1
|
Zou Y, Shi H, Li Y, Li T, Liu N, Liu B. Heat shock protein 27 downregulation attenuates isoprenaline-induced myocardial fibrosis and diastolic dysfunction by modulating the endothelial-mesenchymal transition. Biochem Pharmacol 2024; 230:116612. [PMID: 39515591 DOI: 10.1016/j.bcp.2024.116612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/11/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Heart failure (HF), an end-stage clinical syndrome secondary to cardiac impairment, significantly affects patients' quality of life and long-term prognosis. Myocardial fibrosis leads to systolic and diastolic dysfunction, and promotes the progression of HF. Several studies involving the modulation of myocardial fibrosis have been conducted in an effort to improve cardiac function. Heat shock protein 27 (HSP27) is a small chaperone protein that is overexpressed in cellular stress states. HSP27 modulates epithelial-mesenchymal transition, playing a crucial role in the pathology of several fibrotic diseases. However, its association with myocardial fibrosis regulation is unknown. This study aimed to investigate the mechanisms by which HSP27 regulates myocardial fibrosis. We created cardiac-specific HSP25 (the murine ortholog of human HSP27) knockout mice and found that HSP25 knockdown inhibited endothelial-mesenchymal transition (EndMT), attenuated myocardial fibrosis, and ameliorated diastolic dysfunction in isoproterenol-induced HF mice via echocardiography, histology, and western bloting. In vitro, HSP27 knockdown attenuated transforming growth factor beta-induced EndMT, whereas HSP27 overexpression promoted EndMT. Furthermore, the SMAD3/SNAIL1 pathway was found to be crucial for HSP27-mediated EndMT regulation. As an essential molecule in EndMT regulation and myocardial fibrosis modulation, HSP27 may hold promise as a therapeutic target for patients with HF.
Collapse
Affiliation(s)
- Yifei Zou
- Department of Cardiology, Second Hospital of Jilin University, No. 4026 Yatai Street, Changchun 130041, China
| | - Henghe Shi
- Department of Cardiology, Second Hospital of Jilin University, No. 4026 Yatai Street, Changchun 130041, China
| | - Yinghao Li
- Department of Cardiology, Second Hospital of Jilin University, No. 4026 Yatai Street, Changchun 130041, China
| | - Tianyi Li
- Department of Cardiology, Second Hospital of Jilin University, No. 4026 Yatai Street, Changchun 130041, China
| | - Ning Liu
- Department of Cardiology, Second Hospital of Jilin University, No. 4026 Yatai Street, Changchun 130041, China.
| | - Bin Liu
- Department of Cardiology, Second Hospital of Jilin University, No. 4026 Yatai Street, Changchun 130041, China.
| |
Collapse
|
2
|
Liu Y, Shi Q, Su Y, Chen Z, He X. Heat shock transcription factor 1 facilitates liver cancer progression by driving super-enhancer-mediated transcription of MYCN. Cancer Med 2024; 13:e70157. [PMID: 39248163 PMCID: PMC11382014 DOI: 10.1002/cam4.70157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/09/2024] [Accepted: 08/18/2024] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND Heat shock transcription factors (HSFs) play crucial roles in the development of malignancies. However, the specific roles of HSFs in hepatocellular carcinoma (HCC) have yet to be fully elucidated. AIMS To explore the involvement of the HSF family, particularly HSF1, in the progression and prognosis of HCC. MATERIALS & METHODS We conducted a thorough analysis of HSF expression and copy number variations across various cancer datasets. Specifically focusing on HSF1, we examined its expression levels and prognostic implications in HCC. In vitro and in vivo experiments were carried out to evaluate the impact of HSF1 on liver cancer cell proliferation. Additionally, we utilized CUT&Tag, H3K27 acetylation enrichment, and RNA sequencing (RNA-seq) to investigate the super-enhancer (SE) regulatory landscapes of HSF1 in liver cancer cell lines. RESULTS HSF1 expression is elevated in HCC and is linked to poor prognosis in several datasets. HSF1 stimulates liver cancer cell proliferation both in vitro and in vivo, partly through modulation of H3K27ac levels, influencing enhancer distribution. Mechanistically, our findings demonstrate that HSF1 transcriptionally activates MYCN expression by binding to its promoter and SE elements, thereby promoting liver cancer cell proliferation. Moreover, increased MYCN expression was detected in HCC tumors and correlated with unfavorable patient outcomes. DISCUSSION Our study sheds light on previously unexplored aspects of HSF1 biology, identifying it as a transcription factor capable of shaping the epigenetic landscape in the context of HCC. Given HSF1's potential as an epigenetic regulator, targeting the HSF1-MYCN axis could open up new therapeutic possibilities for HCC treatment. CONCLUSION The HSF1-MYCN axis constitutes a transcription-dependent regulatory mechanism that may function as both a prognostic indicator and a promising therapeutic target in liver cancer. Further exploration of this axis could yield valuable insights into novel treatment strategies for HCC.
Collapse
Affiliation(s)
- Yizhe Liu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qili Shi
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yue Su
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhiao Chen
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Xianghuo He
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Zhang F, Wang C, Yao J, Xing C, Xu K, Zhang Z, Chen Q, Qiao Q, Dong H, Han C, Lin L, Zhang S, Huang X. PbHsfC1a-coordinates ABA biosynthesis and H 2O 2 signalling pathways to improve drought tolerance in Pyrus betulaefolia. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1177-1197. [PMID: 38041554 PMCID: PMC11022796 DOI: 10.1111/pbi.14255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/12/2023] [Accepted: 11/13/2023] [Indexed: 12/03/2023]
Abstract
Abiotic stresses have had a substantial impact on fruit crop output and quality. Plants have evolved an efficient immune system to combat abiotic stress, which employs reactive oxygen species (ROS) to activate the downstream defence response signals. Although an aquaporin protein encoded by PbPIP1;4 is identified from transcriptome analysis of Pyrus betulaefolia plants under drought treatments, little attention has been paid to the role of PIP and ROS in responding to abiotic stresses in pear plants. In this study, we discovered that overexpression of PbPIP1;4 in pear callus improved tolerance to oxidative and osmotic stresses by reconstructing redox homeostasis and ABA signal pathways. PbPIP1;4 overexpression enhanced the transport of H2O2 into pear and yeast cells. Overexpression of PbPIP1;4 in Arabidopsis plants mitigates the stress effects caused by adding ABA, including stomatal closure and reduction of seed germination and seedling growth. Overexpression of PbPIP1;4 in Arabidopsis plants decreases drought-induced leaf withering. The PbPIP1;4 promoter could be bound and activated by TF PbHsfC1a. Overexpression of PbHsfC1a in Arabidopsis plants rescued the leaf from wilting under drought stress. PbHsfC1a could bind to and activate AtNCED4 and PbNCED4 promoters, but the activation could be inhibited by adding ABA. Besides, PbNCED expression was up-regulated under H2O2 treatment but down-regulated under ABA treatment. In conclusion, this study revealed that PbHsfC1a is a positive regulator of abiotic stress, by targeting PbPIP1;4 and PbNCED4 promoters and activating their expression to mediate redox homeostasis and ABA biosynthesis. It provides valuable information for breeding drought-resistant pear cultivars through gene modification.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Chunmeng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Jia‐Long Yao
- The New Zealand Institute for Plant and Food Research LimitedAucklandNew Zealand
| | - Caihua Xing
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Kang Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Zan Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Qiming Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Qinghai Qiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Huizhen Dong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Chenyang Han
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Likun Lin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Shaoling Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Xiaosan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
4
|
Mottola F, Palmieri I, Carannante M, Barretta A, Roychoudhury S, Rocco L. Oxidative Stress Biomarkers in Male Infertility: Established Methodologies and Future Perspectives. Genes (Basel) 2024; 15:539. [PMID: 38790168 PMCID: PMC11121722 DOI: 10.3390/genes15050539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Male fertility can be affected by oxidative stress (OS), which occurs when an imbalance between the production of reactive oxygen species (ROS) and the body's ability to neutralize them arises. OS can damage cells and influence sperm production. High levels of lipid peroxidation have been linked to reduced sperm motility and decreased fertilization ability. This literature review discusses the most commonly used biomarkers to measure sperm damage caused by ROS, such as the high level of OS in seminal plasma as an indicator of imbalance in antioxidant activity. The investigated biomarkers include 8-hydroxy-2-deoxyguanosine acid (8-OHdG), a marker of DNA damage caused by ROS, and F2 isoprostanoids (8-isoprostanes) produced by lipid peroxidation. Furthermore, this review focuses on recent methodologies including the NGS polymorphisms and differentially expressed gene (DEG) analysis, as well as the epigenetic mechanisms linked to ROS during spermatogenesis along with new methodologies developed to evaluate OS biomarkers. Finally, this review addresses a valuable insight into the mechanisms of male infertility provided by these advances and how they have led to new treatment possibilities. Overall, the use of biomarkers to evaluate OS in male infertility has supplied innovative diagnostic and therapeutic approaches, enhancing our understanding of male infertility mechanisms.
Collapse
Affiliation(s)
- Filomena Mottola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (F.M.); (I.P.); (M.C.); (A.B.)
| | - Ilaria Palmieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (F.M.); (I.P.); (M.C.); (A.B.)
| | - Maria Carannante
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (F.M.); (I.P.); (M.C.); (A.B.)
| | - Angela Barretta
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (F.M.); (I.P.); (M.C.); (A.B.)
| | | | - Lucia Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (F.M.); (I.P.); (M.C.); (A.B.)
| |
Collapse
|
5
|
Snow S, Mir D, Ma Z, Horrocks J, Cox M, Ruzga M, Sayed H, Rogers AN. Neuronal CBP-1 is required for enhanced body muscle proteostasis in response to reduced translation downstream of mTOR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585263. [PMID: 38559178 PMCID: PMC10980069 DOI: 10.1101/2024.03.15.585263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background The ability to maintain muscle function decreases with age and loss of proteostatic function. Diet, drugs, and genetic interventions that restrict nutrients or nutrient signaling help preserve long-term muscle function and slow age-related decline. Previously, it was shown that attenuating protein synthesis downstream of the mechanistic target of rapamycin (mTOR) gradually increases expression of heat shock response (HSR) genes in a manner that correlates with increased resilience to protein unfolding stress. Here, we investigate the role of specific tissues in mediating the cytoprotective effects of low translation. Methods This study uses genetic tools (transgenic C. elegans , RNA interference and gene expression analysis) as well as physiological assays (survival and paralysis assays) in order to better understand how specific tissues contribute to adaptive changes involving cellular cross-talk that enhance proteostasis under low translation conditions. Results We use the C. elegans system to show that lowering translation in neurons or the germline increases heat shock gene expression and survival under conditions of heat stress. In addition, we find that low translation in these tissues protects motility in a body muscle-specific model of proteotoxicity that results in paralysis. Low translation in neurons or germline also results in increased expression of certain muscle regulatory and structural genes, reversing reduced expression normally observed with aging in C. elegans . Enhanced resilience to protein unfolding stress requires neuronal expression of cbp-1 . Conclusion Low translation in either neurons or the germline orchestrate protective adaptation in other tissues, including body muscle.
Collapse
|
6
|
Abstract
Heat stress is described as the cumulative detrimental effect caused by an imbalance between heat production within the body and heat dissipation. When cattle are exposed to heat stress with skin surface temperatures exceeding 35 °C, gene networks within and across cells respond to environmental heat loads with both intra and extracellular signals that coordinate cellular and whole-animal metabolism changes to store heat and rapidly increase evaporative heat loss. In this study, we examined evidence from genes known to be associated with heat tolerance (Hsp70, HSF1, HspB8, SOD1, PRLH, ATP1A1, MTOR, and EIF2AK4). This information could serve as valuable resource material for breeding programs aimed at increasing the thermotolerance of cattle.
Collapse
Affiliation(s)
- LuLan Zeng
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Kaixing Qu
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Jicai Zhang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
7
|
Talukder M, Bi SS, Lv MW, Ge J, Zhang C, Li JL. Involvement of the heat shock response (HSR) regulatory pathway in cadmium-elicited cerebral damage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:106648-106659. [PMID: 37730984 DOI: 10.1007/s11356-023-29880-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/10/2023] [Indexed: 09/22/2023]
Abstract
The heat shock response (HSR) is a cellular protective mechanism that is characterized by the induction of heat shock transcription factors (HSFs) and heat shock proteins (HSPs) in response to diverse cellular and environmental stressors, including cadmium (Cd). However, little is known about the relationship between the damaging effects of Cd and the HSR pathway in the chicken cerebrum following Cd exposure. To explore whether Cd exposure elicits cerebral damage and triggers the HSR pathway, chicks were exposed to Cd in the daily diet at different concentrations (35, 70, or 140 mg/kg feed) for 90 days, while a control group was fed the standard diet without Cd. Histopathological examination of cerebral tissue from Cd-exposed chickens showed neuronal damage, as evidenced by swelling and degeneration of neurons, loss of neurons, and capillary damage. Cd exposure significantly increased mRNA expression of HSF1, HSF2, and HSF3, and mRNA and protein expression of three major stress-inducible HSPs (HSP60, HSP70, and HSP90). Moreover, Cd exposure differentially modulated mRNA expression of small HSP (sHSPs), most notably reducing expression of HSP27 (HSPB1). Furthermore, Cd exposure increased TUNEL-positive neuronal apoptotic cells and up-regulated protein expression of caspase-1, caspase-8, caspase-3, and p53, leading to apoptosis. Taken together, these data demonstrate that activation of the HSR and apoptotic pathways by Cd exposure is involved in Cd-elicited cerebral damage in the chicken. Synopsis for the graphical abstract Cadmium (Cd)-induced neuronal damage triggers the heat shock response (HSR) by activating heat shock transcription factors (HSFs) and subsequent induction of major heat shock proteins (notably, HSP60, HSP70, and HSP90). Moreover, Cd exposure activates caspase-1, caspase-8, caspase-3, and p53 protein, thereby resulting in neuronal apoptosis in the chicken brain.
Collapse
Affiliation(s)
- Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Shao-Shuai Bi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, 237012, People's Republic of China
| | - Mei-Wei Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jing Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, Henan, People's Republic of China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
8
|
Soo SK, Rudich ZD, Ko B, Moldakozhayev A, AlOkda A, Van Raamsdonk JM. Biological resilience and aging: Activation of stress response pathways contributes to lifespan extension. Ageing Res Rev 2023; 88:101941. [PMID: 37127095 DOI: 10.1016/j.arr.2023.101941] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/06/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
While aging was traditionally viewed as a stochastic process of damage accumulation, it is now clear that aging is strongly influenced by genetics. The identification and characterization of long-lived genetic mutants in model organisms has provided insights into the genetic pathways and molecular mechanisms involved in extending longevity. Long-lived genetic mutants exhibit activation of multiple stress response pathways leading to enhanced resistance to exogenous stressors. As a result, lifespan exhibits a significant, positive correlation with resistance to stress. Disruption of stress response pathways inhibits lifespan extension in multiple long-lived mutants representing different pathways of lifespan extension and can also reduce the lifespan of wild-type animals. Combined, this suggests that activation of stress response pathways is a key mechanism by which long-lived mutants achieve their extended longevity and that many of these pathways are also required for normal lifespan. These results highlight an important role for stress response pathways in determining the lifespan of an organism.
Collapse
Affiliation(s)
- Sonja K Soo
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Zenith D Rudich
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Bokang Ko
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Alibek Moldakozhayev
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Abdelrahman AlOkda
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Jeremy M Van Raamsdonk
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
9
|
Salzano A, Fioriniello S, D'Onofrio N, Balestrieri ML, Aiese Cigliano R, Neglia G, Della Ragione F, Campanile G. Transcriptomic profiles of the ruminal wall in Italian Mediterranean dairy buffaloes fed green forage. BMC Genomics 2023; 24:133. [PMID: 36941576 PMCID: PMC10029215 DOI: 10.1186/s12864-023-09215-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 02/28/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Green feed diet in ruminants exerts a beneficial effect on rumen metabolism and enhances the content of milk nutraceutical quality. At present, a comprehensive analysis focused on the identification of genes, and therefore, biological processes modulated by the green feed in buffalo rumen has never been reported. We performed RNA-sequencing in the rumen of buffaloes fed a total mixed ration (TMR) + the inclusion of 30% of ryegrass green feed (treated) or TMR (control), and identified differentially expressed genes (DEGs) using EdgeR and NOISeq tools. RESULTS We found 155 DEGs using EdgeR (p-values < 0.05) and 61 DEGs using NOISeq (prob ≥0.8), 30 of which are shared. The rt-qPCR validation suggested a higher reliability of EdgeR results as compared with NOISeq data, in our biological context. Gene Ontology analysis of DEGs identified using EdgeR revealed that green feed modulates biological processes relevant for the rumen physiology and, then, health and well-being of buffaloes, such as lipid metabolism, response to the oxidative stress, immune response, and muscle structure and function. Accordingly, we found: (i) up-regulation of HSD17B13, LOC102410803 (or PSAT1) and HYKK, and down-regulation of CDO1, SELENBP1 and PEMT, encoding factors involved in energy, lipid and amino acid metabolism; (ii) enhanced expression of SIM2 and TRIM14, whose products are implicated in the immune response and defense against infections, and reduced expression of LOC112585166 (or SAAL1), ROR2, SMOC2, and S100A11, encoding pro-inflammatory factors; (iii) up-regulation of NUDT18, DNAJA4 and HSF4, whose products counteract stressful conditions, and down-regulation of LOC102396388 (or UGT1A9) and LOC102413340 (or MRP4/ABCC4), encoding detoxifying factors; (iv) increased expression of KCNK10, CACNG4, and ATP2B4, encoding proteins modulating Ca2+ homeostasis, and reduced expression of the cytoskeleton-related MYH11 and DES. CONCLUSION Although statistically unpowered, this study suggests that green feed modulates the expression of genes involved in biological processes relevant for rumen functionality and physiology, and thus, for welfare and quality production in Italian Mediterranean dairy buffaloes. These findings, that need to be further confirmed through the validation of additional DEGs, allow to speculate a role of green feed in the production of nutraceutical molecules, whose levels might be enhanced also in milk.
Collapse
Affiliation(s)
- Angela Salzano
- Department of Veterinary Medicine and Animal Production, Federico II University, Naples, Italy
| | | | - Nunzia D'Onofrio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | | | | | - Gianluca Neglia
- Department of Veterinary Medicine and Animal Production, Federico II University, Naples, Italy
| | - Floriana Della Ragione
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, Naples, Italy.
- IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Isernia, Italy.
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, Federico II University, Naples, Italy
| |
Collapse
|
10
|
Kim H, Gomez-Pastor R. HSF1 and Its Role in Huntington's Disease Pathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1410:35-95. [PMID: 36396925 DOI: 10.1007/5584_2022_742] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE OF REVIEW Heat shock factor 1 (HSF1) is the master transcriptional regulator of the heat shock response (HSR) in mammalian cells and is a critical element in maintaining protein homeostasis. HSF1 functions at the center of many physiological processes like embryogenesis, metabolism, immune response, aging, cancer, and neurodegeneration. However, the mechanisms that allow HSF1 to control these different biological and pathophysiological processes are not fully understood. This review focuses on Huntington's disease (HD), a neurodegenerative disease characterized by severe protein aggregation of the huntingtin (HTT) protein. The aggregation of HTT, in turn, leads to a halt in the function of HSF1. Understanding the pathways that regulate HSF1 in different contexts like HD may hold the key to understanding the pathomechanisms underlying other proteinopathies. We provide the most current information on HSF1 structure, function, and regulation, emphasizing HD, and discussing its potential as a biological target for therapy. DATA SOURCES We performed PubMed search to find established and recent reports in HSF1, heat shock proteins (Hsp), HD, Hsp inhibitors, HSF1 activators, and HSF1 in aging, inflammation, cancer, brain development, mitochondria, synaptic plasticity, polyglutamine (polyQ) diseases, and HD. STUDY SELECTIONS Research and review articles that described the mechanisms of action of HSF1 were selected based on terms used in PubMed search. RESULTS HSF1 plays a crucial role in the progression of HD and other protein-misfolding related neurodegenerative diseases. Different animal models of HD, as well as postmortem brains of patients with HD, reveal a connection between the levels of HSF1 and HSF1 dysfunction to mutant HTT (mHTT)-induced toxicity and protein aggregation, dysregulation of the ubiquitin-proteasome system (UPS), oxidative stress, mitochondrial dysfunction, and disruption of the structural and functional integrity of synaptic connections, which eventually leads to neuronal loss. These features are shared with other neurodegenerative diseases (NDs). Currently, several inhibitors against negative regulators of HSF1, as well as HSF1 activators, are developed and hold promise to prevent neurodegeneration in HD and other NDs. CONCLUSION Understanding the role of HSF1 during protein aggregation and neurodegeneration in HD may help to develop therapeutic strategies that could be effective across different NDs.
Collapse
Affiliation(s)
- Hyuck Kim
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rocio Gomez-Pastor
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
11
|
Dong Q, Xiu Y, Wang Y, Hodgson C, Borcherding N, Jordan C, Buchanan J, Taylor E, Wagner B, Leidinger M, Holman C, Thiele DJ, O’Brien S, Xue HH, Zhao J, Li Q, Meyerson H, Boyce BF, Zhao C. HSF1 is a driver of leukemia stem cell self-renewal in acute myeloid leukemia. Nat Commun 2022; 13:6107. [PMID: 36245043 PMCID: PMC9573868 DOI: 10.1038/s41467-022-33861-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 10/05/2022] [Indexed: 01/25/2023] Open
Abstract
Acute myeloid leukemia (AML) is maintained by self-renewing leukemic stem cells (LSCs). A fundamental problem in treating AML is that conventional therapy fails to eliminate LSCs, which can reinitiate leukemia. Heat shock transcription factor 1 (HSF1), a central regulator of the stress response, has emerged as an important target in cancer therapy. Using genetic Hsf1 deletion and a direct HSF1 small molecule inhibitor, we show that HSF1 is specifically required for the maintenance of AML, while sparing steady-state and stressed hematopoiesis. Mechanistically, deletion of Hsf1 dysregulates multifaceted genes involved in LSC stemness and suppresses mitochondrial oxidative phosphorylation through downregulation of succinate dehydrogenase C (SDHC), a direct HSF1 target. Forced expression of SDHC largely restores the Hsf1 ablation-induced AML developmental defect. Importantly, the growth and engraftment of human AML cells are suppressed by HSF1 inhibition. Our data provide a rationale for developing efficacious small molecules to specifically target HSF1 in AML.
Collapse
Affiliation(s)
- Qianze Dong
- grid.67105.350000 0001 2164 3847Department of Pathology, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Yan Xiu
- grid.67105.350000 0001 2164 3847Department of Pathology, Case Western Reserve University, Cleveland, OH 44106 USA ,grid.410349.b0000 0004 5912 6484Department of Pathology, Louis Stokes Veterans Affairs Medical Center, Cleveland, OH 44106 USA
| | - Yang Wang
- grid.67105.350000 0001 2164 3847Department of Pathology, Case Western Reserve University, Cleveland, OH 44106 USA
| | | | - Nick Borcherding
- grid.4367.60000 0001 2355 7002Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110 USA
| | - Craig Jordan
- grid.241116.10000000107903411Division of Hematology, University of Colorado Anschutz Campus, Denver, CO 80045 USA
| | - Jane Buchanan
- grid.214572.70000 0004 1936 8294Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52240 USA
| | - Eric Taylor
- grid.214572.70000 0004 1936 8294Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52240 USA
| | - Brett Wagner
- grid.214572.70000 0004 1936 8294Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242 USA
| | - Mariah Leidinger
- grid.214572.70000 0004 1936 8294Department of Pathology, University of Iowa, Iowa City, IA 52242 USA
| | - Carol Holman
- grid.214572.70000 0004 1936 8294Department of Pathology, University of Iowa, Iowa City, IA 52242 USA
| | | | | | - Hai-hui Xue
- grid.239835.60000 0004 0407 6328Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ 07110 USA
| | - Jinming Zhao
- grid.67105.350000 0001 2164 3847Department of Pathology, Case Western Reserve University, Cleveland, OH 44106 USA ,grid.412449.e0000 0000 9678 1884Department of Pathology, China Medical University, 77 Puhe Rd, Shenbei Xinqu, Shenyang Shi, 110122 Liaoning Sheng China
| | - Qingchang Li
- grid.412449.e0000 0000 9678 1884Department of Pathology, China Medical University, 77 Puhe Rd, Shenbei Xinqu, Shenyang Shi, 110122 Liaoning Sheng China
| | - Howard Meyerson
- grid.443867.a0000 0000 9149 4843Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106 USA
| | - Brendan F. Boyce
- grid.412750.50000 0004 1936 9166Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - Chen Zhao
- grid.67105.350000 0001 2164 3847Department of Pathology, Case Western Reserve University, Cleveland, OH 44106 USA ,grid.410349.b0000 0004 5912 6484Department of Pathology, Louis Stokes Veterans Affairs Medical Center, Cleveland, OH 44106 USA ,grid.443867.a0000 0000 9149 4843Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106 USA
| |
Collapse
|
12
|
Yan L, Li J, Hu J, Qu J, Li K, Wang M, An SS, Ke CC, Li H, Yuan F, Guo W, Hu M, Zhang J, Yang Z, Mu H, zhang F, Zhang J, Cui X, Hu Y. Biotin attenuates heat shock factor 4b transcriptional activity by lysine 444 biotinylation. Biochem Biophys Rep 2022; 30:101227. [PMID: 35198740 PMCID: PMC8841385 DOI: 10.1016/j.bbrep.2022.101227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/16/2022] [Accepted: 01/31/2022] [Indexed: 11/16/2022] Open
Abstract
Genetic mutations in HSF4 cause congenital cataracts. HSF4 exhibits both positive and negative regulation on the transcription of heat shock and non-heat shock proteins during lens development, and its activity is regulated by posttranslational modifications. Biotin is an essential vitamin that regulates gene expression through protein biotinylation. In this paper, we report that HSF4b is negatively regulated by biotinylation. Administration of biotin or ectopic bacterial biotin ligase BirA increases HSF4b biotinylation at its C-terminal amino acids from 196 to 493. This attenuates the HSF4b-controlled expression of αB-crystallin in both lens epithelial cells and tested HEK293T cells. HSF4b interacts with holocarboxylase synthetase (HCS), a ubiquitous enzyme for catalyzing protein biotinylation in mammal. Ectopic HA-HCS expression downregulates HSF4b-controlled αB-crystallin expression. Lysine-mutation analyses indicate that HSF4b/K444 is a potential biotinylation site. Mutation K444R reduces the co-precipitation of HSF4b by streptavidin beads and biotin-induced reduction of αB-crystallin expression. Mutations of other lysine residues such as K207R/K209R, K225R, K288R, K294R and K355R in HSF4's C-terminal region do not affect HSF4's expression level and the interaction with streptavidin, but they exhibit distinct regulation on αB-crystallin expression through different mechanisms. HSF4/K294R leads to upregulation of αB-crystallin expression, while mutations K207R/K209R, K225R, K288R, K255R and K435R attenuate HSF4's regulation on αB-crystallin expression. K207R/K209R blocks HSF4 nuclear translocation, and K345R causes HSF4 destabilization. Taken together, the data reveal that biotin maybe a novel factor in modulating HSF4 activity through biotinylation. Biotin downregulates HSF4's transcription activity. HSF4 is associated with and down-regulated by holocarboxylase synthetase (HCS). K444 is the potential biotinylated amino acid residue in HSF4b.
Collapse
Affiliation(s)
- Longjun Yan
- National-Joint Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan International Union Lab of Antibody Medicine, Department of Cell Biology and Genetics, Henan University School of Basic Medical Sciences, Kaifeng, China
| | - Jing Li
- National-Joint Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan International Union Lab of Antibody Medicine, Department of Cell Biology and Genetics, Henan University School of Basic Medical Sciences, Kaifeng, China
| | - Jialin Hu
- National-Joint Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan International Union Lab of Antibody Medicine, Department of Cell Biology and Genetics, Henan University School of Basic Medical Sciences, Kaifeng, China
| | - Junwei Qu
- National-Joint Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan International Union Lab of Antibody Medicine, Department of Cell Biology and Genetics, Henan University School of Basic Medical Sciences, Kaifeng, China
| | - Kejia Li
- National-Joint Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan International Union Lab of Antibody Medicine, Department of Cell Biology and Genetics, Henan University School of Basic Medical Sciences, Kaifeng, China
| | - Mingli Wang
- National-Joint Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan International Union Lab of Antibody Medicine, Department of Cell Biology and Genetics, Henan University School of Basic Medical Sciences, Kaifeng, China
| | - Shuang-Shuang An
- National-Joint Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan International Union Lab of Antibody Medicine, Department of Cell Biology and Genetics, Henan University School of Basic Medical Sciences, Kaifeng, China
| | - Cun-cun Ke
- National-Joint Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan International Union Lab of Antibody Medicine, Department of Cell Biology and Genetics, Henan University School of Basic Medical Sciences, Kaifeng, China
| | - Hui Li
- National-Joint Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan International Union Lab of Antibody Medicine, Department of Cell Biology and Genetics, Henan University School of Basic Medical Sciences, Kaifeng, China
| | - Fengling Yuan
- National-Joint Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan International Union Lab of Antibody Medicine, Department of Cell Biology and Genetics, Henan University School of Basic Medical Sciences, Kaifeng, China
| | - Weikai Guo
- National-Joint Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan International Union Lab of Antibody Medicine, Department of Cell Biology and Genetics, Henan University School of Basic Medical Sciences, Kaifeng, China
| | - Mengyue Hu
- National-Joint Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan International Union Lab of Antibody Medicine, Department of Cell Biology and Genetics, Henan University School of Basic Medical Sciences, Kaifeng, China
| | - Jing Zhang
- National-Joint Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan International Union Lab of Antibody Medicine, Department of Cell Biology and Genetics, Henan University School of Basic Medical Sciences, Kaifeng, China
| | - Zhengyan Yang
- National-Joint Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan International Union Lab of Antibody Medicine, Department of Cell Biology and Genetics, Henan University School of Basic Medical Sciences, Kaifeng, China
| | - Hongmei Mu
- Kaifeng Key Lab for Cataract and Myopia, Institute of Eye Disease, Kaifeng Central Hospital, Kaifeng, China
| | - Fengyan zhang
- Department of Ophthalmology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun Zhang
- National-Joint Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan International Union Lab of Antibody Medicine, Department of Cell Biology and Genetics, Henan University School of Basic Medical Sciences, Kaifeng, China
| | - Xiukun Cui
- National-Joint Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan International Union Lab of Antibody Medicine, Department of Cell Biology and Genetics, Henan University School of Basic Medical Sciences, Kaifeng, China
- Corresponding author.
| | - Yanzhong Hu
- National-Joint Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan International Union Lab of Antibody Medicine, Department of Cell Biology and Genetics, Henan University School of Basic Medical Sciences, Kaifeng, China
- Department of Ophthalmology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Kaifeng Key Lab for Cataract and Myopia, Institute of Eye Disease, Kaifeng Central Hospital, Kaifeng, China
- Corresponding author. Department of Cell Biology, Henan University School of Medicine, Zhengzhou, China.
| |
Collapse
|
13
|
Gong M, Zhang F, Miao Y, Niu J. Advances of Heat Shock Family in Ulcerative Colitis. Front Pharmacol 2022; 13:869930. [PMID: 35645809 PMCID: PMC9133716 DOI: 10.3389/fphar.2022.869930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Abstract
Ulcerative Colitis (UC) is a non-specific and chronic inflammatory disease of colonic mucosa whose exact etiology and mechanisms remain unclear. The incidence rate of UC is increasing year by year worldwide. What followed is that the medical costs are also rising rapidly. Therefore, it is urgent to understand the pathogenesis and find promising therapeutic targets for UC. Intestinal mucosal homeostasis is essential for normal bowel function, and its imbalance may be an important pathogenesis of UC. Endogenous homeostatic regulators play roles in repairing intestinal mucosa injury after stress. Heat shock family proteins are essential endogenous homeostasis factors. They can inhibit inflammation, regulate intestinal epithelial cells’ survival and death, and promote mucosal healing. Thus, they play important roles in sustaining intestinal mucosal homeostasis and protecting against UC progression. However, the heat shock family may promote UC carcinogenesis. Here, we summarize the advances in the research of the functions of the heat shock family in UC. And this review is an attempt to light on the etiopathogenesis of UC, highlighting the endogenous protective mechanisms, hoping to provide a novel therapeutic target for UC treatment.
Collapse
Affiliation(s)
- Min Gong
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China
| | - Fengrui Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China
| | - Yinglei Miao
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China
- *Correspondence: Yinglei Miao, ; Junkun Niu,
| | - Junkun Niu
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China
- *Correspondence: Yinglei Miao, ; Junkun Niu,
| |
Collapse
|
14
|
Gao X, Wang Q, Feng Q, Zhang B, He C, Luo H, An B. Heat Shock Transcription Factor CgHSF1 Is Required for Melanin Biosynthesis, Appressorium Formation, and Pathogenicity in Colletotrichum gloeosporioides. J Fungi (Basel) 2022; 8:jof8020175. [PMID: 35205929 PMCID: PMC8876323 DOI: 10.3390/jof8020175] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 01/09/2023] Open
Abstract
Heat shock transcription factors (HSFs) are a family of transcription regulators. Although HSFs’ functions in controlling the transcription of the molecular chaperone heat shock proteins and resistance to stresses are well established, their effects on the pathogenicity of plant pathogenic fungi remain unknown. In this study, we analyze the role of CgHSF1 in the pathogenicity of Colletotrichum gloeosporioides and investigate the underlying mechanism. Failure to generate the Cghsf1 knock-out mutant suggested that the gene is essential for the viability of the fungus. Then, genetic depletion of the Cghsf1 was achieved by inserting the repressive promoter of nitrite reductase gene (PniiA) before its coding sequence. The mutant showed significantly decrease in the pathogenicity repression of appressorium formation, and severe defects in melanin biosynthesis. Moreover, four melanin synthetic genes were identified as direct targets of CgHSF1. Taken together, this work highlights the role of CgHSF1 in fungal pathogenicity via the transcriptional activation of melanin biosynthesis. Our study extends the understanding of fungal HSF1 proteins, especially their involvement in pathogenicity.
Collapse
Affiliation(s)
- Xuesheng Gao
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou 570228, China; (X.G.); (Q.W.); (Q.F.); (B.Z.); (C.H.)
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Qiannan Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou 570228, China; (X.G.); (Q.W.); (Q.F.); (B.Z.); (C.H.)
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Qingdeng Feng
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou 570228, China; (X.G.); (Q.W.); (Q.F.); (B.Z.); (C.H.)
| | - Bei Zhang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou 570228, China; (X.G.); (Q.W.); (Q.F.); (B.Z.); (C.H.)
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Chaozu He
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou 570228, China; (X.G.); (Q.W.); (Q.F.); (B.Z.); (C.H.)
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Hongli Luo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou 570228, China; (X.G.); (Q.W.); (Q.F.); (B.Z.); (C.H.)
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
- Correspondence: (H.L.); (B.A.)
| | - Bang An
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou 570228, China; (X.G.); (Q.W.); (Q.F.); (B.Z.); (C.H.)
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
- Correspondence: (H.L.); (B.A.)
| |
Collapse
|
15
|
Henrik SZŐKE, István BÓKKON, David M, Jan V, Ágnes K, Zoltán K, Ferenc F, Tibor K, László SL, Ádám D, Odilia M, Andrea K. The innate immune system and fever under redox control: A Narrative Review. Curr Med Chem 2022; 29:4324-4362. [DOI: 10.2174/0929867329666220203122239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/21/2021] [Accepted: 12/07/2021] [Indexed: 11/22/2022]
Abstract
ABSTRACT:
In living cells, redox potential is vitally important for normal physiological processes that are closely regulated by antioxidants, free amino acids and proteins that either have reactive oxygen and nitrogen species capture capability or can be compartmentalized. Although hundreds of experiments support the regulatory role of free radicals and their derivatives, several authors continue to claim that these perform only harmful and non-regulatory functions. In this paper we show that countless intracellular and extracellular signal pathways are directly or indirectly linked to regulated redox processes. We also briefly discuss how artificial oxidative stress can have important therapeutic potential and the possible negative effects of popular antioxidant supplements.
Next, we present the argument supported by a large number of studies that several major components of innate immunity, as well as fever, is also essentially associated with regulated redox processes. Our goal is to point out that the production of excess or unregulated free radicals and reactive species can be secondary processes due to the perturbed cellular signal pathways. However, researchers on pharmacology should consider the important role of redox mechanisms in the innate immune system and fever.
Collapse
Affiliation(s)
- SZŐKE Henrik
- Doctoral School of Health Sciences, University of Pécs, Pécs, Hungary
| | - BÓKKON István
- Neuroscience and Consciousness Research Department, Vision Research Institute,
Lowell, MA, USA
| | - martin David
- Department of Human Medicine, University Witten/Herdecke, Witten, Germany
| | - Vagedes Jan
- University Children’s Hospital, Tuebingen University, Tuebingen, Germany
| | - kiss Ágnes
- Doctoral School of Health Sciences, University of Pécs, Pécs, Hungary
| | - kovács Zoltán
- Doctoral School of Health Sciences, University of Pécs, Pécs, Hungary
| | - fekete Ferenc
- Department of Nyerges Gábor Pediatric Infectology, Heim Pál National Pediatric Institute, Budapest, Hungary
| | - kocsis Tibor
- Department of Clinical Governance, Hungarian National Ambulance Service, Budapest, Hungary
| | | | | | | | - kisbenedek Andrea
- Doctoral School of Health Sciences, University of Pécs, Pécs, Hungary
| |
Collapse
|
16
|
Ayanlaja AA, Hong X, Cheng B, Zhou H, Kanwore K, Alphayo-Kambey P, Zhang L, Tang C, Adeyanju MM, Gao D. Susceptibility of cytoskeletal-associated proteins for tumor progression. Cell Mol Life Sci 2021; 79:13. [PMID: 34964908 PMCID: PMC11072373 DOI: 10.1007/s00018-021-04101-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/11/2021] [Accepted: 12/16/2021] [Indexed: 10/19/2022]
Abstract
The traditional functions of cytoskeletal-associated proteins (CAPs) in line with polymerization and stabilization of the cytoskeleton have evolved and are currently underrated in oncology. Although therapeutic drugs have been developed to target the cytoskeletal components directly in cancer treatment, several recently established therapeutic agents designed for new targets block the proliferation of cancer cells and suppress resistance to existing target agents. It would seem like these targets only work toward inhibiting the polymerization of cytoskeletal components or hindering mitotic spindle formation in cancer cells, but a large body of literature points to CAPs and their culpability in cell signaling, molecular conformation, organelle trafficking, cellular metabolism, and genomic modifications. Here, we review those underappreciated functions of CAPs, and we delineate the implications of cellular signaling instigated by evasive properties induced by aberrant expression of CAPs in response to stress or failure to exert normal functions. We present an analogy establishing CAPs as vulnerable targets for cancer systems and credible oncotargets. This review establishes a paradigm in which the cancer machinery may commandeer the conventional functions of CAPs for survival, drug resistance, and energy generation; an interesting feature overdue for attention.
Collapse
Affiliation(s)
- Abiola Abdulrahman Ayanlaja
- Public Experimental Laboratory, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Department of Neurology, Johns Hopkins University School of Medicine, 201 N Broadway, Baltimore, MD, 21287, USA
| | - Xiaoliang Hong
- Public Experimental Laboratory, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Bo Cheng
- The Affiliated Oriental Hospital of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Han Zhou
- Public Experimental Laboratory, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Kouminin Kanwore
- Public Experimental Laboratory, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Piniel Alphayo-Kambey
- Public Experimental Laboratory, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Lin Zhang
- Public Experimental Laboratory, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Chuanxi Tang
- Public Experimental Laboratory, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | | | - Dianshuai Gao
- Public Experimental Laboratory, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
17
|
Kurop MK, Huyen CM, Kelly JH, Blagg BSJ. The heat shock response and small molecule regulators. Eur J Med Chem 2021; 226:113846. [PMID: 34563965 PMCID: PMC8608735 DOI: 10.1016/j.ejmech.2021.113846] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 01/09/2023]
Abstract
The heat shock response (HSR) is a highly conserved cellular pathway that is responsible for stress relief and the refolding of denatured proteins [1]. When a host cell is exposed to conditions such as heat shock, ischemia, or toxic substances, heat shock factor-1 (HSF-1), a transcription factor, activates the genes that encode for the heat shock proteins (Hsps), which are a family of proteins that work alongside other chaperones to relieve stress and refold proteins that have been denatured (Burdon, 1986) [2]. Along with the refolding of denatured proteins, Hsps facilitate the removal of misfolded proteins by escorting them to degradation pathways, thereby preventing the accumulation of misfolded proteins [3]. Research has indicated that many pathological conditions, such as diabetes, cancer, neuropathy, cardiovascular disease, and aging have a negative impact on HSR function and are commonly associated with misfolded protein aggregation [4,5]. Studies indicate an interplay between mitochondrial homeostasis and HSF-1 levels can impact stress resistance, proteostasis, and malignant cell growth, which further support the role of Hsps in pathological and metabolic functions [6]. On the other hand, Hsp activation by specific small molecules can induce the heat shock response, which can afford neuroprotection and other benefits [7]. This review will focus on the modulation of Hsps and the HSR as therapeutic options to treat these conditions.
Collapse
Affiliation(s)
- Margaret K Kurop
- Warren Center for Drug Discovery, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Cormac M Huyen
- Warren Center for Drug Discovery, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - John H Kelly
- Warren Center for Drug Discovery, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Brian S J Blagg
- Warren Center for Drug Discovery, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
18
|
Das S, Min S, Prahlad V. Gene bookmarking by the heat shock transcription factor programs the insulin-like signaling pathway. Mol Cell 2021; 81:4843-4860.e8. [PMID: 34648748 PMCID: PMC8642288 DOI: 10.1016/j.molcel.2021.09.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/09/2021] [Accepted: 09/17/2021] [Indexed: 12/13/2022]
Abstract
Maternal stress can have long-lasting epigenetic effects on offspring. To examine how epigenetic changes are triggered by stress, we examined the effects of activating the universal stress-responsive heat shock transcription factor HSF-1 in the germline of Caenorhabditis elegans. We show that, when activated in germ cells, HSF-1 recruits MET-2, the putative histone 3 lysine 9 (H3K9) methyltransferase responsible for repressive H3K9me2 (H3K9 dimethyl) marks in chromatin, and negatively bookmarks the insulin receptor daf-2 and other HSF-1 target genes. Increased H3K9me2 at these genes persists in adult progeny and shifts their stress response strategy away from inducible chaperone expression as a mechanism to survive stress and instead rely on decreased insulin/insulin growth factor (IGF-1)-like signaling (IIS). Depending on the duration of maternal heat stress exposure, this epigenetic memory is inherited by the next generation. Thus, paradoxically, HSF-1 recruits the germline machinery normally responsible for erasing transcriptional memory but, instead, establishes a heritable epigenetic memory of prior stress exposure.
Collapse
Affiliation(s)
- Srijit Das
- Department of Biology, Aging Mind and Brain Initiative, 143 Biology Building, Iowa City, IA 52242-1324, USA
| | - Sehee Min
- Department of Biology, Aging Mind and Brain Initiative, 143 Biology Building, Iowa City, IA 52242-1324, USA
| | - Veena Prahlad
- Department of Biology, Aging Mind and Brain Initiative, 143 Biology Building, Iowa City, IA 52242-1324, USA; Department of Biology, 143 Biology Building, Iowa City, IA 52242-1324, USA; Iowa Neuroscience Institute, 169 Newton Road, 2312 Pappajohn Biomedical Discovery Building, Iowa City, IA 52242, USA.
| |
Collapse
|
19
|
Umar SIU, Konwar D, Khan A, Bhat MA, Javid F, Jeelani R, Nabi B, Najar AA, Kumar D, Brahma B. Delineation of temperature-humidity index (THI) as indicator of heat stress in riverine buffaloes (Bubalus bubalis) of a sub-tropical Indian region. Cell Stress Chaperones 2021; 26:657-669. [PMID: 33950472 PMCID: PMC8275759 DOI: 10.1007/s12192-021-01209-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 04/15/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022] Open
Abstract
The erstwhile developed temperature-humidity index (THI) has been popularly used to indicate heat stress in dairy cattle and often in buffaloes. However, scientific literature suggests differences in thermotolerance and physiological responses to heat stress between cattle and buffalo. Therefore, THI range used to indicate degree of heat stress (mild, moderate, and severe) in cattle should be recalibrated for indicating heat stress in buffaloes. The present study was carried out to delineate THI range to indicate onset and severity of heat stress in buffaloes based on physiological, biochemical, and expression profiling of heat shock response (HSR) genes in animals at different THI. The result indicated early onset of heat stress in buffaloes as compared to cattle. Physiological and biochemical parameters indicated onset of mild signs of heat stress in buffaloes at THI 68-69. Significant deviation in these parameters was again observed at THI range 73-76. At THI 77-80, the physiological and biochemical responses of animals were further intensified indicating extreme alteration in homeostasis. The in vivo expression profiling of HSR genes indicated that members of Hsp70 gene family are expressed in a temporal pattern over different THIs, whereas expressions of Hsf genes were evident during intense heat stress. Overall, the study established that amplitude of heat shock response and THI range for indicating severity of thermal stress for buffaloes are not in unison to cattle. The study also suggests skin temperature of the poll region could be used as non-invasive tool for monitoring heat stress in dairy buffaloes.
Collapse
Affiliation(s)
- Sofi Imran Ul Umar
- Division of Livestock Production and Management, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu (SKUAST-Jammu), R. S. Pura, Jammu, Jammu and Kashmir, 181102, India
| | - Dipanjali Konwar
- Division of Livestock Production and Management, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu (SKUAST-Jammu), R. S. Pura, Jammu, Jammu and Kashmir, 181102, India
| | - Asma Khan
- Division of Livestock Production and Management, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu (SKUAST-Jammu), R. S. Pura, Jammu, Jammu and Kashmir, 181102, India
| | - Mohammad Altaf Bhat
- Division of Veterinary Microbiology, SKUAST-Kashmir, Suhama, Jammu and Kashmir, Kashmir, India
| | - Faizan Javid
- Division of Veterinary Microbiology, SKUAST-Kashmir, Suhama, Jammu and Kashmir, Kashmir, India
| | - Rakhshan Jeelani
- Division of Livestock Production and Management, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu (SKUAST-Jammu), R. S. Pura, Jammu, Jammu and Kashmir, 181102, India
| | - Burhan Nabi
- Division of Veterinary Medicine, SKUAST-Jammu, R. S. Pura, Jammu, Jammu and Kashmir, 181102, India
| | - Afaq Amin Najar
- Division of Veterinary Medicine, SKUAST-Jammu, R. S. Pura, Jammu, Jammu and Kashmir, 181102, India
| | - Dhirendra Kumar
- Division of Animal Genetics and Breeding, SKUAST-Jammu, R. S. Pura, Jammu, Jammu and Kashmir, 181102, India
| | - Biswajit Brahma
- Division of Livestock Production and Management, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu (SKUAST-Jammu), R. S. Pura, Jammu, Jammu and Kashmir, 181102, India.
| |
Collapse
|
20
|
Occhigrossi L, D’Eletto M, Barlev N, Rossin F. The Multifaceted Role of HSF1 in Pathophysiology: Focus on Its Interplay with TG2. Int J Mol Sci 2021; 22:ijms22126366. [PMID: 34198675 PMCID: PMC8232231 DOI: 10.3390/ijms22126366] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/03/2021] [Accepted: 06/11/2021] [Indexed: 11/19/2022] Open
Abstract
The cellular environment needs to be strongly regulated and the maintenance of protein homeostasis is crucial for cell function and survival. HSF1 is the main regulator of the heat shock response (HSR), the master pathway required to maintain proteostasis, as involved in the expression of the heat shock proteins (HSPs). HSF1 plays numerous physiological functions; however, the main role concerns the modulation of HSPs synthesis in response to stress. Alterations in HSF1 function impact protein homeostasis and are strongly linked to diseases, such as neurodegenerative disorders, metabolic diseases, and different types of cancers. In this context, type 2 Transglutaminase (TG2), a ubiquitous enzyme activated during stress condition has been shown to promote HSF1 activation. HSF1-TG2 axis regulates the HSR and its function is evolutionary conserved and implicated in pathological conditions. In this review, we discuss the role of HSF1 in the maintenance of proteostasis with regard to the HSF1-TG2 axis and we dissect the stress response pathways implicated in physiological and pathological conditions.
Collapse
Affiliation(s)
- Luca Occhigrossi
- Department of Biology, University of Rome ‘Tor Vergata’, 00133 Rome, Italy; (L.O.); (M.D.)
| | - Manuela D’Eletto
- Department of Biology, University of Rome ‘Tor Vergata’, 00133 Rome, Italy; (L.O.); (M.D.)
| | - Nickolai Barlev
- Institute of Cytology, 194064 Saint-Petersburg, Russia;
- Moscow Institute of Physics and Technology (MIPT), 141701 Dolgoprudny, Russia
| | - Federica Rossin
- Institute of Cytology, 194064 Saint-Petersburg, Russia;
- Correspondence:
| |
Collapse
|
21
|
Sojka DR, Hasterok S, Vydra N, Toma-Jonik A, Wieczorek A, Gogler-Pigłowska A, Scieglinska D. Inhibition of the Heat Shock Protein A (HSPA) Family Potentiates the Anticancer Effects of Manumycin A. Cells 2021; 10:1418. [PMID: 34200371 PMCID: PMC8229576 DOI: 10.3390/cells10061418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
Manumycin A (MA) is a well-tolerated natural antibiotic showing pleiotropic anticancer effects in various preclinical in vitro and in vivo models. Anticancer drugs may themselves act as stressors to induce the cellular adaptive mechanism that can minimize their cytotoxicity. Heat shock proteins (HSPs) as cytoprotective factors can counteract the deleterious effects of various stressful stimuli. In this study, we examined whether the anticancer effects of MA can be counteracted by the mechanism related to HSPs belonging to the HSPA (HSP70) family. We found that MA caused cell type-specific alterations in the levels of HSPAs. These changes included concomitant upregulation of the stress-inducible (HSPA1 and HSPA6) and downregulation of the non-stress-inducible (HSPA2) paralogs. However, neither HSPA1 nor HSPA2 were necessary to provide protection against MA in lung cancer cells. Conversely, the simultaneous repression of several HSPA paralogs using pan-HSPA inhibitors (VER-155008 or JG-98) sensitized cancer cells to MA. We also observed that genetic ablation of the heat shock factor 1 (HSF1) transcription factor, a main transactivator of HSPAs expression, sensitized MCF7 cells to MA treatment. Our study reveals that inhibition of HSF1-mediated heat shock response (HSR) can improve the anticancer effect of MA. These observations suggest that targeting the HSR- or HSPA-mediated adaptive mechanisms may be a promising strategy for further preclinical developments.
Collapse
Affiliation(s)
- Damian Robert Sojka
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, 44-102 Gliwice, Poland; (D.R.S.); (S.H.); (N.V.); (A.T.-J.); (A.G.-P.)
| | - Sylwia Hasterok
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, 44-102 Gliwice, Poland; (D.R.S.); (S.H.); (N.V.); (A.T.-J.); (A.G.-P.)
| | - Natalia Vydra
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, 44-102 Gliwice, Poland; (D.R.S.); (S.H.); (N.V.); (A.T.-J.); (A.G.-P.)
| | - Agnieszka Toma-Jonik
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, 44-102 Gliwice, Poland; (D.R.S.); (S.H.); (N.V.); (A.T.-J.); (A.G.-P.)
| | - Anna Wieczorek
- Division of Medical Biology, Institute of Biology, Jan Kochanowski University, 25-406 Kielce, Poland;
| | - Agnieszka Gogler-Pigłowska
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, 44-102 Gliwice, Poland; (D.R.S.); (S.H.); (N.V.); (A.T.-J.); (A.G.-P.)
| | - Dorota Scieglinska
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, 44-102 Gliwice, Poland; (D.R.S.); (S.H.); (N.V.); (A.T.-J.); (A.G.-P.)
| |
Collapse
|
22
|
Quintana JF, Zoltner M, Field MC. Evolving Differentiation in African Trypanosomes. Trends Parasitol 2021; 37:296-303. [PMID: 33309505 DOI: 10.1016/j.pt.2020.11.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/15/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022]
Abstract
Differentiation is a central aspect of the parasite life cycle and encompasses adaptation to both host and environment. If we accept that evolution cannot anticipate an organism's needs as it enters a new environment, how do parasite differentiation pathways arise? The transition between vertebrate and insect stage African trypanosomes is probably one of the better studied and involves a cell-cycle arrested or 'stumpy' form that activates metabolic pathways advantageous to the parasite in the insect host. However, a range of stimuli and stress conditions can trigger similar changes, leading to formation of stumpy-like cellular states. We propose that the origin and optimisation of this differentiation program represents repurposing of a generic stress response to gain considerable gain-of-fitness associated with parasite transmission.
Collapse
Affiliation(s)
- Juan F Quintana
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, UK; School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Martin Zoltner
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK; Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Mark C Field
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic.
| |
Collapse
|
23
|
Schmidt A, Liebelt G, Nießner F, von Woedtke T, Bekeschus S. Gas plasma-spurred wound healing is accompanied by regulation of focal adhesion, matrix remodeling, and tissue oxygenation. Redox Biol 2021; 38:101809. [PMID: 33271456 PMCID: PMC7710641 DOI: 10.1016/j.redox.2020.101809] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 12/05/2022] Open
Abstract
In response to injury, efficient migration of skin cells to rapidly close the wound and restore barrier function requires a range of coordinated processes in cell spreading and migration. Gas plasma technology produces therapeutic reactive species that promote skin regeneration by driving proliferation and angiogenesis. However, the underlying molecular mechanisms regulating gas plasma-aided cell adhesion and matrix remodeling essential for wound closure remain elusive. Here, we combined in vitro analyses in primary dermal fibroblasts isolated from murine skin with in vivo studies in a murine wound model to demonstrate that gas plasma treatment changed phosphorylation of signaling molecules such as focal adhesion kinase and paxillin α in adhesion-associated complexes. In addition to cell spreading and migration, gas plasma exposure affected cell surface adhesion receptors (e.g., integrinα5β1, syndecan 4), structural proteins (e.g., vinculin, talin, actin), and transcription of genes associated with differentiation markers of fibroblasts-to-myofibroblasts and epithelial-to-mesenchymal transition, cellular protrusions, fibronectin fibrillogenesis, matrix metabolism, and matrix metalloproteinase activity. Finally, we documented that gas plasma exposure increased tissue oxygenation and skin perfusion during ROS-driven wound healing. Altogether, these results provide critical insights into the molecular machinery of gas plasma-assisted wound healing mechanisms.
Collapse
Affiliation(s)
- Anke Schmidt
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany.
| | - Grit Liebelt
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Felix Nießner
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Thomas von Woedtke
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Department of Hygiene and Environmental Medicine, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Germany
| | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany.
| |
Collapse
|
24
|
Confocal Laser Scanning Microscopy and Fluorescence Correlation Methods for the Evaluation of Molecular Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1310:1-30. [PMID: 33834430 DOI: 10.1007/978-981-33-6064-8_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Confocal laser scanning microscopy (CLSM) and related microscopic techniques allow a unique and versatile approach to image and analyze living cells due to their specificity and high sensitivity. Among confocal related techniques, fluorescence correlation methods, such as fluorescence correlation spectroscopy (FCS) and dual-color fluorescence cross-correlation spectroscopy (FCCS), are highly sensitive biophysical methods for analyzing the complex dynamic events of molecular diffusion and interaction change in live cells as well as in solution by exploiting the characteristics of fluorescence signals. Analytical and quantitative information from FCS and FCCS coupled with fluorescence images obtained from CLSM can now be applied in convergence science such as drug delivery and nanomedicine, as well as in basic cell biology. In this chapter, a brief introduction into the physical parameters that can be obtained from FCS and FCCS is first provided. Secondly, experimental examples of the methods for evaluating the parameters is presented. Finally, two potential FCS and FCCS applications for convergence science are introduced in more detail.
Collapse
|
25
|
In-vitro effect of heat stress on bovine monocytes lifespan and polarization. Immunobiology 2020; 225:151888. [DOI: 10.1016/j.imbio.2019.11.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/26/2019] [Indexed: 12/19/2022]
|
26
|
Sitron CS, Park JH, Giafaglione JM, Brandman O. Aggregation of CAT tails blocks their degradation and causes proteotoxicity in S. cerevisiae. PLoS One 2020; 15:e0227841. [PMID: 31945107 PMCID: PMC6964901 DOI: 10.1371/journal.pone.0227841] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023] Open
Abstract
The Ribosome-associated Quality Control (RQC) pathway co-translationally marks incomplete polypeptides from stalled translation with two signals that trigger their proteasome-mediated degradation. The E3 ligase Ltn1 adds ubiquitin and Rqc2 directs the large ribosomal subunit to append carboxy-terminal alanine and threonine residues (CAT tails). When excessive amounts of incomplete polypeptides evade Ltn1, CAT-tailed proteins accumulate and can self-associate into aggregates. CAT tail aggregation has been hypothesized to either protect cells by sequestering potentially toxic incomplete polypeptides or harm cells by disrupting protein homeostasis. To distinguish between these possibilities, we modulated CAT tail aggregation in Saccharomyces cerevisiae with genetic and chemical tools to analyze CAT tails in aggregated and un-aggregated states. We found that enhancing CAT tail aggregation induces proteotoxic stress and antagonizes degradation of CAT-tailed proteins, while inhibiting aggregation reverses these effects. Our findings suggest that CAT tail aggregation harms RQC-compromised cells and that preventing aggregation can mitigate this toxicity.
Collapse
Affiliation(s)
- Cole S. Sitron
- Department of Biochemistry, Stanford University, Stanford, CA, United States of America
| | - Joseph H. Park
- Department of Biochemistry, Stanford University, Stanford, CA, United States of America
- Department of Chemical & Systems Biology, Stanford University, Stanford, CA, United States of America
| | - Jenna M. Giafaglione
- Department of Biochemistry, Stanford University, Stanford, CA, United States of America
| | - Onn Brandman
- Department of Biochemistry, Stanford University, Stanford, CA, United States of America
- * E-mail:
| |
Collapse
|
27
|
Kumar B, Sahoo AK, Dayal S, Das AK, Taraphder S, Batabyal S, Ray PK, Kumari R. Genetic profiling of Hsp70 gene in Murrah buffalo (Bubalus bubalis) under sub-tropical climate of India. Cell Stress Chaperones 2019; 24:1187-1195. [PMID: 31642046 PMCID: PMC6883022 DOI: 10.1007/s12192-019-01042-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/22/2019] [Accepted: 10/02/2019] [Indexed: 01/20/2023] Open
Abstract
This study was aimed to genetic profiling of heat shock protein 70 (Hsp70) gene in Murrah buffalo investigating 50 unrelated adult animals at ICAR-Research Complex for Eastern Region, Patna (India) in winter, spring, and summer. PCR ready genomic DNA samples and season-wise total RNA samples were prepared. The PCR products of Hsp70 eluted from agarose gel were sequenced and analyzed. The first-strand cDNA was synthesized and concentration was equalized to 25 ng/μl. Expression kinetics of mRNA transcripts in different seasons was studied using Brilliant SYBR Green QPCR technique and the data retrieved was analyzed by least-squares ANOVA. DNA sequencing by primer walking revealed four allelic variants of Hsp70 gene. Alignment study revealed one substitution in 5'UTR, six substitutions in coding region, and one addition in 3'UTR. The highest percent identity and negligible phylogenetic distance were found among the alleles and reference bovine sequences. The relative mRNA expression was significantly higher in summer when THI ≥ 84 than the spring and winter; fold change increased by 4.5 times in summer than the spring whereas found nearly half in winter. These findings can be useful for heat stress management in buffaloes and help in understanding the mechanism of thermo-regulation well.
Collapse
Affiliation(s)
- Birendra Kumar
- Department of Animal Genetics and Breeding, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, West Bengal, 741252, India
| | - Ajit Kumar Sahoo
- Department of Animal Genetics and Breeding, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, West Bengal, 741252, India
| | - Shanker Dayal
- Division of Livestock and Fishery Management, ICAR-Research Complex for Eastern Region, Patna, Bihar, 800014, India
| | - Ananta Kumar Das
- Department of Animal Genetics and Breeding, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, West Bengal, 741252, India.
| | - Subhash Taraphder
- Department of Animal Genetics and Breeding, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, West Bengal, 741252, India
| | - Subhasis Batabyal
- Department of Veterinary Biochemistry, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, West Bengal, 741252, India
| | - Pradeep Kumar Ray
- Division of Livestock and Fishery Management, ICAR-Research Complex for Eastern Region, Patna, Bihar, 800014, India
| | - Rajni Kumari
- Division of Livestock and Fishery Management, ICAR-Research Complex for Eastern Region, Patna, Bihar, 800014, India
| |
Collapse
|
28
|
Bhatti M, Dinn S, Miskiewicz EI, MacPhee DJ. Expression of heat shock factor 1, heat shock protein 90 and associated signaling proteins in pregnant rat myometrium: Implications for myometrial proliferation. Reprod Biol 2019; 19:374-385. [PMID: 31522994 DOI: 10.1016/j.repbio.2019.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 01/07/2023]
Abstract
During pregnancy and labour the myometrium undergoes structural and physiological adaptations as part of a program of development. Heat shock factor 1 (HSF1) is a master regulator of both stress and developmental processes. A noted HSF1-induced gene is the 90 kDa heat shock protein (HSP90), which acts as a chaperone and regulator of cellular processes. Immunoblot analysis demonstrated HSF1 expression levels in pregnant rat myometrium on gestational day (d) 6 were maintained at a significantly higher level compared with d12 to post-partum (PP) time points (P < 0.05), while expression on d12 was significantly higher compared to d15 and d19. The transcriptionally active form pSer230-HSF1 was detected at a significantly greater level at d6 compared with d21 and d23 time points and also at d12 compared with d21, d22 and 23 (labour). Similarly, phosphorylated (P)-HSP90AA1 protein detection was significantly greater on d6 compared to d19 to d23 time points and on d12 compared with d15 to PP time points. In contrast, P-HSP90AB1 showed significantly greater detection levels on d12 compared with d15 while levels on d22 were significantly higher compared to d15, d17 and d19. Immunofluorescence analysis demonstrated that total HSF1 and HSP90 were localized mainly in the cytoplasm of myometrial cells with some detection of HSF1 in nuclei. This work advances our scientific knowledge of the myometrium during pregnancy and the expression profiles of HSF1 and HSP90 within the proliferative phase of myometrial programming suggests a role for them in this period of hyperplasia and myometrial adaptation.
Collapse
Affiliation(s)
- Masooma Bhatti
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada; One Reproductive Health Research Group, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Sarah Dinn
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
| | - Ewa I Miskiewicz
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada; One Reproductive Health Research Group, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Daniel J MacPhee
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada; One Reproductive Health Research Group, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada.
| |
Collapse
|
29
|
Cukrov D, Newman TAC, Leask M, Leeke B, Sarogni P, Patimo A, Kline AD, Krantz ID, Horsfield JA, Musio A. Antioxidant treatment ameliorates phenotypic features of SMC1A-mutated Cornelia de Lange syndrome in vitro and in vivo. Hum Mol Genet 2019; 27:3002-3011. [PMID: 29860495 DOI: 10.1093/hmg/ddy203] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/17/2018] [Indexed: 12/30/2022] Open
Abstract
Cornelia de Lange syndrome (CdLS) is a rare disease characterized by cognitive impairment, multisystemic alterations and premature aging. Furthermore, CdLS cells display gene expression dysregulation and genomic instability. Here, we demonstrated that treatment with antioxidant drugs, such as ascorbic acid and riboceine, reduced the level of genomic instability and extended the in vitro lifespan of CdLS cell lines. We also found that antioxidant treatment partially rescued the phenotype of a zebrafish model of CdLS. Gene expression profiling showed that antioxidant drugs caused dysregulation of gene transcription; notably, a number of genes coding for the zinc finger (ZNF)-containing Krueppel-associated box (KRAB) protein domain (KRAB-ZNF) were found to be downregulated. Taken together, these data suggest that antioxidant drugs have the potential to ameliorate the developmental phenotype of CdLS.
Collapse
Affiliation(s)
- Dubravka Cukrov
- Institute for Genetic and Biomedical Research, National Research Council, Pisa, Italy
| | - Trent A C Newman
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Megan Leask
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Bryony Leeke
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Patrizia Sarogni
- Institute for Genetic and Biomedical Research, National Research Council, Pisa, Italy
| | - Alessandra Patimo
- Institute for Genetic and Biomedical Research, National Research Council, Pisa, Italy
| | - Antonie D Kline
- Harvey Institute for Human Genetics, Greater Baltimore Medical Center, Baltimore, MD, USA
| | - Ian D Krantz
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Julia A Horsfield
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- The Maurice Wilkins Centre for Molecular Biodiscovery, c/o The University of Auckland, Private Bag, Auckland, New Zealand
| | - Antonio Musio
- Institute for Genetic and Biomedical Research, National Research Council, Pisa, Italy
| |
Collapse
|
30
|
Zhang L, Qin Y, Gong X, Peng R, Cai C, Zheng Y, Du Y, Wang H. A promoter variant in ZNF804A decreasing its expression increases the risk of autism spectrum disorder in the Han Chinese population. Transl Psychiatry 2019; 9:31. [PMID: 30670685 PMCID: PMC6342935 DOI: 10.1038/s41398-019-0369-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/10/2018] [Accepted: 01/02/2019] [Indexed: 12/15/2022] Open
Abstract
Synaptic pathology may be one of the cellular substrates underlying autism spectrum disorder (ASD). ZNF804A is a transcription factor that can affect or regulate the expression of many candidate genes involved in ASD. It also localizes at synapses and regulates neuronal and synaptic morphology. So far, few reports have addressed possible associations between ZNF804A polymorphisms and ASD. This study aimed to investigate whether ZNF804A genetic variants contribute to ASD susceptibility and its possible pathological role in the disorder. We analyzed the relationship of two polymorphisms (rs10497655 and rs34714481) in ZNF804A promoter region with ASD in 854 cases versus 926 controls. The functional analyses of rs10497655 were then performed using real-time quantitative polymerase chain reaction, electrophoretic mobility shift assays, chromatin immunoprecipitation and dual-luciferase assays. The variant rs10497655 was significantly associated with ASD (P = 0.007851), which had a significant effect on ZNF804A expression, with the T risk allele homozygotes related with reduced ZNF804A expression in human fetal brains. HSF2 acted as a suppressor by down-regulating ZNF804A expression and had a stronger binding affinity for the T allele of rs10497655 than for the C allele. This was the first experiment to elucidate the process in which a disease-associated SNP affects the level of ZNF804A expression by binding with the upstream regulation factor HSF2. This result indicates that the rs10497655 allelic expression difference of ZNF804A during the critical period of brain development may have an effect on postnatal phenotypes of ASD. It reveals new roles of ZNF804A polymorphisms in the pathogenesis of psychiatric disorders.
Collapse
Affiliation(s)
- Linna Zhang
- Department of Child & Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yue Qin
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China
- Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xiaohong Gong
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China
- Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Rui Peng
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China
- Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Chunquan Cai
- Department of Neurosurgery, Tianjin Children's Hospital, Tianjin, 300134, China
| | - Yufang Zheng
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China
| | - Yasong Du
- Department of Child & Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Hongyan Wang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China.
- Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, 200032, China.
- Children's Hospital of Fudan University, Shanghai, 201102, China.
| |
Collapse
|
31
|
Abstract
Protein homeostasis, or proteostasis, is required for proper cell function and thus must be
under tight maintenance in all circumstances. In crowded cell conditions, protein folding is sometimes
unfavorable, and this condition is worsened during stress situations. Cells cope with such stress
through the use of a Protein Quality Control system, which uses molecular chaperones and heat shock
proteins as its major players. This system aids with folding, avoiding misfolding and/or reversing aggregation.
A pivotal regulator of the response to heat stress is Heat Shock Factor, which is recruited to
the promoters of the chaperone genes, inducting their expression. This mini review aims to cover our
general knowledge on the structure and function of this factor.
Collapse
Affiliation(s)
- Natália Galdi Quel
- Institute of Chemistry and Institute of Biology, University of Campinas - UNICAMP, Campinas, Brazil
| | - Carlos H.I. Ramos
- Institute of Chemistry and Institute of Biology, University of Campinas - UNICAMP, Campinas, Brazil
| |
Collapse
|
32
|
Miller DJ, Fort PE. Heat Shock Proteins Regulatory Role in Neurodevelopment. Front Neurosci 2018; 12:821. [PMID: 30483047 PMCID: PMC6244093 DOI: 10.3389/fnins.2018.00821] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/22/2018] [Indexed: 01/20/2023] Open
Abstract
Heat shock proteins (Hsps) are a large family of molecular chaperones that are well-known for their roles in protein maturation, re-folding and degradation. While some Hsps are constitutively expressed in certain regions, others are rapidly upregulated in the presence of stressful stimuli. Numerous stressors, including hyperthermia and hypoxia, can induce the expression of Hsps, which, in turn, interact with client proteins and co-chaperones to regulate cell growth and survival. Such interactions must be tightly regulated, especially at critical points during embryonic and postnatal development. Hsps exhibit specific patterns of expression consistent with a spatio-temporally regulated role in neurodevelopment. There is also growing evidence that Hsps may promote or inhibit neurodevelopment through specific pathways regulating cell differentiation, neurite outgrowth, cell migration, or angiogenesis. This review will examine the regulatory role that these individual chaperones may play in neurodevelopment, and will focus specifically on the signaling pathways involved in the maturation of neuronal and glial cells as well as the underlying vascular network.
Collapse
Affiliation(s)
- David J Miller
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Patrice E Fort
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
33
|
Sornchuer P, Junprung W, Yingsunthonwattana W, Tassanakajon A. Heat shock factor 1 regulates heat shock proteins and immune-related genes in Penaeus monodon under thermal stress. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 88:19-27. [PMID: 29986835 DOI: 10.1016/j.dci.2018.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/25/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
Heat shock factors (HSFs) participate in the response to environmental stressors and regulate heat shock protein (Hsp) expression. This study describes the molecular characterization and expression of PmHSF1 in black tiger shrimp Penaeus monodon under heat stress. PmHSF1 expression was detected in several shrimp tissues: the highest in the lymphoid organ and the lowest in the eyestalk. Significant up-regulation of PmHSF1 expression was observed in hemocytes (p < 0.05) following thermal stress. The expression of several PmHsps was rapidly induced following heat stress. Endogenous PmHSF1 protein was expressed in all three types of shrimp hemocyte and strongly induced under heat stress. The suppression of PmHSF1 expression by dsRNA-mediated gene silencing altered the expression of PmHsps, several antimicrobial genes, genes involved in the melanization process, and an antioxidant gene (PmSOD). PmHSF1 plays an important role in the thermal stress response, regulating the expression of Hsps and immune-related genes in P. monodon.
Collapse
Affiliation(s)
- Phornphan Sornchuer
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Wisarut Junprung
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Warumporn Yingsunthonwattana
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
34
|
Stone J, Mitrofanis J, Johnstone DM, Falsini B, Bisti S, Adam P, Nuevo AB, George-Weinstein M, Mason R, Eells J. Acquired Resilience: An Evolved System of Tissue Protection in Mammals. Dose Response 2018; 16:1559325818803428. [PMID: 30627064 PMCID: PMC6311597 DOI: 10.1177/1559325818803428] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/22/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022] Open
Abstract
This review brings together observations on the stress-induced regulation of resilience mechanisms in body tissues. It is argued that the stresses that induce tissue resilience in mammals arise from everyday sources: sunlight, food, lack of food, hypoxia and physical stresses. At low levels, these stresses induce an organised protective response in probably all tissues; and, at some higher level, cause tissue destruction. This pattern of response to stress is well known to toxicologists, who have termed it hormesis. The phenotypes of resilience are diverse and reports of stress-induced resilience are to be found in journals of neuroscience, sports medicine, cancer, healthy ageing, dementia, parkinsonism, ophthalmology and more. This diversity makes the proposing of a general concept of induced resilience a significant task, which this review attempts. We suggest that a system of stress-induced tissue resilience has evolved to enhance the survival of animals. By analogy with acquired immunity, we term this system 'acquired resilience'. Evidence is reviewed that acquired resilience, like acquired immunity, fades with age. This fading is, we suggest, a major component of ageing. Understanding of acquired resilience may, we argue, open pathways for the maintenance of good health in the later decades of human life.
Collapse
Affiliation(s)
- Jonathan Stone
- Discipline of Physiology, Bosch Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - John Mitrofanis
- Discipline of Anatomy and Histology, Bosch Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Daniel M. Johnstone
- Discipline of Physiology, Bosch Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Benedetto Falsini
- Facolta’ di Medicina e Chirurgia, Fondazione Policlinico A. Gemelli, Universita’ Cattolica del S. Cuore, Rome, Italy
| | - Silvia Bisti
- Department of Biotechnical and Applied Clinical Sciences, Università degli Studi dell’Aquila, IIT Istituto Italiano di Tecnologia Genova and INBB Istituto Nazionale Biosistemi e Biostrutture, Rome, Italy
| | - Paul Adam
- School of Biological, Earth and Environmental Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Arturo Bravo Nuevo
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Mindy George-Weinstein
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Rebecca Mason
- Discipline of Physiology, Bosch Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Janis Eells
- College of Health Sciences, University of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
35
|
Contradictory mRNA and protein misexpression of EEF1A1 in ductal breast carcinoma due to cell cycle regulation and cellular stress. Sci Rep 2018; 8:13904. [PMID: 30224719 PMCID: PMC6141510 DOI: 10.1038/s41598-018-32272-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 09/05/2018] [Indexed: 02/08/2023] Open
Abstract
Encoded by EEF1A1, the eukaryotic translation elongation factor eEF1α1 strongly promotes the heat shock response, which protects cancer cells from proteotoxic stress, following for instance oxidative stress, hypoxia or aneuploidy. Unexpectedly, therefore, we find that EEF1A1 mRNA levels are reduced in virtually all breast cancers, in particular in ductal carcinomas. Univariate and multivariate analyses indicate that EEF1A1 mRNA underexpression independently predicts poor patient prognosis for estrogen receptor-positive (ER+) cancers. EEF1A1 mRNA levels are lowest in the most invasive, lymph node-positive, advanced stage and postmenopausal tumors. In sharp contrast, immunohistochemistry on 100 ductal breast carcinomas revealed that at the protein level eEF1α1 is ubiquitously overexpressed, especially in ER+ , progesterone receptor-positive and lymph node-negative tumors. Explaining this paradox, we find that EEF1A1 mRNA levels in breast carcinomas are low due to EEF1A1 allelic copy number loss, found in 27% of tumors, and cell cycle-specific expression, because mRNA levels are high in G1 and low in proliferating cells. This also links estrogen-induced cell proliferation to clinical observations. In contrast, high eEF1α1 protein levels protect tumor cells from stress-induced cell death. These observations suggest that, by obviating EEF1A1 transcription, cancer cells can rapidly induce the heat shock response following proteotoxic stress, and survive.
Collapse
|
36
|
Alford BD, Brandman O. Quantification of Hsp90 availability reveals differential coupling to the heat shock response. J Cell Biol 2018; 217:3809-3816. [PMID: 30131327 PMCID: PMC6219726 DOI: 10.1083/jcb.201803127] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/22/2018] [Accepted: 08/10/2018] [Indexed: 11/22/2022] Open
Abstract
The heat shock response (HSR) is a protective gene expression program that is activated by conditions that cause proteotoxic stress. While it has been suggested that the availability of free chaperones regulates the HSR, chaperone availability and the HSR have never been precisely quantified in tandem under stress conditions. Thus, how the availability of chaperones changes in stress conditions and the extent to which these changes drive the HSR are unknown. In this study, we quantified Hsp90 chaperone availability and the HSR under multiple stressors. We show that Hsp90-dependent and -independent pathways both regulate the HSR, and the contribution of each pathway varies greatly depending on the stressor. Moreover, stressors that regulate the HSR independently of Hsp90 availability do so through the Hsp70 chaperone. Thus, the HSR responds to diverse defects in protein quality by monitoring the state of multiple chaperone systems independently.
Collapse
Affiliation(s)
- Brian D Alford
- Department of Biochemistry, Stanford University, Stanford, CA
| | - Onn Brandman
- Department of Biochemistry, Stanford University, Stanford, CA
| |
Collapse
|
37
|
Kumar RR, Goswami S, Singh K, Dubey K, Rai GK, Singh B, Singh S, Grover M, Mishra D, Kumar S, Bakshi S, Rai A, Pathak H, Chinnusamy V, Praveen S. Characterization of novel heat-responsive transcription factor (TaHSFA6e) gene involved in regulation of heat shock proteins (HSPs) - A key member of heat stress-tolerance network of wheat. J Biotechnol 2018; 279:1-12. [PMID: 29746879 DOI: 10.1016/j.jbiotec.2018.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 05/06/2018] [Accepted: 05/07/2018] [Indexed: 11/16/2022]
Abstract
Heat stress has an adverse effect on the quality and quantity of agriculturally important crops, especially wheat. The tolerance mechanism has not been explored much in wheat and very few genes/ TFs responsive to heat stress is available on public domain. Here, we identified, cloned and characterized a putative TaHSFA6e TF gene of 1.3 kb from wheat cv. HD2985. We observed an ORF of 368 aa with Hsf DNA binding signature domain in the amino acid sequence. Single copy number of TaHSFA6e was observed integrated in the genome of wheat. Expression analysis of TaHSFA6e under differential HS showed maximum transcripts in wheat cv. Halna (thermotolerant) in response to 38 °C for 2 h during pollination and grain-filling stages, as compared to PBW343, HD2329 and HD2985. Putative target genes of TaHSFA6e (HSP17, HSP70 and HSP90) showed upregulation in response to differential HS (30 & 38 °C, 2 h) during pollination and grain-filling stages. Small HSP17 was observed most triggered in Halna under HS. We observed increase in the catalase, guaiacol peroxidase, total antioxidant capacity (TAC), and decrease in the lipid peroxidation in thermotolerant cvs. (Halna, HD2985), as compared to thermosusceptible (PBW343, HD2329) under differential HS. Multiple stresses (heat - 38 °C, 2 h, and drought - 100 mL of 20% polyethylene Glycol 6000) during seedling stage of wheat showed positive correlation between the expression of TaHSFA6e, putative targets (HSP70, HSP90, HSP17) and TAC. Halna (thermotolerant) performed better, as compared to other contrasting cvs. TaHSFA6e TF can be used as promising candidate gene for manipulating the heat stress-tolerance network.
Collapse
Affiliation(s)
- Ranjeet R Kumar
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Suneha Goswami
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Khushboo Singh
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Kavita Dubey
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Gyanendra K Rai
- Sher-E-Kashmir University of Science and Technology, Chatta, Jammu and Kashmir, 180009, India
| | - Bhupinder Singh
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Shivdhar Singh
- Centre for Environment Science and Climate Resilient Agriculture (CESCRA), Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Monendra Grover
- CABin, Indian Agricultural Statistical Research Institute, ICAR, New Delhi, 110012, India
| | - Dwijesh Mishra
- CABin, Indian Agricultural Statistical Research Institute, ICAR, New Delhi, 110012, India
| | - Sanjeev Kumar
- CABin, Indian Agricultural Statistical Research Institute, ICAR, New Delhi, 110012, India
| | - Suman Bakshi
- Department of Atomic Energy, Babha Atomic Research Center, Mumbai, 400085, India
| | - Anil Rai
- CABin, Indian Agricultural Statistical Research Institute, ICAR, New Delhi, 110012, India
| | - Himanshu Pathak
- Central Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Shelly Praveen
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
38
|
Twayana KS, Ravanan P. Eukaryotic cell survival mechanisms: Disease relevance and therapeutic intervention. Life Sci 2018; 205:73-90. [PMID: 29730169 DOI: 10.1016/j.lfs.2018.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/17/2018] [Accepted: 05/01/2018] [Indexed: 01/10/2023]
Abstract
Cell responds to stress by activating various modes of stress responses which aim for minimal damage to cells and speedy recovery from the insults. However, unresolved stresses exceeding the tolerance limit lead to cell death (apoptosis, autophagy etc.) that helps to get rid of damaged cells and protect cell integrity. Furthermore, aberrant stress responses are the hallmarks of several pathophysiologies (neurodegeneration, metabolic diseases, cancer etc.). The catastrophic remodulation of stress responses is observed in cancer cells in favor of their uncontrolled growth. Whereas pro-survival stress responses redirected to death signaling provokes excessive cell death in neurodegeneration. Clear understanding of such mechanistic link to disease progression is required in order to modulate these processes for new therapeutic targets. The current review explains this with respect to novel drug discoveries and other breakthroughs in therapeutics.
Collapse
Affiliation(s)
- Krishna Sundar Twayana
- Apoptosis and Cell Survival Research Laboratory, Department of Biosciences, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu-632014, India
| | - Palaniyandi Ravanan
- Apoptosis and Cell Survival Research Laboratory, Department of Biosciences, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu-632014, India.
| |
Collapse
|
39
|
Nieto A, Pérez Ishiwara DG, Orozco E, Sánchez Monroy V, Gómez García C. A Novel Heat Shock Element (HSE) in Entamoeba histolytica that Regulates the Transcriptional Activation of the EhPgp5 Gene in the Presence of Emetine Drug. Front Cell Infect Microbiol 2017; 7:492. [PMID: 29238701 PMCID: PMC5712549 DOI: 10.3389/fcimb.2017.00492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/15/2017] [Indexed: 01/01/2023] Open
Abstract
Transcriptional regulation of the multidrug resistance EhPgp5 gene in Entamoeba histolytica is induced by emetine stress. EhPgp5 overexpression alters the chloride-dependent currents that cause trophozoite swelling, diminishing induced programmed cell death (PCD) susceptibility. In contrast, antisense inhibition of P-glycoprotein (PGP) expression produces synchronous death of trophozoites and the enhancement of the biochemical and morphological characteristics of PCD induced by G418. Transcriptional gene regulation analysis identified a 59 bp region at position −170 to −111 bp promoter as putative emetine response elements (EREs). However, insights into transcription factors controlling EhPgp5 gene transcription are missing; to fill this knowledge gap, we used deletion studies and transient CAT activity assays. Our findings suggested an activating motif (−151 to −136 bp) that corresponds to a heat shock element (HSE). Gel-shift assays, UV-crosslinking, binding protein purification, and western blotting assays revealed proteins of 94, 66, 62, and 51 kDa binding to the EhPgp5 HSE that could be heat shock-like transcription factors that regulate the transcriptional activation of the EhPgp5 gene in the presence of emetine drug.
Collapse
Affiliation(s)
- Alma Nieto
- Laboratorio de Biomedicina Molecular I, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, Mexico
| | - David G Pérez Ishiwara
- Laboratorio de Biomedicina Molecular I, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Virginia Sánchez Monroy
- Laboratorio de Biomedicina Molecular I, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Consuelo Gómez García
- Laboratorio de Biomedicina Molecular I, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
40
|
HSF4 regulates lens fiber cell differentiation by activating p53 and its downstream regulators. Cell Death Dis 2017; 8:e3082. [PMID: 28981088 PMCID: PMC5682647 DOI: 10.1038/cddis.2017.478] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/27/2017] [Accepted: 08/17/2017] [Indexed: 11/09/2022]
Abstract
Cataract refers to opacities of the lens that impede the passage of light. Mutations in heat shock transcription factor 4 (HSF4) have been associated with cataract; however, the mechanisms regarding how mutations in HSF4 cause cataract are still obscure. In this study, we generated an hsf4 knockout zebrafish model using TALEN technology. The mutant zebrafish developed an early-onset cataract with multiple developmental defects in lens. The epithelial cells of the lens were overproliferated, resulting in the overabundance of lens fiber cells in hsf4null zebrafish lens. Consequently, the arrangement of the lens fiber cells became more disordered and irregular with age. More importantly, the terminal differentiation of the lens fiber cell was interrupted as the organelles cannot be cleaved in due time. In the cultured human lens epithelial cells, HSF4 could stabilize and retain p53 in the nucleus to activate its target genes such as fas cell surface death receptor (Fas) and Bcl-2-associated X apoptosis regulator (Bax). In the hsf4null fish, both p53 and activated-caspase3 were significantly decreased. Combined with the finding that the denucleation defect could be partially rescued through microinjection of p53, fas and bax mRNA into the mutant embryos, we directly proved that HSF4 promotes lens fiber cell differentiation by activating p53 and its downstream regulators. The data we presented suggest that apoptosis-related genes are involved in the lens fiber cell differentiation. Our finding that HSF4 functions in the upstream to activate these genes highlighted the new regulatory modes of HSF4 in the terminal differentiation of lens fiber cell.
Collapse
|
41
|
Xu J, Tang S, Yin B, Sun J, Song E, Bao E. Co-enzyme Q10 and acetyl salicylic acid enhance Hsp70 expression in primary chicken myocardial cells to protect the cells during heat stress. Mol Cell Biochem 2017; 435:73-86. [PMID: 28497369 DOI: 10.1007/s11010-017-3058-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/03/2017] [Indexed: 10/19/2022]
Abstract
We investigated the effects of co-enzyme Q10 (Q10) and acetyl salicylic acid (ASA) on expression of Hsp70 in the protection of primary chicken myocardial cells during heat stress. Western blot analysis showed that Q10 and ASA accelerated the induction of Hsp70 when chicken myocardial cells were exposed to hyperthermia. In the absence of heat stress, however, neither Q10 nor ASA are able to upregulate Hsp70 expression. Analysis of enzymes that respond to cellular damage and pathological examination revealed that ectopic expression of ASA and Q10 alleviate cellular damage during heat stress. Quantification of heat shock factors (HSF) indicated that treatment of ASA increased the expression of HSF-1 and HSF-3 during heat stress. Treatment with Q10 resulted in the elevation of HSF-1 expression. Expression of HSF-2 and HSF-4 was not affected by ASA or Q10. Subcellular distribution analysis of HSF-1 and HSF-3 showed that in response to heat stress ASA promoted nuclear translocation of HSF-1 and HSF-3, while Q10 promoted only HSF-1 nuclear translocation. Chromatin immunoprecipitation (ChIP) analysis indicated that HSF-1 occupies the Hsp70 promoter in chicken primary myocardial cells during heat stress and under normal conditions, while HSF-3 occupies the Hsp70 promoter only during heat stress. Real-time PCR analysis revealed that ASA induces HSF-1 and HSF-3 binding to Hsp70 HSE, while Q10 only induces HSF1 binding to Hsp70 HSE, in agreement with the impact of HSF1 and HSF3 silencing on Hsp70 expression. These data demonstrate that ASA and Q10 both induce the expression of Hsp70 to protect chicken primary myocardial cells during heat stress, but through distinct pathways.
Collapse
Affiliation(s)
- Jiao Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Shu Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Bin Yin
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Jiarui Sun
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Erbao Song
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Endong Bao
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China.
| |
Collapse
|
42
|
Singh R, Parihar P, Singh S, Mishra RK, Singh VP, Prasad SM. Reactive oxygen species signaling and stomatal movement: Current updates and future perspectives. Redox Biol 2017; 11:213-218. [PMID: 28012436 PMCID: PMC5192041 DOI: 10.1016/j.redox.2016.11.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 11/09/2016] [Accepted: 11/10/2016] [Indexed: 12/27/2022] Open
Abstract
Reactive oxygen species (ROS), a by-product of aerobic metabolism were initially studied in context to their damaging effect but recent decades witnessed significant advancements in understanding the role of ROS as signaling molecules. Contrary to earlier views, it is becoming evident that ROS production is not necessarily a symptom of cellular dysfunction but it might represent a necessary signal in adjusting the cellular machinery according to the altered conditions. Stomatal movement is controlled by multifaceted signaling network in response to endogenous and environmental signals. Furthermore, the stomatal aperture is regulated by a coordinated action of signaling proteins, ROS-generating enzymes, and downstream executors like transporters, ion pumps, plasma membrane channels, which control the turgor pressure of the guard cell. The earliest hallmarks of stomatal closure are ROS accumulation in the apoplast and chloroplasts and thereafter, there is a successive increase in cytoplasmic Ca2+ level which rules the multiple kinases activity that in turn regulates the activity of ROS-generating enzymes and various ion channels. In addition, ROS also regulate the action of multiple proteins directly by oxidative post translational modifications to adjust guard cell signaling. Notwithstanding, an active progress has been made with ROS signaling mechanism but the regulatory action for ROS signaling processes in stomatal movement is still fragmentary. Therefore, keeping in view the above facts, in this mini review the basic concepts and role of ROS signaling in the stomatal movement have been presented comprehensively along with recent highlights.
Collapse
Affiliation(s)
- Rachana Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad 211002, India
| | - Parul Parihar
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad 211002, India
| | - Samiksha Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad 211002, India
| | - Rohit Kumar Mishra
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad 211002, India
| | - Vijay Pratap Singh
- Govt. Ramanuj Pratap Singhdev Post Graduate College, Baikunthpur, Koriya 497335, Chhattisgarh, India.
| | - Sheo Mohan Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad 211002, India.
| |
Collapse
|
43
|
Doberentz E, Genneper L, Wagner R, Madea B. Expression times for hsp27 and hsp70 as an indicator of thermal stress during death due to fire. Int J Legal Med 2017; 131:1707-1718. [PMID: 28233103 DOI: 10.1007/s00414-017-1566-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/16/2017] [Indexed: 12/23/2022]
Abstract
The expression of heat shock proteins (hsps) increases in cases of hyperthermal cellular stress in order to protect cellular structures. Hsps can be visualized with immunohistochemical staining. We examined 48 cases of death from fire and excessive heat and a control group of 100 deaths without any perimortem thermal stress, measuring both the hsp27 and hsp70 expressions in myocardial, pulmonary, and renal tissues. The results revealed a correlation between hsp expression and survival time. Hsps are expressed rapidly within seconds or minutes after exposure to heat stress. In particular, hsp27 is expressed fast in high levels, whereas hsp70 expression is higher in the pulmonary and renal tissue of long-term survivors. In the myocardial tissue, hsp27 expression dominated in both short- and long-term survival. The expression pattern is strongly dependent on the organ structure and the survival time, which should be considered in future postmortem studies on hsps.
Collapse
Affiliation(s)
- E Doberentz
- Institute of Legal Medicine, University of Bonn, Bonn, Germany
| | - L Genneper
- Institute of Legal Medicine, University of Bonn, Bonn, Germany
| | - R Wagner
- Institute of Legal Medicine, University of Bonn, Bonn, Germany
| | - B Madea
- Institute of Legal Medicine, University of Bonn, Bonn, Germany.
| |
Collapse
|
44
|
The Role of Heat Shock Proteins in Response to Extracellular Stress in Aquatic Organisms. HEAT SHOCK PROTEINS 2017. [DOI: 10.1007/978-3-319-73377-7_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
45
|
Valdés A, García-Cañas V, Artemenko KA, Simó C, Bergquist J, Cifuentes A. Nano-liquid Chromatography-orbitrap MS-based Quantitative Proteomics Reveals Differences Between the Mechanisms of Action of Carnosic Acid and Carnosol in Colon Cancer Cells. Mol Cell Proteomics 2016; 16:8-22. [PMID: 27834734 DOI: 10.1074/mcp.m116.061481] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/24/2016] [Indexed: 11/06/2022] Open
Abstract
Carnosic acid (CA) and carnosol (CS) are two structurally related diterpenes present in rosemary herb (Rosmarinus officinalis). Although several studies have demonstrated that both diterpenes can scavenge free radicals and interfere in cellular processes such as cell proliferation, they may not necessarily exert the same effects at the molecular level. In this work, a shotgun proteomics study based on stable isotope dimethyl labeling (DML) and nano-liquid chromatography-tandem mass spectrometry (nano-LC-MS/MS) has been performed to identify the relative changes in proteins and to gain some light on the specific molecular targets and mechanisms of action of CA and CS in HT-29 colon cancer cells. Protein profiles revealed that CA and CS induce different Nrf2-mediated response. Furthermore, examination of our data revealed that each diterpene affects protein homeostasis by different mechanisms. CA treatment induces the expression of proteins involved in the unfolded protein response in a concentration dependent manner reflecting ER stress, whereas CS directly inhibits chymotrypsin-like activity of the 20S proteasome. In conclusion, the unbiased proteomics-wide method applied in the present study has demonstrated to be a powerful tool to reveal differences on the mechanisms of action of two related bioactive compounds in the same biological model.
Collapse
Affiliation(s)
- Alberto Valdés
- From the ‡Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC), Calle Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Virginia García-Cañas
- From the ‡Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC), Calle Nicolás Cabrera 9, 28049 Madrid, Spain;
| | - Konstantin A Artemenko
- §Analytical Chemistry, Department of Chemistry-BMC and SciLifeLab, Uppsala University, Husargatan 3, 75124 Uppsala, Sweden
| | - Carolina Simó
- From the ‡Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC), Calle Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Jonas Bergquist
- §Analytical Chemistry, Department of Chemistry-BMC and SciLifeLab, Uppsala University, Husargatan 3, 75124 Uppsala, Sweden
| | - Alejandro Cifuentes
- From the ‡Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC), Calle Nicolás Cabrera 9, 28049 Madrid, Spain
| |
Collapse
|
46
|
Calapre L, Gray ES, Kurdykowski S, David A, Hart P, Descargues P, Ziman M. Heat-mediated reduction of apoptosis in UVB-damaged keratinocytes in vitro and in human skin ex vivo. BMC DERMATOLOGY 2016; 16:6. [PMID: 27230291 PMCID: PMC4882820 DOI: 10.1186/s12895-016-0043-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 05/18/2016] [Indexed: 01/18/2023]
Abstract
Background UV radiation induces significant DNA damage in keratinocytes and is a known risk factor for skin carcinogenesis. However, it has been reported previously that repeated and simultaneous exposure to UV and heat stress increases the rate of cutaneous tumour formation in mice. Since constant exposure to high temperatures and UV are often experienced in the environment, the effects of exposure to UV and heat needs to be clearly addressed in human epidermal cells. Methods In this study, we determined the effects of repeated UVB exposure 1 kJ/m2 followed by heat (39 °C) to human keratinocytes. Normal human ex vivo skin models and primary keratinocytes (NHEK) were exposed once a day to UVB and/or heat stress for four consecutive days. Cells were then assessed for changes in proliferation, apoptosis and gene expression at 2 days post-exposure, to determine the cumulative and persistent effects of UV and/or heat in skin keratinocytes. Results Using ex vivo skin models and primary keratinocytes in vitro, we showed that UVB plus heat treated keratinocytes exhibit persistent DNA damage, as observed with UVB alone. However, we found that apoptosis was significantly reduced in UVB plus heat treated samples. Immunohistochemical and whole genome transcription analysis showed that multiple UVB plus heat exposures induced inactivation of the p53-mediated stress response. Furthermore, we demonstrated that repeated exposure to UV plus heat induced SIRT1 expression and a decrease in acetylated p53 in keratinocytes, which is consistent with the significant downregulation of p53-regulated pro-apoptotic and DNA damage repair genes in these cells. Conclusion Our results suggest that UVB-induced p53-mediated cell cycle arrest and apoptosis are reduced in the presence of heat stress, leading to increased survival of DNA damaged cells. Thus, exposure to UVB and heat stress may act synergistically to allow survival of damaged cells, which could have implications for initiation skin carcinogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12895-016-0043-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leslie Calapre
- School of Medical Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia
| | - Elin S Gray
- School of Medical Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia
| | | | - Anthony David
- GENOSKIN Centre Pierre Potier, Oncopole, Toulouse, France
| | - Prue Hart
- Telethon Kids Institute, University of Western Australia, 100 Roberts Road, Subiaco, Perth, 6008, Australia
| | | | - Mel Ziman
- School of Medical Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia. .,Department of Pathology and Laboratory Medicine, University of Western Australia, Crawley, WA, Australia.
| |
Collapse
|
47
|
Liu X, Zhang Z, Ma X, Li X, Zhou D, Gao B, Bai Y. Sulfide exposure results in enhanced sqr transcription through upregulating the expression and activation of HSF1 in echiuran worm Urechis unicinctus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 170:229-239. [PMID: 26675369 DOI: 10.1016/j.aquatox.2015.11.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/19/2015] [Accepted: 11/19/2015] [Indexed: 05/26/2023]
Abstract
Sulfide is a natural, widely distributed, poisonous substance. Sulfide: quinone oxidoreductase (SQR) is responsible for the initial oxidation of sulfide in mitochondria. To study transcriptional regulation of sqr after sulfide exposure, a 2.6-kb sqr upstream sequence from echiuran worm Urechis unicinctus was cloned by genome walking. Bioinformatics analysis showed 3 heat shock elements (HSEs) in proximal promoter region of the sqr upstream sequence. Moreover, an Hsf1 cDNA in U. unicinctus (UuHsf1) was isolated with a full-length sequence of 2334 bp and its polyclonal antibody was prepared using U. unicinctus HSF1 (UuHSF1) expressed prokaryotically with whole sequence of its open reading frame (ORF). In vivo ChIP and in vitro EMSA assays revealed UuHSF1 could interact with the sqr proximal promoter region. Transient transfection and mutation assays indicated that UuHSF1 bound specifically to HSE (-155bp to -143bp) and enhanced the transcription of sqr. Furthermore, sulfide treatment experiments demonstrated that sulfide could increase the expression of HSF1 protein, and induce trimerization of the protein which binds to HSEs and then activate sqr transcription. Quantitative real-time PCR analysis revealed sqr mRNA level increased significantly after U. unicinctus was exposed to sulfide for 6h, which corresponded to content changes of both trimeric HSF1 and HSF1-HSE complex. We concluded that UuHSF1 is a transcription factor of sqr and sulfide could induce sqr transcription by upregulating the expression and activation of HSF1 in U. unicinctus exposed to sulfide.
Collapse
Affiliation(s)
- Xiaolong Liu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhifeng Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Xiaoyu Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xueyu Li
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Di Zhou
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Beibei Gao
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yajiao Bai
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
48
|
Etard C, Armant O, Roostalu U, Gourain V, Ferg M, Strähle U. Loss of function of myosin chaperones triggers Hsf1-mediated transcriptional response in skeletal muscle cells. Genome Biol 2015; 16:267. [PMID: 26631063 PMCID: PMC4668643 DOI: 10.1186/s13059-015-0825-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/05/2015] [Indexed: 01/03/2023] Open
Abstract
Background Mutations in myosin chaperones Unc45b and Hsp90aa1.1 as well as in the Unc45b-binding protein Smyd1b impair formation of myofibrils in skeletal muscle and lead to the accumulation of misfolded myosin. The concomitant transcriptional response involves up-regulation of the three genes encoding these proteins, as well as genes involved in muscle development. The transcriptional up-regulation of unc45b, hsp90aa1.1 and smyd1b is specific to zebrafish mutants with myosin folding defects, and is not triggered in other zebrafish myopathy models. Results By dissecting the promoter of unc45b, we identify a Heat shock factor 1 (Hsf1) binding element as a mediator of unc45b up-regulation in myofibers lacking myosin folding proteins. Loss-of-function of Hsf1 abolishes unc45b up-regulation in mutants with defects in myosin folding. Conclusions Taken together, our data show that skeletal muscle cells respond to defective myosin chaperones with a complex gene program and suggest that this response is mediated by Hsf1 activation. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0825-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christelle Etard
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Campus Nord, PO box, Karlsruhe, Germany
| | - Olivier Armant
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Campus Nord, PO box, Karlsruhe, Germany
| | - Urmas Roostalu
- Present address: Institute of Inflammation and Repair, Michael Smith Bldg, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Victor Gourain
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Campus Nord, PO box, Karlsruhe, Germany
| | - Marco Ferg
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Campus Nord, PO box, Karlsruhe, Germany
| | - Uwe Strähle
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Campus Nord, PO box, Karlsruhe, Germany.
| |
Collapse
|
49
|
Smith LM, Bhattacharya D, Williams DJ, Dixon I, Powell NR, Erkina TY, Erkine AM. High-throughput screening system for inhibitors of human Heat Shock Factor 2. Cell Stress Chaperones 2015; 20:833-41. [PMID: 26003133 PMCID: PMC4529873 DOI: 10.1007/s12192-015-0605-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/06/2015] [Accepted: 05/12/2015] [Indexed: 11/26/2022] Open
Abstract
Development of novel anti-cancer drug leads that target regulators of protein homeostasis is a formidable task in modern pharmacology. Finding specific inhibitors of human Heat Shock Factor 1 (hHSF1) has proven to be a challenging task, while screening for inhibitors of human Heat Shock Factor 2 (hHSF2) has never been described. We report the development of a novel system based on an in vivo cell growth restoration assay designed to identify specific inhibitors of human HSF2 in a high-throughput format. This system utilizes a humanized yeast strain in which the master regulator of molecular chaperone genes, yeast HSF, has been replaced with hHSF2 with no detrimental effect on cell growth. This replacement preserves the general regulatory patterns of genes encoding major molecular chaperones including Hsp70 and Hsp90. The controlled overexpression of hHSF2 creates a slow-growth phenotype, which is the basis of the growth restoration assay used for high-throughput screening. The phenotype is most robust when cells are cultured at 25 °C, while incubation at temperatures greater than 30 °C leads to compensation of the phenotype. Overexpression of hHSF2 causes overexpression of molecular chaperones which is a likely cause of the slowed growth. Our assay is characterized by two unique advantages. First, screening takes place in physiologically relevant, in vivo conditions. Second, hits in our screen will be of medically relevant potency, as compounds that completely inhibit hHSF2 function will further inhibit cell growth and therefore will not be scored as hits. This caveat biases our screening system for compounds capable of restoring hHSF2 activity to a physiologically normal level without completely inhibiting this essential system.
Collapse
Affiliation(s)
- Levi M. Smith
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Butler University, Indianapolis, IN 46208 USA
| | - Dwipayan Bhattacharya
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Butler University, Indianapolis, IN 46208 USA
| | - Daniel J. Williams
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Butler University, Indianapolis, IN 46208 USA
| | - Ivan Dixon
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Butler University, Indianapolis, IN 46208 USA
| | - Nicholas R. Powell
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Butler University, Indianapolis, IN 46208 USA
| | - Tamara Y. Erkina
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Butler University, Indianapolis, IN 46208 USA
| | - Alexandre M. Erkine
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Butler University, Indianapolis, IN 46208 USA
| |
Collapse
|
50
|
PARK SEONMI, KIM SOOA, AHN SANGGUN. HSF2 autoregulates its own transcription. Int J Mol Med 2015; 36:1173-9. [DOI: 10.3892/ijmm.2015.2309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 08/04/2015] [Indexed: 11/06/2022] Open
|