reprogrammed cells.
Collapse
|
3
|
An enzyme-based electrochemical biosensor probe with sensitivity to detect astrocytic versus glioma uptake of glutamate in real time in vitro. Biosens Bioelectron 2018; 126:751-757. [PMID: 30553105 DOI: 10.1016/j.bios.2018.11.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/03/2018] [Accepted: 11/15/2018] [Indexed: 12/31/2022]
Abstract
Glutamate, a major excitatory neurotransmitter in the central nervous system, is essential for regulation of thought, movement, memory, and other higher functions controlled by the brain. Dysregulation of glutamate signaling is associated with severe neuropathological conditions, such as epilepsy, and glioma, a form of brain cancer. Glutamate signals are currently detected by several types of neurochemical probes ranging from microdialysis-based to enzyme-based carbon fiber microsensors. However, an important technology gap exists in the ability to measure glutamate dynamics continuously, and in real time, and from multiple locations in the brain, which limits our ability to further understand the involved spatiotemporal mechanisms of underlying neuropathologies. To overcome this limitation, we developed an enzymatic glutamate microbiosensor, in the form of a ceramic-substrate enabled platinum microelectrode array, that continuously, in real time, measures changes in glutamate concentration from multiple recording sites. In addition, the developed microbiosensor is almost four-fold more sensitive to glutamate than enzymatic sensors previously reported in the literature. Further analysis of glutamate dynamics recorded by our microbiosensor in cultured astrocytes (control condition) and glioma cells (pathological condition) clearly distinguished normal versus impaired glutamate uptake, respectively. These results confirm that the developed glutamate microbiosensor array can become a useful tool in monitoring and understanding glutamate signaling and its regulation in normal and pathological conditions. Furthermore, the developed microbiosensor can be used to measure the effects of potential therapeutic drugs to treat a range of neurological diseases.
Collapse
|
4
|
Ferreira NR, Ledo A, Laranjinha J, Gerhardt GA, Barbosa RM. Simultaneous measurements of ascorbate and glutamate in vivo in the rat brain using carbon fiber nanocomposite sensors and microbiosensor arrays. Bioelectrochemistry 2018; 121:142-150. [PMID: 29413864 DOI: 10.1016/j.bioelechem.2018.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/15/2018] [Accepted: 01/19/2018] [Indexed: 11/18/2022]
Abstract
Nanocomposite sensors consisting of carbon fiber microelectrodes modified with Nafion® and carbon nanotubes, and ceramic-based microelectrode biosensor arrays were used to measure ascorbate and glutamate in the brain with high spatial, temporal and chemical resolution. Nanocomposite sensors displayed electrocatalytic properties towards ascorbate oxidation, translated into a negative shift from +0.20V to -0.05V vs. Ag/AgCl, as well as a significant increase (10-fold) of electroactive surface area. The estimated average basal concentration of ascorbate in vivo in the CA1, CA3 and dentate gyrus (DG) sub regions of the hippocampus were 276±60μM (n=10), 183±30μM (n=10) and 133±42μM (n=10), respectively. The glutamate microbiosensor arrays showed a high sensitivity of 5.3±0.8pAμM-1 (n=18), and LOD of 204±32nM (n=10), and t50% response time of 0.9±0.02s (n=6) and high selectivity against major interferents. The simultaneous and real-time measurements of glutamate and ascorbate in the hippocampus of anesthetized rats following local stimulus with KCl or glutamate revealed a dynamic interaction between the two neurochemicals.
Collapse
Affiliation(s)
- Nuno R Ferreira
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Ledo
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - João Laranjinha
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Greg A Gerhardt
- Department of Neuroscience, Center for Microelectrode Technology, University of Kentucky, Lexington, USA
| | - Rui M Barbosa
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal.
| |
Collapse
|
5
|
Özel RE, Hayat A, Andreescu S. RECENT DEVELOPMENTS IN ELECTROCHEMICAL SENSORS FOR THE DETECTION OF NEUROTRANSMITTERS FOR APPLICATIONS IN BIOMEDICINE. ANAL LETT 2015; 48:1044-1069. [PMID: 26973348 PMCID: PMC4787221 DOI: 10.1080/00032719.2014.976867] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurotransmitters are important biological molecules that are essential to many neurophysiological processes including memory, cognition, and behavioral states. The development of analytical methodologies to accurately detect neurotransmitters is of great importance in neurological and biological research. Specifically designed microelectrodes or microbiosensors have demonstrated potential for rapid, real-time measurements with high spatial resolution. Such devices can facilitate study of the role and mechanism of action of neurotransmitters and can find potential uses in biomedicine. This paper reviews the current status and recent advances in the development and application of electrochemical sensors for the detection of small-molecule neurotransmitters. Measurement challenges and opportunities of electroanalytical methods to advance study and understanding of neurotransmitters in various biological models and disease conditions are discussed.
Collapse
Affiliation(s)
- Rıfat Emrah Özel
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, USA. Fax: 3152686610; Tel: 3152682394
| | - Akhtar Hayat
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, USA. Fax: 3152686610; Tel: 3152682394
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology (CIIT), Lahore, Pakistan
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, USA. Fax: 3152686610; Tel: 3152682394
| |
Collapse
|
6
|
Cordeiro C, de Vries M, Ngabi W, Oomen P, Cremers T, Westerink B. In vivo continuous and simultaneous monitoring of brain energy substrates with a multiplex amperometric enzyme-based biosensor device. Biosens Bioelectron 2015; 67:677-86. [DOI: 10.1016/j.bios.2014.09.101] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 08/27/2014] [Accepted: 09/22/2014] [Indexed: 01/30/2023]
|
7
|
Yang KY, Mun JH, Park KD, Kim MJ, Ju JS, Kim ST, Bae YC, Ahn DK. Blockade of spinal glutamate recycling produces paradoxical antinociception in rats with orofacial inflammatory pain. Prog Neuropsychopharmacol Biol Psychiatry 2015; 57:100-9. [PMID: 25445477 DOI: 10.1016/j.pnpbp.2014.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 10/06/2014] [Accepted: 10/20/2014] [Indexed: 01/06/2023]
Abstract
In our current study, we investigated the role of spinal glutamate recycling in the development of orofacial inflammatory pain. DL-threo-β-benzyloxyaspartate (TBOA) or methionine sulfoximine (MSO) was administered intracisternally to block spinal glutamate transporter and glutamine synthetase activity in astroglia. Intracisternal administration of high dose TBOA (10 μg) produced thermal hyperalgesia in naïve rats but significantly attenuated the thermal hyperalgesia in rats that had been pretreated with interleukin (IL)-1β or Complete Freund's Adjuvant (CFA). In contrast, intracisternal injection of MSO produced anti-hyperalgesic effects against thermal stimuli in CFA-treated rats only. To confirm the paradoxical antinociceptive effects of TBOA and MSO, we examined changes in c-Fos expression in the medullary dorsal horn produced by thermal stimulation in naïve, IL-1β-, or CFA-treated rats, after intracisternal injections of TBOA and MSO. Intracisternal administration of TBOA significantly increased c-Fos immunoreactivity in naïve rats. In contrast, intracisternal administration of TBOA significantly decreased the up-regulation of c-Fos immunoreactivity in the medullary dorsal horn of IL-1β- and CFA-treated rats. However, intracisternal injection of MSO blocked the up-regulation of c-Fos immunoreactivity in CFA-treated rats only. We also investigated the effects of botulinum toxin type A (BoNT-A) on TBOA-induced paradoxical antinociception in CFA-treated rats, as BoNT-A inhibits the release of neurotransmitters, including glutamate. BoNT-A treatment reversed behavioral responses produced by intracisternal administration of TBOA in CFA-treated rats. These results suggest that the paradoxical responses produced by blocking glutamate transporters under inflammatory pain conditions are mediated by the modulation of glutamate release from presynaptic terminals. Moreover, blockade of glutamate reuptake could represent a new therapeutic target for the treatment of chronic inflammatory pain conditions.
Collapse
Affiliation(s)
- Kui Y Yang
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu, South Korea.
| | - Jun H Mun
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu, South Korea.
| | - Ki D Park
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu, South Korea.
| | - Min J Kim
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu, South Korea.
| | - Jin S Ju
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu, South Korea.
| | - Seong T Kim
- Department of Orofacial Pain and Oral Medicine, School of Dentistry, Yonsei University, Seoul, South Korea.
| | - Yong C Bae
- Oral Anatomy, School of Dentistry, Kyungpook National University, Daegu, South Korea.
| | - Dong K Ahn
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
8
|
Stephens ML, Williamson A, Deel ME, Bensalem-Owen M, Davis VA, Slevin J, Pomerleau F, Huettl P, Gerhardt GA. Tonic glutamate in CA1 of aging rats correlates with phasic glutamate dysregulation during seizure. Epilepsia 2014; 55:1817-25. [PMID: 25266171 DOI: 10.1111/epi.12797] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2014] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Characterize glutamate neurotransmission in the hippocampus of awake-behaving rodents during focal seizures in a model of aging. METHODS We used enzyme-based ceramic microelectrode array technology to measure in vivo extracellular tonic glutamate levels and real-time phasic glutamate release and clearance events in the hippocampus of awake Fischer 344 rats. Local application of 4-aminopyridine (4-AP) into the CA1 region was used to induce focal motor seizures in different animal age groups representing young, late-middle aged and elderly humans. RESULTS Rats with the highest preseizure tonic glutamate levels (all in late-middle aged or elderly groups) experienced the most persistent 4-AP-induced focal seizure motor activity (wet dog shakes) and greatest degree of acute seizure-associated disruption of glutamate neurotransmission measured as rapid transient changes in extracellular glutamate levels. SIGNIFICANCE Increased seizure susceptibility was demonstrated in the rats with the highest baseline hippocampal extracellular glutamate levels, all of which were late-middle aged or aged animals. The manifestation of seizures behaviorally was associated with dynamic changes in glutamate neurotransmission. To our knowledge, this is the first report of a relationship between seizure susceptibility and alterations in both baseline tonic and phasic glutamate neurotransmission.
Collapse
Affiliation(s)
- Michelle L Stephens
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, U.S.A
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Tseng TTC, Chang CF, Chan WC. Fabrication of implantable, enzyme-immobilized glutamate sensors for the monitoring of glutamate concentration changes in vitro and in vivo. Molecules 2014; 19:7341-55. [PMID: 24905604 PMCID: PMC6271204 DOI: 10.3390/molecules19067341] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/30/2014] [Accepted: 06/03/2014] [Indexed: 11/16/2022] Open
Abstract
Glutamate sensors based on the immobilization of glutamate oxidase (GlutOx) were prepared by adsorption on electrodeposited chitosan (Method 1) and by crosslinking with glutaraldehyde (Method 2) on micromachined platinum microelectrodes. It was observed that glutamate sensors prepared by Method 1 have faster response time (<2 s) and lower detection limit (2.5 ± 1.1 μM) compared to that prepared by Method 2 (response time: <5 sec and detection limit: 6.5 ± 1.7 μM); glutamate sensors prepared by Method 2 have a larger linear detection range (20–352 μM) and higher sensitivity (86.8 ± 8.8 nA·μM−1·cm−2, N = 12) compared to those prepared by Method 1 (linear detection range: 20–217 μM and sensitivity: 34.9 ± 4.8 nA·μM−1·cm−2, N = 8). The applicability of the glutamate sensors in vivo was also demonstrated. The glutamate sensors were implanted into the rat brain to monitor the stress-induced extracellular glutamate release in the hypothalamus of the awake, freely moving rat.
Collapse
Affiliation(s)
- Tina T-C Tseng
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| | - Cheng-Fu Chang
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei 11031, Taiwan.
| | - Wen-Chin Chan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| |
Collapse
|
10
|
Bortz DM, Mikkelsen JD, Bruno JP. Localized infusions of the partial alpha 7 nicotinic receptor agonist SSR180711 evoke rapid and transient increases in prefrontal glutamate release. Neuroscience 2013; 255:55-67. [PMID: 24095692 DOI: 10.1016/j.neuroscience.2013.09.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 09/11/2013] [Accepted: 09/20/2013] [Indexed: 10/26/2022]
Abstract
The ability of local infusions of the alpha 7 nicotinic acetycholine receptor (α7 nAChR) partial agonist SSR180711 to evoke glutamate release in prefrontal cortex was determined in awake rats using a microelectrode array. Infusions of SSR180711 produced dose-dependent increases in glutamate levels. The lower dose (1.0μg in 0.4μL) evoked a rapid rise (∼1.0s) in glutamate (1.41±0.30μM above baseline). The higher dose (5.0μg) produced a similarly rapid, yet larger increase (3.51±0.36μM above baseline). After each dose, the glutamate signal was cleared to basal levels within 7-18s. SSR180711-evoked glutamate was mediated by the α7 nAChR as co-infusion of the selective α7 nAChR antagonist α-bungarotoxin (10.0μM)+SSR1808711 (5.0μg) reduced the effect of 5.0μg alone by 87% (2.62 vs. 0.35μM). Finally, the clearance of the SSR180711 (5.0μg)-evoked glutamate was bidirectionally affected by drugs that inhibited (threo-beta-benzyl-oxy-aspartate (TβOA), 100.0μM) or facilitated (ceftriaxalone, 200mg/kg, i.p.) excitatory amino acid transporters. TβOA slowed both the clearance (s) and rate of clearance (μM/s) by 10-fold, particularly at the mid-late stages of the return to baseline. Ceftriaxone reduced the magnitude of the SSR180711-evoked increase by 65%. These results demonstrate that pharmacological stimulation of α7 nAChRs within the prefrontal cortex is sufficient to evoke rapid yet transient increases in glutamate levels. Such increases may underlie the cognition-enhancing effects of the drug in animals; further justifying studies on the use of α7 nAChR-positive modulators in treating cognition-impairing disorders in humans.
Collapse
Affiliation(s)
- D M Bortz
- Department of Psychology, The Ohio State University, Columbus, OH, United States
| | | | | |
Collapse
|
11
|
Selective enzyme immobilization on arrayed microelectrodes for the application of sensing neurotransmitters. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.04.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
12
|
Hascup KN, Hascup ER, Littrell OM, Hinzman JM, Werner CE, Davis VA, Burmeister JJ, Pomerleau F, Quintero JE, Huettl P, Gerhardt GA. Microelectrode Array Fabrication and Optimization for Selective Neurochemical Detection. NEUROMETHODS 2013. [DOI: 10.1007/978-1-62703-370-1_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
13
|
Forebrain Cholinergic Systems and Cognition: New Insights Based on Rapid Detection of Choline Spikes Using Enzyme-Based Biosensors. NEUROMETHODS 2013. [DOI: 10.1007/978-1-62703-370-1_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
14
|
Wassum KM, Tolosa VM, Tseng TC, Balleine BW, Monbouquette HG, Maidment NT. Transient extracellular glutamate events in the basolateral amygdala track reward-seeking actions. J Neurosci 2012; 32:2734-46. [PMID: 22357857 PMCID: PMC3548241 DOI: 10.1523/jneurosci.5780-11.2012] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 12/22/2011] [Accepted: 12/30/2011] [Indexed: 02/07/2023] Open
Abstract
The ability to make rapid, informed decisions about whether or not to engage in a sequence of actions to earn reward is essential for survival. Modeling in rodents has demonstrated a critical role for the basolateral amygdala (BLA) in such reward-seeking actions, but the precise neurochemical underpinnings are not well understood. Taking advantage of recent advancements in biosensor technologies, we made spatially discrete near-real-time extracellular recordings of the major excitatory transmitter, glutamate, in the BLA of rats performing a self-paced lever-pressing sequence task for sucrose reward. This allowed us to detect rapid transient fluctuations in extracellular BLA glutamate time-locked to action performance. These glutamate transients tended to precede lever-pressing actions and were markedly increased in frequency when rats were engaged in such reward-seeking actions. Based on muscimol and tetrodotoxin microinfusions, these glutamate transients appeared to originate from the terminals of neurons with cell bodies in the orbital frontal cortex. Importantly, glutamate transient amplitude and frequency fluctuated with the value of the earned reward and positively predicted lever-pressing rate. Such novel rapid glutamate recordings during instrumental performance identify a role for glutamatergic signaling within the BLA in instrumental reward-seeking actions.
Collapse
Affiliation(s)
- Kate M Wassum
- Department of Psychology, University of California, Los Angeles, CA 90095, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Wahono N, Qin S, Oomen P, Cremers TIF, de Vries MG, Westerink BHC. Evaluation of permselective membranes for optimization of intracerebral amperometric glutamate biosensors. Biosens Bioelectron 2012; 33:260-6. [PMID: 22326702 DOI: 10.1016/j.bios.2012.01.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 01/16/2012] [Accepted: 01/17/2012] [Indexed: 01/01/2023]
Abstract
Monitoring of extracellular brain glutamate concentrations by intracerebral biosensors is a promising approach to further investigate the role of this important neurotransmitter. However, amperometric biosensors are typically hampered by Faradaic interference caused by the presence of other electroactive species in the brain, such as ascorbic acid, dopamine, and uric acid. Various permselective membranes are often used on biosensors to prevent this. In this study we evaluated the most commonly used membranes, i.e. nafion, polyphenylenediamine, polypyrrole, polyaniline, and polynaphthol using a novel silica-based platinum electrode. First we selected the membranes with the highest sensitivity for hydrogen peroxide in vitro and an optimal selectivity against electrochemical interferents. Then we evaluated the performances of these membranes in a short lasting (3-4h) in vivo experiment. We found that best in vitro performance was accomplished with biosensors that were protected by a poly(m-phenylenediamine) membrane deposited onto the platinum electrode by cyclic voltammetry. However, post-implantation evaluation of these membranes showed poor selectivity against dopamine. Combination with a previously applied nafion layer did not protect the sensors against acute biofouling; indeed it was even counter effective. Finally, we investigated the ability of our biosensors to monitor the effect of glutamate transport blocker DL-TBOA on modulating glutamate concentrations in the prefrontal cortex of anaesthetized rats. The optimized biosensors recorded a rapid 35-fold increase in extracellular glutamate, and are considered suitable for further exploration in vivo.
Collapse
Affiliation(s)
- N Wahono
- Biomonitoring and Sensoring Group, Groningen University, The Netherlands.
| | | | | | | | | | | |
Collapse
|
16
|
Thomas TC, Hinzman JM, Gerhardt GA, Lifshitz J. Hypersensitive glutamate signaling correlates with the development of late-onset behavioral morbidity in diffuse brain-injured circuitry. J Neurotrauma 2012; 29:187-200. [PMID: 21939393 PMCID: PMC3261793 DOI: 10.1089/neu.2011.2091] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In diffuse brain-injured rats, robust sensory sensitivity to manual whisker stimulation develops over 1 month post-injury, comparable to agitation expressed by brain-injured individuals with overstimulation. In the rat, whisker somatosensation relies on thalamocortical glutamatergic relays between the ventral posterior medial (VPM) thalamus and barrel fields of somatosensory cortex (S1BF). Using novel glutamate-selective microelectrode arrays coupled to amperometry, we test the hypothesis that disrupted glutamatergic neurotransmission underlies the whisker sensory sensitivity associated with diffuse brain injury. We report hypersensitive glutamate neurotransmission that parallels and correlates with the development of post-traumatic sensory sensitivity. Hypersensitivity is demonstrated by significant 110% increases in VPM extracellular glutamate levels, and 100% increase in potassium-evoked glutamate release in the VPM and S1BF, with no change in glutamate clearance. Further, evoked glutamate release showed 50% greater sensitivity to a calcium channel antagonist in brain-injured over uninjured VPM. In conjunction with no changes in glutamate transporter gene expression and exogenous glutamate clearance efficiency, these data support a presynaptic origin for enduring post-traumatic circuit alterations. In the anatomically-distinct whisker circuit, the injury-induced functional alterations correlate with the development of late-onset behavioral morbidity. Effective therapies to modulate presynaptic glutamate function in diffuse-injured circuits may translate into improvements in essential brain function and behavioral performance in other brain-injured circuits in rodents and in humans.
Collapse
Affiliation(s)
- Theresa Currier Thomas
- Spinal Cord & Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, Kentucky
- Department of Anatomy & Neurobiology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Jason M. Hinzman
- Spinal Cord & Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, Kentucky
- Department of Anatomy & Neurobiology, University of Kentucky College of Medicine, Lexington, Kentucky
- Center for Microelectrode Technology, University of Kentucky College of Medicine, Lexington, Kentucky
- Morris K. Udall Parkinson's Disease Research Center of Excellence, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Greg A. Gerhardt
- Spinal Cord & Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, Kentucky
- Department of Anatomy & Neurobiology, University of Kentucky College of Medicine, Lexington, Kentucky
- Center for Microelectrode Technology, University of Kentucky College of Medicine, Lexington, Kentucky
- Morris K. Udall Parkinson's Disease Research Center of Excellence, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Jonathan Lifshitz
- Spinal Cord & Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, Kentucky
- Department of Anatomy & Neurobiology, University of Kentucky College of Medicine, Lexington, Kentucky
- Department of Physical Medicine & Rehabilitation, University of Kentucky College of Medicine, Lexington, Kentucky
| |
Collapse
|
17
|
Hinzman JM, Thomas TC, Burmeister JJ, Quintero JE, Huettl P, Pomerleau F, Gerhardt GA, Lifshitz J. Diffuse brain injury elevates tonic glutamate levels and potassium-evoked glutamate release in discrete brain regions at two days post-injury: an enzyme-based microelectrode array study. J Neurotrauma 2010; 27:889-99. [PMID: 20233041 DOI: 10.1089/neu.2009.1238] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) survivors often suffer from a wide range of post-traumatic deficits, including impairments in behavioral, cognitive, and motor function. Regulation of glutamate signaling is vital for proper neuronal excitation in the central nervous system. Without proper regulation, increases in extracellular glutamate can contribute to the pathophysiology and neurological dysfunction seen in TBI. In the present studies, enzyme-based microelectrode arrays (MEAs) that selectively measure extracellular glutamate at 2 Hz enabled the examination of tonic glutamate levels and potassium chloride (KCl)-evoked glutamate release in the prefrontal cortex, dentate gyrus, and striatum of adult male rats 2 days after mild or moderate midline fluid percussion brain injury. Moderate brain injury significantly increased tonic extracellular glutamate levels by 256% in the dentate gyrus and 178% in the dorsal striatum. In the dorsal striatum, mild brain injury significantly increased tonic glutamate levels by 200%. Tonic glutamate levels were significantly correlated with injury severity in the dentate gyrus and striatum. The amplitudes of KCl-evoked glutamate release were increased significantly only in the striatum after moderate injury, with a 249% increase seen in the dorsal striatum. Thus, with the MEAs, we measured discrete regional changes in both tonic and KCl-evoked glutamate signaling, which were dependent on injury severity. Future studies may reveal the specific mechanisms responsible for glutamate dysregulation in the post-traumatic period, and may provide novel therapeutic means to improve outcomes after TBI.
Collapse
Affiliation(s)
- Jason M Hinzman
- Department of Anatomy and Neurobiology, University of Kentucky Chandler Medical Center, Lexington, Kentucky 40536-0509, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Hascup ER, Hascup KN, Stephens M, Pomerleau F, Huettl P, Gratton A, Gerhardt GA. Rapid microelectrode measurements and the origin and regulation of extracellular glutamate in rat prefrontal cortex. J Neurochem 2010; 115:1608-20. [PMID: 20969570 DOI: 10.1111/j.1471-4159.2010.07066.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glutamate in the prefrontal cortex (PFC) plays a significant role in several mental illnesses, including schizophrenia, addiction and anxiety. Previous studies on PFC glutamate-mediated function have used techniques that raise questions on the neuronal versus astrocytic origin of glutamate. The present studies used enzyme-based microelectrode arrays to monitor second-by-second resting glutamate levels in the PFC of awake rats. Locally applied drugs were employed in an attempt to discriminate between the neuronal or glial components of the resting glutamate signal. Local application of tetrodotoxin (sodium channel blocker), produced a significant (∼ 40%) decline in resting glutamate levels. In addition significant reductions in extracellular glutamate were seen with locally applied ω-conotoxin (MVIIC; ∼ 50%; calcium channel blocker), and the mGluR(2/3) agonist, LY379268 (∼ 20%), and a significant increase with the mGluR(2/3) antagonist LY341495 (∼ 40%), effects all consistent with a large neuronal contribution to the resting glutamate levels. Local administration of D,L-threo-β-benzyloxyaspartate (glutamate transporter inhibitor) produced an ∼ 120% increase in extracellular glutamate levels, supporting that excitatory amino acid transporters, which are largely located on glia, modulate clearance of extracellular glutamate. Interestingly, local application of (S)-4-carboxyphenylglycine (cystine/glutamate antiporter inhibitor), produced small, non-significant bi-phasic changes in extracellular glutamate versus vehicle control. Finally, pre-administration of tetrodotoxin completely blocked the glutamate response to tail pinch stress. Taken together, these results support that PFC resting glutamate levels in rats as measured by the microelectrode array technology are at least 40-50% derived from neurons. Furthermore, these data support that the impulse flow-dependent glutamate release from a physiologically -evoked event is entirely neuronally derived.
Collapse
Affiliation(s)
- Erin R Hascup
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Canada.
| | | | | | | | | | | | | |
Collapse
|
19
|
Konradsson-Geuken A, Gash CR, Alexander K, Pomerleau F, Huettl P, Gerhardt GA, Bruno JP. Second-by-second analysis of alpha 7 nicotine receptor regulation of glutamate release in the prefrontal cortex of awake rats. Synapse 2010; 63:1069-82. [PMID: 19637277 DOI: 10.1002/syn.20693] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
These experiments utilized an enzyme-based microelectrode selective for the second-by-second detection of extracellular glutamate to reveal the alpha 7-based nicotinic modulation of glutamate release in the prefrontal cortex (PFC) of freely moving rats. Rats received intracortical infusions of the nonselective nicotinic agonist nicotine (12.0 mM, 1.0 microg/0.4 microl) or the selective alpha 7 agonist choline (2.0 mM/0.4 microl). The selectivity of drug-induced glutamate release was assessed in subgroups of animals pretreated with the alpha 7 antagonist, alpha-bungarotoxin (alpha-BGT, 10 microM), or kynurenine (10 microM) the precursor of the astrocyte-derived, negative allosteric alpha 7 modulator kynurenic acid. Local administration of nicotine increased glutamate signals (maximum amplitude = 4.3 +/- 0.6 microM) that were cleared to baseline levels in 493 +/- 80 seconds. Pretreatment with alpha-BGT or kynurenine attenuated nicotine-induced glutamate by 61% and 60%, respectively. Local administration of choline also increased glutamate signals (maximum amplitude = 6.3 +/- 0.9 microM). In contrast to nicotine-evoked glutamate release, choline-evoked signals were cleared more quickly (28 +/- 6 seconds) and pretreatment with alpha-BGT or kynurenine completely blocked the stimulated glutamate release. Using a method that reveals the temporal dynamics of in vivo glutamate release and clearance, these data indicate a nicotinic modulation of cortical glutamate release that is both alpha 7- and non-alpha 7-mediated. Furthermore, these data may also provide a mechanism underlying the recent focus on alpha 7 full and partial agonists as therapeutic agents in the treatment of cortically mediated cognitive deficits in schizophrenia.
Collapse
|
20
|
Agnesi F, Tye SJ, Bledsoe JM, Griessenauer CJ, Kimble CJ, Sieck GC, Bennet KE, Garris PA, Blaha CD, Lee KH. Wireless Instantaneous Neurotransmitter Concentration System-based amperometric detection of dopamine, adenosine, and glutamate for intraoperative neurochemical monitoring. J Neurosurg 2009; 111:701-11. [PMID: 19425899 DOI: 10.3171/2009.3.jns0990] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT In a companion study, the authors describe the development of a new instrument named the Wireless Instantaneous Neurotransmitter Concentration System (WINCS), which couples digital telemetry with fast-scan cyclic voltammetry (FSCV) to measure extracellular concentrations of dopamine. In the present study, the authors describe the extended capability of the WINCS to use fixed potential amperometry (FPA) to measure extracellular concentrations of dopamine, as well as glutamate and adenosine. Compared with other electrochemical techniques such as FSCV or high-speed chronoamperometry, FPA offers superior temporal resolution and, in combination with enzyme-linked biosensors, the potential to monitor nonelectroactive analytes in real time. METHODS The WINCS design incorporated a transimpedance amplifier with associated analog circuitry for FPA; a microprocessor; a Bluetooth transceiver; and a single, battery-powered, multilayer, printed circuit board. The WINCS was tested with 3 distinct recording electrodes: 1) a carbon-fiber microelectrode (CFM) to measure dopamine; 2) a glutamate oxidase enzyme-linked electrode to measure glutamate; and 3) a multiple enzyme-linked electrode (adenosine deaminase, nucleoside phosphorylase, and xanthine oxidase) to measure adenosine. Proof-of-principle analyses included noise assessments and in vitro and in vivo measurements that were compared with similar analyses by using a commercial hardwired electrochemical system (EA161 Picostat, eDAQ; Pty Ltd). In urethane-anesthetized rats, dopamine release was monitored in the striatum following deep brain stimulation (DBS) of ascending dopaminergic fibers in the medial forebrain bundle (MFB). In separate rat experiments, DBS-evoked adenosine release was monitored in the ventrolateral thalamus. To test the WINCS in an operating room setting resembling human neurosurgery, cortical glutamate release in response to motor cortex stimulation (MCS) was monitored using a large-mammal animal model, the pig. RESULTS The WINCS, which is designed in compliance with FDA-recognized consensus standards for medical electrical device safety, successfully measured dopamine, glutamate, and adenosine, both in vitro and in vivo. The WINCS detected striatal dopamine release at the implanted CFM during DBS of the MFB. The DBS-evoked adenosine release in the rat thalamus and MCS-evoked glutamate release in the pig cortex were also successfully measured. Overall, in vitro and in vivo testing demonstrated signals comparable to a commercial hardwired electrochemical system for FPA. CONCLUSIONS By incorporating FPA, the chemical repertoire of WINCS-measurable neurotransmitters is expanded to include glutamate and other nonelectroactive species for which the evolving field of enzyme-linked biosensors exists. Because many neurotransmitters are not electrochemically active, FPA in combination with enzyme-linked microelectrodes represents a powerful intraoperative tool for rapid and selective neurochemical sampling in important anatomical targets during functional neurosurgery.
Collapse
Affiliation(s)
- Filippo Agnesi
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Stephens ML, Pomerleau F, Huettl P, Gerhardt GA, Zhang Z. Real-time glutamate measurements in the putamen of awake rhesus monkeys using an enzyme-based human microelectrode array prototype. J Neurosci Methods 2009; 185:264-72. [PMID: 19850078 DOI: 10.1016/j.jneumeth.2009.10.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 10/11/2009] [Accepted: 10/11/2009] [Indexed: 11/19/2022]
Abstract
Commonly used for research studies in the central nervous system, microdialysis has revealed a link between dysregulation of the excitatory neurotransmitter glutamate and ischemia and seizure, however limitations like slow temporal resolution have stalled the advancement of microdialysis as a diagnostic tool. We have developed and extensively characterized an enzyme-based microelectrode array technology for second-by-second in vivo amperometric measurements of glutamate in the mammalian CNS. The current studies demonstrated the ability of a human microelectrode array prototype (Spencer-Gerhardt-2 (SG-2)) to measure tonic and phasic glutamate neurotransmission in the putamen of unanesthetized non-human primates. We also showed that the SG-2 remains functional following sterilization. Ability to monitor dynamic changes in glutamate in real-time may assist the development of clinical algorithms to potentially alert care-providers prior to onset of overt ischemia or seizure, or provide neurosurgeons with second-by-second measurements of rapid changes in extracellular glutamate which could help guide surgical procedures or aid in interventional strategies.
Collapse
Affiliation(s)
- Michelle L Stephens
- Department of Anatomy and Neurobiology, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098, USA
| | | | | | | | | |
Collapse
|
22
|
Histological studies of the effects of chronic implantation of ceramic-based microelectrode arrays and microdialysis probes in rat prefrontal cortex. Brain Res 2009; 1291:12-20. [PMID: 19577548 DOI: 10.1016/j.brainres.2009.06.084] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 06/23/2009] [Accepted: 06/24/2009] [Indexed: 01/31/2023]
Abstract
Chronic implantation of neurotransmitter measuring devices is essential for awake, behavioral studies occurring over multiple days. Little is known regarding the effects of long term implantation on surrounding brain parenchyma and the resulting alterations in the functional properties of this tissue. We examined the extent of tissue damage produced by chronic implantation of either ceramic microelectrode arrays (MEAs) or microdialysis probes. Histological studies were carried out on fixed tissues using stains for neurons (cresyl violet), astrocytes (GFAP), microglia (Iba1), glutamatergic nerve fibers (VGLUT1), and the blood-brain barrier (SMI-71). Nissl staining showed pronounced tissue body loss with microdialysis implants compared to MEAs. The MEAs produced mild gliosis extending 50-100 microm from the tracks, with a significant change in the affected areas starting at 3 days. By contrast, the microdialysis probes produced gliosis extending 200-300 microm from the track, which was significant at 3 and 7 days. Markers for microglia and glutamatergic fibers supported that the MEAs produce minimal damage with significant changes occurring only at 3 and 7 days that return to control levels by 1 month. SMI-71 staining supported the integrity of the blood-brain barrier out to 1 week for both the microdialysis probes and the MEAs. This data support that the ceramic MEA's small size and biocompatibility are necessary to accurately measure neurotransmitter levels in the intact brain. The minimal invasiveness of the MEAs reduce tissue loss, allowing for long term (>6 month) electrochemical and electrophysiological monitoring of brain activity.
Collapse
|
23
|
Stephens ML, Quintero JE, Pomerleau F, Huettl P, Gerhardt GA. Age-related changes in glutamate release in the CA3 and dentate gyrus of the rat hippocampus. Neurobiol Aging 2009; 32:811-20. [PMID: 19535175 DOI: 10.1016/j.neurobiolaging.2009.05.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 05/01/2009] [Accepted: 05/08/2009] [Indexed: 12/31/2022]
Abstract
The present studies employed a novel microelectrode array recording technology to study glutamate release and uptake in the dentate gyrus, CA3 and CA1 hippocampal subregions in anesthetized young, late-middle aged and aged male Fischer 344 rats. The mossy fiber terminals in CA3 showed a significantly decreased amount of KCl-evoked glutamate release in aged rats compared to both young and late-middle-aged rats. Significantly more KCl-evoked glutamate release was seen from perforant path terminals in the DG of late-middle-aged rats compared young and aged rats. The DG of aged rats developed an increased glutamate uptake rate compared to the DG of young animals, indicating a possible age-related change in glutamate regulation to deal with increased glutamate release that occurred in late-middle age. No age-related changes in resting levels of glutamate were observed in the DG, CA3 and CA1. Taken together, these data support dynamic changes to glutamate regulation during aging in subregions of the mammalian hippocampus that are critical for learning and memory.
Collapse
Affiliation(s)
- Michelle L Stephens
- Department of Anatomy and Neurobiology, Center for Microelectrode Technology, Morris K. Udall Parkinson's Disease Research Center of Excellence, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098, USA
| | | | | | | | | |
Collapse
|
24
|
Long-term homeostasis of extracellular glutamate in the rat cerebral cortex across sleep and waking states. J Neurosci 2009; 29:620-9. [PMID: 19158289 DOI: 10.1523/jneurosci.5486-08.2009] [Citation(s) in RCA: 196] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuronal firing patterns, neuromodulators, and cerebral metabolism change across sleep-waking states, and the synaptic release of glutamate is critically involved in these processes. Extrasynaptic glutamate can also affect neural function and may be neurotoxic, but whether and how extracellular glutamate is regulated across sleep-waking states is unclear. To assess the effect of behavioral state on extracellular glutamate at high temporal resolution, we recorded glutamate concentration in prefrontal and motor cortex using fixed-potential amperometry in freely behaving rats. Simultaneously, we recorded local field potentials (LFPs) and electroencephalograms (EEGs) from contralateral cortex. We observed dynamic, progressive changes in the concentration of glutamate that switched direction as a function of behavioral state. Specifically, the concentration of glutamate increased progressively during waking (0.329 +/- 0.06%/min) and rapid eye movement (REM) sleep (0.349 +/- 0.13%/min). This increase was opposed by a progressive decrease during non-REM (NREM) sleep (0.338 +/- 0.06%/min). During a 3 h sleep deprivation period, glutamate concentrations initially exhibited the progressive rise observed during spontaneous waking. As sleep pressure increased, glutamate concentrations ceased to increase and began decreasing despite continuous waking. During NREM sleep, the rate of decrease in glutamate was positively correlated with sleep intensity, as indexed by LFP slow-wave activity. The rate of decrease doubled during recovery sleep after sleep deprivation. Thus, the progressive increase in cortical extrasynaptic glutamate during EEG-activated states is counteracted by a decrease during NREM sleep that is modulated by sleep pressure. These results provide evidence for a long-term homeostasis of extracellular glutamate across sleep-waking states.
Collapse
|
25
|
Wassum KM, Tolosa VM, Wang J, Walker E, Monbouquette HG, Maidment NT. Silicon Wafer-Based Platinum Microelectrode Array Biosensor for Near Real-Time Measurement of Glutamate in Vivo. SENSORS 2008; 8:5023-5036. [PMID: 19543440 PMCID: PMC2699285 DOI: 10.3390/s8085023] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Using Micro-Electro-Mechanical-Systems (MEMS) technologies, we have developed silicon wafer-based platinum microelectrode arrays (MEAs) modified with glutamate oxidase (GluOx) for electroenzymatic detection of glutamate in vivo. These MEAs were designed to have optimal spatial resolution for in vivo recordings. Selective detection of glutamate in the presence of the electroactive interferents, dopamine and ascorbic acid, was attained by deposition of polypyrrole and Nafion. The sensors responded to glutamate with a limit of detection under 1muM and a sub-1-second response time in solution. In addition to extensive in vitro characterization, the utility of these MEA glutamate biosensors was also established in vivo. In the anesthetized rat, these MEA glutamate biosensors were used for detection of cortically-evoked glutamate release in the ventral striatum. The MEA biosensors also were applied to the detection of stress-induced glutamate release in the dorsal striatum of the freely-moving rat.
Collapse
Affiliation(s)
- Kate M. Wassum
- Dept. Psychiatry & Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA; E-mails: (K.M.W.); (E.W.)
- Authors to whom correspondence should be addressed; E-mails: (H.G.M.); (N.T.M); Tel.: +1-310-206-7767; Fax: +1-310-825-7067
| | - Vanessa M. Tolosa
- Dept. Psychiatry & Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA; E-mails: (K.M.W.); (E.W.)
| | - Jianjun Wang
- Chemical and Biomolecular Engineering Dept., UCLA, Los Angeles, CA, USA; E-Mails: (V.M.T.); (J.W.)
| | - Eric Walker
- Dept. Psychiatry & Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA; E-mails: (K.M.W.); (E.W.)
| | - Harold G. Monbouquette
- Chemical and Biomolecular Engineering Dept., UCLA, Los Angeles, CA, USA; E-Mails: (V.M.T.); (J.W.)
- Authors to whom correspondence should be addressed; E-mails: (H.G.M.); (N.T.M); Tel.: +1-310-206-7767; Fax: +1-310-825-7067
| | - Nigel T. Maidment
- Dept. Psychiatry & Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA; E-mails: (K.M.W.); (E.W.)
- Authors to whom correspondence should be addressed; E-mails: (H.G.M.); (N.T.M); Tel.: +1-310-206-7767; Fax: +1-310-825-7067
| |
Collapse
|
26
|
Optical measurement of synaptic glutamate spillover and reuptake by linker optimized glutamate-sensitive fluorescent reporters. Proc Natl Acad Sci U S A 2008; 105:4411-6. [PMID: 18332427 DOI: 10.1073/pnas.0712008105] [Citation(s) in RCA: 218] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetically encoded sensors of glutamate concentration are based on FRET between cyan and yellow fluorescent proteins bracketing a bacterial glutamate-binding protein. Such sensors have yet to find quantitative applications in neurons, because of poor response amplitude in physiological buffers or when expressed on the neuronal cell surface. We have improved our glutamate-sensing fluorescent reporter (GluSnFR) by systematic optimization of linker sequences and glutamate affinities. Using SuperGluSnFR, which exhibits a 6.2-fold increase in response magnitude over the original GluSnFR, we demonstrate quantitative optical measurements of the time course of synaptic glutamate release, spillover, and reuptake in cultured hippocampal neurons with centisecond temporal and spine-sized spatial resolution. During burst firing, functionally significant spillover persists for hundreds of milliseconds. These glutamate levels appear sufficient to prime NMDA receptors, potentially affecting dendritic spike initiation and computation. Stimulation frequency-dependent modulation of spillover suggests a mechanism for nonsynaptic neuronal communication.
Collapse
|
27
|
Hascup KN, Hascup ER, Pomerleau F, Huettl P, Gerhardt GA. Second-by-second measures of L-glutamate in the prefrontal cortex and striatum of freely moving mice. J Pharmacol Exp Ther 2008; 324:725-31. [PMID: 18024788 PMCID: PMC3404456 DOI: 10.1124/jpet.107.131698] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
l-Glutamate (Glu) is the main excitatory neurotransmitter in the mammalian central nervous system, and it is involved in most aspects of normal brain function, including cognition, memory and learning, plasticity, and motor movement. Although microdialysis techniques have been used to study Glu, the slow temporal resolution of the technique may be inadequate to properly examine tonic and phasic Glu. Thus, our laboratory has developed an enzyme-based microelectrode array (MEA) with fast response time and low detection limits for Glu. We have modified the MEA design to allow for reliable measures in the brain of awake, freely moving mice. In this study, we chronically implanted the MEA in prefrontal cortex (PFC) or striatum (Str) of awake, freely moving C57BL/6 mice. We successfully measured Glu levels 7 days postimplantation without loss of MEA sensitivity. In addition, we determined resting (tonic) Glu levels to be 3.3 microM in the PFC and 5.0 microM in the Str. Resting Glu levels were subjected to pharmacological manipulation with tetrodotoxin (TTX) and dl-threo-beta-hydroxyaspartate (THA). TTX significantly (p < 0.05) decreased resting Glu by 20%, whereas THA significantly (p < 0.05) increased resting Glu by 60%. Taken together, our data show that chronic recordings of tonic and phasic clearance of exogenously applied Glu can be carried out in awake mice for at least 7 days in vivo, allowing for longer term studies of Glu regulation.
Collapse
Affiliation(s)
- K N Hascup
- Department of Anatomy and Neurobiology, 306 Whitney-Hendrickson Facility, 800 Rose St., Lexington, KY 40536-0098, USA
| | | | | | | | | |
Collapse
|
28
|
Pernot P, Mothet JP, Schuvailo O, Soldatkin A, Pollegioni L, Pilone M, Adeline MT, Cespuglio R, Marinesco S. Characterization of a Yeast d-Amino Acid Oxidase Microbiosensor for d-Serine Detection in the Central Nervous System. Anal Chem 2008; 80:1589-97. [DOI: 10.1021/ac702230w] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pierre Pernot
- CNRS, Institut de Neurobiologie Alfred FessardFRC2118, Laboratoire de Neurobiologie Cellulaire et MoléculaireUPR9040, 91198 Gif sur Yvette, France, Institut National de la Santé et de la Recherche Médicale U862, Université Bordeaux 2, Institut Magendie, 146 rue Léo Saignat, 33077 Bordeaux, France, EA4170, Université Claude Bernard Lyon I, 8 avenue Rockefeller, 69373 Lyon, France, Institute of Molecular Biology and Genetics, National Academy of Science of Ukraine, 150 zabolotny Str, 03143 Kiev, Ukraine,
| | - Jean-Pierre Mothet
- CNRS, Institut de Neurobiologie Alfred FessardFRC2118, Laboratoire de Neurobiologie Cellulaire et MoléculaireUPR9040, 91198 Gif sur Yvette, France, Institut National de la Santé et de la Recherche Médicale U862, Université Bordeaux 2, Institut Magendie, 146 rue Léo Saignat, 33077 Bordeaux, France, EA4170, Université Claude Bernard Lyon I, 8 avenue Rockefeller, 69373 Lyon, France, Institute of Molecular Biology and Genetics, National Academy of Science of Ukraine, 150 zabolotny Str, 03143 Kiev, Ukraine,
| | - Oleg Schuvailo
- CNRS, Institut de Neurobiologie Alfred FessardFRC2118, Laboratoire de Neurobiologie Cellulaire et MoléculaireUPR9040, 91198 Gif sur Yvette, France, Institut National de la Santé et de la Recherche Médicale U862, Université Bordeaux 2, Institut Magendie, 146 rue Léo Saignat, 33077 Bordeaux, France, EA4170, Université Claude Bernard Lyon I, 8 avenue Rockefeller, 69373 Lyon, France, Institute of Molecular Biology and Genetics, National Academy of Science of Ukraine, 150 zabolotny Str, 03143 Kiev, Ukraine,
| | - Alexey Soldatkin
- CNRS, Institut de Neurobiologie Alfred FessardFRC2118, Laboratoire de Neurobiologie Cellulaire et MoléculaireUPR9040, 91198 Gif sur Yvette, France, Institut National de la Santé et de la Recherche Médicale U862, Université Bordeaux 2, Institut Magendie, 146 rue Léo Saignat, 33077 Bordeaux, France, EA4170, Université Claude Bernard Lyon I, 8 avenue Rockefeller, 69373 Lyon, France, Institute of Molecular Biology and Genetics, National Academy of Science of Ukraine, 150 zabolotny Str, 03143 Kiev, Ukraine,
| | - Loredano Pollegioni
- CNRS, Institut de Neurobiologie Alfred FessardFRC2118, Laboratoire de Neurobiologie Cellulaire et MoléculaireUPR9040, 91198 Gif sur Yvette, France, Institut National de la Santé et de la Recherche Médicale U862, Université Bordeaux 2, Institut Magendie, 146 rue Léo Saignat, 33077 Bordeaux, France, EA4170, Université Claude Bernard Lyon I, 8 avenue Rockefeller, 69373 Lyon, France, Institute of Molecular Biology and Genetics, National Academy of Science of Ukraine, 150 zabolotny Str, 03143 Kiev, Ukraine,
| | - Mirella Pilone
- CNRS, Institut de Neurobiologie Alfred FessardFRC2118, Laboratoire de Neurobiologie Cellulaire et MoléculaireUPR9040, 91198 Gif sur Yvette, France, Institut National de la Santé et de la Recherche Médicale U862, Université Bordeaux 2, Institut Magendie, 146 rue Léo Saignat, 33077 Bordeaux, France, EA4170, Université Claude Bernard Lyon I, 8 avenue Rockefeller, 69373 Lyon, France, Institute of Molecular Biology and Genetics, National Academy of Science of Ukraine, 150 zabolotny Str, 03143 Kiev, Ukraine,
| | - Marie-Thérèse Adeline
- CNRS, Institut de Neurobiologie Alfred FessardFRC2118, Laboratoire de Neurobiologie Cellulaire et MoléculaireUPR9040, 91198 Gif sur Yvette, France, Institut National de la Santé et de la Recherche Médicale U862, Université Bordeaux 2, Institut Magendie, 146 rue Léo Saignat, 33077 Bordeaux, France, EA4170, Université Claude Bernard Lyon I, 8 avenue Rockefeller, 69373 Lyon, France, Institute of Molecular Biology and Genetics, National Academy of Science of Ukraine, 150 zabolotny Str, 03143 Kiev, Ukraine,
| | - Raymond Cespuglio
- CNRS, Institut de Neurobiologie Alfred FessardFRC2118, Laboratoire de Neurobiologie Cellulaire et MoléculaireUPR9040, 91198 Gif sur Yvette, France, Institut National de la Santé et de la Recherche Médicale U862, Université Bordeaux 2, Institut Magendie, 146 rue Léo Saignat, 33077 Bordeaux, France, EA4170, Université Claude Bernard Lyon I, 8 avenue Rockefeller, 69373 Lyon, France, Institute of Molecular Biology and Genetics, National Academy of Science of Ukraine, 150 zabolotny Str, 03143 Kiev, Ukraine,
| | - Stéphane Marinesco
- CNRS, Institut de Neurobiologie Alfred FessardFRC2118, Laboratoire de Neurobiologie Cellulaire et MoléculaireUPR9040, 91198 Gif sur Yvette, France, Institut National de la Santé et de la Recherche Médicale U862, Université Bordeaux 2, Institut Magendie, 146 rue Léo Saignat, 33077 Bordeaux, France, EA4170, Université Claude Bernard Lyon I, 8 avenue Rockefeller, 69373 Lyon, France, Institute of Molecular Biology and Genetics, National Academy of Science of Ukraine, 150 zabolotny Str, 03143 Kiev, Ukraine,
| |
Collapse
|
29
|
Tian L, Looger LL. Genetically encoded fluorescent sensors for studying healthy and diseased nervous systems. DRUG DISCOVERY TODAY. DISEASE MODELS 2008; 5:27-35. [PMID: 19461949 PMCID: PMC2651031 DOI: 10.1016/j.ddmod.2008.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Neurons and glia are functionally organized into circuits and higher-order structures via synaptic connectivity, well-orchestrated molecular signaling, and activity-dependent refinement. Such organization allows the precise information processing required for complex behaviors. Disruption of nervous systems by genetic deficiency or events such as trauma or environmental exposure may produce a diseased state in which certain aspects of inter-neuron signaling are impaired. Optical imaging techniques allow the direct visualization of individual neurons in a circuit environment. Imaging probes specific for given biomolecules may help elucidate their contribution to proper circuit function. Genetically encoded sensors can visualize trafficking of particular molecules in defined neuronal populations, non-invasively in intact brain or reduced preparations. Sensor analysis in healthy and diseased brains may reveal important differences and shed light on the development and progression of nervous system disorders. We review the field of genetically encoded sensors for molecules and cellular events, and their potential applicability to the study of nervous system disease.
Collapse
Affiliation(s)
- Lin Tian
- Howard Hughes Medical Institute Janelia Farm Research Campus, 19700 Helix Dr. Ashburn, VA, 20194, USA
| | | |
Collapse
|
30
|
Rutherford EC, Pomerleau F, Huettl P, Strömberg I, Gerhardt GA. Chronic second-by-second measures of L-glutamate in the central nervous system of freely moving rats. J Neurochem 2007; 102:712-22. [PMID: 17630982 PMCID: PMC3482110 DOI: 10.1111/j.1471-4159.2007.04596.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
l-glutamate (Glu) is the main excitatory neurotransmitter in the central nervous system (CNS) and is associated with motor behavior and sensory perception. While microdialysis methods have been used to record tonic levels of Glu, little is known about the more rapid changes in Glu signals that may be observed in awake rats. We have reported acute recording methods using enzyme-based microelectrode arrays (MEA) with fast response time and low detection levels of Glu in anesthetized animals with minimal interference. The current paper concerns modification of the MEA design to allow for reliable measures in the brain of conscious rats. In this study, we characterized the effects of chronic implantation of the MEA into the brains of rats. We were capable of measuring Glu levels for 7 days without loss of sensitivity. We performed studies of tail-pinch induced stress, which caused a robust biphasic increase in Glu. Histological data show chronic implantation of the MEAs caused minimal injury to the CNS. Taken together, our data show that chronic recordings of tonic and phasic Glu can be carried out in awake rats for up to 17 days in vivo allowing longer term studies of Glu regulation in behaving rats.
Collapse
Affiliation(s)
- Erin C. Rutherford
- Anatomy and Neurobiology, Morris K. Udall Parkinson’s Disease Research Center of Excellence, Center for Sensor Technology, University of Kentucky, College of Medicine, Lexington, Kentucky, USA
| | - Francois Pomerleau
- Anatomy and Neurobiology, Morris K. Udall Parkinson’s Disease Research Center of Excellence, Center for Sensor Technology, University of Kentucky, College of Medicine, Lexington, Kentucky, USA
| | - Peter Huettl
- Anatomy and Neurobiology, Morris K. Udall Parkinson’s Disease Research Center of Excellence, Center for Sensor Technology, University of Kentucky, College of Medicine, Lexington, Kentucky, USA
| | - Ingrid Strömberg
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Greg A. Gerhardt
- Anatomy and Neurobiology, Morris K. Udall Parkinson’s Disease Research Center of Excellence, Center for Sensor Technology, University of Kentucky, College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
31
|
Burmeister JJ, Coates TD, Gerhardt GA. Multisite microelectrode arrays for measurements of multiple neurochemicals. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2007; 2004:5348-51. [PMID: 17271550 DOI: 10.1109/iembs.2004.1404493] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Multisite microelectrode arrays designed for electrochemical measures of neurochemicals in CNS tissues are presented. The arrays have platinum recording sites insulated with polyimide on a ceramic substrate. Most designs include 4 recording sites, however arrays with 5 to 8 recording sites have been fabricated. Enzyme coatings have been developed to measure glutamate, choline, lactate, and glucose. Electroactive compounds such as dopamine, norepinephrine, and O/sub 2/ can also be measured. The multiple recording sites can be exploited for interferent or noise removal and measures of multiple compounds using a single microelectrode array.
Collapse
Affiliation(s)
- J J Burmeister
- Morris K. Udall Parkinson's Disease Research Center of Excellence, Kentucky University, Lexington, KY, USA
| | | | | |
Collapse
|
32
|
Li G, Abdel-Rahman AA. Direct evidence for imidazoline (I1) receptor modulation of ethanol action on norepinephrine-containing neurons in the rostral ventrolateral medulla in conscious spontaneously hypertensive rats. Alcohol Clin Exp Res 2007; 31:684-93. [PMID: 17374048 DOI: 10.1111/j.1530-0277.2007.00353.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Enhancement of the rostral ventrolateral medulla (RVLM) presympathetic (norepinephrine, NE) neuronal activity represents a neurochemical mechanism for the pressor effect of ethanol. In this study, we tested the hypothesis that ethanol action on RVLM presympathetic neurons is selectively influenced by the signaling of the local imidazoline (I1) receptor. To support a neuroanatomical and an I1-signaling selectivity of ethanol, and to circumvent the confounding effects of anesthesia, the dose-related neurochemical and blood pressure effects of ethanol were investigated in the presence of selective pharmacological interventions that cause reduction in the activity of RVLM or nucleus tractus solitarius (NTS) NE neurons via local activation of the I1 or the alpha2-adrenergic receptor in conscious spontaneously hypertensive rats. RESULTS Local activation of the I1 receptor by rilmenidine (40 nmol) or by the I1/alpha2 receptor mixed agonist clonidine (1 nmol), and local activation of the alpha2-adrenergic receptor (alpha2AR) by the pure alpha2AR agonist alpha-methylnorepinephrine (alpha-MNE, 10 nmol) caused reductions in RVLM NE, and blood pressure. Intra-RVLM ethanol (1, 5, or 10 microg), microinjected at the nadir of the neurochemical and hypotensive responses, elicited dose-dependent increments in RVLM NE and blood pressure in the presence of local I1--but not alpha2-receptor activation. Only intra-NTS alpha-MNE, but not rilmenidine or clonidine, elicited reductions in local NE and blood pressure; ethanol failed to elicit any neurochemical or blood pressure responses in the presence of local activation of the alpha2AR within the NTS. CONCLUSION The findings support the neuroanatomical selectivity of ethanol, and support the hypothesis that the neurochemical (RVLM NE), and the subsequent cardiovascular, effects of ethanol are selectively modulated by I1 receptor signaling in the RVLM.
Collapse
Affiliation(s)
- Guichu Li
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, Greenville, North Carolina 27858, USA
| | | |
Collapse
|
33
|
Abstract
Implantable neural microsystems provide an interface to the nervous system, giving cellular resolution to physiological processes unattainable today with non-invasive methods. Such implantable microelectrode arrays are being developed to simultaneously sample signals at many points in the tissue, providing insight into processes such as movement control, memory formation, and perception. These electrode arrays have been microfabricated on a variety of substrates, including silicon, using both surface and bulk micromachining techniques, and more recently, polymers. Current approaches to achieving a stable long-term tissue interface focus on engineering the surface properties of the implant, including coatings that discourage protein adsorption or release bioactive molecules. The implementation of a wireless interface requires consideration of the necessary data flow, amplification, signal processing, and packaging. In future, the realization of a fully implantable neural microsystem will contribute to both diagnostic and therapeutic applications, such as a neuroprosthetic interface to restore motor functions in paralyzed patients.
Collapse
Affiliation(s)
- Karen C Cheung
- Department of Electrical & Computer Engineering, University of British Columbia, 2332 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada.
| |
Collapse
|
34
|
Bruno JP, Gash C, Martin B, Zmarowski A, Pomerleau F, Burmeister J, Huettl P, Gerhardt GA. Second-by-second measurement of acetylcholine release in prefrontal cortex. Eur J Neurosci 2006; 24:2749-57. [PMID: 17156201 DOI: 10.1111/j.1460-9568.2006.05176.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Microdialysis has been widely used to measure acetylcholine (ACh) release in vivo and has provided important insights into the regulation of cholinergic transmission. However, microdialysis can be constrained by limited spatial and temporal resolution. The present experiments utilize a microelectrode array (MEA) to rapidly measure ACh release and clearance in anaesthetized rats. The array electrochemically detects, on a second-by-second basis, changes in current selectively produced by the hydrolysis of ACh to choline (Ch) and the subsequent oxidation of choline and hydrogen peroxidase (H(2)O(2)) at the electrode surface. In vitro calibration of the microelectrode revealed linear responses to ACh (R(2) = 0.9998), limit of detection of 0.08 microm, and signal-to-noise ratio of 3.0. The electrode was unresponsive to ascorbic acid (AA), dopamine (DA), or norepinephrine (NE) interferents. In vivo experiments were conducted in prefrontal cortex (PFC) of anaesthetized rats. Pressure ejections of ACh (10 mm; 40 nL) through an adjoining micropipette produced a rapid rise in current, reaching maximum amplitude in approximately 1.0 s and cleared by 80% within 4-11 s. Endogenously released ACh, following local depolarization with KCl (70 mm; 40, 160 nL), was detected at values as low as 0.05 microm. These signals were volume-dependent and cleared within 4-12 s. Finally, nicotine (1.0 mm, 80 nL) stimulated ACh signals. Nicotine-induced signals reflected the hydrolysis of ACh by endogenous acetylcholinesterase (AChE) as inhibition of the enzyme following perfusion with neostigmine (10 microm) attenuated the signal (40-94%). Collectively, these data validate a novel method for rapidly measuring cholinergic transmission in vivo with a spatial and temporal resolution that far exceeds conventional microdialysis.
Collapse
Affiliation(s)
- John P Bruno
- Department of Psychology, 57 Psychology Building, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Nickell J, Salvatore MF, Pomerleau F, Apparsundaram S, Gerhardt GA. Reduced plasma membrane surface expression of GLAST mediates decreased glutamate regulation in the aged striatum. Neurobiol Aging 2006; 28:1737-48. [PMID: 16959378 DOI: 10.1016/j.neurobiolaging.2006.07.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 06/30/2006] [Accepted: 07/17/2006] [Indexed: 10/24/2022]
Abstract
Extracellular L-glutamate poses a severe excitotoxic threat to neurons and glia when unregulated, therefore low synaptic levels of this neurotransmitter must be maintained via a rapid and robust transport system. A recent study from our laboratory showed a reduced glutamate uptake rate in the striatum of the aged Fischer 344 (F344) rat, yet the mechanism underlying this phenomenon is unknown. The current study utilized in vivo electrochemical recordings, immunoblotting and biotinylation in young (6 months), late-middle aged (18 months) and aged (24 months) F344 rats to elucidate the potential role that glutamate transporters (GLT-1, GLAST, and EAAC1) may play in this mechanism. Here we show that the time necessary to clear glutamate from the late-middle aged and aged striatum is significantly prolonged in comparison to the young striatum. In addition, an analysis of various sub-regions of the striatum revealed a marked dorsoventral gradient in terms of glutamate clearance times in the aged striatum, a phenomenon which was not present in the striatum of the animals of the remaining age groups. We also found that the decreased glutamate clearance time observed in the late-middle aged and aged rats is not due to a decrease in the production of total transporter protein among these three transporters. Rather, a significant reduction in the amount of GLAST expressed on the plasma membrane surface in the aged animals (approximately 55% when compared to young rats) may contribute to this phenomenon. These age-related alterations in extracellular l-glutamate regulation may be key contributors to the increased susceptibility of the aged brain to excitotoxic insults such as stroke and hypoxia.
Collapse
Affiliation(s)
- Justin Nickell
- Department of Anatomy and Neurobiology, Center for Sensor Technology, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098, USA.
| | | | | | | | | |
Collapse
|
36
|
Day BK, Pomerleau F, Burmeister JJ, Huettl P, Gerhardt GA. Microelectrode array studies of basal and potassium-evoked release of L-glutamate in the anesthetized rat brain. J Neurochem 2006; 96:1626-35. [PMID: 16441510 DOI: 10.1111/j.1471-4159.2006.03673.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
L-glutamate (Glu) is the predominant excitatory neurotransmitter in the mammalian central nervous system. It plays major roles in normal neurophysiology and many brain disorders by binding to membrane-bound Glu receptors. To overcome the spatial and temporal limitations encountered in previous in vivo extracellular Glu studies, we employed enzyme-coated microelectrode arrays to measure both basal and potassium-evoked release of Glu in the anesthetized rat brain. We also addressed the question of signal identity, which is the predominant criticism of these recording technologies. In vivo self-referencing recordings demonstrated that our Glu signals were both enzyme- and voltage-dependent, supporting the identity of L-glutamate. In addition, basal Glu was actively regulated, tetrodotoxin (TTX)-dependent, and measured in the low micromolar range (approximately 2 microm) using multiple self-referencing subtraction approaches for identification of Glu. Moreover, potassium-evoked Glu release exhibited fast kinetics that were concentration-dependent and reproducible. These data support the hypothesis that Glu release is highly regulated, requiring detection technologies that must be very close to the synapse and measure on a second-by-second basis to best characterize the dynamics of the Glu system.
Collapse
Affiliation(s)
- B K Day
- Center For Sensor Technology, Morris K. Udall Parkinson's Disease Research Center of Excellence, Department of Anatomy and Neurobiology, University of Kentucky, Lexington, Kentucky 40536-0098, USA
| | | | | | | | | |
Collapse
|
37
|
Mitala J, Michael A. Improving the performance of electrochemical microsensors based on enzymes entrapped in a redox hydrogel. Anal Chim Acta 2006. [DOI: 10.1016/j.aca.2005.09.053] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Fillenz M. In vivo neurochemical monitoring and the study of behaviour. Neurosci Biobehav Rev 2005; 29:949-62. [PMID: 15963566 DOI: 10.1016/j.neubiorev.2005.02.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 02/03/2005] [Accepted: 02/03/2005] [Indexed: 12/31/2022]
Abstract
In vivo neurochemical monitoring techniques measure changes in the extracellular compartment of selected brain regions. These changes reflect the release of chemical messengers and intermediates of brain energy metabolism resulting from the activity of neuronal assemblies. The two principal techniques used in neurochemical monitoring are microdialysis and voltammetry. The presence of glutamate in the extracellular compartment and its pharmacological characteristics suggest that it is released from astrocytes and acts as neuromodulator rather than a neurotransmitter. The changes in extracellular noradrenaline and dopamine reflect their role in the control of behaviour. Changes in glucose and oxygen, the latter a measure of local cerebral blood flow, reflect synaptic processing in the underlying neuronal networks rather than a measure of efferent output from the brain region. In vivo neurochemical monitoring provides information about the intermediate processing that intervenes between the application of the stimulus and the resulting behaviour but does not reflect the final efferent output that leads to behaviour.
Collapse
Affiliation(s)
- Marianne Fillenz
- University Laboratory of Physiology, Parks Road, Oxford OX1 3PT, UK.
| |
Collapse
|
39
|
Liaw WJ, Stephens RL, Binns BC, Chu Y, Sepkuty JP, Johns RA, Rothstein JD, Tao YX. Spinal glutamate uptake is critical for maintaining normal sensory transmission in rat spinal cord. Pain 2005; 115:60-70. [PMID: 15836970 DOI: 10.1016/j.pain.2005.02.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 01/19/2005] [Accepted: 02/07/2005] [Indexed: 10/25/2022]
Abstract
Glutamate is a major excitatory neurotransmitter in primary afferent terminals and is critical for normal spinal excitatory synaptic transmission. However, little is known about the regulation of synaptically released glutamate in the spinal cord under physiologic conditions. The sodium-dependent, high-affinity glutamate transporters are the primary mechanism for the clearance of synaptically released glutamate. In the present study, we found that intrathecal injection of glutamate transporter blockers DL-threo-beta-benzyloxyaspartate (TBOA) and dihydrokainate produced significant and dose-dependent spontaneous nociceptive behaviors, such as licking, shaking, and caudally directed biting, phenomena similar to the behaviors caused by intrathecal glutamate receptor agonists. Intrathecal TBOA also led to remarkable hypersensitivity in response to thermal and mechanical stimuli. These behavioral responses could be significantly blocked by intrathecal injection of the NMDA receptor antagonists MK-801 and AP-5, the non-NMDA receptor antagonist CNQX or the nitric oxide synthase inhibitor L-NAME. In vivo microdialysis analysis showed short-term elevation of extracellular glutamate concentration in the spinal cord after intrathecal injection of TBOA. Furthermore, topical application of TBOA on the dorsal surface of the spinal cord resulted in a significant elevation of extracellular glutamate concentration demonstrated by in vivo glutamate voltametry. The present study indicates that defective spinal glutamate uptake caused by inhibition of glutamate transporters leads to excessive glutamate accumulation in the spinal cord. The latter results in persistent over-activation of synaptic glutamate receptors, producing spontaneous nociceptive behaviors and sensory hypersensitivity. Our results suggest that glutamate uptake through spinal glutamate transporters is critical for maintaining normal sensory transmission under physiologic conditions.
Collapse
Affiliation(s)
- Wen-Jinn Liaw
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 355 Ross, 720 Rutland Ave., Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Considerable evidence suggests that the synapse is the most sensitive CNS element for ethanol effects. Although most alcohol research has focussed on the postsynaptic sites of ethanol action, especially regarding interactions with the glutamatergic and GABAergic receptors, few such studies have directly addressed the possible presynaptic loci of ethanol action, and even fewer describe effects on synaptic terminals. Nonetheless, there is burgeoning evidence that presynaptic terminals play a major role in ethanol effects. The methods used to verify such ethanol actions range from electrophysiological analysis of paired-pulse facilitation (PPF) and spontaneous and miniature synaptic potentials to direct recording of ion channel activity and transmitter/messenger release from acutely isolated synaptic terminals, and microscopic observation of vesicular release, with a focus predominantly on GABAergic, glutamatergic, and peptidergic synapses. The combined data suggest that acute ethanol administration can both increase and decrease the release of these transmitters from synaptic terminals, and more recent results suggest that prolonged or chronic ethanol treatment (CET) can also alter the function of presynaptic terminals. These new findings suggest that future analyses of synaptic effects of ethanol should attempt to ascertain the role of presynaptic terminals and their involvement in alcohol's behavioral actions. Other future directions should include an assessment of ethanol's effects on presynaptic signal transduction linkages and on the molecular machinery of transmitter release and exocytosis in general. Such studies could lead to the formulation of new treatment strategies for alcohol intoxication, alcohol abuse, and alcoholism.
Collapse
Affiliation(s)
- George Robert Siggins
- Department of Neuropharmacology and Alcohol Research Center, The Scripps Research Institute, CVN-12, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
41
|
Binns BC, Huang Y, Goettl VM, Hackshaw KV, Stephens RL. Glutamate uptake is attenuated in spinal deep dorsal and ventral horn in the rat spinal nerve ligation model. Brain Res 2005; 1041:38-47. [PMID: 15804498 DOI: 10.1016/j.brainres.2005.01.088] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Revised: 01/25/2005] [Accepted: 01/26/2005] [Indexed: 11/25/2022]
Abstract
Alteration of glutamatergic (GLU) neurotransmission within the spinal cord contributes to hyperalgesic and allodynic responses following nerve injury. In particular, changes in expression and efficacy of glutamate transporters have been reported. Excitatory, pain transmitting primary afferent neurons utilizing glutamate as an excitatory neurotransmitter project to both superficial (I-II) and deep (III-V) laminae of the dorsal horn. These experiments were designed to examine changes in glutamate uptake occurring concomitantly within the spinal deep dorsal and ventral horn in situ after experimentally induced neuropathic pain. In vivo voltammetry, using microelectrode arrays configured for enzyme-based detection of GLU were employed. Sprague-Dawley rats had either sham surgery or tight ligation of L5 and L6 spinal nerves (SNL). Four to six weeks later, the L4-L6 spinal cord of chloral hydrate-anesthetized animals was exposed, and ceramic-based glutamate microelectrodes equipped with glass micropipettes 50 microm from the recording surfaces were placed stereotaxically at sites within the spinal cord. Pressure ejection of GLU into the ipsilateral L5-L6 spinal cord resulted in a 72% reduction of GLU uptake in SNL rats compared to sham controls in the ipsilateral L5-L6 deep dorsal horn and a 96% reduction in the ventral horn. In contrast, in the same animals, the contralateral L5-L6 or the ipsilateral L4 spinal cord showed no change in glutamate uptake. The data suggest that spinal nerve ligation produced attenuated glutamate uptake activity extending into the deep dorsal and ventral horn. The study suggests that plasticity related to spinal nerve injury produces widespread alteration in glutamate transporter function that may contribute to the pathophysiology of neuropathic pain.
Collapse
Affiliation(s)
- Brian C Binns
- Department of Physiology and Cell Biology, 304 Hamilton Hall, 1645 Neil Avenue, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
42
|
Parikh V, Pomerleau F, Huettl P, Gerhardt GA, Sarter M, Bruno JP. Rapid assessment of in vivo cholinergic transmission by amperometric detection of changes in extracellular choline levels. Eur J Neurosci 2004; 20:1545-54. [PMID: 15355321 DOI: 10.1111/j.1460-9568.2004.03614.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Conventional microdialysis methods for measuring acetylcholine (ACh) efflux do not provide sufficient temporal resolution to relate cholinergic transmission to individual stimuli or behavioral responses, or sufficient spatial resolution to investigate heterogeneities in such regulation within a brain region. In an effort to overcome these constraints, we investigated a ceramic-based microelectrode array designed to measure amperometrically rapid changes in extracellular choline as a marker for cholinergic transmission in the frontoparietal cortex of anesthetized rats. These microelectrodes exhibited detection limits of 300 nm for choline and selectivity (> 100 : 1) of choline over interferents such as ascorbic acid. Intracortical pressure ejections of choline (20 mm, 66-400 nL) and ACh (10 and 100 mm, 200 nL) dose-dependently increased choline-related signals that were cleared to background levels within 10 s. ACh, but not choline-induced signals, were significantly attenuated by co-ejection of the acetylcholinesterase inhibitor neostigmine (Neo; 100 mm). Pressure ejections of drugs known to increase cortical ACh efflux, potassium (KCl; 70 mm, 66, 200 nL) and scopolamine (Scop; 10 mm, 200 nL), also markedly increased extracellular choline signals, which again were inhibited by Neo. Scop-induced choline signals were also found to be tetrodotoxin-sensitive. Collectively, these findings suggest that drug-induced increases in current measured with these microelectrode arrays reflect the oxidation of choline that is neuronally derived from the release and subsequent hydrolysis of ACh. Choline signals assessed using enzyme-selective microelectrode arrays may represent a rapid, sensitive and spatially discrete measure of cholinergic transmission.
Collapse
Affiliation(s)
- Vinay Parikh
- Psychobiology and Behavioural Neuroscience, Department of Psychology, Ohio State University, Columbus, OH, USA
| | | | | | | | | | | |
Collapse
|