1
|
scFv6.C4 DNA vaccine with fragment C of tetanus toxin increases protective immunity against CEA-expressing tumor. Gene Ther 2021; 28:287-289. [PMID: 32483214 DOI: 10.1038/s41434-020-0161-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/16/2020] [Accepted: 05/26/2020] [Indexed: 01/29/2023]
|
2
|
Shahnazari M, Samadi P, Pourjafar M, Jalali A. Therapeutic vaccines for colorectal cancer: The progress and future prospect. Int Immunopharmacol 2020; 88:106944. [PMID: 33182032 DOI: 10.1016/j.intimp.2020.106944] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023]
Abstract
Cancer vaccines are usually derived from the patient's tumor cells or the antigens found on their surface, which may help the immune system to identify and kill these malignant cells. Current focus of many researches is designing vaccines with the hope of triggering the immune system to attack cancer cells in a more effective, reliable and safe manner. Although colorectal cancer (CRC) is recognized as the third leading cause of death by cancer, but significant advances in therapy strategies have been made in recent years, including cancer vaccine. In this review, we present various vaccine platforms that have been used in the border battle against CRC, some of which have been approved for clinical use and some are in late-stage clinical trials. Until September 2020 there is approximately 1940 clinical trials of cancer vaccines on patients with different cancer types, and also many more trials are in the planning stages, which makes it the most important period of therapeutic cancer vaccines studies in the history of the immunotherapy. In cancer vaccines clinical trials, there are several considerations that must be taken into account including engineering of antigen-presenting cells, potential toxicity of antigenic areas, pharmacokinetics and pharmacodynamics of vaccines, and monitoring of the patients' immune response. Therefore, the need to overcome immunosuppression mechanisms/immune tolerance is a critical step for the success of introducing therapeutic vaccines into the widely used drugs on market. In this way, better understanding of neoantigens, tumor immune surveillance escape mechanisms and host-tumor interactions are required to develop more effective and safe cancer vaccines.
Collapse
Affiliation(s)
- Mina Shahnazari
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Pouria Samadi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Mona Pourjafar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Akram Jalali
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
3
|
scFv6.C4 DNA vaccine with fragment C of Tetanus toxin increases protective immunity against CEA-expressing tumor. Gene Ther 2019; 26:441-454. [PMID: 30770895 DOI: 10.1038/s41434-019-0062-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/28/2019] [Accepted: 01/31/2019] [Indexed: 12/21/2022]
Abstract
The carcinoembryonic antigen (CEA) is the main tumor-associated antigen of colorectal cancers. Previously, we developed a DNA vaccine using scFv6.C4, a CEA surrogate, against CEA-expressing tumors; 40% of the vaccinated mice were tumor-free after tumor challenge. In order to enhance vaccine efficacy, fragment C of Tetanus Toxin (FrC) was tested as adjuvant. C57BL/6J-CEA2682 mice were electroporated intramuscularly 4 times with uP-PS/scFv6.C4-FrC or uP-PS/scFv6.C4, challenged by s.c. injection of 1 × 105 MC38-CEA cells, and tumor growth was monitored over 100 days. The humoral and cellular immune responses were assessed by ELISA, immunocytochemistry, in-vitro lymphocyte proliferation, and CTL cytotoxicity assays. Immunization with uP-PS/scFv6.C4-FrC or uP-PS/scFv6.C4 induced similar anti-CEA antibody titers. However, immunocytochemistry analysis showed stronger staining with uP-PS/scFv6.C4-FrC-immunized mice sera. When challenged with MC38-CEA cells, 63% of the FrC-vaccinated mice did not develop tumors, half of the rest had a significant tumor growth delay, and the probability of being free of tumors was on average 40% higher than that of scFv6.C4-immunized mice. Addition of the adjuvant led to higher CD4+ and CD8+ proliferative responses and strong CD8+ CTL response against MC38-CEA cells. DNA immunization with scFv6.C4 and FrC increased antitumor effect via induction of high and specific humoral and cellular immune responses to CEA.
Collapse
|
4
|
Sarvizadeh M, Ghasemi F, Tavakoli F, Sadat Khatami S, Razi E, Sharifi H, Biouki NM, Taghizadeh M. Vaccines for colorectal cancer: an update. J Cell Biochem 2018; 120:8815-8828. [PMID: 30536960 DOI: 10.1002/jcb.28179] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 11/12/2018] [Indexed: 12/29/2022]
Abstract
Colorectal cancer (CRC) is known as the third most common and fourth leading cancer associated death worldwide. The occurrence of metastasis has remained as a critical challenge in CRC, so that distant metastasis (mostly to the liver) has been manifested in about 20%-25% of patients. Several screening approaches have introduced for detecting CRC in different stages particularly in early stages. The standard treatments for CRC are surgery, chemotherapy and radiotherapy, in alone or combination. Immunotherapy is a set of novel approaches with the aim of remodeling the immune system battle with metastatic cancer cells, such as immunomodulatory monoclonal antibodies (immune checkpoint inhibitors), adoptive cell transfer (ACT) and cancer vaccine. Cancer vaccines are designed to trigger the intense response of immune system to tumor-specific antigens. In two last decades, introduction of new cancer vaccines and designing several clinical trials with vaccine therapy, have been taken into consideration in colon cancer patients. This review will describe the treatment approaches with the special attention to vaccines applied to treat colorectal cancer.
Collapse
Affiliation(s)
- Mostafa Sarvizadeh
- The Advocate Center for Clinical Research, Ayatollah Yasrebi Hospital, Kashan, Iran
| | - Faezeh Ghasemi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Fatemeh Tavakoli
- Department of Biotechnology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Sadat Khatami
- Department of Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Ebrahim Razi
- The Advocate Center for Clinical Research, Ayatollah Yasrebi Hospital, Kashan, Iran
| | - Hossein Sharifi
- The Advocate Center for Clinical Research, Ayatollah Yasrebi Hospital, Kashan, Iran
| | - Nousin Moussavi Biouki
- Department of Surgery, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
5
|
Denapoli PMA, Zanetti BF, Dos Santos AA, de Moraes JZ, Han SW. Preventive DNA vaccination against CEA-expressing tumors with anti-idiotypic scFv6.C4 DNA in CEA-expressing transgenic mice. Cancer Immunol Immunother 2017; 66:333-342. [PMID: 27913835 PMCID: PMC11028832 DOI: 10.1007/s00262-016-1940-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 11/21/2016] [Indexed: 11/24/2022]
Abstract
Carcinoembryonic antigen (CEA) is expressed during embryonic life and in low level during adult life. Consequently, the CEA is recognized by the immune system as a self-antigen and thus CEA-expressing tumors are tolerated. Previously, we constructed a single chain variable fragment using the 6.C4 (scFv6.C4) hybridoma cell line, which gave rise to antibodies able to recognize CEA when C57/Bl6 mice were immunized. Here, the scFv6.C4 ability to prevent the CEA-expressing tumor growth was assessed in CEA-expressing transgenic mice CEA2682. CEA2682 mice immunized with the scFv6.C4 expressing plasmid vector (uP/PS-scFv6.C4) by electroporation gave rise to the CEA-specific AB3 antibody after the third immunization. Sera from immunized mice reacted with CEA-expressing human colorectal cell lines CO112, HCT-8, and LISP-1, as well as with murine melanoma B16F10 cells expressing CEA (B16F10-CEA). Cytotoxic T lymphocytes (CTL) from uP/PS-scFv6.C4 immunized mice lysed B16F10-CEA (56.7%) and B16F10 expressing scFv6.C4 (B16F10-scFv6.C4) (46.7%) cells, against CTL from uP-immunized mice (10%). After the last immunization, 5 × 105 B16F10-CEA cells were injected into the left flank. All mice immunized with the uP empty vector died within 40 days, but uP/PS-scFv6.C4 vaccinated mice (40%) remained free of tumor for more than 100 days. Splenocytes obtained from uP/PS-scFv6.C4 vaccinated mice showed higher T-cell proliferative activity than those from uP vaccinated mice. Collectively, DNA vaccination with the uP-PS/scFv6.C4 plasmid vector was able to give rise to specific humoral and cellular responses, which were sufficient to retard growth and/or eliminate the injected B16F10-CEA cells.
Collapse
Affiliation(s)
- Priscila M A Denapoli
- Research Center for Gene Therapy, Federal University of Sao Paulo, São Paulo, SP, Brazil
| | - Bianca F Zanetti
- Research Center for Gene Therapy, Federal University of Sao Paulo, São Paulo, SP, Brazil
| | - Adara A Dos Santos
- Research Center for Gene Therapy, Federal University of Sao Paulo, São Paulo, SP, Brazil
| | - Jane Z de Moraes
- Department of Biophysics, Federal University of Sao Paulo, Rua Mirassol, 207, São Paulo, SP, 04044-010, Brazil
| | - Sang W Han
- Research Center for Gene Therapy, Federal University of Sao Paulo, São Paulo, SP, Brazil.
- Department of Biophysics, Federal University of Sao Paulo, Rua Mirassol, 207, São Paulo, SP, 04044-010, Brazil.
| |
Collapse
|
6
|
Patel SP, Osada T, Lyerly HK, Morse MA. Designing effective vaccines for colorectal cancer. Immunotherapy 2015; 6:913-26. [PMID: 25313570 DOI: 10.2217/imt.14.61] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Achieving long-term control of colorectal cancers with therapeutic vaccines that generate potent anti-tumor T cell and antibody responses has been a goal for more than two decades. To date, clinical trials of these vaccines have demonstrated induction of immune responses, but clinical benefit has been limited. Improved vector delivery systems with enhanced immunostimulatory properties, decreased immunogenicity against vector and improved antigen presentation are some of the key features of modern tumor vaccines. Furthermore, an improved understanding of the various immunosuppressive factors in the tumor microenvironment and regional lymph nodes, coupled with a burgeoning ability to impair inhibitory immune synapses, highlights a growing opportunity to induce beneficial antigen-specific responses against tumor. The combination of improved antigenic delivery systems, coupled with therapeutic immune activation, represents state-of-the-art colorectal vaccine design concepts with the goal of augmenting immune responses against tumor and improving clinical outcomes.
Collapse
Affiliation(s)
- Sandip P Patel
- UCSD Moores Cancer Center, Division of Medical Oncology, Cancer Immunotherapy Program, 3855 Health Sciences Drive #0987, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
7
|
A Monoclonal Antibody Against Neem Leaf Glycoprotein Recognizes Carcinoembryonic Antigen (CEA) and Restricts CEA Expressing Tumor Growth. J Immunother 2014; 37:394-406. [DOI: 10.1097/cji.0000000000000050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
8
|
Murine carcinoma expressing carcinoembryonic antigen-like protein is restricted by antibody against neem leaf glycoprotein. Immunol Lett 2014; 162:132-9. [PMID: 25128841 DOI: 10.1016/j.imlet.2014.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/31/2014] [Accepted: 08/04/2014] [Indexed: 01/21/2023]
Abstract
We have generated a polyclonal antibody against a novel immunomodulator, neem leaf glycoprotein (NLGP) that can react to a specific 47 kDa subunit of NLGP. Generated anti-NLGP antibody (primarily IgG2a) was tested for its anti-tumor activity in murine carcinoma (EC, CT-26), sarcoma (S180) and melanoma (B16Mel) tumor models. Surprisingly, tumor growth restriction was only observed in CT-26 carcinoma models, without any alteration in other tumor systems. Comparative examination of antigenicity between four different tumor models revealed high expression of CEA-like protein on the surface of CT-26 tumors. Subsequent examination of the cross-reactivity of anti-NLGP antibody with purified or cell bound CEA revealed prominent recognition of CEA by anti-NLGP antibody, as detected by ELISA, Western Blotting and immunohistochemistry. This recognition seems to be responsible for anti-tumor function of anti-NLGP antibody only on CEA-like protein expressing CT-26 tumor models, as confirmed by ADCC reaction in CEA(+) tumor systems where dependency to anti-NLGP antibody is equivalent to anti-CEA antibody. Obtained result with enormous therapeutic potential for CEA(+) tumors may be explained in view of the epitope spreading concept, however, further investigation is crucial.
Collapse
|
9
|
Indar AA, Maxwell-Armstrong CA. Active specific immunotherapy for colorectal cancer. Expert Rev Anticancer Ther 2014; 3:685-94. [PMID: 14599091 DOI: 10.1586/14737140.3.5.685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
With advances in molecular biology and the identification of tumor-associated antigens, a number of new strategies have been developed in an attempt to overcome the limits of chemotherapy and to aid in the fight to cure patients of metastatic and micrometastatic colorectal carcinomas. Biological therapy has now moved into the era of immunotherapy. Nonspecific immunotherapy has been surpassed by modalities that produce a specific and potent immune response against identifiable tumor-associated antigens, so called active specific immunotherapy. Approaches that come under this heading include tumor cell vaccines, anti-idiotypic antibody therapy and dendritic cell vaccines. Cells can be further boosted by the use of immunostimulatory cytokines. This review aims to evaluate current strategies of immunotherapy for colorectal cancer with particular emphasis on the clinical aspects.
Collapse
|
10
|
Curigliano G, Spitaleri G, Dettori M, Locatelli M, Scarano E, Goldhirsch A. Vaccine immunotherapy in breast cancer treatment: promising, but still early. Expert Rev Anticancer Ther 2014; 7:1225-41. [PMID: 17892423 DOI: 10.1586/14737140.7.9.1225] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cancer vaccine-based immunotherapy should potentiate immunosurveillance function, preventing and protecting against growing tumors. Tumor cells usually activate the immune system, including T lymphocytes and natural killer cells, which are able to eliminate the transformed cells. Immunosubversion mechanisms related to tumor cells antigenic immunoediting induces mechanisms of tolerance and immunoescape. This condition impairs not only host-generated immunosurveillance, but also attempts to harness the immune response for therapeutic purposes. Most trials evaluating breast cancer vaccines have been carried out in patients in the metastatic and adjuvant setting. The aim of this review is to analyze the activity of vaccination strategies in current clinical trials. We summarize the differential approaches, protein-based and cell-based vaccines, focusing on vaccines targeting HER2/neu protein. Another focus of the review is to provide the reader with future challenges in the field, taking into account both the immunological and clinical aspects to better target the goal.
Collapse
Affiliation(s)
- Giuseppe Curigliano
- European Institute of Oncology, Department of Medicine, Division of Medical Oncology, Via Ripamonti 435, 20141 Milan, Italy.
| | | | | | | | | | | |
Collapse
|
11
|
Fournier P, Schirrmacher V. Randomized clinical studies of anti-tumor vaccination: state of the art in 2008. Expert Rev Vaccines 2014; 8:51-66. [DOI: 10.1586/14760584.8.1.51] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Abstract
Recent studies have underlined the close link between immune response and prognosis of patients with colorectal cancer (CRC). Immune response understanding combined with biotechnology progress of the last years has allowed development of immunotherapy strategies in CRC. Immunotherapy strategies are divided in "active" or "passive" strategies (patients immune system stimulation or not) and considering the activation of antigen specific immune response or not. These immunotherapy strategies are well tolerated and induced cellular and humoral response correlated with clinical response. Many monoclonal antibodies targeting signalisation pathways or angiogenic growth factors have demonstrated their efficacy in CRC. Multiple vaccine strategies, using different tumour associated antigens, have demonstrated a biological efficacy but with poor clinical results. Results are more promising in adjuvant setting but need to be confirmed by randomized trials. Adoptive immunotherapy with transfer of tumour associated antigen specific T cell is probably the most promising strategy. Actually, except monoclonal antibodies, immunotherapy is not used in clinical practice in CRC due to the lack of results and absence of standardisation.
Collapse
|
13
|
Improved cytotoxic T-lymphocyte immune responses to a tumor antigen by vaccines co-expressing the SLAM-associated adaptor EAT-2. Cancer Gene Ther 2013; 20:564-75. [PMID: 23949283 DOI: 10.1038/cgt.2013.53] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 07/09/2013] [Accepted: 07/11/2013] [Indexed: 01/21/2023]
Abstract
The signaling lymphocytic activation molecule-associated adaptor Ewing's sarcoma's-activated transcript 2 (EAT-2) is primarily expressed in dendritic cells, macrophages and natural killer cells. Including EAT-2 in a vaccination regimen enhanced innate and adaptive immune responses toward pathogen-derived antigens, even in the face of pre-existing vaccine immunity. Herein, we investigate whether co-vaccinations with two recombinant Ad5 (rAd5) vectors, one expressing the carcinoembryonic antigen (CEA) and one expressing EAT-2, can induce more potent CEA-specific cytotoxic T lymphocyte (CTL) and antitumor activity in the therapeutic CEA-expressing MC-38 tumor model. Our results suggest that inclusion of EAT-2 significantly alters the kinetics of Th1-biasing proinflammatory cytokine and chemokine responses, and enhances anti-CEA-specific CTL responses. As a result, rAd5-EAT2-augmented rAd5-CEA vaccinations are more efficient in eliminating CEA-expressing target cells as measured by an in vivo CTL assay. Administration of rAd5-EAT2 vaccines also reduced the rate of growth of MC-38 tumor growth in vivo. Also, an increase in MC-38 tumor cell apoptosis (as measured by hematoxylin and eosin staining, active caspase-3 and granzyme B levels within the tumors) was observed. These data provide evidence that more efficient, CEA-specific effector T cells are generated by rAd5 vaccines expressing CEA, when augmented by rAd5 vaccines expressing EAT-2, and this regimen may be a promising approach for cancer immunotherapy in general.
Collapse
|
14
|
López-Requena A, Burrone OR, Cesco-Gaspere M. Idiotypes as immunogens: facing the challenge of inducing strong therapeutic immune responses against the variable region of immunoglobulins. Front Oncol 2012; 2:159. [PMID: 23162790 PMCID: PMC3493989 DOI: 10.3389/fonc.2012.00159] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 10/22/2012] [Indexed: 11/30/2022] Open
Abstract
Idiotype (Id)-based immunotherapy has been exploited as cancer treatment option. Conceived as therapy for malignancies bearing idiotypic antigens, it has been also extended to solid tumors because of the capacity of anti-idiotypic antibodies to mimic Id-unrelated antigens. In both these two settings, efforts are being made to overcome the poor immune responsiveness often experienced when using self immunoglobulins as immunogens. Despite bearing a unique gene combination, and thus particular epitopes, it is normally difficult to stimulate the immune response against antibody variable regions. Different strategies are currently used to strengthen Id immunogenicity, such as concomitant use of immune-stimulating molecules, design of Id-containing immunogenic recombinant proteins, specific targeting of relevant immune cells, and genetic immunization. This review focuses on the role of anti-Id vaccination in cancer management and on the current developments used to foster anti-idiotypic B and T cell responses.
Collapse
Affiliation(s)
- Alejandro López-Requena
- Molecular Immunology Group, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy ; Immunobiology Division, Center of Molecular Immunology, Havana, Cuba ; Bioengineering Research Institute, Biotech Pharmaceutical Co., Ltd, Beijing, China
| | | | | |
Collapse
|
15
|
Vázquez AM, Hernández AM, Macías A, Montero E, Gómez DE, Alonso DF, Gabri MR, Gómez RE. Racotumomab: an anti-idiotype vaccine related to N-glycolyl-containing gangliosides - preclinical and clinical data. Front Oncol 2012; 2:150. [PMID: 23110257 PMCID: PMC3478665 DOI: 10.3389/fonc.2012.00150] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 10/04/2012] [Indexed: 01/18/2023] Open
Abstract
Neu-glycolyl (NeuGc)-containing gangliosides are attractive targets for immunotherapy with anti-idiotype mAbs, because these glycolipids are not normal components of the cytoplasmic membrane in humans, but their expression has been demonstrated in several human malignant tumors. Racotumomab is an anti-idiotype mAb specific to P3 mAb, an antibody which reacts to NeuGc-containing gangliosides, sulfatides, and other antigens expressed in tumors. Preparations containing racotumomab were able to induce a strong anti-metastatic effect in tumor-bearing mice. Different Phase I clinical trials have been conducted in patients with advanced melanoma, breast cancer, and lung cancer. The results of these clinical trials demonstrated the low toxicity and the high immunogenicity of this vaccine. The induced antibodies recognized and directly killed tumor cells expressing NeuGcGM3. A Phase II/III multicenter, controlled, randomized, double blind clinical trial was conducted to evaluate the effect of aluminum hydroxide-precipitated racotumomab vaccine in overall survival in patients with advanced non-small cell lung cancer. The clinical results of this study showed a significant clinical benefit in the patients who were treated with the anti-idiotype vaccine.
Collapse
|
16
|
Abstract
Vaccines have shown promise for the prevention and treatment of solid tumors. Colorectal cancer and renal cell carcinoma are common malignancies that may be amenable to vaccine strategies. This review summarizes target antigens in colorectal and renal cell carcinoma, discusses some of the vaccine approaches in development, and details the results of pivotal phase III trials evaluating therapeutic vaccines in patients with advanced colorectal and renal cell carcinoma. Finally, some of the challenges with vaccine development for colorectal and renal cell carcinoma are described.
Collapse
Affiliation(s)
- Katherine Kabaker
- Division of Hematology & Oncology and Rush University Cancer Center, Rush University Medical Center, Chicago, IL, USA
| | | | | |
Collapse
|
17
|
Berencsi III G. Fetal and Neonatal Illnesses Caused or Influenced by Maternal Transplacental IgG and/or Therapeutic Antibodies Applied During Pregnancy. MATERNAL FETAL TRANSMISSION OF HUMAN VIRUSES AND THEIR INFLUENCE ON TUMORIGENESIS 2012. [PMCID: PMC7121401 DOI: 10.1007/978-94-007-4216-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The human fetus is protected by the mother’s antibodies. At the end of the pregnancy, the concentration of maternal antibodies is higher in the cord blood, than in the maternal circulation. Simultaneously, the immune system of the fetus begins to work and from the second trimester, fetal IgM is produced by the fetal immune system specific to microorganisms and antigens passing the maternal-fetal barrier. The same time the fetal immune system has to cope and develop tolerance and TREG cells to the maternal microchimeric cells, latent virus-carrier maternal cells and microorganisms transported through the maternal-fetal barrier. The maternal phenotypic inheritance may hide risks for the newborn, too. Antibody mediated enhancement results in dengue shock syndrome in the first 8 month of age of the baby. A series of pathologic maternal antibodies may elicit neonatal illnesses upon birth usually recovering during the first months of the life of the offspring. Certain antibodies, however, may impair the fetal or neonatal tissues or organs resulting prolonged recovery or initiating prolonged pathological processes of the children. The importance of maternal anti-idiotypic antibodies are believed to prime the fetal immune system with epitopes of etiologic agents infected the mother during her whole life before pregnancy and delivery. The chemotherapeutical and biological substances used for the therapy of the mother will be transcytosed into the fetal body during the last two trimesters of pregnancy. The long series of the therapeutic monoclonal antibodies and conjugates has not been tested systematically yet. The available data are summarised in this chapter. The innate immunity plays an important role in fetal defence. The concentration of interferon is relative high in the placenta. This is probably one reason, why the therapeutic interferon treatment of the mother does not impair the fetal development.
Collapse
Affiliation(s)
- György Berencsi III
- , Division of Virology, National Center for Epidemiology, Gyáli Street 2-6, Budapest, 1096 Hungary
| |
Collapse
|
18
|
Ladjemi MZ, Chardes T, Corgnac S, Garambois V, Morisseau S, Robert B, Bascoul-Mollevi C, Ait Arsa I, Jacot W, Pouget JP, Pelegrin A, Navarro-Teulon I. Vaccination with human anti-trastuzumab anti-idiotype scFv reverses HER2 immunological tolerance and induces tumor immunity in MMTV.f.huHER2(Fo5) mice. Breast Cancer Res 2011; 13:R17. [PMID: 21294885 PMCID: PMC3109586 DOI: 10.1186/bcr2826] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 01/18/2011] [Accepted: 02/04/2011] [Indexed: 01/13/2023] Open
Abstract
Introduction Novel adjuvant therapies are needed to prevent metastatic relapses in HER2-expressing breast cancer. Here, we tested whether trastuzumab-selected single-chain Fv (scFv) could be used to develop an anti-idiotype-based vaccine to inhibit growth of HER2-positive tumor cells in vitro and in vivo through induction of long-lasting HER-specific immunity. Methods BALB/c mice were immunized with anti-trastuzumab anti-idiotype (anti-Id) scFv (scFv40 and scFv69), which mimic human HER2. Their sera were assessed for the presence of HER2-specific Ab1' antibodies and for their ability to reduce viability of SK-OV-3 cells, a HER2-positive cancer cell line, in nude mice. MMTV.f.huHER2(Fo5) transgenic mice were immunized with scFv40 and scFv69 and, then, growth inhibition of spontaneous HER2-positive mammary tumors, humoral response, antibody isotype as well as splenocyte secretion of IL2 and IFN-γ were evaluated. Results Adoptively-transferred sera from BALB/c mice immunized with scFv40 and scFv69 contain anti-HER2 Ab1' antibodies that can efficiently inhibit growth of SK-OV-3 cell tumors in nude mice. Similarly, prophylactic vaccination with anti-Id scFv69 fully protects virgin or primiparous FVB-MMTV.f.huHER2(Fo5) females from developing spontaneous mammary tumors. Moreover, such vaccination elicits an anti-HER2 Ab1' immune response together with a scFv69-specific Th1 response with IL2 and IFN-γ cytokine secretion. Conclusions Anti-trastuzumab anti-Id scFv69, used as a therapeutic or prophylactic vaccine, protects mice from developing HER2-positive mammary tumors by inducing both anti-HER2 Ab1' antibody production and an anti-HER2 Th2-dependent immune response. These results suggest that scFv69 could be used as an anti-Id-based vaccine for adjuvant therapy of patients with HER2-positive tumors to reverse immunological tolerance to HER2.
Collapse
Affiliation(s)
- Maha Z Ladjemi
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U896, Université Montpellier1, CRLC Val d'Aurelle Paul Lamarque, 208 rue des Apothicaires, Montpellier, F-34298, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kotlan B, Stroncek DF, Marincola FM. Intravenous immunoglobulin-based immunotherapy: an arsenal of possibilities for patients and science. Immunotherapy 2011; 1:995-1015. [PMID: 20635915 DOI: 10.2217/imt.09.67] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The use of intravenous immunoglobulin (IVIG) concentrated from pooled healthy donors' plasma has gained increasing popularity. IVIG therapy has become important as a replacement therapy in primary and acquired humoral immunodeficiencies, and it has been extended to autoimmune, neurodegenerative and inflammatory conditions and transplantation therapy. Recurrent pregnancy failure and cancer are rather new platforms, where IVIG has shown its beneficial effects. This manuscript is focused on these two off-labelled usages. The immunomodulatory mechanisms of IVIG therapy appear as a coordinated orchestration of different functions, resulting in a synergistic effect. Treatment monitoring and detailed molecular analyses reveal how such treatments may interfere with disease pathogenesis. These finding may foster the development of novel therapeutic and/or preventive strategies. Studying this field with bidirectional bench-to-bedside and bedside-to-bench approaches fit well into 'the two-way road' paradigm of translational medicine.
Collapse
Affiliation(s)
- Beatrix Kotlan
- Center of Surgical & Molecular Tumorpathology National Institute of Oncology, Rath Gy street 7-9, Budapest 1122, Hungary.
| | | | | |
Collapse
|
20
|
Parkhurst MR, Yang JC, Langan RC, Dudley ME, Nathan DAN, Feldman SA, Davis JL, Morgan RA, Merino MJ, Sherry RM, Hughes MS, Kammula US, Phan GQ, Lim RM, Wank SA, Restifo NP, Robbins PF, Laurencot CM, Rosenberg SA. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther 2010; 19:620-6. [PMID: 21157437 DOI: 10.1038/mt.2010.272] [Citation(s) in RCA: 794] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Autologous T lymphocytes genetically engineered to express a murine T cell receptor (TCR) against human carcinoembryonic antigen (CEA) were administered to three patients with metastatic colorectal cancer refractory to standard treatments. All patients experienced profound decreases in serum CEA levels (74-99%), and one patient had an objective regression of cancer metastatic to the lung and liver. However, a severe transient inflammatory colitis that represented a dose limiting toxicity was induced in all three patients. This report represents the first example of objective regression of metastatic colorectal cancer mediated by adoptive T cell transfer and illustrates the successful use of a TCR, raised in human leukocyte antigen (HLA) transgenic mice, against a human tumor associated antigen. It also emphasizes the destructive power of small numbers of highly avid T cells and the limitations of using CEA as a target for cancer immunotherapy.
Collapse
Affiliation(s)
- Maria R Parkhurst
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Vaccines constitute a potential new therapeutic approach for a range of human cancers. Unlike other therapeutics, vaccines initiate a dynamic process in the host immune system that can be exploited with subsequent therapies. Indeed, recent preclinical and clinical studies with cancer vaccines have provided evidence that this unique therapeutic modality should lead to consideration of new paradigms in both clinical trial design and endpoints and in combination therapies. The present article reviews and sets out a rationale for these new paradigms, with a focus on prostate cancer.
Collapse
Affiliation(s)
- J Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | | | | |
Collapse
|
22
|
Reinartz S, Pfisterer J, du Bois A, Jackisch C, Baumann KH, Wagner U. Suppressive activity rather than frequency of FoxP3+ regulatory T cells is essential for CA-125–specific T-cell activation after abagovomab treatment. Hum Immunol 2010; 71:36-44. [DOI: 10.1016/j.humimm.2009.09.356] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 09/01/2009] [Accepted: 09/17/2009] [Indexed: 01/15/2023]
|
23
|
Bae MY, Cho NH, Seong SY. Protective anti-tumour immune responses by murine dendritic cells pulsed with recombinant Tat-carcinoembryonic antigen derived from Escherichia coli. Clin Exp Immunol 2009; 157:128-38. [PMID: 19659778 DOI: 10.1111/j.1365-2249.2009.03943.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Carcinoembryonic antigen (CEA) is over-expressed on various human cancer cells and has been the target of immunotherapies using dendritic cells (DCs) pulsed with CEA-specific RNA or peptides, or transduced by CEA-expressing adenovirus or vaccinia virus. Because activated DCs do not phagocytose soluble protein antigens efficiently and pure immature DCs are not obtained easily ex vivo, an efficacious whole CEA protein-loaded DC vaccine has not been reported. To improve the antigen delivery into DCs, we utilized CEA conjugated to a protein-transduction domain, human immunodeficiency virus transactivating Tat. Furthermore, we purified the truncated non-glycosylated CEA from Escherichia coli to overcome the safety concerns and immunosuppressive functions associated with the native CEA protein. Using confocal microscopy and fluorescence activating cell sorter analysis, we demonstrated that the Tat-CEA protein entered the cytoplasm of DCs efficiently within 10 min of co-culture, compared with the negligible amount of CEA into DCs 30 min later. CEA-specific T cell proliferation and cytotoxic T cell responses were enhanced significantly in mice immunized with Tat-CEA-pulsed DCs [DC (Tat-CEA)] compared with those immunized with CEA-pulsed DCs [DC (CEA)]. T helper type 1 responses were more prominent in the DC (Tat-CEA) immunized mice whose splenocytes secreted more interferon-gamma and less interleukin-4 than those from DC (CEA) immunized mice. In vivo, the DC (Tat-CEA) vaccine delayed tumour growth significantly and prolonged survival of tumour-bearing mice. These results suggest that protective epitopes are well preserved on bacteria-derived recombinant Tat-CEA. This strategy may provide a basic platform for DC-based anti-CEA vaccines that could be utilized in combination with advanced immune-enhancing therapeutics.
Collapse
Affiliation(s)
- M-Y Bae
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
| | | | | |
Collapse
|
24
|
Polyclonal anti-idiotypic antibodies which mimic an epitope of the human prion protein. Mol Immunol 2009; 46:1076-83. [DOI: 10.1016/j.molimm.2008.09.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 09/24/2008] [Accepted: 09/27/2008] [Indexed: 11/18/2022]
|
25
|
Parkhurst MR, Joo J, Riley JP, Yu Z, Li Y, Robbins PF, Rosenberg SA. Characterization of genetically modified T-cell receptors that recognize the CEA:691-699 peptide in the context of HLA-A2.1 on human colorectal cancer cells. Clin Cancer Res 2009; 15:169-80. [PMID: 19118044 PMCID: PMC3474199 DOI: 10.1158/1078-0432.ccr-08-1638] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Carcinoembryonic antigen (CEA) is a tumor-associated protein expressed on a variety of adenocarcinomas. To develop an immunotherapy for patients with cancers that overexpress CEA, we isolated and genetically modified a T-cell receptors (TCRs) that specifically bound a CEA peptide on human cancer cells. EXPERIMENTAL DESIGN HLA-A2.1 transgenic mice were immunized with CEA:691-699. A CEA-reactive TCR was isolated from splenocytes of these mice and was genetically introduced into human peripheral blood lymphocytes via RNA electroporation or retroviral transduction. Amino acid substitutions were introduced throughout the complementarity determining regions (CDR1, CDR2, and CDR3) of both TCR alpha and beta chains to improve recognition of CEA. RESULTS Murine lymphocytes bearing the CEA-reactive TCR specifically recognized peptide-loaded T2 cells and HLA-A2.1(+) CEA(+) human colon cancer cells. Both CD8(+) and CD4(+) human lymphocytes expressing the murine TCR specifically recognized peptide-loaded T2 cells. However, only gene-modified CD8(+) lymphocytes specifically recognized HLA-A2.1(+) CEA(+) colon cancer cell lines, and tumor cell recognition was weak and variable. We identified two substitutions in the CDR3 of the alpha chain that significantly influenced tumor cell recognition by human peripheral blood lymphocytes. One substitution, T for S at position 112 (S112T), enhanced tumor cell recognition by CD8(+) lymphocytes, and a second dually substituted receptor (S112T L110F) enhanced tumor cell recognition by CD4(+) T cells. CONCLUSIONS The modified CEA-reactive TCRs are good candidates for future gene therapy clinical trials and show the power of selected amino acid substitutions in the antigen-binding regions of the TCR to enhance desired reactivities.
Collapse
Affiliation(s)
- Maria R Parkhurst
- Surgery Branch, National Cancer Institute/NIH, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Bauerschlag DO, Schem C, Baumann K, Harter P, Hilpert F, Wagner U, du Bois A, Pfisterer J. Anti-idiotypic antibody abagovomab in advanced ovarian cancer. Future Oncol 2008; 4:769-73. [PMID: 19086842 DOI: 10.2217/14796694.4.6.769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Ovarian cancer is the fifth most common malignancy with approximately 22,000 newly diagnosed cases each year in the USA. Standard of care after cytoreductive surgery is the application of carboplatin and paclitaxel. The newly developed anti-idiotypic monoclonal antibody abagovomab demonstrated promising results in Phase I/II trials. This new type of drug is currently being tested in a Phase II/III trial in ovarian cancer patients with a complete response after standard first-line chemotherapy. Activating the cancer hosts immune system is a new strategy that is worth being pursued in the fight against ovarian cancer.
Collapse
Affiliation(s)
- Dirk O Bauerschlag
- Department of Gynecology and Obstetrics, University Clinic Schleswig-Holstein, Campus Kiel, Michaelisstrasse 16, 24105 Kiel, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
We seek to understand and harness our immune systems almost to the same degree as we have sought the answers of the universe. It is gratifying to see that we are making progress in this area with the result being evidence of clinical benefit and consistent alterations in the immune response. In this review, we will explore just one aspect of our efforts by focusing on vaccines that target carcinoembryonic antigen.
Collapse
Affiliation(s)
- Dongmei Wang
- National Cancer Institute, 10 Center Drive, Building 10, Room 12 N226, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
28
|
McKinney M, Morse MA. Advances in immunotherapy for colorectal malignancies. CURRENT COLORECTAL CANCER REPORTS 2008. [DOI: 10.1007/s11888-008-0029-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Sarkar K, Bose A, Chakraborty K, Haque E, Ghosh D, Goswami S, Chakraborty T, Laskar S, Baral R. Neem leaf glycoprotein helps to generate carcinoembryonic antigen specific anti-tumor immune responses utilizing macrophage-mediated antigen presentation. Vaccine 2008; 26:4352-62. [DOI: 10.1016/j.vaccine.2008.06.048] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 05/28/2008] [Accepted: 06/02/2008] [Indexed: 11/27/2022]
|
30
|
Zitvogel L, Apetoh L, Ghiringhelli F, André F, Tesniere A, Kroemer G. The anticancer immune response: indispensable for therapeutic success? J Clin Invest 2008; 118:1991-2001. [PMID: 18523649 DOI: 10.1172/jci35180] [Citation(s) in RCA: 465] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although the impact of tumor immunology on the clinical management of most cancers is still negligible, there is increasing evidence that anticancer immune responses may contribute to the control of cancer after conventional chemotherapy. Thus, radiotherapy and some chemotherapeutic agents, in particular anthracyclines, can induce specific immune responses that result either in immunogenic cancer cell death or in immunostimulatory side effects. This anticancer immune response then helps to eliminate residual cancer cells (those that fail to be killed by chemotherapy) or maintains micrometastases in a stage of dormancy. Based on these premises, in this Review we address the question, How may it be possible to ameliorate conventional therapies by stimulating the anticancer immune response? Moreover, we discuss the rationale of clinical trials to evaluate and eventually increase the contribution of antitumor immune responses to the therapeutic management of neoplasia.
Collapse
|
31
|
Carson WE, Liang MI. Current immunotherapeutic strategies in breast cancer. Surg Oncol Clin N Am 2008; 16:841-60, ix. [PMID: 18022548 DOI: 10.1016/j.soc.2007.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Despite significant advances in the administration of combination cytotoxic chemotherapy, the overall 5-year survival rate is about 75% for a woman who has node-positive breast cancer, and metastatic disease is considered incurable. Recent advances in our understanding of the immune system have led to the hope that manipulation of this organ system could be used as a cancer treatment. Strategies that have been used in the immune therapy of breast cancer include the administration of exogenous cytokines, vaccines, and humanized monoclonal antibodies (mAb). Each of these approaches is discussed in turn in this article.
Collapse
Affiliation(s)
- William E Carson
- Division of Surgical Oncology, The Ohio State University School of Medicine, 410 West 10th Avenue, Columbus, OH 43210-1228, USA.
| | | |
Collapse
|
32
|
Abstract
Because chemotherapy is standard in the treatment of colorectal cancer, it is important to demonstrate whether immunizations may be given to patients receiving systemic chemotherapy. Although some studies have demonstrated immune responses in patients with metastatic colorectal carcinoma who failed standard chemotherapy, the setting of minimal residual disease may be the preferred setting for cancer vaccines. It may be important to choose antigens that have functions important to the cancer cell. The best adjuvant is not well established and may depend on the type of immune response desired. The immune system is "programmed" to down-regulate immune responses once they have become activated to avoid the development of autoimmune disease.
Collapse
|
33
|
Schlom J, Gulley JL, Arlen PM. Paradigm shifts in cancer vaccine therapy. Exp Biol Med (Maywood) 2008; 233:522-34. [PMID: 18375829 DOI: 10.3181/0708-mr-226] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cancer vaccines constitute a unique therapeutic modality in that they initiate a dynamic process involving the host's immune response. Consequently, (a) repeated doses (vaccinations) over months may be required before patient clinical benefit is observed and (b) there most likely will be a "dynamic balance" between the induction and maintenance of host immune response elements to the vaccinations vs. host/tumor factors that have the potential to diminish those responses. Thus "patient response" in the form of disease stabilization and prolonged survival may be more appropriate to monitor than strictly adhering to "tumor response" in the form of Response Criteria In Solid Tumors (RECIST) criteria. This can be manifested in the form of enhanced patient benefit to subsequent therapies following vaccine therapy. This article will review these phenomena unique to cancer vaccines with emphasis on prostate cancer vaccines as a prototype for vaccine therapy. The unique features of this modality require the consideration of paradigm shifts both in the way cancer vaccine clinical trials are designed and in the way patient benefit is evaluated.
Collapse
Affiliation(s)
- Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, CCR, NCI, 10 Center Drive, Room 8B09, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
34
|
Bhattacharya-Chatterjee M, Saha A, Foon KA, Chatterjee SK. Carcinoembryonic antigen transgenic mouse models for immunotherapy and development of cancer vaccines. CURRENT PROTOCOLS IN IMMUNOLOGY 2008; Chapter 20:20.8.1-20.8.12. [PMID: 18432635 DOI: 10.1002/0471142735.im2008s80] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The goal of cancer therapy remains as the long-term eradication of tumor cells without adverse effects on normal tissue. Conventional approaches utilizing chemotherapy and radiotherapy are limited by both their toxicity and lack of specificity. In recent years, investigators have carried out several studies designed to evaluate whether human tumor-associated antigens (TAAs) can be exploited as targets for immunotherapy, specifically for human cancer vaccine development. A major limitation in immunotherapy studies of human cancer is the general lack of appropriate preclinical models. Clinical studies can be difficult to implement, particularly when a clear understanding of the potential efficacy, limitation, and safety of an immunotherapeutic strategy is not available from relevant animal investigations. However, mice carrying a transgene for a human tumor self-antigen may provide a more acceptable experimental model in which knowledge about immunotherapeutic strategies aiming at the TAA of interest can be enhanced prior to initiating clinical trials. Since the different strategies in experimental immunotherapy of cancer have been directed to activate different immune system components, a variety of transgenic mouse models have been generated expressing either TAA, human leukocyte antigen (HLA), oncogene, or immune effector cell molecules. These models may serve as an excellent platform for the identification of novel targets for immunotherapy as well as to evaluate the efficacy of targeted therapies and will lead to the development of clinical trials for cancer patients. In this unit, a brief overview of the generation and study of different vaccine approaches in carcinoembryonic antigen (CEA) transgenic mouse models and the experimental findings in mouse models that spontaneously develop gastrointestinal tumors and express the CEA transgene is provided.
Collapse
MESH Headings
- Animals
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Cancer Vaccines/therapeutic use
- Carcinoembryonic Antigen/genetics
- Carcinoembryonic Antigen/immunology
- Gastrointestinal Neoplasms/genetics
- Gastrointestinal Neoplasms/immunology
- Gastrointestinal Neoplasms/pathology
- Gastrointestinal Neoplasms/therapy
- Humans
- Immunotherapy/methods
- Mice
- Mice, Transgenic
- Models, Animal
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/therapy
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/pathology
- Vaccines, DNA/therapeutic use
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
- Vaccines, Subunit/therapeutic use
Collapse
Affiliation(s)
| | - Asim Saha
- University of Cincinnati Medical Center, Cincinnati, Ohio
| | - Kenneth A Foon
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | | |
Collapse
|
35
|
Gangadhar V, Jeyakani JJ, Shaila MS, Nayak R, Chandra N. Perpetuation of immunological memory through common MHC-I binding modes of peptidomimic and antigenic peptides. Biochem Biophys Res Commun 2007; 364:308-12. [PMID: 17950699 DOI: 10.1016/j.bbrc.2007.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Accepted: 10/02/2007] [Indexed: 11/25/2022]
Abstract
Understanding the molecular mechanisms of immunological memory assumes importance in vaccine design. We had earlier hypothesized a mechanism for the maintenance of immunological memory through the operation of a network of idiotypic and anti-idiotypic antibodies (Ab2). Peptides derived from an internal image carrying anti-idiotypic antibody are hypothesized to facilitate the perpetuation of antigen specific T cell memory through similarity in peptide-MHC binding as that of the antigenic peptide. In the present work, the existence of such peptidomimics of the antigen in the Ab2 variable region and their similarity of MHC-I binding was examined by bioinformatics approaches. The analysis employing three known viral antigens and one tumor-associated antigen shows that peptidomimics from Ab2 variable regions have structurally similar MHC-I binding patterns as compared to antigenic peptides, indicating a structural basis for memory perpetuation.
Collapse
Affiliation(s)
- Vidya Gangadhar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | | | | | | | | |
Collapse
|
36
|
Posner MC, Niedzwiecki D, Venook AP, Hollis DR, Kindler HL, Martin EW, Schilsky RL, Goldberg RM, Mayer RJ. A phase II prospective multi-institutional trial of adjuvant active specific immunotherapy following curative resection of colorectal cancer hepatic metastases: cancer and leukemia group B study 89903. Ann Surg Oncol 2007; 15:158-64. [PMID: 18008108 DOI: 10.1245/s10434-007-9654-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Revised: 07/18/2007] [Accepted: 07/20/2007] [Indexed: 12/12/2022]
Abstract
BACKGROUND Patients with curatively resected colorectal cancer hepatic metastases often harbor occult metastatic disease and are at high risk of experiencing recurrence. This patient cohort is ideally suited to test novel therapies such as immunotherapy. We treated patients-post-hepatic resection-with anti-idiotype monoclonal antibody vaccines to the tumor-associated antigens carcinoembryonic antigen (CeaVac) and human milk fat globule (TriAb), both of which are co-expressed in more than 90% of colorectal cancer patients. METHODS Vaccinations commenced 6-12 weeks post-hepatic resection and consisted of four biweekly treatments of 2 mg CeaVac and TriAb, then monthly treatments for 2 years, then on every other month for 3 years. The primary endpoint was to investigate the proportion of patients recurrence-free at 2 years, and the objective of the study was to demonstrate that at least 58% would be recurrence-free at this time to consider the regimen worthy of further study. RESULTS Between July 2001 and October 2004, 56 patients were accrued; 52 patients with margin-negative resection were eligible for analysis. Hepatic lobectomy was performed in 56% of patients with a median of one metastasis (range 1-3). Of the 52 eligible patients, 49 were evaluable for the primary end point. Median follow-up was 3.1 years. The proportion of patients recurrence-free at 2 years was 39%, with a lower confidence bound (LCB) of 0.29. Median recurrence-free survival was 16 months. The 2-year overall survival was 94% (95% CI, 0.81, 0.98). Only 10% of patients had documented grade-3 adverse events. CONCLUSIONS Anti-idiotype monoclonal antibody vaccine therapy with CeaVac and TriAb as an adjuvant to curative resection of colorectal cancer hepatic metastases is well tolerated but did not improve 2-year recurrence-free survival when compared with the expected value of 40% reported for hepatic resection alone.
Collapse
Affiliation(s)
- Mitchell C Posner
- University of Chicago, 5841 S Maryland Avenue (MC5031), Chicago 60637, IL, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The field of cancer vaccines is currently in an active state of preclinical and clinical investigations. Although no therapeutic cancer vaccine has to date been approved by the Food and Drug Administration, several new paradigms are emerging from recent clinical findings both in the use of combination therapy approaches and, perhaps more importantly, in clinical trial design and end point analyses. This article will review recent clinical trials involving several different cancer vaccines from which data are emerging contrasting classic "tumor response" (Response Evaluation Criteria in Solid Tumors) criteria with "patient response" in the manifestation of increased patient survival post-vaccine therapy. Also described are several strategies in which cancer vaccines can be exploited in combination with other agents and therapeutic modalities that are quite unique when compared with "conventional" combination therapies. This is most likely due to the phenomena that (a) cancer vaccines initiate a dynamic immune process that can be exploited in subsequent therapies and (b) both radiation and certain chemotherapeutic agents have been shown to alter the phenotype of tumor cells as to render them more susceptible to T-cell--mediated killing. Consequently, evidence is emerging from several studies in which patient cohorts who first receive a cancer vaccine (as contrasted with control cohorts) benefit clinically from subsequent therapies.
Collapse
Affiliation(s)
- Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
38
|
de Cerio ALD, Zabalegui N, Rodríguez-Calvillo M, Inogés S, Bendandi M. Anti-idiotype antibodies in cancer treatment. Oncogene 2007; 26:3594-602. [PMID: 17530013 DOI: 10.1038/sj.onc.1210371] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
As a cancer immunotherapy tool, idiotypes (Ids) have been used in different ways over the last three decades, depending on the actual human tumor cell target. It all started with passive, monoclonal, anti-Id antibody treatment of B-cell lymphoma, a setting in which results were tantalizing, but logistics unsustainable. It then moved toward the development of anti-Id vaccines for the treatment of the same tumors, a setting in which we have recently provided the first formal proof of principle of clinical benefit associated with the use of a human cancer vaccine. Meanwhile, it also expanded in the direction of exploiting the antigenic mimicry of some Ids with Id-unrelated, tumor-associated antigens for the immunotherapy of a number of solid tumors, a setting in which clinical results are still far from being consolidated. All in all, over the years Id-based immunotherapy has paved the way for a number of seminal therapeutic improvements for cancer patients, including the development of most if not all Id-unrelated monoclonal antibodies that have recently revolutionized the field.
Collapse
Affiliation(s)
- A López-Díaz de Cerio
- Lab of Immunotherapy, Oncology Division, Center for Applied Medical Research and Cell Therapy Area, University Clinic, University of Navarra, Pamplona, Spain
| | | | | | | | | |
Collapse
|
39
|
Abstract
The clinical course of ovarian cancer is often marked by periods of relapse and remission until chemotherapy resistance develops. Patients in remission with minimal disease burdens are ideally suited for the evaluation of immune-based strategies. The role of immune surveillance in improving outcome has been supported by the correlation of increased survival with the presence or absence of tumor-infiltrating lymphocytes in a given patient. Major obstacles to the development of successful immune strategies include the identification of tumor-restricted immunogenic targets, generation of a sufficient immune response to cause tumor rejection, and approaches to overcome evasion of immune attack. As optimal strategies are being developed, many questions remain. Some of the questions are as follows: What is the best antigen form (eg, peptides, proteins, or tumor lysates)? What are the appropriate adjuvants? Are monovalent or multivalent vaccines likely to be more effective? What is the optimal frequency and duration of vaccination? How should antigen-specific responses be monitored? How should the anticancer response be maintained? In this review, we will explore representative examples of immune strategies under investigation for patients with ovarian carcinoma that illustrate many of these issues. We will review ongoing phase III studies for patients in first clinical remission. Basic principles generic to all these immunotherapeutic approaches will be discussed in the hopes of yielding the most promising results as the field continues to evolve.
Collapse
Affiliation(s)
- Paul Sabbatini
- Medical Gynecologic Oncology Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York 10021, USA.
| | | |
Collapse
|
40
|
Pfisterer J, du Bois A, Sehouli J, Loibl S, Reinartz S, Reuss A, Canzler U, Belau A, Jackisch C, Kimmig R, Wollschlaeger K, Heilmann V, Hilpert F. The anti-idiotypic antibody abagovomab in patients with recurrent ovarian cancer. A phase I trial of the AGO-OVAR. Ann Oncol 2007; 17:1568-77. [PMID: 17005631 DOI: 10.1093/annonc/mdl357] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Abagovomab is a murine anti-idiotypic antibody against the antigen CA-125 which has been shown to elicit humoral and cellular immune responses against ovarian cancer (oc). PATIENTS AND METHODS This phase I trial included 36 patients with recurrent oc comparing two subcutaneous (s.c.) vaccination schedules: nine (group L) versus six injections (group S), 18 patients in each group. Four injections of 2.0 mg abagovomab were administered every 2 weeks and then two or five additional doses monthly. Primary endpoint was drop-out rate due to toxicity, and the secondary endpoint was analysis of immunological response. RESULTS Treatment was completed in eight (44%) and 16 (89%) patients in groups L and S, respectively. Premature termination occurred due to patient withdrawal or disease progression. No treatment-limiting toxicities occurred in either group. The most common toxicity related to the vaccine was grade 1/2 local injection site reaction. Induction of Ab3 was observed in all evaluable patients. There were no differences between the groups with regard to induction of human anti-mouse antibody (P = 0.1006). IFNgamma-expressing CA125-specific CD8+ T-cells were significantly more frequent in group L, while there was no significant difference between CD4+ T-cells in the two groups. CONCLUSIONS Abagovomab s.c. vaccination is safe and well tolerated. The long vaccination schedule tended to be more effective with regard to AB3-induction and cellular cytotoxicity.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antibodies, Anti-Idiotypic/adverse effects
- Antibodies, Anti-Idiotypic/blood
- Antibodies, Anti-Idiotypic/therapeutic use
- Antibodies, Monoclonal
- Antibodies, Monoclonal, Murine-Derived
- CA-125 Antigen/blood
- CA-125 Antigen/immunology
- Cancer Vaccines/therapeutic use
- Carcinoma, Papillary/immunology
- Carcinoma, Papillary/therapy
- Female
- Humans
- Immunity, Cellular
- Middle Aged
- Neoplasm Recurrence, Local/therapy
- Neoplasms, Glandular and Epithelial/immunology
- Neoplasms, Glandular and Epithelial/therapy
- Ovarian Neoplasms/immunology
- Ovarian Neoplasms/therapy
- Patient Compliance
- Peritoneal Neoplasms/secondary
- Peritoneal Neoplasms/therapy
- Vaccines, DNA/adverse effects
- Vaccines, DNA/therapeutic use
Collapse
Affiliation(s)
- J Pfisterer
- Klinik für Gynäkologie und Geburtshilfe, Campus Kiel, Universitätsklinikum Schleswig-Holstein, Kiel, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Achieving a cure for metastatic neuroblastoma remains a challenge despite sensitivity to chemotherapy and radiotherapy. Most patients achieve remission, but a failure to eliminate minimal residual disease (MRD) often leads to relapse. Immunotherapy is potentially useful for chemotherapy-resistant disease and may be particularly effective for low levels of MRD that are below the threshold for detection by routine radiological and histological methods. Disialoganglioside (GD2), a surface glycolipid antigen that is ubiquitous and abundant on neuroblastoma cells is an ideal target for immunotherapy. Anti-GD2 monoclonal antibodies currently form the mainstay of neuroblastoma immunotherapy and their safety profile has been well-established. Although responses in patients with gross disease have been observed infrequently, histologic responses of bone marrow disease are consistently achieved in >75 percent of patients with primary refractory neuroblastoma. The advent of highly sensitive and specific molecular assays to measure MRD has confirmed the efficacy anti-GD2 antibody immunotherapy in patients with subclinical disease. Such markers will allow further optimization of other anti-MRD therapies. We review the current status of anti-GD2 clinical trials for neuroblastoma and novel preclinical GD2-targeted strategies for this rare but often lethal childhood cancer.
Collapse
Affiliation(s)
- Shakeel Modak
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA.
| | | |
Collapse
|
42
|
Madan RA, Arlen PM, Gulley JL. PANVAC-VF: poxviral-based vaccine therapy targeting CEA and MUC1 in carcinoma. Expert Opin Biol Ther 2007; 7:543-54. [PMID: 17373905 DOI: 10.1517/14712598.7.4.543] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PANVAC is a cancer vaccine therapy delivered through two viral vectors--recombinant vaccinia and recombinant fowlpox--which are given sequentially. Both vectors contain transgenes for the tumor-associated antigens epithelial mucin 1 and carcinoembryonic antigen, which are altered or overexpressed in most carcinomas. The vectors also contain transgenes for three human T cell costimulatory molecules required to enhance immune response: B7.1, intracellular adhesion molecule-1 and leukocyte function-associated antigen-3. PANVAC is injected subcutaneously and processed by the body's antigen-presenting cells. Preclinical studies have demonstrated the efficacy of PANVAC in inducing both carcinoembryonic antigen- and mucin 1-specific cytotoxic T lymphocyte responses in vitro and in murine models. Other strategies that enhance the immune response include the use of granulocyte-macrophage colony-stimulating factor and a prime-boost administration sequence. Clinical trials have demonstrated PANVAC's safety and its ability to induce antigen-specific T cell responses. Early clinical trials are evaluating PANVAC alone and in combination with conventional chemotherapy and/or radiation. Studies to date hold promise for the use of PANVAC as a means to stimulate the immune system against malignancies and to provide clinical benefit.
Collapse
Affiliation(s)
- Ravi A Madan
- Clinical Immunotherapy Group, National Cancer Institute (NCI), Laboratory of Tumor Immunology and Biology, National Institutes of Health (NIH), 10 Center Drive, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
43
|
Reinsberg J. Detection of human antibodies generated against therapeutic antibodies used in tumor therapy. Methods Mol Biol 2007; 378:195-204. [PMID: 18605087 DOI: 10.1007/978-1-59745-323-3_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Application of monoclonal antibodies (MAb) for therapeutic purpose may induce the formation of human antibodies directed against the immunogenic epitopes, which are presented on the therapeutic MAb. Formation of such human antibodies mostly is an undesired side effect, but in the case of newly developed immunotherapeutic tumor treatment strategies it represents the underlying therapeutic effect. Especially the formation of so-called "internal image" antibodies, which are directed against the antigen-combining site (paratope) of the therapeutic antibody, is supposed to evoke specific immune responses against tumor antigens mediated via idiotype-anti-idiotype interactions within the immunoregulatory network. For the monitoring of the immune response after antibody application, the newly formed human antibodies can be measured with immunoassay procedures involving the applied therapeutic antibody as test antibody. Because the original antigen is directed against the therapeutic antibody and inhibits the binding of "internal image" antibodies, a special assay design is needed to avoid interferences with samples containing the antigen. We describe an immunoassay procedure that allows the correct quantification of antiidiotypic antibodies including "internal image" antibodies that are not affected by the original antigen or other serum components that may interact with the therapeutic antibody.
Collapse
Affiliation(s)
- Jochen Reinsberg
- Department of Gynecological Endocrinology and Reproductive Medicine, University of Bonn, Bonn, Germany
| |
Collapse
|
44
|
Ullenhag GJ, Spendlove I, Watson NFS, Indar AA, Dube M, Robins RA, Maxwell-Armstrong C, Scholefield JH, Durrant LG. A Neoadjuvant/Adjuvant Randomized Trial of Colorectal Cancer Patients Vaccinated with an Anti-Idiotypic Antibody, 105AD7, Mimicking CD55. Clin Cancer Res 2006; 12:7389-96. [PMID: 17121873 DOI: 10.1158/1078-0432.ccr-06-1003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To assess the tolerability and effectiveness of 105AD7 vaccination in colorectal cancer patients. 105AD7 is a human anti-idiotypic antibody mimicking CD55, a glycoprotein, which is more than expressed on colorectal cancer cells and protects them from attack by complement. EXPERIMENTAL DESIGN Colorectal cancer patients (n = 67) eligible for primary surgery were randomized to receive the anti-idiotypic antibody 105AD7+/-Bacillus Calmette-Guerin/alum or to no treatment (control group). The immunizations were given i.d./i.m. before surgery and continued for a period of 2 years. The patients were monitored in enzyme-linked immunospot (ELISPOT; gamma-IFN), proliferation assay, and Luminex cytokine assays. RESULTS No serious adverse events were recorded. Of the 32 investigated immunized patients, 14 (44%) were considered to be responders in the ELISPOT assay. Induced proliferative responses were noted in 17 of 40 (43%) monitored patients. There was no correlation between the ELISPOT and proliferation assays. Luminex analyses revealed tumor necrosis factor-alpha and granulocyte macrophage colony-stimulating factor responses not only to the vaccine but also toward the native antigen CD55 in 9 of 13 (69%) patients. CONCLUSIONS Immune responses to vaccination were induced in a majority of monitored patients measured by ELISPOT and proliferation assay. The lack of correlation between the ELISPOT and proliferation assays may reflect the fact that the two methods measure different T-cell responses and highlights the importance of multiple readouts in evaluating a potential cancer vaccine. Responses to both the anti-idiotype and the CD55 antigen were measurable, adding support to the use of CD55 as a target in cancer treatment.
Collapse
Affiliation(s)
- Gustav J Ullenhag
- Academic Department of Clinical Oncology, Nottingham City Hospital, Nottingham, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Nowak AK, Lake RA, Robinson BWS. Combined chemoimmunotherapy of solid tumours: improving vaccines? Adv Drug Deliv Rev 2006; 58:975-90. [PMID: 17005292 DOI: 10.1016/j.addr.2006.04.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Accepted: 07/10/2006] [Indexed: 11/16/2022]
Abstract
Cytotoxic chemotherapy not only affects the tumour but also targets dividing lymphocytes, the very cells required to develop an immune response. Hence, chemo- and immunotherapy have been seen as antagonistic. It is now clear that the way a chemotherapeutic drug kills a tumour cell determines how that dying cell interacts with the immune system and whether the interaction leads to an immune response. Chemotherapy also depletes regulatory T cells, potentially enhancing immune responses. Furthermore, lymphodepletion triggers homeostatic T cell reconstitution, creating new populations of pre-T cells that need education in the thymic environment. Post-chemotherapy immune system reconstitution may provide a unique opportunity for therapeutic intervention by shaping the repertoire towards reactivity to tumour antigens. An understanding of the underlying cellular and immunological events in both animal models and patients undergoing chemotherapy will guide decisions about which immunomodulatory approaches may be effective with different cytostatic drugs and hence to develop appropriate scheduling for integration of the treatment modalities.
Collapse
Affiliation(s)
- Anna K Nowak
- Department of Medicine and Pharmacology, University of Western Australia, Sir Charles Gairdner Hospital, 4th Floor, G block, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, WA 6009 Australia.
| | | | | |
Collapse
|
46
|
Choudhury A, Mosolits S, Kokhaei P, Hansson L, Palma M, Mellstedt H. Clinical results of vaccine therapy for cancer: learning from history for improving the future. Adv Cancer Res 2006; 95:147-202. [PMID: 16860658 DOI: 10.1016/s0065-230x(06)95005-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Active, specific immunotherapy for cancer holds the potential of providing an approach for treating cancers, which have not been controlled by conventional therapy, with very little or no associated toxicity. Despite advances in the understanding of the immunological basis of cancer vaccine therapy as well as technological progress, clinical effectiveness of this therapy has often been frustratingly unpredictable. Hundreds of preclinical and clinical studies have been performed addressing issues related to the generation of a therapeutic immune response against tumors and exploring a diverse array of antigens, immunological adjuvants, and delivery systems for vaccinating patients against cancer. In this chapter, we have summarized a number of clinical trials performed in various cancers with focus on the clinical outcome of vaccination therapy. We have also attempted to draw objective inferences from the published data that may influence the clinical effectiveness of vaccination approaches against cancer. Collectively the data indicate that vaccine therapy is safe, and no significant autoimmune reactions are observed even on long term follow-up. The design of clinical trials have not yet been optimized, but meaningful clinical effects have been seen in B-cell malignancies, lung, prostate, colorectal cancer, and melanoma. It is also obvious that patients with limited disease or in the adjuvant settings have benefited most from this targeted therapy approach. It is imperative that future studies focus on exploring the relationship between immune and clinical responses to establish whether immune monitoring could be a reliable surrogate marker for evaluating the clinical efficacy of cancer vaccines.
Collapse
Affiliation(s)
- Aniruddha Choudhury
- Department of Oncology, Cancer Centre Karolinska, Karolinska University, Hospital Solna, SE-171 76 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
47
|
Mohanty K, Saha A, Pal S, Mallick P, Chatterjee SK, Foon KA, Bhattacharya-Chatterjee M. Anti-tumor immunity induced by an anti-idiotype antibody mimicking human Her-2/neu. Breast Cancer Res Treat 2006; 104:1-11. [PMID: 17004107 DOI: 10.1007/s10549-006-9391-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2006] [Accepted: 08/22/2006] [Indexed: 11/28/2022]
Abstract
Our goal is to apply an anti-idiotype (Id) antibody based vaccine approach for the treatment of Her-2/neu-positive human cancer. Amplification and/or over-expression of Her-2/neu occur in multiple human malignancies and are associated with poor prognosis. Her-2/neu proto-oncogene is a suitable target for cancer immunotherapy. We have developed and characterized a murine monoclonal anti-Id antibody, 6D12 that mimics a specific epitope of Her-2/neu and can be used as a surrogate antigen for Her-2/neu. In this study, the efficacy of 6D12 as a tumor vaccine was evaluated in a murine tumor model. Immunization of immunocompetent C57BL/6 mice with 6D12 conjugated to keyhole limpet hemocyanin and mixed with Freund's adjuvant or 6D12 combined with the adjuvant QS21 induced anti-6D12 as well as anti-Her-2/neu immunity. Her-2/neu-positive human breast carcinoma cells, SK-BR-3 reacted with immunized mice sera as determined by ELISA and flow cytometry. Flow cytometry analysis also demonstrated strong reactivity of immunized mice sera with human Her-2/neu transfected EL4 cells (EL4-Her-2), but no reactivity with nontransfected parental EL4 cells. Antibody dependent cellular cytotoxicity against EL4-Her-2 cells was also observed in presence of immune sera. Mice immunized with 6D12 were protected against a challenge with lethal doses of EL4-Her-2 cells, whereas no protection was observed against parental EL4 cells or when mice were immunized with an unrelated anti-Id antibody and challenged with EL4-Her-2 cells. These data suggest that anti-Id 6D12 vaccine can induce protective Her-2/neu specific antitumor immunity and may serve as a potential network antigen for the treatment of patients with Her-2/neu-positive tumors.
Collapse
Affiliation(s)
- Kartik Mohanty
- Department of Internal Medicine, University of Cincinnati, The Vontz Center for Molecular Studies, 3125 Eden Avenue, Cincinnati, OH 45267, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Saha A, Chatterjee SK, Foon KA, Bhattacharya-Chatterjee M. Anti-idiotype antibody induced cellular immunity in mice transgenic for human carcinoembryonic antigen. Immunology 2006; 118:483-96. [PMID: 16895556 PMCID: PMC1782317 DOI: 10.1111/j.1365-2567.2006.02391.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In the present study, we have analysed the detailed cellular immune mechanisms involved in tumour rejection in carcinoembryonic antigen (CEA) transgenic mice after immunization with dendritic cells (DC) pulsed with an anti-idiotype (Id) antibody, 3H1, which mimics CEA. 3H1-pulsed DC vaccinations resulted in induction of CEA specific cytotoxic T lymphocyte (CTL) responses in vitro and the rejection of CEA-transfected MC-38 murine colon carcinoma cells, C15, in vivo (Saha et al.,Cancer Res 2004; 64: 4995-5003). These CTL mediated major histocompatibility complex (MHC) class I-restricted tumour cell lysis, production of interferon-gamma (IFN-gamma) and tumour necrosis factor-alpha (TNF-alpha), and expression of Fas ligand (FasL) and TNF-related apoptosis-inducing ligand (TRAIL) in response to C15 cells. CTL used perforin-, FasL-, and TRAIL-mediated death pathways to lyse C15 cells, although perforin-mediated killing was the predominant lytic mechanism in vitro. The cytokines IFN-gamma and TNF-alpha synergistically enhanced surface expression of Fas, TRAIL receptor, MHC class I and class II on C15 cells that increased the sensitivity of tumour cells to CTL lysis. CTL activity generated in 3H1-pulsed DC immunized mice was directed against an epitope defined by the idio-peptide LCD-2, derived from 3H1. In vivo lymphocyte depletion experiments demonstrated that induction of CTL response and antitumour immunity was dependent on both CD4+ and CD8+ T cells. The analysis of splenocytes of immunized mice that had rejected C15 tumour growth revealed up-regulated surface expression of memory phenotype Ly-6C and CD44 on both CD4+ and CD8+ T cells. The adoptive transfer experiments also suggested the role of both CD4+ and CD8+ T cells in this model system. Furthermore, mice that had rejected C15 tumour growth, developed tumour-specific immunological memory.
Collapse
Affiliation(s)
- Asim Saha
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH45267, USA
| | | | | | | |
Collapse
|
49
|
Pignatari GC, Takeshita D, Parise CB, Soares FA, de Moraes JZ, Han SW. Carcinoembryonic antigen (CEA) mimicry by an anti-idiotypic scFv isolated from anti-Id 6.C4 hybridoma. J Biotechnol 2006; 127:615-25. [PMID: 16989916 DOI: 10.1016/j.jbiotec.2006.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Revised: 08/04/2006] [Accepted: 08/15/2006] [Indexed: 11/26/2022]
Abstract
Since carcinoembryonic antigen (CEA) is expressed during embryonic life, it is not immunogenic in humans. The use of anti-idiotypic (Id) antibodies as a surrogate of antigen in the immunization has been considered a promising strategy for breaking tolerance to some tumor associated antigens. We have described an anti-Id monoclonal antibody (MAb), designated 6.C4, which is able to mimic CEA functionally. The anti-Id MAb 6.C4 was shown to elicit antibodies that recognized CEA in vitro and in vivo. In the present study, we sought to verify whether a single chain (scFv) antibody obtained, the scFv 6.C4, would retain the ability to mimic CEA. Two scFv containing the variable heavy and light chain domains of 6.C4 were constructed with a 15-amino acid linker: one with and another without signal peptide. DNA immunization of mice with both forms of scFv individually elicited antibodies able to recognize CEA.
Collapse
|
50
|
Abstract
Gastric cancer is still one of the leading causes of cancer-related death worldwide. Prevention and treatment of gastric cancer through vaccination has been difficult owing to lack of a specific target and poor immunity. A number of vaccination strategies have been used to augment immune responses against gastric cancer and some progress has been made. In a series of studies, the authors have focused on gastric cancer vaccination approaches based on MG7 mimotopes, which are mimicry epitopes selected from phage-displayed oligopeptide libraries with a gastric cancer cell-specific monoclonal antibody, MG7-Ab. Strategies employed in these studies include viral or plasmid vectors in combination with carrier sequence or unmethylated CpG with synthetic peptides in nanoemulsion. The results demonstrated that MG7 mimotopes could effectively and specifically induce both cellular and humoral immune reactions and in vivo antitumor responses. In particular, a four-MG7 mimotope DNA vaccine was found to elicit much stronger antitumor immune responses in mice compared with its single-mimotope counterpart. These encouraging findings might pave the way for the development of novel MG7 antigen-based vaccination approaches for human gastric cancer. The review also discusses other immune-enhancing vaccination strategies for gastric cancer.
Collapse
Affiliation(s)
- Dexin Zhang
- The Fourth Military Medical University, State Key Laboratory for Tumor Biology and Institute of Digestive Diseases, Xijing Hospital, 15 West Chang-Le Road, Xi'an 710032, PR China.
| | | | | |
Collapse
|