1
|
Park C, Hyun Y, Lee JY. Female gametophyte development is required for nucellar-tip degeneration during Arabidopsis ovule development. PLANTA 2024; 260:87. [PMID: 39251505 PMCID: PMC11383837 DOI: 10.1007/s00425-024-04519-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024]
Abstract
MAIN CONCLUSION Genetic ablation of the female gametophyte provides direct evidence for the existence of interregional communication during Arabidopsis ovule development and the importance of the female gametophyte in nucellar-tip degeneration. The angiosperm ovule consists of three regions: the female gametophyte, the nucellus, and the integuments, all of which develop synchronously and coordinately. Previously, interregional communication enabling cooperative ovule development had been proposed; however, the evidence for these communications mostly relies on the analysis of mutant phenotypes. To provide direct evidence, we specifically ablated the Arabidopsis female gametophyte by expressing the diphtheria toxin fragment A (DTA) under the female gametophyte-specific DD13 promoter and analyzed its effects on the development of the nucellus and the integuments. We found that the female gametophyte is not required for integument development or for the orientation and curvature of the ovule body, but is necessary for nucellar-tip degeneration. The results presented here provide direct evidence for communication from the female gametophyte to the nucellus and demonstrate that Arabidopsis ovules require interregional communication for cooperative development.
Collapse
Affiliation(s)
- Chulmin Park
- School of Biological Sciences, College of Natural Science, Seoul National University, Seoul, 08826, Korea.
- Research Institute of Basic Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Korea.
| | - Youbong Hyun
- School of Biological Sciences, College of Natural Science, Seoul National University, Seoul, 08826, Korea.
- Research Center for Plant Plasticity, Seoul National University, Seoul, 08826, Korea.
| | - Ji-Young Lee
- School of Biological Sciences, College of Natural Science, Seoul National University, Seoul, 08826, Korea.
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea.
- Plant Immunity Research Center, Seoul National University, Seoul, 00826, Korea.
| |
Collapse
|
2
|
Marchetti F, Distéfano AM, Cainzos M, Setzes N, Cascallares M, López GA, Zabaleta E, Carolina Pagnussat G. Cell death in bryophytes: emerging models to study core regulatory modules and conserved pathways. ANNALS OF BOTANY 2024; 134:367-384. [PMID: 38953500 PMCID: PMC11341678 DOI: 10.1093/aob/mcae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/23/2024] [Indexed: 07/04/2024]
Abstract
This review summarizes recent progress in our current understanding of the mechanisms underlying the cell death pathways in bryophytes, focusing on conserved pathways and particularities in comparison to angiosperms. Regulated cell death (RCD) plays key roles during essential processes along the plant life cycle. It is part of specific developmental programmes and maintains homeostasis of the organism in response to unfavourable environments. Bryophytes could provide valuable models to study developmental RCD processes as well as those triggered by biotic and abiotic stresses. Some pathways analogous to those present in angiosperms occur in the gametophytic haploid generation of bryophytes, allowing direct genetic studies. In this review, we focus on such RCD programmes, identifying core conserved mechanisms and raising new key questions to analyse RCD from an evolutionary perspective.
Collapse
Affiliation(s)
- Fernanda Marchetti
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Ayelén Mariana Distéfano
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Maximiliano Cainzos
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Nicolás Setzes
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Milagros Cascallares
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Gabriel Alejandro López
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Eduardo Zabaleta
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Gabriela Carolina Pagnussat
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| |
Collapse
|
3
|
Yu Y, Zhu R, Xu H, Enugutti B, Schneitz K, Wang X, Li J. Twin Embryos in Arabidopsis thaliana KATANIN 1 Mutants. PLANTS (BASEL, SWITZERLAND) 2024; 13:1824. [PMID: 38999664 PMCID: PMC11244573 DOI: 10.3390/plants13131824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024]
Abstract
Regulation of microtubule dynamics is crucial during key developmental transitions such as gametogenesis, fertilization, embryogenesis, and seed formation, where cells undergo rapid changes in shape and function. In plants, katanin plays an essential role in microtubule dynamics. This study investigates two seed developmental mutants in Arabidopsis thaliana, named elk5-1D (erecta-like 5, ELK5) and loo1 (lollipop 1), which are characterized by round seeds, dwarfism, and fertility defects. Notably, elk5-1D exhibits a dominant inheritance pattern, whereas loo1 is recessive. Through positional cloning, we identified both mutants as new alleles of the KATANIN 1 (KTN1) gene, which encodes a microtubule-severing enzyme critical for cell division and morphology. Mutations in KTN1 disrupt embryo cell division and lead to the emergence of a twin embryo phenotype. Our findings underscore the essential role of KTN1 in fertility and early embryonic development, potentially influencing the fate of reproductive cells.
Collapse
Affiliation(s)
- Youfeng Yu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Rui Zhu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Xu
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Balaji Enugutti
- Plant Developmental Biology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Kay Schneitz
- Plant Developmental Biology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Xuanpeng Wang
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Jing Li
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|
4
|
Wang H, Santuari L, Wijsman T, Wachsman G, Haase H, Nodine M, Scheres B, Heidstra R. Arabidopsis ribosomal RNA processing meerling mutants exhibit suspensor-derived polyembryony due to direct reprogramming of the suspensor. THE PLANT CELL 2024; 36:2550-2569. [PMID: 38513608 PMCID: PMC11218825 DOI: 10.1093/plcell/koae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/06/2024] [Accepted: 02/27/2024] [Indexed: 03/23/2024]
Abstract
Embryo development in Arabidopsis (Arabidopsis thaliana) starts off with an asymmetric division of the zygote to generate the precursors of the embryo proper and the supporting extraembryonic suspensor. The suspensor degenerates as the development of the embryo proper proceeds beyond the heart stage. Until the globular stage, the suspensor maintains embryonic potential and can form embryos in the absence of the developing embryo proper. We report a mutant called meerling-1 (mrl-1), which shows a high penetrance of suspensor-derived polyembryony due to delayed development of the embryo proper. Eventually, embryos from both apical and suspensor lineages successfully develop into normal plants and complete their life cycle. We identified the causal mutation as a genomic rearrangement altering the promoter of the Arabidopsis U3 SMALL NUCLEOLAR RNA-ASSOCIATED PROTEIN 18 (UTP18) homolog that encodes a nucleolar-localized WD40-repeat protein involved in processing 18S preribosomal RNA. Accordingly, root-specific knockout of UTP18 caused growth arrest and accumulation of unprocessed 18S pre-rRNA. We generated the mrl-2 loss-of-function mutant and observed asynchronous megagametophyte development causing embryo sac abortion. Together, our results indicate that promoter rearrangement decreased UTP18 protein abundance during early stage embryo proper development, triggering suspensor-derived embryogenesis. Our data support the existence of noncell autonomous signaling from the embryo proper to prevent direct reprogramming of the suspensor toward embryonic fate.
Collapse
Affiliation(s)
- Honglei Wang
- Cluster of Plant Developmental Biology, Laboratory of Cell and Developmental Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Luca Santuari
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Tristan Wijsman
- Cluster of Plant Developmental Biology, Laboratory of Cell and Developmental Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Guy Wachsman
- Molecular Genetics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Hannah Haase
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Michael Nodine
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Ben Scheres
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Renze Heidstra
- Cluster of Plant Developmental Biology, Laboratory of Cell and Developmental Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
5
|
Tovar-Aguilar A, Grimanelli D, Acosta-García G, Vielle-Calzada JP, Badillo-Corona JA, Durán-Figueroa N. The miRNA822 loaded by ARGONAUTE9 modulates the monosporic female gametogenesis in Arabidopsis thaliana. PLANT REPRODUCTION 2024; 37:243-258. [PMID: 38019279 DOI: 10.1007/s00497-023-00487-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/07/2023] [Indexed: 11/30/2023]
Abstract
KEY MESSAGE The miR822 together with of AGO9 protein, modulates monosporic development in Arabidopsis thaliana through the regulation of target genes encoding Cysteine/Histidine-Rich C1 domain proteins, revealing a new role of miRNAs in the control of megaspore formation in flowering plants. In the ovule of flowering plants, the establishment of the haploid generation occurs when a somatic cell differentiates into a megaspore mother cell (MMC) and initiates meiosis. As most flowering plants, Arabidopsis thaliana (Arabidopsis) undergoes a monosporic type of gametogenesis as three meiotically derived cells degenerate, and a single one-the functional megaspore (FM), divides mitotically to form the female gametophyte. The genetic basis and molecular mechanisms that control monosporic gametophyte development remain largely unknown. Here, we show that Arabidopsis plants carrying loss-of-function mutations in the miR822, give rise to extranumerary surviving megaspores that acquire a FM identity and divides without giving rise to differentiated female gametophytes. The overexpression of three miR822 putative target genes encoding cysteine/histidine-rich C1 (DC1) domain proteins, At5g02350, At5g02330 and At2g13900 results in defects equivalent to those found in mutant mir822 plants. The three miR822 targets genes are overexpressed in ago9 mutant ovules, suggesting that miR822 acts through an AGO9-dependent pathway to negatively regulate DC1 domain proteins and restricts the survival of meiotically derived cells to a single megaspore. Our results identify a mechanism mediated by the AGO9-miR822 complex that modulates monosporic female gametogenesis in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Andrea Tovar-Aguilar
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, Mexico City, Mexico
| | - Daniel Grimanelli
- Institut de Recherche pour le Développement, Plant Genome and Development Laboratory, UMR5096, 34394, Montpellier, France
| | - Gerardo Acosta-García
- Departamento de Bioquímica, Instituto Tecnológico de Celaya, Celaya, Guanajuato, Mexico
| | - Jean-Philippe Vielle-Calzada
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, CINVESTAV-IPN, Irapuato, Guanajuato, Mexico
| | | | - Noé Durán-Figueroa
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, Mexico City, Mexico.
| |
Collapse
|
6
|
Simonini S, Bencivenga S, Grossniklaus U. A paternal signal induces endosperm proliferation upon fertilization in Arabidopsis. Science 2024; 383:646-653. [PMID: 38330116 DOI: 10.1126/science.adj4996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/04/2024] [Indexed: 02/10/2024]
Abstract
In multicellular organisms, sexual reproduction relies on the formation of highly differentiated cells, the gametes, which await fertilization in a quiescent state. Upon fertilization, the cell cycle resumes. Successful development requires that male and female gametes are in the same phase of the cell cycle. The molecular mechanisms that reinstate cell division in a fertilization-dependent manner are poorly understood in both animals and plants. Using Arabidopsis, we show that a sperm-derived signal induces the proliferation of a female gamete, the central cell, precisely upon fertilization. The central cell is arrested in S phase by the activity of the RETINOBLASTOMA RELATED1 (RBR1) protein. Upon fertilization, delivery of the core cell cycle component CYCD7;1 causes RBR1 degradation and thus S phase progression, ensuring the formation of functional endosperm and, consequently, viable seeds.
Collapse
Affiliation(s)
- Sara Simonini
- Institute of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, CH-8008 Zurich, Switzerland
| | - Stefano Bencivenga
- Institute of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, CH-8008 Zurich, Switzerland
| | - Ueli Grossniklaus
- Institute of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, CH-8008 Zurich, Switzerland
| |
Collapse
|
7
|
Ye S, Wang S, Chan R, Cao L, Wang H. Identification of short protein-destabilizing sequences in Arabidopsis cyclin-dependent kinase inhibitors, ICKs. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:772-788. [PMID: 37862584 DOI: 10.1093/jxb/erad411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/18/2023] [Indexed: 10/22/2023]
Abstract
Plants have a family of cyclin-dependent kinase (CDK) inhibitors called interactors/inhibitors of CDK (ICKs) or Kip-related proteins (KRPs). ICK proteins have important functions in cell proliferation, endoreduplication, plant growth, and reproductive development, and their functions depend on the protein levels. However, understanding of how ICK protein levels are regulated is very limited. We fused Arabidopsis ICK sequences to green fluorescent protein (GFP) and determined their effects on the fusion proteins in plants, yeast, and Escherichia coli. The N-terminal regions of ICKs drastically reduced GFP fusion protein levels in Arabidopsis plants. A number of short sequences of 10-20 residues were found to decrease GFP fusion protein levels when fused at the N-terminus or C-terminus. Three of the four short sequences from ICK3 showed a similar function in yeast. Intriguingly, three short sequences from ICK1 and ICK3 caused the degradation of the fusion proteins in E. coli. In addition, computational analyses showed that ICK proteins were mostly disordered and unstructured except for the conserved C-terminal region, suggesting that ICKs are intrinsically disordered proteins. This study has identified a number of short protein-destabilizing sequences, and evidence suggests that some of them may cause protein degradation through structural disorder and instability.
Collapse
Affiliation(s)
- Shengjian Ye
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Sheng Wang
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Ron Chan
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Ling Cao
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Hong Wang
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| |
Collapse
|
8
|
Brzezicka E, Kozieradzka-Kiszkurno M. Callose deposition analysis with special emphasis on plasmodesmata ultrastructure during megasporogenesis in Sedum (Crassulaceae). PROTOPLASMA 2024; 261:31-41. [PMID: 37418158 PMCID: PMC10784368 DOI: 10.1007/s00709-023-01879-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
In this study, the results of the first detection of callose within the ovules of the representatives of the family Crassulaceae are presented. This study was carried out on three species of the genus Sedum. Data analysis showed differences in the callose deposition pattern between Sedum hispanicum and Sedum ser. Rupestria species during megasporogenesis. Callose was present mostly in the transversal walls of dyads and tetrads in S. hispanicum. Furthermore, a complete loss of callose from the cell walls of the linear tetrad and a gradual and simultaneous deposition of callose within the nucellus of S. hispanicum were observed. The findings of this study showed the presence of hypostase with callose in the ovules of S. hispanicum, which is not common in other angiosperms. The remaining species tested in this study-Sedum sediforme and Sedum rupestre-showed a typical, well-known callose deposition pattern for plants with the monospore type of megasporogenesis and the Polygonum type of embryo sac. The functional megaspore (FM) in all studied species was located most chalazally. FM is a mononuclear cell, which wall is callose-free in the chalazal pole. The study presents the causes of different patterns of callose deposition within Sedum and their relationship with the systematic position of the study species. Moreover, embryological studies present an argument for excluding callose as a substance that forms an electron-dense material near the plasmodesmata in megaspores of S. hispanicum. This research expands the knowledge about the embryological processes of succulent plants from the family Crassulaceae.
Collapse
Affiliation(s)
- Emilia Brzezicka
- Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza St., 80-308, Gdańsk, Poland
| | - Małgorzata Kozieradzka-Kiszkurno
- Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza St., 80-308, Gdańsk, Poland.
| |
Collapse
|
9
|
Resentini F, Orozco-Arroyo G, Cucinotta M, Mendes MA. The impact of heat stress in plant reproduction. FRONTIERS IN PLANT SCIENCE 2023; 14:1271644. [PMID: 38126016 PMCID: PMC10732258 DOI: 10.3389/fpls.2023.1271644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023]
Abstract
The increment in global temperature reduces crop productivity, which in turn threatens food security. Currently, most of our food supply is produced by plants and the human population is estimated to reach 9 billion by 2050. Gaining insights into how plants navigate heat stress in their reproductive phase is essential for effectively overseeing the future of agricultural productivity. The reproductive success of numerous plant species can be jeopardized by just one exceptionally hot day. While the effects of heat stress on seedlings germination and root development have been extensively investigated, studies on reproduction are limited. The intricate processes of gamete development and fertilization unfold within a brief timeframe, largely concealed within the flower. Nonetheless, heat stress is known to have important effects on reproduction. Considering that heat stress typically affects both male and female reproductive structures concurrently, it remains crucial to identify cultivars with thermotolerance. In such cultivars, ovules and pollen can successfully undergo development despite the challenges posed by heat stress, enabling the completion of the fertilization process and resulting in a robust seed yield. Hereby, we review the current understanding of the molecular mechanisms underlying plant resistance to abiotic heat stress, focusing on the reproductive process in the model systems of Arabidopsis and Oryza sativa.
Collapse
Affiliation(s)
| | | | | | - Marta A. Mendes
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
10
|
Shrestha A, Limay-Rios V, Brettingham DJL, Raizada MN. Bacteria existing in pre-pollinated styles (silks) can defend the exposed male gamete fertilization channel of maize against an environmental Fusarium pathogen. FRONTIERS IN PLANT SCIENCE 2023; 14:1292109. [PMID: 38111882 PMCID: PMC10726056 DOI: 10.3389/fpls.2023.1292109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/09/2023] [Indexed: 12/20/2023]
Abstract
In flowering plants, fertilization requires exposing maternal style channels to the external environment to capture pollen and transmit its resident sperm nuclei to eggs. This results in progeny seed. However, environmental fungal pathogens invade developing seeds through the style. We hypothesized that prior to environmental exposure, style tissue already possesses bacteria that can protect styles and seed from such pathogens. We further hypothesized that farmers have been inadvertently selecting immature styles over many generations to have such bacteria. We tested these hypotheses in maize, a wind-pollinated crop, which has unusually long styles (silks) that are invaded by the economically-important fungal pathogen Fusarium graminearum (Fg). Here, unpollinated silk-associated bacteria were cultured from a wild teosinte ancestor of maize and diverse maize landraces selected by indigenous farmers across the Americas, grown in a common Canadian field for one season. The bacteria were taxonomically classified using 16S rRNA sequencing. In total, 201 bacteria were cultured, spanning 29 genera, 63 species, and 62 unique OTUs, dominated by Pseudomonas, Pantoea and Microbacterium. These bacteria were tested for their ability to suppress Fg in vitro which identified 10 strains belonging to 6 species: Rouxiella badensis, Pantoea ananatis, Pantoea dispersa, Pseudomonas koreensis, Rahnella aquatilis, and Ewingella americana. Two anti-Fg strains were sprayed onto silks before/after Fg inoculation, resulting in ≤90% reductions in disease (Gibberella ear rot) and 70-100% reductions in associated mycotoxins (deoxynivalenol and zearalenone) in progeny seeds. These strains also protected progeny seeds post-harvest. Confocal fluorescent imaging showed that one silk bacterium (Rouxiella AS112) colonized susceptible entry points of Fg on living silks including stigmatic trichomes, wounds, and epidermal surfaces where they formed thick biofilms. Post-infection, AS112 was associated with masses of dead Fg hyphae. These results suggest that the maize style (silk) is endowed with potent bacteria from the mother plant to protect itself and progeny from Fusarium. The evidence suggests this trait may have been selected by specific indigenous peoples, though this interpretation requires further study.
Collapse
Affiliation(s)
- Anuja Shrestha
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Victor Limay-Rios
- Department of Plant Agriculture, University of Guelph, Ridgetown, ON, Canada
| | | | - Manish N. Raizada
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
11
|
Kobayashi N, Nishikawa SI. Nuclear Fusion in Yeast and Plant Reproduction. PLANTS (BASEL, SWITZERLAND) 2023; 12:3608. [PMID: 37896071 PMCID: PMC10609895 DOI: 10.3390/plants12203608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
Nuclear fusion is essential for the sexual reproduction of various organisms, including plants, animals, and fungi. During the life cycle of flowering plants, nuclear fusion occurs three times: once during female gametogenesis and twice during double fertilization, when two sperm cells fertilize the egg and the central cell. Haploid nuclei migrate in an actin filament-dependent manner to become in close contact and, then, two nuclei fuse. The nuclear fusion process in plant reproduction is achieved through sequential nuclear membrane fusion events. Recent molecular genetic analyses using Arabidopsis thaliana showed the conservation of nuclear membrane fusion machinery between plants and the budding yeast Saccharomyces cerevisiae. These include the heat-shock protein 70 in the endoplasmic reticulum and the conserved nuclear membrane proteins. Analyses of the A. thaliana mutants of these components show that the completion of the sperm nuclear fusion at fertilization is essential for proper embryo and endosperm development.
Collapse
Affiliation(s)
- Nanami Kobayashi
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan;
| | | |
Collapse
|
12
|
Yu SX, Hu LQ, Yang LH, Zhang T, Dai RB, Zhang YJ, Xie ZP, Lin WH. RLI2 regulates Arabidopsis female gametophyte and embryo development by facilitating the assembly of the translational machinery. Cell Rep 2023; 42:112741. [PMID: 37421624 DOI: 10.1016/j.celrep.2023.112741] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 04/01/2023] [Accepted: 06/20/2023] [Indexed: 07/10/2023] Open
Abstract
Eukaryotic protein translation is a complex process that requires the participation of different proteins. Defects in the translational machinery often result in embryonic lethality or severe growth defects. Here, we report that RNase L inhibitor 2/ATP-BINDING CASSETTE E2 (RLI2/ABCE2) regulates translation in Arabidopsis thaliana. Null mutation of rli2 is gametophytic and embryonic lethal, whereas knockdown of RLI2 causes pleiotropic developmental defects. RLI2 interacts with several translation-related factors. Knockdown of RLI2 affects the translational efficiency of a subset of proteins involved in translation regulation and embryo development, indicating that RLI2 has critical roles in these processes. In particular, RLI2 knockdown mutant exhibits decreased expression of genes involved in auxin signaling and female gametophyte and embryo development. Therefore, our results reveal that RLI2 facilitates assembly of the translational machinery and indirectly modulates auxin signaling to regulate plant growth and development.
Collapse
Affiliation(s)
- Shi-Xia Yu
- The Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Collaborative Innovation Center of Agri-Seeds/Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai 200240, China; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li-Qin Hu
- The Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Collaborative Innovation Center of Agri-Seeds/Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai 200240, China; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lu-Han Yang
- The Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tao Zhang
- The Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruo-Bing Dai
- Zhiyuan College, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan-Jie Zhang
- The Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhi-Ping Xie
- The Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wen-Hui Lin
- The Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Collaborative Innovation Center of Agri-Seeds/Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
13
|
Adhikari PB, Zhu S, Liu X, Huang C, Xie L, Wu X, He J, Mitsuda N, Peters B, Brownfield L, Nagawa S, Kasahara RD. Discovery of a cis-regulatory element SaeM involved in dynamic regulation of synergid-specific MYB98. FRONTIERS IN PLANT SCIENCE 2023; 14:1177058. [PMID: 37223808 PMCID: PMC10200956 DOI: 10.3389/fpls.2023.1177058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/10/2023] [Indexed: 05/25/2023]
Abstract
MYB98 is a key regulator of the genetic network behind pollen tube attraction toward the female gametophyte. MYB98 is specifically expressed in the synergid cells (SCs), a female gametophyte component cells specialized for pollen tube attraction. However, it had not been clear how exactly MYB98 achieves this specific expression pattern. In the current study, we have determined that a normal SC-specific expression of MYB98 is dependent on a 16-bp-long cis-regulatory element, CATTTACACATTAAAA, freshly named as the "S ynergid-specific A ctivation E lement of M YB98" (SaeM). An 84 bp fragment harboring SaeM in the middle was sufficient to drive exclusively SC-specific expression. The element was present in a significantly large proportion of SC-specific gene promoters and in the promoter of MYB98 homologous genes in the Brassicaceae (pMYB98s). Significance of such family-wide SaeM-like element conservation in exclusive SC-specific expression was confirmed by the Arabidopsis-like activation feature of Brassica oleracea-derived pMYB98 and absence of such feature of pMYB98 derived from a non-Brassicaceae member Prunus persica. Additionally, the yeast-one-hybrid assay showed that the SaeM can be recognized by ANTHOCYANINLESS2 (ANL2) and DAP-seq data further suggested for additional three ANL2 homologs targeting the similar cis-element. Overall, our study has concluded that SaeM plays a crucial role in driving exclusively SC-specific expression of MYB98 and strongly suggests for the involvement of ANL2 and its homologs in its dynamic regulation in planta. Future study on the transcription factors is expected to shed more light on the mechanism behind the process.
Collapse
Affiliation(s)
- Prakash Babu Adhikari
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shaowei Zhu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaoyan Liu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Chen Huang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Liyang Xie
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaoyan Wu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jiale He
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Benjamin Peters
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Lynette Brownfield
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Shingo Nagawa
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ryushiro Dora Kasahara
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan
| |
Collapse
|
14
|
Cornaro L, Banfi C, Cucinotta M, Colombo L, van Dijk PJ. Asexual reproduction through seeds: the complex case of diplosporous apomixis. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2462-2478. [PMID: 36794770 DOI: 10.1093/jxb/erad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/07/2023] [Indexed: 06/06/2023]
Abstract
Apomixis is considered a potentially revolutionary tool to generate high-quality food at a lower cost and shorter developmental time due to clonal seed production through apomeiosis and parthenogenesis. In the diplosporous type of apomixis, meiotic recombination and reduction are circumvented either by avoiding or failing meiosis or by a mitotic-like division. Here, we review the literature on diplospory, from early cytological studies dating back to the late 19th century to recent genetic findings. We discuss diplosporous developmental mechanisms, including their inheritance. Furthermore, we compare the strategies adopted to isolate the genes controlling diplospory with those to produce mutants forming unreduced gametes. Nowadays, the dramatically improved technologies of long-read sequencing and targeted CRISPR/Cas mutagenesis justify the expectation that natural diplospory genes will soon be identified. Their identification will answer questions such as how the apomictic phenotype can be superimposed upon the sexual pathway and how diplospory genes have evolved. This knowledge will contribute to the application of apomixis in agriculture.
Collapse
Affiliation(s)
- Letizia Cornaro
- Department of Biosciences, University of Milan, Via Giovanni Celoria 26, 20133, Milano, Italy
| | - Camilla Banfi
- Department of Biosciences, University of Milan, Via Giovanni Celoria 26, 20133, Milano, Italy
| | - Mara Cucinotta
- Department of Biosciences, University of Milan, Via Giovanni Celoria 26, 20133, Milano, Italy
| | - Lucia Colombo
- Department of Biosciences, University of Milan, Via Giovanni Celoria 26, 20133, Milano, Italy
| | - Peter J van Dijk
- KeyGene N.V., Agro Business Park 90, 6708 PW Wageningen, The Netherlands
| |
Collapse
|
15
|
Dvořák Tomaštíková E, Yang F, Mlynárová K, Hafidh S, Schořová Š, Kusová A, Pernisová M, Přerovská T, Klodová B, Honys D, Fajkus J, Pecinka A, Schrumpfová PP. RUVBL proteins are involved in plant gametophyte development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:325-337. [PMID: 36752686 DOI: 10.1111/tpj.16136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 05/10/2023]
Abstract
The proper development of male and female gametophytes is critical for successful sexual reproduction and requires a carefully regulated series of events orchestrated by a suite of various proteins. RUVBL1 and RUVBL2, plant orthologues of human Pontin and Reptin, respectively, belong to the evolutionarily highly conserved AAA+ family linked to a wide range of cellular processes. Previously, we found that RUVBL1 and RUVBL2A mutations are homozygous lethal in Arabidopsis. Here, we report that RUVBL1 and RUVBL2A play roles in reproductive development. We show that mutant plants produce embryo sacs with an abnormal structure or with various numbers of nuclei. Although pollen grains of heterozygous mutant plants exhibit reduced viability and reduced pollen tube growth in vitro, some of the ruvbl pollen tubes are capable of targeting ovules in vivo. Similarly, some ruvbl ovules retain the ability to attract wild-type pollen tubes but fail to develop further. The activity of the RUVBL1 and RUVBL2A promoters was observed in the embryo sac, pollen grains, and tapetum cells and, for RUVBL2A, also in developing ovules. In summary, we show that the RUVBL proteins are essential for the proper development of both male and particularly female gametophytes in Arabidopsis.
Collapse
Affiliation(s)
- Eva Dvořák Tomaštíková
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany, Czech Academy of Sciences, Šlechtitelů 31, 77900, Olomouc, Czech Republic
| | - Fen Yang
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany, Czech Academy of Sciences, Šlechtitelů 31, 77900, Olomouc, Czech Republic
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 77900, Olomouc, Czech Republic
| | - Kristína Mlynárová
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Said Hafidh
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, CZ-165 02, Prague, Czech Republic
| | - Šárka Schořová
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Alžbeta Kusová
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Markéta Pernisová
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Tereza Přerovská
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Božena Klodová
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, CZ-165 02, Prague, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 00, Praha 2, Czech Republic
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, CZ-165 02, Prague, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 00, Praha 2, Czech Republic
| | - Jiří Fajkus
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, CZ-61265, Brno, Czech Republic
| | - Ales Pecinka
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany, Czech Academy of Sciences, Šlechtitelů 31, 77900, Olomouc, Czech Republic
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 77900, Olomouc, Czech Republic
| | - Petra Procházková Schrumpfová
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| |
Collapse
|
16
|
Hu X, Yu P, Zhang Y, Gao Z, Sun B, Wu W, Deng C, Abbas A, Hong Y, Sun L, Liu Q, Xue P, Wang B, Zhan X, Cao L, Cheng S. Mutation of DEFECTIVE EMBRYO SAC1 results in a low seed-setting rate in rice by regulating embryo sac development. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:1501-1516. [PMID: 36651501 PMCID: PMC10010608 DOI: 10.1093/jxb/erac506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
The seed-setting rate has a significant effect on grain yield in rice (Oryza sativa L.). Embryo sac development is essential for seed setting; however, the molecular mechanism underlying this process remains unclear. Here, we isolated defective embryo sac1 (des1), a rice mutant with a low seed-setting rate. Cytological examination showed degenerated embryo sacs and reduced fertilization capacity in des1. Map-based cloning revealed a nonsense mutation in OsDES1, a gene that encodes a putative nuclear envelope membrane protein (NEMP)-domain-containing protein that is preferentially expressed in pistils. The OsDES1 mutation disrupts the normal formation of functional megaspores, which ultimately results in a degenerated embryo sac in des1. Reciprocal crosses showed that fertilization is abnormal and that the female reproductive organ is defective in des1. OsDES1 interacts with LONELY GUY (LOG), a cytokinin-activating enzyme that acts in the final step of cytokinin synthesis; mutation of LOG led to defective female reproductive organ development. These results demonstrate that OsDES1 functions in determining the rice seed-setting rate by regulating embryo sac development and fertilization. Our study sheds light on the function of NEMP-type proteins in rice reproductive development.
Collapse
Affiliation(s)
| | | | | | - Zhiqiang Gao
- Gannan Normal University, Ganzhou, Jiangxi, 341000, China
| | - Bin Sun
- Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Weixun Wu
- China National Rice Research Institute, Hangzhou, Zhejiang, 311400, China
| | - Chenwei Deng
- Zhoukou Academy of Agricultural Sciences, Zhoukou, Henan, 466001, China
| | - Adil Abbas
- China National Rice Research Institute, Hangzhou, Zhejiang, 311400, China
| | - Yongbo Hong
- China National Rice Research Institute, Hangzhou, Zhejiang, 311400, China
| | - Lianping Sun
- China National Rice Research Institute, Hangzhou, Zhejiang, 311400, China
| | - Qunen Liu
- China National Rice Research Institute, Hangzhou, Zhejiang, 311400, China
| | - Pao Xue
- China National Rice Research Institute, Hangzhou, Zhejiang, 311400, China
| | - Beifang Wang
- China National Rice Research Institute, Hangzhou, Zhejiang, 311400, China
| | - Xiaodeng Zhan
- China National Rice Research Institute, Hangzhou, Zhejiang, 311400, China
| | | | | |
Collapse
|
17
|
Female meiosis in plants, and differential recombination in the two sexes: a perspective. THE NUCLEUS 2023. [DOI: 10.1007/s13237-023-00417-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
18
|
Fu Y, Zhang H, Ma Y, Li C, Zhang K, Liu X. A model worker: Multifaceted modulation of AUXIN RESPONSE FACTOR3 orchestrates plant reproductive phases. FRONTIERS IN PLANT SCIENCE 2023; 14:1123059. [PMID: 36923132 PMCID: PMC10009171 DOI: 10.3389/fpls.2023.1123059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
The key phytohormone auxin is involved in practically every aspect of plant growth and development. Auxin regulates these processes by controlling gene expression through functionally distinct AUXIN RESPONSE FACTORs (ARFs). As a noncanonical ARF, ARF3/ETTIN (ETT) mediates auxin responses to orchestrate multiple developmental processes during the reproductive phase. The arf3 mutation has pleiotropic effects on reproductive development, causing abnormalities in meristem homeostasis, floral determinacy, phyllotaxy, floral organ patterning, gynoecium morphogenesis, ovule development, and self-incompatibility. The importance of ARF3 is also reflected in its precise regulation at the transcriptional, posttranscriptional, translational, and epigenetic levels. Recent studies have shown that ARF3 controls dynamic shoot apical meristem (SAM) maintenance in a non-cell autonomous manner. Here, we summarize the hierarchical regulatory mechanisms by which ARF3 is regulated and the diverse roles of ARF3 regulating developmental processes during the reproductive phase.
Collapse
Affiliation(s)
- Yunze Fu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Hao Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, China
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Yuru Ma
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, China
| | - Cundong Li
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Ke Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Xigang Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, China
| |
Collapse
|
19
|
Ahmad A, Li W, Zhang H, Wang H, Wang P, Jiao Y, Zhao C, Yang G, Hong D. Linkage and association mapping of ovule number per ovary (ON) in oilseed rape ( Brassica napus L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:11. [PMID: 37313129 PMCID: PMC10248604 DOI: 10.1007/s11032-023-01355-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/11/2023] [Indexed: 06/15/2023]
Abstract
Ovule number (ON) produced during flower development determines the maximum number of seeds per silique and thereby affects crop productivity; however, the genetic basis of ON remains poorly understood in oilseed rape (Brassica napus). In this study, we genetically dissected the ON variations in a double haploid (DH) population and in natural population (NP) by linkage mapping and genome-wide association analysis. Phenotypic analysis showed that ON displayed normal distribution in both populations with the broad-sense heritability of 0.861 (DH population) and 0.930 (natural population). Linkage mapping identified 5 QTLs related to ON, including qON-A03, qON-A07, qON-A07-2, qON-A10, and qON-C06. Genome-wide association studies (GWAS) revealed 214, 48, and 40 significant single-nucleotide polymorphisms (SNPs) by individually using the single-locus model GLM and the multiple-locus model MrMLM and FASTMrMLM. The phenotypic variation explained (PVE) by these QTLs and SNPs ranged from 2.00-17.40% to 5.03-7.33%, respectively. Integration of the results from both strategies identified four consensus genomic regions associated with ON from the chromosomes A03, A07, and A10. Our results preliminarily resolved the genetic basis of ON and provides useful molecular markers for plant yield improvement in B. napus. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01355-7.
Collapse
Affiliation(s)
- Ali Ahmad
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Wenhui Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Hui Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Hao Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Pengfei Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Yushun Jiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Chenqi Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Guangsheng Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Dengfeng Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| |
Collapse
|
20
|
Huang C, Li P, Yang X, Niu T, Zhao S, Yang L, Wang R, Wang Z. Integrated transcriptome and proteome analyses reveal candidate genes for ginsenoside biosynthesis in Panax japonicus C. A. Meyer. FRONTIERS IN PLANT SCIENCE 2023; 13:1106145. [PMID: 36699857 PMCID: PMC9868605 DOI: 10.3389/fpls.2022.1106145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Panax japonicus C. A. Meyer is a plant of the Araliaceae family, and its rhizomes can be used as dietary supplements. It is extremely rich in bioactive components ginsenosides with benefits to human health. However, the underlying mechanisms of ginsenosides biosynthesis in Panax japonicus remains poorly understood. Therefore, a comprehensive analysis of the metabolites, transcriptome, and proteome was conducted to investigate ginsenoside metabolism of Panax japonicus. Here, three types of ginsenosides were found to exhibited tissue-specific distribution using the liquid chromatography-mass spectrometry method. Next, differentially expressed gene analysis revealed that transcript levels of ginsenosides biosynthetic genes have significant differences between differential samples. In addition, correlation analysis showed that the ginsenosides content was closely related to the expression level of 29 cytochrome P450s and 92 Uridine diphosphate-glycosyltransferases. Finally, phylogenetic analysis was performed for the target proteins to conduct preliminary studies on their functions and classification. This study provides insight into the dynamic changes and biosynthetic pathway of ginsenosides and offers valuable information on the metabolic regulation of Panax japonicus.
Collapse
Affiliation(s)
- Chaokang Huang
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pengfei Li
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaolin Yang
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tengfei Niu
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shujuan Zhao
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Yang
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rufeng Wang
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengtao Wang
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
21
|
Bird DC, Ma C, Pinto S, Leong WH, Tucker MR. Genetic and Phenotypic Analysis of Ovule Development in Arabidopsis. Methods Mol Biol 2023; 2686:261-281. [PMID: 37540362 DOI: 10.1007/978-1-0716-3299-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The plant seed is a remarkable structure that represents the single most important energy source in global diets. The stages of reproductive growth preceding seed formation are particularly important since they influence the number, size, and quality of seed produced. The progenitor of the seed is the ovule, a multicellular organ that produces a female gametophyte while maintaining a range of somatic ovule cells to protect the seed and ensure it receives maternal nourishment. Ovule development has been well characterized in Arabidopsis using a range of molecular, genetic, and cytological assays. These can provide insight into the mechanistic basis for ovule development, and opportunities to explore its evolutionary conservation. In this chapter, we describe some of these methods and tools that can be used to investigate early ovule development and cell differentiation.
Collapse
Affiliation(s)
- Dayton C Bird
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Chao Ma
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Sara Pinto
- LAQV REQUIMTE, Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Weng Herng Leong
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Matthew R Tucker
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia.
| |
Collapse
|
22
|
Jahed KR, Hirst PM. Fruit growth and development in apple: a molecular, genomics and epigenetics perspective. FRONTIERS IN PLANT SCIENCE 2023; 14:1122397. [PMID: 37123845 PMCID: PMC10130390 DOI: 10.3389/fpls.2023.1122397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/13/2023] [Indexed: 05/03/2023]
Abstract
Fruit growth and development are physiological processes controlled by several internal and external factors. This complex regulatory mechanism comprises a series of events occurring in a chronological order over a growing season. Understanding the underlying mechanism of fruit development events, however, requires consideration of the events occurring prior to fruit development such as flowering, pollination, fertilization, and fruit set. Such events are interrelated and occur in a sequential order. Recent advances in high-throughput sequencing technology in conjunction with improved statistical and computational methods have empowered science to identify some of the major molecular components and mechanisms involved in the regulation of fruit growth and have supplied encouraging successes in associating genotypic differentiation with phenotypic observations. As a result, multiple approaches have been developed to dissect such complex regulatory machinery and understand the genetic basis controlling these processes. These methods include transcriptomic analysis, quantitative trait loci (QTLs) mapping, whole-genome approach, and epigenetics analyses. This review offers a comprehensive overview of the molecular, genomic and epigenetics perspective of apple fruit growth and development that defines the final fruit size and provides a detailed analysis of the mechanisms by which fruit growth and development are controlled. Though the main emphasis of this article is on the molecular, genomic and epigenetics aspects of fruit growth and development, we will also deliver a brief overview on events occurring prior to fruit growth.
Collapse
|
23
|
Zhu M, Tao L, Zhang J, Liu R, Tian H, Hu C, Zhu Y, Li M, Wei Z, Yi J, Li J, Gou X. The type-B response regulators ARR10, ARR12, and ARR18 specify the central cell in Arabidopsis. THE PLANT CELL 2022; 34:4714-4737. [PMID: 36130292 PMCID: PMC9709988 DOI: 10.1093/plcell/koac285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/15/2022] [Indexed: 06/15/2023]
Abstract
In Arabidopsis thaliana, the female gametophyte consists of two synergid cells, an egg cell, a diploid central cell, and three antipodal cells. CYTOKININ INDEPENDENT 1 (CKI1), a histidine kinase constitutively activating the cytokinin signaling pathway, specifies the central cell and restricts the egg cell. However, the mechanism regulating CKI1-dependent central cell specification is largely unknown. Here, we showed that the type-B ARABIDOPSIS RESPONSE REGULATORS10, 12, and 18 (ARR10/12/18) localize at the chalazal pole of the female gametophyte. Phenotypic analysis showed that the arr10 12 18 triple mutant is female sterile. We examined the expression patterns of embryo sac marker genes and found that the embryo sac of arr10 12 18 plants had lost central cell identity, a phenotype similar to that of the Arabidopsis cki1 mutant. Genetic analyses demonstrated that ARR10/12/18, CKI1, and ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN2, 3, and 5 (AHP2/3/5) function in a common pathway to regulate female gametophyte development. In addition, constitutively activated ARR10/12/18 in the cki1 embryo sac partially restored the fertility of cki1. Results of transcriptomic analysis supported the conclusion that ARR10/12/18 and CKI1 function together to regulate the identity of the central cell. Our results demonstrated that ARR10/12/18 function downstream of CKI1-AHP2/3/5 as core factors to determine cell fate of the female gametophyte.
Collapse
Affiliation(s)
- Mingsong Zhu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Liang Tao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jinghua Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ruini Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hongai Tian
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chong Hu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yafen Zhu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Meizhen Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhuoyun Wei
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jing Yi
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaoping Gou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
24
|
Janas AB, Marciniuk J, Szeląg Z, Musiał K. New facts about callose events in the young ovules of some sexual and apomictic species of the Asteraceae family. PROTOPLASMA 2022; 259:1553-1565. [PMID: 35304670 DOI: 10.1007/s00709-022-01755-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Callose (β-1,3-glucan) is one of the cell wall polymers that plays an important role in many biological processes in plants, including reproductive development. In angiosperms, timely deposition and degradation of callose during sporogenesis accompanies the transition of cells from somatic to generative identity. However, knowledge on the regulation of callose biosynthesis at specific sites of the megasporocyte wall remains limited and the data on its distribution are not conclusive. Establishing the callose deposition pattern in a large number of species can contribute to full understanding of its function in reproductive development. Previous studies focused on callose events in sexual species and only a few concerned apomicts. The main goal of our research was to establish and compare the pattern of callose deposition during early sexual and diplosporous processes in the ovules of some Hieracium, Pilosella and Taraxacum (Asteraceae) species; aniline blue staining technique was used for this purpose. Our findings indicate that callose deposition accompanies both meiotic and diplosporous development of the megaspore mother cell. This suggests that it has similar regulatory functions in intercellular communication regardless of the mode of reproduction. Interestingly, callose deposition followed a different pattern in the studied sexual and diplosporous species compared to most angiosperms as it usually began at the micropylar pole of the megasporocyte. Here, it was only in sexually reproducing H. transylvanicum that callose first appeared at the chalazal pole of the megasporocyte. The present paper additionally discusses the occurrence of aposporous initial cells with callose-rich walls in the ovules of diploid species.
Collapse
Affiliation(s)
- Agnieszka B Janas
- Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University, Gronostajowa 9, 30-387, Cracow, Poland.
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Cracow, Poland.
| | - Jolanta Marciniuk
- Faculty of Exact and Natural Science, Siedlce University of Natural Sciences and Humanities, Prusa 14, 08-110, Siedlce, Poland
| | - Zbigniew Szeląg
- Institute of Biology, Pedagogical University of Cracow, Podchorążych 2, 30-084, Cracow, Poland
| | - Krystyna Musiał
- Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University, Gronostajowa 9, 30-387, Cracow, Poland
| |
Collapse
|
25
|
Zhang J, Pai Q, Yue L, Wu X, Liu H, Wang W. Cytokinin regulates female gametophyte development by cell cycle modulation in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111419. [PMID: 35995110 DOI: 10.1016/j.plantsci.2022.111419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Male and female gametophyte development, double fertilization, and embryogenesis are key to alternating generations in angiosperms. The female gametophyte of Arabidopsis is an eight-nucleate haploid structure developed from functional megaspores (FMs) through three flawless mitoses regulated by a series of cell cycle genes. Cytokinin, an important phytohormone, plays a critical role in the regulation of plant growth and development. However, the mechanisms by which cytokinins regulate female gametophyte development remain largely unknown. In this study, we constructed transgenic plants (pES1::CKX1) with low cytokinin levels in the embryo sac. Phenotypic analysis showed that pES1::CKX1 inhibits female gametophyte development. Microscopic observation revealed that female gametophyte development of pES1::CKX1 was delayed. The promoters of all cell cycle genes were cloned and transformed into wild-type (WT). We crossed these transgenic plants of cell cycle genes expressed in ovules with pES1::CKX1 and compared the expression level of β-glucuronidase (GUS) in pES1::CKX1 and WT. Many cell cycle-regulated genes were up or downregulated in pES1::CKX1 compared with WT, and the embryo sac development cell cycle in cycd2;1/+ cycd3;3 was defective. Our results demonstrated that cytokinin affects cell division in the female gametophyte by affecting the expression of cell cycle genes.
Collapse
Affiliation(s)
- Jinghua Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Qiaofeng Pai
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Ling Yue
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaolin Wu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Hui Liu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China.
| | - Wei Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
26
|
Xie F, Vahldick H, Lin Z, Nowack M. Killing me softly - Programmed cell death in plant reproduction from sporogenesis to fertilization. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102271. [PMID: 35963096 PMCID: PMC7613566 DOI: 10.1016/j.pbi.2022.102271] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/11/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Regulated or programmed cell death (RCD or PCD) is a fundamental biological principle integral to a considerable variety of functions in multicellular organisms. In plants, different PCD processes are part of biotic and abiotic stress responses, but also occur as an essential aspect of unperturbed plant development. PCD is particularly abundant during plant reproduction, eliminating unwanted or no longer needed cells, tissues, or organs in a precisely controlled manner. Failure in reproductive PCD can have detrimental consequences for plant reproduction. Here we shed a light on the latest research into PCD mechanisms in plant reproduction from sex determination over sporogenesis to pollination and fertilization.
Collapse
Affiliation(s)
- Fei Xie
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Hannah Vahldick
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Zongcheng Lin
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Moritz Nowack
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| |
Collapse
|
27
|
Yu SX, Jiang YT, Lin WH. Ovule initiation: the essential step controlling offspring number in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1469-1486. [PMID: 35713236 DOI: 10.1111/jipb.13314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Seed is the offspring of angiosperms. Plants produce large numbers of seeds to ensure effective reproduction and survival in varying environments. Ovule is a fundamentally important organ and is the precursor of the seed. In Arabidopsis and other plants characterized by multi-ovulate ovaries, ovule initiation determines the maximal ovule number, thus greatly affecting seed number per fruit and seed yield. Investigating the regulatory mechanism of ovule initiation has both scientific and economic significance. However, the genetic and molecular basis underlying ovule initiation remains unclear due to technological limitations. Very recently, rules governing the multiple ovules initiation from one placenta have been identified, the individual functions and crosstalk of phytohormones in regulating ovule initiation have been further characterized, and new regulators of ovule boundary are reported, therefore expanding the understanding of this field. In this review, we present an overview of current knowledge in ovule initiation and summarize the significance of ovule initiation in regulating the number of plant offspring, as well as raise insights for the future study in this field that provide potential routes for the improvement of crop yield.
Collapse
Affiliation(s)
- Shi-Xia Yu
- The Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Collaborative Innovation Center of Agri-Seeds/Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yu-Tong Jiang
- The Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wen-Hui Lin
- The Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Collaborative Innovation Center of Agri-Seeds/Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
28
|
Chahal LS, Conner JA, Ozias-Akins P. Phylogenetically Distant BABY BOOM Genes From Setaria italica Induce Parthenogenesis in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:863908. [PMID: 35909735 PMCID: PMC9329937 DOI: 10.3389/fpls.2022.863908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/13/2022] [Indexed: 06/02/2023]
Abstract
The combination of apomixis and hybrid production is hailed as the holy grail of agriculture for the ability of apomixis to fix heterosis of F1 hybrids in succeeding generations, thereby eliminating the need for repeated crosses to produce F1 hybrids. Apomixis, asexual reproduction through seed, achieves this feat by circumventing two processes that are fundamental to sexual reproduction (meiosis and fertilization) and replacing them with apomeiosis and parthenogenesis, resulting in seeds that are clonal to the maternal parent. Parthenogenesis, embryo development without fertilization, has been genetically engineered in rice, maize, and pearl millet using PsASGR-BABY BOOM-like (PsASGR-BBML) transgenes and in rice using the OsBABY BOOM1 (OsBBM1) cDNA sequence when expressed under the control of egg cell-specific promoters. A phylogenetic analysis revealed that BABY BOOM (BBM)/BBML genes from monocots cluster within three different clades. The BBM/BBML genes shown to induce parthenogenesis cluster within clade 1 (the ASGR-BBML clade) along with orthologs from other monocot species, such as Setaria italica. For this study, we tested the parthenogenetic potential of three BBM transgenes from S. italica, each a member of a different phylogenetic BBM clade. All transgenes were genomic constructs under the control of the AtDD45 egg cell-specific promoter. All SiBBM transgenes induced various levels of parthenogenetic embryo development, resulting in viable haploid T1 seedlings. Poor seed set and lower haploid seed production were characteristics of multiple transgenic lines. The results presented in this study illustrate that further functional characterization of BBMs in zygote/embryo development is warranted.
Collapse
Affiliation(s)
- Lovepreet Singh Chahal
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Tifton, GA, United States
| | - Joann A. Conner
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Tifton, GA, United States
- Department of Horticulture, University of Georgia, Tifton, GA, United States
| | - Peggy Ozias-Akins
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Tifton, GA, United States
- Department of Horticulture, University of Georgia, Tifton, GA, United States
| |
Collapse
|
29
|
Expression of GEX1 Orthologs of Brassica rapa and Oryza sativa Rescued the Nuclear Fusion Defect of the Arabidopsis GEX1 Mutant. PLANTS 2022; 11:plants11141808. [PMID: 35890442 PMCID: PMC9324357 DOI: 10.3390/plants11141808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 11/25/2022]
Abstract
Nuclear fusion is required for the sexual reproduction of various organisms, including angiosperms. During the life cycle of angiosperms, nuclear fusion occurs three times: once during female gametogenesis, when the two polar nuclei fuse in the central cell, and twice during double fertilization. Nuclear fusion in plant reproduction is achieved by sequential nuclear fusion events: outer and inner nuclear membrane fusion. Arabidopsis gamete expressed 1 (GEX1) is a nuclear membrane protein of gametes that is required for nuclear fusion during reproduction. Although orthologs of GEX1 have been identified in various land plants, sequence identities are not high, even between angiosperm GEX1 orthologs; the sequence identity between Arabidopsis GEX1 and Oryza sativa GEX1 ortholog is lower than 50%. Here, we found that the expression of GEX1 orthologs of O. sativa, as well as of Brassica rapa from the Arabidopsis GEX1 promoter, rescued the polar nuclear fusion defect of the gex1 mutant. We also found that the expression of these GEX1 orthologs rescued the lethality of the gex1 homozygous mutant, which is proposed to be caused by the sperm nuclear fusion defects upon fertilization. Our results indicate a functional conservation between Arabidopsis and O. sativa GEX1 orthologs, despite their relatively low sequence identities.
Collapse
|
30
|
Zhou Y, Fang W, Pang Z, Chen LY, Cai H, Ain NU, Chang MC, Ming R. AP1G2 Affects Mitotic Cycles of Female and Male Gametophytes in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:924417. [PMID: 35873977 PMCID: PMC9301471 DOI: 10.3389/fpls.2022.924417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
During sexual reproduction in flowering plants, haploid spores are formed from meiosis of spore mother cells. The spores then undergo mitosis, develop into female and male gametophytes, and give rise to seeds after fertilization. We identified a female sterile mutant ap1g2-4 from EMS mutagenesis, and analyses of two T-DNA insertion mutants, ap1g2-1 +/- and ap1g2-3 -/-, and detected a partial female and male sterility. The ap1g2 mutant gametophyte development was arrested at one nuclear stage. A complementation test using a genomic sequence of AP1G2 with its native promoter restored the function in the three ap1g2 mutant lines. Transcriptome profiling of ap1g2 ovules revealed that four genes encoding clathrin assembly proteins PICALM5A/B and PICALM9A/B, which were involved in endocytosis, were downregulated, which were confirmed to interact with AP1G2 through yeast two-hybrid assays and BIFC analysis. Our result also demonstrated that RALFL4-8-15-19-26 CML16 and several calcium-dependent protein kinases, including CPK14-16-17, were all downregulated in the ovules of ap1g2-1 +/-. Moreover, Ca2+ concentration was low in impaired gametophytes. Therefore, we proposed that through interaction with PICALM5A/B and PICALM9A/B, AP1G2 may mediate gametogenesis accompanied by Ca2+ signaling in Arabidopsis. Our findings revealed a crucial role of AP1G2 in female and male gametogenesis in Arabidopsis and enhanced our understanding of the molecular mechanisms underpinning sexual reproduction in flowering plants.
Collapse
Affiliation(s)
- Yongmei Zhou
- FAFU and UIUC Joint Center for Genomics and Biotechnology, Key Laboratory of Sugarcane Biology and Genetic Breeding Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenqin Fang
- FAFU and UIUC Joint Center for Genomics and Biotechnology, Key Laboratory of Sugarcane Biology and Genetic Breeding Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ziqin Pang
- FAFU and UIUC Joint Center for Genomics and Biotechnology, Key Laboratory of Sugarcane Biology and Genetic Breeding Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Li-Yu Chen
- FAFU and UIUC Joint Center for Genomics and Biotechnology, Key Laboratory of Sugarcane Biology and Genetic Breeding Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hanyang Cai
- FAFU and UIUC Joint Center for Genomics and Biotechnology, Key Laboratory of Sugarcane Biology and Genetic Breeding Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Noor-Ul- Ain
- FAFU and UIUC Joint Center for Genomics and Biotechnology, Key Laboratory of Sugarcane Biology and Genetic Breeding Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Men-Chi Chang
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
31
|
Petrella R, Cucinotta M, Mendes MA, Underwood CJ, Colombo L. The emerging role of small RNAs in ovule development, a kind of magic. PLANT REPRODUCTION 2021; 34:335-351. [PMID: 34142243 PMCID: PMC8566443 DOI: 10.1007/s00497-021-00421-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/08/2021] [Indexed: 05/03/2023]
Abstract
In plants, small RNAs have been recognized as key genetic and epigenetic regulators of development. Small RNAs are usually 20 to 30 nucleotides in length and they control, in a sequence specific manner, the transcriptional or post-transcriptional expression of genes. In this review, we present a comprehensive overview of the most recent findings about the function of small RNAs in ovule development, including megasporogenesis and megagametogenesis, both in sexual and apomictic plants. We discuss recent studies on the role of miRNAs, siRNAs and trans-acting RNAs (ta-siRNAs) in early female germline differentiation. The mechanistic complexity and unique regulatory features are reviewed, and possible directions for future research are provided.
Collapse
Affiliation(s)
- Rosanna Petrella
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Mara Cucinotta
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Marta A Mendes
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Charles J Underwood
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Lucia Colombo
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy.
| |
Collapse
|
32
|
Fang H, Shao Y, Wu G. Reprogramming of Histone H3 Lysine Methylation During Plant Sexual Reproduction. FRONTIERS IN PLANT SCIENCE 2021; 12:782450. [PMID: 34917115 PMCID: PMC8669150 DOI: 10.3389/fpls.2021.782450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
Plants undergo extensive reprogramming of chromatin status during sexual reproduction, a process vital to cell specification and pluri- or totipotency establishment. As a crucial way to regulate chromatin organization and transcriptional activity, histone modification can be reprogrammed during sporogenesis, gametogenesis, and embryogenesis in flowering plants. In this review, we first introduce enzymes required for writing, recognizing, and removing methylation marks on lysine residues in histone H3 tails, and describe their differential expression patterns in reproductive tissues, then we summarize their functions in the reprogramming of H3 lysine methylation and the corresponding chromatin re-organization during sexual reproduction in Arabidopsis, and finally we discuss the molecular significance of histone reprogramming in maintaining the pluri- or totipotency of gametes and the zygote, and in establishing novel cell fates throughout the plant life cycle. Despite rapid achievements in understanding the molecular mechanism and function of the reprogramming of chromatin status in plant development, the research in this area still remains a challenge. Technological breakthroughs in cell-specific epigenomic profiling in the future will ultimately provide a solution for this challenge.
Collapse
|
33
|
Epigenetic Modifications in Plant Development and Reproduction. EPIGENOMES 2021; 5:epigenomes5040025. [PMID: 34968249 PMCID: PMC8715465 DOI: 10.3390/epigenomes5040025] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 01/27/2023] Open
Abstract
Plants are exposed to highly fluctuating effects of light, temperature, weather conditions, and many other environmental factors throughout their life. As sessile organisms, unlike animals, they are unable to escape, hide, or even change their position. Therefore, the growth and development of plants are largely determined by interaction with the external environment. The success of this interaction depends on the ability of the phenotype plasticity, which is largely determined by epigenetic regulation. In addition to how environmental factors can change the patterns of genes expression, epigenetic regulation determines how genetic expression changes during the differentiation of one cell type into another and how patterns of gene expression are passed from one cell to its descendants. Thus, one genome can generate many ‘epigenomes’. Epigenetic modifications acquire special significance during the formation of gametes and plant reproduction when epigenetic marks are eliminated during meiosis and early embryogenesis and later reappear. However, during asexual plant reproduction, when meiosis is absent or suspended, epigenetic modifications that have arisen in the parental sporophyte can be transmitted to the next clonal generation practically unchanged. In plants that reproduce sexually and asexually, epigenetic variability has different adaptive significance. In asexuals, epigenetic regulation is of particular importance for imparting plasticity to the phenotype when, apart from mutations, the genotype remains unchanged for many generations of individuals. Of particular interest is the question of the possibility of transferring acquired epigenetic memory to future generations and its potential role for natural selection and evolution. All these issues will be discussed to some extent in this review.
Collapse
|
34
|
Comparative Study of Ovule Development between Wild (Passiflora foetida L.) and Cultivated (P. edulis Sims) Species of Passiflora L. Provide Insights into Its Differential Developmental Patterns. JOURNAL OF ZOOLOGICAL AND BOTANICAL GARDENS 2021. [DOI: 10.3390/jzbg2030036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The ovules inside the ovary of a plant are the precursors of seeds and they are important for the perpetuation of the plants. The genus Passiflora L., produce fruits with numerous seeds and they have economic and medicinal value. The edible portion of the Passiflora are the seeds surrounded by pulp. Being the edible parts of a fruit, it is important to investigate the early development of ovules in Passiflora that lead to the formation of seeds after pollination. Wild relatives of the domesticated crops are increasingly being investigated for possible genetic resources that can be used for crop improvement programs. The present study was designed to investigate the comparative ovule development between a wild (Passiflora foetida L.) and a cultivated (Passiflora edulis Sims) species of Passiflora with an aim that it may provide important information about the common and diverging regulatory mechanisms during ovule development between the wild and the cultivated species. We also investigated the pollen morphology between the wild and cultivated species using light and scanning electron microscopy. Our results show that wild type P. foetida ovule growth is faster when compared with that of cultivated P. edulis. Furthermore, wild species harbour ovules of large size (0.14 mm2) but less in number (6) as compared to cultivated ones which show smaller size (0.05 mm2) of ovules but relatively more in number (21). The differences in ovary wall thickness were also stark between the two species. The ovary wall thickness was 0.10 mm in the wild type whereas it was 0.74 mm in cultivated species. Notable differences were also observed in diameter where the wild type (2.45 mm) reported smaller diameter than cultivated species (3.25 mm). We observed little difference in the pollen morphology between the two species.
Collapse
|
35
|
Cai B, Wang T, Fu W, Harun A, Ge X, Li Z. Dosage-Dependent Gynoecium Development and Gene Expression in Brassica napus-Orychophragmus violaceus Addition Lines. PLANTS (BASEL, SWITZERLAND) 2021; 10:1766. [PMID: 34579298 PMCID: PMC8469106 DOI: 10.3390/plants10091766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Distant hybridization usually leads to female sterility of the hybrid but the mechanism behind this is poorly understood. Complete pistil abortion but normal male fertility was shown by one Brassica napus-Orychophragmus violaceus monosomic alien addition line (MA, AACC + 1 IO, 2n = 39) produced previously. To study the effect of a single O. violaceus chromosome addition on pistil development in different genetic backgrounds, hybrids between the MA and B. carinata (BBCC), B. juncea (AABB), and two synthetic hexaploids (AABBCC) were firstly produced in this study which show complete female sterility. A microspore culture was further performed to produce the haploid monosomic alien addition line (HMA, AC + 1 IO, 2n = 20) and disomic addition line (DA, AACC + 2 IO, 2n = 40) together with haploid (H, AC, 2n = 19) and double haploid (DH, AACC, 2n = 38) plants of B. napus from MA to investigate the dosage effect of the alien O. violaceus chromosome on pistil development and gene expression. Compared to MA, the development of the pistils of DA and HMA was completely or partially recovered, in which the pistils could swell and elongate to a normal shape after open pollination, although no seeds were produced. Comparative RNA-seq analyses revealed that the numbers of the differentially expressed genes (DEGs) were significantly different, dosage-dependent, and consistent with the phenotypic difference in pairwise comparisons of HMA vs. H, DA vs. DH, MA vs. DH, MA vs. DA, and MA vs. HMA. The gene ontology (GO) enrichment analysis of DEGs showed that a number of genes involved in the development of the gynoecium, embryo sac, ovule, and integuments. Particularly, several common DEGs for pistil development shared in HMA vs. H and DA vs. DH showed functions in genotoxic stress response, auxin transport, and signaling and adaxial/abaxial axis specification. The results provided updated information for the molecular mechanisms behind the gynoecium development of B. napus responding to the dosage of alien O. violaceus chromosomes.
Collapse
Affiliation(s)
| | | | | | | | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.C.); (T.W.); (W.F.); (A.H.); (Z.L.)
| | | |
Collapse
|
36
|
Mao B, Zheng W, Huang Z, Peng Y, Shao Y, Liu C, Tang L, Hu Y, Li Y, Hu L, Zhang D, Yuan Z, Luo W, Yuan L, Liu Y, Zhao B. Rice MutLγ, the MLH1-MLH3 heterodimer, participates in the formation of type I crossovers and regulation of embryo sac fertility. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1443-1455. [PMID: 33544956 PMCID: PMC8313138 DOI: 10.1111/pbi.13563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 05/23/2023]
Abstract
The development of embryo sacs is crucial for seed production in plants, but the genetic basis regulating the meiotic crossover formation in the macrospore and microspore mother cells remains largely unclear. Here, we report the characterization of a spontaneous rice female sterile variation 1 mutant (fsv1) that showed severe embryo sacs abortion with low seed-setting rate. Through map-based cloning and functional analyses, we isolated the causal gene of fsv1, OsMLH3 encoding a MutL-homolog 3 protein, an ortholog of HvMLH3 in barley and AtMLH3 in Arabidopsis. OsMLH3 and OsMLH1 (MutL-homolog 1) interact to form a heterodimer (MutLγ) to promote crossover formation in the macrospore and microspore mother cells and development of functional megaspore during meiosis, defective OsMLH3 or OsMLH1 in fsv1 and CRISPR/Cas9-based knockout lines results in reduced type I crossover and bivalent frequency. The fsv1 and OsMLH3-knockout lines are valuable germplasms for development of female sterile restorer lines for mechanized seed production of hybrid rice.
Collapse
Affiliation(s)
- Bigang Mao
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
- Long Ping BranchGraduate School of Hunan UniversityChangshaChina
| | - Wenjie Zheng
- Long Ping BranchGraduate School of Hunan UniversityChangshaChina
| | - Zhen Huang
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
| | - Yan Peng
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
| | - Ye Shao
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
| | - Citao Liu
- College of AgriculturalHunan Agricultural UniversityChangshaChina
| | - Li Tang
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
- Long Ping BranchGraduate School of Hunan UniversityChangshaChina
| | - Yuanyi Hu
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
| | - Yaokui Li
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
| | - Liming Hu
- Long Ping BranchGraduate School of Hunan UniversityChangshaChina
| | - Dan Zhang
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
| | - Zhicheng Yuan
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
| | - Wuzhong Luo
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
| | - Longping Yuan
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
| | - Yaoguang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
| | - Bingran Zhao
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
- Long Ping BranchGraduate School of Hunan UniversityChangshaChina
- College of AgriculturalHunan Agricultural UniversityChangshaChina
| |
Collapse
|
37
|
Brzezicka E, Kozieradzka-Kiszkurno M. Developmental, ultrastructural and cytochemical investigations of the female gametophyte in Sedum rupestre L. (Crassulaceae). PROTOPLASMA 2021; 258:529-546. [PMID: 33188606 PMCID: PMC8052249 DOI: 10.1007/s00709-020-01584-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
This article describes the development of female gametophyte in Sedum rupestre L. New embryological information about the processes of megasporogenesis and megagametogenesis provided in this paper expand the current knowledge about the embryology of the studied species. S. rupestre is characterized by monosporic megasporogenesis and the formation of Polygonum-type embryo sac. The process of megasporogenesis is initiated by one megaspore mother cell, resulting in the formation of a triad of cells after meiosis and cytokinesis. The functional megaspore, which is located chalazally, is a mononuclear cell present next to the megaspore in the centre of the triad. Only one of the two non-functional cells of the triad is binucleate, which occur at the micropylar pole. In this paper, we explain the functional ultrastructure of the female gametophytic cells in S. rupestre. Initially, the cytoplasm of the gametophytic cells does not differ from each other; however, during differentiation, the cells reveal different morphologies. The antipodals and the synergids gradually become organelle-rich and metabolically active. The antipodal cells participate in the absorption and transport of nutrients from the nucellar cells towards the megagametophyte. Their ultrastructure shows the presence of plasmodesmata with electron-dense material, which is characteristic of Crassulaceae, and wall ingrowths in the outer walls. The ultrastructure of synergid cells is characterized by the presence of filiform apparatus and cytoplasm with active dictyosomes, abundant profiles of endoplasmic reticulum and numerous vesicles, which agrees with their main function-the secretion of pollen tube attractants. Reported data can be used to resolve the current taxonomic problems within the genus Sedum ser. Rupestria.
Collapse
Affiliation(s)
- Emilia Brzezicka
- Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza St., 80-308, Gdańsk, Poland
| | - Małgorzata Kozieradzka-Kiszkurno
- Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza St., 80-308, Gdańsk, Poland.
| |
Collapse
|
38
|
Oh SA, Park HJ, Kim MH, Park SK. Analysis of sticky generative cell mutants reveals that suppression of callose deposition in the generative cell is necessary for generative cell internalization and differentiation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:228-244. [PMID: 33458909 DOI: 10.1111/tpj.15162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
In flowering plants, double fertilization between male and female gametophytes, which are separated by distance, largely depends on the unique pattern of the male gametophyte (pollen): two non-motile sperm cells suspended within a tube-producing vegetative cell. A morphological screen to elucidate the genetic control governing the strategic patterning of pollen has led to the isolation of a sticky generative cell (sgc) mutant that dehisces abnormal pollen with the generative cell immobilized at the pollen wall. Analyses revealed that the sgc mutation is specifically detrimental to pollen development, causing ectopic callose deposition that impedes the timely internalization and differentiation of the generative cell. We found that the SGC gene encodes the highly conserved domain of unknown function 707 (DUF707) gene that is broadly expressed but is germline specific during pollen development. Additionally, transgenic plants co-expressing fluorescently fused SGC protein and known organelle markers showed that SGC localizes in the endoplasmic reticulum, Golgi apparatus and vacuoles in pollen. A yeast two-hybrid screen with an SGC bait identified a thaumatin-like protein that we named GCTLP1, some homologs of which bind and/or digest β-1,3-glucans, the main constituent of callose. GCTLP1 is expressed in a germline-specific manner and colocalizes with SGC during pollen development, indicating that GCTLP1 is a putative SGC interactor. Collectively, our results show that SGC suppresses callose deposition in the nascent generative cell, thereby allowing the generative cell to fully internalize into the vegetative cell and correctly differentiate as the germline progenitor, with the potential involvement of the GCTLP1 protein, during pollen development in Arabidopsis.
Collapse
Affiliation(s)
- Sung-Aeong Oh
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hyo-Jin Park
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Myung-Hee Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Soon-Ki Park
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| |
Collapse
|
39
|
Susaki D, Suzuki T, Maruyama D, Ueda M, Higashiyama T, Kurihara D. Dynamics of the cell fate specifications during female gametophyte development in Arabidopsis. PLoS Biol 2021; 19:e3001123. [PMID: 33770073 PMCID: PMC7997040 DOI: 10.1371/journal.pbio.3001123] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/29/2021] [Indexed: 01/10/2023] Open
Abstract
The female gametophytes of angiosperms contain cells with distinct functions, such as those that enable reproduction via pollen tube attraction and fertilization. Although the female gametophyte undergoes unique developmental processes, such as several rounds of nuclear division without cell plate formation and final cellularization, it remains unknown when and how the cell fate is determined during development. Here, we visualized the living dynamics of female gametophyte development and performed transcriptome analysis of individual cell types to assess the cell fate specifications in Arabidopsis thaliana. We recorded time lapses of the nuclear dynamics and cell plate formation from the 1-nucleate stage to the 7-cell stage after cellularization using an in vitro ovule culture system. The movies showed that the nuclear division occurred along the micropylar–chalazal (distal–proximal) axis. During cellularization, the polar nuclei migrated while associating with the forming edge of the cell plate, and then, migrated toward each other to fuse linearly. We also tracked the gene expression dynamics and identified that the expression of MYB98pro::GFP–MYB98, a synergid-specific marker, was initiated just after cellularization in the synergid, egg, and central cells and was then restricted to the synergid cells. This indicated that cell fates are determined immediately after cellularization. Transcriptome analysis of the female gametophyte cells of the wild-type and myb98 mutant revealed that the myb98 synergid cells had egg cell–like gene expression profiles. Although in myb98, egg cell–specific gene expression was properly initiated in the egg cells only after cellularization, but subsequently expressed ectopically in one of the 2 synergid cells. These results, together with the various initiation timings of the egg cell–specific genes, suggest complex regulation of the individual gametophyte cells, such as cellularization-triggered fate initiation, MYB98-dependent fate maintenance, cell morphogenesis, and organelle positioning. Our system of live-cell imaging and cell type–specific gene expression analysis provides insights into the dynamics and mechanisms of cell fate specifications in the development of female gametophytes in plants. The female gametophytes of angiosperms contain cells with distinct functions, such as those that enable reproduction via pollen tube attraction and fertilization. Live-cell imaging and transcriptome analysis of single female gametophyte cell reveal novel insights into the dynamics and mechanisms of cell fate specifications in the model plant Arabidopsis.
Collapse
Affiliation(s)
- Daichi Susaki
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Daisuke Maruyama
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Minako Ueda
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
- * E-mail: (TH); (DK)
| | - Daisuke Kurihara
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya, Japan
- JST, PRESTO, Nagoya, Japan
- * E-mail: (TH); (DK)
| |
Collapse
|
40
|
Andreuzza S. EMFasizing the conserved function of polycomb in rice endosperm development. THE PLANT CELL 2021; 33:7-8. [PMID: 35234945 PMCID: PMC8136899 DOI: 10.1093/plcell/koaa011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 06/14/2023]
Affiliation(s)
- Sebastien Andreuzza
- DBT-Cambridge Lecturer, Department of Plant Sciences, University of Cambridge, Cambridge
- Center for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| |
Collapse
|
41
|
Distéfano AM, López GA, Setzes N, Marchetti F, Cainzos M, Cascallares M, Zabaleta E, Pagnussat GC. Ferroptosis in plants: triggers, proposed mechanisms, and the role of iron in modulating cell death. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2125-2135. [PMID: 32918080 DOI: 10.1093/jxb/eraa425] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 09/09/2020] [Indexed: 05/20/2023]
Abstract
Regulated cell death plays key roles during essential processes throughout the plant life cycle. It takes part in specific developmental programs and maintains homeostasis of the organism in response to unfavorable environments. Ferroptosis is a recently discovered iron-dependent cell death pathway characterized by the accumulation of lipid reactive oxygen species. In plants, ferroptosis shares all the main hallmarks described in other systems. Those specific features include biochemical and morphological signatures that seem to be conserved among species. However, plant cells have specific metabolic pathways and a high degree of metabolic compartmentalization. Together with their particular morphology, these features add more complexity to the plant ferroptosis pathway. In this review, we summarize the most recent advances in elucidating the roles of ferroptosis in plants, focusing on specific triggers, the main players, and underlying pathways.
Collapse
Affiliation(s)
- Ayelén Mariana Distéfano
- Instuto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Gabriel Alejandro López
- Instuto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Nicolás Setzes
- Instuto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Fernanda Marchetti
- Instuto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Maximiliano Cainzos
- Instuto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Milagros Cascallares
- Instuto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Eduardo Zabaleta
- Instuto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Gabriela Carolina Pagnussat
- Instuto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| |
Collapse
|
42
|
Susaki D, Suzuki T, Maruyama D, Ueda M, Higashiyama T, Kurihara D. Dynamics of the cell fate specifications during female gametophyte development in Arabidopsis. PLoS Biol 2021; 19:e3001123. [PMID: 33770073 DOI: 10.1101/2020.04.07.023028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/29/2021] [Indexed: 05/22/2023] Open
Abstract
The female gametophytes of angiosperms contain cells with distinct functions, such as those that enable reproduction via pollen tube attraction and fertilization. Although the female gametophyte undergoes unique developmental processes, such as several rounds of nuclear division without cell plate formation and final cellularization, it remains unknown when and how the cell fate is determined during development. Here, we visualized the living dynamics of female gametophyte development and performed transcriptome analysis of individual cell types to assess the cell fate specifications in Arabidopsis thaliana. We recorded time lapses of the nuclear dynamics and cell plate formation from the 1-nucleate stage to the 7-cell stage after cellularization using an in vitro ovule culture system. The movies showed that the nuclear division occurred along the micropylar-chalazal (distal-proximal) axis. During cellularization, the polar nuclei migrated while associating with the forming edge of the cell plate, and then, migrated toward each other to fuse linearly. We also tracked the gene expression dynamics and identified that the expression of MYB98pro::GFP-MYB98, a synergid-specific marker, was initiated just after cellularization in the synergid, egg, and central cells and was then restricted to the synergid cells. This indicated that cell fates are determined immediately after cellularization. Transcriptome analysis of the female gametophyte cells of the wild-type and myb98 mutant revealed that the myb98 synergid cells had egg cell-like gene expression profiles. Although in myb98, egg cell-specific gene expression was properly initiated in the egg cells only after cellularization, but subsequently expressed ectopically in one of the 2 synergid cells. These results, together with the various initiation timings of the egg cell-specific genes, suggest complex regulation of the individual gametophyte cells, such as cellularization-triggered fate initiation, MYB98-dependent fate maintenance, cell morphogenesis, and organelle positioning. Our system of live-cell imaging and cell type-specific gene expression analysis provides insights into the dynamics and mechanisms of cell fate specifications in the development of female gametophytes in plants.
Collapse
Affiliation(s)
- Daichi Susaki
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Daisuke Maruyama
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Minako Ueda
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Daisuke Kurihara
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya, Japan
- JST, PRESTO, Nagoya, Japan
| |
Collapse
|
43
|
Cabral LM, Masuda HP, Ballesteros HF, de Almeida-Engler J, Alves-Ferreira M, De Toni KLG, Bizotto FM, Ferreira PCG, Hemerly AS. ABAP1 Plays a Role in the Differentiation of Male and Female Gametes in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2021; 12:642758. [PMID: 33643370 PMCID: PMC7903899 DOI: 10.3389/fpls.2021.642758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/22/2021] [Indexed: 05/07/2023]
Abstract
The correct development of a diploid sporophyte body and a haploid gametophyte relies on a strict coordination between cell divisions in space and time. During plant reproduction, these divisions have to be temporally and spatially coordinated with cell differentiation processes, to ensure a successful fertilization. Armadillo BTB Arabidopsis protein 1 (ABAP1) is a plant exclusive protein that has been previously reported to control proliferative cell divisions during leaf growth in Arabidopsis. Here, we show that ABAP1 binds to different transcription factors that regulate male and female gametophyte differentiation, repressing their target genes expression. During male gametogenesis, the ABAP1-TCP16 complex represses CDT1b transcription, and consequently regulates microspore first asymmetric mitosis. In the female gametogenesis, the ABAP1-ADAP complex represses EDA24-like transcription, regulating polar nuclei fusion to form the central cell. Therefore, besides its function during vegetative development, this work shows that ABAP1 is also involved in differentiation processes during plant reproduction, by having a dual role in regulating both the first asymmetric cell division of male gametophyte and the cell differentiation (or cell fusion) of female gametophyte.
Collapse
Affiliation(s)
- Luiz M. Cabral
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Hana P. Masuda
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | - Helkin F. Ballesteros
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Janice de Almeida-Engler
- Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Institut Sophia Agrobiotech, Université Côte d’Azur, Sophia Antipolis, France
| | - Márcio Alves-Ferreira
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Karen L. G. De Toni
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda M. Bizotto
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | - Paulo C. G. Ferreira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriana S. Hemerly
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- *Correspondence: Adriana S. Hemerly, ;
| |
Collapse
|
44
|
Terceros GC, Resentini F, Cucinotta M, Manrique S, Colombo L, Mendes MA. The Importance of Cytokinins during Reproductive Development in Arabidopsis and Beyond. Int J Mol Sci 2020; 21:ijms21218161. [PMID: 33142827 PMCID: PMC7662338 DOI: 10.3390/ijms21218161] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 11/16/2022] Open
Abstract
Fertilization and seed formation are fundamental events in the life cycle of flowering plants. The seed is a functional unit whose main purpose is to propagate the plant. The first step in seed development is the formation of male and female gametophytes and subsequent steps culminate in successful fertilization. The detailed study of this process is highly relevant because it directly impacts human needs, such as protecting biodiversity and ensuring sustainable agriculture to feed the increasing world population. Cytokinins comprise a class of phytohormones that play many important roles during plant growth and development and in recent years, the role of this class of phytohormones during reproduction has become clear. Here, we review the role of cytokinins during ovule, pollen and seed formation at the genetic and molecular levels. The expansion of knowledge concerning the molecular mechanisms that control plant reproduction is extremely important to optimise seed production.
Collapse
|
45
|
Nishikawa SI, Yamaguchi Y, Suzuki C, Yabe A, Sato Y, Kurihara D, Sato Y, Susaki D, Higashiyama T, Maruyama D. Arabidopsis GEX1 Is a Nuclear Membrane Protein of Gametes Required for Nuclear Fusion During Reproduction. FRONTIERS IN PLANT SCIENCE 2020; 11:548032. [PMID: 33154760 PMCID: PMC7586128 DOI: 10.3389/fpls.2020.548032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/15/2020] [Indexed: 05/25/2023]
Abstract
During the life cycle of flowering plants, nuclear fusion, or karyogamy, occurs three times: once during female gametogenesis, when the two polar nuclei fuse in the central cell, and twice during double fertilization. In Arabidopsis thaliana, nuclear fusion events during sexual reproduction proceed without the breakdown of the nuclear envelope, indicating that nuclear membrane fusion is essential for the completion of this process. Arabidopsis gamete expressed 1 (GEX1) is a membrane protein that is conserved among plant species. GEX1 shares homology with the yeast karyogamy protein Kar5, which is primarily expressed in the nuclear membrane. The GEX1 family represents a putative karyogamy factor. Herein, we show that GEX1 is required for the nuclear fusion events in Arabidopsis reproduction. GEX1-deficient mature female gametophytes were found to contain two unfused polar nuclei in close proximity within the central cell. Electron microscopy showed that the outer membrane of the polar nuclei was connected via the endoplasmic reticulum, whereas the inner membrane remained unfused. These results indicate that GEX1 is involved in polar nuclear membrane fusion following the fusion of the outer nuclear membrane. Furthermore, sperm nuclear fusion events were defective in the fertilized egg and central cell following plasmogamy in the fertilization of gex1-1 female gametophytes by gex1-1 pollen. An analysis of GEX1 localization in the female gametophyte using a transgenic line expressing GFP-tagged GEX1 driven by the GEX1 promoter showed that GEX1 is a nuclear membrane protein in the egg and central cell. Time-lapse live-cell imaging showed that in developing female gametophytes, the nuclear GFP-GEX1 signal was first detectable in the central cell shortly before the polar nuclei came in close contact, and then in the egg cell. Thus, we suggest that the GEX1-family proteins are nuclear membrane proteins involved in karyogamy in the reproduction of eukaryotes including flowering plants.
Collapse
Affiliation(s)
| | - Yuki Yamaguchi
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Chiharu Suzuki
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Ayaka Yabe
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Yuzuru Sato
- Biology Program, Faculty of Science, Niigata University, Niigata, Japan
| | - Daisuke Kurihara
- Japan Science and Technology Agency, PRESTO, Nagoya, Japan
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
| | - Yoshikatsu Sato
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Daichi Susaki
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Daisuke Maruyama
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| |
Collapse
|
46
|
Papareddy RK, Páldi K, Paulraj S, Kao P, Lutzmayer S, Nodine MD. Chromatin regulates expression of small RNAs to help maintain transposon methylome homeostasis in Arabidopsis. Genome Biol 2020; 21:251. [PMID: 32943088 PMCID: PMC7499886 DOI: 10.1186/s13059-020-02163-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Eukaryotic genomes are partitioned into euchromatic and heterochromatic domains to regulate gene expression and other fundamental cellular processes. However, chromatin is dynamic during growth and development and must be properly re-established after its decondensation. Small interfering RNAs (siRNAs) promote heterochromatin formation, but little is known about how chromatin regulates siRNA expression. RESULTS We demonstrate that thousands of transposable elements (TEs) produce exceptionally high levels of siRNAs in Arabidopsis thaliana embryos. TEs generate siRNAs throughout embryogenesis according to two distinct patterns depending on whether they are located in euchromatic or heterochromatic regions of the genome. siRNA precursors are transcribed in embryos, and siRNAs are required to direct the re-establishment of DNA methylation on TEs from which they are derived in the new generation. Decondensed chromatin also permits the production of 24-nt siRNAs from heterochromatic TEs during post-embryogenesis, and siRNA production from bipartite-classified TEs is controlled by their chromatin states. CONCLUSIONS Decondensation of heterochromatin in response to developmental, and perhaps environmental, cues promotes the transcription and function of siRNAs in plants. Our results indicate that chromatin-mediated siRNA transcription provides a cell-autonomous homeostatic control mechanism to help reconstitute pre-existing chromatin states during growth and development including those that ensure silencing of TEs in the future germ line.
Collapse
Affiliation(s)
- Ranjith K. Papareddy
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Katalin Páldi
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Subramanian Paulraj
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Ping Kao
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Stefan Lutzmayer
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Michael D. Nodine
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
47
|
Andreuzza S. The Sounds of Silence: Cell Fate Restriction and RNA Silencing in Plant Ovules. THE PLANT CELL 2020; 32:2673-2674. [PMID: 32753429 PMCID: PMC7474295 DOI: 10.1105/tpc.20.00599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Sebastien Andreuzza
- DBT-Cambridge LecturerDepartment of Plant SciencesUniversity of Cambridge United KingdomCenter for Cellular and Molecular BiologyHyderabad, India
| |
Collapse
|
48
|
Scheben A, Hojsgaard D. Can We Use Gene-Editing to Induce Apomixis in Sexual Plants? Genes (Basel) 2020; 11:E781. [PMID: 32664641 PMCID: PMC7397034 DOI: 10.3390/genes11070781] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022] Open
Abstract
Apomixis, the asexual formation of seeds, is a potentially valuable agricultural trait. Inducing apomixis in sexual crop plants would, for example, allow breeders to fix heterosis in hybrid seeds and rapidly generate doubled haploid crop lines. Molecular models explain the emergence of functional apomixis, i.e., apomeiosis + parthenogenesis + endosperm development, as resulting from a combination of genetic or epigenetic changes that coordinate altered molecular and developmental steps to form clonal seeds. Apomixis-like features and synthetic clonal seeds have been induced with limited success in the sexual plants rice and maize by using gene editing to mutate genes related to meiosis and fertility or via egg-cell specific expression of embryogenesis genes. Inducing functional apomixis and increasing the penetrance of apomictic seed production will be important for commercial deployment of the trait. Optimizing the induction of apomixis with gene editing strategies that use known targets as well as identifying alternative targets will be possible by better understanding natural genetic variation in apomictic species. With the growing availability of genomic data and precise gene editing tools, we are making substantial progress towards engineering apomictic crops.
Collapse
Affiliation(s)
- Armin Scheben
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA;
| | - Diego Hojsgaard
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute for Plant Sciences, University of Goettingen, Untere Karspuele 2, 37073 Goettingen, Germany
| |
Collapse
|
49
|
Ambastha V, Leshem Y. Differential cell persistence is observed in the Arabidopsis female gametophyte during heat stress. PLANT REPRODUCTION 2020; 33:111-116. [PMID: 32405809 DOI: 10.1007/s00497-020-00390-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/05/2020] [Indexed: 05/22/2023]
Abstract
The central cell withstands heat stress better than the egg and antipodal cells. Insilco analysis of transcriptomic data identified several heat responsive genes which are central cell specific. Crop damage due to heat stress (HS) is a major cause of yield lost. Plants are particularly susceptible to negative effects of HS during gametophyte development and fertilization. Extensive studies have been performed on the male gametophyte under HS, but how the female gametophyte copes with HS is largely unknown. To learn how the different cell types of the female gametophyte reacts to HS, we studied unfertilized CDC123::H2B:YFP ovules. We found that the YFP-specific florescent signal persisted in the central cell during HS significantly more than the egg cell. We also found that the fluorescent signal persistence was the lowest in the antipodal cells. This finding suggests that the reaction of the female gametophyte to HS is rather unique and differentially mediated according to the cell's identity. In addition, mining through published transcriptomic datasets we found that several important heat stress responsive genes which are extremely upregulated during HS (more than 64-fold) are specifically expressed in the CC but not in the EC. Further research such as comparative transcriptomics and cell biology will likely shed more light on the phenomena reported here and increase our basic understandings about the ways sexual reproduction processes are affected by heat stress.
Collapse
Affiliation(s)
- Vivek Ambastha
- Department of Plant Sciences, MIGAL - Galilee Research Institute, 2 Tarshish St., P.O.B. 831, 11016, Kiryat-Shmona, Israel
| | - Yehoram Leshem
- Department of Plant Sciences, MIGAL - Galilee Research Institute, 2 Tarshish St., P.O.B. 831, 11016, Kiryat-Shmona, Israel.
| |
Collapse
|
50
|
Cucinotta M, Di Marzo M, Guazzotti A, de Folter S, Kater MM, Colombo L. Gynoecium size and ovule number are interconnected traits that impact seed yield. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2479-2489. [PMID: 32067041 PMCID: PMC7210752 DOI: 10.1093/jxb/eraa050] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 01/24/2020] [Indexed: 05/02/2023]
Abstract
Angiosperms form the largest group of land plants and display an astonishing diversity of floral structures. The development of flowers greatly contributed to the evolutionary success of the angiosperms as they guarantee efficient reproduction with the help of either biotic or abiotic vectors. The female reproductive part of the flower is the gynoecium (also called pistil). Ovules arise from meristematic tissue within the gynoecium. Upon fertilization, these ovules develop into seeds while the gynoecium turns into a fruit. Gene regulatory networks involving transcription factors and hormonal communication regulate ovule primordium initiation, spacing on the placenta, and development. Ovule number and gynoecium size are usually correlated and several genetic factors that impact these traits have been identified. Understanding and fine-tuning the gene regulatory networks influencing ovule number and pistil length open up strategies for crop yield improvement, which is pivotal in light of a rapidly growing world population. In this review, we present an overview of the current knowledge of the genes and hormones involved in determining ovule number and gynoecium size. We propose a model for the gene regulatory network that guides the developmental processes that determine seed yield.
Collapse
Affiliation(s)
- Mara Cucinotta
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, Milan, Italy
| | - Maurizio Di Marzo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, Milan, Italy
| | - Andrea Guazzotti
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, Milan, Italy
| | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politecnico Nacional (CINVESTAV-IPN), Km. 9.6 Libramiento Norte, Carretera Irapuato-Leon, CP 36824 Irapuato, Gto., Mexico
| | - Martin M Kater
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, Milan, Italy
| | - Lucia Colombo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, Milan, Italy
| |
Collapse
|