1
|
Xu Y, Qi Y, Lu Z, Tan Y, Chen D, Luo H. Navigating precision: the crucial role of next-generation sequencing recurrence risk assessment in tailoring adjuvant therapy for hormone receptor-positive, human epidermal growth factor Receptor2-negative early breast cancer. Cancer Biol Ther 2024; 25:2405060. [PMID: 39304993 PMCID: PMC11418226 DOI: 10.1080/15384047.2024.2405060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/02/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024] Open
Abstract
Hormone receptor-positive (HR+)/human epidermal growth factor receptor 2-negative (HER2-) breast cancer is the most common subtype, representing over two-thirds of new diagnoses. Adjuvant therapy, which encompasses various medications and treatment durations, is the standard approach for managing early stage HR+ HER2- breast cancer. Optimizing treatment is essential to minimize unnecessary side effects while addressing the biological variability inherent in HR+/HER2- breast cancers. Incorporating biological biomarkers into treatment decisions, alongside traditional clinical factors, is vital. Gene expression assays can identify patients unlikely to benefit from adjuvant chemotherapy, thereby refining treatment strategies and improving risk assessment. This paper reviews evidence for several genomic tests, including Oncotype DX, MammaPrint, Breast Cancer Index, RucurIndex, and EndoPredict, which assist in tailoring adjuvant therapy. Additionally, we explore the role of liquid biopsies in personalizing treatment, emphasizing the importance of considering late relapse risks and potential benefits of extended systemic therapy for HR+/HER2- breast cancer patients.
Collapse
MESH Headings
- Humans
- Breast Neoplasms/genetics
- Breast Neoplasms/drug therapy
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Female
- Chemotherapy, Adjuvant/methods
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-2/genetics
- Risk Assessment/methods
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- High-Throughput Nucleotide Sequencing/methods
- Precision Medicine/methods
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/metabolism
Collapse
Affiliation(s)
- Ying Xu
- Department of Obestetrics and Gynecology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Yingxue Qi
- The Medical Department, Jiangsu Simcere Diagnostics Co. Ltd. Nanjing Simcere Medical Laboratory Science Co. Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
| | - Zhongyu Lu
- The Medical Department, Jiangsu Simcere Diagnostics Co. Ltd. Nanjing Simcere Medical Laboratory Science Co. Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
| | - Yuan Tan
- The Medical Department, Jiangsu Simcere Diagnostics Co. Ltd. Nanjing Simcere Medical Laboratory Science Co. Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
| | - Dongsheng Chen
- The Medical Department, Jiangsu Simcere Diagnostics Co. Ltd. Nanjing Simcere Medical Laboratory Science Co. Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
- Center of Translational Medicine, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Haijun Luo
- Department of Pathology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| |
Collapse
|
2
|
Jing S, Zhao L, Zhao L, Gao Y, He T. TRIP13: A promising cancer immunotherapy target. CANCER INNOVATION 2024; 3:e147. [PMID: 39398261 PMCID: PMC11467489 DOI: 10.1002/cai2.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/21/2024] [Accepted: 05/12/2024] [Indexed: 10/15/2024]
Abstract
The tumor microenvironment (TME) facilitates tumor development through intricate intercellular signaling, thereby supporting tumor growth and suppressing the immune response. Thyroid hormone receptor interactor 13 (TRIP13), an AAA+ ATPase, modulates the conformation of client macromolecules, consequently influencing cellular signaling pathways. TRIP13 has been implicated in processes such as proliferation, invasion, migration, and metastasis during tumor progression. Recent studies have revealed that TRIP13 also plays a role in immune response suppression within the TME. Thus, inhibiting these functions of TRIP13 could potentially enhance immune responses and improve the efficacy of immune checkpoint inhibition. This review summarizes the recent research progress of TRIP13 and discusses the potential of targeting TRIP13 to improve immune-based therapies for patients with cancer.
Collapse
Affiliation(s)
- Shengnan Jing
- Institute of Pain Medicine and Special Environmental Medicine, Co‐innovation Center of NeuroregenerationNantong UniversityNantongJiangsuChina
| | - Liya Zhao
- Institute of Pain Medicine and Special Environmental Medicine, Co‐innovation Center of NeuroregenerationNantong UniversityNantongJiangsuChina
| | - Liwen Zhao
- Institute of Pain Medicine and Special Environmental Medicine, Co‐innovation Center of NeuroregenerationNantong UniversityNantongJiangsuChina
| | - Yong‐Jing Gao
- Institute of Pain Medicine and Special Environmental Medicine, Co‐innovation Center of NeuroregenerationNantong UniversityNantongJiangsuChina
| | - Tianzhen He
- Institute of Pain Medicine and Special Environmental Medicine, Co‐innovation Center of NeuroregenerationNantong UniversityNantongJiangsuChina
| |
Collapse
|
3
|
Zhang X, Goedegebuure SP, Chen MY, Mishra R, Zhang F, Yu YY, Singhal K, Li L, Gao F, Myers NB, Vickery T, Hundal J, McLellan MD, Sturmoski MA, Kim SW, Chen I, Davidson JT, Sankpal NV, Myles S, Suresh R, Ma CX, Foluso A, Wang-Gillam A, Davies S, Hagemann IS, Mardis ER, Griffith O, Griffith M, Miller CA, Hansen TH, Fleming TP, Schreiber RD, Gillanders WE. Neoantigen DNA vaccines are safe, feasible, and induce neoantigen-specific immune responses in triple-negative breast cancer patients. Genome Med 2024; 16:131. [PMID: 39538331 PMCID: PMC11562513 DOI: 10.1186/s13073-024-01388-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 09/20/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Neoantigen vaccines can induce or enhance highly specific antitumor immune responses with minimal risk of autoimmunity. We have developed a neoantigen DNA vaccine platform capable of efficiently presenting both HLA class I and II epitopes and performed a phase 1 clinical trial in triple-negative breast cancer patients with persistent disease on surgical pathology following neoadjuvant chemotherapy, a patient population at high risk of disease recurrence. METHODS Expressed somatic mutations were identified by tumor/normal exome sequencing and tumor RNA sequencing. The pVACtools software suite of neoantigen prediction algorithms was used to identify and prioritize cancer neoantigens and facilitate vaccine design for manufacture in an academic GMP facility. Neoantigen DNA vaccines were administered via electroporation in the adjuvant setting (i.e., following surgical removal of the primary tumor and completion of standard of care therapy). Vaccines were monitored for safety and immune responses via ELISpot, intracellular cytokine production via flow cytometry, and TCR sequencing. RESULTS Eighteen subjects received three doses of a neoantigen DNA vaccine encoding on average 11 neoantigens per patient (range 4-20). The vaccinations were well tolerated with relatively few adverse events. Neoantigen-specific T cell responses were induced in 14/18 patients as measured by ELISpot and flow cytometry. At a median follow-up of 36 months, recurrence-free survival was 87.5% (95% CI: 72.7-100%) in the cohort of vaccinated patients. CONCLUSION Our study demonstrates neoantigen DNA vaccines are safe, feasible, and capable of inducing neoantigen-specific immune responses. CLINICAL TRIAL REGISTRATION NUMBER NCT02348320.
Collapse
Affiliation(s)
- Xiuli Zhang
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - S Peter Goedegebuure
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
- The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, Saint Louis, MO, USA
| | - Michael Y Chen
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Rashmi Mishra
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Felicia Zhang
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Yik Yeung Yu
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Kartik Singhal
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Lijin Li
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Feng Gao
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Nancy B Myers
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Tammi Vickery
- Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jasreet Hundal
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO, USA
| | - Michael D McLellan
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO, USA
| | - Mark A Sturmoski
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Samuel W Kim
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Ina Chen
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jesse T Davidson
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Narendra V Sankpal
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Stephanie Myles
- The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, Saint Louis, MO, USA
| | - Rama Suresh
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
- The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, Saint Louis, MO, USA
| | - Cynthia X Ma
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
- The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, Saint Louis, MO, USA
| | - Ademuyiwa Foluso
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
- The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, Saint Louis, MO, USA
| | - Andrea Wang-Gillam
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
- The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, Saint Louis, MO, USA
| | - Sherri Davies
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Ian S Hagemann
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Elaine R Mardis
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO, USA
- The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, Saint Louis, MO, USA
- Current Affiliation: Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, OH, USA
| | - Obi Griffith
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO, USA
| | - Malachi Griffith
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO, USA
| | - Christopher A Miller
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO, USA
| | - Ted H Hansen
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Timothy P Fleming
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
- The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, Saint Louis, MO, USA
| | - Robert D Schreiber
- Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
- The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, Saint Louis, MO, USA
| | - William E Gillanders
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA.
- The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
4
|
Montoyo-Pujol YG, Ponce JJ, Delgado-García S, Martín TA, Ballester H, Castellón-Molla E, Ramos-Montoya A, Lozano-Cubo I, Sempere-Ortells JM, Peiró G. High CTLA-4 gene expression is an independent good prognosis factor in breast cancer patients, especially in the HER2-enriched subtype. Cancer Cell Int 2024; 24:371. [PMID: 39523362 PMCID: PMC11552348 DOI: 10.1186/s12935-024-03554-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Breast cancer (BC) is the most common cancer in women and the leading cause of cancer-related death worldwide. This heterogeneous disease has been historically considered a non-immunogenic type of cancer. However, recent advances in immunotherapy have increased the interest in knowing the role of the immune checkpoints (IC) and other immune regulation pathways in this neoplasia. METHODS In this retrospective study, we evaluated the correlation of mRNA expression of CTLA-4, PDCD1 (PD1), CD274 (PD-L1), PDCD1LG2 (PD-L2), CD276 (B7-H3), JAK2, and FOXO1 with clinicopathological factors and BC patient's outcome by real-time quantitative polymerase chain reaction (qPCR). RESULTS Our results showed that immunoregulatory gene expression depends on BC immunophenotype being CTLA-4 and PDCD1 (PD1) overexpressed on triple-negative/basal-like (TN/BL) and luminal B/HER2-positive phenotypes, respectively, and CD276 (B7-H3), JAK2 and FOXO1 associated with both luminal A and luminal B/HER2-negative tumors. In addition, we found that these genes can also be related to aggressive and non-aggressive clinicopathological characteristics in BC. Finally, survival analysis showed that CTLA-4 expression levels emerge as a significant independent factor of good prognosis in BC patients, especially in the HER2-enriched subtype. CONCLUSION Considering all these data, we can conclude that the expression of immunoregulatory genes depends on tumor phenotype and has potential clinical implications in BC patients.
Collapse
Affiliation(s)
- Yoel G Montoyo-Pujol
- Research Unit, Dr Balmis University General Hospital, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, Alicante, 03010, Spain.
- Medical Oncology Department, Dr Balmis University General Hospital, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, Alicante, 03010, Spain.
| | - José J Ponce
- Medical Oncology Department, Dr Balmis University General Hospital, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, Alicante, 03010, Spain
| | - Silvia Delgado-García
- Gynecology and Obstetrics Department, Dr Balmis University General Hospital, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, Alicante, 03010, Spain
| | - Tina A Martín
- Gynecology and Obstetrics Department, Dr Balmis University General Hospital, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, Alicante, 03010, Spain
| | - Hortensia Ballester
- Gynecology and Obstetrics Department, Dr Balmis University General Hospital, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, Alicante, 03010, Spain
| | - Elena Castellón-Molla
- Pathology Department, Dr Balmis University General Hospital, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, Alicante, 03010, Spain
| | - Angela Ramos-Montoya
- Gynecology and Obstetrics Department, Dr Balmis University General Hospital, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, Alicante, 03010, Spain
| | - Inmaculada Lozano-Cubo
- Medical Oncology Department, Dr Balmis University General Hospital, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, Alicante, 03010, Spain
| | - J Miguel Sempere-Ortells
- Research Unit, Dr Balmis University General Hospital, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, Alicante, 03010, Spain
- Biotechnology Department, Immunology Division, University of Alicante, Ctra San Vicente s/n. 03080-San Vicente del Raspeig, Alicante, 03010, Spain
| | - Gloria Peiró
- Research Unit, Dr Balmis University General Hospital, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, Alicante, 03010, Spain.
- Pathology Department, Dr Balmis University General Hospital, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, Alicante, 03010, Spain.
- Biotechnology Department, Immunology Division, University of Alicante, Ctra San Vicente s/n. 03080-San Vicente del Raspeig, Alicante, 03010, Spain.
| |
Collapse
|
5
|
Egelston CA, Guo W, Simons DL, Ye J, Avalos C, Solomon ST, Nwangwu M, Nelson MS, Tan J, Bacon ER, Ihle K, Schmolze D, Tumyan L, Waisman JR, Lee PP. Organ-Specific Immune Setpoints Underlie Divergent Immune Profiles across Metastatic Sites in Breast Cancer. Cancer Immunol Res 2024; 12:1559-1573. [PMID: 39051632 PMCID: PMC11534553 DOI: 10.1158/2326-6066.cir-23-0718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/06/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024]
Abstract
Immune composition within the tumor microenvironment (TME) plays a central role in the propensity of cancer cells to metastasize and respond to therapy. Previous studies have suggested that the metastatic TME is immune-suppressed. However, limited accessibility to multiple metastatic sites within patients has made assessing the immune TME difficult in the context of multiorgan metastases. We utilized a rapid postmortem tissue collection protocol to assess the immune composition of numerous sites of breast cancer metastasis and paired tumor-free tissues. Metastases had comparable immune cell densities and compositions to paired tumor-free tissues of the same organ type. In contrast, immune cell densities in both metastatic and tumor-free tissues differed significantly between organ types, with lung immune infiltration being consistently greater than that in the liver. These immune profiling results were consistent between flow cytometry and multiplex immunofluorescence-based spatial analysis. Furthermore, we found that granulocytes were the predominant tumor-infiltrating immune cells in lung and liver metastases, and these granulocytes comprised most PD-L1-expressing cells in many tissue sites. We also identified distinct potential mechanisms of immunosuppression in lung and liver metastases, with the lung having increased expression of PD-L1+ antigen-presenting cells and the liver having higher numbers of activated regulatory T cells and HLA-DRlow monocytes. Together, these results demonstrate that the immune contexture of metastases is dictated by organ type and that immunotherapy strategies may benefit from unique tailoring to the tissue-specific features of the immune TME.
Collapse
Affiliation(s)
- Colt A. Egelston
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA
| | - Weihua Guo
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA
| | - Diana L. Simons
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA
| | - Jian Ye
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA
| | - Christian Avalos
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA
| | - Shawn T. Solomon
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA
| | - Mary Nwangwu
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA
| | - Michael S. Nelson
- The Light Microscopy and Digital Imaging Core, Beckman Research Institute, City of Hope, Duarte, CA
| | - Jiayi Tan
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA
| | - Eliza R. Bacon
- Department of Medical Oncology, City of Hope, Duarte, CA
| | - Kena Ihle
- Department of Medical Oncology, City of Hope, Duarte, CA
| | | | - Lusine Tumyan
- Department of Diagnostic Radiology, City of Hope, Duarte, CA
| | | | - Peter P. Lee
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA
| |
Collapse
|
6
|
Shi J, Pan L, Ma F, Zhang G, Duan Y. Thematic trends and knowledge-map of tumor-infiltrating lymphocytes in breast cancer: a scientometric analysis. Front Oncol 2024; 14:1438091. [PMID: 39555450 PMCID: PMC11564181 DOI: 10.3389/fonc.2024.1438091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/15/2024] [Indexed: 11/19/2024] Open
Abstract
Background Tumor-infiltrating lymphocytes (TILs), essential for the anti-tumor response, are now recognized as promising and cost-effective biomarkers with both prognostic and predictive value. They are crucial in the precision treatment of breast cancer, particularly for predicting clinical outcomes and identifying candidates for immunotherapy. This study aims to encapsulate the current knowledge of TILs in breast cancer research while evaluating research trends both qualitatively and quantitatively. Methods Publications on TILs in breast cancer studies from January 1, 2004, to December 31, 2023, were extracted from the Web of Science Core Collection. Co-occurrence and collaboration analyses among countries/regions, institutions, authors, and keywords were performed with Bibliometrix R packages and VOSviewer software. CiteSpace was used for reference and keyword burst detection, while high-frequency keyword layouts were generated using BICOMB. gCLUTO was employed for biclustering analysis of the binary co-keyword matrix. Results A total of 2,066 articles on TILs in breast cancer were identified. Between 2004 and 2023, the USA and Milan University led productivity in terms of country/region and institution, respectively. The journals "CANCERS," "Breast Cancer Research and Treatment," and "Frontiers in Oncology" published the most articles on this topic. Loi S was the leading author, with the highest number of publications and co-citations. Co-keyword analysis revealed six research hotspots related to TILs in breast cancer. The pathological assessment of TILs using artificial intelligence (AI) remains in its early stages but is a key focus. Burst detection of keywords indicated significant activity in "immune cell infiltration", "immune checkpoint inhibitors", and "hormone receptor" over the past three years. Conclusion This study reviews recent advancements and trends in TILs research in breast cancer using scientometric analysis. The findings offer valuable insights for funding decisions and developing innovative strategies in TILs research, highlighting current research frontiers and trends.
Collapse
Affiliation(s)
- Jinan Shi
- Department of Medical Oncology, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Lei Pan
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Feixia Ma
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Ganlu Zhang
- Department of Medical Oncology, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Yin Duan
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Feng D, Pu D, Ren J, Liu M, Zhang Z, Liu Z, Li J. CD8 + T-cell exhaustion: Impediment to triple-negative breast cancer (TNBC) immunotherapy. Biochim Biophys Acta Rev Cancer 2024; 1879:189193. [PMID: 39413858 DOI: 10.1016/j.bbcan.2024.189193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/16/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
CD8+ T-cell exhaustion has been identified as a significant contributor to immunosuppression and immune escape in triple-negative breast cancer (TNBC). Dysfunction due to cell exhaustion is characterized by reduced effector capacity and sustained expression of inhibitory receptors (IRs). The factors contributing to CD8+ T-cell exhaustion are multifaceted, encompassing external influences such as the upregulation of IRs, reduction of effector cytokines, and internal changes within the immune cell, including transcriptomic alterations, epigenetic landscape remodeling, and metabolomic shifts. The impact of the altered TNBC tumor microenvironment (TME) on Tex is also a critical consideration. The production of exhausted CD8+ T-cells (CD8+ Tex) is positively correlated with poor prognosis and reduced response rates to immunotherapy in TNBC patients, underscoring the urgent need for the development of novel TNBC immunotherapeutic strategies that target the mechanisms of CD8+ T-cell exhaustion. This review delineates the dynamic trajectory of CD8+ T-cell exhaustion development in TNBC, provides an update on the latest research advancements in understanding its pathogenesis, and offers insights into potential immunotherapeutic strategies.
Collapse
Affiliation(s)
- Dandan Feng
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Dongqing Pu
- Department of Breast and Thyroid Surgery, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan 250014, China
| | - Jinlu Ren
- Shandong Xiandai University, Jinan 250104, China
| | - Ming Liu
- Department of Breast and Thyroid Surgery, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan 250014, China
| | - Zhen Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhiyong Liu
- Central Laboratory, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan 250014, China; Shandong Key Laboratory of Dominant Diseases of Traditional Chinese Medicine, Jinan 250014, China.
| | - Jingwei Li
- Department of Breast and Thyroid Surgery, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan 250014, China.
| |
Collapse
|
8
|
Liu Y, Peng C, Brorson IS, O'Mahony DG, Kelly RL, Heng YJ, Baker GM, Grenaker Alnæs GI, Bodelon C, Stover DG, Van Allen EM, Eliassen AH, Kristensen VN, Tamimi RM, Kraft P. Germline polygenic risk scores are associated with immune gene expression signature and immune cell infiltration in breast cancer. Am J Hum Genet 2024; 111:2150-2163. [PMID: 39270649 PMCID: PMC11480808 DOI: 10.1016/j.ajhg.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
The tumor immune microenvironment (TIME) plays key roles in tumor progression and response to immunotherapy. Previous studies have identified individual germline variants associated with differences in TIME. Here, we hypothesize that common variants associated with breast cancer risk or cancer-related traits, represented by polygenic risk scores (PRSs), may jointly influence immune features in TIME. We derived 154 immune traits from bulk gene expression profiles of 764 breast tumors and 598 adjacent normal tissue samples from 825 individuals with breast cancer in the Nurses' Health Study (NHS) and NHSII. Immunohistochemical staining of four immune cell markers were available for a subset of 205 individuals. Germline PRSs were calculated for 16 different traits including breast cancer, autoimmune diseases, type 2 diabetes, ages at menarche and menopause, body mass index (BMI), BMI-adjusted waist-to-hip ratio, alcohol intake, and tobacco smoking. Overall, we identified 44 associations between germline PRSs and immune traits at false discovery rate q < 0.25, including 3 associations with q < 0.05. We observed consistent inverse associations of inflammatory bowel disease (IBD) and Crohn disease (CD) PRSs with interferon signaling and STAT1 scores in breast tumor and adjacent normal tissue; these associations were replicated in a Norwegian cohort. Inverse associations were also consistently observed for IBD PRS and B cell abundance in normal tissue. We also observed positive associations between CD PRS and endothelial cell abundance in tumor. Our findings suggest that the genetic mechanisms that influence immune-related diseases are also associated with TIME in breast cancer.
Collapse
Affiliation(s)
- Yuxi Liu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Cheng Peng
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Ina S Brorson
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Denise G O'Mahony
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Rebecca L Kelly
- Cancer Prevention Fellowship Program, National Cancer Institute, Rockville, MD, USA; Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Yujing J Heng
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Gabrielle M Baker
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Grethe I Grenaker Alnæs
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Clara Bodelon
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Daniel G Stover
- Division of Medical Oncology, Stefanie Spielman Comprehensive Breast Center, Columbus, OH, USA; Department of Biomedical Informatics, Ohio State University, Columbus, OH, USA
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Cancer Program, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - A Heather Eliassen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Vessela N Kristensen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Rulla M Tamimi
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
9
|
Oshi M, Wu R, Khoury T, Gandhi S, Yan L, Yamada A, Ishikawa T, Endo I, Takabe K. Infiltration of Common Myeloid Progenitor (CMP) Cells is Associated With Less Aggressive Tumor Biology, Lower Risk of Brain Metastasis, Better Response to Immunotherapy, and Higher Patient Survival in Breast Cancer. Ann Surg 2024; 280:557-569. [PMID: 38946549 DOI: 10.1097/sla.0000000000006428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
OBJECTIVE To investigate the clinical relevance of common myeloid progenitor (CMP) cells in breast tumor microenvironment (TME). BACKGROUND The role of rare cells in TME is less studied. In Silico transcriptomic analyses of real-world data enable us to detect and quantify rare cells, including CMP cells. METHODS A total of 5176 breast cancer (BC) patients from SCAN-B, METABRIC, and 5 single-cell sequence cohorts were analyzed using the xCell algorithm. The high group was defined as more than two-thirds of the CMP scores in each cohort. RESULTS CMP cells consist of 0.07% to 0.25% of bulk breast tumor cells, more in estrogen receptor-positive (ER+) compared with triple-negative (TN) subtype (0.1% to 0.75%, 0.18% to 0.33% of immune cells, respectively). CMP cells did not correlate with any of the myeloid lineages or stem cells in TME. CMP infiltration was higher in smaller tumors, with lower Nottingham grade, and in ER+/HER2- than in TNBC consistently in both SCAN-B and METABRIC cohorts. High CMP was significantly associated with a lower risk of brain metastasis and with better survival, particularly in ER+/HER2-. High CMP enriched epithelial-to-mesenchymal transition and angiogenesis pathways, and less cell proliferation and DNA repair gene sets. High CMP ER+/HER2- was associated with less immune cell infiltration and cytolytic activity ( P <0.001). CMP infiltration correlated with neoadjuvant chemoimmunotherapy response for both ER+/HER2- and TNBC in the ISPY-2 cohort (AUC=0.69 and 0.74, respectively). CONCLUSIONS CMP in BC is inversely associated with cell proliferation and brain metastasis, better response to immunotherapy, and survival. This is the first to report the clinical relevance of CMP infiltration in BC.
Collapse
Affiliation(s)
- Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Rongrong Wu
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, Japan
| | - Thaer Khoury
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Shipra Gandhi
- Department of Medical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Li Yan
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Akimitsu Yamada
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Takashi Ishikawa
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY
- Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Department of Breast Surgery, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
10
|
Yadav SK, Leon-Ferre RA. Current treatment paradigms for triple-negative breast cancer. Minerva Med 2024; 115:589-598. [PMID: 39016529 DOI: 10.23736/s0026-4806.24.09458-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Triple negative breast cancer (TNBC) accounts for 15% of all breast cancers and is characterized by more aggressive biology, significant disease heterogeneity, and worse clinical outcomes. In recent years, improved understanding of TNBC tumor biology and its heterogeneity have led to the identification of new molecular targets, opening avenues for novel treatment strategies. Clinical trials evaluating immunotherapy, poly-ADP ribose polymerase (PARP) inhibitors, and antibody drug conjugates have shown improvement in clinical outcomes, leading to their incorporation to the treatment options available for patients with TNBC. This review aimed to provide the internal medicine specialist and primary care provider with a comprehensive overview of the current systemic therapy approaches for TNBC and introduce clinicians to novel therapies that have recently been added to the treatment armamentarium against this disease.
Collapse
Affiliation(s)
- Sumeet K Yadav
- Department of Hospital Internal Medicine, Mayo Clinic Health System, Mankato, MN, USA -
| | | |
Collapse
|
11
|
Sheva K, Roy Chowdhury S, Kravchenko-Balasha N, Meirovitz A. Molecular Changes in Breast Cancer Induced by Radiation Therapy. Int J Radiat Oncol Biol Phys 2024; 120:465-481. [PMID: 38508467 DOI: 10.1016/j.ijrobp.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
PURPOSE Breast cancer treatments are based on prognostic clinicopathologic features that form the basis for therapeutic guidelines. Although the utilization of these guidelines has decreased breast cancer-associated mortality rates over the past three decades, they are not adequate for individualized therapy. Radiation therapy (RT) is the backbone of breast cancer treatment. Although a highly successful therapeutic modality clinically, from a biological perspective, preclinical studies have shown RT to have the potential to alter tumor cell phenotype, immunogenicity, and the surrounding microenvironment, potentially changing the behavior of cancer cells and resulting in a significant variation in RT response. This review presents the recent advances in revealing the complex molecular changes induced by RT in the treatment of breast cancer and highlights the complexities of translating this information into clinically relevant tools for improved prognostic insights and the revelation of novel approaches for optimizing RT. METHODS AND MATERIALS Current literature was reviewed with a focus on recent advances made in the elucidation of tumor-associated radiation-induced molecular changes across molecular, genetic, and proteomic bases. This review was structured with the aim of providing an up-to-date overview over the very broad and complex subject matter of radiation-induced molecular changes and radioresistance, familiarizing the reader with the broader issue at hand. RESULTS The subject of radiation-induced molecular changes in breast cancer has been broached from various physiological focal points including that of the immune system, immunogenicity and the abscopal effect, tumor hypoxia, breast cancer classification and subtyping, molecular heterogeneity, and molecular plasticity. It is becoming increasingly apparent that breast cancer clinical subtyping alone does not adequately account for variation in RT response or radioresistance. Multiple components of the tumor microenvironment and immune system, delivered RT dose and fractionation schedules, radiation-induced bystander effects, and intrinsic tumor physiology and heterogeneity all contribute to the resultant RT outcome. CONCLUSIONS Despite recent advances and improvements in anticancer therapies, tumor resistance remains a significant challenge. As new analytical techniques and technologies continue to provide crucial insight into the complex molecular mechanisms of breast cancer and its treatment responses, it is becoming more evident that personalized anticancer treatment regimens may be vital in overcoming radioresistance.
Collapse
Affiliation(s)
- Kim Sheva
- The Legacy Heritage Oncology Center & Dr Larry Norton Institute, Soroka University Medical Center, Ben Gurion University of the Negev, Faculty of Medicine, Be'er Sheva, Israel.
| | - Sangita Roy Chowdhury
- The Institute of Biomedical and Oral Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nataly Kravchenko-Balasha
- The Institute of Biomedical and Oral Research, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Amichay Meirovitz
- The Legacy Heritage Oncology Center & Dr Larry Norton Institute, Soroka University Medical Center, Ben Gurion University of the Negev, Faculty of Medicine, Be'er Sheva, Israel.
| |
Collapse
|
12
|
Jia F, Liu L, Weng Q, Zhang H, Zhao X. Glycolysis-Metabolism-Related Prognostic Signature for Ewing Sarcoma Patients. Mol Biotechnol 2024; 66:2882-2896. [PMID: 37775679 DOI: 10.1007/s12033-023-00899-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/11/2023] [Indexed: 10/01/2023]
Abstract
Ewing sarcoma (EwS) is a malignant sarcoma which occurs in bone and soft tissues commonly happening in children with poor survival rates. Changes in cell metabolism, such as glycolysis, may provide the environment for the transformation and progression of tumors. We aimed to build a model to predict prognosis of EwS patients based on glycolysis and metabolism genes. Candidate genes were obtained by differential gene expression analysis based on GSE17679, GSE17674 and ICGC datasets. We performed GO and KEGG pathway enrichment analysis on candidate genes. Univariate Cox and LASSO Cox regression analyses were conducted to construct a model to calculate the Risk Score. GSEA was done between high-risk and low-risk groups. CIBERSORT was applied to analyze the immune landscape. We got 295 candidate glycolysis-metabolism-related genes which were enriched in 620 GO terms and 18 KEGG pathways. 12 Genes were selected by univariate Cox model and 5 of them were determined by LASSO Cox regression analysis to be used in the construction of the Risk Score model. The Risk Score could be considered as an independent prognosis factor. The immune landscape and immune checkpoints' expression significantly differed between high- and low-risk groups. Our research constructed a new glycolysis-metabolism-related genes (FABP5, EMILIN1, GLCE, PHF11 and PALM3) based prognostic signature for EwS patients and assisted in gaining insight into prognosis to improve therapies further.
Collapse
Affiliation(s)
- Fusen Jia
- Department of Hand & Foot Surgery, Zibo Central Hospital, Zhangdian District, Zibo, 255036, Shandong, People's Republic of China
| | - Lei Liu
- Orthopedic Surgery 2nd, Qilu Hospital Huantai Branch, Huantai County, Zibo, 256400, Shandong, People's Republic of China
| | - Qi Weng
- Department of Psychology, Zibo Maternal and Child Health Hospital, Zhangdian District, Zibo, 255022, Shandong, People's Republic of China
| | - Haiyang Zhang
- Department of Hand & Foot Surgery, Zibo Central Hospital, Zhangdian District, Zibo, 255036, Shandong, People's Republic of China
| | - Xuesheng Zhao
- Orthopedic Surgery 2nd, The Fifth People's Hospital of Jinan, No. 24297 Jingshi Road, Huaiyin District, Jinan, 250000, Shandong, People's Republic of China.
| |
Collapse
|
13
|
Tolue Ghasaban F, Taghehchian N, Zangouei AS, Keivany MR, Moghbeli M. MicroRNA-135b mainly functions as an oncogene during tumor progression. Pathol Res Pract 2024; 262:155547. [PMID: 39151250 DOI: 10.1016/j.prp.2024.155547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Late diagnosis is considered one of the main reasons of high mortality rate among cancer patients that results in therapeutic failure and tumor relapse. Therefore, it is needed to evaluate the molecular mechanisms associated with tumor progression to introduce efficient markers for the early tumor detection among cancer patients. The remarkable stability of microRNAs (miRNAs) in body fluids makes them potential candidates to use as the non-invasive tumor biomarkers in cancer screening programs. MiR-135b has key roles in prognosis and survival of cancer patients by either stimulating or inhibiting cell proliferation, invasion, and angiogenesis. Therefore, in the present review we assessed the molecular biology of miR-135b during tumor progression to introduce that as a novel tumor marker in cancer patients. It has been reported that miR-135b mainly acts as an oncogene by regulation of transcription factors, signaling pathways, drug response, cellular metabolism, and autophagy. This review paves the way to suggest miR-135b as a tumor marker and therapeutic target in cancer patients following the further clinical trials and animal studies.
Collapse
Affiliation(s)
- Faezeh Tolue Ghasaban
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Keivany
- Department of Radiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
14
|
Crombé A, Simonetti M, Longhi A, Hauger O, Fadli D, Spinnato P. Imaging of Osteosarcoma: Presenting Findings, Metastatic Patterns, and Features Related to Prognosis. J Clin Med 2024; 13:5710. [PMID: 39407770 PMCID: PMC11477067 DOI: 10.3390/jcm13195710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Osteosarcomas are rare malignancies (<1% of all cancers) that produce an osteoid matrix. Osteosarcomas are the second most frequent type of primary bone tumor after multiple myeloma and the most prevalent primary bone tumor in children. The spectrum of imaging findings of these malignancies varies significantly, reflecting different histological subtypes. For instance, conventional osteosarcoma typically presents with a mixed radiological pattern (lytic and bone mineralization) or with a completely eburneous one; aggressive periosteal reactions such as sunburst, Codman triangle, and soft-tissue components are frequently displayed. On the other hand, telangiectatic osteosarcoma usually presents as a purely lytic lesion with multiple fluid-fluid levels on MRI fluid-sensitive sequences. Other typical and atypical radiological patterns of presentation in other subtypes of osteosarcomas are described in this review. In addition to the characteristics associated with osteosarcoma subtyping, this review article also focuses on imaging features that have been associated with patient outcomes, namely response to chemotherapy and event-free and overall survivals. This includes simple semantic radiological features (such as tumor dimensions, anatomical location with difficulty of radical surgery, occurrence of pathological fractures, and presence of distant metastases), but also quantitative imaging parameters from diffusion-weighted imaging, dynamic contrast-enhanced MRI, and 18F-FDG positron emission tomography and radiomics approaches. Other particular features are described in the text. Overall, this comprehensive literature review aims to be a practical tool for oncologists, pathologists, surgeons, and radiologists involved in these patients' care.
Collapse
Affiliation(s)
- Amandine Crombé
- SARCOTARGET Team, Bordeaux Research Institute in Oncology (BRIC) INSERM U1312 & University of Bordeaux, F-33076 Bordeaux, France;
- Department of Skeletal Radiology, Pellegrin University Hospital, F-33076 Bordeaux, France
- Department of Radiology, Institut Bergonié, F-33076 Bordeaux, France
| | - Mario Simonetti
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Alessandra Longhi
- Osteoncology, Bone and Soft Tissue Sarcomas, and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Olivier Hauger
- Department of Skeletal Radiology, Pellegrin University Hospital, F-33076 Bordeaux, France
| | - David Fadli
- Department of Skeletal Radiology, Pellegrin University Hospital, F-33076 Bordeaux, France
| | - Paolo Spinnato
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| |
Collapse
|
15
|
Izadi A, Naimi A, Amjadi E, Beheshtiparvar D, Soltan M. The Prevalence of PD-L1 Expression in Triple-Negative Breast Cancer Patients and Its Correlation with Survival Rates and Other Prognostic Factors: A Survival Analysis. Adv Biomed Res 2024; 13:86. [PMID: 39512412 PMCID: PMC11542687 DOI: 10.4103/abr.abr_2_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 11/15/2024] Open
Abstract
Background Triple-negative breast cancer (TNBC) is a leading cause of cancer-related mortality among women, with a poor prognosis. The programmed cell death 1 (PD-1) pathway has emerged as a potential immunotherapy target. This study aimed to assess PD-L1 expression in TNBC patients and its relationship with prognostic variables. Materials and Methods This cross-sectional study included 107 TNBC patients recruited between 2016 and 2020. Patient age, tumor grade, and Ki67 expression were obtained from pathology reports. Immunohistochemistry was utilized to determine PD-L1 status, and 2-year survival data were collected through telephone follow-up. Results PD-L1 expression frequency in TNBC patients was 76.6%. Grade 3 was the most common cancer grade, significantly more prevalent in the PD-L1 positive group (P = 0.01). High Ki67 expression (≥14%) was observed in 89% of patients, significantly higher in the PD-L1 positive group (P = 0.003). The 2-year survival rates for the PD-L1 positive and negative groups were 84.1% and 92%, respectively, with no significant difference between the groups (P = 0.512). Conclusion This study investigated PD-L1 expression prevalence in TNBC patients and its correlation with prognostic variables. PD-L1 expression was associated with higher tumor grade and elevated Ki67 expression, indicating a potential role in tumor aggressiveness. However, despite these associations, PD-L1 expression did not significantly impact the 2-year survival rate in TNBC patients. These results emphasize the complexity of the immune microenvironment in TNBC and the necessity for further research to elucidate the precise role of PD-L1 in disease progression and patient outcomes.
Collapse
Affiliation(s)
- Arefeh Izadi
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azar Naimi
- Department of Pathology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Amjadi
- Poursina Hakim Digestive Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Maryam Soltan
- Department of Pathology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
16
|
Zhou D, Li M, Wu W, Wu Y, Nong Q, Wang S, Hong R. Distribution characteristics of immune infiltration and lymphovascular invasion in patients with breast cancer skin recurrence. Cancer Immunol Immunother 2024; 73:223. [PMID: 39235656 PMCID: PMC11377393 DOI: 10.1007/s00262-024-03783-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/17/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND To assess the distribution characteristics of immune infiltration and lymphovascular invasion in breast cancer skin recurrence patients. METHODS We retrospectively analyzed the clinicopathological data of patients who underwent radical surgery for primary breast cancer and experienced skin recurrence between January 2001 and April 2019. Immune and lymphovascular biomarkers were quantified in primary breast cancers, skin lesions and visceral metastatic lesions. Differences in biomarkers distribution between matched tissues were statistically analyzed using the Wilcoxon signed-rank test and Kruskal-Wallis one-way ANOVA. RESULTS A total of 71 female breast cancer patients were reviewed in this study. Our study found that the expression levels of various lymphocyte immune markers in primary tumor specimens were higher than those in skin recurrences. The expression of CD8, CD57 and CD31 in primary breast cancer was higher than those in the skin. Compared to visceral metastatic lesions, D2-40 was highly expressed in the skin, while CD8 tended to decrease. In the skin specimens, the expression of CD8 (P < 0.001), FOXP3 (P = 0.006) and CD68 (P < 0.001) in the intratumoral area was higher, while the expression of CD57 (P < 0.001) was higher in the peritumoral area. Analyzing specimens from the same patient at different time points of skin progression, it was found that the expression of peritumoral CD4 decreased (P = 0.044) as the disease progressed. The low expression of D2-40 and CD163 in the skin lesions suggested a decrease in DFS. CONCLUSION The immune microenvironment of breast cancer skin recurrence may be in a state of suppression, and this suppression may intensify with disease progression. The pattern of skin recurrence may be more inclined toward lymphatic invasion. Our study provides new insights into the biological behaviors of this disease and its response to immunotherapy.
Collapse
Affiliation(s)
- Danyang Zhou
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510000, China
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Mei Li
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510000, China
| | - Wei Wu
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510000, China
| | - Ying Wu
- Department of Interventional Therapy, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Qiaohong Nong
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen, China.
| | - Shusen Wang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510000, China.
| | - Ruoxi Hong
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510000, China.
| |
Collapse
|
17
|
Narusawa E, Kurozumi S, Katayama A, Koibuchi Y, Ogawa A, Takata D, Tokuda S, Obayashi S, Oyama T, Horiguchi J, Shirabe K, Fujii T. Utility of human epidermal growth factor 2 heterogeneity as a prognostic factor in triple-negative breast cancer. Med Mol Morphol 2024; 57:177-184. [PMID: 38619618 DOI: 10.1007/s00795-024-00386-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/08/2024] [Indexed: 04/16/2024]
Abstract
In some cases of human epidermal growth factor 2 (HER2)-negative breast cancer, including triple-negative breast cancer, HER2 expression is sporadically and strongly upregulated, a condition known as HER2 heterogeneity. We investigated the clinicopathological features of patients with HER2 heterogeneity in triple-negative breast cancers treated with neoadjuvant chemotherapy. Thirty-nine patients with triple-negative breast cancer who had undergone preoperative chemotherapy participated in this study. To assess for HER2 heterogeneity, we used dual in situ hybridization slides. We evaluated the association between HER2 heterogeneity and clinicopathological factors such as rates of pathologic complete response (pCR) and of recurrence-free survival. Of the 39 patients, 15 (38.5%) had cancers with HER2 heterogeneity. The pCR rates were 13.3% among patients with HER2 heterogeneity and 20.8% among those with HER2 nonheterogeneity, but the difference was not significant. The recurrence-free survival rate was significantly lower in patients with HER2 heterogeneity than in those without (P = 0.025). HER2 heterogeneity is a significant predictor of poor prognosis in patients with triple-negative breast cancer treated with neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Eriko Narusawa
- Department of Breast and Endocrine Surgery, National Hospital Organization Takasaki General Medical Center, Gunma, Japan
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Sasagu Kurozumi
- Department of Breast and Endocrine Surgery, National Hospital Organization Takasaki General Medical Center, Gunma, Japan.
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Gunma, Japan.
- Department of Breast Surgery, International University of Health and Welfare, 852, Hatakeda, Narita City, Chiba, 286-8520, Japan.
| | - Ayaka Katayama
- Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Yukio Koibuchi
- Department of Breast and Endocrine Surgery, National Hospital Organization Takasaki General Medical Center, Gunma, Japan
| | - Akira Ogawa
- Department of Diagnostic Pathology, National Hospital Organization Takasaki General Medical Center, Gunma, Japan
| | - Daisuke Takata
- Department of Breast and Endocrine Surgery, National Hospital Organization Takasaki General Medical Center, Gunma, Japan
| | - Shoko Tokuda
- Department of Breast and Endocrine Surgery, National Hospital Organization Takasaki General Medical Center, Gunma, Japan
| | - Sayaka Obayashi
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Tetsunari Oyama
- Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Jun Horiguchi
- Department of Breast Surgery, International University of Health and Welfare, 852, Hatakeda, Narita City, Chiba, 286-8520, Japan
| | - Ken Shirabe
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Takaaki Fujii
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Gunma, Japan
| |
Collapse
|
18
|
Ghannam SF, Makhlouf S, Alsaleem M, Rutland CS, Allegrucci C, Mongan NP, Rakha EA. The Conflicting Prognostic Role of the Stroma-Tumor Ratio in Breast Cancer Molecular Subtypes. Mod Pathol 2024; 37:100607. [PMID: 39216541 DOI: 10.1016/j.modpat.2024.100607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 07/05/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
The tumor microenvironment plays a key role in tumor progression. The proportion of the stroma-to-tumor cells (stroma-tumor ratio [STR]) has a variable prognostic significance in breast cancer (BC) molecular classes. In this study, we evaluated the mechanisms of stroma formation and composition in different molecular subtypes, which could explain the different prognostic values. This study interrogated 2 large well-characterized BC cohorts. Firstly, an in-house BC cohort (n = 822) encompassing all BC molecular subtypes from the Nottingham series was used. In each subtype, stromal assessment was carried out, and tumors were assigned to 2 groups: high and low STR, and further correlation with tumor characteristics and patient outcomes was investigated. The contribution of tumor-infiltrating lymphocytes (TILs) to the stroma has also been studied. Secondly, the public domain data set (The Cancer Genome Atlas data [TCGA], n = 978) was used as a validation cohort and for differential gene expression (DGE) analysis. DGE was performed to identify a set of genes associated with high STR in the 3 main molecular subtypes. High STR was associated with favorable patient outcomes in the whole cohort and in the luminal subtype, whereas high STR showed an association with poor outcomes in triple-negative BC (TNBC). No association with outcome was found in the HER2 enriched BC. DGE analysis identified various pathways in luminal and TNBC subtypes, with immune upregulation and hypoxia pathways enriched in TNBC, and pathways related to fibrosis and stromal remodeling enriched in the luminal group instead. Low STR accompanied by high TILs was shown to carry the most favorable prognosis in TNBC. In line with the DGE results, TILs played a major prognostic role in the stroma of TNBC but not in the luminal or HER2-enriched subtypes. The underlying molecular mechanisms and composition of the stroma in BC are variable in the molecular subtypes and explain the difference in its prognostic significance.
Collapse
Affiliation(s)
- Suzan F Ghannam
- Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom; Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt; Nottingham Breast Cancer Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Shorouk Makhlouf
- Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom; Department of Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mansour Alsaleem
- Unit of Scientific Research, Applied College, Qassim University, Qassim, Saudi Arabia
| | - Catrin Sian Rutland
- Nottingham Breast Cancer Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom; School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Cinzia Allegrucci
- Nottingham Breast Cancer Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom; School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Nigel P Mongan
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom; Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | - Emad A Rakha
- Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom; Cellular Pathology Department, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom; Pathology Department, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|
19
|
Zeng D, Wang Y, Wen N, Lu J, Li B, Cheng N. The prognostic value of preoperative peripheral blood inflammatory biomarkers in extrahepatic cholangiocarcinoma: a systematic review and meta-analysis. Front Oncol 2024; 14:1437978. [PMID: 39267826 PMCID: PMC11390462 DOI: 10.3389/fonc.2024.1437978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/30/2024] [Indexed: 09/15/2024] Open
Abstract
Background Recent evidence indicates that inflammation plays a major role in the pathogenesis and progression of CCA. This meta-analysis seeks to evaluate the prognostic implications of preoperative inflammatory markers, specifically NLR, PLR, and LMR, in patients with eCCA. By focusing on these preoperative biomarkers, this study aims to provide valuable insights into their prognostic value and potential utility in clinical practice. Methods For this analysis, comprehensive searches were conducted in PubMed, Embase, and Web of Science databases from inception to May 2024. The primary outcomes of interest focused on the association between the levels of NLR, PLR, and LMR and the prognosis of eCCA patients. Statistical analyses were conducted using STATA 17.0 software. Results The meta-analysis, involving 20 retrospective studies with 5553 participants, revealed significant correlations between preoperative biomarkers and the prognosis of eCCA patients. Elevated NLR, PLR, and decreased LMR levels were extensively studied regarding overall survival (OS) in eCCA patients. Elevated NLR was an independent predictor of poor OS (HR 1.86, p < 0.001), similar to elevated PLR (HR 1.76, p < 0.001), while decreased LMR predicted poor OS (HR 2.16, p < 0.001). Subgroup analyses based on eCCA subtypes and curative surgery status showed consistent results. Conclusions In conclusion, our study emphasizes the clinical significance of assessing NLR, PLR, and LMR preoperatively to predict patient prognosis. Elevated NLR and PLR values, along with decreased LMR values, were linked to poorer overall survival (OS). Large-scale prospective cohort studies are required to confirm their independent prognostic value in eCCA. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42024551031.
Collapse
Affiliation(s)
- Di Zeng
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yaoqun Wang
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ningyuan Wen
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiong Lu
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bei Li
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Nansheng Cheng
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
20
|
Stover DG, Salgado R, Savenkov O, Ballman K, Mayer EL, Magbanua MJM, Loi S, Vater M, Glover K, Watson M, Wen Y, Symmans WF, Perou C, Carey LA, Partridge AH, Rugo HS. Association between tumor-infiltrating lymphocytes and survival in patients with metastatic breast cancer receiving first-line chemotherapy: analysis of CALGB 40502. NPJ Breast Cancer 2024; 10:75. [PMID: 39169033 PMCID: PMC11339397 DOI: 10.1038/s41523-024-00683-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
Association of stromal tumor-infiltrating lymphocytes (sTILs) with survival outcomes among patients with metastatic breast cancer (MBC) remains unclear. The primary objective was to evaluate the association of sTILs with progression-free survival in randomized phase III trial CALGB 40502. sTILs were associated with progression-free and overall survival in chemotherapy-treated MBC when controlling for treatment arm; however, this effect did not remain significant after additional adjustment for hormone receptor status. CALGB is now part of the Alliance for Clinical Trials in Oncology. Trial Registration: ClinicalTrials.gov: NCT00785291.
Collapse
Affiliation(s)
- Daniel G Stover
- Division of Medical Oncology, Department of Medicine, The Ohio State University College of Medicine, Columbus, OH, USA.
- Pelotonia Institute for ImmunoOncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
| | - Roberto Salgado
- GZA-ZNA Hospitals, Antwerp, Belgium
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Oleksander Savenkov
- Alliance Statistics and Data Management Center, Weill-Cornell Medical College, New York, NY, USA
| | - Karla Ballman
- Alliance Statistics and Data Management Center, Weill-Cornell Medical College, New York, NY, USA
| | | | | | - Sherene Loi
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Mark Vater
- Division of Medical Oncology, Department of Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Kristyn Glover
- Division of Medical Oncology, Department of Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Mark Watson
- Washington University School of Medicine, St. Louis, MO, USA
| | - Yujia Wen
- Alliance Protocol Operations Office, University of Chicago, Chicago, IL, USA
| | - W Fraser Symmans
- University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Charles Perou
- University of North Carolina, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - Lisa A Carey
- University of North Carolina, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | | | - Hope S Rugo
- University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
21
|
Thomas N, Garaud S, Langouo M, Sofronii D, Boisson A, De Wind A, Duwel V, Craciun L, Larsimont D, Awada A, Willard-Gallo K. Tumor-Infiltrating Lymphocyte Scoring in Neoadjuvant-Treated Breast Cancer. Cancers (Basel) 2024; 16:2895. [PMID: 39199667 PMCID: PMC11352458 DOI: 10.3390/cancers16162895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
Neoadjuvant chemotherapy (NAC) is now the standard of care for patients with locally advanced breast cancer (BC). TIL scoring is prognostic and adds predictive value to the residual cancer burden evaluation after NAC. However, NAC induces changes in the tumor, and the reliability of TIL scoring in post-NAC samples has not yet been studied. H&E- and dual CD3/CD20 chromogenic IHC-stained tissues were scored for stromal and intra-tumoral TIL by two experienced pathologists on pre- and post-treatment BC tissues. Digital TIL scoring was performed using the HALO® image analysis software (version 2.2). In patients with residual disease, we show a good inter-pathologist correlation for stromal TIL on H&E-stained tissues (CCC value 0.73). A good correlation for scoring with both staining methods (CCC 0.81) and the digital TIL scoring (CCC 0.77) was also observed. Overall concordance for TIL scoring in patients with a complete response was however poor. This study reveals there is good reliability for TIL scoring in patients with detectable residual tumors after NAC treatment, which is comparable to the scoring of untreated breast cancer patients. Based on the good consistency observed with digital TIL scoring, the development of a validated algorithm in the future might be advantageous.
Collapse
Affiliation(s)
- Noémie Thomas
- Molecular Immunology Unit, Institut Jules Bordet, 1070 Brussels, Belgium (A.B.)
| | - Soizic Garaud
- Molecular Immunology Unit, Institut Jules Bordet, 1070 Brussels, Belgium (A.B.)
| | - Mireille Langouo
- Molecular Immunology Unit, Institut Jules Bordet, 1070 Brussels, Belgium (A.B.)
| | - Doïna Sofronii
- Molecular Immunology Unit, Institut Jules Bordet, 1070 Brussels, Belgium (A.B.)
| | - Anaïs Boisson
- Molecular Immunology Unit, Institut Jules Bordet, 1070 Brussels, Belgium (A.B.)
| | - Alexandre De Wind
- Anantomical Pathology Department, Institut Jules Bordet, 1070 Brussels, Belgium
| | - Valérie Duwel
- Anatomical Pathology Department, AZ Klina, 2930 Brasschaat, Belgium;
| | - Ligia Craciun
- Anantomical Pathology Department, Institut Jules Bordet, 1070 Brussels, Belgium
- Tumor Bank, Institut Jules Bordet, 1070 Brussels, Belgium
| | - Dennis Larsimont
- Anantomical Pathology Department, Institut Jules Bordet, 1070 Brussels, Belgium
| | - Ahmad Awada
- Medical Oncology, Institut Jules Bordet, 1070 Brussels, Belgium
| | - Karen Willard-Gallo
- Molecular Immunology Unit, Institut Jules Bordet, 1070 Brussels, Belgium (A.B.)
| |
Collapse
|
22
|
de Moraes FCA, Souza MEC, Sano VKT, Moraes RA, Melo AC. Association of tumor-infiltrating lymphocytes with clinical outcomes in patients with triple-negative breast cancer receiving neoadjuvant chemotherapy: a systematic review and meta-analysis. Clin Transl Oncol 2024:10.1007/s12094-024-03661-8. [PMID: 39154313 DOI: 10.1007/s12094-024-03661-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024]
Abstract
OBJECTIVE Triple-negative breast cancer (TNBC) presents a clinical challenge as an aggressive tumor, correlated with unfavorable prognosis. Tumor-infiltrating lymphocytes (TILs) have garnered interest as a potential prognostic biomarker. However, the disparity in outcomes between varying TILs rates remains inadequately explored. METHODS PubMed, Scopus, Web of Science, and Cochrane databases were searched for studies about the prognostic value of TILs in patients with TNBC receiving neoadjuvant chemotherapy. The hazard ratios (HRs) or odds ratios (ORs) were computed for binary endpoints, with 95% confidence intervals (CIs). RESULTS Twenty-nine studies were included, involving a population of six thousand one hundred sixty-one (80.41%) with TNBC. The cut-off TILs value ranged from 10 to 60%, with 50% being the most related value. Compared with the low-TIL expression group, the disease-free survival (DFS) (HR 0.71; 95% CI 0.61-0.82; p < 0.00001) and overall survival (OS) (HR 0.76; 95% CI 0.63-0.90; p = 0.002) rates showed significant improvement with higher TIL infiltrations. In the subgroup analyses of the lymphocyte subtypes CD4 + and CD8 + , there was statistical significance favoring higher TILs rates in both subtypes, each associated with improved DFS (HR 0.48; 95% CI 0.33-0.71; p = 0.0002) and OS (HR 0.53; 95% CI 0.36-0.78; p = 0.001), regardless of which cell subtype was predominantly infiltrated. The complete pathological response analysis showed better rates for the higher TIL group than the control for both the TIL (OR 1.29; 95% CI 1.13-1.48; p = 0.0003) and Ki-67 (OR 2.74; 95% CI 2.01-3.73; p < 0.00001) analyses. CONCLUSION Higher expressions of TILs in patients with TNBC were associated with improved significantly DFS, OS, and pCR outcomes.
Collapse
Affiliation(s)
| | | | | | | | - Ana C Melo
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
23
|
Opdam M, van Rossum AGJ, Hoogstraat M, Bounova G, Horlings HM, van Werkhoven E, Mandjes IAM, van Leeuwen-Stok AE, Canisius S, van Tinteren H, Imholz ALT, Portielje JEA, Bos MEMM, Bakker S, Wesseling J, Kester L, van Rheenen J, Rutgers EJ, de Menezes RX, Wessels LFA, Kok M, Oosterkamp HM, Linn SC. Predictive gene expression profile for adjuvant taxane benefit in breast cancer in the MATADOR trial. iScience 2024; 27:110425. [PMID: 39206149 PMCID: PMC11357803 DOI: 10.1016/j.isci.2024.110425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/10/2024] [Accepted: 06/27/2024] [Indexed: 09/04/2024] Open
Abstract
The primary objective of the prospective, randomized, multicenter, phase 3 biomarker Microarray Analysis in breast cancer to Taylor Adjuvant Drugs Or Regimens trial (MATADOR: ISRCTN61893718) is to generate a gene expression profile that can predict benefit from either docetaxel, doxorubicin, and cyclophosphamide (TAC) or dose-dense scheduled doxorubicin and cyclophosphamide (ddAC). Patients with a pT1-3, pN0-3 tumor were randomized 1:1 between ddAC and TAC. The primary endpoint was a gene profile-treatment interaction for recurrence-free survival (RFS). We observed 117 RFS events in 664 patients with a median follow-up of 7 years. Hallmark gene set analyses showed significant association between enrichment in immune-related gene expression and favorable outcome after TAC in hormone receptor-negative, human epidermal growth factor receptor 2 (HER2)-negative breast cancer (BC) (triple-negative breast cancer [TNBC]). We validated this association in TNBC patients treated with TAC on H&E slides; stromal tumor-infiltrating lymphocytes (sTILs) ≥20% was associated with longer RFS (hazard ratio 0.18, p = 0.01), while in patients treated with ddAC no difference in RFS was seen (hazard ratio 0.92, p = 0.86, p interaction = 0.02).
Collapse
Affiliation(s)
- Mark Opdam
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Annelot G J van Rossum
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marlous Hoogstraat
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Gergana Bounova
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Hugo M Horlings
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Erik van Werkhoven
- Biometrics department, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ingrid A M Mandjes
- Data center, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | - Sander Canisius
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Harm van Tinteren
- Biometrics department, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Alex L T Imholz
- Department of Medical Oncology, Deventer Ziekenhuis, Deventer, the Netherlands
| | - Johanneke E A Portielje
- Department of Medical Oncology, HagaZiekenhuis, The Hague, the Netherlands
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Monique E M M Bos
- Department of Internal Oncology, Reinier de Graaf Gasthuis, Delft, the Netherlands
| | - Sandra Bakker
- Department of Medical Oncology, Zaans Medisch Centrum, Zaandam, the Netherlands
| | - Jelle Wesseling
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Lennart Kester
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jacco van Rheenen
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Emiel J Rutgers
- Department of Surgical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Renee X de Menezes
- Biostatistics Centre, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Lodewyk F A Wessels
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, the Netherlands
| | - Marleen Kok
- Division of Tumor biology & Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Hendrika M Oosterkamp
- Department of Medical Oncology, Haaglanden Medisch Centrum, The Hague, the Netherlands
| | - Sabine C Linn
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Pathology, University Medical Center, Utrecht, the Netherlands
| |
Collapse
|
24
|
Hu L, Gu Y, Xu W, Wang C. Association of clinicopathologic and sonographic features with stromal tumor-infiltrating lymphocytes in triple-negative breast cancer. BMC Cancer 2024; 24:997. [PMID: 39135184 PMCID: PMC11320771 DOI: 10.1186/s12885-024-12778-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Increased level of stromal tumor-infiltrating lymphocytes (sTILs) are associated with therapeutic outcomes and prognosis in triple-negative breast cancer (TNBC). This study aimed to investigate the associations of clinicopathologic and sonographic features with sTILs level in TNBC. METHODS This study included invasive TNBC patients with postoperative evaluation of sTILs after surgical resection. Tumor shape, margin, orientation, echo pattern, posterior features, calcification, and vascularity were retrospectively evaluated. The patients were categorized into high-sTILs (≥ 20%) and low-sTILs (< 20%) level groups. Chi-square or Fisher's exact tests were used to assess the association of clinicopathologic and sonographic features with sTILs level. RESULTS The 171 patients (mean ± SD age, 54.7 ± 10.3 years [range, 22‒87 years]) included 58.5% (100/171) with low-sTILs level and 41.5% (71/171) with high-sTILs level. The TNBC tumors with high-sTILs level were more likely to be no special type invasive carcinoma (p = 0.008), higher histologic grade (p = 0.029), higher Ki-67 proliferation rate (all p < 0.05), and lower frequency of associated DCIS component (p = 0.026). In addition, the TNBC tumors with high-sTILs level were more likely to be an oval or round shape (p = 0.001), parallel orientation (p = 0.011), circumscribed or micro-lobulated margins (p < 0.001), complex cystic and solid echo patterns (p = 0.001), posterior enhancement (p = 0.002), and less likely to have a heterogeneous pattern (p = 0.001) and no posterior features (p = 0.002). CONCLUSIONS This preliminary study showed that preoperative sonographic characteristics could be helpful in distinguishing high-sTILs from low-sTILs in TNBC patients.
Collapse
Affiliation(s)
- Ling Hu
- Department of Ultrasound in Medicine, Hangzhou Women's Hospital, Hangzhou, Zhejiang, China
- Department of Ultrasound in Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yunxia Gu
- Department of Ultrasound in Medicine, Hangzhou Women's Hospital, Hangzhou, Zhejiang, China
| | - Wen Xu
- Department of Ultrasound in Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chao Wang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
25
|
Stanton S, Schmitz F, Copeland W, DellAringa J, Newhall K, Disis M. Populations of triple negative and hormone receptor positive HER2 negative breast tumors share immune gene profiles. RESEARCH SQUARE 2024:rs.3.rs-4542494. [PMID: 39149486 PMCID: PMC11326399 DOI: 10.21203/rs.3.rs-4542494/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
In breast cancer, triple negative (TN) breast cancer has most responses to immune checkpoint inhibitor (ICI) therapy. Lymphocyte infiltrate does not impact prognosis in Hormone receptor positive HER2 negative (HR + HER2-) breast tumors and few HR + HER2- tumors respond to ICI. We contrasted immune-associated gene expression between 119 TN and 475 HR + HER2- breast tumors from The Cancer Genome Atlas (TCGA) and confirmed our findings in 299 TN and 1369 HR + HER2- breast tumors in the METABRIC database. TN and HR+ HER2- tumors grouped into immune-high or -low tumors, both subtypes were represented in the immune-high group. The largest difference between the immune-high TN and HR + HER2- tumors was TN tumors had more abundant Th1 and Th2 CD4+ T cells while HR + HER2- tumors had more abundant fibroblasts (log2FC > 0.3; p < 10×10-10). This suggests an immune-high signature is not dictated by breast cancer subtype, but fibroblast subsets associated with worse outcome were higher in the immune-high HR + HER2- tumors.
Collapse
|
26
|
Guo S, Kolan S, Li G, Hammarström CL, Grimolizzi F, Stuhr LEB, Skålhegg BS. Reduced EO771-induced tumour growth and increased overall-survival of mice ablated for immune cell-specific catalytic subunit Cβ2 of protein kinase A. Immunol Lett 2024; 268:106884. [PMID: 38908524 DOI: 10.1016/j.imlet.2024.106884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/30/2024] [Accepted: 06/08/2024] [Indexed: 06/24/2024]
Abstract
Ablation of the immune-specific catalytic subunit Cβ2 of protein kinase A is associated with a proinflammatory phenotype and increased sensitivity to autoimmunity in mice. Here we show that tumour growth of the adenocarcinoma cell line EO771 in the breast and in the lung after injection into the mammary fat pad and tail vein, respectively, was significantly reduced in mice ablated for Cβ2 compared to wild-type mice. In both cases, the breast and lung tumours showed increased infiltration of immune cells in the mice lacking Cβ2 compared to wild-type mice. Despite this, it appeared that solid tissue- versus intravenously injected EO771 cells evoked different immune responses. This was reflected by significantly increased levels of splenic proinflammatory immune cells and circulating cytokines in Cβ2 ablated mice carrying breast- but not the lung tumours. Moreover, Cβ2 ablated mice injected with EO771 cells showed increased overall survival compared to wild-type mice. Taken together, our results suggest for a role for immune cell-specific Cβ2 in protecting against tumour growth induced by EO771 cells in mice that is reflected in improved overall survival.
Collapse
Affiliation(s)
- Shuai Guo
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Shrikant Kolan
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Gaoyang Li
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | - Franco Grimolizzi
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | - Bjørn Steen Skålhegg
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
27
|
Al-Ruwishan A, Amer B, Salem A, Abdi A, Chimpandu N, Esa A, Melemenis A, Saleem MZ, Mathew R, Gamallat Y. Advancements in Understanding the Hide-and-Seek Strategy of Hibernating Breast Cancer Cells and Their Implications in Oncology from a Broader Perspective: A Comprehensive Overview. Curr Issues Mol Biol 2024; 46:8340-8367. [PMID: 39194709 DOI: 10.3390/cimb46080492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Despite recent advancements in technology, breast cancer still poses a significant threat, often resulting in fatal consequences. While early detection and treatments have shown some promise, many breast cancer patients continue to struggle with the persistent fear of the disease returning. This fear is valid, as breast cancer cells can lay dormant for years before remerging, evading traditional treatments like a game of hide and seek. The biology of these dormant breast cancer cells presents a crucial yet poorly understood challenge in clinical settings. In this review, we aim to explore the mysterious world of dormant breast cancer cells and their significant impact on patient outcomes and prognosis. We shed light on the elusive role of the G9a enzyme and many other epigenetic factors in breast cancer recurrence, highlighting its potential as a target for eliminating dormant cancer cells and preventing disease relapse. Through this comprehensive review, we not only emphasise the urgency of unravelling the dynamics of dormant breast cancer cells to improve patient outcomes and advance personalised oncology but also provide a guide for fellow researchers. By clearly outlining the clinical and research gaps surrounding dormant breast cancer cells from a molecular perspective, we aim to inspire further exploration of this critical area, ultimately leading to improved patient care and treatment strategies.
Collapse
Affiliation(s)
- Aiman Al-Ruwishan
- Space for Research Initiative, Research Horizons, London NW10 2PU, UK
| | - Bushra Amer
- Department of Family Medicine, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Ahmed Salem
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, 53210 Pardubice, Czech Republic
| | - Ahmed Abdi
- Independent Researcher, Uxbridge UB9 6JH, UK
| | | | | | | | - Muhammad Zubair Saleem
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Roselit Mathew
- Department of Oncology, Biochemistry and Molecular Biology, and Laboratory Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Yaser Gamallat
- Department of Oncology, Biochemistry and Molecular Biology, and Laboratory Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
28
|
Harris MA, Savas P, Virassamy B, O'Malley MMR, Kay J, Mueller SN, Mackay LK, Salgado R, Loi S. Towards targeting the breast cancer immune microenvironment. Nat Rev Cancer 2024; 24:554-577. [PMID: 38969810 DOI: 10.1038/s41568-024-00714-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/31/2024] [Indexed: 07/07/2024]
Abstract
The tumour immune microenvironment is shaped by the crosstalk between cancer cells, immune cells, fibroblasts, endothelial cells and other stromal components. Although the immune tumour microenvironment (TME) serves as a source of therapeutic targets, it is also considered a friend or foe to tumour-directed therapies. This is readily illustrated by the importance of T cells in triple-negative breast cancer (TNBC), culminating in the advent of immune checkpoint therapy in combination with cytotoxic chemotherapy as standard of care for both early and advanced-stage TNBC, as well as recent promising signs of efficacy in a subset of hormone receptor-positive disease. In this Review, we discuss the various components of the immune TME in breast cancer and therapies that target or impact the immune TME, as well as the complexity of host physiology.
Collapse
Affiliation(s)
- Michael A Harris
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Peter Savas
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Balaji Virassamy
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Megan M R O'Malley
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Jasmine Kay
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Laura K Mackay
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Roberto Salgado
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Pathology, ZAS Ziekenhuizen, Antwerp, Belgium
| | - Sherene Loi
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia.
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
| |
Collapse
|
29
|
Sun HK, Jiang WL, Zhang SL, Xu PC, Wei LM, Liu JB. Predictive value of tumor-infiltrating lymphocytes for neoadjuvant therapy response in triple-negative breast cancer: A systematic review and meta-analysis. World J Clin Oncol 2024; 15:920-935. [PMID: 39071463 PMCID: PMC11271722 DOI: 10.5306/wjco.v15.i7.920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/21/2024] [Accepted: 06/06/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND The association between tumor-infiltrating lymphocyte (TIL) levels and the response to neoadjuvant therapy (NAT) in patients with triple-negative breast cancer (TNBC) remains unclear. AIM To investigate the predictive potential of TIL levels for the response to NAT in TNBC patients. METHODS A systematic search of the National Center for Biotechnology Information PubMed database was performed to collect relevant published literature prior to August 31, 2023. The correlation between TIL levels and the NAT pathologic complete response (pCR) in TNBC patients was assessed using a systematic review and meta-analysis. Subgroup analysis, sensitivity analysis, and publication bias analysis were also conducted. RESULTS A total of 32 studies were included in this meta-analysis. The overall meta-analysis results indicated that the pCR rate after NAT treatment in TNBC patients in the high TIL subgroup was significantly greater than that in patients in the low TIL subgroup (48.0% vs 27.7%) (risk ratio 2.01; 95% confidence interval 1.77-2.29; P < 0.001, I 2 = 56%). Subgroup analysis revealed that the between-study heterogeneity originated from differences in study design, TIL level cutoffs, and study populations. Publication bias could have existed in the included studies. The meta-analysis based on different NAT protocols revealed that all TNBC patients with high levels of TILs had a greater rate of pCR after NAT treatment in all protocols (all P ≤ 0.01), and there was no significant between-protocol difference in the statistics among the different NAT protocols (P = 0.29). Additionally, sensitivity analysis demonstrated that the overall results of the meta-analysis remained consistent when the included studies were individually excluded. CONCLUSION TILs can serve as a predictor of the response to NAT treatment in TNBC patients. TNBC patients with high levels of TILs exhibit a greater NAT pCR rate than those with low levels of TILs, and this predictive capability is consistent across different NAT regimens.
Collapse
Affiliation(s)
- Hai-Kuan Sun
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471000, Henan Province, China
| | - Wen-Long Jiang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471000, Henan Province, China
| | - Shi-Lei Zhang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471000, Henan Province, China
| | - Peng-Cheng Xu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471000, Henan Province, China
| | - Li-Min Wei
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471000, Henan Province, China
| | - Jiang-Bo Liu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471000, Henan Province, China
| |
Collapse
|
30
|
Jama M, Tabana Y, Barakat KH. Targeting cytotoxic lymphocyte antigen 4 (CTLA-4) in breast cancer. Eur J Med Res 2024; 29:353. [PMID: 38956700 PMCID: PMC11218087 DOI: 10.1186/s40001-024-01901-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/23/2024] [Indexed: 07/04/2024] Open
Abstract
Breast cancer (BC) has a high mortality rate and is one of the most common malignancies in the world. Initially, BC was considered non-immunogenic, but a paradigm shift occurred with the discovery of tumor-infiltrating lymphocytes (TILs) and regulatory T cells (Tregs) in the BC tumor microenvironment. CTLA-4 (Cytotoxic T-lymphocyte-associated protein 4) immunotherapy has emerged as a treatment option for BC, but it has limitations, including suboptimal antitumor effects and toxicity. Research has demonstrated that anti-CTLA-4 combination therapies, such as Treg depletion, cancer vaccines, and modulation of the gut microbiome, are significantly more effective than CTLA-4 monoclonal antibody (mAB) monotherapy. Second-generation CTLA-4 antibodies are currently being developed to mitigate immune-related adverse events (irAEs) and augment antitumor efficacy. This review examines anti-CTLA-4 mAB in BC, both as monotherapy and in combination with other treatments, and sheds light on ongoing clinical trials, novel CTLA-4 therapeutic strategies, and potential utility of biomarkers in BC.
Collapse
Affiliation(s)
- Maryam Jama
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Yasser Tabana
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Khaled H Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada.
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
31
|
Sasa S, Inoue H, Nakagawa M, Toba H, Goto M, Okumura K, Misaki M, Inui T, Yukishige S, Nishisho A, Hino N, Kanematsu M, Bando Y, Uehara H, Tangoku A, Takizawa H. Long-Term Outcomes of S-1 Combined With Low-Dose Docetaxel as Neoadjuvant Chemotherapy (N-1 Study, Phase II Trial) in Patients With Operable Breast Cancer. Clin Breast Cancer 2024; 24:e350-e359.e2. [PMID: 38462397 DOI: 10.1016/j.clbc.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND We previously reported that S-1 and low-dose docetaxel (DOC) (N-1 study, phase II trial) could be a well-tolerated and effective neoadjuvant chemotherapies (NACs) for patients with operable breast cancer. Herein, we analyzed the long-term outcomes and developed clinicopathological and molecular predictors of pathological complete response (pCR). PATIENTS AND METHODS Eighty-three patients received S-1 (40 mg/m2 orally on days 1-14) and DOC (40 mg/m2 intravenously on day 1) every 3 weeks for 4 to 8 cycles. Disease-free survival (DFS) and overall survival (OS) were analyzed for each population with a pCR status. To assess the relationship between pCR and clinicopathological factors such as tumor-infiltrating lymphocytes (TILs, 1+ <10%, 2+ 10%-50%, and 3+ >50%) and nuclear grade (NG), microarray was used to compare the microRNA profiles of the pCR and non-pCR groups using core needle biopsy specimens. RESULTS With a median follow-up duration of 99.0 (range, 9.0-129.0) months, the 5-year DFS and OS rates were 80.7% and 90.9%, respectively. The 5-year OS rate of the pCR group was significantly better than that of the non-pCR group (100% vs. 86.2%, p = .0176). Specifically, in triple-negative patients, the difference was significant (100% vs. 60.0%, p = .0224). Multivariate analysis revealed that high TILs (≥2-3+) and NG 2-3 independently predicted pCR. Microarray data revealed that 3 miRNAs (miR-215-5p, miR-196a-5p, and miR-196b-5p) were significantly upregulated in the pCR group. CONCLUSION Our NAC regimen achieved favorable long-term outcomes and significantly improved OS in the pCR group. High TILs, NG 2-3, and some miRNAs may be predictors of pCR.
Collapse
Affiliation(s)
- Soichiro Sasa
- Department of Thoracic, Endocrine Surgery and Oncology, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Hiroaki Inoue
- Department of Thoracic, Endocrine Surgery and Oncology, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Misako Nakagawa
- Department of Surgery, Takamatsu Municipal Hospital, Takamatsu, Japan
| | - Hiroaki Toba
- Department of Thoracic, Endocrine Surgery and Oncology, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan.
| | - Masakazu Goto
- Department of Thoracic, Endocrine Surgery and Oncology, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Kazumasa Okumura
- Department of Thoracic, Endocrine Surgery and Oncology, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Mariko Misaki
- Department of Thoracic, Endocrine Surgery and Oncology, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Tomohiro Inui
- Department of Thoracic, Endocrine Surgery and Oncology, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Sawaka Yukishige
- Department of Thoracic, Endocrine Surgery and Oncology, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Aya Nishisho
- Department of Surgery, Tokushima Municipal Hospital, Tokushima, Japan
| | - Naoki Hino
- Department of Surgery, Tokushima Municipal Hospital, Tokushima, Japan
| | - Miyuki Kanematsu
- Department of Surgery, Tokushima Red Cross Hospital, Komatsushima-cho, Komatsushima, Japan
| | - Yoshimi Bando
- Division of Pathology, Tokushima University Hospital, Tokushima, Japan
| | - Hisanori Uehara
- Division of Pathology, Tokushima University Hospital, Tokushima, Japan
| | - Akira Tangoku
- Department of Thoracic, Endocrine Surgery and Oncology, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Hiromitsu Takizawa
- Department of Thoracic, Endocrine Surgery and Oncology, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
32
|
Zhang L, Xiao J, Li Y, Liu B, Xie L. Efficacy and Safety of Chidamide in Combination with PD-1 Inhibitor and Radiotherapy for HER2-Negative Advanced Breast Cancer: Study Protocol of a Single Arm Prospective Study. Cancer Manag Res 2024; 16:691-701. [PMID: 38948681 PMCID: PMC11213541 DOI: 10.2147/cmar.s464677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/31/2024] [Indexed: 07/02/2024] Open
Abstract
Purpose As one of the most important breakthroughs in cancer therapy, immune checkpoint inhibitors have greatly prolonged survival of patients with breast cancer. However, their application and efficacy are limited, especially for advanced HER2-negative breast cancer. It has been reported that epigenetic modulation of the histone deacetylase (HDAC) inhibitor chidamide, as well as immune microenvironment modulation of radiotherapy are potentially synergistic with immunotherapy. Thus, the combination of chidamide, radiotherapy and immunotherapy is expected to improve prognosis of patients with advanced HER2-negative breast cancer. Patients and Methods This is a single-arm, open, prospective clinical trial investigating the efficacy and safety of the combination of HDAC inhibitor chidamide, anti-PD-1 antibody sintilimab, and the novel immuno-radiotherapy, which aims to enhance efficacy of immunotherapy, in subsequent lines of therapy of HER2-negative breast cancer. Our study will include 35 patients with advanced breast cancer that has failed endocrine therapy and first-line chemotherapy. Participants will receive 30 mg of chidamide twice a week, 200 mg of sintilimab once every 3 weeks, combined with immuno-radiotherapy. Radiotherapy will be centrally 8 Gy for at least one lesion, and at least 1 Gy for the other lesions. We will complete three fractions of radiotherapy in one cycle. The primary endpoint is progression-free survival, and secondary endpoints are objective response rate, disease control rate and safety. Moreover, biomarkers including cytokines and lymphocyte subgroups will be explored. Conclusion As a single-arm clinical trial, the analysis of the influence of each single treatment is limited. Besides, our study is an open study, which involves neither randomization nor blinding. In spite of the abovementioned limitations, this prospective clinical trial will give an insight into subsequent lines of therapy of HER2-negative advanced breast cancer, prolong the survival or achieve long remission for these participants, and identify potential responders.
Collapse
Affiliation(s)
- Lianru Zhang
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People’s Republic of China
- Clinical Cancer Institute of Nanjing University, Nanjing, People’s Republic of China
| | - Jie Xiao
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People’s Republic of China
- Clinical Cancer Institute of Nanjing University, Nanjing, People’s Republic of China
| | - Yishan Li
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People’s Republic of China
- Clinical Cancer Institute of Nanjing University, Nanjing, People’s Republic of China
| | - Baorui Liu
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People’s Republic of China
- Clinical Cancer Institute of Nanjing University, Nanjing, People’s Republic of China
| | - Li Xie
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People’s Republic of China
- Clinical Cancer Institute of Nanjing University, Nanjing, People’s Republic of China
| |
Collapse
|
33
|
Tang W, Long G. Retrospective study of a novel hematological parameter for predicting the survival of patients with nasopharyngeal carcinoma. PeerJ 2024; 12:e17573. [PMID: 38915379 PMCID: PMC11195549 DOI: 10.7717/peerj.17573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/24/2024] [Indexed: 06/26/2024] Open
Abstract
Purpose This study aims to explore the prognostic values of routine pre-treatment hematological parameters in patients with nasopharyngeal carcinoma (NPC). Methods The hematological parameters and clinical data of patients with NPC were collected from January 2012 to December 2013 at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology. The survival statistics were obtained by regularly following-up the patients. The cut-off values for the hematological parameters were calculated using X-tile software. SPSS version 24.0 was used for the statistical analysis. The relationship between the hematological parameters and the prognosis of patients with NPC was analyzed using the Kaplan-Meier method and Cox multivariate regression. The discriminating abilities of the factors, which predict the prognosis, were evaluated by utilizing the receiver operating characteristic (ROC) area under the curve (AUC). Results This study included 179 patients with NPC. Multivariate analysis shows that pretreatment platelet-to-lymphocyte ratio (PLR; hazard ratio; HR = 0.44, 95% CI [0.21-0.91], p = 0.029), serum albumin (ALB; HR = 2.49, 95% CI [1.17-5.30], p = 0.018), and globulin (GLO; HR = 0.44, 95% CI [0.21-0.90], p = 0.024) are independent predictors for 5-year overall survival (OS) in patients with NPC. In addition, pre-treatment PLR (HR = 0.47, 95% CI [0.25-0.90], p = 0.022) and pre-treatment GLO (HR = 0.37, 95% CI [0.19-0.72], p = 0.001) are associated with 5-year progression-free survival (PFS) in patients with NPC. Based on the results of the multivariate analysis, we proposed a new biomarker GLO-PLR, which is observably correlated with the T stage, N stage and clinical stage in patients with NPC. The OS resolving ability of the GLO-PLR evaluated by AUC is 0.714, which is better than those of GLO and PLR. The PFS resolving ability of the GLO-PLR evaluated by AUC was 0.696, which is also better than those of GLO and PLR. Conclusion Pre-treatment PLR, ALB, and GLO are independent predictors of 5-year OS in patients with NPC, where PLR and GLO are also independent predictors of 5-year FPS. Compared with other hematological parameters, the proposed GLO-PLR is an inexpensive, effective, objective, and easy-to-measure marker for predicting the prognosis of NPC.
Collapse
Affiliation(s)
- Wenhua Tang
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, Chongqing, China
| | - Guoxian Long
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
34
|
Pan F, Liu J, Chen Y, Zhu B, Chen W, Yang Y, Zhu C, Zhao H, Liu X, Xu Y, Xu X, Huo L, Xie L, Wang R, Gu J, Huang G. Chemotherapy-induced high expression of IL23A enhances efficacy of anti-PD-1 therapy in TNBC by co-activating the PI3K-AKT signaling pathway of CTLs. Sci Rep 2024; 14:14248. [PMID: 38902343 PMCID: PMC11189934 DOI: 10.1038/s41598-024-65129-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024] Open
Abstract
Treatment of advanced triple-negative breast cancer (TNBC) is a great challenge in clinical practice. The immune checkpoints are a category of immunosuppressive molecules that cancer could hijack and impede anti-tumor immunity. Targeting immune checkpoints, such as anti-programmed cell death 1 (PD-1) therapy, is a promising therapeutic strategy in TNBC. The efficacy and safety of PD-1 monoclonal antibody (mAb) with chemotherapy have been validated in TNBC patients. However, the precise mechanisms underlying the synergistic effect of chemotherapy and anti-PD-1 therapy have not been elucidated, causing the TNBC patients that might benefit from this combination regimen not to be well selected. In the present work, we found that IL-23, an immunological cytokine, is significantly upregulated after chemotherapy in TNBC cells and plays a vital role in enhancing the anti-tumor immune response of cytotoxic T cells (CTLs), especially in combination with PD-1 mAb. In addition, the combination of IL-23 and PD-1 mAb could synergistically inhibit the expression of Phosphoinositide-3-Kinase Regulatory Subunit 1 (PIK3R1), which is a regulatory subunit of PI3K and inhibit p110 activity, and promote phosphorylation of AKT in TNBC-specific CTLs. Our findings might provide a molecular marker that could be used to predict the effects of combination chemotherapy therapy and PD-1 mAb in TNBC.
Collapse
Affiliation(s)
- Fan Pan
- Department of Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Eastern Zhongshan Road 305#, Nanjing, 210002, China
| | - Jiajing Liu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Ningbo University, Liuting Road 59#, Ningbo, 315010, China
| | - Ying Chen
- Medical School of Nanjing University, Nanjing University, Hankou Road 22#, Nanjing, 210093, China
| | - Binghan Zhu
- Department of Respiratory Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing University Medical School, Zhongshan Road 321#, Nanjing, 210008, China
| | - Weiwei Chen
- Department of Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Eastern Zhongshan Road 305#, Nanjing, 210002, China
| | - Yuchen Yang
- Department of Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Eastern Zhongshan Road 305#, Nanjing, 210002, China
| | - Chunyan Zhu
- Department of Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Eastern Zhongshan Road 305#, Nanjing, 210002, China
| | - Hua Zhao
- Department of Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Eastern Zhongshan Road 305#, Nanjing, 210002, China
| | - Xiaobei Liu
- Department of Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Eastern Zhongshan Road 305#, Nanjing, 210002, China
| | - Yichen Xu
- Department of Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Eastern Zhongshan Road 305#, Nanjing, 210002, China
| | - Xiaofan Xu
- Department of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Eastern Zhongshan Road 305#, Nanjing, 210002, China
| | - Liqun Huo
- Department of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Eastern Zhongshan Road 305#, Nanjing, 210002, China
| | - Li Xie
- Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321#, Nanjing, 210008, China.
| | - Rui Wang
- Department of Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Eastern Zhongshan Road 305#, Nanjing, 210002, China.
| | - Jun Gu
- Department of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Eastern Zhongshan Road 305#, Nanjing, 210002, China.
| | - Guichun Huang
- Department of Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Eastern Zhongshan Road 305#, Nanjing, 210002, China.
| |
Collapse
|
35
|
Patton L, Monteith B, Heffernan P, Herzinger T, Wilson BE. Hemophagocytic lymphohistiocytosis/cytokine release syndrome secondary to neoadjuvant pembrolizumab for triple-negative breast cancer: a case study. Front Oncol 2024; 14:1394543. [PMID: 38919527 PMCID: PMC11196757 DOI: 10.3389/fonc.2024.1394543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/10/2024] [Indexed: 06/27/2024] Open
Abstract
As indications for immune checkpoint inhibitors for breast cancer continue to expand, rare toxicities will emerge that require careful consideration and multidisciplinary management. We report the case of a 40-year-old female receiving neoadjuvant pembrolizumab and chemotherapy for locally advanced triple-negative breast cancer who developed cytokine release syndrome (CRS)/hemophagocytic lymphohistiocytosis (HLH). CRS/HLH secondary to pembrolizumab are scarcely documented in the literature and, to our knowledge, have never been reported in the context of neoadjuvant treatment for breast cancer.
Collapse
Affiliation(s)
- Laura Patton
- Department of Oncology, Queen’s University, Kingston, ON, Canada
| | - Bethany Monteith
- Department of Haematology, Queen’s University, Kingston, ON, Canada
| | - Paul Heffernan
- Department of Critical Care Medicine, Queen’s University, Kingston, ON, Canada
| | - Thomas Herzinger
- Division of Dermatology, Department of Medicine, Queen’s University, Kingston, ON, Canada
| | - Brooke E. Wilson
- Department of Oncology, Queen’s University, Kingston, ON, Canada
- Division of Cancer Care and Epidemiology, Queen’s Cancer Research Institute, Kingston, ON, Canada
| |
Collapse
|
36
|
Zhang M, Li X, Zhou P, Zhang P, Wang G, Lin X. Prediction value study of breast cancer tumor infiltrating lymphocyte levels based on ultrasound imaging radiomics. Front Oncol 2024; 14:1411261. [PMID: 38903726 PMCID: PMC11187250 DOI: 10.3389/fonc.2024.1411261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024] Open
Abstract
Objective Construct models based on grayscale ultrasound and radiomics and compare the efficacy of different models in preoperatively predicting the level of tumor-infiltrating lymphocytes in breast cancer. Materials and methods This study retrospectively collected clinical data and preoperative ultrasound images from 185 breast cancer patients confirmed by surgical pathology. Patients were randomly divided into a training set (n=111) and a testing set (n=74) using a 6:4 ratio. Based on a 10% threshold for tumor-infiltrating lymphocytes (TIL) levels, patients were classified into low-level and high-level groups. Radiomic features were extracted and selected using the training set. The evaluation included assessing the relationship between TIL levels and both radiomic features and grayscale ultrasound features. Subsequently, grayscale ultrasound models, radiomic models, and nomograms combining radiomics score (Rad-score) and grayscale ultrasound features were established. The predictive performance of different models was evaluated through receiver operating characteristic (ROC) analysis. Calibration curves assessed the fit of the nomograms, and decision curve analysis (DCA) evaluated the clinical effectiveness of the models. Results Univariate analyses and multivariate logistic regression analyses revealed that indistinct margin (P<0.001, Odds Ratio [OR]=0.214, 95% Confidence Interval [CI]: 0.103-1.026), posterior acoustic enhancement (P=0.027, OR=2.585, 95% CI: 1.116-5.987), and ipsilateral axillary lymph node enlargement (P=0.001, OR=4.214, 95% CI: 1.798-9.875) were independent predictive factors for high levels of TIL in breast cancer. In comparison to grayscale ultrasound model (Training set: Area under curve [AUC] 0.795; Testing set: AUC 0.720) and radiomics model (Training set: AUC 0.803; Testing set: AUC 0.759), the nomogram demonstrated superior discriminative ability on both the training (AUC 0.884) and testing (AUC 0.820) datasets. Calibration curves indicated high consistency between the nomogram model's predicted probability of breast cancer TIL levels and the actual occurrence probability. DCA revealed that the radiomics model and the nomogram model achieved higher clinical net benefits compared to the grayscale ultrasound model. Conclusion The nomogram based on preoperative ultrasound radiomics features exhibits robust predictive capacity for the non-invasive evaluation of breast cancer TIL levels, potentially providing a significant basis for individualized treatment decisions in breast cancer.
Collapse
Affiliation(s)
- Min Zhang
- Department of Ultrasound, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Xuanyu Li
- Department of Ultrasound, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Pin Zhou
- Department of Pathology, Taizhou Hospital of Zhejiang Province, Taizhou, Zhejiang, China
| | - Panpan Zhang
- Department of Ultrasound, Taizhou Hospital of Zhejiang Province, Taizhou, Zhejiang, China
| | - Gang Wang
- Department of Ultrasound, Taizhou Hospital of Zhejiang Province, Taizhou, Zhejiang, China
| | - Xianfang Lin
- Department of Ultrasound, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
- Department of Ultrasound, Taizhou Hospital of Zhejiang Province, Taizhou, Zhejiang, China
| |
Collapse
|
37
|
Suwannaphoom K, Soontornsit S, Wiwatwarayos K, Seneetuntigul P, Julimasart P. Assessing the relationship between tumor-infiltrating lymphocytes and PD-L1 expression in triple negative breast cancer: Identifying optimal TILs cut-off value for pathologic reporting. Ann Diagn Pathol 2024; 70:152294. [PMID: 38513466 DOI: 10.1016/j.anndiagpath.2024.152294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Triple Negative Breast Cancer (TNBC) presents diagnostic complexities, particularly in evaluating Tumor-Infiltrating Lymphocytes (TILs) and Programmed Death-Ligand 1 (PD-L1) expression. This study aimed to identify optimal TILs percentage cut-offs predictive of PD-L1 expression and to investigate the relationship between TILs, PD-L1, and tertiary lymphoid structures (TLSs). METHOD Analyzing 141 TNBC cases, we assessed TILs, PD-L1 expression (clones 22C3 and SP142), and TLS presence. RESULTS We identified TILs cut-offs (<20 %, 20-60 %, ≥60 %) correlating with PD-L1 expression. TILs <20 % rarely express PD-L1 with either 22C3 or SP142 clones. TILs ≥60 % demonstrate PD-L1 expression across both clones. TILs within the 20-60 % range correlate with PD-L1 expression using the SP142 clone, but not 22C3. Evaluating TILs solely at the tumor edge led to inaccuracies, highlighting the need for overall assessment of TILs throughout the entire lesion. TLS presence correlated with higher TIL percentages and PD-L1 expression, particularly with SP142. Discrepancies between 22C3 and SP142 clones (15 % vs. 50 % positivity, respectively) underscored the variability in PD-L1 detection. CONCLUSION This study identifies TILs cut-offs predictive of PD-L1 positivity, suggesting the need for institutions to tailor these thresholds based on the selected PD-L1 clone and treatment. Evaluating TILs solely at the tumor edge may overlook the complexity of tumor immune infiltration. While TLS presence correlates with higher PD-L1 expression, particularly with the SP142 clone, its exact predictive value for PD-L1 remains to be clarified. The SP142 clone exhibits higher positivity rates compared to 22C3.
Collapse
|
38
|
Wu R, Horimoto Y, Oshi M, Benesch MGK, Khoury T, Takabe K, Ishikawa T. Emerging measurements for tumor-infiltrating lymphocytes in breast cancer. Jpn J Clin Oncol 2024; 54:620-629. [PMID: 38521965 PMCID: PMC11144297 DOI: 10.1093/jjco/hyae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/01/2024] [Indexed: 03/25/2024] Open
Abstract
Tumor-infiltrating lymphocytes are a general term for lymphocytes or immune cells infiltrating the tumor microenvironment. Numerous studies have demonstrated tumor-infiltrating lymphocytes to be robust prognostic and predictive biomarkers in breast cancer. Recently, immune checkpoint inhibitors, which directly target tumor-infiltrating lymphocytes, have become part of standard of care treatment for triple-negative breast cancer. Surprisingly, tumor-infiltrating lymphocytes quantified by conventional methods do not predict response to immune checkpoint inhibitors, which highlights the heterogeneity of tumor-infiltrating lymphocytes and the complexity of the immune network in the tumor microenvironment. Tumor-infiltrating lymphocytes are composed of diverse immune cell populations, including cytotoxic CD8-positive T lymphocytes, B cells and myeloid cells. Traditionally, tumor-infiltrating lymphocytes in tumor stroma have been evaluated by histology. However, the standardization of this approach is limited, necessitating the use of various novel technologies to elucidate the heterogeneity in the tumor microenvironment. This review outlines the evaluation methods for tumor-infiltrating lymphocytes from conventional pathological approaches that evaluate intratumoral and stromal tumor-infiltrating lymphocytes such as immunohistochemistry, to the more recent advancements in computer tissue imaging using artificial intelligence, flow cytometry sorting and multi-omics analyses using high-throughput assays to estimate tumor-infiltrating lymphocytes from bulk tumor using immune signatures or deconvolution tools. We also discuss higher resolution technologies that enable the analysis of tumor-infiltrating lymphocytes heterogeneity such as single-cell analysis and spatial transcriptomics. As we approach the era of personalized medicine, it is important for clinicians to understand these technologies.
Collapse
Affiliation(s)
- Rongrong Wu
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, Japan
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Yoshiya Horimoto
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, Japan
- Department of Breast Oncology, Juntendo University Hospital, Tokyo, Japan
| | - Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Matthew G K Benesch
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Thaer Khoury
- Department of Pathology & Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Kazuaki Takabe
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, Japan
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, NY, USA
- Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Department of Breast Surgery, Fukushima Medical University, Fukushima, Japan
| | - Takashi Ishikawa
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
39
|
McGuinness C, Britt KL. Estrogen receptor regulation of the immune microenvironment in breast cancer. J Steroid Biochem Mol Biol 2024; 240:106517. [PMID: 38555985 DOI: 10.1016/j.jsbmb.2024.106517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/07/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Breast cancer (BCa) is the most common cancer in women and the estrogen receptor (ER)+ subtype is increasing in incidence. There are numerous therapy options available for patients that target the ER, however issues such as innate and acquired treatment resistance, and treatment related side effects justify research into alternative therapeutic options for these patients. Patients of many solid tumour types have benefitted from immunotherapy, however response rates have been generally low in ER+ BCa. We summarise the recent work assessing CDK4/6 inhibitors for ER+ BCa and how they have been shown to prime anti-tumour immune cells and achieve impressive results in preclinical models. A great example of how the immune system might be activated against ER+ BCa. We review the role of estrogen signalling in immune cells, and explore recent data highlighting the hormonal regulation of the immune microenvironment of normal breast, BCa and immune disorders. As recent data has indicated that macrophages are particularly susceptible to estrogen signalling, we highlight macrophage phagocytosis as a key potential target for priming the tumour immune microenvironment. We challenge the generally accepted paradigm that ER+ BCa are "immune-cold" - advocating instead for research into therapies that could be used in combination with targeted therapies and/or immune checkpoint blockade to achieve durable antitumour responses in ER+ BCa.
Collapse
Affiliation(s)
- Conor McGuinness
- Breast Cancer Risk and Prevention Lab, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Kara L Britt
- Breast Cancer Risk and Prevention Lab, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
40
|
Michaels E, Chen N, Nanda R. The Role of Immunotherapy in Triple-Negative Breast Cancer (TNBC). Clin Breast Cancer 2024; 24:263-270. [PMID: 38582617 DOI: 10.1016/j.clbc.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/15/2024] [Accepted: 03/02/2024] [Indexed: 04/08/2024]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype, generally associated with a high risk of recurrence and poor prognosis. Our understanding of the heterogeneity of TNBC has increased over the past decade, and with it a recognition that some TNBCs are immunogenically active. This finding has led to the investigation of immunotherapy-based approaches for treatment of both early and advanced-stage TNBC. In this review, we provide an overview of the biologic rationale for immunotherapy use in TNBC, and review data from seminal trials which have culminated in the approval of immunotherapy for both early and advanced TNBC. Identification of predictive biomarkers to aid in treatment selection, development of novel treatment combinations to combat resistance, and refinement of therapeutic targets enables continued improvement in outcomes with immunotherapy for TNBC.
Collapse
Affiliation(s)
- Elena Michaels
- Department of Medicine, The University of Chicago Medicine, Chicago, IL
| | - Nan Chen
- Department of Medicine, The University of Chicago Medicine, Chicago, IL; Department of Medicine, The University of Chicago Comprehensive Cancer Center, Chicago, IL
| | - Rita Nanda
- Department of Medicine, The University of Chicago Medicine, Chicago, IL; Department of Medicine, The University of Chicago Comprehensive Cancer Center, Chicago, IL.
| |
Collapse
|
41
|
Rayson VC, Harris MA, Savas P, Hun ML, Virassamy B, Salgado R, Loi S. The anti-cancer immune response in breast cancer: current and emerging biomarkers and treatments. Trends Cancer 2024; 10:490-506. [PMID: 38521654 DOI: 10.1016/j.trecan.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
Triple-negative breast cancers (TNBCs) exhibit heightened T cell infiltration, contributing to an enhanced response to immune checkpoint blockade (ICB) compared with other subtypes. An immune-rich immune microenvironment correlates with improved prognosis in early and advanced TNBC. Combination chemotherapy and ICB is now the standard of care in early- and late-stage TNBC. Although programmed death ligand-1 (PD-L1) positivity predicts ICB response in advanced stages, its role in early-stage disease remains uncertain. Despite neoadjuvant ICB becoming common in early-stage TNBC, the necessity of adjuvant ICB after surgery remains unclear. Understanding the molecular basis of the immune response in breast cancer is vital for precise biomarkers for ICB and effective combination therapy strategies.
Collapse
Affiliation(s)
- Victoria C Rayson
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Michael A Harris
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia; Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Peter Savas
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia; Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Michael L Hun
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia; Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Balaji Virassamy
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Roberto Salgado
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Department of Pathology, GZA-ZNA Hospitals, Antwerp, Belgium
| | - Sherene Loi
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia; Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
| |
Collapse
|
42
|
Otterlei Fjørtoft M, Huse K, Rye IH. The Tumor Immune Microenvironment in Breast Cancer Progression. Acta Oncol 2024; 63:359-367. [PMID: 38779867 PMCID: PMC11332517 DOI: 10.2340/1651-226x.2024.33008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/12/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND The tumor microenvironment significantly influences breast cancer development, progression, and metastasis. Various immune cell populations, including T cells, B cells, NK cells, and myeloid cells exhibit diverse functions in different breast cancer subtypes, contributing to both anti-tumor and pro-tumor activities. PURPOSE This review provides an overview of the predominant immune cell populations in breast cancer subtypes, elucidating their suppressive and prognostic effects. We aim to outline the role of the immune microenvironment from normal breast tissue to invasive cancer and distant metastasis. METHODS A comprehensive literature review was conducted to analyze the involvement of immune cells throughout breast cancer progression. RESULTS In breast cancer, tumors exhibit increased immune cell infiltration compared to normal tissue. Variations exist across subtypes, with higher levels observed in triple-negative and HER2+ tumors are linked to better survival. In contrast, ER+ tumors display lower immune infiltration, associated with poorer outcomes. Furthermore, metastatic sites commonly exhibit a more immunosuppressive microenvironment. CONCLUSION Understanding the complex interaction between tumor and immune cells during breast cancer progression is essential for future research and the development of immune-based strategies. This comprehensive understanding may pave the way for more effective treatment approaches and improved patients outcomes.
Collapse
Affiliation(s)
- Marit Otterlei Fjørtoft
- Department of Cancer Genetics, Institute for Cancer Research, Division of Cancer Medicine, Oslo University Hospital, Radium Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kanutte Huse
- Department of Cancer Immunology, Institute for Cancer Research, Division of Cancer Medicine, Oslo University Hospital, Radium Hospital, Oslo, Norway
| | - Inga Hansine Rye
- Department of Cancer Genetics, Institute for Cancer Research, Division of Cancer Medicine, Oslo University Hospital, Radium Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
43
|
Ly A, Garcia V, Blenman KRM, Ehinger A, Elfer K, Hanna MG, Li X, Peeters DJE, Birmingham R, Dudgeon S, Gardecki E, Gupta R, Lennerz J, Pan T, Saltz J, Wharton KA, Ehinger D, Acs B, Dequeker EMC, Salgado R, Gallas BD. Training pathologists to assess stromal tumour-infiltrating lymphocytes in breast cancer synergises efforts in clinical care and scientific research. Histopathology 2024; 84:915-923. [PMID: 38433289 PMCID: PMC10990791 DOI: 10.1111/his.15140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/15/2023] [Accepted: 12/31/2023] [Indexed: 03/05/2024]
Abstract
A growing body of research supports stromal tumour-infiltrating lymphocyte (TIL) density in breast cancer to be a robust prognostic and predicive biomarker. The gold standard for stromal TIL density quantitation in breast cancer is pathologist visual assessment using haematoxylin and eosin-stained slides. Artificial intelligence/machine-learning algorithms are in development to automate the stromal TIL scoring process, and must be validated against a reference standard such as pathologist visual assessment. Visual TIL assessment may suffer from significant interobserver variability. To improve interobserver agreement, regulatory science experts at the US Food and Drug Administration partnered with academic pathologists internationally to create a freely available online continuing medical education (CME) course to train pathologists in assessing breast cancer stromal TILs using an interactive format with expert commentary. Here we describe and provide a user guide to this CME course, whose content was designed to improve pathologist accuracy in scoring breast cancer TILs. We also suggest subsequent steps to translate knowledge into clinical practice with proficiency testing.
Collapse
Affiliation(s)
- Amy Ly
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Victor Garcia
- Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Imaging, Diagnostics, and Software Reliability, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Kim RM Blenman
- Department of Internal Medicine, Section of Medical Oncology and Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
- Department of Computer Science, Yale School of Engineering and Applied Science, New Haven, CT, USA
| | - Anna Ehinger
- Department of Genetics, Pathology and Molecular Diagnostics, Laboratory Medicine, Region Skane, Lund University, Lund, Sweden
| | - Katherine Elfer
- Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Imaging, Diagnostics, and Software Reliability, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Matthew G Hanna
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xiaoxian Li
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Dieter JE Peeters
- Department of Pathology, University Hospital Antwerp, Edegem, Belgium
- Department of Pathology, Algemeen Ziekenhuis (AZ) Sint-Maarten, Mechelen, Belgium
| | - Ryan Birmingham
- Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Imaging, Diagnostics, and Software Reliability, U.S. Food and Drug Administration, Silver Spring, MD, USA
- Department of Biomedical Informatics, Emory University, Atlanta, GA, USA
| | - Sarah Dudgeon
- Center for Computational Health, Yale School of Medicine, New Haven, CT, USA
| | - Emma Gardecki
- Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Imaging, Diagnostics, and Software Reliability, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Rajarsi Gupta
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY, USA
| | - Jochen Lennerz
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital, Boston, MA, USA; currently at BostonGene, Boston, MA
| | - Tony Pan
- Department of Biomedical Informatics, Emory University, Atlanta, GA, USA
| | - Joel Saltz
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY, USA
| | | | - Daniel Ehinger
- Department of Clinical Sciences, Division of Oncology, Lund University, Lund, Sweden
- Department of Genetics, Pathology, and Molecular Diagnostics, Skane University Hospital, Lund, Sweden
| | - Balazs Acs
- Department of Oncology and Pathology, Cancer Centre Karolinska, Karolinksa Institutet, Stockholm, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Elisabeth MC Dequeker
- Department of Public Health and Primary Care, Biomedical Quality Assurance Research Unit, University of Leuven, Leuven, Belgium
| | - Roberto Salgado
- Department of Pathology, Gasthuiszusters Antwerpen-Ziekenhuis Netwerk Antwerpen (GZA-ZNA) Hospitals, Antwerp, Belgium
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Brandon D Gallas
- Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Imaging, Diagnostics, and Software Reliability, U.S. Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
44
|
Tinholt M, Tekpli X, Torland LA, Tahiri A, Geisler J, Kristensen V, Sandset PM, Iversen N. The breast cancer coagulome in the tumor microenvironment and its role in prognosis and treatment response to chemotherapy. J Thromb Haemost 2024; 22:1319-1335. [PMID: 38237862 DOI: 10.1016/j.jtha.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/08/2023] [Accepted: 01/02/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND The procoagulant phenotype in cancer is linked to thrombosis, cancer progression, and immune response. A novel treatment that reduces the risk of both thrombosis and cancer progression without excess bleeding risk remains to be identified. OBJECTIVES Here, we aimed to broadly investigate the breast tumor coagulome and its relation to prognosis, treatment response to chemotherapy, and the tumor microenvironment. METHODS Key coagulation-related genes (n = 35) were studied in a Norwegian cohort with tumor (n = 134) and normal (n = 189) tissue and in the Cancer Genome Atlas (n = 1052) data set. We performed gene set variation analysis in the Norwegian cohort, and in the Cancer Genome Atlas cohort, associations with the tumor microenvironment and prognosis were evaluated. Analyses were performed with cBioPortal, Estimation of Stromal and Immune cells in Malignant Tumors Using Expression Data, Tumor Immune Estimation Resource, the integrated repository portal for tumor-immune system interactions, Tumor Immune Single-cell Hub 2, and the receiver operating characteristic plotter. Six independent breast cancer cohorts were used to study the tumor coagulome and treatment response to chemotherapy. RESULTS Twenty-two differentially expressed coagulation-related genes were identified in breast tumors. Several coagulome factors were correlated with tumor microenvironment characteristics and were expressed by nonmalignant cells in the tumor microenvironment. PLAT and F8 were independent predictors of better overall survival and progression-free survival, respectively. F12 and PLAU were predictors of worse progression-free survival. The PROCR-THBD-PLAT signature showed a promising predictive value (area under the curve, 0.75; 95% CI, 0.69-0.81; P = 3.6 × 10-17) for combination chemotherapy with fluorouracil, epirubicin, and cyclophosphamide. CONCLUSION The breast tumor coagulome showed potential in prediction of prognosis and chemotherapy response. Cells within the tumor microenvironment are sources of coagulome factors and may serve as therapeutic targets of coagulation factors.
Collapse
Affiliation(s)
- Mari Tinholt
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Department of Haematology, Oslo University Hospital, Oslo, Norway.
| | - Xavier Tekpli
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Lilly Anne Torland
- Department of Research and Innovation, Vestre Viken Hospital Trust, Drammen, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Andliena Tahiri
- Department of Research and Innovation, Vestre Viken Hospital Trust, Drammen, Norway; Department of Clinical Molecular Biology (EpiGen), Medical Division, Akershus University Hospital, Lørenskog, Norway
| | - Jürgen Geisler
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, Campus Akershus University Hospital, Lørenskog, Norway
| | - Vessela Kristensen
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Per Morten Sandset
- Department of Haematology, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital, Norway
| | - Nina Iversen
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
45
|
Papakyriacou I, Kutkaite G, Rúbies Bedós M, Nagarajan D, Alford LP, Menden MP, Mao Y. Loss of NEDD8 in cancer cells causes vulnerability to immune checkpoint blockade in triple-negative breast cancer. Nat Commun 2024; 15:3581. [PMID: 38678024 PMCID: PMC11055868 DOI: 10.1038/s41467-024-47987-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/17/2024] [Indexed: 04/29/2024] Open
Abstract
Immune checkpoint blockade therapy aims to activate the immune system to eliminate cancer cells. However, clinical benefits are only recorded in a subset of patients. Here, we leverage genome-wide CRISPR/Cas9 screens in a Tumor-Immune co-Culture System focusing on triple-negative breast cancer (TNBC). We reveal that NEDD8 loss in cancer cells causes a vulnerability to nivolumab (anti-PD-1). Genetic deletion of NEDD8 only delays cell division initially but cell proliferation is unaffected after recovery. Since the NEDD8 gene is commonly essential, we validate this observation with additional CRISPR screens and uncover enhanced immunogenicity in NEDD8 deficient cells using proteomics. In female immunocompetent mice, PD-1 blockade lacks efficacy against established EO771 breast cancer tumors. In contrast, we observe tumor regression mediated by CD8+ T cells against Nedd8 deficient EO771 tumors after PD-1 blockade. In essence, we provide evidence that NEDD8 is conditionally essential in TNBC and presents as a synergistic drug target for PD-1/L1 blockade therapy.
Collapse
Affiliation(s)
- Irineos Papakyriacou
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ginte Kutkaite
- Computational Health Center, Helmholtz Munich, Neuherberg, Germany
- Department of Biology, Ludwig-Maximilians University Munich, Martinsried, Germany
| | - Marta Rúbies Bedós
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Divya Nagarajan
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Liam P Alford
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Michael P Menden
- Computational Health Center, Helmholtz Munich, Neuherberg, Germany
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC, Australia
| | - Yumeng Mao
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
46
|
Dakal TC, George N, Xu C, Suravajhala P, Kumar A. Predictive and Prognostic Relevance of Tumor-Infiltrating Immune Cells: Tailoring Personalized Treatments against Different Cancer Types. Cancers (Basel) 2024; 16:1626. [PMID: 38730579 PMCID: PMC11082991 DOI: 10.3390/cancers16091626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024] Open
Abstract
TIICs are critical components of the TME and are used to estimate prognostic and treatment responses in many malignancies. TIICs in the tumor microenvironment are assessed and quantified by categorizing immune cells into three subtypes: CD66b+ tumor-associated neutrophils (TANs), FoxP3+ regulatory T cells (Tregs), and CD163+ tumor-associated macrophages (TAMs). In addition, many cancers have tumor-infiltrating M1 and M2 macrophages, neutrophils (Neu), CD4+ T cells (T-helper), CD8+ T cells (T-cytotoxic), eosinophils, and mast cells. A variety of clinical treatments have linked tumor immune cell infiltration (ICI) to immunotherapy receptivity and prognosis. To improve the therapeutic effectiveness of immune-modulating drugs in a wider cancer patient population, immune cells and their interactions in the TME must be better understood. This study examines the clinicopathological effects of TIICs in overcoming tumor-mediated immunosuppression to boost antitumor immune responses and improve cancer prognosis. We successfully analyzed the predictive and prognostic usefulness of TIICs alongside TMB and ICI scores to identify cancer's varied immune landscapes. Traditionally, immune cell infiltration was quantified using flow cytometry, immunohistochemistry, gene set enrichment analysis (GSEA), CIBERSORT, ESTIMATE, and other platforms that use integrated immune gene sets from previously published studies. We have also thoroughly examined traditional limitations and newly created unsupervised clustering and deconvolution techniques (SpatialVizScore and ProTICS). These methods predict patient outcomes and treatment responses better. These models may also identify individuals who may benefit more from adjuvant or neoadjuvant treatment. Overall, we think that the significant contribution of TIICs in cancer will greatly benefit postoperative follow-up, therapy, interventions, and informed choices on customized cancer medicines.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Nancy George
- Department of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India;
| | - Caiming Xu
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of the City of Hope, Monrovia, CA 91010, USA;
| | - Prashanth Suravajhala
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana P.O. 690525, Kerala, India;
| | - Abhishek Kumar
- Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, Karnataka, India
| |
Collapse
|
47
|
Čeprnja T, Tomić S, Perić Balja M, Marušić Z, Blažićević V, Spagnoli GC, Juretić A, Čapkun V, Vuger AT, Pogorelić Z, Mrklić I. Prognostic Value of "Basal-like" Morphology, Tumor-Infiltrating Lymphocytes and Multi-MAGE-A Expression in Triple-Negative Breast Cancer. Int J Mol Sci 2024; 25:4513. [PMID: 38674098 PMCID: PMC11050590 DOI: 10.3390/ijms25084513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
"Basal-like" (BL) morphology and the expression of cancer testis antigens (CTA) in breast cancer still have unclear prognostic significance. The aim of our research was to explore correlations of the morphological characteristics and tumor microenvironment in triple-negative breast carcinomas (TNBCs) with multi-MAGE-A CTA expression and to determine their prognostic significance. Clinical records of breast cancer patients who underwent surgery between January 2017 and December 2018 in four major Croatian clinical centers were analyzed. A total of 97 non-metastatic TNBCs with available tissue samples and treatment information were identified. Cancer tissue sections were additionally stained with programmed death-ligand 1 (PD-L1) Ventana (SP142) and multi-MAGE-A (mAb 57B). BL morphology was detected in 47 (49%) TNBCs and was associated with a higher Ki-67 proliferation index and histologic grade. Expression of multi-MAGE-A was observed in 77 (79%) TNBCs and was significantly associated with BL morphology. Lymphocyte-predominant breast cancer (LPBC) status was detected in 11 cases (11.3%) and significantly correlated with the Ki-67 proliferation index, increased number of intratumoral lymphocytes (itTIL), and PD-L1 expression. No impact of BL morphology, multi-MAGE-A expression, histologic type, or LPBC status on disease-free survival was observed. Our data suggest that tumor morphology could help identify patients with potential benefits from CTA-targeting immunotherapy.
Collapse
Affiliation(s)
- Toni Čeprnja
- Department of Pathology, Forensic Medicine and Cytology, University Hospital of Split, 21000 Split, Croatia; (T.Č.); (S.T.); (I.M.)
| | - Snježana Tomić
- Department of Pathology, Forensic Medicine and Cytology, University Hospital of Split, 21000 Split, Croatia; (T.Č.); (S.T.); (I.M.)
- Department of Pathology, School of Medicine, University of Split, 21000 Split, Croatia
| | - Melita Perić Balja
- Department of Pathology, University Hospital Center “Sestre Milosrdnice”, 10000 Zagreb, Croatia
| | - Zlatko Marušić
- Department of Pathology, Zagreb University Hospital Center, 10000 Zagreb, Croatia
| | | | | | - Antonio Juretić
- Department of Oncology, University Hospital Dubrava, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Vesna Čapkun
- Department of Nuclear Medicine, University Hospital of Split, 21000 Split, Croatia
| | - Ana Tečić Vuger
- Department of Oncology, University Hospital “Sestre Milosrdnice”, 10000 Zagreb, Croatia;
| | - Zenon Pogorelić
- Department of Pediatric Surgery, University Hospital of Split, 21000 Split, Croatia
- Department of Surgery, School of Medicine, University of Split, 21000 Split, Croatia
| | - Ivana Mrklić
- Department of Pathology, Forensic Medicine and Cytology, University Hospital of Split, 21000 Split, Croatia; (T.Č.); (S.T.); (I.M.)
- Department of Pathology, School of Medicine, University of Split, 21000 Split, Croatia
| |
Collapse
|
48
|
Zhang S, Guo L, Zhang Z, Liu X, Chen W, Wei Y, Wang X, Wu Q. Type-I protein arginine methyltransferase inhibition primes anti-programmed cell death protein 1 immunotherapy in triple-negative breast cancer. Cancer 2024; 130:1415-1423. [PMID: 38079306 DOI: 10.1002/cncr.35142] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 04/02/2024]
Abstract
BACKGROUND Immune-checkpoint blockade (ICB) therapy shows promise for treating aggressive triple-negative breast cancer (TNBC). However, only some patients benefit from ICB, revealing an urgent need for identifying novel strategies for sensitizing patients to ICB. Previously, the authors demonstrated that type-I protein arginine methyltransferases (PRMTs) regulated antiviral innate-immune responses in TNBC by altering RNA splicing. This study aimed to explore the effects of targeting type-I PRMTs on the tumor microenvironment (TME) and the efficacy of ICB therapy against TNBC. METHODS Single-cell transcriptomic analysis was performed to investigate the effects of type-I PRMT inhibition on the TME, especially T-cell subsets. Single-cell T-cell receptor sequencing was performed to analyze the diversity and dynamics of the T-cell repertoire. A syngeneic murine model of TNBC was used to evaluate the therapeutic efficacy and immune memory effect of combining a type-I PRMT inhibitor (MS023) with an anti-programmed cell death protein 1 (PD-1) antibody. RESULTS Type-I PRMT inhibition combined with anti-PD-1 therapy reduced tumor growth. Mechanistically, type-I PRMT inhibition reshaped the TME. Increased CD8 T-cell infiltration was verified using flow cytometry. Increased clonotypes and clonal diversity were also observed after MS023 treatment, which contributed to immune memory following combination treatment. CONCLUSIONS Targeting type-I PRMT can potentially improve immunotherapeutic efficacies in patients with TNBC. By enhancing the tumor immunogenicity and promoting a more favorable immune microenvironment, this combined approach may enable more patients with TNBC to benefit from immunotherapies.
Collapse
Affiliation(s)
- Sheyu Zhang
- School of Life Sciences, Tianjin University, Tianjin, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Lu Guo
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Ziwen Zhang
- Department of Medical Oncology (Breast Cancer), Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Xueying Liu
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Wenjun Chen
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Yong Wei
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Xiaojia Wang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Department of Medical Oncology (Breast Cancer), Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Qin Wu
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
49
|
Tao J, Shen L, Zhuang M, Zhai C, Zeng H, Mao Y, Liu X. Suppression of AGRN enhances CD8+ T cell recruitment and inhibits breast cancer progression. FASEB J 2024; 38:e23582. [PMID: 38568853 DOI: 10.1096/fj.202302288r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/24/2024] [Accepted: 03/15/2024] [Indexed: 04/05/2024]
Abstract
Breast cancer (BC) stands as a prominent contributor to global cancer-related mortality, with an increasing incidence annually. This study aims to investigate AGRN gene expression in BC, as well as explore its influence on the tumor immune microenvironment. AGRN displayed a pronounced upregulation in BC tissues relative to paracancerous tissues. Single-cell RNA analysis highlighted AGRN-specific elevation within cancer cell clusters and also showed expression expressed in stromal as well as immune cell clusters. AGRN upregulation was positively correlated with clinicopathological stage and negatively correlated with BC prognosis. As revealed by the in vitro experiment, AGRN knockdown effectively hinders BC cells in terms of proliferation, invasion as well as migration. AGRN protein, which may interact with EXT1, LRP4, RAPSN, etc., was primarily distributed in the cell cytoplasm. Notably, immune factors might interact with AGRN in BC, evidenced by its discernible associations with immunofactors like IL10, CD274, and PVRL2. Mass spectrometry and immunohistochemistry revealed that the reduction of AGRN led to an increase in CD8+ T cells with triple-negative breast cancer (TNBC). Mechanistically, the connection between TRIM7 and PD-L1 is improved by AGRN, acting as a scaffold, thereby facilitating the accelerated degradation of PD-L1 by TRIM7. Downregulation of AGRN inhibits BC progression and increases CD8+ T cell recruitment. Targeting AGRN may contribute to BC treatment. The biomarker AGRN, serving as a therapeutic target for BC, emerges as a prospective avenue for enhancing both diagnosis and prognosis in BC cases.
Collapse
Affiliation(s)
- Jing Tao
- Department of General Surgery, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Li Shen
- Department of General Surgery, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Minyu Zhuang
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Changyuan Zhai
- Department of General Surgery, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Hanling Zeng
- Department of General Surgery, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yuan Mao
- Department of General Surgery, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Xiaoan Liu
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
50
|
Gunenc D, Ozluk AA, Yıldırım UM, Ascierto PA, Karaca B. Successful application of chemosaturation with percutaneous hepatic perfusion in metastatic uveal melanoma patient progressing after systemic treatment options: a case report. Front Oncol 2024; 14:1355971. [PMID: 38660135 PMCID: PMC11040682 DOI: 10.3389/fonc.2024.1355971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Uveal melanoma (UM) is a rare subtype of melanoma, accounting for less than 5% of all melanoma cases. Metastatic UM differs notably from cutaneous melanoma, exhibiting variations in etiology, prognosis, driver mutations, metastatic patterns, and poor responses to immune checkpoint inhibitors (ICI). Beyond local treatment options, such as resection, radiation therapy, and enucleation, and systemic treatments, such as ICIs, the approval of tebentafusp, a bispecific gp100 peptide-HLA-directed CD3 T-cell engager, marks a breakthrough in treating HLA-A*02:01 metastatic UM. Despite the advancements in treatment options, the long-term survival rates remain inadequate. We report a patient with metastatic UM who previously received ICI and progressed on tebentafusp treatment but subsequently exhibited a remarkable response to local treatment targeting liver metastasis. Such observations highlight the significance of exploring sequential therapeutic strategies for advanced UM, offering potential avenues to enhance treatment efficacy and patient prognosis.
Collapse
Affiliation(s)
- Damla Gunenc
- Department of Medical Oncology, Ege University Faculty of Medicine, Izmir, Türkiye
| | - Ahmet Anil Ozluk
- Department of Medical Oncology, Ege University Faculty of Medicine, Izmir, Türkiye
| | - Utku Mahir Yıldırım
- Department of Interventional Radiology, Izmir University of Economics, Medicalpoint Hospital, Izmir, Türkiye
| | - Paolo A. Ascierto
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale dei Tumori IRCCS “Fondazione G. Pascale”, Naples, Italy
| | - Burcak Karaca
- Department of Medical Oncology, Ege University Faculty of Medicine, Izmir, Türkiye
| |
Collapse
|